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ABSTRACT

Name: Abdullah Eqal Al-Mazrooei.

Title: A bilinear Kalman filter, a bilinear Kalman smoother, and a bilinear EM algo-

rithm, with applications to Lotka-Volterra model.

Major Field: Mathematics.

Date of degree: May, 2011

The Kalman filter (KF) is an effective estimator of linear dynamical systems. How-

ever, most processes in real life are nonlinear. Bilinear systems are special kinds of

nonlinear systems capable of representing a variety of important physical processes.

Additionally, bilinear systems can be used in approximation or alternate representa-

tions for a range of other nonlinear systems. They are also used to model nonlinear

processes in signal, images and communication systems. In particular, they arise in

areas of engineering, chemistry, socioeconomics and biology. Bilinear systems can be

represented as state space models.

In this dissertation, we develop a new bilinear model, in state space form. The evolu-

tion of this model not only depends on the state vectors, but also on the product of the

state space by itself. Using this technique, we generalize many famous models such

as: the well-known Lorenz 96 model and the Lotka-Volterra model which have many

applications in real life. Since this bilinear model does not work with the traditional

Kalman filter, we derive a new filter and a new smoother for our model. We refer to
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them as the bilinear Kalman filter and the bilinear Kalman smoother, respectively.

Due to the widespread use of bilinear models, there is a strong motivation to develop

identification algorithms for such systems. In this dissertation, we present the identi-

fication of our bilinear model to estimate the parameters which are used in the model

under some statistical assumptions. We use a generalized technique known as bilin-

ear Expectation Maximization algorithm which identifies the parameters, for certain

classes of systems through Maximum Likelihood estimation.

To illustrate numerically the effectiveness of our proposed theoretical contribution

(nonlinear filtering problem and the new technique for the identification process), we

simulate our results by applying them to the well-known Lotka-Volterra model.
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Chapter 1

INTRODUCTION

1.1 Overview

Estimation theory is a branch of statistics and signal processing that deals with esti-

mating the values of parameters based on measured/empirical data that has a random

component [38]. The parameters describe an underlying physical setting in such a way

that the value of the parameters affects the distribution of the measured data. An

estimator attempts to approximate the unknown parameters using the measurements.

The problem of estimating the values of a random process given measurements related

to a random process is encountered in many fields of science and engineering such as
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signal processing and control systems. Estimation theory has a rich history and its

formative stages can be attributed to illustrious investigators such as Gauss, Legendre

and others [31]. Gauss and Legendre made the first attempts in estimation theory.

The first method for forming an optimal estimate from noisy data is the method of

least squares. Its introduction is generally attributed to Gauss in 1795 while trying to

estimate the positions of planets and comets using telescopic measurements. Then, the

development in estimation theory appeared in the 1940s by Wiener and Kolmogorov

when they introduced the filtering work.

In particular, Wiener introduced the importance of modeling not just noise, but noise

and signal as a random process. His thought-provoking was released for open publi-

cation in 1949 and now is available in paperback form under the title ”Time Series

analysis”. For very worthwhile background reading, see [16,31].

Between 1940 and 1950, many researches tried to relax the assumptions of the Wiener-

Kolmogorov filtering theory and extended it. The breakthrough came with the Kalman

filter which was introduced by Kalman in 1960. The Kalman filter extended the

Wiener-Kolmogorov filter by changing the conventional formulation of the estimation

problem and put it in a new direction completely different from the theory of station-

ary stochastic processes. Kalman made this change by introducing state-space theory

where the important relationship between the estimation theory and the state-space
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theory was established in [7,16,32,33].

The Kalman filter is an estimator used to estimate the state of a linear dynamic sys-

tem perturbed by Gaussian white noise using measurements that are linear functions

of the system state but corrupted by additive Gaussian white noise. The mathemat-

ical model used in the derivation of the Kalman filter is a reasonable representation

for many practical problems, including control problems as well as estimation prob-

lems. The resulting estimator is statistically optimal with respect to certain quadratic

function of estimation error. The model which is used with Kalman filter is called

the state-space model. The state-space model is a mathematical model of a dynami-

cal process that uses differential equations (or deference equations) to represent both

deterministic and stochastic phenomena. The state variables of this model are the

variables of interest. Random processes are characterized in terms of their statistical

properties in the time domain, rather than in the frequency domain.

The Kalman filter was derived as the solution of the wiener filtering problem using the

state space model for a dynamical and random process. The result is easier to derive

and use than other filter. Practically, the Kalman filter is certainly one of the greater

discoveries in the history of estimation theory and possibly the greatest discovery in

the twentieth century. It has enabled humans to do many things that could not have

been done without it [16]. Therefore, when the state space model is linear, then the
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Kalman filter is the optimal estimator.

Unfortunately, most of the phenomena in the real life are nonlinear, so the Kalman

filter is not suitable to use, and an appropriate extension of the Kalman filter has to

be sought. There are different sorts of nonlinear systems depending on the variety in

complexity and structures. Bilinear systems are a special type of nonlinear systems

capable of representing a variety of important physical processes. They can be used

in many applications in real life such as chemistry, biology, robotics, manufacturing,

engineering and economics [37,51] that cannot be effectively modeled under the as-

sumption of linearity. Bilinear systems have been extensively studied in recent years

for three main reasons. Firstly, it has been shown that the bilinear systems are feasible

mathematical models for large classes of problems of practical importance. Secondly,

bilinear systems provide more flexible approximations to nonlinear systems than do

linear systems. Thirdly, bilinear systems have rich geometric and algebraic structures

that promise a fruitful field for researches [51]. Bilinear models were first introduced

in the control theory literature in 1960s [ 54].

Due to the widespread use of bilinear models, there is a strong motivation to identify

and develop identification algorithms for such models. There is a lot of work which

presents methods of parameter estimation of bilinear systems. Many methods are used

for the identification such as, least square estimation and maximum likelihood estima-

tion. The maximum likelihood estimation can be computed by using the well-known
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Expectation-Maximization algorithm (EM) [9]. The Expectation-Maximization (EM)

algorithm is a broadly applicable approach to the iterative computation of Maximum

Likelihood (ML) estimates, useful in a variety of incomplete data problems, where al-

gorithms such as the Newton-Raphson method may turn out to be more complicated.

On each iteration of the EM algorithm, there are two steps-called the Expectation step

or the E-step and the Maximization step or the M-step. Because of this, the algorithm

is called the EM algorithm [47]. This name was given by Dempster, Laird, and Rubin

(1977) in their fundamental paper [9]. The identification of bilinear systems through

the EM algorithm can be accomplished by using appropriate nonlinear filtering and

nonlinear smoothing to compute the expectation step. However, optimization theory

plays such an important role in establishing the maximization step that it will be

considered as a nonlinear optimization problem.

1.2 Objectives of this dissertation

In this dissertation, we focus on studying linear and nonlinear estimation methods

for specific linear and nonlinear mathematical models, by investigating how to derive

filtering and smoothing for such models in a mathematical manner. We also study

how the identification process can be accomplished for a linear mathematical model in
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order to generalize to a nonlinear model of the bilinear class. Furthermore, we study

how to apply and use optimization theory to achieve our objectives. Our objectives

can be summarized as follows:

One: To study and understand the well-known Kalman filter and Kalman smoother

for a linear and Gaussian discrete model in the state space form. We discuss the basic

ideas and introduce the derivation of the Kalman filter using two techniques; (i) from

a perspective of least square estimation and (ii) from a perspective of the Baysian

estimation. We also introduce the derivation of the Kalman smoother.

