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The accelerating improvements in VLSI technology allow adding more and more 

transistors on a single chip. This has been exploited by computer architects to develop 

more complex and more efficient processors like superscalar which exploits the 

instruction level parallelism (ILP) in the applications to handle multiple instructions 

simultaneously. Some applications like graphics processing and scientific computing are 

throughput applications and they have a lot of data level parallelism. The complex 

features such as aggressive branch prediction, multiple instructions issue and out of order 

execution that exist in many processors like superscalar are not needed for these 

computing areas. Special purpose processors should be designed for these applications. 

These processors should be single instruction multiple threads (SIMT) processors such 

that when an instruction is issued, it is executed for multiple independent threads 

sequentially.  

In this research, I am proposing a processor core called PAR core which is based 

on the PAR instruction set architecture (PAR ISA) proposed by Dr. Mudawar. PAR core 

is an SIMT core that receives the workload from the master process in a format called 
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PAR packet which orders the PAR core to execute the same sequence of instructions for 

a given number of threads specified by the PAR packet. 

 The simulation results showed that the PAR core has high throughput and high 

utilization of the hardware resources. The maximum hardware utilization is 100% and the 

maximum IPC gained is 2.75 instructions/ cycle for a 4-way multithreaded PAR core.             

Besides that, the simulation results showed that this architecture is completely scalable 

which means replicating the processing lanes will replicate the throughput. PAR core has 

been scaled up to 64 processing lanes and the speedup is linear and the maximum IPC is 

174.26 instructions/ cycle. 
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THESIS ABSTRACT (ARABIC) 

 

  الرسالة ملخّص

  أيمن علي محمد حروب :ا�سم

  لنياسبلللتنفيذ المتوازي أمثلية النياسب  ةنواة معالج متعدد :الرسالة عنوان

  ا+ليھندسة الحاسب  :التخصص

 ٢٠١١أياّر : التخرّج تاريخ

و ) VLSI(في تقنية الدوائر المتكاملة عالية الكثافة  المتسارعلي التطوّر �لقد استغل معماريوّ الحاسب ا

 فعاليةًّ تعقيدا ً و أكثر المتمثل في زيادة عدد الترانزستورات على الرقاقة ا+لكترونية الواحدة في تطوير معالجات أكثر 

يتسنىّ له معالجة أكثر رامج لكي في الب) ILP(متوازية  تعليمات الذي يعتمد على وجود) Superscalar(مثل معالج 

بعض التطبيقات كمعالجة الرسوم و الحسابات العلمية ھي تطبيقات كثيرة ا+نتاجيةّ حيث . واحد في آن تعليمةمن 

إنّ المزايا المعقدة كالتنبأ بالتفرّع و إصدار أكثر من أمر معاً و التنفيذ غير . تحتوي على كمية ھائلة من التوازي

لذا فإن ھذه . غيرضرورية لھذه التطبيقات) Superscalar(جودة في العديد من المعالجات مثل المرتبّ و المو

يجب أن تكون معالجات من  الخاصةھذه المعالجات . تصمّم خصصيصا لھا خاصةالتطبيقات تحتاج إلى معالجات 

  .لعدة نياسب بالتعاقب او تنفيذھ ةواحد تعليمةو الذي يقتضي إصدار ) SIMT(و عدة نياسب  ةواحد تعليمةنوع 

التي ) PAR ISA( التعليماتو المبنية على مجموعة  )PAR(إنني أقترح في ھذا البحث نواة معالج تسمّى 

الرئيسية  ا+جرائيةو تقوم باستQم العبء من ) SIMT(من نوع  )PAR(تعتبر نواة المعالج . اقترحھا الدكتور مدوّر

لعدد معينّ  الرزمةبتنفيذ البرنامج المرتبط بھذه ) PAR(تقوم النوّاة حيث ) PAR Packet(تسمّى  رزمةعلى شكل 

  ).PAR Packet( الرزمةمن النياسب يتم تحديده في 
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 مصادر العتاد الماديمن  اTستفادةنواة عالية ا+نتاجية و عالية  )PAR(لقد أظھرت نتائج المحاكاة أن النواة 

في أحسن اWحوال و كان الحد اWقصى لعدد % ١٠٠ اديات الماديةالعتمن  اTستفادةنسبة  تلقد كان. الموجودة

الدورة عندما كانت النواة تحتوي على أربعة /تعليمة ٢٫٧٥التي يتم تنفيذھا في الدورة الزمنية الواحدة  التعليمات

مصادر  تتضاعف إنتاجيته بتضاعفبا+ضافة إلى ذلك، أظھرت نتائج المحاكاة أن ھذا النوع من العمارة . نياسب

التي يتم تنفيذھا  التعليماتقناة معالجة فكان التسريع خطياً و كان عدد  ٦٤تم زيادة حجم النواة إلى  حيث العتاد المادي

 .تعليمة ١٧٤٫٢٦ في الدورة الواحدة
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CHAPTER  1 INTRODUCTION 

 

1.1 Overview 

 

The accelerating improvements in VLSI technology which allow adding more and 

more transistors on a single chip have been exploited by the computer architects to 

develop more efficient processors. Adding more transistors means adding more functional 

units and thus increasing the processor’s throughput if these units are utilized properly. 

The processor throughput is defined as the number of instructions executed per the unit of 

time. Increasing the processor throughput requires that the processor itself has multiple 

functional units as well as the architecture should take maximizing the utilization of these 

resources into consideration. 

Moreover, there is an accelerating application demand on more powerful 

processors because the computer applications like simulation, scientific computing, 

multimedia processing etc. become more and more complex. The uniprocessor computer 

cannot fulfill the requirements of these applications because the execution time will be too 

long. Increasing the efficiency of a uniprocessor will make it more complex and it will be 

hit with the heat problem. The solution for that is having parallel computers. 

The parallel computer is defined as “a collection of processing elements that 

cooperate and communicate to solve large problems fast” [1]. Parallel computing implies 



2 
 

replicating the processing unit to handle multiple processes concurrently. These parallel 

processing units may be arranged to communicate together via shared memory or message 

passing. So there are multiple architectures of parallel computers such that the workload is 

partitioned into smaller pieces that are assigned to different processing units.  

In addition to the ability of parallelizing the execution of an application on 

multiple processing units, there is an ability to run multiple threads on a single processing 

pipeline using some multithreading technique. In this thesis, I am proposing an SIMT 

multithreaded processor core called PAR core to handle multiple independent threads 

concurrently. 

 

1.2 Multithreaded Processors 

 

There are two approaches for multithreading architecture [2]. (1) The single chip 

multiprocessor approach which integrates two or more independent processors on a single 

chip. (2) The multithreaded processor which is able to pursue two or more threads of 

control in parallel within a single processor pipeline. 

The multithreaded processor can be defined as a processor that is able to handle 

multiple instructions of multiple threads concurrently by multiplexing the functional units 

in the execution pipeline among these threads. The multithreaded processor pipeline can 

be single issue or multiple issue. Ungerer et al. [2] indicated that there are three principle 

multithreading techniques. (1) Interleaved multithreading technique in which one 

instruction from another thread is fetched and fed to the execution pipeline each clock 
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cycle so this technique is a fine grained cycle-by-cycle multithreading technique. (2) 

Blocked multithreading technique, it is coarser grained than the first one such that in this 

technique a thread continues execution until a blocking event occurs like remote memory 

request,  then another ready thread is activated. This technique of multithreading requires 

implementing some efficient context-switch mechanism. (3) Simultaneous multithreading 

in which the wide superscalar instruction issue is combined with multithreading such that 

instructions are simultaneously issued from multiple threads to the execution pipeline. 

 

1.2.1 The Motivation Behind Having Multithreaded Processors 

 

There were some reasons that pushed the architects to propose this kind of 

architecture. One of the strongest reasons is to tolerate the memory latency. When a 

process makes a remote memory request which takes a long time, then this process will be 

blocked until this request is satisfied. Blocking the process means killing the throughput 

and the hardware resources utilization. Multithreading solves this problem by switching to 

another thread and therefore the processor stays busy and productive. 

Another reason for having multithreaded processors is the data dependence among 

the instructions of a single thread. While a long latency instruction is being executed, the 

subsequent instructions that depend on its result cannot be issued and then some 

functional units will stay idle which reduces the hardware utilization and the processor's 

throughput. Multithreading techniques can solve this problem by executing instructions 
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from other threads on these functional units which increases the hardware utilization and 

the processor's throughput. 

It is clear that the motivation behind having multithreaded processors is increasing 

the functional units' utilization and  thus increasing the processor's throughput through 

filling the unused slots caused by data dependence and remote memory requests with 

useful work from other threads. 

 

1.3 PAR ISA 

 

The PAR ISA is a block-structured ISA proposed by Dr. Mudawar. The program 

in this ISA consists of blocks of instructions. The instruction block is defined as a 

sequence of instructions starting at the target address of a control instruction and ending 

with an instruction whose stop bit is set. There is no need to store additional information 

to determine the instruction block end because the stop bit which is a part of the 

instruction binary format does that. Figure 1 shows an instruction block terminating with 

a stop bit. 
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Figure 1: An Instruction Block is Terminating with a Stop Bit 

 

PAR ISA contains all kinds of standard instructions like integer and floating point 

(FP) arithmetic, logic, memory, compare and control instructions. Appendix A shows the 

syntax and the format of these instructions. In addition to that, PAR ISA contains the par 

instruction to run independent threads in parallel. All instructions have a fixed length of 

32 bits. These 32 bits are divided into several fields according to the instruction format. 

Every instruction has a stop bit and a qualifying predicate register (qp). This means that 

all instructions are predicated such that the instruction will be dropped from the execution 

pipeline and doesn’t change the system status when its qualifying predicate register value 

is zero. In the subsequent subsections, some of the PAR ISA features such as the par 

instruction, the stop bit, the control instructions and the control stack will be described. 
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1.3.1 Par Instruction 

 

Par instruction is used to spawn a group of independent threads called worker 

threads that can work in parallel. This instruction appears only within a master thread 

which runs on a master core. This instruction has the following syntax:  

(qp) par i , target 

When this instruction is encountered and its qp is true, then a set of PAR packets 

is generated. The PAR packet contains the number of threads to be executed, the values of 

the inherited registers from the master thread and the starting address of the thread 

program which is specified by the label target. The number i refers to the inherited 

registers from 0 to i. After the PAR packets are generated, the thread scheduler distributes 

them on the PAR cores according to the scheduling policy.  

 

1.3.2 Stop Bit 

 

As mentioned above, the stop bit is a part of the instruction format to mark the end 

of an instruction block. This feature is visible to the programmer. The programmer can 

indicate that a certain instruction is the last instruction in the instruction block by typing 

the optional hash symbol (#) at the end of the instruction line. When the assembler detects 

the hash symbol, it knows that this instruction is the last instruction in the block and 

therefore it sets the stop bit of that instruction and when no hash symbol is detected this 
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means that this instruction is not the last instruction in the block and therefore the stop bit 

of this instruction is cleared. 

The stop bit is beneficial for the following reasons: 

1. It simplifies the hardware and the software because it eliminates the need to store 

additional information to track the instruction blocks and no complex action is 

needed from the compiler to detect the ends of the blocks and to perform further 

code optimization due the descriptors as in [3]. 

2. It removes the need of having a return instruction to return to the caller after the 

function execution finishes, so it saves one instruction per function call. 

3. It offers simpler and more accurate mechanism in pre-fetching instructions from 

the I-cache to the execution pipeline because the fetch unit can detect the 

instruction block end. 

4. The stop bit with the control stack that will be described later helps the fetch unit 

to detect the thread termination. The thread terminates when the last instruction is 

reached and the control stack is empty. 

5. It helps in designing an instruction pre-fetcher to pre-fetch instructions from the 

main memory to the on chip I-cache since it tells the pre-fetcher where the end of 

the instruction block is.  
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1.3.3 Control Instructions 

 

PAR ISA contains five control instructions that control the program's execution 

flow. These instructions are useful in building an effective and more accurate fetch unit 

that can feed the execution engine with instructions in a high rate. These instructions 

include expand, indirect expand, counter-controlled loop, pure conditional loop and break 

instructions.  

1. The Expand Instruction 
 
It is used to expand instruction blocks and it is equivalent to the function call 

instruction but without having a corresponding return instruction because the stop bit has 

eliminated this need. The expand instruction syntax is as follows: 

(qp) xp Label      

As any other instruction in PAR ISA, the expand instruction is predicated. If qp is 

true, then the execution flow should be transferred to the target address specified by the 

label and when qp is false then the expand instruction is skipped. In addition to its role in 

the program flow control, the expand instruction can be exploited in implementing 

instruction pre-fetchers to transfer the instruction blocks from the main memory to the I-

Cache ahead of time. This can be done by checking the opcode of the instruction while 

the instruction block is being fetched and when a control instruction is detected like 

expand, indirect expand or loop instruction then the next required block will be known 

ahead of time and it can be pre-fetched. The expand instruction and the other control 

instructions also guide the fetch unit to update the program counter. 
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2. The Indirect Expand Instruction 

This instruction is used when the target address is known at runtime. The value of 

the target address is specified indirectly in a general purpose register. The syntax of this 

instruction is: 

(qp) xp r 

It can be used to address shared libraries that are dynamically linked at runtime, to 

expand methods indirectly in object-oriented programming languages etc. 

3. The Counter-Controlled Loop Instruction 

This instruction is used to implement the counter-controlled loops. It has the 

following syntax: 

(qp) loop r, L 

In this instruction, the loop block at the target address specified by the label is 

executed at most n times. The number n is specified in a general purpose register r. As 

long as the value of qp is true, the loop instruction block is expanded. 

If the loop instruction is not the last instruction of the instruction block, its effect 

will be loop and continue i.e. after the loop instruction finishes, the execution flow 

resumes at the next instruction after the loop instruction. However if the loop instruction 

is the last instruction of the instruction block, then its effect will be loop and return i.e. 

after the loop finishes, the execution flow resumes at the return address. 
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4. The Pure Conditional Loop Instruction 
 
It is equivalent to the while loop in C++. It has the following syntax: 
 

(qp) loop L 

When this instruction is encountered, the instruction block at the target address 

specified by the label is expanded as long as the qp is true. 

5. The Break Instruction 

The effect of this instruction is to terminate the current instruction block 

prematurely by resuming execution at the return address that is popped off the control 

stack. The general syntax of this instruction is: 

(qp) brk n 

If n is not specified, the effect of this instruction will be skipping the rest of 

instructions in the current instruction block and resumes execution from the return address 

when this instruction is encountered in a non-loop instruction block. However, if it is 

encountered in a loop instruction block, the effect will be skipping the rest of instructions 

in the current loop iteration and resuming execution from the next iteration and this is 

equivalent to the continue statement in C++. 

