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The Kalman filter (KF) gives the optimal estimates of the unknown state vector

in time series linear stochastic state space model (SSM). If we have observed data of

the state space model, we can identify the unknown parameters using system identi-

fication techniques. One way to do this is called Expectation Maximization (EM).

In the system certain elements such as the coefficient matrices are not precisely known

or gradually change with time. One way to take these uncertainties into account is

to allow interval state space models and extend the statistical concepts to interval

setting.

The traditional Kalman filter technique can not be used directly when the system

parameters are not precisely known or change with time. So, it is important to intro-

duce an interval Kalman filter(IKF) to handle the current situation. Also, the interval

parameters could be identified from a given record of interval measurements.
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 ملخص الرسالة

 جميغم القحطاني آلعبيد جفين :  الاســــــــم

مع تطبيقات عمى  لمفترات ية تعظيم التوقعخوارزمو  فمتر كالمان لمفترات: الة ــــعنوان الرس

  تنبؤ الطقس

 دكتوراه العلمية:ة ـــــالدرج

 رياضياتالص : ــــــصـالتخ

 3122 مايواريخ التخرج : ـــــت

كاى  إرا. الحالت في ًوْرج فضاء الحالت الخطي ّالسلاسل الضهٌيت لوتجَي أفضل التمذيشاث فلتش كالواى يعط

الوجِْلت لِزٍ الٌوارج الشياضيت  الْسائطلذيٌا بياًاث هشصْدة لٌوْرج فضاء الحالت فاًَ يوكٌٌا تحذيذ 

 تعظين التْلع. تخْاسصهيالطشق ُي  ّإحذٓباستخذام تمٌيت ًظام التحذيذ 

هثل هصفْفاث الوعاهلاث لذ تكْى غيش هعلْهت بذلت أّ تتغيش تذسيجياً بالٌسبت  الأًظوتتلك في  بعض العٌاصش

ًوْرج فضاء الحالت  إلٔالطشق لتوثيل عذم التحذيذ حسابياً ُْ تعوين ًوْرج فضاء الحالت  إحذٓللضهي. 

 بحيث تطبك علٔ هجوْعت الفتشاث. الإحصائيت. ُزا التعوين يتطلب تعوين الوفاُين  للفتشاث

تمذين ًوْرج فلتش كالواى  إلٔلزا ًحتاج  للفتشاث فضاء الحالت كي تطبيمَ هباششة علٔ ًوْرج فلتش كالواى لايو

تْلع خْاسصهيت تعظين  إلٔللفتشاث بحيث يتعاهل هع ُزا الْضع. أيضاً يوكٌٌا تعوين خْاسصهيت تعظين التْلع 

علٔ شكل تكْى بوعلْهيت هجوْعت هي المياساث التي للفتشاث فضاء الحالت  ًوْرج هعاهلاث لتحذيذ   للفتشاث

    فتشاث.



Chapter 1

INTRODUCTION

1.1 Motivation

A physical model is said to be in state space form if it is completely specified by two

basic equations. These two equations are known as the measurement and transition

equations [11,12,31,58]. The state space model is a linear when the observations in the

measurement equation are a linear function of the state vector and, in the transition

equation, the state vector is itself a linear function of the state vector in the previous

time period.

Kalman filter was first proposed by Rudolf Kalman in the year 1960 as optimal esti-
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mation filter for the linear state space model [32]. To estimate the state, the Kalman

filter (KF) has access to measurements. Those measurements are linearly related to

the state and are corrupted by noise. The KF processes all available measurements to

estimate the state. It uses knowledge of the system and sensor dynamics, probabistic

description of the system and measurement noise, and any available data about the

initial values of the state. Some authors have called the discovery of the KF one of

the greatest discoveries in the twentieth century [3,4,31,58].

The KF equations could be derived from many approachs. In [33], the conventional

KF was derived by minimizing a quadratic cost function. This is intimately related

to the least square estimation which is widely studied in control and optimization

theories [31,65]. Kalman described his filter using state space technique which enables

the filter to be used as either a smoother, a filter or a predictor [23,31,32,58,65].

The KF is applied to a wide range of tracking, manufacturing processes, aircraft, ships

and navigation problems [4,8,58].

The Kalman smoother is an efficient algorithm for E-step in the Expectation-Maximization

(EM) algorithm for linear Gaussian state space models. The EM algorithm is an it-

erative technique for obtaining the maximum likelihood estimation and consists of

two steps: the E-step and the M-step [10,26,58,59]. In the E-step, we compute the

conditional expectation of the log maximum likelihood function and in the M-step,

we maximize the expected likelihood function with respect to unknown parameters in
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the state space model (see Sec. 2.6).

Interval arithmetic is an arithmetic defined on sets of intervals rather than sets of

real numbers. Modern development of interval arithmetic began with R. E. Moore’s

book [45]. Hansen and Smith [21] started the use of interval arithmetic in matrix

computations. After this motivation and inspiration, several authors such as Alefeld

and Herzberger [1], Hansen et al ([20]), Jaulin et al [24], Neumaier [48] and Rohn [54],

have studied interval matrices.

In general interval analysis, some algebra properties do not hold. For example, the

distributive law is not true. So, the inverse of an interval matrix is not well defined.

J. Rohn defined the inverse of an interval matrix as the narrowest interval matrix

containing the set of all inverse matrices included in the original interval matrix [54].

In the existing literature, no method is available to find the exact solution for the

linear system of interval equations but there are methods available for computing the

smallest box containing the exact solution of the system of interval linear equations

[50].

In the state space model, certain elements, such as the coefficient matrices, are not

precisely known or gradually change with time. One way to take these uncertainties

into account, is to allow interval state space model presentation. The interval state

space model requires an extension of some statistical concepts in interval setting. The

traditional Kalman filter technique could not be used directly to handle the interval

3



state space model. G. Chen, J. Wang and L. Shieh wrote a paper about the interval

Kalman filter (IKF) in 1997 in which most of the concepts from the ordinary case were

extended in a strait forward manner to the interval case [18]. As well, this definition

for IKF was introduced in the 4th edition of a published book titled ”Kalman Filtering

with Real Time Applications” (2009)[8].

1.2 Objectives

We extend the state space model concept to the interval state space model. In order

to do this, we need to extend the statistical concepts to interval settings, e.g., interval

random variables, interval expectation, interval variance, interval covariance, interval

conditional expectation, interval conditional variance and investigate the algebraic

properties of interval random variables.

Moreover, we introduce a definition of the determinant and inverse of interval ma-

trices using a new convexity approach. This definition will enable us to obtain the

computation of an interval inverse matrix.

In addition, we rigorously derive the interval Kalman filter using the definitions and

statistical properties. Also, we identify interval parameters of interval state space

model from a given record of interval measurements using a generalization of the EM
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algorithm. Finally, we present a simulation for the identification of interval state space

model and the weather prediction experiment.

1.3 Outline of Thesis

The organization of the thesis is as follows: in the second chapter a brief description

of matrix algebra, probability theory, interval analysis, least square estimation and

Expectation-Maximization(EM) algorithm are given. In chapter three, we introduce

Gaussian state space model, deriving the Kalman filter and the identification of pa-

rameters of linear state space model. In chapter four, we present convexity interval

analysis, definitions, interval linear systems and interval random variables. In chapter

five, we introduce interval state space model, the convexity interval Kalman filter, con-

vexity interval Kalman smoother, identification of the interval parameters of interval

state space model and a simulation of interval parameter estimation for interval linear

state space model. We also come up with an interval prediction model for weather.
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Chapter 2

PRELIMINARIES

2.1 Inroduction

In this chapter, we will introduce some fundamental concepts that are necessary for

proper understanding of interval Kalman filter and identification of parameters of

interval state space model discussed in this thesis. We begin with an introduction to

matrix algebra which is necessary to explain how to derive the Kalman filter equations.

Then, we discuss brief background of certain basic concepts in probability theory. We

will extend these concepts to interval setting in chapter 4. In addition, we review some

preliminary results on interval analysis are needed throughout our research. Most
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interval analysis preliminary results could be found in [1]. Since the Kalman filter

could be derived from linear least square estimation (LSE), we introduce a summary

of ordinary least square estimation. For more details of LSE, see [31,33,65]. Finally,

we present the maximum likelihood parameter estimation and the EM algorithm. We

will use the EM algorithm to identify the parameters of linear state space model in

section 3.6.

2.2 Matrices

In this section we introduce some operations, formulas, inequalities and derivatives

in matrix algebra which will be helpful in our research. More details about matrices,

could be found in books on linear algebra and matrix theory [16].

2.2.1 Operations and Functions

Definition 1 (Positive Definite and Semi-definite Matrices): An n× n real

matrix A is positive definite if

xTAx > 0,∀x 6= 0 ∈ Rn. (2.1)
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A is positive semi-definite if

xTAx ≥ 0, ∀x 6= 0 ∈ Rn. (2.2)

Remark If A,B ∈ Rn×n, we will use the notation

A > B

when the matrix A−B is positive definite and

A ≥ B

when the matrix A−B is positive semi-definite.

Definition 2 (The trace of a matrix): The trace of A = [aij]n×n, denoted by trA,

is defined as the sum of its diagonal elements, namely:

trA =
n∑
i=1

aii.

Lemma 3 The trace of matrices have these properties

trA =
∑
i

λi, λi ∈ eig(A) (2.3)

trATA =
n∑
i=1

m∑
j=1

a2
ij (2.4)

E[trA] = trE[A] (2.5)

where eig(A) is the eigenvalues of A and E(A) is the expectation of A.

8



It follows from (2.3) that if A is positive definite trA > 0.

Definition 4 (Inverses of Matrix): The inverse of a matrix A ∈ R(n×n) is a

matrix A−1 ∈ R(n×n) such that

AA−1 = A−1A = In.

The inverse matrix can be constructed, using the adjoint matrix Adj(A), by

A−1 =
1

det(A)
Adj(A), det(A) 6= 0,

where det(A) is the determinate of A and

Adj(A) = (cof(A))T

and the matrix of cofactors is defined by

(cof(A, i, j)) = (−1)i+jdet([A]ij),

where the submatrix [A]ij is the (n− 1)× (n− 1) matrix obtained by deleting the ith

row and the jth column of A.

Lemma 5 (Matrix Schwarz Inequality) Let P and Q be (m × n) and (m × k)

matrices, respectively, such that P TP is nonsingular, then

QTQ ≥ (P TQ)T (P TP )−1(P TQ). (2.6)
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Proof. Let (Q− PS)T (Q− PS) ≥ 0 and choose S = (P TP )−1(P TQ). So, we get

(Q− PS)T (Q− PS) ≥ 0

⇒ QTQ ≥ STP TQ+ (P TQ)TS − ST (P TP )S

= STP TQ+ (P TQ)T (P TP )−1(P TQ)− [(P TP )−1(P TQ)]

(P TP )(P TP )−1)P TQ

= STP TQ+ (P TQ)T (P TP )−1(P TQ)

−[(P TP )−1(P TQ)]TP TQ

= (P TQ)T (P TP )−1(P TQ) + (P TQ)T (P TP )−1(P TQ)

−(P TQ)T (P TP )−1P TQ

= (P TQ)T (P TP )−1(P TQ)

Lemma 6 (Completing the Square) Let X,A,B,C ∈ Rn×n, with A invertable

then

XAXT −BXT − (BXT )T +C = (X −BA−1)A(X −BA−1)T +C −BA−1BT . (2.7)

Definition 7 Characteristic Values: For any variable λ, the polynomial

PA(λ) = det[A− λI] = Σn
i=0aiλ

i

10



is called the characteristic polynomial of A. The roots of PA(λ) are called the charac-

teristic values (or eigenvalues) of A and denoted by eig(A).

Characteristic Vectors: For each real characteristic value λi of a real symmetric A,

there is a corresponds a characteristic vector ei 6= 0 and Aei = λiei.

2.2.2 Derivatives

Derivatives: Let F : X → Y , where X, Y are finite dimensional spaces with norm

‖.‖. The derivative of F is a linear operator F ′ such that

F (x+ h)− F (x) = F ′(x)h+ o(‖h‖)

in other words F ′(x) ∈ L(X, Y ).

Computational procedure : To compute F ′(x) we extract the linear part of F (x+

h), or equivalently, compute ∂F (x+th)
∂t
|t=0.

Chain Rule: Let G : X → Y, F : Y → Z, we define F (G(x)) = F ◦ G : X → Z.

F (G(x))′ ∈ L(X,Z) and

F (G(x))′h = F ′(G(x))G′(x)h,∀h ∈ X

where F ′(Y ) ∈ L(Y, Z), G′(x) ∈ L(X,Z).

11



Lemma 8 Let A and B, be square matrices, then

tr(AB) =
n∑
i=1

n∑
j=1

aijbji.

Proof. : Let C = AB, then Cii =
∑n

j=1 aijbji. Therefore

tr(AB) =
n∑
i=1

cii =
n∑
i=1

n∑
j=1

aijbji.

Lemma 9 Let x ∈ Rn and A ∈ R(n×n), then

xTAx = tr(xxTAT )

Proof.

xTAx =
∑n

i=1

∑n
j=1 xiaijxj

=
∑n

i,j=1(xxT )ijaij

by Lemma 8

xTAx = tr(xxTAT ).

12



Formulas for derivatives

Lemma 10 Let A be a linear operator, then

d

dx
(Ax)h = Ah,∀h ∈ Rn.

Lemma 11

(
d

dA
A−1)M = −A−1MA−1,∀M ∈ Rn×n

Proof.

(A+ tM)−1 = [A(I + tA−1M)]−1 = (I + tA−1M)−1A−1

Using Neumann formula gives

(A+ tM)−1 = A−1 − tA−1MA−1 +O(t2)⇒ d

dt
(A+ tM)−1|t=0 = −A−1MA−1.

Theorem 12 Let |A| denotes the determinate of A ∈ R(n×n): |.| : R(n×n) → R, then

d

dA
|A|M = tr(adjAMT ),M ∈ Rn×n (2.8)

Proof. We will use the fact that |A| is an n-linear form when regarded as a function

on the columns of A. For A,M ∈ Rn×n, denote by ai,Mi, 1 ≤ i ≤ n the columns of

13



A,M , respectively.

|A+ tM | = |a1 + tM1, a2 + tM2, ..., an + tMn|

= |a1, a2, ..., an|+ t
∑n

i=1 |a1, ...,Mi, ai+1, ..., an|+O(t2)

= |A|+ t
∑n

i=1

∑n
j=1 MijAij +O(t2),

(2.9)

where Aij is the cofactor of aij in A.

Therefore by lemma 8, we have

d

dt
|A+ tM |t=0 =

n∑
i=1

n∑
j=1

MijAij = tr(adjAMT ) (2.10)

Corollary 13

d

dt
Log|A|M =

1

|A|
tr(adjAMT ) = tr(A−1MT ). (2.11)

Lemma 14

d

dA
(xTAx)M = xTMx, ∀M ∈ Rn×n, x ∈ Rn.

Lemma 15 Let A,M ∈ R(n×n), then

d

dt
(tr(A))M = trM. (2.12)

14



Proof. Notice that tr : R(n×n) → R is a linear operator. So, use Lemma 10 directly.

Combining the above results we can show that

d

dA
(A−1B)M = −A−1MA−1B (2.13)

d

dA
tr(A−1B)M = tr(−A−1MA−1B) = −tr(A−1MA−1B) (2.14)

d

dA
(A−1BA)M = A−1BM − A−1MA−1BA (2.15)

Computation of critical points

• Let

F (x) = A+ (x− x0)′B(x− x0),

where B is invertible.

Then the critical points of F (x) are computed as

d
dx

(F (x))v = 2vTB(x− x0)

2vTB(x− x0) = 0,∀v ∈ Rn

⇒ B(x− x0) = 0⇒ x− x0 ∈ kerB,

∴ x− x0 = 0;x = x0.