Two: To explain the parameters identification of linear, Gaussian discrete state space

models by using the expectation maximization algorithm.

Three: To introduce a new mathematical model. This new model is a bilinear, Gaus-

sian, in a state space system, where, the dynamical system is bilinear and its evolution

depends on state vector as well as the product of the state vector by itself. The mea-

surements system of our model is linear. This bilinear model is a generalization of

some other famous models, such as the Lorenz-96 model [41,42,43] and the Lotka-

Volterra model [3,20,61] which are widely used in the study of atmospheric dynamics,

ecological systems, chemistry, economic, neural network and control systems.

Four: Since our new model is not linear, the traditional Kalman filter and Kalman

smoother are applied to such a model. So, we will derive a new filtering and a new

smoothing procedure for our bilinear model. We will call the new filter ”the bilinear

6



Kalman filter”, and the new smoother ”the bilinear Kalman smoother”.

Five: To identify the parameters of such a bilinear model. The identification process

will be achieved by using the expectation maximization algorithm (EM), where, in the

expectation step, we use new approaches completely and totally different, to find the

bilinear Kalman filter and the bilinear Kalman smoother to compute the estimation

in the process of the nonlinear terms. This approach is new. In the maximization (M)

step, we apply some theorems, lemmas and results from linear algebra and linear and

nonlinear optimization theory.

Six: Since the applications are an important procedure to illustrate the effectiveness

of the theorems and the results, we will apply our new theorems and our new results to

a famous nonlinear model. This model in known by the Lotka-Volterra model which

has applications in many fields in real life.

1.3 Outline of the dissertation

This dissertation is organized as follows: In Chapter 2, we introduce some basic

tools which are to be used throughout this dissertation, as well as, basic concepts

in statistics. In addition, methods for estimation and identification such as the least

squares estimation, maximum likelihood estimation and the expectation maximization
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algorithm will be introduced. We also present the definitions of the state-space model,

type of estimators and Kronecker product. Definitions and theorems from linear al-

gebra and the optimization theory which are used to prove and derive our results and

theorems in this dissertation are introduced in this chapter.

In Chapter 3, we focus on the study of the Kalman filter and the Kalman smoother for

a discrete linear, Gaussian model in the state space form. For this reason, we introduce

the derivation of the equations of the Kalman filter by using two different approaches.

First, by using least squares estimation and then, by using Baysian estimation to de-

rive the same result. Since, the Kalman smoother gives more accurate results for the

estimation of the same problem, we present the derivation of the Kalman smoother

by using a famous technique [4].

Since the identification of parameters of such linear, Gaussian state space models is an

important ingredient in estimation theory, we present, in Chapter 4, the identification

process by using the well-known expectation maximization algorithm (EM), where we

apply the Kalman filter and the Kalman smoother within the procedure of parameters

estimation.

In Chapter 5, we present a new nonlinear, Gaussian mathematical state space model

of bilinear class. This new model generalizes other corresponding famous models.

Since our model is nonlinear, we present a new technique to derive what we call the

”bilinear Kalman filter” and the ”bilinear Kalman smoother”.
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In Chapter 6, we identify the parameters of our bilinear, Gaussian state space model

using the expectation maximization algorithm, and we explain the methodology to

be used. Furthermore, we apply the bilinear Kalman filter and the bilinear Kalman

smoother to estimate the parameters in a new approach.

In Chapter 7, we introduce the applications of our results and theorems, where we

apply the bilinear Kalman filter and the bilinear Kalman smoother to the well-known

nonlinear Lotka-Volterra model. We also apply the new identification process to esti-

mate the parameters of the nonlinear lotka-Volterra model.

9



Chapter 2

PRELIMINARIES

In this chapter, we briefly present the main background material needed throughout

this dissertation. Some proofs of the known results are omitted, since they are available

in standard books. In Section 2.1, we introduce some basic definitions and facts of

statistical concepts. In section 2.2, we state the notion of the state space model. In

section 2.3, we present the method of least square estimation for the linear system. In

Section 2.4, we present the maximum likelihood identification and its algorithm. In

Section 2.5, we introduce the expectation maximization (EM) algorithm. In Section

2.6, the common types of the estimators will be defined. In Section 2.7, we introduce

the definition and properties of Kronecker product. In Section 2.8, we introduce
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the differentiation rules which are used to derive some results and theorems in this

dissertation.

2.1 Statistical concepts

Here, we introduce some statistical concepts which are used throughout this disser-

tation. These concepts can found in many statistics and time series analysis books,

such as [ 23,27,30,36,45,52,58].

2.1.1 Random variables

A random variable is a function that assigns a real number to each outcome in the sam-

ple space of a random experiment. There are two types of random variables, discrete

and continuous.

A discrete random variable can only take a countable number of values. However, a

continuous random variable is a random variable with continuous set of real numbers

for its range.
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2.1.2 Distribution functions

The distribution function F of a random variable X is defined by

F (x) = P [X ≤ x],

for the real number x. Most of the commonly encountered distribution functions F

can be expressed either as

F (x) =

∫ x

−∞
f(y)dy (2.1)

or

F (x) =
∑
xj≤x

p(xj) (2.2)

where {x0, x1, · · · } is a finite or countably infinite set of real numbers.

In the case (2.1) we shall say that the random variable X is continuous, the function

f is called the probability density function (pdf) of X, and can be found from the

relation

f(x) =
d

dx
F (x).

While in the second case (2.2), the possible values of X are restricted to the set

{x0, x1, · · · }, and we shall say that the random variable X is discrete. The function f

is called the probability mass function (pmf) of X.

The distribution functions have the following properties:

12



1. F is nondecreasing, i.e. F (x) ≤ F (y) if x ≤ y

2. F (x) = 1 and F (y) = 0 for x→∞ and y → −∞, respectively.

2.1.3 Expectation, mean and variance

The expectation of a function g of a random variable X is defined by

E(g(X)) =

∫
g(x)dF (x)

where ∫
g(x)dF (x) =


∫∞
−∞ g(x)f(x)dx, in the continuous case∑∞
j=0 g(xj)p(xj), in the discrete case

(2.3)

and g is any function such that E(|g(X)|) <∞. The mean of X is defined as

µ = E(X),

which is evaluated by setting g(x) = x in the definition of E(g(X)). The variance of

X is defined as

σ2 = E(X − µ)2

which is evaluated by setting g(x) = (x− µ)2 in the definition of E(g(X)). It is clear

from the definition that expectation has the linearity property

E(aX + b) = aE(X) + b

for any real constants a and b (provided that E(X) <∞).
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2.1.4 Random vectors

An n-dimensional random vector is a column vector X = (X1, · · · , Xn)T each of whose

components is a random variable. The distribution function F of X, also called the

joint distribution of X1, · · · , Xn, is defined by

F (x1, · · · , xn) = P [X1 ≤ x1, · · · , Xn ≤ xn] (2.4)

for all real numbers x1, · · · , xn. This can be expressed in a more compact form as

F (x) = P [X ≤ x], x = (x1, · · · , xn)T

for all real vector x = (x1, · · · , xn)T . A random vector with distribution function F is

continuous if F has a density function, i.e.

F (x1, ..., xn) =

∫ xn

−∞
...

∫ x2

−∞

∫ x1

−∞
f(y1, ..., yn)dy1....dyn. (2.5)

The probability density of X is then found from

f(x1, · · · , xn) =
∂nF (x1, · · · , xn)

∂x1, · · · ∂xn
.