If n equals 1 and the break instruction is encountered within a non-loop instruction 

block, the effect will be skipping the rest of instructions in the current instruction block 

and its parent block. If it is encountered in a loop instruction block, the effect will be 

skipping the remaining instructions in the current iteration and the remaining iterations 

and this is equivalent to the break statement in C++. 
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1.4 Thesis Motivation 

 

The existence of data parallel applications that have completely independent fine 

grained threads motivate to have a multithreaded architecture that issues one instruction 

and executes it for multiple threads. This kind of architecture increases the processor's 

throughput. 

Besides that, the features of the PAR ISA like the PAR instruction, the PAR 

packet and the ability to have a simple processor frontend have motivated me to propose 

the PAR core. 

 

1.5 Thesis Organization 

 

This Thesis has been organized in seven chapters. Chapter 2 contains a literature 

review about the related work to this research. In the literature review, some existing 

vector processors, multithreaded architectures and fetch mechanisms have been discussed. 

In chapter 3, the microarchitecture of the PAR core has been described. Chapter 4 

describes ParSim simulator which is a cycle accurate multithreaded simulator that has 

been developed to assess the performance of the PAR core. In chapter 5, the data parallel 

benchmarks that have been used to measure the PAR core’s performance have been 

discussed. In chapter 6, the experimental results have been displayed and analyzed. 

Finally chapter 7 describes the conclusion drawn from this research work and it contains 

the future work activities that extend this research. 
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CHAPTER  2 LITERATURE REVIEW 

 

2.1 Multithreaded Processors 

 

A multithreaded processor is a processor that can handle more than one instruction 

from different threads simultaneously. The first multithreaded processors appeared in 

1970s and 1980s to solve the problem of remote memory access. From those days until 

now, many multithreading architectures have been proposed either for general or special 

purpose computing. 

 In 1998, El-Kharashi et al. predicted that the multithreaded processors will be the 

upcoming generation for multimedia chips because the multimedia applications suffer 

from long latencies as a result of networks contention, frequent memory references and 

limited communication bandwidth. Having multithreaded processors will tolerate these 

latencies by switching to another thread whenever some thread faces a long latency 

operation. El-Kharashi et al. mentioned the motivations of having multithreaded 

processors such as: hiding latencies, having dynamic task scheduling, it is a further step 

towards concurrency, to improve multichip behavior, to alleviate the operating system 

overhead. They also mentioned that the multithreaded processor can be fine-grained and 

coarse-grained and each class has its pros and cons and it has its own hardware and 

software requirements. They listed the general hardware requirements for a multithreaded 

processor and these requirements include: handling multiple contexts, efficient register 

manipulation, hardware thread scheduler, state replication, additional control circuitry, 
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handling pipelining, sharing resources, advanced memory management, scalable memory 

protection, efficient communication and built-in synchronization.  

  

Many ideas have been proposed to increase the performance of multithreaded 

processors by proposing new multithreaded architectures to make better utilization of the 

resources, to decrease the hardware complexity or to target a given class of applications 

like multimedia or scientific computing. In 1999, Zahran and Franklin [4] proposed a 

speculative multithreaded architecture with dynamic thread resizing at runtime. In this 

architecture, the threads are extracted from a sequential program by the compiler or by 

hardware and they are speculatively executed in parallel.  In the first step, tasks are 

generated statically at compile time and later they are resized dynamically at runtime 

according to the program behavior. Their main contributions are: Hierarchical technique 

for building threads.  A non-sequential scheme to assign threads to the processing 

elements (PEs) since the sequential scheme has some limitations. A selection scheme to 

squash threads in case of misprediction. They showed that the dynamic thread resizing 

approach has 11.6% greater performance than the conventional speculative multithreaded 

processors. 

In 2002, Ungerer et al. surveyed and classified the various multithreading 

techniques in research and in commercial microprocessors [2]. As I mentioned in chapter 

1, they classified the multithreading techniques into Interleaved multithreading technique, 

blocked multithreading technique and simultaneous multithreading. 

Also Ungerer et al. talked about two types of multithreading architectures. (1) 

Implicit multithreading in which several threads are extracted from a single sequential 
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program with or without the help of the compiler and these threads are executed 

concurrently. A thread in this architecture refers to any contiguous region of the static or 

dynamic instruction sequence. In 2003, Park et al. [5] proposed an implicitly-

multithreaded processor (IMT) which executes compiler speculative threads from a 

sequential program on a wide issue SMT pipeline. They showed that IMT outperforms on 

aggressive superscalar and the two prior proposals TME [6] and DMT [7]. (2) Explicit 

multithreading in which the processor interleaves the execution of instructions of different 

threads of control in the same pipeline. 

 In 2001, IBM introduced Power4-based systems in which two processor cores 

have been integrated on a single chip. In 2004, they introduced the Power5 processor [8] 

as a next generation after Power4. Power5 is a dual-core multithreaded processor; its 

processor core supports both enhanced SMT and single-threaded (ST) operation modes.  

Power5 provides higher performance in the ST mode than Power4 at equivalent 

frequencies. Power5 has some enhancements over Power4 processor like dynamic 

resource balancing, software-controlled thread prioritization and dynamic power 

management. The multithreading approach in Power5 is two-way SMT on each of the 

chip’s two processor cores. 

In 2005, Sun Microsystems developed the Niagara processor [9] which is a 

multithreaded processor designed to provide high performance for commercial server 

applications. The Niagara processor is an entirely new implementation of the SPARC V9. 

This processor supports 32 threads of execution such that these threads are organized in 

groups of four so the processor has eight thread groups. The threads in each thread group 

share one processing pipeline and there is a fair thread selection policy such that the least 
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recently used thread is selected. This kind of architecture helps in hiding the latency of the 

memory access such that when one thread is stalled because it made a memory request, 

then another thread is selected. The context switch in Niagara processor has a penalty of 

zero cycles. 

 Lindholm et al. [10] described the Tesla architecture that was introduced in 2006 

in the GeForce 8800 GPU. Tesla architecture is based on a scalable processor array. 

GeForce 8800 GPU consists of 128 streaming-processor (SP) cores organized as 16 

streaming multiprocessors (SMs). The 16 multithreaded processors are also organized in 

eight independent processing units called texture/processor clusters (TPCs). Tesla 

architecture is scalable and it achieves high throughput for the throughput applications 

which have extensive data parallelism, intensive floating- point arithmetic, modest task 

parallelism and modest inter-thread synchronization.   

 The SIMT architecture has been introduced in SM which creates, manages and 

executes threads in groups of 32 parallel threads called wraps. The threads in the same 

wrap are of the same type and they start from the same address but during the execution 

they are free to branch independently. 

 Tesla SM manages a pool of 24 wraps which have a total number of 768 threads. 

At each time an instruction is issued, the SIMT multithreaded instruction unit selects a 

ready wrap and broadcasts the SIMT instruction to the active parallel threads of that wrap. 

Moreover, Tesla introduced the cooperative thread array (CTA) which is an array of 

threads that execute the same thread program and can cooperate to compute a result.  
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In 2008, Latorre et al. [11] studied the synergies and trade-offs between the 

clustering in SMT processors. They proposed a novel resource assignment scheme for the 

clustered approaches and this scheme improved the performance by 17.6% compared with 

the Icount and it improved the fairness by 24%.  

In 2010, Li et al. [12] adopted the hardware context switch driven by external 

events in multithreaded processors that are used in IP-Packet processing. The proposed 

processor has only one hardware context that can support multiple program counters 

which belong to different threads and there are tags to distinguish among the instructions 

of different threads in the pipeline. They showed that their proposal improved the overall 

performance by almost 3.8 times greater than the baseline structure while the area has 

increased by only 7%. 

 

2.2 Vector Processors 

 

Single instruction multiple data (SIMD) is the key aspect of vector processors 

[13], [14], [15]. In this type of processors, the operands are vectors so there is a need to 

have vector register file; the same instruction has to be executed on multiple elements of 

the vector simultaneously.  

Kozyrakis et al. [16] proposed a novel micro-architecture called CODE (Clustered 

Organization for Decoupled Execution) to overcome the following limitations of the 

conventional vector processors, namely: 
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1. Complexity of multi-ported centralized vector register file VRF: since it stores a 

large number of vector elements. It supports high bandwidth communication of 

operands among the vector functional units so it should have large number of 

ports. To overcome this problem, they proposed the clustered vector register file 

CLVRS such that each cluster has a partition of the vector register file storing the 

operands of the local vector functional unit. The number of ports of the CLVRF is 

independent of the number of clusters and it is five; 2 ports of operands read and 

one for result write, 2 ports are used for intercluster communication one for input 

and the other for output. 

2. The difficulty of implementing precise exceptions for vector instructions. 

3. The high cost of on-chip vector memory systems. 

 

They claimed that CODE is scalable up to eight functional units and it can hide the 

latency of off-chip memory access. In the cluster organization they proposed, each 

cluster consists of a single vector functional unit and a small number of vector registers. 

In [17], Kozyrakis et al. talked about scalable vector processors for embedded 

systems. To demonstrate that vector architectures meet the requirements of embedded 

media processing, they evaluated the Vector IRAM (VIRAM) architecture using 

benchmarks from the Embedded Multiprocessor Benchmark Consortium (EEMBC). 

VIRAM architecture is a complete load-store architecture defined as a coprocessor 

extension to the MIPS architecture. Vector load and store instructions support the three 

common access patterns: unit stride, strided, and indexed (scatter/gather). 
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The elements in the VIRAM vector can be 64, 32 or 16 bits wide. VIRAM uses 

flag registers to support the predicated execution of instructions. Also it implements 

speculative vectorization of loops with data-dependent exit points. Figure 2 shows 

VIRAM prototype processor. 

 

 

Figure 2: VIRAM Prototype Processor [17] 

 

From figure 2, we notice that the processor consists of four lanes. Lanes make the 

processor scalable in performance, power dissipation and complexity. The drawback of 
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this architecture is the complexity of VRF partition within each lane, since the number of 

ports increases as the number of functional units increases. They used clustering to reduce 

the VRF complexity and improve the performance. Each cluster contains a data path for a 

single vector functional unit and a few vector registers as shown in figure 3 but they still 

need an inter-cluster network to communicate among the clusters.  

 

 

Figure 3: Vector Lane Organization: Centralized (a) Clustered (b) [17] 

 

Krashinsky et al. [18] introduced the thread-vector VT architecture to unify the 

vector and multithreaded compute models, so the VT architecture is a hybrid of these two 

models.  The VT abstraction provides the programmer with a control processor and a 

vector of virtual processors VPs. The control processor can broadcast the instructions to 

the VPs using the vector-fetch or the VP can use thread-fetching to direct its control flow. 

In this architecture, there are two interacting instruction set architectures: one for the 

control processor and the other is for the VP.  
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Each VP has a set of registers and ALUs. VP instructions are grouped in atomic 

instruction blocks (AIBs). The block must be requested explicitly by the VP or the control 

processor because there is no automatic program counter or implicit instructions fetch 

mechanism. They focused on an instantiation of the VT architecture called SCALE. It was 

designed for high performance and low power consumption for embedded systems. 

 

2.3 Processors Frontend 

 

Each processor consists of two parts: the frontend and the backend or the 

execution engine. The frontend job is to feed the backend of instructions to be executed. 

The appearance of superscalar processors that exploits ILP has placed more pressure on 

the frontend to provide instructions in a higher rate so as to exploit the hardware resources 

in the backend. For this reason, many complex frontend architectures have been proposed. 

These frontends implement pre-fetching mechanisms for higher instruction fetch rates and 

also they implement branch-prediction mechanisms. Many instruction pre-fetching 

techniques like [19], [20], [21], [22] have been proposed to increase the instruction fetch 

rate.   

Also some people proposed instruction streaming as a way of providing the 

execution engine with instructions in a smooth way and some people exploited the block-

structured ISA for this purpose. For example, in 2002, Ramirez et al. [23] proposed novel 

fetch architecture called next stream architecture. This architecture is based on the 

execution of long streams of sequential instructions exploiting the code layout 
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optimizations. In this architecture, they focused on simplifying the frontend design while 

getting a performance that is close to the state-of-art. 

The instruction stream is defined as a sequence of instructions from the target of a 

taken branch to the next taken branch which can contain multiple basic blocks. The 

instruction stream is identified by the starting instruction address and the stream length. In 

this architecture, the instruction stream is the unit of fetching and it directly maps to the 

structures of the high-level programming constructs. These things make the design 

complexity under control.  

For wide issue processors, the next stream predictor performance was 10% higher 

than the EV8 fetch architecture and 4% higher than the FTB fetch architecture. It was 

1.5% slower than the trace cache architecture but with less design complexity. 

In 2007, Santana et al. [24] proposed to enlarge these instruction streams to get 

significant performance in a new mechanism called multiple-stream predictor that 

combines single frequently executed streams into long virtual streams regardless the type 

of these single streams. This predictor provides predictions that contain on average 20 

instructions. It doesn’t need hardware overriding mechanism to hide the branch prediction 

table access latency. 

In 2004, HE et al. [25] proposed an IPC-Based Fetch Policy (IPCBFP) for SMT 

processors; IPC refers to the number of instructions executed per clock cycle. This policy 

fetches instructions for any running thread depending on the instantaneous value of the 

IPC and the number of instructions in the instruction queue for that thread. So this policy 

should be able to count the number of instructions for each thread in the instruction queue 
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and to approximate the current value of the IPC for each thread. This policy selects the 

two threads with the least instructions in the instruction queue and feeds as many as 

needed number of instructions to every selected thread up to eight in total. 

 

2.4 Block-Structured ISA 

 

In the block-structured ISA, the program consists of basic blocks. This kind of 

architectures appeared in 1990s to increase the instructions fetch rate in the wide issue 

processors to utilize the ILP and the hardware resources. Hao et al. [26] defined an 

instance of a block-structured ISA for a wide issue dynamically scheduled processors. 

They constructed a compiler to generate a block-structured code. They used an 

optimization technique called block enlargement in which multiple basic blocks are 

combined together in one larger basic block and they forced the atomic execution of the 

block to reduce the hardware complexity. 

Hao et al. showed that for SPECint95 benchmarks that the block-structured ISA 

processor executing enlarged atomic blocks outperforms a conventional ISA processor by 

12% with less hardware complexity. 