(2.16)

• Let

F (A) = log|A|+ tr(AP ) + xTAx,

15



where A is invertible. Then,

d
dA
F (A)M = tr(A−1MT ) + tr(MP ) + xTMx

= tr(A−1MT + P TMT + xxTMT )

= tr([A−1 + P T + xxT ]MT )

= 0,∀M ∈ R(n×n)iffA−1 + P T + xxT = 0

∴ A = −(P T + xxT )−1

(2.17)

2.3 Probability

2.3.1 The probability Distribution Function

Definition 16 let S be a sample space and X : S → R be a random variable. For

each measurable set A ⊂ R, define P : events → [0, 1], where each event is a set

{s ∈ S : X(s) ∈ A ⊂ R} or, briefly, {X ∈ A}, subject to the following conditions:

(1)P (X ∈ A) ≥ 0 for any measurable set A ⊂ R,

(2)P (X ∈ R) = 1, and

(3) for any countable sequence of pairwise disjoint measurable sets Ai in R,

P (X ∈ ∪Ai) =
∞∑
i=1

P (X ∈ Ai).

P is called the probability distribution function of the random variable X.

16



If there exists an integrable function f such that

P (X ∈ A) =
∫
A
f(x)dx (2.18)

for all measurable sets A, we say that P is a continuous (as opposed to discrete)

probability distribution and f is called the probability density function of the random

variable X.

Definition 17 The probability density function f given by

f(x) = 1√
2πσx

exp{−(x−µx)2

2σ2
x
}, σx > 0, µx ∈ R (2.19)

is called the Gaussian probability density function, and P is called Gaussian distribu-

tion of the random variable X.

It is completely determined by µx and σx. Hence, we use the notation: X ∼ N(µx, σ
2
x).

2.3.2 The Expectation and Variance of Random Variables

Definition 18 Let X be an m-dimensional random variable. The expectation of X

indicates the mean of the values of X, and is defined by

E{X} =
∫∞
−∞ xf(x)dx. (2.20)

17



Note that E(X) is an m-vector for any m-dimensional random variable X with

probability density function f . For the normal distribution, using the substitution

y = (x− µx)/(
√

2σx), we have

E{X} =
∫∞
−∞ xf(x)dx

=
∫∞
−∞ x

1√
2πσx

exp{−(x−µx)2

2σ2
x
}dx

= µx
1√
π

∫∞
−∞ e

−y2dy

= µx.

(2.21)

Definition 19 The variance of X is defined by

Var{X} = E{X − E{X}}2 =
∫∞
−∞(x− E{X})2f(x)dx. (2.22)

For the Gaussian distribution, using the substitution y = (x− µx)/
√

2σx), we have

Var{X} =
∫∞
−∞(x− µx)2f(x)dx

= 1√
2πσx

∫∞
−∞(x− µx)2exp{−(x−µx)2

2σ2
x
}dx

= 2σ2
x

1√
π

∫∞
−∞ y

2e−y
2
dy

= σ2
x,

(2.23)

where we have used the equality
∫∞
−∞ y

2e−y
2
dy =

√
π

2
.

18



2.3.3 Joint Probability Distribution Function

Let X = [X1, X2, ..., Xn] be a random vector whose components are random variables

where Xi(s) ∈ R, s ∈ S.

Definition 20 Let P be a continuous probability distribution function of X. That is,

P (X1 ∈ A1, ..., Xn ∈ An) =
∫
A1
...
∫
An
f(x1, ..., xn)dx1...dxn, (2.24)

where A1, ..., An are measurable sets in R and f an integrable function. f is called a

joint probability density function of X and P is called a joint probability distribution

function of X1, X2, ..., Xn.

Definition 21 Let X and Y be random n−and m−vectors, respectively.

The covariance of X and Y is defined by the n×m matrix

Cov(X, Y ) = E[(X − E{X})(Y − E{Y })T ]. (2.25)

When Y = X, we have the variance matrix, which is sometimes called a covariance

matrix of X, Var(X) =Cov(X,X).
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Lemma 22 The expectation, variance, and covariance have the following properties:

E(AX +BY ) = AE(X) +BE(Y ) (2.26)

E((AX)(BY )T ) = A(E(XY T ))BT (2.27)

Cov(X, Y ) = (Cov(Y,X))T (2.28)

Cov(X, Y ) = E(XY T )− E(X)(E(Y ))T (2.29)

Cov(X, Y + Z) = Cov(X, Y ) + Cov(X,Z), (2.30)

where A and B are constant matrices of appropriate dimensions.

If

f(x) = 1
(2π)n/2(detR)1/2

exp{−1
2
(x− µx)TR−1(x− µx)} (2.31)

where µx is a constant n−vector and R is a covariance symmetric positive definite

matrix, we say that f(x) is a Gaussian probability density function of X.

We can show by using a substitution as that used for the scalar case of equations

(2.21) and (2,23), that

E{X} =
∫∞
−∞ ...

∫∞
−∞ x1x2...xnf(X)dx1dx2...dxn = µx, (2.32)

and

Var{X} = E{X − µx)(X − µx)T = R. (2.33)
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2.3.4 Conditional Probability

Definition 23 The conditional probability of X1 ∈ A1 given X2 ∈ A2 is defined by

P (X1 ∈ A1|X2 ∈ A2) = P (X1∈A1,X2∈A2)
P (X2∈A2)

. (2.34)

Let f(x1|x2) denote the probability density function corresponding to P (X1 ∈ A1|X2 ∈

A2). f(x1|x2) is called the conditional probability density function corresponding to

the conditional probability distribution function P (X1 ∈ A1|X2 ∈ A2).

Bayes’ formula states that

f(x1, x2) = f(x1|x2)f2(x2) = f(x2|x1)f(x1). (2.35)

This formula also holds for random vectors X1 and X2.

X and Y are said to be independent if f(x|y) = f1(x) and f(y|x) = f2(y), and X

and Y are said to be uncorrelated if Cov(X, Y ) = 0. It is easy to see that if X and

Y are independent then they are uncorrelated. Indeed, if X and Y are independent

then f(x, y) = f1(x)f2(y). Indeed, by property (2.29) we find that Cov(X, Y ) = 0 .

Similar to the definitions of expectation and variance, the conditional expectation of

X under the condition that Y = y is defined to be

E(X|Y = y) =
∫∞
−∞ xf(x|y)dx (2.36)
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and the conditional variance of X, under the condition that Y = y to be

Var(X|Y = y) =
∫∞
−∞[x− E(X|Y = y)][x− E(X|Y = y)]Tf(x|y)dx. (2.37)

Suppose that

E


 X

Y


 =

 µx

µy


and

Var


 X

Y


 =

 Rxx Rxy

Ryx Ryy

 .
From (2.31), we have

f(x,y) = f


 x

y




= 1

(2π)n/2

det


Rxx Rxy

Ryx Ryy





1/2

.exp

−1/2


 X

Y

−
 µx

µy



T  Rxx Rxy

Ryx Ryy


−1

 X

Y

−
 µx

µy



 .
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We find that[8]

f(x|y) = f(x,y)
f(y)

= 1
(2π)n/2(detR̃)1/2

exp
{
−1

2
(x− µ̃T )R̃−1(x− µ̃)

}
,where

µ̃ = µx +RxyR
−1
yy (y− µy),

R̃ = Rxx −RxyR
−1
yy Ryx.

(2.38)

So, by rewriting µ̃x and R̃, we get

E(X|Y = y) = E(X) + Cov(X, Y )Var−1(Y )(y− E(Y )) (2.39)

and

Var(X|Y = y) = Var(X) + Cov(X, Y )Var−1(Y )Cov(Y,X). (2.40)

2.4 Interval Analysis:

In this section, we provide some preliminary results on interval arithmetic and interval

analysis that are needed throughout this thesis.

The birth of modern interval arithmetic was marked by the appearance of the book

”Interval Analysis” by Ramon E. Moore in 1966 [45]. Hansen and Smith [21] started

the use of interval arithmetic in matrix computations. We will follow the notations

and definitions from [1](Alferld).
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2.4.1 Concepts and Properties of Intervals

Definition 24 An interval [x] is a closed and connected subset of R; it is characterized

by its lower and upper bounds x and x as [x, x].

Firstly, we introduce some useful concepts and properties of intervals:

Equality: Two intervals, [x1, x1] and [x2, x2], are said to be equal if and only if x1 = x2

and x1 = x2.

Intersection: The intersection of two intervals, [x1, x1] and [x2, x2] is defined by

[x1, x1] ∩ [x2, x2] = [max{x1, x2},min{x1, x2}].

Union: The union of two non-disjoint intervals, [x1] and [x2]

[x1, x1] ∪ [x2, x2] = [min{x1, x2},max{x1, x2}].

Inequality: The interval [x1] is said to be less than (similarly, greater than) the

interval [x2], iff x1 < x2; otherwise, they cannot be compared. The relations ≤ and

≥: are not defined for intervals.

Inclusion: The interval [x1] is said to be included in [x2] iff x2 ≤ x1 and x1 ≤ x2.
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2.4.2 Basics of Interval Arithmetic

Let [x] = [x, x] and [y] = [y, y] be real compact intervals and o one of the basic

operations ‘addition’, ‘subtraction’, ‘multiplication’ and ‘division’, respectively, for

real numbers, that is o ∈ {+,−, ∗, /}. Then we define the corresponding operations

for intervals [x] and [y] by

[x]o[y] = {xoy|x ∈ [x], y ∈ [y]},

where we assume 0 /∈ [y] in case of division. [x]o[y] can be represented by using only

the bounds of [x] and [y] as the following :

a.[x] + [y] = [x+ y, x+ y]

b.[x]− [y] = [x− y, x− y]

c.[x] ∗ [y] = [min(xy, xy, xy, x̄ȳ),max(xy, xy, xy, x̄ȳ)]

d. [x]
[y]

= [min(x
y
, x
y
, x
y
, x
y
,max(x

y
, x
y
, x
y
, x
y
)], 0 /∈ [y].

(2.41)

Equations (2.41) show that the set IR of real compact intervals is closed with respect

to the operations {+,−, ∗, /}.

Definition 25 We define the the center and the width of interval [x] as the following

c([x]) = (x+x)
2

w([x]) = x− x.

(2.42)
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If [x] consists only of the element x, then we identify the real number x with the

degenerate interval [x, x] keeping the real notation, i.e., x = [x, x]. In this way one

recovers at once the real numbers R and the corresponding real arithmetic when

restricting IR to the set of degenerate real intervals equipped with the arithmetic

defined in (2.41). Unfortunately, (IR,+, ∗) is neither a field nor a ring. The structures

(IR,+) and (IR/{0}, ∗) are commutative semigroups with the neutral elements 0 and

1, respectively, but they are not groups. A nondegenerate interval [x] has no inverse

with respect to addition or multiplication. Even the distributive law has to be replaced

by the so-called subdistributivity

[x] ∗ ([y] + [z]) ⊆ [x] ∗ [y] + [x] ∗ [z]. (2.43)

For example, let [x] = [−2, 2], [y] = 1 and [z] = [−1],then

[x]∗([y]+[z]) = [−2, 2](1−1) = 0 ⊂ [−4, 4] = [−2, 2]∗1+[−2, 2]∗(−1) = [x]∗[y]+[x]∗[z].

Also,

[−2, 2] + (−[−2, 2]) = [−2, 2] + [−2, 2] = [−4, 4] 6= 0,

which means that −[−2, 2] not the inverse of [−2, 2] with respect to addition.

Equality holds in equation (2.43) in some important particular cases, for instance if

[x] is degenerate or if [y] and [z] lie on the same side with respect to 0.

From (2.41) it follows that the operations for intervals are inclusion monotone in the
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following sense:

[x] ⊆ [z], [y] ⊆ [w]⇒ [x] ◦ [y] ⊆ [z] ◦ [w]. (2.44)

2.4.3 Interval Functions

Definition 26 If f is a continuous real valued function, then we define the standard

interval function W (f) as

W (f, [x]) = {f(x), x ∈ [x]} = [minx∈[x]f(x),maxx∈[x]f(x)] (2.45)

which are extensions of the corresponding real functions.

The standard interval functions are inclusion monotone, i.e., they satisfy

[x] ⊆ [y]⇒ W (f, [x]) ⊆ W (f, [y]). (2.46)

Definition 27 Let f : D ⊂ R → R be given by a mathematical expression f(x)

which is composed of finitely many elementary operations +,−, ∗, /. If one replaces

the variable x by an interval [x] ⊂ D and if one can evaluate the resulting interval

expression following the rules in (2.41) and (2.44) then one gets again an interval. It

is denoted by f([x]) and is called an interval arithmetic evaluation of f over [x].
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From (2.43) and (2.45) the interval arithmetic evaluation turns out to be inclusion

monotone, i.e.,

[x] ⊆ [y]⇒ f([x]) ⊆ f([y]). (2.47)

From (2.46) we obtain

x ∈ [x]⇒ f(x) ∈ f([x]), (2.48)

hence,

W (f, [x]) ⊆ f([x]). (2.49)

This formula is called the Fundamental Theorem of Interval Arithmetic.

Example: Suppose

f(x) =
x

1− x
, x /∈ {0, 1},

and the interval [x] = [2, 3]. We could also write f(x) as

f(x) =
1

1/x− 1
, x /∈ {0, 1}.

In either case

W (f, [x]) = W (f, [2, 3]) = [−2,−3

2
].

Denoting the first expression for f by f (1) and the second by f (2) we get

f (1)([x]) = f (1)([2, 3]) = [−3,−1]

f (2)([x]) = f (2)([2, 3]) = [−2,−3

2
] = W (f, [x]).
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This example confirms (2.49) and shows that the quality of the inclusion of f([x]) in

W (f, [x]) is strongly dependent on how the expression for f(x) is written.

Definition 28 The distance between two intervals is defined by

q([x], [y]) = max{|x− y|, |x− y|}. (2.50)

Definition 29 The absolute value of an interval [x] is defined by

|[x]| = max{|x| : x ∈ [x]} = max{|x|, |x|}. (2.51)

The map q defines a metric in IR .

Theorem 30 Suppose an expression f̃
(
x(1), . . . , x(n)

)
is formed from the real function

f of the real variable x by replacing every occurrence of x with a new variable xi,

1 ≤ i ≤ n. Suppose the expression f̃ satisfies the Lipschitz condition

∣∣∣f̃ (x(1), . . . , y(i), . . . , x(n)
)
− f̃

(
x(1), . . . , z(i), . . . , x(n)

)∣∣∣ ≤ li
∣∣y(i) − z(i)

∣∣ (2.52)

for each i with 1 ≤ i ≤ n. Then

q (f (X) , f (Y )) ≤ (
∑n

i=1 li) q (X, Y ) . (2.53)
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2.4.4 Interval Matrices

We introduce m × n interval matrices [A] = ([aij]) with interval entries [aij], i =

1, 2, ...,m, j = 1, 2, ..., n, and interval vectors [x] = ([xj]) with n components [x].

We denote the corresponding sets by IR(m×n) and IRn, respectively. Trivially, [A]

coincides with the interval matrix [A,A] = {B ∈ R(m×n) : A ≤ B ≤ A}, where

A = (aij), A = (aij) ∈ R(m×n). Since interval vectors can be identified with n × 1

matrices, a similar property holds for them. The null matrix 0 and the identity

matrix I have the usual meaning, e denotes the vector e = (1, 1, ..., 1)T ∈ Rn.

Operations between interval matrices and between interval vectors are defined in the

usual manner. They satisfy an analogue of (2.46)-(2.48). For example,

{Ax : A ∈ [A], x ∈ [x]} ⊆ [A][x] = (
∑n

j=1[aij][xj]) ∈ IRm (2.54)

if [A] ∈ IR(m×n) and [x] ∈ IRn.