The random vector X is said to be discrete if there exist real- valued vectors x0,x1, · · ·

and a probability mass function p(xj) = P [X = xj] such that

∞∑
j=0

p(xj) = 1.
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The expectation of a function g of a random vector X is defined by

E(g(X)) =

∫
g(x)dF (x) =

∫
g(x1, · · · , xn)dF (x1, · · · , xn),

where ∫
g(x1, · · · , xn)dF (x1, · · · , xn) (2.6)

=


∫
· · ·
∫
g(x1, · · · , xn)f(x1, · · · , xn)dx1 · · · dxn, in the continuous case,∑

j1
· · ·
∑

jn
g(xj1 , · · · , xjn)p(xj1 , · · · , xjn), in the discrete case.

and g is any function such that E|g(X)| <∞.

Definition 2.1.4.1. The random variables X1, · · · , Xn are said to be independent

if

P [X1 ≤ x1, · · · , Xn ≤ xn] = P [X1 ≤ x1] · · ·P [Xn ≤ xn],

i.e.,

F (x1, · · · , xn) = FX1(x1) · · ·FXn(xn).

Definition 2.1.4.2. (Conditional Expectation) For two random vectors X =

(X1, · · · , Xn)T and Y = (Y1, · · · , Ym)T with joint density function fX,Y, the condi-

tional density of X given Y = y is

fX|Y(x|Y) =


fX,Y(x,y)

fY(y)
, fY(y) > 0

fX(x), fY(y) = 0.

(2.7)
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Since,

fX,Y(x,y) = fY|X(y|X)fX(x),

we have

fX|Y(x|Y) =
fY|X(y|X)fX(x)

fY(y)
. (2.8)

Equation (2.8) is called Bayes’ rule.

The conditional expectation of g(X) given Y = y is then

E{g(X)|Y = y} =

∫ ∞
−∞

g(x)fX|Y(x|y)dx.

If X and Y are independent, then fy|X(Y|X) = fy(y) and so the conditional expec-

tation of g(Y) given X = x is

E(g(Y)|X = x) = E(g(Y)),

which is as expected, does not depend on x. The same ideas hold in the discrete case

with the probability mass function assuming the role of the density function.

Definition 2.1.4.3. If E|Xi| <∞ for each i, then we define the mean or expected

value of a random vector X = (X1, · · · , Xn)T to be the column vector

µX = EX = (EX1, · · · , EXn)T .

In the same way we define the expected value of any array whose elements are random

variables (e.g., a matrix of random variables) to be the same array with each random

variable replaced by its expected value (if the expectation exists).
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Definition 2.1.4.4. If X = (X1, · · · , Xn)T and Y = (Y1, · · · , Ym)T are random

vectors such that each Xi and Yj has a finite variance, then the covariance matrix

of X and Y is defined to be the matrix

ΣXY = Cov(X,Y) = E[(X− EX)(Y − EY)T ]

= E(XY)− (EX)(EY)T .

The (i, j) element of ΣXY is the covariance

Cov(Xi, Yj) = E(Xi, Yj) = E(XiYj)− E(Xi)E(Yj).

In the special case where Y = X, Cov(X,Y) reduces to the covariance matrix of the

random vector X.

Lemma 2.1.4.5. Suppose that Y and X are linearly related through the equation

Y = a+BX,

where a is an m-dimensional column vector and B is an m × n matrix. Then Y has

mean

EY = a+BEX (2.9)

and covariance matrix

ΣYY = BΣXXB
T . (2.10)
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Proposition 2.1.4.6. The covariance matrix ΣXX of a random vector X is sym-

metric and nonnegative definite, that is, bTΣXXb ≥ 0 for all vectors b = (b1, · · · , bn)T

with real components.

Definition 2.1.4.7. The correlation between two random vectors X and Y is

defined by

Corr(X,Y) = E(XYT ).

If Corr(X,Y) = 0, then, we say X and Y are uncorrelated.

2.1.5 Gaussian distribution

Gaussian distribution is the most common and useful distribution which is also referred

to as the normal distribution. It is defined by its mean and variance and has a

bell shaped or Gaussian form. It represents a family of distributions of the same

general form, characterized by their mean µ and the variance σ2. The standard normal

distribution is a normal (Gaussian) distribution with a mean of zero and a variance

of one.
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The pdf of the normal (Gaussian) distribution is of the form

f(x) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
.

2.1.6 Multivariate Gaussian distribution

Let X = (X1, · · · , Xn)T be a random vector, then X has a multivariate Gaussian, or

multivariate normal distribution if its pdf takes the form

f(X) =
1

(2π)n|Σ|
exp[(−1/2)(X− µ)TΣ−1(X− µ)],

where µ is the mean, Σ is the covariance, and |Σ| is the determinant.

Next, we state an important lemma which is used to derive some results in this dis-

sertation [27].

Lemma 2.1.6.1. If Y and X are jointly normally (Gaussian) distributed, then, the

conditional distribution of Y given X is also normally distributed with,

E(Y|X) = EY + Cov(Y,X)Var−1(X)(X− E(X))

Var(Y|X) = Var(Y)− Cov(Y,X)Var−1(X)Cov(X,Y)
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2.1.7 Markov chain

A Markov chain is a collection of random variables {xk}, k = 0, 1, · · · , having the

property

p(xk+1|xk, xk−1, · · · , x1) = p(xk+1|xk)

Basically, if we know xk, then, knowledge of xk−1, · · · , x1 does not give any more

information about xk+1.

2.2 State-space model

The state space model is a mathematical model of a system as a set of input, output

and state variables related by differential (difference) equations.

The state space model consists of two systems, the dynamical system, and the mea-

surement system.

A dynamical system is a concept in mathematics that describes a process that includes

a set of possible states, and a rule that determines the present state in terms of past

states. The measurements system describes how the measurements of the dynamical

system are related to the states.
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In this dissertation, we consider a discrete state-space model of the form:

xk+1 = Axk + wk (2.11)

yk = Cxk + vk, (2.12)

for k = 0, 1, 2, · · · , such that, Eq. (2.11) is the dynamical system, where, xk ∈ Rn is

the state vectors at time k,

A ∈ Rn×n is the transition operator, which maps a state space into itself, and wk ∈ Rn

is the dynamical noise.

While, Eq. (2.12) is the measurement system, where yk ∈ Rp×n is the measurement

vector at time k,

C ∈ Rp×1 is the measurement operator, which maps the state space into a measure-

ment space. vk ∈ Rp is the measurements noise.

2.3 Least square estimation

The first method for forming an optimal estimate from noisy data is the method of

least square. Its introduction is generally attributed to Gauss in 1795 [16,31].
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Gauss discovered that if he wrote a system of equations in matrix form, as

h11 h12 . . . h1n

h21 h22 . . . h2n

...
...

...
...

hm1 hm2 . . . hmn





x1

x2

...

xn


=



z1

z2

...

zm


(2.13)

or

Hx = z,

then, he could consider the problem of solving for that value of an estimate x̂ that

minimizes the estimation error Hx̂ − z. He defined the estimation error in terms of

the Euclidean vector norm

||Hx̂− z||,

or, its square,

e2(x̂) = ||Hx̂− z||2

=
m∑
i=1

[
n∑
j=1

hijx̂j − zi

]2

,

which is a continuously differentiable function of the n unknowns x̂1, x̂2, . . . , x̂n.
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This function attains its minimum value when all its partial derivatives are zero. There

are n such equations

0 =
∂e2

∂x̂k
= 2

m∑
i=1

hik

[
n∑
j=1

hijx̂j − zi

]
, k = 1, 2, . . .