In 2006, Zmily et al. [3] proposed a block-aware instruction set architecture called 

BLISS to address the basic challenges of frontend for wide issue high frequency 

superscalar processors. BLISS defines basic block descriptors in addition and separately 

from the actual instructions of each program, so the code segment of each program 

consists of two sections; the basic block descriptors and the actual instructions of the 
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program. The basic block BB is defined as a sequence of instructions starting at the target 

or fall-through of a control flow instruction and ending with the next control flow 

instruction or the next potential branch target.  

The descriptor consists of several fields to store sufficient information about the 

basic block of instructions. Figure 4 shows a 32-bit BB descriptor: 

 

 

Figure 4: The 32-Bit Basic Block Descriptor Format in BLISS [3] 

 

The descriptor appearing in figure 4 contains the following fields: 

Type: The basic block type i.e. type of the terminating branch. 

Offset: Displacement of program counter (PC)-relative branches and jumps. 

Length: Number of instructions in the BB 

Instruction Pointer: The address of the first instruction in the BB 

Hints: Hints generated by the compiler to help the processor takes some decisions like 

control-flow predictions and instruction fetch at runtime in a more efficient way. Hints 

aim at balancing the load overhead between the hardware and the software to simplify the 

hardware and reduce the power consumption.  
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The execution of the BB is atomic to simplify the hardware and the software. The 

naive generated is larger than the assembly code because of adding descriptors. But this 

code can be highly optimized in multiple ways like removing the jump instructions 

because they provide no information with the existing of the descriptors. Also the 

repeated instruction sequences can be removed. 

Based on this architecture, Zmily et al. proposed a simple decoupled frontend for 

the superscalar processor by replacing the branch target buffer with a BB-cache that 

caches the block descriptors in programs. They demonstrated that BLISS has achieved 

20% performance improvement and 14% total energy savings over conventional 

superscalar design. It also achieved 13% performance improvement and 7% total energy 

savings over aggressive frontend that dynamically builds fetch blocks in hardware. 

 

2.5 Simulation 

 

 Simulation is very important for computer architects because it is more flexible 

and it has low cost. It helps the architect to explore the design space and to find the 

optimal design. Although the simulators are very helpful, the architects may suffer 

because in some cases the simulators are very slow and they have poor accuracy. In 2006, 

Yi et al. [27] surveyed the existing methodologies and techniques for cycle-accurate 

simulation. They stated that the accuracy is affected by four factors.  (1) Simulator's 

accuracy. (2) The soundness of the simulation methodology. (3) The representativeness of 

the benchmarks. (4) The simulation technique that is used. 
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 Yi et al. classified the simulators that they surveyed into five classes. (1) Single-

processor performance simulators such as SimpleScalar simulator. (2)  Full system 

simulators like Simics simulator. (3) Single-processor power consumption simulator like 

Wattch simulator. (4) Multiprocessor performance simulators like Rice Simulator ILP 

Multiprocessors (RSIM). (5) Modular simulators like Liberty Simulation Environment 

(LSE). 

 Yi et al. defined the simulation process as the sequence of steps that the architect 

must perform to run and analyze the simulation. They divided the simulation process into 

six steps. (1) Simulator validation and accuracy. In this step, the simulator must be 

validated before the results can be trusted. (2) Processor enhancement, implementation 

and verification. (3) Selecting processor and memory parameter values. (4) Selecting 

benchmarks and input sets. (5) Simulation; in which the benchmarks are run on the 

configured simulator. (6) Performance analysis. In this final step, the obtained results are 

analyzed to see the effect of the enhancement. 

 For some benchmarks, the input data sets are very large and therefore the 

simulation time is very long. To address this problem, there are several techniques like 

reducing, truncating and sampling the input sets. 

 In 2008, Cho et al. [28] proposed a simulation framework called Two-Phase 

Trace-driven Simulation (TPTS). The motivation was increasing the simulation speed 

through splitting the detailed timing simulation into two phases. (1) Trace generation 

phase. (2) Trace simulation phase. In the trace generation phase, they use a filtering 
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technique in order to avoid the need for simulating uninteresting architectural events in 

the repeated simulation phase. 

 In 2010, Ubal et al. [29] proposed a simulation framework called Multi2Sim to 

evaluate multi-core multithreaded processors. They claimed that this simulation 

framework was intended to cover the limitations of the existing simulators and it models 

the major components of the incoming systems.  

Since developing a cycle-accurate simulator is a complex and timing-consuming 

task, there are techniques like Architecture Description Languages (ADLs) that are used 

to provide an abstraction layer for describing the computer architecture and generating 

simulators for these architectures automatically. In [30], they presented an XML-based 

ADL that receives the functional description of the architecture in XML format and 

generates the corresponding multithreaded simulator. 

 

2.6 Discussion 

 

In this chapter, I have explored the related work to my research. One of the related 

architectures to the PAR core is vector architecture. In vector processors, once an 

instruction is issued, it is executed on a vector of data in parallel; so many functional units 

are needed, whereas in PAR core the single instruction is executed for multiple threads 

sequentially on the same functional unit. Also it is possible to replicate the processing 

lane in PAR core and have higher throughput. 
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Vector processors need to define vector instructions and vector register file. 

However, PAR core uses scalar instructions to execute instructions for multiple threads. 

In addition to that, the frontend of PAR core is more dynamic and more flexible such that 

the threads can expand and terminate loops independently. Moreover, the vector processor 

is a standalone processor while PAR core is a part of a larger system which contains 

master cores to run the master processes. So the PAR core is integrated within a multi-

core system and it executes the parallel threads assigned from the master core. 

 In the recent multithreaded processors, NVIDIA TESLA architecture is the closest 

one to PAR core. The main similarity between them is that both of them are SIMT 

processors. Moreover, the idea of having multiple multithreaded lanes such that each lane 

manages a group of threads is similar to thread grouping proposed in Niagara processor. 

One of the main differences between the two architectures is that the single processing 

pipeline in Niagara processor supports multiple threads with different instruction streams, 

whereas the PAR core’s lane executes the same sequence of instructions for a number of 

times equals the number of thread group per lane. 

Regarding the frontend complexity, PAR core’s frontend is simpler than the 

previous proposals; it doesn’t contain branch prediction and instruction pre-fetchers. 

There are two reasons that make PAR core’s frontend simple. (1) The features of the PAR 

ISA like the stop bit and the control stack. (2) The nature of the SIMT architecture which 

doesn’t place a pressure on the fetch unit, because once an instruction is issued it does a 

lot of work so there is no need for a high fetch rate. 
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 Regarding the block-structured ISA, they have been proposed to increase the 

instructions fetch rate. PAR ISA allows having a high instruction fetch rate but with 

simpler fetch unit because the need for branch prediction can be eliminated. Also PAR 

ISA doesn’t need to store information about the instruction blocks as in BLISS ISA [3] 

because of the existence of the stop bit which marks the end of the instruction blocks.  

 Regarding simulators, ParSim is a cycle-accurate execution-driven simulator. The 

goal of ParSim was to show the throughput and the scalability of the proposed 

architecture. My experiments showed that the number of threads specified in a PAR 

packet doesn’t affect the performance results like IPC and speedup if the number of 

threads exceeds a certain limit. This limit was not large and then if the benchmark has a 

huge number of threads, then these threads can be truncated and the simulation time will 

be in minutes or even in seconds. 

 

 

 

 

 

 

 



29 
 

CHAPTER  3 PAR CORE HARDWARE MODEL 

 

3.1 Overview 

 

PAR core is a multi-lane multithreaded processor core i.e. it consists of multiple 

lanes such that each lane is multithreaded. This core is intended to receive a PAR packet 

generated by a master process running on a separate core called the master core and 

executes the threads specified by this packet simultaneously. The PAR packet’s threads 

are completely independent, so the communication overhead among them is zero and thus 

the ideal speedup is expected. This kind of threads can be found in data-parallel 

applications in which the elements of an array or a matrix are processed independently; 

these applications can be found in multimedia processing and scientific computing areas.  

PAR core can be described as a single instruction multiple threads (SIMT) 

processor since once an instruction is issued, it is executed for multiple threads. This kind 

of architecture reduces the pressure on the frontend and reduces the hardware cost 

because it eliminates the need for having a wide issue frontend, branch prediction policies 

and instructions’ pre-fetching.  

Figure 5 shows a high level block diagram of the PAR core.  From this figure, it is 

clear that there is only one fetch unit for all lanes because all threads will execute the 

same instruction. Since the thread program is going to be executed multiple times, may be 

thousands or millions, the level one instruction cache should be large enough to store all 

instructions of the thread program. Usually the number of instructions per PAR packet’s 
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thread program is not large, so an instruction cache with reasonable size will be able to 

store all of these instructions and therefore the instruction cache miss will be zero after 

brining all of these instructions from the main memory or the lower level cache memory 

to the first level instruction cache. 
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Figure 5: High Level Block Diagram of PAR Core 

 

Besides that, PAR core has many characteristics such as it is a single issue, in-

order issue and an in-order commitment processor. Despite the fact that different 

instructions may complete out of order because they have different latencies, their results 

are written back in order to guarantee the correctness of the program’s results. Most of 

these characteristics make the PAR core simpler in terms of hardware complexity. 
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3.2 Assumptions 

 

1. The level one instruction cache is assumed to be large enough to contain the whole 

thread program. This assumption is reasonable because the thread program is most 

probably small enough to fit in an instruction cache with an acceptable size.  This 

assumption results in a zero cache miss rate except the cold start misses. It is 

necessary to realize this assumption because the thread program will be executed 

many times, so caching the whole thread program results in higher performance. 

 

2. In PAR core, the data cache has been replaced by a memory module called the 

local memory. Currently, this local memory is treated as a black box and it will be 

added to the PAR core later. It has been assumed that the local memory miss rate 

is zero.  This assumption can be realized up to certain point thanks to the global 

load and global store instructions that will be implemented later. Global load and 

global store instructions are intended to allow data exchange between local 

memories and the global memory in bulks and they will be implemented in a way 

to allow communication-computation overlapping. 

 

3. For PAR packet's threads that contain counter-controlled loops, it has been 

assumed that all threads have the same loop counter. This assumption simplifies 

the hardware because only single counter has to be maintained per counter-

controlled loop. This assumption will not prevent threads from having the freedom 

to exit loops independently. 
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3.3 The Multithreading Approach 

 

PAR core implements two multithreading techniques. (1) The simultaneous 

multithreading approach in which different independent threads run simultaneously on 

multiple lanes; but this is different from the traditional SMT technique because in this 

technique only one instruction is fetched and executed for multiple threads. (2) The 

interleaving approach which has been implemented within the single lane. Inside each 

lane, the threads interleave with each other since the instruction is executed multiple times 

sequentially such that each time it is executed for another thread. This interleaving 

technique is different from the traditional cycle-by-cycle interleaving technique because 

in this technique the instruction is fetched, issued only once and it is executed for multiple 

threads. 

Since all instructions including the control instructions are predicated, then it is 

natural that some threads within the same lane are going to expand and some of them are 

not, some of threads are going to break a loop and some of them are not etc. So it is 

important to give each lane this kind of flexibility. To implement that, each lane has a 

mask register. The width of this register equals the number of simultaneous threads 

supported by the lane. Each bit in the mask register corresponds to one thread. The mask 

register plays the role of the top controller of the lane. The thread is active if its 

corresponding bit in the mask register is true and it is inactive otherwise. For an 

instruction to write back its result and to affect the state of the system, its corresponding 

bits in the mask register and the qualifying predicate register must be true. 
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3.4 Why is PAR Core Optimized? 

 

PAR core has many features that make it optimized in terms of performance and 

hardware complexity. These features are the following: 

1. There is no context switch overhead. PAR core repeats the execution of the same 

instruction multiple times, so it doesn’t need to switch among different threads of 

different instruction address spaces. 

2. Since PAR core is an SIMT, then the functional units’ utilization should be high 

because the issued instruction does a lot of work because it is executed for 

multiple threads. 

3. Control instructions’ overhead is reduced. The control instructions are predicated 

and the qualifying predicate register’s value may not be ready at the fetching time, 

so the fetch unit has to stall until the value of the qualifying predicate register 

becomes ready. Since the instruction is fetched once for multiple threads, then the 

overhead associated with the control instructions and the fetch unit in general is 

reduced. 

4. There is only one and a light weight fetch unit for the PAR core. The fetch unit is 

light because it has no branch prediction, no wide issue and no instruction pre-

fetching policies. 

5. The instructions are issued in-order. So the logic needed to maintain out of order 

execution has been eliminated. 
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6. Since the floating point unit (FPU) is pipelined, running the same FP instruction 

sequentially for multiple independent threads guarantees that the FPU is highly 

utilized and the FP instructions' latency is hidden. 

7. If the load instruction is going to load for multiple threads from the same address, 

then this load instruction is executed only once and its result is replicated. 

8. There is no instruction cache miss except the cold start misses, because the level 

one instruction cache must be large enough to store all instruction blocks of the 

thread program. 

 

3.5 Frontend Structure 

 

The frontend is responsible for providing the execution engine with instructions in 

a reasonable rate. The reasonable rate is the rate that makes the computing resources in 

the backend busy. Figure 6 shows a block diagram of the PAR core’s frontend. PAR 

core’s frontend is decoupled from the backend. The backend receives instructions from 

the frontend and provides it with information like the loop counter, the qualifying 

predicates registers’ values, mask register and the stall signal. The feedback port shown in 

figure 6 abstracts all information sent from the backend to the frontend except the loop 

counter.  In this section, the structure of the frontend will be described. From figure 6, it is 

noticed that the frontend consists of the following components: 
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1. Instruction cache: it caches the instructions of the thread program. The 

instruction cache must be large enough to store all of these instructions because 

they are going to be executed many times. 

2. Control Stack: it is used to schedule the execution of the program. It can be split 

into two independent stacks: the counter control stack which saves the loops’ 

counters and the remaining number of threads to be executed and the command 

control stack which stores the commands that are used to guide the fetch unit in 

how the PC should be updated. These commands include: 
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Figure 6: Block Diagram of PAR Core's Frontend 

 

• The PAR Command: this command entry is pushed on the command control 

stack upon the reception of the PAR packet. In this entry, the starting address of 

the thread program is saved. Besides that, a counter entry is pushed on the counter 

control stack to indicate the number of threads to be executed. Each time the PAR 

command becomes the top entry of the command control stack, this means that the 
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end of the thread program has been reached and therefore the top entry of the 

counter control stack is checked. If the counter value is greater than the number of 

simultaneous threads supported by PAR core, then it is decremented by the 

number of simultaneous threads supported by PAR core, say 16 threads if the PAR 

core has four lanes and each lane is 4-way multithread, and the PC is set to the 

starting address of the thread program. If the number of the remaining threads is 

greater than zero and less than or equal the number of simultaneous threads 

supported by PAR core, then the counter is set to zero and the PC is set to the 

starting address of the thread program. When the PAR command becomes the top 

command on the command control stack and the corresponding counter is zero, 

then this indicates that the PAR packet’s execution has finished and both stacks 

are freed.  