An interval matrix [A] ∈ IR(n×n) is called nonsingular if it contains no singular real n×

n matrix. The distance, the center, the width and the absolute value in (2.42), (2.50)

and (2.51) can be generalized to interval matrices and interval vectors, respectively.

Note that the results are real matrices and vectors, respectively, as can be seen, e.g.,

for

q([A], [B]) = [q([aij], [bij])] ∈ R(m×n)
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if [A], [B] ∈ IR(m×n).

Theorem 31 (Triangular Inequality): Let X = [xil, xiu], Y = [yil, yiu] be two

intervals, then

|X + Y | ≤ |X|+ |Y |. (2.55)

Proof.

|X + Y | = max{|xil + yil|, |xiu + yiu|}

≤ max{|xil|+ |yil|, |xiu|+ |yiu|}

= max{|xil|, |xiu|}+ max{|yil|, |yiu|}

= |X|+ |Y |.

2.5 Least-Squares Estimation:

In our thesis, we use the least square estimation approach to derive the Kalman filter

equations. In this section we mainly follow [8] to present the ordinary least square

estimation (LSE).
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Consider the observation equation

yt = Hxt + vt (2.56)

where xt is the state vector, yt the data vector, vt is a random vector of zero mean Gau-

sian white noise, namely: E(vt) = 0 and E(vtv
T
j ) = Rtδtj, where Rtδtj = Cov(vt, vj)

and δtj = 1 if t = j and 0 if t 6= j with Rt being symmetric and positive definite.

Let H be given. Our goal is to obtain an optimal estimate ût of the state vector xt

from the information yt. When the data is contaminated with noise, we will minimize

the quantity:

F (ut,Wt) = E((yt −Hut)TWt(yt −Hut)) (2.57)

over all n− vectors ut where Wt is a positive definite and symmetric weight matrix.

That is, we wish to find a ût = ût(Wt) such that

F (ût,Wt) = minutF (ut,Wt). (2.58)

Also, we wish to determine the optimal weight Ŵt in a sense to be explained later.

To find ût = ût(Wt), assuming that (HT
t WtHt) is nonsingular, using equation (2.7) we

rewrite

F (ut,Wt) = E((yt −Hut)TWt(yt −Hut))

= E[(HTWtH)ut −HTWtyt]
T (HTWtH)−1[(HTWtH)ut −HTWtyt]

+E(yTt [I −WtH(HTWtH)−1HT ]Wtyt),

(2.59)
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where the first term on the right hand side is non-negative definite. To minimize

F (ut,Wt), the first term on the right must vanish, so that

ût = (HTWtH)−1HTWtyt. (2.60)

To find the optimal weight Ŵt, let us consider

F (ût,Wt) = E((yt −Hût)TWt(yt −Hût)) (2.61)

as a function of Wt.

It is clear that this quantity does not attain a minimum value at a positive definite

weight Wt since such a minimum would result from Wt = 0. Hence, we need another

measurement to determine an optimal Ŵt. Noting that the original problem is to

estimate the state vector xt by ût(Wt), it is natural to consider a measurement of

the error (xt − ût(Wt)). But since not much about xt is known and only the noisy

data can be measured, this measurement should be determined by the variance of the

error. That is, we will minimize Var(xt − ût(Wt)) over all positive definite symmetric

matrices Wt. So, we have

Var(xt − ût) = Var[(HTWtH)−1(HTWtH)xt − (HTWtH)−1HTWtyt]

= Var[(HTWtH)−1HTWt(Hxt − yt)]

= Var[−(HTWtH)−1HTWtvt].
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By the linearity of the expectation, we have

Var(xt − ût) = (HTWtH)−1HTWtE(vtv
T
t )WtH(HTWtH)−1

= (HTWtH)−1HTWtRtWtH(HTWtH)−1.

(2.62)

This is the quantity to be minimized. To write this as a perfect square, we need the

positive square root of the positive definite symmetric matrixRt. That is (R
1/2
t )(R

1/2
t ) =

Rt. It follows that Var(xt − ût) = QTQ where Q = (R
1/2
t )WtH(HTWtH)−1. By the

matrix Schwarz inequality (2.6) and the assumption that P is a matrix with nonsin-

gular P TP , we have

QTQ ≥ (P TQ)T (P TP )−1(P TQ). (2.63)

We may choose P = (R
1/2
t )−1H, so that P TP = HT ((R

1/2
t )T )−1(R

1/2
t )H

= HTR−1
t H is nonsingular, where (HTRtH) is nonsingular, and

(P TQ)T (P TP )−1(P TQ)

= [HT ((R
1/2
t )−1)T (R

1/2
t )TWtH(HTWtH)−1]T (HTR−1

t H)−1

[HT ((R
1/2
t )−1)T (R

1/2
t )TWtH(HTWtH)−1]

= (HTR−1
t H)−1

= Var(xt − ût(R−1
t )).

(2.64)

Hence, Var(xt− ût(Wt)) ≥Var(xt− ût(R−1
t )) for all positive definite symmetric weight

matrices Wt. Therefore, the optimal weight matrix is Ŵt = R−1
t , and the optimal
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estimate of xt using this optimal weight is

x̂t = ût(R
−1
t ) = (HTR−1

t H)−1HTR−1
t yt. (2.65)

We call x̂t the least-squares optimal estimate of xt.

2.6 The EM-Algorithm

In this section we describe the maximum-likelihood parameter estimation problem

and how the Expectation- Maximization (EM) algorithm can be used for its solution.

This method will be used for the identification of linear state space model as in Sec.

3.5.

Let P (x,Θ) be a density function governed by the set of parameters Θ. We also

have a data set of size N , X = {x1,x2, ...,xN}. That is, we assume that these data

vectors are independent and identically distributed with distribution P . Therefore,

the resulting density for the samples is

P (X|Θ) =
N∏
i=1

P (xi,Θ) = L(Θ|X).

This function L(Θ, X) is called the likelihood function. In the maximum likelihood

problem, our goal is to find the Θ that maximizes L. We maximize LogL(Θ, X)

instead because it is analytically easier [26].
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The EM-algorithm (Expectation-Maximization algorithm) is an iterative procedure

for computing the maximum likelihood estimator from a given data set when the data

is incomplete or has missing values. The first proper theoretical study of the algorithm

was done by Dempster, Laird, and Rubin (1977) [10]. The EM algorithm is extensively

used throughout the statistics literature and has already become a multipurpose tool

for building a method of statistical analysis based on likelihood and other substitution

methods [26]. We will give an overview on how it works.

We assume that data X is observed and is generated by some distribution. We call

X the incomplete data. We assume that a complete data set exists Z = (X;Y ) and

also assume a joint density function:

P (z|Θ) = P (x,y|Θ) = P (y|x,Θ)P (x|Θ).

With this new density function, we can define a new likelihood function, L(Θ|Z) =

L(Θ|X, Y ) = P (X, Y |Θ), called the complete-data likelihood.

The EM algorithm first finds the expected value of the complete-data log-likelihood

LogP (X, Y |Θ) with respect to the unknown data Y given the observed data X and

the current parameter estimates. That is, we define:

G(Θ,Θ(i−1)) = E[LogP (X, Y |Θ)|X,Θ(i−1)], (2.66)

where Θ(i−1) are the current parameters estimates that we used to evaluate the ex-

pectation and Θ are the new parameters that optimize G. The evaluation of this
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expectation is called the E-step of the algorithm.

The second step (the M-step) of the EM algorithm is to maximize the expectation

we computed in the first step with respect to Θ.

These two steps are repeated as necessary. Each iteration is guaranteed to increase

the log likelihood and the algorithm is guaranteed to converge to a local maximum of

the likelihood function.
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Chapter 3

THE KALMAN FILTER

3.1 Introduction

Kalman filter was first proposed by Rodolf Kalman in the year 1960 as optimal esti-

mation filter for linear state space model [32]. In this chapter, we derive the Kalman

filter algorithm based on least square estimation [65]. One can see other derivations of

Kalman filter in [58,65]. In addition, we give an application of the Kalman filter to lin-

ear state space model. Kalman described his filter using state space techniques which

enable the filter to be used as either a smoother, a filter or a predictor. So, we can

find Kalman smoother equations which is required for the E-step in the Expectation-
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Maximization (EM) algorithm for linear Gaussian state space models. We use the

(EM) algorithm to identify the unknown parameters in state space model (SSM) (3.1)

and (3.2) [59]. The maximum likelihood estimation procedure is to maximize an in-

novation form of the likelihood function where all values used are obtained in filtering

and smoothing equations which are explained in this chapter. For more details about

the Maximum Likelihood Method, see [10,26,58].

3.2 Gaussian State Space Models

A linear Gaussian state space model is characterized by an unobserved series of vec-

tors x1, x2, ..., xn (called states), that are associated with a series of observations

y1, y2, ..., yn. The relation between the states and the observations is specified through

the observation and the state equations as folloes

xt+1 = Axt + wt, (3.1)

yt = Hxt + vt (3.2)
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wt ∼ N(0, Q), (3.3)

vt ∼ N(0, R), t = 1, 2, ..., n (3.4)

E(wjw
T
t ) = δj,tQt, (3.5)

E(vjv
T
t ) = δj,tRt, (3.6)

E(wiv
T
j ) = 0, ∀i, j. (3.7)

where yt is a p×1 vector of observations, xt is a k×1 vector of states. The equation

(3.2) is called the observation equation, which has the structure of a linear regression

relating the state vector to the observed time series. Eq. (3.1) is called the state

equation, which describes the dynamics of the states. The relation between the state

vector and the observed values is characterized by the matrix H of size p×k. The

dependence of the current state on the past is determined by the transition matrix,

A.

Eqs. (3.3) and (3.4) imply that the dynamical noise wt and the observation noise vt

are uncorrelated, white, and Gaussian with zero means. In particular, Eqs. (3.5) and

(3.6) indicate that wt and vt are white Gaussian processes with the covariances at time

t being Qt and Rt, respectively. The symbol ∼ in Eqs.(3.3) and (3.4) means ”follow-

ing the distribution”. The notation N(µ,Σ) represents a Gaussian distribution with

x being the random variable, whose mean and covariance are µ and Σ, respectively.

Finally, δj,t denotes the Kronecker delta function, i.e.,
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δi,j =


1 if i = j

0 if i 6= j

3.3 Deriving the Kalman filter from least squares

estimation

In this section we will derive the Kalman filter equations from point of view of least

squares estimation. We mainly follow [65] in our derivation.

If Θ = {A,H,R,Q} is known in our linear Gaussian state space model (3.1) and (3.2),

we can estimate the unknown state vector by the Kalman filter procedure.

We will define some notations for later use. xst = E{xt|Ys}, where Ys = {y1, y2, ..., ys}

denotes the vectors up to time s. For s = t− 1 the expectation is a forecast whereas

for s = t, the expectation is the Kalman filtered value. For s = n, the expectation

is conditional on the entire data and is the Kalman smoother. The conditional co-

variances P s
t = E{(xt − xst)(xt − xst)T |Ys}, and P s

t,u = E{(xt − xst)(xu − xsu)T |Ys}, are

interpreted in the same way.

Without loss of generality, we suppose that we know the initial state vector x0
0 and

the corresponding initial error covariance P 0
0 . We will divide the procedures of the

Kalman filter into two steps: propagation (or prediction) and filtering [65].
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Propagation step

The expectation of the state xt is given from Eq. (3.1) by

E(xt) = AE(xt−1), (3.8)

which is normally used as the estimation of the background at instant t. The back-

ground xt−1
t is estimated as

xt−1
t = E(xt|Yt−1)

= E(Axt−1 + wt|Yt−1)

= AE(xt−1|Yt−1)

= Axt−1
t−1.

(3.9)

The corresponding background error covariance P t−1
t is given by

P t−1
t = E((xt − xt−1

t )(xt − xt−1
t )T |Yt−1)

= E((A(xt−1 − xt−1
t−1) + wt)(A(xt−1 − xt−1

t−1) + wt)
T |Yt−1)

= AE((xt−1 − xt−1
t−1)(xt−1 − xt−1

t−1)T |Yt−1)AT + E(wtw
T
t |Yt−1)

= AP t−1
t−1A

T +Qt.

(3.10)

Note that to derive Eq. (3.10), we have assumed that the analysis error εt−1
t−1=xt−1

t−1 −

xt−1 is independent of the dynamical noise wt.

Filtering step

After a new observation yt is available, one incorporates the new information so as

to update the background xt−1
t to the analysis xtt . To this end, one needs to find an
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optimal weight matrix Kt (Kalman gain), so that the analysis xtt, is updated according

to the following rule

xtt = xt−1
t +Kt(yt −Hxt−1

t ). (3.11)

Minimize the expectation of the energy (the cost function)

Jt = E(‖εtt‖2) = E(‖xtt − xt‖2) (3.12)

of the analysis error εtt=x
t
t−xt. The reason to use Eq. (3.11) to update the background

xt−1
t is because one would normally expect the background, the analysis, and the

observation to be unbiased estimations, i.e.,

E{εt−1
t } = E(xt−1

t − xt) = 0,

E{εtt} = E(xtt − xt) = 0,

E{vt} = E(yt −Hxt) = 0,

(3.13)

where εt−1
t , εtt denote the background and analysis errors, respectively. To see the

rationale behind Eq. (3.11), one may first write the analysis as a linear combination

of the background xt−1
t and the observation yt. That is

xtt = Cxt−1
t +Wyt, (3.14)
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where C and W are k × k and k × p constant matrices, respectively. Because of the

unbiasedness Eq. (3.13) one has

E(xtt − xt) = E(Cxt−1
t +Wyt − xt)

= E(Cxt−1
t +W (Hxt + vt)− xt)

= (C +WH − Ik)E(xt)

= 0,

(3.15)

So that C = Ik −WH. Substituting this identity for C into Eq. (3.14), we find

xtt = Cxt−1
t +Wyt

= (I −WH)xt−1
t +Wyt

= xt−1
t +Wyt −WHxt−1

t

= xt−1
t +W (yt −Hxt−1

t ).

(3.16)

By replacing W by Kt, we obtain Eq. (3.11).

On the other hand, the analysis error covariance

P t
t = E((εtt − Eεtt)(εtt − Eεtt)T ),

= E(εtt(ε
t
t)
T ).

(3.17)

Thus it is clear that the cost function in Eq.(3.12) is equivalent to the trace of the

error covariance P t
t , i.e.,

Jt = E‖εtt‖2 = E((εtt)
T εtt) = tr(P t

t ). (3.18)
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Consequently, the optimal state estimation problem in Eq.(3.1) now becomes an opti-

mization problem whose objective is to minimize tr(P t
t ) over all possible weights Kt.

Subtracting the truth xt from Eq. (3.11), we have

xtt − xt = (xt−1
t − xt) +Kt((yt −Hxt)− (Hxt−1

t −Hxt)). (3.19)

Thus Eq.(3.19) can be re-written as

εtt = εt−1
t +Kt(vt −Hεt−1

t ) (3.20)

= (I −KtH)εt−1
t +Ktvt. (3.21)

Therefore, one can obtain the analysis error covariance in terms of the background

error covariance by noting that

P t
t = E(εtt(ε

t
t)
T )

= (I −KtH)E(εt−1
t (εt−1

t )T )(I −KtH)T +KtRtK
T
t

= (I −KtH)P t−1
t (I −KtH)T +KtRtK

T
t .

(3.22)

Note that to obtain the above result, we have assumed that the background error εt−1
t

and observation noise vt are independent, so that E(εt−1
t (vt)

T ) = E(vt(ε
t−1
t )T ) = 0.