Thus, we have

0 = 2HT [Hx̂− z] = 2HTHx̂− 2HT z.

Therefore

HTHx̂ = HT z, (2.14)

Eq. (2.14) is called the normal equation of the linear least square problem.

The solution of the normal equation is

x̂ = (HTH)−1HT z,

provided that HTH is nonsingular. HTH is called the Gramain matrix. If |HHT | = 0,

then the column vectors are linearly dependent, and x̂ can not be determined uniquely.

If X is a random variable [31], consider

y = Hx+ v,

where, y is a given n × 1 vector, H is a given m × n (m ≥ n), x is an unknown

n× 1 vector, and v is a n× 1 vector. A least square solution x̂ is one that minimizes
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the length of the residual vector v; i.e., it is one with the property that

||y −Hx̂||2 ≤ ||y −Hx||2,

for all x ∈ Rn, where ||.|| as before, is the Euclidean norm

||v||2 = vTv =
n∑
i=1

|v(i)|2.

Here v(i) stands for the i-th entry of the vector v. Now, let the cost function J(x) be

defined as

J(x) = ||y −Hx||2

= (y −Hx)T (y −Hx)

= yTy − yTHx− xTHTy + xTHTHx.

Now,

0 =
∂

∂x
J(x)|x=x̂ =

∂

∂x
[yTy − yTHx− xTHTy + xTHTHx]|x=x̂

= −yTH + x̂THTH,

which shows that every solution x̂ must satisfy the normal equations

HTHx̂ = HTy.

We can see that x̂ minimizes the cost function J(x) by noting that

∂2||y −Hx||2

∂xT∂x
= HTH ≥ 0,
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since HTH is positive-semi-definite. The value of J at x̂ can be expressed as

J(x̂) = ||y −Hx̂)||

= (y −Hx̂)T (y −Hx̂)

= yT (y −Hx̂)− x̂THT (y −Hx̂).

since HT (y −Hx̂) = 0, by the normal equation, we get,

J(x̂) = yT (y −Hx̂)

= yTy − yTHx̂

= ||y||2 − (HTy)T x̂

= ||y||2 − (HTHx̂)T x̂

= ||y||2 − ||Hx̂||2.

When the matrix H has full rank n, the matrix HTH will be nonsingular, and there

is a unique solution x̂ given by

x̂ = (HTH)−1HTy.

2.4 Maximum likelihood estimation

Maximum likelihood estimation is a popular statistical method used for fitting a set

of mathematical models to measured data, and providing estimates for the model pa-
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rameters (identification) [23,47,52,58].

Generally, the method of maximum likelihood identifies values of the parameters that

produce the distribution most likely to have resulted in the observed measurements.

That is, the parameters that maximize the likelihood function. The maximum likeli-

hood methodology is described as follows:

Suppose X = (x1, x2, ..., xn) is a vector of independent random variables with proba-

bility density function:-

p(X, θ1, θ2, . . . , θk),

where θ1, θ2, . . . , θk are k unknown parameters which need to be estimated.

Then, the likelihood function of the parameters is given by the following product:

L(x1, . . . , xn|θ1, . . . , θk) = L =
n∏
i=1

p(xi; θ1, . . . , θk).

Now, taking the logarithm of the likelihood function,

lnL =
n∑
i=1

ln p(xi; θ1, . . . , θki).

The maximum likelihood estimators of θ1, θ2, . . . , θk are obtained by maximizing L or

lnL. But, maximizing lnL is easier to work with than L. So, the maximum likelihood

estimators of the parameters θ1, . . . , θk are the simultaneous solutions of k equations

∂ lnL

∂θm
= 0, m = 1, . . . , k.
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2.5 The Expectation maximization (EM) algorithm

The Expectation-Maximization (EM) algorithm is an iterative procedure for comput-

ing the maximum likelihood estimator when only a subset of the complete data set is

available [47,52]. Dempster, Laird and Rubin [9] demonstrated the wide applicabil-

ity of the EM algorithm and are largely responsible for popularizing this method in

statistics.

In the usual formulation of the EM algorithm, the “complete” data vector W is made

up of “observed” data Y (sometimes called incomplete data) and “ unobserved” data

X. In many applications, X consists of values of a “ latent” or unobserved process

occurring in the specification of the model. For example, in the state-space model

xk+1 = Axk + wk

yk = Cxk + vk,

for k = 0, 1, 2, · · · . Thus, Y could consist of the observed vectors {y1, y2, · · · , yt} and

X of the unobserved state vectors {x1, x2, · · · , xt}. The parameters of the model are

A,C,Q,R, and V , where, Q and R are the covariance of the noises wk and vk respec-

tively, and µ and V are the mean and the variance, respectively, of the initial state

x0. The EM algorithm provides an iterative procedure for computing the maximum

likelihood estimator based only on the observed data Y. Each iteration of the EM
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algorithm consists of two steps. If θ(i) denotes the estimated value of the parameter

vector

θ = {A,C,Q,R, µ, V }

after i iterations, then the two steps in the (i+ 1)th iteration are

E-step. Calculate ψ(θ, θ(i)) = Eθ(i) [logL(θ;X, Y |Y )] where, L(θ;X, Y |Y ) is the max-

imum likelihood function, and

M-step. Maximize ψ(θ, θ(i)) with respect to θ.

2.6 Filter, prediction and smoother

Generally, there are three types of estimators [16,58]:-

• Predictors: The measurements used are strictly prior to the time that the state

of the dynamical system is to be estimated i.e.,

kmeas. < kest..

• Filters: In this type of estimators, the measurements used are up to and in-

cluding the time that the state of the dynamical system is to be estimated.

i.e.,
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kmeas. ≤ kest..

• Smoothers: This type uses the measurements beyond the time that the state of

the dynamical system is to be estimated. i.e.,

kmeas. > kest.

2.7 Kronecker product

In mathematics, the Kronecker product, denoted by ⊗, is an operation on two ma-

trices of arbitrary size resulting in a block matrix. The Kronecker product should not

be confused with the usual matrix multiplication, which is an entirely different opera-

tion. It is named after German mathematician Kronecker [21]. In this dissertation, we

will use the notion of the Kronecker product to introduce a new mathematical model,

where the utility of the Kronecker product makes our new model more general due

the bilinearity property.

In the following definition we define the Kronecker product.

Definition 2.7.1. Let A ∈ IRm×n, B ∈ IRp×q. The Kronecker product (or tensor
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product) of A and B is defined as the mp× nq matrix

A⊗B =


a11B . . . a1nB

...
...

...

am1B . . . amnB



2.8 Differentiation rules

In this section, we introduce useful definitions, lemmas, theorems and properties

about the differentiation of matrix expressions. These results are used throughout

this dissertation to derive and prove some theorems.

Definition 2.8.1. Let F : X → Y , where X, Y finite dimensional spaces with norm

‖‖. Let x ∈ X. F is differentiable at x if there is a bounded linear operator , denoted

F ′(x) or dF (x)
dx

, such that,

F (x+ h)− F (x) = F ′(x)h+O(‖h‖)

for all h ∈ X. In other words F ′(x) ∈ L(X, Y ).

Remark 2.8.2. To compute F ′(x) we extract the linear part of F ′(x+ h), or equiv-

alently, compute

∂F (x+ th)

∂t
|t=0 (2.15)
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Theorem 2.8.3. (Cain Rule) LetG : X → Y, be differentiable at x, and F : Y → Z,

be differentiable at y = G(x). Then, F (G(x)) = F ◦G : X → Z, is differentiable at x,

and,

d

dx
F ◦G(x) =

d

dy
F (y)

d

dx
G(x). (2.16)

We sometimes write Eq.(2.16) as

F (G(x))′ = F ′(G(x))G′(x).