• The Return Command: this command is used to save the return address and the 

mask registers. If an expand or a loop instruction is encountered and the stop bit of 

this instruction is cleared, then the return address and the mask registers are saved 

within the return command which is pushed on the command control stack. 

• The Loop Command: this command is used to schedule the loop instruction 

execution. If a conditional counter-controlled loop is encountered, then the 

starting address of the loop block and the qualifying predicate register number are 

stored within the loop command which is pushed on the command control stack. 

Regarding the loop counter, it is saved on the counter control stack. If a pure 

conditional loop instruction is encountered, then it is treated in the same manner 

as the counter-controlled loop except that in this case there is no counter entry. 
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 There are two fields common among the control commands. (1) The 

command type field which tells if the command is a PAR, counter-controlled 

loop, pure conditional loop or a return command. (2) The address field. In PAR 

command, the address field is the starting address of the thread program. In loop 

command, it is the starting address of the loop block. Finally, it is the return 

address in the return command. 

 

 Besides that, the return command contains an additional field which stores 

the mask registers of PAR core's lanes. Also the loop command has a field to store 

the qp register number of the loop instruction. The control command entry size 

should equal to the size of the longest command which is the return command. 

3. Fetch Control: this component is the heart of the fetch unit, it controls the PC 

update and it detects the program termination. The PC can be updated in different 

methods according to the type of the fetched instruction, the stop bit value and the 

top entry of the command control stack. The following are the different cases of 

updating the PC: 

• The PC is injected from outside within the PAR packet. This PC value is the 

starting address of the thread program. This is done only once per PAR packet. 

• The PC is not updated and this happens when there is a stall. 

• The PC is simply incremented and this happens when the fetched instruction is 

a non-control instruction and its stop bit is cleared. 
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• The PC is set to the starting address of the thread program and this occurs 

when the end of the thread program is reached and the number of the 

remaining threads is non-zero. 

•  The PC is set to the return address popped off the command control stack. 

This happens when the execution of an instruction block terminates and the 

top entry on the command control stack is a return command entry. 

• The PC is set to the starting address of the loop block for the first qualified 

loop iteration and each time the loop block finishes and there is still at least 

one loop iteration remaining. 

 

3.6 How Does the Frontend Work? 

 

The frontend contains the fetch unit that fetches instructions from the first level 

instruction cache and feeds them to the execution engine to be executed, but not all types 

of instructions are executed by the execution engine. Only the non-control instructions are 

fed to the execution pipeline and the control instructions are executed in the fetch unit. 

Before the fetched instruction is sent to the execution engine, it is checked by the fetch 

control to determine its type and to decide how to update the PC.  The fetch control reads 

the opcode, the stop bit and the qualifying predicate register number of the fetched 

instruction on the flight while the fetched instruction is being transferred from the 

instruction cache to the instruction register. Checking the instruction’s opcode determines 

the instruction’s type and guided by the stop bit, the qualifying predicate register and the 
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control stack the fetch control decides whether to send the instruction to the execution 

pipeline or not and decides how to update the PC. 

In this section, I will describe the two scenarios of the fetch control behavior. 

These two scenarios are: 

1. If the fetched instruction is a non-control instruction, then it is broadcasted to all lanes 

and the PC is updated according to the value of the instruction’s stop bit and the type 

of the topmost command on the command control stack.  If the stop bit is cleared then 

the PC is simply incremented. If the stop bit is set, then the command and counter 

control stacks are checked and the PC is updated accordingly. The following are the 

possible cases in updating the PC when the fetched instruction is a non-control 

instruction and its stop bit is set: 

a. If the topmost command of the command control stack is a return command, 

then the PC is set to the return address.  

b. If the topmost command of the command control stack is a counter-controlled 

loop command, then the qualifying predicate register and the topmost counter 

on the counter control stack are checked. If the counter is non-zero and the 

qualifying predicate register value ANDed with the current mask registers is 

true for at least one thread, then the loop counter is decremented and the PC is 

set to the loop target address. Nevertheless, if the counter is zero or the 

qualifying predicate register value ANDed with the current mask registers is 

false for all threads, then the counter and the loop command entries are popped 

off the stacks and the PC is updated according to the new topmost command. 
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c. If the topmost command on the command control stack is a pure conditional 

loop command, then the qualifying predicate register is checked. If the 

qualifying predicate register value ANDed with the current mask registers is 

true for at least one thread, then the PC is set to the loop target address. 

Nevertheless, if the qualifying predicate register value ANDed with the current 

mask registers is false for all threads, then the loop is terminated and the loop 

command entry is popped off the stack and the PC is updated according to the 

new topmost command. 

d. If the topmost command on the command control stack is a par command, then 

the topmost counter on the counter control stack is checked. If the counter is 

non-zero, then it is decremented by the number of simultaneous threads 

supported by PAR core and the PC is set to the starting address of the thread 

program. However, if the counter is zero, then this indicates the termination of 

the program and the PAR core is freed. 

2. If the fetched instruction is a control instruction, then it is processed in two stages: the 

first stage includes fetching it from the instruction cache and checking the opcode, the 

stop bit and qualifying predicate register and this stage is common among all kinds of 

instructions. The second stage includes reading the qualifying predicate register 

associated with it. If the qualifying predicate register value ANDed with the current 

mask value is false for all threads, then the control instruction is skipped. However, if 

the qualifying predicate register value ANDed with the current mask value is true at 

least for one thread, then the control instruction will have an effect and it will change 

the execution flow of the program. 
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If the qualifying predicate register value is not ready because it is being produced by 

another instruction, then the fetch unit has to stall until the qualifying predicate 

register value becomes ready.  

In the rest of this section, I will talk about how the control instructions are 

implemented in PAR core. 

a. Direct Expand Instruction (xp) 

For each lane, the new mask register’s value is calculated by bitwise 

ANDing the current mask register with the qualifying predicate register of the xp 

instruction. If the new mask value is true for at least one thread, then the execution 

flow is transferred to the target address of xp. If the stop bit of this instruction is 

cleared, the return address and the old mask are saved on the command control 

stack. However, if the stop bit is set, then nothing is pushed on the command 

control stack.  

The two stages of executing the xp instruction take place in two clock 

cycles. (1) The instruction is fetched and the PC is updated to the target address. 

(2) The qualifying predicate register is read and the first instruction of the target 

block is fetched. If the xp is qualified, then the flow of execution proceeds. If the 

xp instruction is disqualified, then the fetched instruction is ignored and the PC is 

updated to the return address popped off the control stack. 

b. Counter-Controlled Loop Instruction 

For PAR core, it has been assumed that the value of the loop counter is 

unified for all threads and it is specified in an inherited register. For each lane, the 

new mask register’s value is calculated by bitwise ANDing the current mask 
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register’s value with the qualifying predicate register of the loop instruction. This 

instruction is qualified if the mask register is true for at least one thread and it is 

skipped otherwise. 

When the loop instruction is qualified, a loop command entry is pushed on 

the command control stack and a counter entry is pushed on the counter control 

stack. The command entry specifies that this command is a counter-controlled 

loop command; it contains the qualifying predicate register number associated 

with this loop instruction and the starting address of the loop block. The counter 

entry simply contains the number of the remaining loop iterations. 

 If the loop instruction’s stop bit is cleared i.e. it is in the middle of an 

instruction block, then its effect is loop and continue. To implement that, a return 

command is pushed on the command stack before the loop command is pushed. 

This return command saves the return address and the current mask registers 

value.  

At the end of each loop iteration, the mask register is updated to reflect any 

possible changes on the qualifying predicate register within the loop body. Besides 

that, the loop counter is decremented and the PC is set to the starting address of 

the loop block. The loop continues until the loop counter becomes zero or the 

mask register becomes false for all threads. When the loop terminates, the loop 

command and the counter entries are popped off the stacks and the execution 

resumes at the address specified by the next entry on the command control stack.  

c. Pure Conditional Loop Instruction 

This loop is a pure conditional loop i.e. it is not controlled by a counter. It 

continues as long as the qualifying predicate register ANDed with the current 
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mask register is true at least for one thread. This loop is implanted as the counter 

controlled loop except that it has no counter. 

d. Break Instruction 

The break instruction that has been implemented in PAR core is used to 

terminate the loop instruction prematurely if its qualifying predicate register is true 

for all threads. If not all bits of the qualifying predicate register are true, then some 

threads are going to break and some threads are not going to break. When all 

threads are going to break, then the loop entries are popped off the control stacks 

and the PC is updated according to the next command on the command control 

stack. If not all threads are going to break then the mask register is updated by 

ANDing it with the bitwise complement of the qualifying predicate register 

associated with the break instruction. 

 

3.7 Backend Structure 

 

PAR core pipeline consists of six stages: instruction fetch, decode, dispatch, issue, 

execute and write back.  Once a non-control instruction is fetched, it is sent to the backend 

for execution. Each lane has the  same computational resources which include decode and 

dispatch logic, issue logic, forwarding network, write back logic,  functional units and 

their instructions' queues, functional units' input buffers, functional units' output buffers, 

general purpose registers, predicate registers and inherited registers. Figure 7 shows a 
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block diagram of the execution pipeline for a single PAR core's lane. In this section, the 

functionality of each component in the backend has been described. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Predicates 

Tag 

PR, Tag 

WB 

Op 

ra 

rb ROB 

Loop 

Counter 

Instruction 

Decode and 

Dispatch Logic 

Stall 

Interconnect Bus 

Compare 

Unit 
FP Unit ALU 

 
D-Cache 

 
L/S Unit 

MUX 

Register File  

Ra Rb Rd 
ra rb rd 

PR 

Figure 7: Block Diagram of PAR Core's Backend 



46 
 

3.7.1 Register File 

 

 Each lane has a wide general purpose register file such that the width of the 

register is proportional to the number of simultaneous threads supported by a single lane. 

Each thread has a register of 64 bits from that wide register as shown in figure 8. 

 

 

 

 

 

 

Besides the general purpose registers, there are inherited registers whose values 

are inherited from the master thread. The inherited registers are read only. They contain 

constant values which may represent base addresses, coefficients, loop counters, etc. The 

inherited register i0 contains the thread index and it is the only inherited register whose 
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Figure 8: PAR Core's Register File 
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value is not constant. This register is updated automatically each time the end of the 

thread program is reached 

We notice from figure 8 that this lane is 4-way multithreaded. Besides the 

registers' contents, each register has two fields: the valid bit and the tag fields. The valid 

bit indicates whether this register's content is valid or not. If the register's content is 

invalid and it is being produced by another instruction, then the tag field is used to refer to 

the instruction that will write its result into this register. The tag field consists of two 

subfields. (1) The functional unit ID. (2) The instruction ID within that functional unit. 

The source operands' registers ra and rb can be either inherited or general purpose 

registers, so multiplexers are used to output from the right register file. The multiplexer is 

controlled via the most significant bit of the source registers numbers ra and rb. Regarding 

the destination register rd, it can be only a general purpose register since the inherited 

registers cannot be written. 

 

3.7.2 Predicate Registers 

 

Each lane in PAR core has eight predicate registers. Each predicate register has 

one bit corresponding to each thread within the lane. The predicate registers are used to 

qualify the instructions. In other words, if the qualifying predicate register associated with 

an instruction has a value of false then this instruction is dropped and its result is not 

committed. The predicate registers are updated via the compare instructions. There is a 
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valid bit associated with each predicate register to specify if its value is valid or it is being 

produced by a certain instruction. 

 

3.7.3 Reorder Buffer (ROB) 

 

It is a buffer used to reorder instructions' results writing back into the register file. 

The ROB's size should equal to the summation of the sizes of the instruction waiting 

queues in all functional units.  

Each ROB's entry should contain the following fields: 

1. The instruction's tag which consists of the functional unit ID that is executing this 

instruction and the instruction ID within that functional unit. The instruction ID 

actually is the index of the instruction within the instructions' waiting queue. 

2. The destination register’s number. 

3. The qualifying predicate register value is used to decide for which threads the 

destination register should be written and for which threads the destination register 

shouldn't be written. In other words, the qualifying predicate register bits ANDed with 

the mask register bits work as the write enable signals of the register file. 

4. The tag of the qualifying predicate register, if the qualifying predicate register was 

invalid at the dispatch time because it was being produced by another instruction, then 

the tag of that instruction is stored within the ROB entry and once the predicate 

register is produced, then it is forwarded to the ROB. 
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5. A valid bit to indicate whether the qualifying predicate register's content is valid or 

not. 

 

3.7.4 Functional Units 

 

Each lane in PAR core has four different functional units that can work in parallel 

on different instructions. These functional units are:  

• ALU: it executes integer addition and subtraction plus all different logic 

operations like and, or, xor, shift, etc. 

• FPU: it executes integer and FP multiplication and division operations. Moreover, 

the FPU is capable of executing multiply/accumulate instructions for both integer 

and FP operands, so it has three inputs. 

• Load/Store Unit (L/S Unit): this unit is responsible for executing memory 

instructions. 

• Compare Unit: it is responsible for executing compare instructions like is equal? 

Is greater than? Etc. The output of this unit is written into the predicate register 

file. 

There are common things among all of these four units; each unit has a waiting 

instruction queue, input buffers and output buffers. When an instruction is dispatched to 

its functional unit, it is queued in the waiting queue associated with that functional unit. 

Moreover, each functional unit has input buffers to buffer the operands of one instruction. 

For each operand there is a buffer whose size equals to the number of simultaneous 
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threads supported by a single lane. Each entry in this buffer has a valid bit to indicate 

whether this entry is valid or it is going to be produced later by some other instruction. 

For each operand, there is a tag that tells which instruction in which functional unit is 

going to produce this operand. 

In addition to the input buffers, each functional unit has two output buffers to store 

the instructions' results temporarily. Storing the instructions' results is important for 

forwarding them among the functional units and also it enables writing back the 

instruction's result for all threads in one clock cycle. The reason for having two output 

buffers is if some instruction finishes execution and it cannot write back according to the 

ROB, then it keeps occupying the output buffer and the functional unit cannot overwrite 

its results and therefore it will stay idle. To solve this problem, the functional unit should 

have an additional output buffer and then another instruction can be issued.  