Also note that P t−1
t = E(εt−1

t (εt−1
t )T )) is the background error covariance, and Rt =

E(vt(vt)
T ) is the covariance of the observation noise. Thus one can re-write Eq.(3.22)

as

P t
t = P t−1

t − P t−1
t HTKT

t +KtRtK
T
t −KtHP

t−1
t +KtHP

t−1
t HTKT

t . (3.23)
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Therefore the trace of P t
t is given by

tr(P t
t ) = tr(P t−1

t ) + tr(KtRtK
T
t )− 2tr(KtHP

t−1
t ) + tr(KtHP

t−1
t HTKT

t ). (3.24)

Note that to derive Eq.(3.24), we have utilized the fact that P t−1
t HTKT

t is the trans-

pose of KtHP
t−1
t , hence their traces are the same. To minimize tr(P t

t ), a necessary

condition for an optimal weight Kt is that
dtr(P tt )

dKt
= 0. The differentiation is carried

out using the rules given in subsection 2.2.2.

So, from Eq. (3.24), we get

d

dKt

tr(P t
t )M = tr(Kt(Rt+R

T
t )−2(HP t−1

t )T+Kt(HP
t−1
t HT+(HP t−1

t HT )T )M, ∀M ∈ Rn×n.

Since the covariance matrices are symmetric, we have

d
dKt

tr(P t
t )M = tr([2KtRt − 2P t−1

t HT + 2KtHP
t−1
t HT ]M)

= 2tr([KtRt − P t−1
t HT +KHP t−1

t HT ]M).

(3.25)

Equaling the above expression to zero and observing that equality must hold for all

M ∈ Rn×n,

2[KtRt − P t−1
t HT +KHP t−1

t HT ] = 0.

This gives

Kt = P t−1
t HT (HP t−1

t HT +Rt)
−1, (3.26)

where HP t−1
t HT +Rt is invertible because it is positive definite.
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Substituting Eq.(3.26) into Eq.(3.23), it can be shown that

P t
t = P t−1

t −KtHP
t−1
t . (3.27)

3.4 Summary of the Kalman filter and the Kalman

smoother:

We summarize for later reference the equations for the Kalman filter and the Kalman

smoother as follows

a.The Kalman Filter

For the state space model specified in (3.1) and (3.2) with initial conditions x0
0 = µ0

and P 0
0 = Σ0, for t = 1, 2, ..., n

xt−1
t = Axt−1

t−1 (3.28)

P t−1
t = AP t−1

t−1A
T +Qt (3.29)

xtt = xt−1
t +Kt(yt −Hxt−1

t ) (3.30)

P t
t = (I −KtH)P t−1

t (3.31)

where the Kalman gain is

Kt = P t−1
t HT (HP t−1

t HT +Rt)
−1. (3.32)
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b.The Kalman Smoother

For the state space model specified in (3.1) and (3.2) with initial conditions xnn = µn

and P n
n = Σn and for t = n, n− 1, ..., 1,

xnt−1 = xt−1
t−1 + Jt−1(xnt − Axt−1

t−1) (3.33)

P n
t−1 = P t−1

t−1 + Jt−1(P n
t − P t−1

t )JTt−1, (3.34)

Jt−1 = P t−1
t−1A

T (P t−1
t )−1. (3.35)

where xt−1
t and P t−1

t are given by (3.28)-(3.31).

c. The Lag-One Covariance Smoother

For the state space model specified in (3.1) and (3.2), with Kt, Jt, and P n
n and with

initial condition

P n
n,n−1 = (I −KnHn)AnP

n−1
n−1 , (3.36)

for t = n, n− 1, ..., 2,

P n
t−1,t−2 = P t−1

t−1 J
T
t−2 + Jt−1(P n

t,t−1 − AtP t−1
t−1 )JTt−2. (3.37)

For more details about mathematical theory of Kalman filtering and Kalman smooth-

ing, see [3,23,31,32,58,65].

Example (Applying Kalman Filter to State Space Model)

In this example, we introduce an application of Kalman filter equations (3.28)-(3.31)
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to the linear state space model (3.1) and (3.2). Let

A =


2 1 1

0 1 −1

1 −2 1

 , H =

[
0 1 1

]
.

We take the noises wt and vt as random noises. The covariance matrices Q and R are

constant depending on wt and vt, respectively. We start by the initial state vector

x0 = 03×1 with error covariance P0 = 03. From the initial state x0, we find true

states x1, x2, ..., xn by the dynamical equation (3.1) and from these states we find the

observations y1, y2, ..., yn by the measurement equation.

Using the Kalman filter equations (3.28)-(3.31), we estimate the state vectors x̂1, x̂2, ..., x̂n.

The figure shows the error between the true states its estimations at time t = 1, 2, ..., n.

The X-axis is the time and Y-axis is the error.
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Figure 3.1: Kalman filter (n=50)

Figure 3.2: Kalman filter (n=100)
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3.5 Ensemble Kalman Filter

In section 3.3, we derived the Kalman filter based on two fundamental assumptions,

namely, the linearity of the state and observation equations and the Gaussianity of

the dynamical and observation noise. Indeed, the assumption of linearity is not often

valid. Thus the ensemble Kalman filter (EnKF), initially proposed by Evensen (1994),

is designed to tackle this problem [13].

The EnKF is a sophisticated sequential data assimilation method. It applies an en-

semble of model states to represent the error statistics of the model estimate, it applies

ensemble integrations to predict the error statistics forward in time, and it uses an

analysis scheme which operates directly on the ensemble of model states when obser-

vations are assimilated.

Suppose that, at the beginning of each assimilation cycle, one has an ensemble of

the background (called background ensemble), usually obtained from the previous as-

similation cycle. Then, with an incoming observation, one applies the Kalman filter

equations (3.28)-(3.31) to update each individual member of the background ensem-

ble. To do this, the mean and error covariance of the background are approximated by

the sample mean and sample covariance of the background ensemble, so that one can

apply KF Eqs. (3.28) and (3.29) to obtain an ensemble of the analysis. The analysis

ensemble is then used to estimate the mean and covariance of the underlying system
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states. By propagating the analysis ensemble forward through the dynamical system,

one obtains a new background ensemble for the next assimilation cycle. In this way,

by using only a small ensemble to evaluate the statistics (mean and covariance) at

both the propagation and filtering steps, the computational cost of the filter can be

reduced. A recent review and overview of the EnKF is given in [13], which provides

detailed information on the formulation, interpretation and implementation of the

EnKF.

3.6 Identification of linear state space models:

In this section, we will use the EM (Expectation-Maximization) algorithm to estimate

the parameters Θ = {A,H,Q,R} in the state space model defined by Equations (3.1)

and (3.2).

The EM algorithm for state space model requires the computation of the Kalman

filter and the Kalman smoother for xt which was studied in the previous section.

Let Xn = {x1, x2, ..., xn} and Yn = {y1, y2, ..., yn} be the states and observations,

respectively. Under the Gaussian assumption, the probability density P (x0) is given

by
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P (x0) = (2π)−k/2|Σ0|−1/2 exp(−1/2(x0 − µ0)TΣ−1
0 (x0 − µ0)). (3.38)

Based on (3.1) and (3.2) we can write the conditional densities for the state and output

P (yt|xt) = (2π)−k/2|R|−1/2 exp(−1/2(yt −Hxt)TR−1(yt −Hxt))

P (xt|xt−1) = (2π)−k/2|Q|−1/2 exp(−1/2(xt − Axt−1)TQ−1(xt − Axt−1)).

(3.39)

Since the dynamic systems are Markovian and the by the Beyes’ formula (2.35), the

joint likelihood for the complete data is given by

P (Yn, Xn) = P (y1, y2, ..., yn, x1, x2, ..., xn)

= P (yn, xn|Xn−1, Yn−1)P (Xn−1, Yn−1)

= P (yn|xn)P (xn|Xn−1, Yn−1)P (Yn−1, Xn−1)

= P (yn|xn)P (xn|xn−1)P (Yn−1, Xn−1)

= ...

=
∏n

t=1 P (yt|xt)
∏n

t=1 P (xt+1|xt)P (x0).

(3.40)
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Taking the Log of Eq. (3.40), we have

LogP (Yn, Xn; Θ) = Log[
∏n

t=1 P (yt|xt)
∏n

t=1 P (xt+1|xt)P (x0)]

=
∑n

t=1 Log[(2π)−k/2|R|−1/2 exp(−1/2(yt −Hxt)TR−1(yt −Hxt))]

+
∑n

t=1 Log[(2π)−k/2|Q|−1/2 exp(−1/2(xt − Axt−1)TQ−1(xt − Axt−1))]

+Log[(2π)−k/2|Σ0|−1/2 exp(−1/2(x0 − µ0)TΣ−1
0 (x0 − µ0))]

=
∑n

t=1 Log[|R|−1/2] +
∑n

t=1(−1/2(yt −Hxt)TR−1(yt −Hxt))

+
∑n

t=1 Log[|Q|−1/2] +
∑n

t=1(−1/2(xt − Axt−1)TQ−1(xt − Axt−1))

+Log[|Σ0|−1/2 + (−1/2(x0 − µ0)TΣ−1
0 (x0 − µ0))] + Const.

(3.41)

Therefore, the joint log likelihood can be written as

LogP (Yn, Xn; Θ) = −n/2Log|R| −
∑n

t=1(yt −Hxt)TR−1(yt −Hxt)− n/2Log|Q|

−
∑n

t=1(xt − Axt−1)TQ−1(xt − Axt−1)− 1/2Log|Σ0| − 1/2(x0 − µ0)TΣ−1
0 (x0 − µ0)

+Const.

(3.42)

The EM algorithm tries to maximize LogP with respect to Θ.

The two steps of the EM algorithm are (see Sec. 2.6):

1. The expectation step (E-step): we compute the conditional expectation of the joint

log likelihood of the complete data at iteration j, j = 1, 2, ...

G(Θ|Θ(j−1)) = E[LogP (Yn, Xn; Θ)|Yn,Θ(j−1)], (3.43)

where Θj−1 is the parameter vector obtained in the previous iteration.

2. The maximization step (M- step): we maximize the expected likelihood function
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with respect our unknown parameters Θ.

By using Lemma 9 and linearity of the trace and the conditional expectation, we can

calculate Eq. (3.43) as.

G(Θ|Θ(j−1)) = E[LogP (Yn, Xn; Θ)|Yn,Θ(j−1)]

= −n/2Log|R| − trR−1
∑n

t=1 E([(yt −Hxt)(yt −Hxt)T ]|Yn)}

−n/2Log|Q| − 1/2tr{Q−1
∑n

t=1E([xt − Axt−1)(xt − Axt−1)T ]|Yn)} − 1/2Log|Σ0|

−1/2tr|{Σ−1
0 E((x0 − µ0)(x0 − µ0)T |Yn) + Const..

Using this property of Cov(X, Y )

Cov(X, Y ) = E(XY T )− E(X)(E(Y ))T ,

and recalling that

P n
t = E[(xt − xnt )(xt − xnt )T ]

P n
t,t−1 = E[(xt−1 − xnt−1)(xt − xnt )T ],

we have

G(Θ|Θ(j−1)) = −n/2Log|R| − tr{R−1
∑n

t=1[(yt −Hxnt )(yt −Hxnt )T

+HP n
t H

T ]} − n/2Log|Q| − 1/2tr{Q−1[
∑n

t=1[xnt (xnt )T + P n
t ]

−
∑n

t=1[xnt (xnt−1)T + P n
t,t−1]AT − A[

∑n
t=1[xnt (xnt−1)T + P n

t,t−1]]T

+A
∑n

t=1[xnt−1(xnt−1)T + P n
t−1]AT ]} − 1/2Log|Σ0|

−1/2tr|{Σ−1
0 [xn0 − µ0)(xn0 − µ0)T + P n

0 ]}+ Const.

(3.44)
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Putting

B =
n∑
t=1

[xnt−1(xnt−1)T + P n
t−1], (3.45)

C =
n∑
t=1

[xnt (xnt−1)T + P n
t,t−1], (3.46)

D =
n∑
t=1

[xnt (xnt )T + P n
t ] (3.47)

in Eq. (3.44), we get

G(Θ|Θ(j−1)) = −n/2Log|R| − tr{R−1
∑n

t=1[(yt −Hxnt )(yt −Hxnt )T

+HP n
t H

T ]} − n/2Log|Q| − 1/2tr{Q−1[D − CAT − ACT + ABAT ]} − 1/2Log|Σ0|

−1/2tr|{Σ−1
0 [xn0 − µ0)(xn0 − µ0)T + P n

0 ]}+ Const.

(3.48)

In the above equations, the components xnt−1, x
n
t , P

n
t−1, P

n
t and P n

t,t−1 can be calculated

by using the Kalman filter equations and the Kalman smoother equations (3.28)-

(3.37). Calculation of equation (3.48) is the expectation step (E-step).

Now, we maximization of the function G(Θ|Θ(j−1)) with respect to the unknown pa-

rameters set, Θ(j) = {H(j), A(j), Q(j), R(j), µ0(j)} at iteration j can be calculated

from Eq. (3.48) as follows

• To find A, we will minimize the function G(Θ|Θ(j−1)) with respect to A. It is enough

to minimize the term

D − CAT − ACT + ABAT (3.49)
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by the Lemma 6 of completing the squares, we have

D − CAT − ACT + ABAT = D − CAT − (CAT )T + ABAT

= (A− CB−1)C(A− CB−1) +D − CB−1CT .

(3.50)

So, this expression is minimum with respect to A when

A = CB−1. (3.51)

• To find Q, we will take the partial derivative of the function G(Θ|Θ(j−1)) with respect

to Q and equate to zero. So,

d
dQ
G(Θ|Θ(j−1))M = d

dQ
[−n/2Log|Q| − 1/2tr{Q−1[D − CB−1CT ]}]M

= −n/2tr(Q−1M)− 1/2tr(Q−1MQ−1(D − CAT − ACT + ABAT )

= 1/2tr{nQ−1M −Q−1MQ−1(D − CAT − ACT + ABAT )

equating to zero:

tr{Q−1M(nI −Q−1(D − CAT − ACT + ABAT )) = 0,∀M ∈ Rk×k

⇒ (nI −Q−1(D − CAT − ACT + ABAT )) = 0

⇒ Q−1(D − CAT − ACT + ABAT ) = nI

Q = 1/n(D − CAT − ACT + ABAT ).

(3.52)

Put Eq. (3.51) in Eq. (3.52), we have

Q = 1/n(D − CB−1CT ). (3.53)
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• To find H, We will minimize Eq. (3.48) with respect to H. So ,we will minimize

the terms which include H.

tr(R−1
∑n

t=1(yt −Hxnt )(yt −Hxnt )T +HP n
t H

T )

= tr(R−1
∑n

t=1 yty
T
t −Hxnt yTt − yt(xnt )THT +Hxnt (xnt )THT +HP n

t H
T )

= tr(R−1{(
∑n

t=1 yty
T
t )−H(

∑n
t=1 x

n
t y

T
t )− (

∑n
t=1 yt(x

n
t )T )HT

+H(
∑n

t=1 x
n
t (xnt )T + P n

t )HT})

= tr(R−1(S1 −HS2 − ST2 HT +HS3H
T )).

where

S1 =
∑n

t=1 yty
T
t

S2 =
∑n

t=1 x
n
t y

T
t

S3 =
∑n

t=1(xnt (xnt )T + P n
t ).

Now, we will calculate the partial derivative of this expression w.r.t H and equate to

zero.

d
dH

(tr(R−1(S1 −HS2 − ST2 HT +HS3H
T )))M = tr(R−1(−MS2 − ST2 MT +MS3H

T +HS3M
T ))

(3.54)

But

tr(R−1ST2 M
T ) = tr(ST2 M

TR−1)

= tr(R−1MS2).