Note that, F ′ ◦G ∈ L(Y, Z) and G′ ∈ L(X,Z).

In the following lemma, we present results from Linear Algebra.

Lemma 2.8.4. Let A and B be two n× n matrices.

1) Tr(AB) =
∑n

i=1

∑n
j=1 aijbji.

2) xTAx = Tr(xxTAT )

Proof. 1) Let C = AB, then

Cii =
n∑
j=1

aijbji.

Therefore

Tr(AB) =
n∑
i=1

cii =
n∑
i=1

n∑
j=1

aijbji.

2) The second part can be proved as follows.

xTAx =
n∑
i=1

n∑
j=1

xiaijxj =
n∑

i,j=1

(xxT )ijaij = Tr(xxTAT ).
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2.8.1 Derivatives with respect to vectors and operators

Here, we state a theorem which is used to compute the derivatives with respect to

vectors and operators.

Theorem 2.8.1.1. Let x, h be vectors, and A,M be matrices.

1) d
dx

(Ax)h = Ah.

2) d
dA−1A

−1M = −A−1MA−1

3) d
dA
|A|M = Tr(adj(A)MT ), M ∈ Rn×n

4) d
dA

(xTAx)M = xTMx.

5) d
dA

(Tr(A))M = TrM.

Proof. 1) We compute that,

A(x+ th) = Ax+ Ath,

then,

d

dt
A(x+ th)|t=0 = Ah. (2.17)

2) We know that,

(A+ tM)−1 = [A(I + tA−1M)]−1 = (I + tA−1M)−1A−1.
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Using Neumann formula gives

(A+ tM)−1 = A−1 − tA−1MA−1 +O(t2).

Therefore,

d

dt
(A+ tM)−1|t=0 = −A−1MA−1.

3) We will use the fact that |A| is an n-linear form when regarded as a function of the

columns of A. For A,M ∈ Rn×n, denote by ai,Mi, 1 ≤ i ≤ n the columns of A,M ,

respectively.

|A+ tM | = |a1 + tM1, a2 + tM2, ..., an + tMn|

= |a1, a2, ..., an|+ t
n∑
i=1

|a1, ...,Mi, ai+1, ..., an|+O(t2)

= |A|+ t
n∑
i=1

n∑
j=1

MijAij +O(t2),

where Aij is the cofactor of aij in A. Therefore,

d

dt
|A+ tM |t=0 =

n∑
i=1

n∑
j=1

MijAij = Tr(adjAMT )

4) First, we compute

(xT (A+ tM)x) = (xTAx+ txTMx)

Then, we get

d

dt
(xT (A+ tM)x)|t=0 = (xTMx).
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5) Notice that Tr : Rn×n −→ R is a linear operator. Thus,

Tr(A+ th) = TrA+ tTrh.

So,

d

dt
Tr(A+ th)|t=0 = Trh.

Corollary 2.8.1.2.

d

dt
log |A|M =

1

|A|
Tr(adjAMT ) = Tr(A−1MT ).

2.8.2 Derivatives of bilinear operators

Here, we present an important result about derivatives of bilinear operators. First,

we define the bilinear operator as follows.

Definition 2.8.2.1. A bilinear operator is a mapping F : X × Y −→ Z such that

F(ax, y) = aF(x, y),

F(x, by) = bF(x, y),

F(x+ y, z) = F(x, z) + F(y, z)

F(x, y + z) = F(x, y) + F(x, z).
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For example, the Kronecker product of two n× n matrices is a bilinear operator with

Y = X = Rn×n and Z = Rn2×n2
.

In the following lemma we introduce an expression for the derivative of bilinear oper-

ators.

Theorem 2.8.2.2. Let F : X ×X −→ Y be a bilinear operator, then,

d

dx
F(x, x)(a, b) = F(a, x) + F(x, b).

Proof. We compute,

F((x, x) + t(a, b)) = F(x+ ta, x+ tb) = F(x, x) + tF(a, x) + tF(x, b) + t2F(a, b).

Now,

d

dt
F(x, x)(a, b)|t=0 = F(a, x) + F(x, b).

As a first corollary of this theorem we have the derivative of the Kronecker product.

Corollary 2.8.2.3.

d

dx
(x⊗ x)v = (v ⊗ x) + (x⊗ v).

Proof. In Theorem 2.8.2.2 put F(x, y) = x⊗ y. Then,

F ′(x, x)(v, v) = F(x, v) + F(v, x) = (x⊗ v) + (v ⊗ x).

As a second corollary we have,
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Corollary 2.8.2.4. Let A be a symmetric matrix. Then,

d

dx
(xTAx)v = vTAx+ xTAv = 2vTAx. (2.18)

Proof. In Theorem 2.8.2.2 put F(x, y) = xTAy. Then,

F ′(x, x)(v, v) = F(x, v) + F(v, x)

= xTAv + vTAx

= vTATx+ vTAx

= vT (A+ AT )x

= 2vTAx,

since A is symmetric.

The following results are stated without proof. The proof can be provided using the

foregoing theorems and lemmas.

Lemma 2.8.2.5. Let A,B,M ∈ Rn×n, then

d

dA
(A−1B)M = −A−1MA−1B,

d

dA
Tr(A−1B)M = Tr(−A−1MA−1B) = −Tr(A−1MA−1B),

d

dA
(A−1BA)M = A−1BM − A−1MA−1BA
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2.8.3 Computation of critical points

Here, we give some examples, which are used later as building blocks, for computing

critical points.

Example 2.8.3.1. Let

F (x) = A+ (x−M)TB(x−M),

where B is symmetric. We can compute the critical point of F as follows: Since

d

dx
(F (x))v = 2vTB(x−M),

it follows that,

2vTB(x−M) = 0, ∀v ∈ Rn.

Thus,

B(x−M) = 0,

this means that, x−M ∈ kerB, if B is invertible, then, x−M = 0 or x = M.

Example 2.8.3.2. Let,

F (A) = log |A|+ Tr(AP ) + xTAx,

where, P is positive definite. Then, the procedure for computing the critical point of
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this function is as follows,

d

dA
F (A)M = Tr(A−1MT ) + Tr(MP ) + xTMx

= Tr(A−1MT + P TMT + xxTMT )

= Tr([A−1 + P T + xxT ]MT )

= 0, ∀M ∈ Rn×n,

This would be true if and only if A−1 + P T + xxT = 0. Therefore,

A = −(P T + xxT )−1.

(Observe that P T + xxT is positive definite and therefore has an inverse.)

Example 2.8.3.3. Let,

F (K) = Tr(A+BK + CKT +KDKT ),

where, D is positive definite and symmetric. Then,

dF

dK
= Tr(M(B + CT + 2DKT )) = 0, (2.19)

for all M ∈ Rn×n, where we use the facts that Tr(A) = Tr(AT ), Tr(AB) =

Tr(A)Tr(B) and the linearity of the Tr(.) operator.

Eq.(2.19) gives

B + CT + 2DKT = 0
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or

K = −1

2
(BT + C)D−1.
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Chapter 3

KALMAN FILTER AND

KALMAN SMOOTHER

3.1 Introduction

Kalman filter is an estimator for so-called linear-quadratic problem, which is the

problem of estimating the instantaneous “state” of a linear dynamic system perturbed

by white noise using measurements linearly related to the state but also corrupted

by white noise. It produces values that tend to be closer to the true values of the

measurements and their associated calculated values by predicting an estimate of
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uncertainty of the predicted via a weighted average of the predicted and measured

values. Theoretically, the Kalman filter is an algorithm for efficiently doing exact

inference in a linear state space model which has some statistical properties. The

resulting estimator is statistically optimal with respect to some quadratic function of

the estimation error [16].