 

3.7.5 Instruction Waiting Queue 

 

 There is a queue associated with each FU. This queue is intended to store the 

instructions that are waiting to be executed by this unit. This is important because it 

allows having multiple instructions in the backend simultaneously. The simulation results 

showed that the optimal size of this queue is two entries. Each entry contains the 

following fields: 

1. Instruction's opcode. 
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2. Instruction's source registers numbers in order to read the contents of these 

registers at the issue time. 

3. A valid bit corresponding to each source register to indicate if the register's 

content is valid and can be read from the register file or invalid and it should be 

read from the forwarding network. 

4. A tag corresponding to each source register to specify which instruction is going 

to produce this register. 

5. The immediate value if the instruction is I-Type.  

3.7.6 Decode and Dispatch Logic 

 

Once an instruction arrives from the fetch unit, it is received by the decode and 

dispatch logic. The different fields of the instruction are checked by the decode logic and 

the functional unit corresponding to this instruction is determined. If there is enough 

space in the instruction waiting queue and the ROB, then the instruction is dispatched. 

Dispatching an instruction means reserving two entries for it; one in the instruction 

waiting queue and the other is in the ROB. If either the ROB or the instruction waiting 

queue is full, then a stall signal is sent to the fetch unit to order it to stop fetching. The 

dispatch logic keeps monitoring the status of the hardware, once the resource that caused 

the stall is freed, then the instruction is dispatched and the fetch unit is informed to 

resume fetching. 
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3.7.7 Issue Logic 

 

Issuing an instruction in this context means reading its operands either from the 

register file or from the forwarding network and storing them into the input buffers so as 

the functional unit can start executing the instruction. In general, the instruction can be 

issued if the following conditions have been satisfied: 

1. The functional unit should be free: this means there is no active instruction in the 

functional unit and there is a free output buffer for this instruction. 

2. The operands of the instruction must be available at least for one thread. 

 

3.7.8 Forwarding Network 

 

 The forwarding network is used to forward results among functional units to solve 

the Read after Write (RAW) hazards. Since the instruction is executed for multiple 

threads sequentially then once it produces the result for the first thread, this result should 

be forwarded to all instructions that are waiting for it so that they can be issued and start 

execution and the results of the subsequent thread are forwarded upon their availability. 

At each clock cycle, each functional unit forwards its output buffers to all functional units 

including itself if those buffers have valid entries. On each input buffer, there is a 

multiplexer controlled by the tag that determines from which unit the operand value 

should be read. If the operand is not immediate, then its value may be read from the 

register file or from the forwarded output buffers. This depends on whether the source 
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register value was valid at the dispatch time or not. If it was valid, then it is read from the 

register file and otherwise it is forwarded. Figure 9 shows the forwarding network from 

the ALU side. 
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3.7.9 Write Back Logic 

 

The instruction writes its results into the output buffer. After the instruction 

finishes execution, it writes back its results into the register file if the following conditions 

are met: 

1. The instruction should be the first one in the ROB, this is checked by 

compares the instruction’s tag with the tag of the first entry in the ROB. If 

there is a tag matching, then this instruction is the first instruction in the 

ROB. If it is not the first one in the ROB, then it cannot write back and 

this check should be performed again at the next clock cycle. 

2. The qualifying predicate register should valid.  

3. For each thread, the corresponding bits in the qp register and the mask 

register should be true in order to write back the result corresponding to 

this thread. 
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3.8 Hazards 

 

 In this section, I will discuss the different types of hazards and I will show how 

these hazards have been resolved in PAR core.  

 

1. Structural hazards: this occurs when more than one instruction accesses the 

same hardware resource simultaneously. In PAR core, when a fetched instruction 

should be dispatched to a certain instruction queue and this queue is full or the 

ROB is full, then the fetch unit is stalled until the occupied resource becomes free.  

2. Control hazards: this occurs when the value of the qualifying predicate register is 

being produced while it is needed by a subsequent instruction. To solve that, if the 

subsequent instruction is a control instruction, then the fetch unit stalls until the 

value of the qualifying predicate register becomes available. This stall doesn't 

affect the performance because there is no high pressure from the backend on the 

frontend. However, the non-control instructions are executed speculatively and the 

qualifying predicate register is checked at the write back stage. 

3. Data hazards: there are three types of data hazards. (1) RAW or the true 

dependency hazard. In this case, the result of one instruction is consumed by a 

subsequent instruction. In PAR core, the RAW hazards have been resolved by 

forwarding the results from the producer to the consumer. The instruction cannot 

be issued until the operands are available at least for one thread. (2) Write after 

Read (WAR) hazard; occurs when a subsequent instruction is going to write on 

one of the source registers of a given instruction. (3) Write after Write (WAW) 
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hazard; occurs when two or more instructions are going to write on the same 

register. In WAW, there is a problem if these instructions are executed out of 

order. In PAR core, WAR and WAW hazards have been eliminated by register 

renaming. This has been implemented by dispatching instructions in order and 

marking the instruction’s destination register with the instruction tag. Also if any 

of the instruction’s source registers is unavailable at the dispatch time, then its tag 

is read and sent to the instruction waiting queue and the register is read from the 

forwarding network.   
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CHAPTER  4 PARSIM SIMULATOR 

 

4.1 Overview 

 

Since PAR core is based on a new ISA with unique features, the cycle-accurate 

multithreaded simulator, ParSim, has been developed from scratch to evaluate the 

performance of the PAR core. I used C++ to develop ParSim because C++ is efficient for 

simulation and it is an object oriented language which allows defining modules with their 

behaviors. 

ParSim contains a model for the PAR core and simulates its behavior. So it 

supports multiple threads, multiple functional units and a frontend based on the PAR ISA 

features like the stop bit, the control instructions and the control stack. 

ParSim receives a couple of files as input and generates another couple of files as 

output. The first input file is the source code file which contains the thread program and 

the directives that describe the PAR packet contents. The second input file is the 

configuration file which contains the PAR core configurable parameters’ values. The two 

output files are the program's results file which contains the contents of the registers and 

the performance statistics’ report file. 
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4.2 ParSim Structure 

 

ParSim consists of two parts: the first one is the translator part which receives the 

input files and translates them into a certain format. The second part is the simulation 

process part which executes the thread program as many times as specified in the PAR 

packet and finally generates the output files.  

The structure of ParSim reflects all architectural aspects of PAR core. So it has 

data structures to represent functional units, input buffers, output buffers, instruction 

cache, control stack, fetch unit, dispatch logic, issue logic, forwarding network and 

writing back logic. Besides the logic and the structures that have been implemented to 

simulate the functionality of the PAR core, a mechanism has been implemented to 

measure the performance of the PAR core accurately.  

 

4.3 Simulation Methodology 

 

Once the input files are fed to ParSim, the translator processes them and generates 

the intermediate representation of the instructions from the source code file and the 

configuration object from the configuration file. Figure 10 shows a high level flowchart 

that depicts the high level architecture of the ParSim. The intermediate representation of 

instructions is a list of instruction objects. The instruction object contains a set of 

attributes that store information about the instruction. Examples of these attributes are the 

instruction’s opcode, the source register(s), the destination register, the stop bit value, the  
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Figure 10: High Level Flowchart of ParSim 
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immediate value if any, the instruction address, etc. The configuration object has the 

attributes that store the values of the configuration parameters extracted from the 

configuration file. 

After the translation phase finishes successfully, the output of this phase namely 

the list of instructions and the configuration object are fed to the PAR core object as 

inputs. The PAR core object configures itself by setting its configurable parameters to the 

values of these parameters in the configuration object and it starts the simulation process. 

Figure 11 shows a flowchart that depicts the ParSim’s simulation process. ParSim 

has a global clock that works as the heart beat of the simulator and it is used to 

synchronize the different operations. Since the PAR core’s backend is pipelined, ParSim 

does the following actions at each clock cycle: 

1. If there is no stall, ParSim updates the PC in the same manner the PAR core does. 

2. It fetches the next instruction from the instruction cache according to the PC’s value. 

3. If the fetched instruction is a control instruction, the ParSim updates the PC and the 

control stack accordingly and in the same manner the PAR core does. 

4. If the fetched instruction is a non-control instruction, it is dispatched to the 

corresponding functional unit if there are available buffers and otherwise a stall signal 

is generated. 

 

 

 



62 
 

 

Figure 11: ParSim’s Simulation Process 
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5. It monitors all functional units. Monitoring a functional unit includes the following 

checks: 

a. It checks if the functional unit has an active instruction or not. If it has an 

active instruction, this means that there is an instruction that is being executed 

by the functional unit. In this case, ParSim checks whether this instruction has 

finished execution or not. If it has finished execution, it checks whether this 

instruction is on the front of the ROB or not. If it is on the front of the ROB, 

the instruction is executed for all threads and the result is written back to the 

register file and the reserved resources for this instruction are freed. Besides 

that the statistical variables like the number of instructions executed are 

updated accordingly. 

b. If the functional unit has an active instruction and one or more of its operands 

are not available for all threads then ParSim reads them from the forwarding 

network upon their availability. 

c. If there is an instruction that has finished execution but its results have not 

been written back to the register file and they are still in the output buffer, 

ParSim checks if this instruction becomes the first one in the ROB or not and 

if it is the first one in the ROB then it writes its results back and free that 

output buffer. 

d. If the functional unit is free and it has a free output buffer and there is a 

waiting instruction whose operands are ready at least for the first thread, then 

this instruction is issued to start execution. Issuing an instruction includes 

marking the unit as busy and setting the expected time for the instruction to 

finish for all threads and the expected time for the instruction to finish for the 
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first thread because the result of the first thread might be required by other 

waiting instructions. 

Figure 12 shows a flowchart that depicts how ParSim monitors a functional unit. 

6. At each clock cycle, ParSim has to update the statistical variables that should be 

updated like the number of instructions executed, the busy time of the functional unit, 

the number of stall cycles, the number of ROB entries occupied etc. 
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Figure 12: Functional Unit Monitoring Flowchart 
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4.4 Performance Metrics 

 

Many performance metrics have been defined in ParSim to evaluate the proposed 

architecture and to measure how much the hardware resources are utilized. These 

performance metrics are defined as statistical variables in ParSim and they are updated 

during the simulation process.  

These performance metrics include: 

1. The program execution time in terms of clock cycles. 

2. The number of instructions executed per functional unit. 

3. The number of instructions executed per clock cycle (IPC). 

4. FPU throughput. 

5. ALU utilization. 

6. Compare unit utilization. 

7. L/S unit utilization. 

8. ROB utilization. 

9. Number of stall cycles. 

 

4.5 The Source Code File 

 

The source code file contains the contents of the PAR packet plus the thread 

program in PAR assembly. So it has two segments: the par segment and the code 
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segment. The PAR segment starts with the directive .PAR and it has the following 

directives: 

1. .ADDRESS: to specify the starting address of the thread program. 

2. .THREADS: to specify the number of threads to be executed for this par packet. 

3. .In to specify the value of the nth inherited register. 

The code segment starts with the directive .CODE and after that the instructions of 

the thread program are listed. Figure 13 shows a sample source code input file. 
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Figure 13: A Sample Source Code Input File 
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4.6 The Configuration File 

 

The configuration file is a plain text file which contains the values of the PAR 

core’s configurable parameters. Figure 14 shows a snapshot of the configuration file. The 

configuration file contains the following configurable parameters of the PAR core: 

1. The number of lanes in the core. 

2. The instruction cache size. 

3. The general purpose register file size. 

4. The predicate register file’s size. 

5. The number of inherited registers. 

6. ROB size. 

7. The size of the instructions waiting queue per functional unit. 

8. Multithreading depth which is the number of simultaneous threads supported by a 

single lane  

9. The number of pipeline stages in the FPU unit which reflects the FP instruction's 

latency. That is, if the number of FP pipeline stages is four, then the FP 

instruction's latency is four clock cycles. 

10. ALU latency. 

11. Compare unit latency. 

12. The data cache access latency if there is a cache hit. 
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Figure 14: A Snapshot of the Configuration File for ParSim 

 

4.7 The Performance Statistics Report File 

 

The performance statistics report file is an output file that displays the 

performance statistics of the program that was executed by ParSim. These statistics 

include timing statistics like the execution time of the program and the IPC, hardware 

utilization statistics like the functional units and the buffers utilizations and other statistics 

like the number of stall cycles. Figure 15 shows a snapshot from this report. 
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Figure 15: A Snapshot from the Performance Statistics Report Generated by ParSim 

 

 

4.8 Conclusion 

 

Intensive testing has been performed to ensure the correctness, accuracy and 

robustness. After adding any feature, I used to test the whole simulator by running many 

scenarios. In testing, I made sure that the PAR core is configured properly, the source 

code file is scanned, parsed and translated successfully, the instructions are executed 

correctly and the performance statistics are reported accurately. 
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After the development of ParSim completed, I wrote several data-parallel 

benchmarks, I ran them on ParSim and I performed extra quality assurance until ParSim 

becomes a mature simulator and its results can be trusted.  
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CHAPTER  5 BENCHMARKS 

 

5.1 Overview 

 

To evaluate the performance of the PAR core, I have coded some data-parallel 

benchmarks in PAR assembly. These benchmarks include the Jacobi iterative method, 

three benchmarks from the Embedded Microprocessor Benchmark Consortium (EEMBC) 

and three benchmarks from the benchmarks that have been by Kumar et al. [31]. 

Since the PAR core is dedicated for executing the PAR packet which contains 

completely independent threads, I wrote the benchmark's kernel that represents a thread 

which is independent from other threads. For example, in matrix multiplication the 

thread’s kernel produces only one element in the destination matrix by multiplying a row 

from the first matrix by a column from the second matrix. Producing one element in the 

destination matrix is independent from producing other elements.  

The granularity of the thread varies from one benchmark to another. For example, 

thousands of instructions may be executed per matrix multiplication thread while only 

several instructions are executed per scaled vector addition thread.  

In the rest of this chapter, I will describe all of the benchmarks' kernels that I have 

coded in PAR assembly. Appendix B shows the source code of theses benchmarks’ 

kernels in C++ and appendix C shows their source code in PAR assembly. 
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5.2 Dense Matrix-Matrix Multiplication (DMMM) 

 

This benchmark explores the target CPU’s capability to perform two-dimensional 

array access and to perform a variety of arithmetic and memory operations. The matrix 

multiplication thread is responsible for producing one element in the target matrix by 

multiplying a row from the first matrix by a column from the second matrix. 