So, Eq. (3.54) becomes

d
dH

(tr(R−1(S1 −HS2 − ST2 HT +HS3H
T )))M = tr(R−1M(−2S2 + 2S3H

T )
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Equating to zero and observing that equality must hold for all M ∈ Rk×k gives

S3H
T = S2

⇒ HT = S−1
3 S2

⇒ H = ST2 S
−1
3 = (

∑n
t=1(yt(x

n
t )T ))(

∑n
t=1(xnt (xnt )T + Pn

t ))−1

(3.55)

• To find R, it is enough to minimize

−n/2Log|R| − tr{R−1
∑n

t=1[(yt −Hxnt )(yt −Hxnt )T +HP n
t H

T ]}. (3.56)

This expression can be written using the same steps in Eqn (3.54) as

−n/2Log|R| − tr(R−1(S1 −HS2 − ST2 HT +HS3H
T )). (3.57)

Now, we use the same steps used in finding Q. We differentiate with respect to R and

equate to zero

d
dR

(−n/2Log|R| − tr(R−1(S1 −HS2 − ST2 HT +HS3H
T ))M = 0

⇒ −1/2tr(nR−1M −R−1MR−1(S1 −HS2 − ST2 HT +HS3H
T ) = 0

⇒ −1/2trR−1M(nI −R−1(S1 −HS2 − ST2 HT +HS3H
T )) = 0

⇒ nI −R−1(S1 −HS2 − ST2 HT +HS3H
T )) = 0

⇒ R = 1/n(S1 −HS2 − ST2 HT +HS3H
T )).

(3.58)

Putting the values of S1, S2, S3 and H, we have

R = 1/n{
∑n

t=1 yty
T
t − (

∑n
t=1 yt(x

n
t )T )(

∑n
t=1 x

n
t (xnt )T + P n

t )−1(
∑n

t=1 x
n
t y

T
t )}. (3.59)
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Finally, we can find µ0 as

µ0 = xn0 (3.60)

We summarize the procedure of the EM computations as following:

1. Initialize the procedure by selecting starting values for the parameters Θ(0) =

{A(0), H(0), R(0), Q(0)} and estimate µ0.

2. (E-step) Use Eqns (3.28)-(3.37) to estimate the smoothed values xnt , P
n
t and P n

t,t−1,

for t = 1, 2, ..., n, with parametersΘ(j−1), (j = 1, 2, ...).

3. (M-step) Update the estimates,A,H,R and Q using the Eqns.(3.51), (3.53), (3.55)

and (3.59), to obtain Θ(j).

4. Repeat 2 and 3 above until the estimates and the log likelihood function (3.42) are

stable.
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Chapter 4

CONVEXITY INTERVAL

ANALYSIS

4.1 Introduction

In the ordinary interval analysis, some algebra properties of real number are not sat-

isfied in interval setting (see Sec2.4). For example, the distribution law for intervals

does not hold in general. So, the inverse of an interval matrix is not well defined be-

cause a determinate is not well defined. Also, the multiplication of interval matrices

is not associative and hence we are not able to find the powers of interval matrices.
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In this chapter, we introduce modified arithmetic operations on intervals and interval

matrices introduced in section (2.4) by using the convexity which make some algebraic

properties hold. In addition, we introduce definitions for interval random variables,

interval expectation, interval variance, interval covariance, interval conditional ex-

pectation, interval conditional variance. We investigate some algebraic properties of

interval random variables. All of these are important when we extend the Kalman

filter equations to interval Kalman filter and interval Kalman smoother which will be

studied in the next chapter.

4.2 Convexity Interval Arithmetic

Given an interval I = [a, b] and t ∈ [0, 1], we let x(t) denote the convex combination

x(t) = (1− t)a+ tb.

Thus we may write

I = {x(t) : t ∈ [0, 1]}.

In the next subsection we define some basic interval operations that will be used

for subsequent developments. We should note that the ”special” operations given

below produce subintervals of the more general interval operations given in [1]. Our

special operations will be denoted ⊕,	,⊗,� as opposed to the more general operators
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+,−,×,÷

Basic Operations

Addition: For I1 = [a1, b1], I2 = [a2, b2], we let

I1 ⊕ I2 = {x(t) + y(t), x(t) ∈ I1, y(t) ∈ I2}

= {(1− t)a1 + tb1 + (1− t)a2 + tb2}

= {a1 − a1t+ tb1 + a2 − ta2 + tb2}

= {a1 + a2 − t(a1 + a2) + t(b1 + b2)}

= [a1 + a2, b1 + b2] = I1 + I2.

(4.1)

Negation: For I = [a, b], we let

	I1 = 	[a, b]

= −{(1− t)a+ tb, t ∈ [0, 1]}

= {t(a− b)− a}

= [−b,−a]

= −I.

(4.2)

Subtraction: For I1 = [a1, b1], I2 = [a2, b2], we let

I1 	 I2 = I1 ⊕ (	(I2))

= [a1, b1]⊕ [−b2,−a2]

= [a1 − b2, b1 − a2] = I1 − I2.

(4.3)
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Multiplication: For I1 = [a1, b1], I2 = [a2, b2], we let

I1 ⊗ I2 = {x(t)y(t), x(t) ∈ I1, y(t) ∈ I2}

= {((1− t)a1 + tb1)((1− t)a2 + tb2)}

⊆ I1 × I2.

(4.4)

Division: For I1 = [a1, b1], I2 = [a2, b2], we let

I1 � I2 = {x(t)/y(t), x(t) ∈ I1, y(t) ∈ I2, 0 /∈ I2}

= {((1− t)a1 + tb1)/((1− t)a2 + tb2)}

⊆ I1 ÷ I2.

(4.5)

The above operations have the same algebraic properties (i.e. closed, commutative,

associative and identity) of the more general interval operations.. In addition, dis-

tributivity holds

I1 ⊗ (I2 ⊕ I3) = (I1 ⊗ I2)⊕ (I1 ⊗ I3). (4.6)

The proof is easily shown using equations (4.1) and (4.4). Distributivity allows us to

define regously such notion as determinants of interval matrices.
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4.3 Interval Matrices, Interval Linear Systems

4.3.1 Interval Matrices

The definition of interval matrices, interval vectors and their operations are introduced

in subsection 2.4.4. Let A be an n×n interval matrix and b an n× 1 interval vector.

The determinant of an interval matrix is not well defined because the distributive law

is not true under the more general interval operators.

Example Let

A =


[−2, 2] [0] [−1, 1]

[−2, 0] [1] [1]

[−1] [−1, 1] [−1]

 ,
then we find detA using the first row

|A| = [−2, 2]([1][−1]− [−1, 1][1])− [0]([−2, 0][−1]− [−1][1]) + [−1, 1]([−2, 0][−1, 1]− [−1][1])

= [−7, 7].

(4.7)

The determinate using the second row

|A| = −[−2, 0](0− [−1, 1][−1, 1]) + [1]([−2, 2][−1]− [−1][−1, 1])− [1]([−2, 2][−1, 1]− 0)

= [−7, 9].

(4.8)

which is not equal to the determinate in Eq. (4.7).
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Definition 32 The interval matrix A is said to be regular if every A ∈ A has an

inverse.

Definition 33 The inverse interval matrix A−1 is defined by [54]

A−1 = [{A−1 : A ∈ A}] . (4.9)

Here [S] is the smallest interval vector (matrix) containing S ⊂ Rn (S ⊂ Rn×n).

Under ”special” operations, we will introduce the definition of interval matrix, deter-

minant, inverse and some properties.

Definition 34 Let A = [A,A] be an interval matrix, we define an interval matrix A

as

A = {Aα, α ∈ [0, 1]} = {(1− α)A+ αA, α ∈ [0, 1]},

where A is the lower bound of A and A is the upper bound.

Definition 35 The determinant of a square interval matrix A is defined by

det(A) = |A| = {detAα, α ∈ [0, 1]}. (4.10)

which is an interval.
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Definition 36 The adjoint interval matrix of a square interval matrix A is defined

by

adjA = {adjAα, α ∈ [0, 1]}. (4.11)

Definition 37 The inverse of a square interval matrix A is defined by

A−1 = {A−1
α , α ∈ [0, 1]} = {adjAα

detAα
, α ∈ [0, 1]}, (4.12)

where 0 /∈ |A|.

It is clear that A−1 is an interval matrix.

Since,

{A−1
α , α ∈ [0, 1]} ⊆ {A−1, A ∈ A}

the inverse of an interval matrix in our sense is a subset of the inverse of an interval

matrix in the general sense.

Example Let

A =

 [2] [−1, 1]

[−1, 1] [2]

 ,
then the inverse of A in general is

A−1 =


[

1
3
, 2

3

] [−1
3
, 1

3

]
[

2
5
, 2

3

] [−1
3
, 1

3

]
 ,
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and the inverse in our sense is

A−1 =


[

1
2
, 2

3

] [
0, 1

3

]
[
0, 1

3

] [
1
2
, 2

3

]
 ,

4.3.2 Interval Linear Systems

The intuitive idea of an interval linear system

AX = b (4.13)

is that it consists of all linear systems

AX = b (4.14)

with A ∈ A and b ∈ b.

Definition 38 The solution set S of (4.13) is defined by

S = {X ∈ Rn : AX = b, A ∈ A,b ∈ b} . (4.15)

Proposition 39 If A is regular, then [S] ⊆ A−1b.

Proof. Let X ∈ S. Then there is an A ∈ A and b ∈ b such that AX = b. Then

X = A−1b ∈ A−1b ⊂ A−1b. Hence, S ⊂A−1b. The minimality of [S] then implies
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that [S] ⊂ A−1b.

The next example shows that equality may not occur in the previous proposition.

Example: For A =

 [2] [−1, 0]

[−1, 0] [2]

 , b =

 [1.2]

[−1.2]



S =


 1.2(2−α)

4−αβ

1.2(β−2)
4−αβ

 : α, β ∈ [0, 1]

 ,

[S] =

 [.3, .6]

[−.6,−.3]

 .
However,

A−1 =


[

1
2
, 2

3

] [
0, 1

3

]
[
0, 1

3

] [
1
2
, 2

3

]
 ,

A−1b =

 [.2, .8]

[−.8, .2]

 .
Hence, [S] ( A−1b.

The set S defined in (4.15) is not, in general, an interval vector. In fact it may not

even be convex and may have a complicated structure. In the above example, the

exact solution region indicate in Figure 4.1 which is not interval vector.
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Figure 4.1: Exact solution region for the interval linear system
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Proposition 40 Let A = [A,A] ∈ IR(n×n). If A and A are regular and A−1, A
−1 ≥ 0,

then A is regular and

A−1 = [A
−1
, A−1] ≥ 0.

Now, we define the solution set of interval linear system in the convexity sense.

Definition 41 The solution of an interval linear system

AX = b (4.16)

is defined by

S = {X ∈ Rn : AαXα = bα, α ∈ [0, 1]} (4.17)

which is an interval vector.

Notice that,

{X ∈ Rn : AαXα = bα, α ∈ [0, 1]} ⊆ {X ∈ Rn : AX = b, A ∈ A,b ∈ b} .
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4.4 Interval Random Variables

4.4.1 Measurable Set Valued Maps

We begin by discussing the measurability of set valued maps and then introduce the

definition of an interval random variable. The basic definitions and more details can

be found in [25].

A measurable space (Ω,A) consists of a basic set Ω together with a σ-algebra A of

subsets of Ω called measurable sets. Here we consider closed convex valued set valued

maps F : Ω ⇒ Rk, i.e., F (ω) is a closed convex subset of Rk for each ω ∈ Ω. This is

the case when F is interval valued. The latter notion means that, for each ω ∈ Ω, the

components of F (ω) are closed intervals in R.

We first define what it means for a set valued map to be measurable. Recall that the

inverse image of a set S ⊂ Rk under the set valued map F is defined by

F−1 (S) = {ω ∈ Ω : F (ω) ∩ S 6= ∅}

and that the graph of F (Denoted by GF ) is defined by

GF = {(ω, y) : ω ∈ Ω, y ∈ F (ω)} .

Definition 42 Let (Ω,A) be a measurable space and F : Ω → Rk be a set valued
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map. F is called measurable if the inverse image of each open set is a measurable set:

if O ⊂ Rk is open, then F−1 (O) ∈ A.

For the rest of this thesis, we will use the special interval operations ⊕,	,⊗ and �

defined in section(4.2). However, we will not use the above special symbols. Instead,

we will use the usual symbols +,−,×,÷.

We are now in a position to introduce the definition of interval random variables.

Definition 43 Let (Ω,S, P ) be a probability space. A measurable interval valued map

X : Ω→ Rk is called an interval random variable. A stochastic interval process is an

indexed set of interval random variables.

4.4.2 Normally Distributed Interval Random Variables

In order to arrive at a definition of normally distributed interval random variables

and their expectations and variances, which are anticipated to be interval valued

themselves, we need to discuss first the integral of set valued maps and interval valued

maps. The discussion begins with the notion of measurable selections.

Definition 44 Let (Ω,A) be a measurable space and F : Ω⇒ Rk be a measurable set

valued map. A measurable selection of F is a measurable map f : Ω → Rk satisfying
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f (ω) ∈ F (ω) for each ω ∈ Ω.

It is well known that every measurable set valued map has at least one measurable

selection. Furthermore, we have the following equivalence [25].

Theorem 45 Let (Ω,A) be a measurable space and denote by B the σ-algebra of Borel

sets in Rk. Let F : Ω⇒ Rk be a set valued map. The following are equivalent:

1. F is measurable.

2. F−1 (B) ∈ A for every B ∈ B.

3. The map d (y, F (·)) is measurable for each y ∈ Rk.

4. There exists a sequence of measurable selections {fn}∞n=1 of F such that

F (ω) = ∪n≥1fn(ω)

for each ω ∈ Ω.

A countable family of measurable selections satisfying the last property is called dense.

Let F : Ω ⇒ Rk be an interval valued map. We define the two special functions lF

and rF : Ω → Rk by lF (ω) = a (ω) and rF (ω) = b (ω) , where F (ω) = [a (ω) , b (ω)]

for each ω ∈ Ω. The next lemma shows that lF and rF are measurable selections of F

when the latter is measurable.
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Lemma 46 Let F : Ω ⇒ Rk be a measurable interval valued map. Then the single

valued functions lF and rF are measurable selections of F.

Proof. Choose a sequence of measurable selections {fn}∞n=1 of F such that

F (ω) = ∪n≥1fn(ω).

Then lF (ω) = infn≥1 fn (ω) and rF (ω) = supn≥1 fn (ω) (here the inf and sup op-

erations are taken componentwise). Since the inf and the sup operators preserve

measurability, we see that the functions lF and rF are measurable selections of F .

Example: Let Ω = [1,∞) and define F : Ω⇒ R by

F (t) =

[
t, t+

1

t

]
.

Let {rn}∞n=1 be an enumeration of the rational numbers in the interval [0, 1] and let’s

assume that r1 = 1, r2 = 0. Define fn : [1,∞)→ R by

fn (t) = rnt+ (1− rn)

(
t+

1

t

)
.

Thus lF (t) = t = f1 (t) and rF (t) =
(
t+ 1

t

)
= f2 (t). For every t ∈ [1,∞) , the set{

rnt+ (1− rn)
(
t+ 1

t

)}∞
n=1

is dense in the interval
[
t, t+ 1

t

]
.

Now suppose that (Ω,A, µ) is a measure space and F : Ω⇒ Rk is a set valued map.

A measurable selection f of F is an integrable selection if f is integrable with respect to

the measure µ. The set of all integrable selections of F will be denoted by F . The map
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F is called integrally bounded if there exists a µ-integrable function g ∈ L1 (Ω; R, µ)

such that F (ω) ⊂ g (ω) B for µ-almost every ω ∈ Ω. Here B denotes the unit ball

in Rk. In this case every measurable selection f of F is also an integrable selection

since f (ω) ∈ F (ω) ⊂ g (ω) B implies that ‖f (ω)‖ ≤ |g (ω)| , where ‖·‖ denotes the

Euclidean norm on Rk.