Mathematically, the Kalman filter is a set of equations that provides an efficient re-

cursive solution of the least square method. It provides estimates of the past, present,

and future states and it can do so when the precise nature of the system model is

unknown [16,52,58].

The Kalman filter was introduced by Kalman in 1960 [32]. It can be derived by many

techniques [62]. In some works, it was derived by minimizing a quadratic cost func-

tion, which is related to the least squares estimation. The other technique for deriving

Kalman filter is by using Bayesian statistics [16,27,31,52,58,62,64].

The second sort of the estimator is smoother. A smoother estimates the state of a sys-

tem at time k, using measurements made before and after time k [16]. The accuracy of

a smoother is generally superior to that of a filter, because it uses more measurements

for its estimate. The Kalman smoother can be derived from the Kalman filter model.

The general derivation methodology uses the Kalman filter for measurements up to

(each) time k that state is to be estimated, combined with another algorithm derived
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from Kalman filter for the measurements beyond that time [4,52,58]. This second

algorithm of smoother can be derived by running the Kalman filter backward from

the last measurement to just past k, then optimally combining the two independent

estimates (forward and backward) of the state at time k based on the two independent

sets of measurements.

In Section 3.2, we present the Kalman filter and its derivation by using two different

techniques as discussed above. In Section 3.3, we introduce the notion of the Kalman

smoother and the method of deriving it. We also introduce the well-known lag-one

covariance smoother and its derivation.

3.2 Kalman filter

In this section, we study the Kalman filter for a linear-discrete Gaussian state space

model. To begin with, we will introduce the nonlinear Kalman filter.

Consider a discrete-time linear state space model with dynamical system

xk+1 = Axk + wk (3.1)

and measurements

yk = Cxk + vk, (3.2)
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where xk ∈ Rn is the system state vector at time k,

A ∈ Rn×n is the transition matrix,

yk ∈ Rp is the corresponding measurement vector at time k,

C ∈ Rp×n is the observation matrix,

wk ∈ Rn is the dynamical noise at time k and

vk ∈ Rp is the observation noise at time k .

Indeed, wk and vk are uncorrelated, white and Gaussian with zero mean and covariance

Q and R, respectively, that is,

wk ∼ N(0, Q),

vk ∼ N(0, R),

E(wkw
T
l ) =


Q, for k=l

0, for k 6=l,

E(vkv
T
l ) =


R, for k=l

0, for k 6=l

and

E(wiv
T
j ) = 0, ∀i, j.
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3.2.1 Derivation of Kalman filter using least-squares estima-

tion

There are many approaches to derive the Kalman filter [62]. We will introduce two

derivations. The first is based on the least square estimation [27] while the second is

based on Bayes’ rule [52,62]. Next, we will use the following notations [19]:

xak : is the estimation of xk.

xfk : is the forecast state of xk,

eak : is the analysis state error defined by

eak = xk − xak,

efk : is the forecast state error defined by

efk = xk − xfk ,

P a
k : is the analysis state error covariance,

P f
k : is the forecast state error covariance.

In the following theorem, we will present the Kalman filter which gives the filtering

and forecasting equations [16,32,52,58].

Theorem 3.2.1. For the state space model defined by Eq.(2.11) and Eq.(2.12), with
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initial conditions x0 = µ0 and P0 = V0, we have

xfk+1 = Axak (3.3)

P f
k+1 = AP a

kA
T +Q (3.4)

for k = 0, · · · , t, with

xak+1 = xfk+1 +Kk+1(yk − Axfk+1) (3.5)

P a
k+1 = [I −Kk+1C]P f

k+1 (3.6)

where

Kk+1 = P f
k+1C

T [CP f
k+1C

T +R]−1 (3.7)

is called Kalman gain.

Proof. Taking expectation of the dynamic equation xk+1 = Axk + wk, we obtain

xk+1 = Axk,

where

xk = E(xk).

Since xk in unknown, we will use xax as an estimation. Thus

xfk+1 = Axak.
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The corresponding forecast state error covariance P f
k+1 ∈ Rn×n is defined by:

P f
k+1 = E

[
efk(e

f
k)
T
]

= E
[
(xk+1 − xfk+1)(xk+1 − xfk+1)

T
]

= E
[
(Axk + wk − Axak)(Axk + wk − Axak)T

]
= E

[
A(xk − xak) + wk)(A(xk − xak) + wk)

T
]

= AE [(xk − xak)(xk − xak)]AT + E(wkw
T
k )

= AP a
kA

T +Q,

where xak is the estimate of the state xk and P a
k ∈ Rn×n is the analysis state error

covariance given by

P a
k = E

[
eak(e

a
k)
T
]

= E
[
(xk − xax)(xk − xak)T

]
.

In the analysis step, the objective is to estimate the state xk by xak using measurements

yk. So we have an optimization problem of the form,

minimize Tr(E
[
eak(e

a
k)
T
]

= Tr(P a
k ).

On the other hand, when a new measurement yk is available, the new information will

be used to update the prior xfk to the analysis xak. So, we need to find an optimal n×p

weight matrix Kk, (called ”Kalman gain”), so the analysis xak is updated by

xak = xfk +Kk(yk − Cxfk), (3.8)
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which minimizes the expectation of the energy “cost function”,

Jk = E||eak||2 = E||xak − xk||2.

We expect the forecast, the analysis and the measurements to be unbiased estimations,

that is,

E(efk) = E(xk − xfk) = 0,

E(eak) = E(xk − xak) = 0,

and

E(vk) = E(y − Cxk) = 0.

Now write xak as a linear combination of xfk and yk,

xak = Fxfk +Hyk (3.9)

where F ∈ Rn×n and H ∈ Rn×p are constant matrices. By using one of unbiased

equations, we get

E(xak − xk) = E[Fxfk +Hyk − xk] = 0 .

Thus,

E[Fxk +HCxk − xk] = 0

and so,

(F +HC − In)E(xk) = 0,
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where In is the n× n identity matrix. Hence,

F = In −HC.

By substituting the above relation in Eq(3.9), we get

xak = (In −HC)xfk +Hyk

= xfk −HCx
f
k +Hyk

= xfk +H(yk − Cxfk).

Replacing H with Kk, we get

xak = xfk +Kk(y − Cxfk).

Now, subtracting xk from Eq(3.8) gives

xak − xk = (xfk − xk) +Kk

[
(yk − Cxk)− (Cxfk − Cxk)

]
.

Thus,

eak = efk +Kk(vk − Cefk),

that is, we obtain the analysis error covariance in terms of forecast error covariance,

P a
k = E(eak(e

a
k)
T )

= E
[
(efk +Kk(vk − Cefk))(e

f
k +Kk(vk − Cefk))

T
]

= E
[
(efk +Kk(vk − Cefk))((e

f
k)
T + (vTk − (efk)

TCT )KT
k )
]
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= E
[
efk(e

f
k)
T + efk(v

T
k + (efk)

TCT )KT
k +Kk(vk − Cefk)(e

f
k)
T

+Kk(vx − Cefk)(v
T
k − (efk)

TCT )KT
k

]
= E

[
efk(e

f
k)
T + efkv

T
k − e

f
k(e

f
k)
TCTKT

k +Kkvk(e
f
k)
T −KkCe

f
k(e

f
k)
T

+Kk(vkv
T
k )KT

k −Kk(vk(e
f
k)
TCT − Cefkv

T
k )KT

k +KkC(efk(e
f
k)
T )CTKT

k

]
.