 

5.3 Jacobi Iterative Method (JIM) 

 

This iterative method is used for solving linear equations which is a common 

problem used in many science and engineering applications. It has been selected to 

evaluate PAR core because it can benchmark the access of two-dimensional arrays and it 

has a variety of instructions.  The linear system of equations can be modeled as shown in 

equation 1. 

AX =  B … … … … … … … . . … … ….  (1) 

 

 Such that A is the two-dimensional coefficients’ matrix, B is the constants’ array 

and X is the unknowns’ array. The solution of this system is by finding the values of those 

unknowns. The Jacobi iterative method solves this system of linear equations iteratively. 

In this method, the unknowns may be initialized to the values of constants in B and then 
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the algorithm iterates over these unknowns for a given number of iterations and updates 

them in each iteration according to equation 2. 

Xi =  � 1

Aii
��Bi – �Aij x Xj 

�

�≠ �

�   … … … … … … … . . … … ….  (2) 

 

 

The JIM’s thread is responsible for updating one unknown value in a single 

iteration. This thread covers most of features of the PAR core; it has ALU, FP, loop, 

compare and memory instructions. 

 

5.4 Gauss-Seidel (GS): Red-Black Gauss-Seidel on a 2D Grid [32] 

 

The GS method is a method of update in which the point in a two-dimensional 

grid is replaced by the weighted average of itself and its four neighbors. This update is 

used in solving a simple partial differential equation in an (N +2) (N+2) grid. This 

equation solver kernel proceeds over a number of sweeps such that in each sweep it 

operates on the whole N x N interior points of the grid and performs the GS update. These 

sweeps continue until some convergence occurs. 

If each thread is defined to update only one point, then the data dependencies 

don’t allow parallelizing these threads. The parallelizing approach of the GS comes from 

the knowledge of the problem behind the sequential program. Since the GS method is not 
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an exact solution but it just iterates until convergence, the points can be updated in 

different order as long as the updated values are used frequently enough. 

This ordering is called red-black ordering in which the grid’s points are separated 

into alternating red and black points. In this ordering, updating a red point doesn’t need 

any updated red point and this is true also for the black points. So updating the red points 

can be done in parallel.  

In this ordering, the grid is updated in two phases. (1) The red points are 

updated.(2) The black points are updated. The two phases should be separated by a global 

synchronization point and computations can be done in parallel within the same phase. 

To execute the GS, the master core should generate PAR packets for the red points 

and wait for them to finish. After that, it generates PAR packets for the black points. After 

all black points are updated; the master core checks for convergence and decides whether 

to have another sweep or to exit the algorithm. 

The GS’s thread is responsible for updating only one point. This thread can be 

used to explore the target CPU’s capability of performing accumulation, FP operations 

and calculating the absolute difference. 

 

5.5 RGB to YIQ Conversion (RGB-YIQ) [33] 

 

This is an EEMBC benchmark which benchmarks the performance for digital 

video processing and explores multiply/accumulate capability of the CPU. The RGB to 
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YIQ conversion implemented in this benchmark is used in many multimedia applications. 

The RGB to YIQ conversion thread is responsible for converting one pixel from the RGB 

format to YIQ format. This thread includes ALU, FP and memory instructions. 

 

5.6 RGB to CMYK Conversion (RGB-CMYK) [33] 

 

This is an EEMBC benchmark that is used to explore the target CPU’s capability 

for basic arithmetic and minimum value detection. It is used to benchmark digital image 

processing performance in printers and other digital imaging products. It is used in color 

printers such that this benchmark receives the RGB inputs from the PC and converts them 

to CMYK color signals for printing. The RGB to CMYK thread is responsible for 

converting one pixel from the RGB format to the CMYK format. 

 

5.7 High Pass Grey-Scale Filter (HPF) [33] 

 

This is an EEMBC benchmark that benchmarks performance of image processing 

in digital cameras and other digital image products by exploring the target PC's capability 

to perform two dimensional data array access and multiply/accumulate calculation. This 

filter is used in many applications like DSCs (Digital Still Camera). 

For each pixel in the image, the filter calculates the output results from the nine 

pixels which are the pixel under consideration plus its eight neighbors multiplied by the 
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filter coefficients shown in figure 16, then shift the accumulated value by eight bits. 

Figure 17 shows the equations for calculating the output of the pixel P(c) such that c is the 

center location of the filter window and w is the horizontal image width. 

 

 

Figure 16: High Pass Grey-Scale Filter Coefficients [33] 

 

 

 

Figure 17: High Pass Grey-Scale Filter Equations [33] 

 

The HPF’s thread is responsible for calculating the output of one pixel. This 

thread contains various ALU, FP and memory instructions. 
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5.8 Scaled Vector Addition (SVA) 

 

It measures the capability of the target CPU in performing FP addition and 

multiplication operations. The SVA’s thread is responsible for calculating one element in 

the target array. 
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CHAPTER  6 EXPERIMENTAL RESULTS AND DISCUSSION 

 

6.1 Overview 

 

Multiple data-parallel benchmarks have been run on ParSim simulator to measure 

the performance of the PAR core. In this chapter, I will analyze the performance of a 

single lane as well as the performance across multiple lanes. Regarding the PAR core 

settings for which these results have been taken, there are parameters that have been fixed 

to certain values and parameters that were variables to see how they affect the 

performance. Table 1 displays the fixed parameters with their values. 

Table 1: The Values of the Fixed Parameters 

Parameter Name Parameter Value 

Predicate register file size 8 Registers 

Number of general purpose registers 16 Registers 

Number of inherited registers 16 Registers 

Number of input buffers per functional unit 1 Buffer 

Number of output buffers per functional unit 2 Buffers 

Dispatch queue size per functional unit 2 Entries 

ROB size 8 Entries 

The FPU pipeline depth 4 Stages 

ALU latency 1 Clock Cycle 

Compare unit latency 1 Clock Cycle 

Level one data cache latency if hit 1 Clock Cycle 
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The number of simultaneous threads supported by a single lane was variable and it 

could be 1, 2, 4, or 8 threads. In measuring the performance of multiple lanes, the number 

of simultaneous threads supported by a single lane has been fixed to four threads and the 

number of lanes was variable and it could be either 1, 2, 4, 8, 16, 32 or 64 lanes.  The 

number four has been selected as the number of simultaneous threads supported by a 

single lane because this number makes the single lane offers the maximum performance 

with the minimum hardware cost. 

The performance metrics that have been used for single lane are: IPC, FPU 

throughput, ALU utilization and L/S unit utilization. For multiple lanes, besides the IPC, 

the speedup has been considered to measure the scalability of the PAR core. 

 

6.2 Analyzing Single Lane Performance 

 

Figure 18 shows how the IPC changes with respect to the number of simultaneous 

threads supported by a single lane. For all benchmarks, we notice that the IPC is 

increasing as long as the number of threads is increasing until the number of threads 

becomes four, then increasing the number of threads will not affect the IPC value. The 

reason standing behind that is that increasing the number of simultaneous threads will 

increase the work to be done by one instruction and then increasing the throughput of the 

functional units which means executing more instructions per the unit of time. Increasing 
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Figure 18: IPC for a Single Lane 

 

the number of simultaneous threads beyond four will not improve the IPC because the 

instructions in the benchmarks are mixed such that eight threads offer the same 

performance gained from four threads and because the number of functional units per lane 

is fixed. One more note, in the RGB-CMYK benchmark is that the increases in the IPC 

are smaller than the increases in the other benchmarks; the reason is that the RGB-CMYK 

benchmark doesn’t contain FP instructions. In PAR core, more FP instructions result in 

higher increases in the IPC when the number of threads supported by a single lane is 

increased because the FPU is pipelined. 

So having four simultaneous threads per lane gives the highest IPC with the lowest 

hardware cost. For the benchmarks that have been run, the minimum IPC is 1.51 

instructions /cycle and the maximum IPC is 2.75 instructions/ cycle for a 4-way 

multithreaded lane. 
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Regarding the FPU throughput, FP instructions are long-latency instructions; 

having a pipelined FPU with SIMT architecture will accelerate the execution of these 

instructions. Figure 19 shows the FPU throughput for the different benchmarks. The 

maximum FPU throughput is obtained when the number of threads is four because the 

number of pipeline stages in the FPU is four. For the benchmarks that contain FP 

instructions, it is noticed that the maximum FPU throughput is almost one which means 

that the FPU executes one instruction per clock cycle on average, while the minimum 

FPU throughput is 0.67 instructions/ cycle. 

 

 

Figure 19: FPU Throughput for a Single Lane 

 

The last performance metric used for the single lane is the functional units’ 

utilization. Figures 20 and 21 show that increasing the number of threads supported by a 

single lane results in increasing the ALU and L/S units utilization respectively. 

Maximizing the utilization means keeping the functional units busy as long as possible 
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which means having more throughput. From these figures, we notice that the maximum 

utilization is gained when the number of threads is four and increasing the number of 

threads beyond four will not enhance the utilization. For four threads, the maximum ALU 

and L/S unit utilization obtained is almost 100% which means that these units are always 

busy for those benchmarks. Whereas the minimum ALU utilization obtained for four 

threads is 30.76% and the minimum L/S unit utilization is 46.14%. 

 

 

Figure 20: ALU Utilization 
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Figure 21: Load/Store Unit Utilization 

 

 

6.3 Analyzing Multiple Lanes Performance 

 

Adding more lanes to PAR core will replicate the throughput and reduce the 

execution time. Figure 22 shows the IPC for multiple lanes. It is obvious from this figure 

that the IPC increases as long as the number of lanes increases for all benchmarks. For 64 

lanes, the minimum IPC is 96.28 instructions/ cycle while the maximum IPC is 174.26 

instructions/ cycle. This increase in the IPC is on the account of the hardware cost. Adding more 

lanes will not affect the complexity of the frontend, but it increases the cost of the backend. 

Adding one more lane means adding four functional units with their buffers, dispatch and issue 

logic, registers and other components of the backend.  

Despite the fact that I have reported performance results for up to 64 lanes in this section, 

the goal is to show that this architecture is scalable and it is not necessary that the hardware 
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implementation of the PAR core can contain this number of lanes. Adding additional lanes doesn’t 

only increase the core’s area, but it also increases the complexity of the interconnections between 

the frontend and the backend and the complexity of the interconnections with the memory. To 

avoid these complexities, these 64 lanes may be split into multiple cores such that each core 

contains 2, 4 or any reasonable number of lanes determined by the hardware designers. 

 

 

 

Figure 22: IPC in Multiple Lanes 

 

The speedup is one of the most important performance metrics for parallel 

processors. It measures how much a parallel processor is scalable. The speedup is 

calculated by dividing the sequential execution time of a given program on the parallel 
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zero which means adding more lanes results in performance enhancement proportional to 

the number of lanes added. Figure 23 shows that the PAR core's speedup is linear for all 

benchmarks. 

 

 

Figure 23: Speedup across Multiple Lanes 
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CHAPTER  7 CONCLUSION AND FUTURE WORK 

 

The technology trends and the application demand motivate the architects to 

design more productive processors that handle instructions from different threads 

simultaneously. In this research work, I have proposed a scalable SIMT processor core 

called PAR core which may have multiple processing lanes but one simple frontend. I 

have described the micro-architecture of the PAR core which has been proposed for 

optimized parallel thread execution. Also I have developed ParSim Simulator which is a 

cycle-accurate multithreaded simulator that implements the PAR core features and 

evaluates its performance. The simulation results showed that the SIMT multithreading 

approach which has been implemented in the PAR core provided high performance such 

that the maximum IPC was 2.75 instructions /cycle and the maximum hardware utilization 

was almost full for 4-way multithreaded PAR core.        

Besides that, the simulation results showed the scalability of this architecture 

because there is no inter-thread communication and synchronization. Adding more 

resources through replicating the processing pipeline results in performance enhancement 

proportional to the added resources i.e. the speedup was linear.  

 In the future, we are going to show the full picture by integrating the PAR core 

with the full system. PAR core is a part of a larger system which contains many cores 

with memory hierarchy, thread scheduler and interconnection network. Once the PAR 

core is integrated with the complete system, global load and global store instructions can 
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be implemented. These instructions are expected to achieve high computation 

communication overlapping and thus hide the memory latency. 
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Appendix A PAR ISA 

 

1. Instruction Formats 

Four instruction formats are defined as shown in figure 24. All instructions begin 

with a qualifying predicate qp and terminate with a stop bit s. The R-type format defines 

register-to-register arithmetic and logic instructions. The I-type format defines 

instructions that include a 9-bit constant, including load and store. The S-type format 

defines the SET and control instructions. The XP format defines the expand instruction. 