Definition 47 The integral of a set valued map F is defined to be the set of integrals

of integrable selections of F. That is,∫
Ω

Fdµ =

{∫
Ω

fdµ : f ∈ F
}
. (4.18)

We shall say that F is integrable if every measurable selection is integrable.

The following two properties [25] will be responsible for many important results in

what follows, ∫
Ω

λFdµ = λ

∫
Ω

Fdµ, (4.19)∫
Ω

(F1 + F2) dµ =

∫
Ω

F1dµ+

∫
Ω

F2dµ (4.20)

Lemma 48 Let F : Ω ⇒ Rk be an interval valued map. If lF and rF are integrable

then F is integrable and∫
Ω

Fdµ =

[∫
Ω

lFdµ,

∫
Ω

rFdµ

]
=

{∫
Ω

fαdµ : fα = αlF + (1− α) rF , α ∈ [0, 1]

}
.
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Proof. The first equality is shown as follows. Since for every ω ∈ Ω and every

measurable selection f of F we have lF (ω) ≤ f (ω) ≤ rF (ω), f is integrable and

∫
Ω

lF (ω) dµ ≤
∫

Ω

f (ω) dµ ≤
∫

Ω

rF (ω) dµ.

Therefore, ∫
Ω

Fdµ ⊆
[∫

Ω

lFdµ,

∫
Ω

rFdµ

]
.

On the other hand, let θ ∈
[∫

Ω
lFdµ,

∫
Ω
rFdµ

]
. We may write θ = α

∫
Ω
lFdµ + (1 −

α)
∫

Ω
rFdµ for some α ∈ [0, 1] . Then

θ =

∫
Ω

(αlF + (1− α) rF ) dµ

=

∫
Ω

fαdµ,

where fα = αlF + (1− α) rF . Hence, θ ∈
∫

Ω
Fdµ.

The second equality is an immediate consequence of this.

It will always be assumed that both lF and rF are integrable.

Example: Let Ω and F be defined as in the previous example. Let µ be the measure

defined by

dµ =
1

t3
dt.

Then ∫
Ω

Fdµ =

[∫ ∞
1

lF (t) dµ,

∫ ∞
1

rF (t) dµ

]
=

[
1,

4

3

]
.

In view of (4.20) we have the following corollary.
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Corollary 49 Let F1, F2 : Ω⇒ Rk be integrable interval valued maps. Then

∫
Ω

(F1 + F2) dµ =

∫
Ω

F1dµ+

∫
Ω

F2dµ

=

[∫
Ω

lF1dµ,

∫
Ω

rF1dµ

]
+

[∫
Ω

lF2dµ,

∫
Ω

rF2dµ

]
=

[∫
Ω

(lF1 + lF2) dµ,

∫
Ω

(rF1 + rF2) dµ

]
.

Let (Ω,S, P ) be a probability space and let Z : Ω ⇒ Rk be an interval random

variable. We have

Z (ω) = [lZ (ω) , rZ (ω)] = {zα := αlZ (ω) + (1− α) rZ (ω) : α ∈ [0, 1]} .

An interval random variable Z will be called Gaussian if every z ∈ Z is Gaussian.

An interval stochastic process {Zt}t∈T will be called Gaussian if each t ∈ T , Zt is a

Gaussian interval random variable. From this point on, all interval random variables

and interval stochastic processes will be allowed Gaussian.

An interval random variable will be called zero-mean if µ = [0] . This happens if and

only if each zα is zero-mean in the usual sense. Observe that the latter statement is

true if and only if lZ , rZ are zero-mean.

The interval expectation of the interval random variable Z can then be defined as
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follows

E (Z) = {E (zα) : α ∈ [0, 1]}

= {E (αlZ + (1− α) rZ) : α ∈ [0, 1]}

= {αE (lZ) + (1− α)E (rZ) : α ∈ [0, 1]}

= [E (lZ) , E (rZ)] ,

where in the last equation we used the monotonicity of the expectation ( y ≤ z)

a.e. implies E (y) ≤ E (z)). It should also be noted here that the expectation of a

vector random variable is the vector of expectations of its components. It follows from

equations (4.19) and (4.20) that

E (λZ) = λE (Z)

E (Z1 + Z2) = E (Z1) + E (Z2)

Also, if I = [a, b] then

E (IZ) = {E (tZ) : t ∈ [a, b]}

= {tE (Z) : t ∈ [a, b]}

= IE (Z) .
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Also, If A (k × k) is an interval matrix then

E (AZ) = E

(
k∑
j=1

AijZj

)k

i=1

=

(
k∑
j=1

E (AijZj)

)k

i=1

=

(
k∑
j=1

AijE (Zj)

)k

i=1

= AE (Z) .

The interval variance has the form

Var(Z) = {Var(zα) : α ∈ [0, 1]}

= {Var((1− α)lz + αrz), α ∈ [0, 1]}

= {(α− 1)2Var(lz) + 2α(1− α)Cov(lz, rz) + α2Var(rz)}

(4.21)

which is clearly an interval. Observe that, if Z is one-dimensional, then the above

interval reduces to int(Var(lz),Var(rz)), where

int(x, y) = [min{x, y},max{x, y}].

To see this, we note that

2Cov(lz, rz) ≤ 2Var(lz)
1/2Var(rz)

1/2 ≤ Var(lz) + Var(rz)

then

(1− α)2Var(lz) + 2α(1− α)Cov(lz, rz) + α2Var(rz)

≤ (1− α)2Var(lz) + α(1− α)(Var(lz) + Var(rz)) + α2Var(rz)

≤ (1− α)2Var(lz) + αVar(rz).
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The interval covariance has the form

Cov(Y, Z) = {Cov(yα, zβ), α, β ∈ [0, 1]}

= {Cov(((1− α)ly + αry), ((1− β)lz + βrz)) : α, β ∈ [0, 1]}

= {(1− α)(1− β)Cov(ly, lz) + β(1− α)Cov(ly, rz) + α(1− β)Cov(ry, lz)

+αβ(ry, rz) : α, β ∈ [0, 1]}.

(4.22)

Since the last equality can be regarded as a continuous image of [0, 1] × [0, 1], and

since the projection operator onto the i, j component of a matrix is also continuous,

Cov(Y, Z) is an interval matrix.

The two interval random variables Y, Z will be called uncorrelated if for each y ∈ Y, z ∈

Z, y, z are uncorrelated. Therefore, Y, Z are uncorrelated if and only if Cov (Y, Z) =

[0] .

Theorem 50 Let Y = [ly, ry], Z = [lz, rz],W = [lw, rw] be interval random variables,

A,B ∈ IR(k×k) ,λ ∈ R and A ∈ R(k×k), then

1. Cov(λY, Z) = λCov(Y, Z)

2. Cov(Y + Z,W ) = Cov(Y,W ) + Cov(Z,W )

3. Cov(AY,Z) = ACov(Y, Z)

4. Cov(Y,BZ) = Cov(Y, Z)BT
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5. Cov(AY, Z) = ACov(Y, Z)

6. Cov(AY,BZ) = ACov(Y, Z)BT .

Proof. To show 1:

Cov(λY, Z) = {(1− α)(1− β)Cov(λly, lz) + β(1− α)Cov(λly, rz) + α(1− β)Cov(λry, lz)

+αβ(λry, rz) : α, β ∈ [0, 1]}

= {λ(1− α)(1− β)Cov(ly, lz) + λβ(1− α)Cov(ly, rz) + λα(1− β)Cov(ry, lz)

+λαβCov(ry,rz) : α, β ∈ [0, 1]}

= {λ((1− α)(1− β)Cov(ly, lz) + β(1− α)Cov(ly, rz) + α(1− β)Cov(ry, lz)

+αβCov(ry, rz)) : α, β ∈ [0, 1])}

= λCov(Y, Z).

To show 2:

Cov(Y + Z,W ) = Cov([ly + lz, ry + rz], [lw, rw])
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= {(1− α)(1− β)Cov(ly + lz, lw) + β(1− α)Cov(ly + lz, rw) + α(1− β)Cov(ry + rz, lw)

+αβ(ry + rz, rw) : α, β ∈ [0, 1]}

= {(1− α)(1− β)[Cov(ly, lw) + Cov(lz, jw)] + β(1− α)[Cov(ly, rw) + Cov(lz, rw)]

+α(1− β)[Cov(ry, lw) + Cov(rz, lw)] + αβ[Cov(ry, rw) + Cov(rz, zw)] : α, β ∈ [0, 1]}

= {(1− α)(1− β)Cov(ly, lw) + (1− α)(1− β)Cov(lz, lw)

+β(1− α)Cov(ly, rw) + β(1− α)Cov(lz, rw) + α(1− β)Cov(ry, lw)

+α(1− β)Cov(rz, lw) + αβCov(ry, rw) + αβCov(rz, rw) : α, β ∈ [0, 1]}

= {(1− α)(1− β)Cov(ly, lw) + β(1− α)Cov(ly, rw) + α(1− β)Cov(ry, lw)

+αβCov(rz, rw) : α, β ∈ [0, 1]}

+{(1− α)(1− β)Cov(lz, lw) + β(1− α)Cov(lz, rw) + α(1− β)Cov(rz, lw)

+αβCov(rz, rw)α, β ∈ [0, 1]}

= Cov(Y,W ) + Cov(Z,W ).

3. Let Y, Z be interval random vector, then

Cov (AY,Z) = Cov(

(
k∑
j=1

aijYj

)k

i=1

, Z)

=

(
Cov(

k∑
j=1

aijYj, Z)

)k

i=1

=

(
k∑
j=1

Cov(aijYj, Z)

)k

i=1

=

(
k∑
j=1

aijCov(Yj, Z)

)k

i=1

= ACov(Y, Z).
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Before we prove part(5), we need to to prove that Cov(IY, Z) = ICov(Y, Z), where

I ∈ IR.

Cov(IY, Z) = {Cov(tY, Z) : t ∈ I}

= {tCov(Y, Z) : t ∈ I} = ICov(Y, Z).

5. Let Y, Z be interval random vector, then

Cov (AY, Z) = Cov(

(
k∑
j=1

AijYj

)k

i=1

, Z)

=

(
Cov(

k∑
j=1

AijYj, Z)

)k

i=1

=

(
k∑
j=1

Cov(AijYj, Z)

)k

i=1

=

(
k∑
j=1

AijCov(Yj, Z)

)k

i=1

= ACov(Y, Z).

To show 6:

Cov (AY,BZ) = Cov(

(
k∑
j=1

AijYj

)k

i=1

,

(
k∑
j=1

BijZj

)k

i=1

)
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= Cov(

(
k∑
j=1

AijYj,

k∑
j=1

BijZj

)k

i=1

)

=

(
Cov(

k∑
j=1

AijYj,

k∑
j=1

BijZj)

)k

i=1

=

(
k∑
j=1

Cov(AijYj, BijZj)

)k

i=1

=

(
k∑
j=1

AijCov(Yj, Zj)B
T
ij

)k

i=1

= ACov(Y, Z)BT .

The interval conditional expectation is defined as

E (Z|Y ) = {E(zα|yα) : α ∈ [0, 1]}

= {(1− α)E(lz|yα) + αE(rz|yα) : α ∈ [0, 1]}.

Since the underling probabilities are continuous (Gaussian), E(Z|Y ) is an interval.

Lemma 51 For interval random variables X, Y, Z and interval matrix A,

1. E(X + Y |Z) = E(X|Z) + E(Y |Z)

2. E(AY |Z) = AE(Y |Z).
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Proof. To show 1:

E(X + Y |Z) = {E(xα + yα|zα) : α ∈ [0, 1]}

= {E(xα|zα) + E(yα|zα) : α ∈ [0, 1]}

= {E(xα|zα) : α ∈ [0, 1]}+ {E(yα|zα) : α ∈ [0, 1]}

= E(X|Z) + E(Y |Z).

To show 2:

E(AY |Z) = E(

(
k∑
j=1

AijYj

)k

i=1

|Z)

=

(
k∑
j=1

E (AijYj|Z)

)k

i=1

=

(
k∑
j=1

AijE (Yj|Z)

)k

i=1

= AE (Y |Z) .
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Chapter 5

A CONVEXITY INTERVAL

KALMAN FILTER

5.1 Introduction

In this chapter, we extend the classical state space model (3.1) and (3.2) to interval

state space model (5.1) and (5.2) with the same statistical assumptions.

In order to do this, we need to extend the statistical concepts to interval setting which

we have already introduced in chapter 4.

Also, since the traditional Kalman filter technique could not be used directly with in-
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terval state space model, we introduce interval Kalman filter to handle the situation.

In addition, we rigorously derive the interval Kalman filter and the interval Kalman

smoother using the sound definition and statistical properties given in the previous

chapter.

Finally, we identify interval parameters of the interval state space model from a

given record of interval measurements. We generalize the Expectation-Maximization

method to interval setting using interval Kalman filter and interval Kalman smoother

equations. Finally, we present a simulation of interval parameters estimation for in-

terval linear state space model. We also give an interval prediction model for weather.

5.2 Discussion

In the existing literature, an optimal interval Kalman filter was attempted in [18].

That attempt suffered from lack of proper definitions and rigorous treatment. The

simulation given there amounts to a way of dealing with interval systems. The idea in

[18] paper was to replace the interval matrix inversion with its worst case inversion,

while keeping everything else unchanged. Most of the concepts from the ordinary

case were extended in a straightforward way, with not justification, to the interval

case. Unfortunately, many concepts cannot be easily extended in this way. Some of
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the equations they used do not even make sense in the interval case. For example,

they wrote the equations for the IKF by replacing matrices and vectors by interval

matrices and interval vectors without paying attention to any details. For example,

the Kalman gain for the IKF uses the inverse of an interval matrix to be found. How-

ever, the concept of the inverse of an interval matrix as the quotient of an adjoint and

determinant is not well defined because the determinant of an interval matrix is not

well defined. On the other hand, there is no algorithm to invent an interval matrix in

its classical definition.

In our work, we rigorously derive a suboptimal interval Kalman filter using our defini-

tions and well defined statistical properties. Also, we check that the EM algorithm is

applicable. Furthermore, numerically, we have a well defined procedure for choosing

the ensembles in the suboptimal interval Kalman filter.

5.3 An Interval State Space Model

In a state space model, certain elements of the system parameters such as the coef-

ficient matrices are not precisely known or gradually change with time. One way to

take these uncertainties into account is to allow interval state space models. So, we
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extend the state space model (3.1) and (3.2) to interval state space model

xIt+1 = AIxIt + wt, (5.1)

yIt = HIxIt + vt, (5.2)

wt ∼ N(0, QI), (5.3)

vt ∼ N(0, RI), t = 1, 2, ..., n (5.4)

E(wjw
T
t ) = δj,tQ

I
t , (5.5)

E(vjv
T
t ) = δj,tR

I
t , (5.6)

E(wiv
T
j ) = 0, ∀i, j. (5.7)

where yIt is a p×1 interval vector of observations, xIt is a k×1 interval vector of states,

AI is called interval transition matrix, HI is called the measurement interval matrix.