Since xfk and vk are independent,

E(efk(vk)
T ) = E(vk(e

f
k)
T ) = 0.

Therefore,

P a
k = E(efk(e

f
k)
T )− E(efk(e

f
k)
T )CTKT

k −KkCE(efk(e
f
k)
T ) (3.10)

KkE(vkv
T
k )KT

k +KkCE(efk(e
f
k)
T )CTKT

k .

Because by definition the forecast error covariance is P f
k = E[(efk(e

f
k)
T ] and the mea-

surement noise covariance is R = E(vkv
T
k ), then Eq (3.10) amounts to

P a
k = P f

k − P
f
Kk
CTKT

k −KkCP
f
k +KkRK

T
k +KkCP

f
k C

TKT
k . (3.11)

Thus,

Tr(P a
k ) = Tr(P f

k )− Tr(P f
k C

TKT
k )− Tr(KkCP

f
k ) + Tr(KkRK

T
k ) + Tr(KkCP

f
k C

TKT
k ),

(3.12)

and hence, using (KkCP
f
k )T = P f

k C
TKT

k and Tr(A) = Tr(AT ), we have

Tr(P a
k ) = Tr(P f

k )− 2Tr(KkCP
f
k ) + Tr(KkRK

T
k ) + Tr(KkCP

f
k C

TKT
k ). (3.13)
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To minimize Tr(P a
k ) with respect to Kk, we must have

∂Tr(P a
k )

∂Kk

= 0.

Now, using Example 2.8.3.3, with A = P f
k , B = −CP f

k , and D = R+CP f
k C

T , we get

Kk = −1

2
(−2P f

k C
T )(R + CP f

k C
T )−1

and consequently,

Kk = P f
k C

T (R + CP f
k C

T )−1, (3.14)

provided that (R + CP f
k C

T ) is non-singular. Noting that,

∂2

∂K2
k

Tr(P a
k ) = 2(CP f

k C
T +R),

which is positive definite, we conclude that TrP a
k attains its minimum at K. Now, by

inserting Eq. (3.14) in Eq. (3.11) and after simple manipulations, we can show that

P a
k = P f

k −KkCP
f
k .

3.2.2 Derivation of Kalman filter from Beyesian estimation

Here, Bayesian statistics and the Markov property of system (3.1) and (3.2) are utilized

to prove Theorem 3.2.2.1. We use the fact that the linear dynamical system and
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measurements are Gaussian. The multivariate Gaussian distribution will be then

used as the probability density function. We aim in this filtering problem to determine

P (xk|{y}k1) and find the mean and the variance of this distribution. Here, we use the

following notations:

Ek(xk) = E(xk|{y}k1) = xak

Ek−1(xk) = E(xk|{y}k−1
1 ) = xfk

Cov(xk|{y}k1) = P a
k

and

Cov(xk|{y}k−1
1 ) = P f

k .

where the sequence {y}k1 is the set of measurements given by

{y}k1 = {y1, y2, · · · , yk}.

Consider the linear state space defined by Eq.(3.1) and Eq.(3.2) where wk, vk are as-

sumed (as before) to be uncorrelated, white, Guassian with zero mean and covariance

Q and R respectively.

Here, we will use the above notation to prove Theorem 3.2.2.1, such that the statis-

tical assumptions of the state-space model, Bayes’ rule, and the Markov property are

employed to derive the Kalman filter equations, [52,62].

For the state-space model defined by Eq.(3.1) and Eq.(3.2), the probability densities
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are

p(xk+1|xk) = N(xk+1 : Axk, Q) (3.15)

and

p(yk|xk) = N(yk : Cxk, R) (3.16)

where N(x : µ, σ2) is the normal density with mean µ and variance σ2. Next, we will

find the filtering and prediction steps.

By applying Beyes’ theorem,

p(xk|{y}k1) =
p(yk|xk)p(xk|{y}k−1

1 )

p(yk|{y}k−1
1 )

(3.17)

and

p(xk+1|{y}k1) =

∫
p(xk|{y}k1)p(xk+1|xk)dxk. (3.18)

The Equations (3.17) and (3.18) are both Gaussian [52]. Thus

p(xk|{y}k1) = N(xk : xak, P
a
k )

and

p(xk+1|{y}k1) = N(xk+1, x
f
k , P

f
k ).

Inserting (3.16) in (3.18) yields

p(xk+1|{y}k1) =

∫
N(xk+1 : Axk, Q)N(xk : xak, P

a
k )dxk. (3.19)
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Now,

xfk+1 = Ek(xk+1) =

∫ ∞
−∞

xk+1p(xk+1|{y}k1dxk+1

=

∫ ∞
−∞

xk+1

∫ ∞
−∞

p(xk|{y}k1)p(xk+1|xk)dxkdxk+1

=

∫ ∞
−∞

p(xk|{y}k1)[

∫ ∞
−∞

xk+1p(xk+1|xk)dxk+1]dxk

=

∫ ∞
−∞

Axkp(xk|{y}k1dxk

= Axak.

We can also show that

P f
k+1 = AP a

kA
T +Q.

That is, p(xk+1|{y}k1) follows a Gaussian distribution N(xk+1 : xfk+1, p
f
k+1). In filtering

step; we will use Beyes’s rule (Eq. (3.17)) to update p(xk+1|{y}k1) to p(xk+1|{y}k+1
1 )

and thus,

p(xk+1|{y}k+1
1 ) = p(xk+1|yk+1, {y}k1) (3.20)

=
p(yk+1|xk+1, {y}k1)p(xk+1|{y}k1)

p(yk+1|{y}k1)

=
p(yk+1|xk+1)p(xk+1|{y}k1)∫
p(yk+1|xk+1)p(xk+1|{y}k1)dxx

.

Using

p(yk+1|xk+1) = N(yk+1 : Cxk+1, R) (3.21)

in (3.20), we get

p(xk+1|{y}k+1
1 ) =

N(yk+1 : Cxk+1, R)N(xk+1 : xfk , P
f
k )∫

N(yk+1 : Cxk+1, R)N(xk+1 : xfk , P
f
k )dxk

. (3.22)
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Using this, we obtain

∫
N(yk+1 : Cxk+1, R)N(xk+1 : xfk , P

f
k )dxk = N(yk+1 : Cxfk , CP

f
k C

T +R)

and so, Eq. (3.22) can be reduced to

p(xk+1|{y}k+1
1 ) =

N(yk+1 : Cxk+1, R)N(xk+1 : xfk , P
f
k )

N(yk+1 : Cxfk , CP
f
k C

T +R)

= N(xk+1 : xak, P
a
k )

where

xak = xfk +Kk(yk − Cxfk)

P a
k = P f

k −KkCP
f
k

Kk = P f
k C

T (CP f
k C

T +R)−1.

For a complete proof of these identities, one may refer to [62].

3.3 Kalman smoother

Here, we will consider the problem of obtaining xk based on the data samples

y1, · · · , yt where k ≤ t; namely, xtk. These estimators are called smoothers because a

time plot of the sequence {xtk : k = 1, · · · , t} is typically smoother than the forecasts

{xk−1
k : k = 1, · · · , t} or the filter {xkk : k = 1. · · · , t} [58]. Hence, smoothing implies
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that each estimated value is a function of the past, present and future, whereas the

filter estimator depends on the past and the present. The forecast depends only on

the past.