 

 

 

 

rd5 ra5 rb5 

R-Type Format 

s qp3 op6 x4 f2 0 

imm9 rd5 ra5 

I-Type Format 

s op6 qp3 f2 0 

imm16 

S-Type Format (SET and Control) 

rd5 s qp3 op6 0 

imm26 

XP Format 

s qp3 1 - 

Figure 24: Instruction Formats 
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• qp 3-bit qualifying predicate, which can be (p0) to (p7) 

• op 6-bit major opcode for most instructions, except for the XP format 

• rd 5-bit destination or a data source register, which can be read and written 

• ra 5-bit source register a, which is read only (except by load and store) 

• rb 5-bit source register b, which is read only 

• f 2-bit function code for R-type and I-type instructions 

• x 4-bit opcode extension for R-type instructions only 

• s stop bit that marks the end of an instruction block 

• imm9 9-bit signed immediate constant for I-type instructions 

• imm16 16-bit immediate constant for S-type instructions 

• imm26 26-bit immediate constant used by XP (expand) instruction 

 

The above formats represent the majority of instructions. However, there are 

minor variations used by few instructions, such as compare. These variations will be 

explained in later sections.  
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2. Integer Addition Instructions (R-type and I-type) 

(qp) add rd = ra, rb // if (qp) rd � (ra)+(rb), p7�OV 

(qp) addu rd = ra, rb // if (qp) rd � (ra)+(rb), p7�CA 

 

(qp) add rd = ra, imm9 // if (qp) rd � (ra)+imm9, p7�OV 

(qp) addu rd = ra, imm9 // if (qp) rd � (ra)+imm9, p7�CA 

 

3. Integer Subtraction Instructions (R-type and I-type) 

(qp) subf rd = ra, rb // if (qp) rd � (rb)-(ra), p7�OV 

(qp) subfu rd = ra, rb // if (qp) rd � (rb)-(ra), p7�BO 

 

(qp) subf rd = ra, imm9 // if (qp) rd � imm9-(ra), p7�OV 

(qp) subfu rd = ra, imm9 // if (qp) rd � imm9-(ra), p7�BO  
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4. The SUB and NEG Pseudo Instructions 

(qp) sub rd = ra, rb // Pseudo: (qp) subf  rd = rb, ra 

(qp) subu rd = ra, rb // Pseudo: (qp) subfu rd = rb, ra 

(qp) neg rd = ra // Pseudo: (qp) subf  rd = ra, 0 

 

5. Bitwise Logic Instructions (R-type) 

(qp) and rd = ra, rb // if (qp) rd �   (ra)&(rb) 

(qp) or rd = ra, rb // if (qp) rd �   (ra)|(rb) 

(qp) xor rd = ra, rb // if (qp) rd �   (ra)^(rb) 

(qp) nor rd = ra, rb // if (qp) rd � ~[(ra)|(rb)] 

 

6. Bitwise Logic Instructions (I-type) 

(qp) and rd = ra, imm9 // if (qp) rd �   (ra)&(imm9) 

(qp) or rd = ra, imm9 // if (qp) rd �   (ra)|(imm9) 

(qp) xor rd = ra, imm9 // if (qp) rd �   (ra)^(imm9) 

(qp) nor rd = ra, imm9 // if (qp) rd � ~[(ra)|(imm9)] 
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7. Additional Bitwise Logic Instructions (R-type only) 

(qp) andc rd = ra, rb // if (qp) rd �   (ra)&~(rb) 

(qp) orc rd = ra, rb // if (qp) rd �   (ra)|~(rb) 

(qp) xnor rd = ra, rb // if (qp) rd � ~[(ra)^(rb)] 

(qp) nand rd = ra, rb // if (qp) rd � ~[(ra)&(rb)] 

 

8. The MOV and NOT Pseudo-Instructions 

(qp) mov rd = ra // Pseudo: (qp) or    rd = ra, 0 

(qp) not rd = ra // Pseudo: (qp) nor   rd = ra, 0 

 

9. Shift and Rotate by a Variable Amount Instructions 

 (R-type) 

(qp) sll rd = ra, rb // if (qp) rd � (ra)ǁ0 << (rb) 

(qp) srl rd = ra, rb // if (qp) rd � 0ǁ(ra) >> (rb) 

(qp) sra rd = ra, rb // if (qp) rd � signǁ(ra) >> (rb) 

(qp) ror rd = ra, rb // if (qp) rd � (ra)ǁ(ra) >> (rb) 
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10. Shift and Rotate by a Constant Amount Instructions (I-type) 

(qp) sll rd = ra, imm6 // if (qp) rd � (ra)ǁ0 << imm6 

(qp) srl rd = ra, imm6 // if (qp) rd � 0ǁ(ra) >> imm6 

(qp) sra rd = ra, imm6 // if (qp) rd � signǁ(ra) >> imm6 

(qp) ror rd = ra, imm6 // if (qp) rd � (ra)ǁ(ra) >> imm6 

 

11. The ROL Pseudo-Instruction 

(qp) rol rd = ra, imm6 // Pseudo: (qp) ror rd = ra, 64-imm6 

 

12. Shift Left and Add Instruction (R-type only) 

(qp) sla rd = ra, rb, n // if (qp) rd�(ra)+(rb)<<n 

 

13. Min and Max Instructions(R-type) 

(qp) min rd = ra, rb // (qp) {rd�min (ra,rb), p7�(ra)<s(rb)} 

(qp) max rd = ra, rb // (qp) {rd�max (ra,rb), p7�(ra)>s(rb)} 

(qp) minu rd = ra, rb // (qp) {rd�minu(ra,rb), p7�(ra)<u(rb)} 

(qp) maxu rd = ra, rb // (qp) {rd�maxu(ra,rb), p7�(ra)>u(rb)} 
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14. Min and Max Instructions (I-type) 

(qp) min rd = ra, imm9 // (qp) {rd�min (ra,imm9), p7�(<s)} 

(qp) max rd = ra, imm9 // (qp) {rd�max (ra,imm9), p7�(>s)} 

(qp) minu rd = ra, imm9 // (qp) {rd�minu(ra,imm9), p7�(<u)} 

(qp) maxu rd = ra, imm9 // (qp) {rd�maxu(ra,imm9), p7�(>u)} 

 

15. Absolute Value Instruction 

(qp) abs rd = ra // if (qp) rd � (ra)≥0?(ra):-(ra) 

 

16. Population Count and Counting Leading Zeros Instructions 

(qp) popc rd = ra // if (qp) rd � count_1(ra) 

(qp) clz rd = ra // if (qp) rd � count_leading_0(ra) 

 

17. Constant Formation Instructions 

(qp) set rd = imm16 // if (qp) rd � ext(imm16,64) 

(qp) sli rd = imm16 // if (qp) rd � (rd)ǁimm16 << 16 

 



97 
 

18. ALU Instruction Formats 

The ALU immediate and register formats are shown in figure 25. Opcodes 16 to 

19 define I-type ALU instructions, while opcode 31 defines the corresponding R-type 

format. The R-type and I-type formats use identical function codes. In addition, the 

replacement of the least-significant 4-bit of opcode 31 with the 4-bit extension field x 

matches the corresponding I-type opcode.  

 The 9-bit immediate of opcodes 16 to 19 is sign-extended to 64 bits. However, the 

I-type Shift, Rotate, and Extend instructions use the low 6-bit of the immediate constant. 

The ext and extu instructions are of the immediate type only. 
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imm6 rd5 ra5 op6 = 18 s qp3 f2 - 0 0 

imm9 rd5 ra5 op6 = 19 s qp3 f2 0 

x4 = 3 rd5 ra5 rb5 s op6 = 31 qp3 f2 0 

imm9 rd5 ra5 op6 = 17 s qp3 f2 0 

x4 = 1 rd5 ra5 rb5 s op6 = 31 qp3 f2 0 

imm9 rd5 ra5 op6 = 16 s qp3 f2 0 

x4 = 0 rd5 ra5 rb5 s op6 = 31 qp3 f2 0 

Bitwise Logic (I-Type and R-Type) 
f = 0 �and 

f = 1 �or 

Function Code 

f = 0 �add 

f = 1 �addu 

Integer Addition and Subtraction (I-Type and R-Type) 

f = 0 �min 

f = 1 �minu 

Minimum and Maximum (I-Type and R-type) 

x4 = 2 rd5 ra5 rb5 s op6 = 31 qp3 f2 0 

Shift and Rotate (I-Type and R-Type) 
f = 0 �sll 

f = 1 �srl 

imm6 rd5 ra5 op6 = 18 s qp3 f2 - 0 f = 0 �ext 1 

Extend (I-Type Only) 

Figure 25: ALU Instruction Formats 
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19. SET Instruction Format 

 

 

20. Integer Multiplication Instructions (R-type) 

(qp) mul rd = ra, rb // (qp) rd � lo[(ra)×s(rb)] 

(qp) mulh rd = ra, rb // (qp) rd � hi[(ra)×s(rb)] 

(qp) mulhu rd = ra, rb // (qp) rd � hi[(ra)×u(rb)] 

(qp) mulu rd = ra, rb // Pseudo: (qp) mul rd = ra, rb 

 

21. Integer Multiplication Instructions (I-type) 

(qp) mul rd = ra, imm9 // (qp) rd � lo[(ra)×s(imm9)] 

(qp) mulh rd = ra, imm9 // (qp) rd � hi[(ra)×s(imm9)] 

(qp) mulhu rd = ra, imm9 // (qp) rd � hi[(ra)×u(imm9)] 

(qp) mulu rd = ra, imm9 // Pseudo: (qp) mul rd = ra, imm9 

 

SET and SLI (S-Type Format) 

rd5 imm16 s SET = 48 qp3 

rd5 imm16 s SLI = 49  qp3 

0 

0 

Figure 26: Format of the SET and SLI instructions 
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22. Integer Multiply-Accumulate Instructions (R-type) 

(qp) mac rd = ra, rb // (qp) rd�(rd)+lo(ra)×s lo(rb), p7�OV 

(qp) macu rd = ra, rb // (qp) rd�(rd)+lo(ra)×u lo(rb), p7�CA 

 

23. Integer Multiply-Accumulate Instructions (I-type) 

(qp) mac rd = ra, imm9 // (qp) rd�(rd)+lo(ra)×s(imm9), p7�OV 

(qp) macu rd = ra, imm9 // (qp) rd�(rd)+lo(ra)×u(imm9), p7�CA 

 

mul r6 = r2, r3 // r6 � lo[(r2)×s(r3)] 

mulh r7 = r2, r3 // r7 � hi[(r2)×s(r3)] 

addu r4 = r4, r6 // r4 � (r4)+(r6), p7�CA 

addx r5 = r5, r7 // r7 � (r5)+(r7)+(p7), p7�CA 
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24. Integer Division Instructions (R-type) 

(qp) div rd = ra, rb // if (qp) rd � (ra)/s(rb) 

(qp) divu rd = ra, rb // if (qp) rd � (ra)/u(rb) 

(qp) rem rd = ra, rb // if (qp) rd � (ra)%s(rb) 

(qp) remu rd = ra, rb // if (qp) rd � (ra)%u(rb) 

 

25. Integer Division Instructions (I-type) 

(qp) div rd = ra, imm9 // if (qp) rd � (ra)/s imm9 

(qp) divu rd = ra, imm9 // if (qp) rd � (ra)/u imm9 

(qp) rem rd = ra, imm9 // if (qp) rd � (ra)%s imm9 

(qp) remu rd = ra, imm9 // if (qp) rd � (ra)%u imm9 
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26. Multiply and Divide Instruction Formats 

 

 

imm9 rd5 ra5 op6 = 34 s qp3 f2 0 

x4 = 2 rd5 ra5 rb5 s op6 = 35 qp3 f2 0 

imm9 rd5 ra5 op6 = 33 s qp3 f2 0 

x4 = 1 rd5 ra5 rb5 s op6 = 35 qp3 f2 0 

f = 0 �mul 

f = 2 �mulh 

Integer Multiply (I-Type and R-Type) Function Code 

imm9 rd5 ra5 op6 = 32 s qp3 f2 0 

x4 = 0 rd5 ra5 rb5 s op6 = 35 qp3 f2 0 

f = 0 �mac 

f = 1 �macu 

Integer Multiply-Accumulate (I-Type and R-Type) 

Integer Divide and Remainder (I-Type and R-Type) 
f = 0 �div 

f = 1 �divu 

Figure 27: Integer Multiply and Divide Instruction Formats 
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27. Integer Compare Instructions (R-Type) 

(qp) eq ptf = ra, rb // if (qp) {pt�(ra)=s(rb), pf�(≠)} 

(qp) lt ptf = ra, rb // if (qp) {pt�(ra)<s(rb), pf�(≥s)} 

(qp) ltu ptf = ra, rb // if (qp) {pt�(ra)<u(rb), pf�(≥u)} 

 

28. Integer Compare Instructions (I-Type) 

(qp) eq ptf = ra, imm9 // if (qp) {pt�(ra)=s(imm9), pf�(≠)} 

(qp) lt ptf = ra, imm9 // if (qp) {pt�(ra)<s(imm9), pf�(≥s)} 

(qp) ltu ptf = ra, imm9 // if (qp) {pt�(ra)<u(imm9), pf�(≥u)} 

 

29. Pseudo Integer Compare Instructions (R-Type) 

(qp) ne ptf = ra, rb // Pseudo: (qp) eq   pft = ra, rb 

(qp) le ptf = ra, rb // Pseudo: (qp) lt   pft = rb, ra 

(qp) leu ptf = ra, rb // Pseudo: (qp) ltu  pft = rb, ra 

(qp) gt ptf = ra, rb // Pseudo: (qp) lt   ptf = rb, ra 

(qp) gtu ptf = ra, rb // Pseudo: (qp) ltu  ptf = rb, ra 

(qp) ge ptf = ra, rb // Pseudo: (qp) lt   pft = ra, rb 
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(qp) geu ptf = ra, rb // Pseudo: (qp) ltu  pft = ra, rb 

 

30. Pseudo Integer Compare Instructions (I-Type) 

(qp) ne ptf = ra, imm9 // Pseudo: (qp) eq   pft = ra, imm9 

(qp) le ptf = ra, imm9 // Pseudo: (qp) lt   ptf = ra, imm9+1 

(qp) leu ptf = ra, imm9 // Pseudo: (qp) ltu  ptf = ra, imm9+1 

(qp) gt ptf = ra, imm9 // Pseudo: (qp) lt   pft = ra, imm9+1 

(qp) gtu ptf = ra, imm9 // Pseudo: (qp) ltu  pft = ra, imm9+1 

(qp) ge ptf = ra, imm9 // Pseudo: (qp) lt   pft = ra, imm9 

(qp) geu ptf = ra, imm9 // Pseudo: (qp) ltu  pft = ra, imm9 

 

(qp)  eq pt = ra, rb // Pseudo: (qp) eq pt0 = ra, rb 

(qp)  lt pt = ra, rb // Pseudo: (qp) lt pt0 = ra, rb 

(qp)  ltu pt = ra, rb // Pseudo: (qp) ltu pt0 = ra, rb 

(qp) gt pt = ra, rb // Pseudo: (qp) lt pt0 = rb, ra 

(qp) gtu pt = ra, rb // Pseudo: (qp) ltu pt0 = rb, ra 

(qp)  ne pf = ra, rb // Pseudo: (qp) eq p0f = ra, rb 
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(qp) le pf = ra, rb // Pseudo: (qp) lt p0f = rb, ra 

(qp) leu pf = ra, rb // Pseudo: (qp) ltu p0f = rb, ra 

(qp) ge pf = ra, rb // Pseudo: (qp) lt p0f = ra, rb 

(qp) geu pf = ra, rb // Pseudo: (qp) ltu p0f = ra, rb 

 