The matrices QI and RI are the interval covariances of wt and vt, respectively. We

will use the following notation in our work: AI = A, HI = H, QI = Q and RI = R

5.4 Deriving the Convexity Interval Kalman Filter

In this section, we introduce derivation of interval Kalman filter. The interval oper-

ations and the statistical concepts used here are those introduced in chapter 4. Let

X = xI , Y = yI , and Υt = {Y1,Y2, ...,Yt}.
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From equation (5.1) and Lemma 50, we find

Xt−1
t = E(Xt|Υt−1),

= E(AXt−1 + wt|Υt−1),

= E(AXt−1|Υt−1),

= AE(Xt−1|Υt−1),

= AXt−1
t−1

(5.8)

and

Pt−1
t = E{(Xt −Xt−1

t )(Xt −Xt−1
t )},

= E{(AXt + wt −AXt−1
t−1)(AXt + wt −AXt−1

t−1)T},

= E{(A(Xt −Xt−1
t−1) + wt)(A(Xt + Xt−1

t−1) + wt)
T}

= E{(A(Xt −Xt−1
t−1) + wt)(Xt −Xt−1

t−1)TAT + wT
t }

= E{(A(Xt −Xt−1
t−1)(Xt −Xt−1

t−1)TAT}+ Q

= APt−1
t−1A

T + Q

(5.9)

Let us define the innovation as

εt = Yt − E(Yt|Υt−1) = Yt −HXt−1
t (5.10)

Note, E(εt) = [0] and

Var(εt) = Var(H(Xt −Xt−1
t ) + vt),

= HPt−1
t HT + R,

= Σt.

(5.11)
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The innovations are Gaussian and independent of the past observations. Now, we find

the conditional covariance between Xt and εt given Υt which will be used in the next

operations.

Cov(Xt, εt|Υt − 1) = Cov(Xt,Yt −HXt−1
t |Υt−1),

= Cov(Xt −Xt−1
t ,Yt −HXt−1

t |Υt−1),

= Cov(Xt −Xt−1
t ,H(Xt −Xt−1

t ) + vt),

= E{(Xt −Xt−1
t )(H(Xt −Xt−1

t ) + vt)
T},

= E{(Xt −Xt−1
t )(Xt −Xt−1

t )HT},

= Pt−1
t HT .

(5.12)

Therefore, the joint conditional distribution of Xt and εt given Υt is Gaussian Xt

εt

 | Υt−1 ∼ N


 Xt−1

t

0

 ,
 Pt−1

t Pt−1
t HT

HPt−1
t Σt


 . (5.13)

By equations (5.11), (5.12) and the formula (2.39), we can find Xt
t and Pt

t as

Xt
t = E(Xt|Υt),

= E(Xt|Y1,Y2, ...,Yt),

= E(Xt|Y1,Y2, ...,Yt−1) + Cov(Xt, εt|Y1, ...,Yt−1)(Var(εt))
−1(εt − E(εt)),

= Xt
t + Pt−1

t HT (HPt−1
t HT + R)−1εt,

= Xt−1
t + Kεt,

= Xt−1
t + K(Yt −HXt−1

t )

(5.14)
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where

K = Pt−1
t HT (HPt−1

t HT + R)−1 (5.15)

and

Pt
t = E{(Xt −Xt

t)(Xt −Xt
t)
T |Υt},

= E{(Xt −Xt
t)(Xt −Xt

t)
T |Y1,Y2, ...,Yt−1,Yt},

= E{(Xt −Xt
t)(Xt −Xt

t)
T |Y1,Y2, ...,Yt−1, εt},

= Cov(Xt|Υt−1, εt),

= Cov(Xt|Υt−1)− Cov(Xt, εt)(Cov(εt|Υt−1))−1(Cov(εt,Xt)),

= Pt−1
t −Pt−1

t HT (Σ−1
t HPt−1

t ),

= Pt−1
t −Pt−1

t HT (HPt−1
t HT + R)−1HPt−1

t ,

= Pt−1
t −KHPt−1

t ,

= (I−KH)Pt−1
t .

(5.16)

For the interval state space model (5.1) and (5.2) with initial conditions X0
0 = µ0

and P0
0 = Σ0, the equations (5.8),(5.9),(5.14) and (5.16) are called Interval Kalman

Filter and equation (5.15) called interval Kalman gain.
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5.5 Derivation of Convexity Interval Kalman Smoother

By Eqn (2.40), we have

E[Xt|Xt+1,Υt] = Xt
t + E[(Xt −Xt

t)(Xt+1 −Xt
t+1)T ]

×E[(Xt+1 −Xt
t+1)(Xt+1 −Xt

t+1)T ]−1 × (Xt+1 −Xt
t+1).

We can find the first term in the product by substituting for Xt+1 and using Eqn (5.8):

E[(Xt −Xt
t)(Xt+1 −Xt

t+1)T ] = E[(Xt −Xt
t)(AXt + wt −AXt

t)
T ]

= E[(Xt −Xt
t)(X

T
t AT + wTt − (Xt

t)
TAT )]

= E[(Xt −Xt
t)(X

T
t AT − (Xt

t)
TAT ) + (Xt −Xt

t)w
T
t ]

= E[(Xt −Xt
t)(Xt −Xt

t)
TAT ]

= Pt
tA

T .

So, we have

E[Xt|Xt+1,Υt] = Xt
t + Pt

tA
T (Pt

t+1)−1((Xt+1 −Xt
t+1).

Let Jt = Pt
tA

T (Pt
t+1)−1, then we can write

qt = E[Xt|Xt+1,Υt] = Xt
t + Jt(Xt+1 −Xt

t+1).
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Since Υt,Xt+1 −Xt
t+1 and {vt+1, ..., vn, wt+2, ..., wn} generate Υn, we get

Xn
t = E[Xt|Υn] = E[qt|Υn]

= E[Xt
t + Jt(Xt+1 −Xt

t+1)|Υn]

= Xt
t + Jt(E[Xt+1|Υn]−Xt

t+1

= Xt
t + Jt(X

n
t+1 −Xt

t+1).

Now, we will derive Pn
t . Using the formula for Xn

t , we have

(Xt −Xn
t ) + JtX

n
t+1 = Xt −Xt

t + JtX
t
t+1.

We now multiply both sides by their respective transpose, and take expectations.

E[(Xt −Xn
t )(Xt −Xn

t )T ] + JtE[Xn
t+1(Xt −Xn

t )T ]

+E[(Xt −Xn
t )(Xn

t+1)T ]JTt + JtE[Xn
t+1(Xn

t+1)T ]JTt

= E[(Xt −Xt
t)(Xt −Xt

t)
T ] + JtE[Xt

t+1(Xt −Xt
t)
T ]

+E[(Xt −Xt
t)(X

t
t+1)T ]JTt + JtE[Xt

t+1(Xt
t+1)T ]JTt .

The second and third term in each side above are clearly equal to 0 since the forecast

error at time t is always uncorrelated with the forecast at time t+ 1. Thus

Pn
t = Pt

t + Jt{−E[Xn
t+1(Xn

t+1)T ] + E[Xt
t+1(Xt

t+1)T ]}JTt (5.17)

Now, to simplify the bracketed term,

−E[Xn
t+1(Xn

t+1)T ] + E[Xt
t+1(Xt

t+1)T ]

= {E[Xt+1(Xt+1)T ]− E[Xn
t+1X

n
t+1]}

−{E[Xt+1(Xt+1)T ]− E[Xt
t+1(Xt

t+1)T ]}

(5.18)
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effectively adding and subtracting zero. Focusing on just the left bracket on the RHS

of the above equation, we will add and subtract zero again so that

E[Xt+1(Xt+1)T ]− E[Xn
t+1(Xn

t+1)T ]

= E[Xt+1(Xt+1)T −Xn
t+1(Xn

t+1)T −Xn
t+1(Xn

t+1)T + Xn
t+1(Xn

t+1)T ]

(5.19)

Notice that, since (Xt+1 − (Xn
t+1)T ) is uncorrelated with Xn

t+1,

E[(Xt+1 − (Xn
t+1))(Xt

t+1)T ] = 0

Therefore,

E[Xn
t+1(Xn

t+1)T ] = E[(Xt+1 − (Xn
t+1)T )(Xn

t+1)T ] + E[Xn
t+1(Xn

t+1)T ]

= E[(Xt+1 −Xn
t+1 + Xn

t+1)Xn
t+1]

= E[Xt+1X
n
t+1]

(5.20)

Similarly

E[Xn
t+1(Xn

t+1)T ] = E[Xn
t+1(Xt+1 − (Xn

t+1)T ] + E[Xn
t+1(Xn

t+1)T ]

= E[(Xn
t+1((Xt+1)T − (Xn

t+1)T + (Xn
t+1)T )]

= E[Xn
t+1X

T
t+1]

(5.21)

Now, substituting (5.20) and (5.21) into the third and second terms of the RHS of

equation (5.19) respectively shows that

E[Xt+1X
T
t+1]− E[Xn

t+1X
n
t+1]

= E[Xt+1X
T
t+1 −Xn

t+1X
T
t+1 −Xt+1(Xn

t+1)T + Xn
t+1(Xn

t+1)T ]

= E[(Xt+1 −Xn
t+1)(Xt+1 −Xn

t+1)T ].
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By the same trick, we can simplify the right hand bracket in equation (5.18). Conse-

quently, We find

−E[Xn
t+1(Xn

t+1)T ] + E[Xt
t+1(Xt

t+1)T ]

= {E[Xt+1X
T
t+1]− E[Xn

t+1(Xn
t+1)T ]} − {E[Xt+1X

T
t+1]− E[Xt

t+1(Xt
t+1)T ] =

E[(Xt+1 −Xn
t+1)(Xt+1 −Xn

t+1)′]− E[(Xt+1 −Xt
t+1)(Xt+1 −Xt

t+1)T ]

= Pn
t+1 −Pt

t+1.

Thus,

Pn
t = Pt

t + Jt(P
n
t+1 −Pt

t+1)JTt .

5.6 Summary of the Convexity Interval Kalman

Filter and Convexity Interval Kalman Smoother

Interval Kalman Filter

Xt−1
t = AXt−1

t−1 (5.22)

Pt−1
t = APt−1

t−1A
T + Q (5.23)

Xt
t = Xt−1

t + K(Yt −HXt−1
t ) (5.24)

Pt
t = (I−KH)Pt−1

t , (5.25)

K = Pt−1
t HT (HPt−1

t HT + R)−1 (5.26)
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Interval Kalman Smoother

For the ISSM (5.1) and (5.2) with initial conditions Xn
n and Pn

n obtained via Eqns

(5.24) and (5.25), the convexity interval Kalman smoother is defined by

Xn
t−1 = Xt−1

t−1 + Jt−1(Xn
t −AXt−1

t−1) (5.27)

Pn
t−1 = Pt−1

t−1 + Jt−1(Pn
t −Pt−1

t )JTt−1 (5.28)

(5.29)

where

Jt−1 = Pt−1
t−1A

T (Pt−1
t )−1. (5.30)

The Lag-One Covariance Smoother

For the interval state space model specified in (5.1) and (5.2), with Kt, Jt, and Pn
n and

with initial condition

Pn
n,n−1 = (I −KnHn)AnP

n−1
n−1, (5.31)

for t = n, n− 1, ..., 2,

Pn
t−1,t−2 = Pt−1

t−1J
T
t−2 + Jt−1(Pn

t,t−1 −AtP
t−1
t−1)JTt−2. (5.32)
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5.7 Simulation

Here, we introduce a simulation example of the interval Kalman filter.

We consider the interval state space model

xt+1 = Axt + wt

yt = Hxt + vt

(5.33)

where,

A =


[2, 3] [1, 2] [1, 2]

[0, 1] [1, 2] [−1, 0]

[1, 2] [−2,−1] [1, 2]

 ,H =


[.8, 1.2] 0 0

0 [.8, 1.2] 0

0 0 [.8, 1.2]


The random noise wt and vt are uncorrelated with wt ∼ (0,Q) and vt ∼ (0,R),

where Q = 0.01I3×3 and R = 0.01I3×3. We start by the initial state x0 = O3×1

with error covariance P0 = O3×3. We use the convexity definitions of interval op-

erations and interval matrices (see Ch. 4). The true states and measurements for

the simulation are generated from these parameters. Our definitions and procedures

produce a suboptimal Kalman filter. The numerical approximation is suggested by

the convexity definitions that we introduced, namely, to partition the interval [0, 1]

into 0 = α0 < α1 < ... < αn = 1, and choose the point systems determined by these

values of α. From a numerical point of view, this partitioning procedure produces a
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method similar to the well known EKF (see Sec. 3.5). However, our procedures work

like an algorithm that is well defined and justified to select the ensembles.

We choose the values of α = 0, 0.1, 0.2, ..., 1. When α = 0, we get the lower endpoints

of all intervals and interval matrices. Hence, we retain the classical state space model

and apply KF which gives the values of the true states xt at α = 0, 0.1, ..., 1, where

t = 1, 2, ..., n. Also, we get the estimation states x̂t at α = 0, 0.1, 0.2, ..., 1. We find the

true interval states and interval estimation by taking the minimum and the maximum

of it. So, we find x1,x2, ...,xn and x̂1, x̂2, ..., x̂n. The error can be computed by the

distance between two interval vectors using Definition 28

e = d(xt, x̂t) = [max{|xt − x̂t|, |xt − x̂t|}]. (5.34)

Figures 5.1 and 5.2 show that the error between the true states and the estimated

states is very small.
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Figure 5.1: Interval Kalman Filter (n=50)

Figure 5.2: Interval Kalman Filter (n=100)
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5.8 Identification of Interval State Space Models

5.8.1 Motivation

We begin by introducing a definition of the differentiation with respect to intervals.

The definition is motivated by the results that we obtained on random interval vari-

ables and the class of suboptimal Kalman filter which we intend to employ. The notion

of the differentiation depends on the definitions and operations on intervals defined in

Sec 4.2. We prove two properties of the derivative concept considered here.

Interval differential equations are discussed in several monographs and research pa-

pers [2,44,47,48]. Non of these papers use the convexity definitions introduced in this

thesis.

Definition 52 Let X ∈ ID ⊆ IR, F ∈ C(R), we define the function defined on an

intervals F : ID→ IR as

F (X) = {F (Xα), α ∈ [0, 1]}, (5.35)

where Xα defined as in section 4.2.

It is clear that F (x) is an interval and we denote it by F (X) = [F−(X), F+(X)].
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Definition 53 Let F : ID→ IR. Then, we define

limX→X0 F (X) = {limXα→(X0)α F (Xα), α ∈ [0, 1]}. (5.36)

Lemma 54 Let F : ID→ IR. Then,

limX→X0 F (X) = F (X0)⇔ limXα→(X0)α F (Xα)− F ((X0)α) = 0. (5.37)

Definition 55 Let F ∈ C1(R). We define F ′(X) as

F ′(X) = d
dX
F (X) = { d

dXα
F (Xα), α ∈ [0, 1]}

= {limh→0
F (Xα+h)−F (Xα)

h
, α ∈ [0, 1]}

(5.38)

Note: Since F ∈ C1(R), F ′(X) is an interval.

Lemma 56 Let F,G : ID→ IR be differentiable on R and I ∈ ID. Then

(a) (F +G) is differentiable and

(F +G)′(X) = F ′(X) +G′(X) (5.39)

(b) F ′(IX) exist and

F ′(IX) = IF ′(IX). (5.40)
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Proof. To show (a)

d
dX

(F +G)(X) = { d
dXα

(F +G)(Xα), α ∈ [0, 1]}

= { d
dXα

(F (Xα) +G(Xα)), α ∈ [0, 1]}

= { d
dXα

F (Xα) + d
dXα

G(Xα), α ∈ [0, 1]}

= { d
dXα

F (Xα), α ∈ [0, 1]}+ { d
dXα

G(Xα), α ∈ [0, 1]}

F ′(X) +G′(X).

To show (b)

F ′(IX) = d
dX
F (IX) = { d

dXα
F (IαXα), α ∈ [0, 1]}

= {Iα d
dXα

F (IαXα), α ∈ [0, 1]}

IF ′(IX).