(qp)  eq pt  = ra, imm9 // Pseudo: (qp) eq pt0 = ra, imm9 

(qp)  lt pt = ra, imm9 // Pseudo: (qp) lt pt0 = ra, imm9 

(qp)  ltu pt = ra, imm9 // Pseudo: (qp) ltu pt0 = ra, imm9 

(qp) le pt = ra, imm9 // Pseudo: (qp) lt pt0 = ra, imm9+1 

(qp) leu pt = ra, imm9 // Pseudo: (qp) ltu pt0 = ra, imm9+1 

(qp)  ne pf = ra, imm9 // Pseudo: (qp) eq p0f = ra, imm9 

(qp) gt pf = ra, imm9 // Pseudo: (qp) lt p0f = ra, imm9+1 

(qp) gtu pf = ra, imm9 // Pseudo: (qp) ltu p0f = ra, imm9+1 

(qp) ge pf = ra, imm9 // Pseudo: (qp) lt p0f = ra, imm9 

(qp) geu pf = ra, imm9 // Pseudo: (qp) ltu p0f = ra, imm9 
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31. Predicate Logic Instructions 

(qp) and ptf = pa, pb // (qp) {pt�(pa)&(pb),  pf�(nand)} 

(qp) or ptf = pa, pb // (qp) {pt�(pa)|(pb),  pf�(nor)} 

(qp) xor ptf = pa, pb // (qp) {pt�(pa)^(pb),  pf�(xnor)} 

(qp)  andc ptf = pa, pb // (qp) {pt�(pa)&~(pb), pf�(orc)} 

 

(qp) nand ptf = pa, pb // Pseudo: (qp) and   pft = pa, pb 

(qp) nor ptf = pa, pb // Pseudo: (qp) or    pft = pa, pb 

(qp) xnor ptf = pa, pb // Pseudo: (qp) xor   pft = pa, pb 

(qp) orc ptf = pa, pb // Pseudo: (qp) andc  pft = pb, pa 

(qp) mov ptf = pa // Pseudo: (qp) and   ptf = pa, pa 

(qp) not ptf = pa // Pseudo: (qp) and   pft = pa, pa 

 

32. Double Precision Floating-Point Compare Instructions (R-Type 

Only) 

(qp) eq.d ptf = ra, rb // if (qp) {pt�(ra)=d(rb), pf�(≠d)} 

(qp) lt.d ptf = ra, rb // if (qp) {pt�(ra)<d(rb), pf�(≥d)} 
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(qp) ne.d ptf = ra, rb // Pseudo: (qp) eq.d  pft = ra, rb 

(qp) le.d ptf = ra, rb // Pseudo: (qp) lt.d  pft = rb, ra 

(qp) gt.d ptf = ra, rb // Pseudo: (qp) lt.d  ptf = rb, ra 

(qp) ge.d ptf = ra, rb // Pseudo: (qp) lt.d  pft = ra, rb 

 

33. Compare Instructions Formats 

The R-type and I-type compare instruction formats are shown in figure 28. The 5-

bit destination register field rd is now replaced by two 3-bit predicate fields: pt and pf. 

The major opcode field is reduced from 6 to 5 bits. Opcodes 0 to 2 are reserved for the I-

type compare format, while opcode 3 is used for the R-type. The same function field f is 

used for the R-type and I-type formats. The other fields appear in their exact same 

position as in all R-type and I-type instructions. For predicate logic, the source predicate 

registers pa and pb replace register fields ra and rb. 
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ra5 imm9 s pf3 qp3 pt3 0 f2 op5 = 1 

ra5 rb5 s x4 = 2 pf3 qp3 pt3 0 op5 = 3 f2 

Function Code Integer Compare (I-Type and R-type) 

f = 0 �eq 

f = 1 �bit 

ra5 imm9 s pf3 qp3 pt3 0 f2 op5 = 0 

ra5 rb5 s x4 = 0 pf3 qp3 pt3 0 op5 = 3 f2 

Packed-Word Compare (I-Type and R-type) 

f = 0 �eq.w 

f = 1 �bit.w 

Floating-Point Compare (R-type only) 
f = 0 �eq.d 

f = 0 �eq.f 

ra5 rb5 s x4 = 6 pf3 qp3 pt3 0 op5 = 3 f2 

ra5 rb5 s x4 = 7 pf3 qp3 pt3 0 op5 = 3 f2 

Testing Floating-Point Value (R-type only) 
f = 0 �nan.d 

f = 0 �nan.f 

ra5 rb5 s x4 = 8 pf3 qp3 pt3 0 op5 = 3 f2 

ra5 rb5 s x4 = 9 pf3 qp3 pt3 0 op5 = 3 f2 

Predicate Logic (R-type only) f = 0 �and 

f = 1 �or 

 pa3 s x4 = 15 pf3 qp3 pt3 0 op5 = 3 f2  pb3 

Figure 28: R-type and I-type Compare Instruction Formats 
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34. NOP Pseudo-Instruction 

null // pseudo: eq  p00 = r0, 0 (NULL instruction) 

 

35. Load and Store Instructions 

(qp)  ld8 rd  = ra[rb] // (qp) {rd �d8 MEM[ra + rb]} 

(qp)  ld4 rd  = ra[rb] // (qp) {rd �d4 MEM[ra + rb] } 

(qp)  ld2 rd  = ra[rb] // (qp) {rd �d2 MEM[ra + rb] } 

(qp)  ld1 rd  = ra[rb] // (qp) {rd �d1 MEM[ra + rb] } 

 

(qp)  st8 ra[rb] = rd // (qp) {MEM[ra+ rb] �8 (rd)} 

(qp)  st4 ra[rb] = rd // (qp) {MEM[ra+ rb] �4 (rd) } 

(qp)  st2 ra[rb] = rd // (qp) {MEM[ra+ rb] �2 (rd) } 

(qp)  st1 ra[rb] = rd // (qp) {MEM[ra+ rb] �1 (rd) } 
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Appendix B Benchmarks C++ Source Code 

 

1. Dense Matrix-Matrix Multiplication (DMMM) 
 
 
 

 

Figure 29: DMMM C++ Source Code 
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2. Jacobi Iterative Method (JIM) 
 
 
 

 

Figure 30: JIM C++ Source Code 
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Figure 30: JIM C++ Source Code (Continued) 1 
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3. Gauss-Seidel (GS): Red-Black Gauss-Seidel on a 2D Grid  
 
 
 

 

Figure 31: GS C++ Source Code 
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Figure 31: GS C++ Source Code (Continued) 1 
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4. RGB to YIQ Conversion (RGB-YIQ)  

 

 

Figure 32: RGB-YIQ C++ Source Code 
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Figure 32: RGB-YIQ C++ Source Code (Continued) 1 
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5. RGB to CMYK Conversion (RGB-CMYK) 
 
 
 

 

Figure 33: RGB-CMYK C++ Source Code 
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Figure 33: RGB-CMYK C++ Source Code (Continued) 1 
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6. High Pass Grey-Scale Filter (HPF)  
 
 
 

 

Figure 34: HPF C++ Source Code 
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7. Scaled Vector Addition (SVA) 

 

 

Figure 35: SVA C++ Source Code 
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Appendix C   Benchmarks PAR Assembly Source Code 

 

This appendix contains the PAR assembly source code of the data parallel 

benchmarks that have been used in this research. There is a part related to the main thread 

which contains the par instruction, this part has been added in the source code for 

clarification. To compile these benchmarks on the current version of ParSim, the block of 

the main thread should be removed.  
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1. Dense Matrix-Matrix Multiplication (DMMM) 

 

 

Figure 36: DMMM Source Code 
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Figure 36: DMMM Source Code (Continued) 1 
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2. Jacobi Iterative Method (JIM) 
 
 

 

Figure 37: JIM Source Code 
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Figure 37: JIM Source Code (Continued) 1 
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Figure 37: JIM Source Code (Continued) 2 
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3. Gauss-Seidel (GS): Red-Black Gauss-Seidel on a 2D Grid  

 

 

Figure 38: GS Source Code 
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Figure 38: GS Source Code (Continued) 1 
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Figure 38: GS Source Code (Continued) 2 

 

 

 

 

 

  



130 
 

4. RGB to YIQ Conversion (RGB-YIQ)  

 

 

Figure 39: RGB-YIQ Source Code 
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Figure 39: RGB-YIQ Source Code (Continued) 1 
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Figure 39: RGB-YIQ Source Code (Continued) 2 
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Figure 39: RGB-YIQ Source Code (Continued) 3 
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5. RGB to CMYK Conversion (RGB-CMYK) 

 

 

Figure 40: RGB-CMYK Source Code 
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Figure 40: RGB-CMYK Source Code (Continued) 1 
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Figure 40: RGB-CMYK Source Code (Continued) 2 
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6. High Pass Grey-Scale Filter (HPF)  

 

 

Figure 41: HPF Source Code 

 

 



138 
 

 

Figure 41: HPF Source Code (Continued) 1 
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Figure 41: HPF Source Code (Continued) 2 
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Figure 41: HPF Source Code (Continued) 3 
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7. Scaled Vector Addition (SVA) 

 

 

Figure 42: SVA Source Code 
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Figure 42: SVA Source Code (Continued) 1 
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Appendix D Experimental Results 

 

D.1 Results for Single Lane 

 

Table 2: DMMM Performance Results for Single Lane 

 

 

Table 3: JIM Performance Results for Single Lane 

 

Number of 

Simultaneous 

Threads 

Total 

Execution 

Time 

IPC FPU 

Throughput 

ALU 

Utilization 

L/S Unit 

Utilization 

1 6406403 1 0.20 40% 39.98% 

2 3203204 2 0.40 80% 79.96% 

4 2562562 2.50 0.50 100% 99.95% 

8 2562562 2.50 0.50 100% 99.95% 

Number of 

Simultaneous 

Threads 

Total 

Execution 

Time 

IPC FPU 

Throughput 

ALU 

Utilization 

Compare 

Unit 

Utilization 

L/S Unit 

Utilization 

1 3279365 0.87 0.25 25% 12.49% 37.49% 

2 1639686 1.75 0.50 50% 24.98% 74.98% 

4 1229448 2.33 0.67 66.68% 33.32% 100% 

8 1229448 2.33 0.67 66.68% 33.32% 100% 
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Table 4: GS Performance Results for Single Lane 

 

 

 

Table 5: RGB-YIQ Performance Results for Single Lane 

 

 

 

Number of 

Simultaneous 

Threads 

Total 

Execution 

Time 

IPC 

 

FPU 

Throughput 

ALU 

Utilization 

L/S Unit 

Utilization 

1 28165 1 0.36 36.36% 27.27% 

2 14727 1.91 0.70 69.53% 52.15% 

4 10248 2.75 1 99.92% 74.94% 

8 10248 2.75 1 99.92% 74.94% 

Number of 

Simultaneous 

Threads 

Total 

Execution 

Time 

IPC FPU 

Throughput 

ALU 

Utilization 

L/S Unit 

Utilization 

1 34568 0.85 0.48 14.81% 22.22% 

2 22407 1.3 0.74 22.85% 34.28% 

4 16644 1.77 1 30.76% 46.14% 

8 16644 1.77 1 30.76% 46.14% 
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Table 6: RGB-CMYK Performance Results for Single Lane 

 

 

 

 

Table 7: HPF Performance Results for Single Lane 

 

 

 

Number of 

Simultaneous 

Threads 

Total 

Execution 

Time 

IPC FPU 

Throughput 

ALU 

Utilization 

L/S Unit 

Utilization 

1 21762 1 0.00% 58.82% 41.17% 

2 14724 1.48 0.00% 86.93% 60.85% 

4 14405 1.51 0.00% 88.86% 62.20% 

8 14249 1.53 0.00% 89.83% 62.88% 

Number of 

Simultaneous 

Threads 

Total 

Execution 

Time 

IPC FPU 

Throughput 

ALU 

Utilization 

L/S Unit 

Utilization 

1 39684 1 0.29 38.71% 32.25% 

2 19845 2 0.58 77.40% 64.50% 

4 15364 2.58 0.75 99.97% 83.31% 

8 15364 2.58 0.75 99.97% 83.31% 
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Table 8: SVA Performance Results for Single Lane 

 

 

D.2 Results for Multiple Lanes 

 

Table 9: DMMM Performance Results for Multiple Lanes 

Number of Lanes Execution Time  IPC Speedup 

1 2562562 2.50  

2 1281282 5 2 

4 640642 10 4 

8 320322 20 8 

16 160162 39.99 16 

32 80082 79.98 32 

64 40042 159.96 64 

 

 

Number of 

Simultaneous 

Threads 

Total 

Execution 

Time 

IPC FPU 

Throughput 

ALU 

Utilization 

L/S Unit 

Utilization 

1 8967 1 0.43 14.27% 42.82% 

2 5128 1.75 0.75 24.96% 74.88% 

4 3848 2.33 1 33.26% 99.79% 

8 3847 2.33 1 33.27% 99.82% 
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Table 10: JIM Performance Results for Multiple Lanes 

Number of Lanes Execution Time  IPC Speedup 

1 4917768 2.33  

2 2458888 4.67 2 

4 1229448 9.34 4 

8 614728 18.67 8 

16 307368 37.34 16 

32 153688 74.68 32 

64 76848 149.36 63.99 

 

 

Table 11: GS Performance Results for Multiple Lanes 

Number of Lanes Execution Time  IPC Speedup 

1 51208 2.75  

2 25608 5.50 2 

4 12808 10.99 4 

8 6408 21.97 7.99 

16 3208 43.89 15.96 

32 1608 87.56 31.85 

64 808 174.26 63.38 
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Table 12: RGB-YIQ Performance Results for Multiple Lanes 

Number of Lanes Execution Time  IPC Speedup 

1 83204 1.77  

2 41604 3.54 2 

4 20804 7.08 4 

8 10404 14.15 8 

16 5204 28.29 16 

32 2604 56.53 31.95 

64 1304 112.88 63.80 

 

Table 13: RGB-CMYK Performance Results for Multiple Lanes 

Number of Lanes Execution Time  IPC Speedup 

1 72005 1.51  

2 36005 3.02 2 

4 18005 6.04 4 

8 9005 12.08 8 

16 4505 24.15 15.98 

32 2255 48.25 31.93 

64 1130 96.28 63.72 
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Table 14: HPF Performance Results for Multiple Lanes 

Number of Lanes Execution Time  IPC Speedup 

1 76804 2.58  

2 38404 5.17 2 

4 19204 10.33 4 

8 9604 20.66 8 

16 4804 41.30 15.99 

32 2404 82.53 31.95 

64 1204 164.78 63.79 

 

 

 

Table 15: SVA Performance Results for Multiple Lanes 

Number of Lanes Execution Time  IPC Speedup 

1 19208 2.33  

2 9608 4.66 2 

4 4808 9.32 4 

8 2408 18.60 7.98 

16 1208 37.09 15.90 

32 608 73.68 31.59 

64 308 145.45 62.36 
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