5.8.2 Interval Parameters Identification

In this section we present a generalized version of the EM algorithm (see Sec. 3.6)

for identifying the unknown parameters Θ = {A,H,Q,R} of the interval state space

model (5.1) and (5.2). We use our special definitions of interval operators which we

introduced in chapter 4, functions defined on an intervals, and differentiation with

respect to intervals which we introduced in previous section. We also recall our defini-

tions of interval random variables and their statistical properties (see section 4.4). To
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generalize the EM algorithm in interval setting, we need to show that the basic math-

ematical operations such as Bayes’ formula, trace,...etc that appear in the derivation

of the EM algorithm are still valid in interval setting. We give these as lemmas in this

section. Our justification of these results will allow us to generalize the EM algorithm

to interval parameters identification.

The following lemma is a generalization of Bayes’ formula to intervals.

Lemma 57 (Bayes’ Rule) Let X, Y ∈ IR be interval random variables. Then

P (X, Y ) = P (X|Y )P (Y ). (5.41)

Proof.

P (X, Y ) = {P (Xα, Yα), α ∈ [0, 1]}

= {P (Xα|Yα)P (Yα), α ∈ [0, 1]}

= {P (Xα|Yα), α ∈ [0, 1]}{P (Yα), α ∈ [0, 1]}

P (X|Y )P (Y ).

Now, we want to show that the trace is linear for interval matrices.

Lemma 58 Let A, B ∈ IRn×n. Then

tr(A + B) = tr(A) + tr(B). (5.42)
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Proof.

tr(A + B) = {tr(Aα +Bα), α ∈ [0, 1]}

= {trAα + trBα, α ∈ [0, 1]}

= {trAα, α ∈ [0, 1]}+ {trBα, α ∈ [0, 1]}

= trA + trB

Lemma 59 Let X = [a1, b1], Y = [a2, b2] ∈ IR and a1, a2 > 0. Then

Log(XY ) = LogX + LogY. (5.43)

Proof.

Log(XY ) = {Log(XαYα), α ∈ [0, 1]}

= {LogXα + LogYα, α ∈ [0, 1]}

= {LogXα, α ∈ [0, 1]}+ {LogYα, α ∈ [0, 1]}

= LogX + LogY

Now, let {Υn,Xn} be the complete data where the states Xn = {x1,x2, ...,xn} and

the observations Υn = {y1,y2, ...,yn} are interval data.

Since all operations and properties that used to maximize Eqn (3.48) are well defined

in interval setting by the convexity definition of intervals, we can use the same steps

106



that introduced in linear identification in Sec 3.6 for interval parameters identifica-

tion of interval state space model (5.1) and (5.2). Under the Gaussian distribution

assumption, the probability density P (x0) is given by

P (x0) = (2π)−k/2|Σ0|−1/2 exp(−1/2(x0 − µ0)TΣ−1
0 (x0 − µ0)) (5.44)

Based on (5.1) and (5.2), we can write the conditional densities for the interval state

and output

P (yt|xt) = (2π)−k/2|R|−1/2 exp(−1/2(yt −Hxt)
TR−1(yt −Hxt))

P (xt+1|xt) = (2π)−k/2|Q|−1/2 exp(−1/2(xt −Axt−1)TQ−1(xt −Axt−1)).

(5.45)

By the Bayes’s formula and the same steps in (3.40), the joint likelihood for the

complete data is given by

P (Υn,Xn) =
∏n

t=1 P (yt|xt)
∏n

t=1 P (xt+1|xt)P (x0). (5.46)

and the joint log likelihood can be written as

LogP (Υn,Xn; Θ) = −n/2Log|R| −
∑n

t=1(yt −Hxt)
TR−1(yt −Hxt)− n/2Log|Q|

−
∑n

t=1(xt −Axt−1)TQ−1(xt −Axt−1)− 1/2Log|Σ0| − 1/2(x0 − µ0)TΣ−1
0 (x0 − µ0)+̧Const.

(5.47)
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Similar in section 3.6, we can calculate the conditional expectation of the joint likeli-

hood of the complete data at iteration j, j = 1, 2, ...

G(Θ|Θ(j−1)) = E[LogP (Yn, Xn; Θ)|Yn,Θ(j−1)]

= −n/2Log|R| − tr{R−1∑n
t=1[(yt −Hxnt )(yt −Hxnt )T

+HPn
t H

T ]} − n/2Log|Q| − 1/2tr{Q−1[D−CAT −ACT + ABAT ]} − 1/2Log|Σ0|

−1/2tr|{Σ−1
0 [xn0 − µ0)(xn0 − µ0)T + Pn

0 ]}+ Const,

(5.48)

where,

B =
n∑
t=1

[xnt−1(xnt−1)T + Pn
t−1], (5.49)

C =
n∑
t=1

[xnt (xnt−1)T + Pn
t,t−1], (5.50)

D =
n∑
t=1

[xnt (xnt )T + Pn
t ]. (5.51)

In the above equations, the components xnt−1,x
n
t ,P

n
t−1,P

n
t and Pn

t,t−1 can be calculated

by using the CIKF equations and the CIKS equations (5.22)-(5.32).

Therefore, we find at iteration j the update estimations of the unknown interval
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parameters as

A = CB−1 (5.52)

Q = 1/n(D−CB−1CT ) (5.53)

H = (
n∑
t=1

(yt(x
n
t )T ))(

n∑
t=1

(xnt (xnt )T + Pn
t ))−1 (5.54)

R = 1/n{
n∑
t=1

yty
T
t − (

n∑
t=1

yt(x
n
t )T )(

n∑
t=1

xnt (xnt )T + Pn
t )−1(

n∑
t=1

xnt y
T
t )} (5.55)

µ0 = xn0 , (5.56)

The iterative procedure to obtain the maximum likelihood of the interval parameters

of interval state space model is summarized as follows:

1. Initialize the procedure by selecting starting values for the parameters Θ(0) =

{A(0),H(0),R(0),Q(0), µ0} and use Eqns (5.22)-(5.32) to estimate the smoothed

values xnt ,P
n
t and Pn

t,t−1 with initial parameters.

2. Calculate the conditional expectation of the log-likelihood with Equation (5.48)

3. (E-step) Use Eqns (5.22)-(5.32) to estimate the smoothed values xnt ,P
n
t and

Pn
t,t−1, for t = 1, 2, ..., n, with parametersΘ(j−1), (j = 1, 2, ...).Use the smoothed

value to calculate B, C, D in (5.49)-(5.51).

4. (M-step) Update the estimates,Θ using the eqns.(5.52)-(5.56), to obtain Θ(j).
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5. Repeat 2 to 4 above until the estimates and the log likelihood function are stable.

5.8.3 Simulation

In this subsection, we give a software simulation using MATLAB for interval param-

eters identification and the convexity interval Kalman filter.

In order to start the simulation, we consider the interval state space model (5.1) and

(5.2) with assumptions (5.3)-(5.7), the parameters Θ = {A,H,Q,R} are unknown.

Our goal is to identify these interval parameters using the EM algorithm discussed in

subsection 5.8.2. As well, we will estimate the interval states ˆ̃xt using interval Kalman

filter simulation and compare the new state estimation with the estimation interval

states x̂t introduced in section 5.7.

This comparison is defined by the distance formula given in Definition 25:

d[ ˆ̃xt, x̂t] = max{|ˆ̃xt − x̂t|, |
¯̃̂
xt − ¯̂xt|}.
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Now, we start our simulation by the following initial values of Θ(0):

A(0) =


[2, 3] [.9, 2] [.5, 1.5]

[0, 1] [.9, 2] [−.9, 0]

[1, 2] [−2,−1] [.9, 1.5]

 ,H
(0) =

[
[0, 1] [.9, 1.5] [1, 2]

]

Q(0) =


[.9, 1] [0] [0]

[0] [1, 1.1] [0]

[0] [0] [0]

 ,R
(0) =

[
[.9, 1.1]

]
, µ(0) = 03×1.

We use the convexity definitions of interval operations and interval matrices (see Ch.

4).

As in section 5.7, we use the convexity definitions to partition the interval [0, 1] into

0 = α0 < α1 < ... < αn = 1 and then choose the values of α = 0, 0.1, 0.2, ..., 1. When

α = 0, we get the lower endpoints of all intervals and interval matrices. Hence, we

retain the classical state space model and apply KF and the EM algorithm which

gives the values of

Aα=0, Hα=0, Qα=0, Rα=0.

Again, we take α = 0.1 and we can get

Aα=0.1, Hα=0.1, Qα=0.1, Rα=0.1,

and so on until we get

Aα=1, Hα=1, Qα=1, Rα=1.
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Now, we find the intervals value by taking the minimum and the maximum for the

above parameters. Hence, we have

AI , HI , QI , RI .

Using these parameters, we can find out the estimation states ˆ̃xt.

Figures 5.3 and 5.4 show the error between the estimation states x̂t and the estimation

sates in ˆ̃xt. The X-axis is the error and Y-axis is the time t = 1, 2, ..., n.
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Figure 5.3: Identification of Interval Parameters (n=20)

Figure 5.4: Identification of Interval Parameters (n=50)
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5.9 Application to Weather Prediction

In this section we present an application of the convexity interval Kalman filter to the

prediction of the temperature in Turaif which is located in the north of Saudi Arabia.

Temperature records are obtained from the Presidency of Metrology and Environment

(PME) in KSA. We use the IKF to predict a temperature interval rather than a single

temperature. The IKF approach was applied to the prediction of daily temperature

based on 10 years of observation data (1996-2005). The measured data was converted

into intervals by adding and subtracting one degree to each average daily temperature.

Let yIt = {yI1 , yI2 , ..., yIn} be the observation data for n days. Our goal is to find the

prediction for the next day (for t = n+ 1). This prediction will be an interval.

The interval parameters can be identified by the EM algorithm which was introduced

in subsection 5.8.2. Applying the convexity interval Kalman filter to the interval state

space model with Known parameters as introduced in Sec. 5.7, we can predict (x̂I)nn+1.

This prediction (x̂I)nn+1 is used to compute the predicted value ŷIn+1 which is compared

with the measurement yIn+1 by computing the distance between the two intervals.

We use various dimensions for the state vector (k = 1, 2, 3, 4, 5) with appropriate

dimensions for the system parameters and show their results. Comparison between

the results is based on computing the standard deviation of the errors. So, we compute
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the standard deviation for

e= min(|y − ŷL|, |y − ŷU |), (5.57)

where ŷL and ŷU are the lower end point and the upper end point for ŷI , respectively.

We summarize the procedure of this application as follows:

1. Convert the measured data into intervals.

2. Identify the parameters for interval state space model using interval parameters

estimation introduced in subsection 5.8.2.

3. Apply IKF equations introduced in section 5.7 to find (x̂I)nn+1.

4. Substitute (x̂I)nn+1 in the measurement equation to compute ŷIn+1.

5. Compare between yIn+1 and ŷIn+1 by computing the distance between the two

intervals.

6. Change the dimension of states to determine the best prediction model using the

standard deviation of the errors.

The comparison results indicate the prediction intervals are in good agreement with

the measurements intervals. The best model being obtained for system dimension of

1 to 4.

Numerical Results:

Case 1 (k = 1): Using the interval parameter identification introduced in subsection

5.8.2, we take the initial guess of the parameters of interval state space model (5.1) and
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(5.2) as follows: AI = [0.8, 1.1], HI = [0.8, 1], QI = [0.02] and RI = [0.01] with initial

xI0 = [0], µI0 = [0] and P I
0 = [0]. The random noise wt and vt are uncorrelated with

wt ∼ (0, QI) and vt ∼ (0, RI). Let yIt = {yI1 , yI2 , ..., yI2000} be observation temperatures

which written in Excel file. Our goal is to find the prediction for the next day (ŷI)2001.

We obtained the numerical results (ŷI)2001 = [12.1, 16.6]. The measurement value of

the the day 2001 is y2001 = 13.6, which clearly is included in the predicted interval.

The prediction intervals are in a good agreement with the measurement (see Figure

5.5). Using Eqn (5.57), we have

std(et) = srd(min(|yt − ŷtL|, |yt − ŷtU |)), t = 1, 2, ..., 2000.

= .78

(5.58)

Case 2 (k = 2): With same assumptions in case 1, we start with initial guess of the

parameters of the interval state space model as follows:

AI =

 [.7, 1] [0]

[0] [.7, 1]

 , HI =

[
[0.8, 1] [0.8, 1.1]

]

QI =

 [.2] [0]

[0] [.2]

 , RI =

[
0.1, .3

]
.

We obtained the numerical results (ŷI)2001 = [11.2, 15.9]. The measurement value of

the the day 2001 is y2001 = 13.6, which clearly is included in the predicted interval

116



Figure 5.5: Case 1 of Interval Prediction(– observed value, - - the lower of interval

prediction,-. the upper of interval prediction)
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Figure 5.6: Case 2 of Interval Prediction(– observed value, - - the lower of interval

prediction,-. the upper of interval prediction)

(see Figure 5.6). Using Eqn (5.57), we have

std(et) = std(min(|yt − ŷtL|, |yt − ŷtU |)), t = 1, 2, ..., 2000.

= .84

(5.59)

Case 3 (k = 3): As in Case 1, we take the initial guess of the parameters of interval
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state space model as follows:

AI =


[.7, 1.1] [0] [0]

[0] [.8, 1] [0]

[0] [0] [.7, 1.1]

 , H
I =

[
[0.8, 1] [0.8, 0.9] [.8, 9]

]

QI = .03I3×3, R
I =

[
0.2, .03

]
.

We obtained the numerical results (ŷI)2001 = [11.1, 15.5]. The measurement value of

the the day 2001 is y2001 = 13.6, which clearly is included in the predicted interval.

The prediction intervals are in a good agreement with the measurement (see Figure

5.7). Using Eqn (5.57), we have

std(et) = std(min(|yt − ŷtL|, |yt − ŷtU |)), t = 1, 2, ..., 2000.

= .81

(5.60)

Case 4 (k = 4): Also, we take the initial guess of the parameters of interval state

space model as follows:

AI =



[.7, 1.1] [0] [0] [0]

[0] [.8, 1] [0] [0]

[0] [0] [.8, 1.1] [0]

[0] [0] [0] [.8, 1]


, HI =

[
[0.8, 1] [0.8, 1.1] [.8, .9] [.8, .9]

]

QI = .03I4×4, R
I =

[
0.2

]
.
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Figure 5.7: Case 3 of Interval Prediction(– observed value, - - the lower of interval

prediction,-. the upper of interval prediction)
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We obtained the numerical results (ŷI)2001 = [12.5, 15.6]. The measurement value of

the the day 2001 is y2001 = 13.6, which clearly is included in the predicted interval.

Using Eqn (5.57), we have

std(et) = .73 (5.61)

Case 5 (k = 5): As in previous cases, we take the initial guess of the parameters of

interval state space model as follows:

AI =



[.9, 1.1] [0] [0] [0] [0]

[0] [.9, 1.1] [0] [0] [0]

[0] [0] [.9, 1.1] [0] [0]

[0] [0] [0] [.9, 1.1] [0]

[0] [0] [0] [0] [.9, 1.1]


,

HI =

[
[0.8, 1] [0.8, 1.1] [.9, 1.1] [.8, 1] [.8, 1]

]
, QI = .02I5×5, R

I =

[
0.2

]
.

We obtained the numerical results (ŷI)2001 = [14.5, 18]. The measurement value of the

the day 2001 is y2001 = 13.6,

Using Eqn (5.57), we have

std(et) = 1.3 (5.62)
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Figure 5.8: Case 4 of Interval Prediction(– observed value, - - the lower of interval

prediction,-. the upper of interval prediction)
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Figure 5.9: Case 5 of Interval Prediction(– observed value, - - the lower of interval

prediction,-. the upper of interval prediction)
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Figure 5.10: Comparison between dimensions (– the standard deviation, -. the error

between y2001 and ŷ2001 )

Conclusion : .Comparison between the results for the previous cases by computing

the standard deviation for the errors by Eqn (58)-(62). The standard deviation for

their errors indicate the dimensions from 1 to 4 gives the best agreement between the

interval prediction and measurements (see Figure 5.10).
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