3.3.1 Derivation of Kalman smoother

The Kalamn smoother can be derived in many ways. Here, we will follow the technique

that was given originally by Ansley and Kohn [4].

The Kalman smoother algorithm is given in the following theorem.

Theorem 3.3.1.1. Consider the state space model specified in (3.1) and (3.2) with

initial conditions xak and P a
k obtained from Theorem 3.2.1.1. For k = t, t − 1, · · · , 1,

we have

xtk = xak + Jk(x
t
k+1 − x

f
k+1) (3.23)

and

P t
k = P a

k + Jk(P
t
k+1 − P

f
k+1)J

T
k (3.24)

where

Jk = P a
kA

T [P f
k+1]

−1. (3.25)
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Proof. For 1 ≤ k ≤ t, define

{y}k1 = {y1, · · · , yk}, with {y0} empty

ηk = {vk+1, · · · , vt, wk+2, · · · , wt},

and let qk = E{xk|{y}t1, xk+1−xfk+1, ηk}. Since, {y}k1, {xk+1−xfk} and ηk are matually

independent and since xk, ηk are independent, Lemma 2.1.6.1. gives

qk = E{xk|{y}k1, xk+1 − xfk+1, ηk}

= Ek{xk|xk+1 − xfk+1}

= xak + Cov(xk, xk+1 − xfk+1)[Var(xk+1 − xfk+1)]
−1(xk+1 − xfk+1).

Now, compute Cov(xk, xk+1 − xfk+1) as follows:

Cov(xk, xk+1 − xfk+1) = Cov(xk, Axk + wk − xfk+1)

= E[(xk − xak)(Axk + wk − xfk+1 − Ax
a
k + xfk+1)

T ]

= E[(xk − xak)(A(xk − xak))T ]

= E[(xk − xak)(xk − xak)T ]AT

= P a
kA

T .

Similarly,

Var(xk+1 − xfk+1) = E[(xk+1 − xfk+1)(xk+1 − xfk+1)
T ] = P f

k+1.
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Thus,

qk = xak + P a
kA

T [P f
k+1]

−1(xk+1 − xfk+1)

= xak + Jk(xk+1 − xfk+1)

where

Jk = P a
kA

T [P f
k+1]

−1.

Now, since {y}k1, xk+1 − xfk+1, and ηk generate {y}t1 = {y1, · · · , yt} [58],

xtk = Et{xk}

= Et{qk}

= xak + Jk(x
t
k+1 − x

f
k+1),

which is Eq. (3.23).

Now to prove the identity given in Eq. (3.24), we use Eq. (3.3) and obtain

xk − xtk = xk − xak − Jk(xtk+1 − Axak)

which is equivalents to

(xk − xtk) + Jkx
t
k+1 = (xk − xak) + JkAx

a
k. (3.26)

Multiplying both sides of Eq. (3.26) by the transpose of itself and taking the expec-

tation, we get

P t
k + JkE(xtk+1x

tT

k+1)J
T
k = P a

k + JkAE(xakx
aT

k )ATJTk ,
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and because

E(xtk+1x
tT

k+1) = E(xk+1x
T
k+1)− P t

k+1

= AE(xkx
T
k )AT +Q− P t

k+1

and

E(xakx
aT

k ) = E(xkx
T
k )− P a

k ,

we have

P t
k + Jk[AP

a
kA

T +Q− P t
k+1]J

T
k = P a

k .

Hence,

P t
k = P a

k + Jk[P
t
k+1 − P

f
k+1]J

T
k

which is Eq. (3.24).

3.3.2 The lag-one covariance smoother

The lag-one covariance smoother is a type of a smoother problem which is a set of

recursions for obtaining P t
k+1,k.

In the next theorem, we will state the well-known lag-one covariance smoother.

Theorem 3.3.2.1. For the state-space model specified in (3.1) and (3.2) withKk, Jk, (k =

1, 2, · · · , t) and P t
t are defined as in Theorems 3.2.1.1 and 3.3.1.1 and with initial con-

58



dition

P t+1
t+1,t = (I −KtC)AP t

t (3.27)

for, t = k, k − 1, · · · , 1. We have,

P t
k,k−1 = P a

k J
T
k−1 + Jk(P

t
k+1,k − AP a

k )JTk−1. (3.28)

Proof. To derive the initial condition (3.27), define

x̃tk+1 = xk+1 − xtk+1,

where

xtk+1 = Et(xk+1) = E{xk+1|{y}t1}.

Thus,

P k+1
k+1,k = E[x̃k+1

k+1x̃
k+1T

k ]

= E[(xk+1 − xak+1)(xk − xk+1
k )T ]

= E{[xk+1 − xfk+1 −Kk+1(yk − Cxfk+1)][xk − x
a
k − JkKk+1(yk − Cxfk+1)]

T}

= E{[x̃fk+1 −Kk+1(yk − Cxfk+1)][x̃
a
k − JkKk+1(yk − Cxfk+1)]

T}

= E{[x̃fk+1 −Kk+1(C(xk+1 − xfk+1) + vk][x̃
a
k+1 − JkKk+1(C(xk+1 − xfk+1) + vk]

T}

= E{[x̃fk+1 −Kk+1(Cx̃
f
k+1 + vk)][x̃

a
k+1 − JkKk+1(Cx̃

f
k+1 + vk)]

T}
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= E{x̃fk+1x̃
aT

k+1 − x̃
f
k+1x̃

fT

k+1C
TKT

k+1J
T
k + x̃fk+1v

T
k −Kk+1Cx̃

f
k+1x̃

aT

k+1

+Kk+1Cx̃
f
k+1x̃

fT

k+1C
TKT

k+1J
T
k −Kk+1Cx̃

f
k+1v

T
k −Kk+1vkx̃k+1a

T

−Kk+1vkx̃
fT

k+1CK
T
k+1J

T
k +Kk+1vkv

T
kK

T
k+1J

T
k }

= P k
k+1,k − P

f
k+1C

TKT
k+1Jk −Kk+1CP

k
k+1,k +Kk+1CP

f
k+1C

TKT
k+1J

T
k

+Kk+1RK
T
k+1Jk

= P k
k+1,k − P

f
k+1C

TKT
k+1Jk −Kk+1CP

k
k+1,k +Kk+1[CP

f
k+1C

T +R]KT
k+1J

T
k .

Using Kk+1[CP
f
k+1C

T +R] = P f
k+1C

T and

P k
k+1,k = E{(xk+1 − xkk+1)(xk − xak)T}

= E{(Axk + wk − Axak)(xk − xak)T}

= AE{(xk − xak)(xk − xak)T}

= AP a
k ,

we get

P k+1
k+1,k = AP a

k − P
f
k+1C

TKT
k+1J

T
k −Kk+1CAP

a
k + P f

k+1C
TKT

k+1J
T
k

= (I −Kk+1C)AP a
k+1.

This relationship holds for any t = 1, · · · , n. In particular, if we choose k = t, we

obtain Eq. (3.27).
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The task now is to derive Eq. (3.28). From Eq. (3.23), we have

xtk = xak + Jk(x
t
k+1 − x

f
k+1)

so,

xk − xtk = xk − xak − Jk(xtk+1 − x
f
k+1).

Thus,

x̃tx = x̃ak − Jkxtk+1 + JkAx
a
k .

That is,

x̃tk + Jkx
t
k+1 = x̃ak + JkAx

a
k, (3.29)

and

x̃tk−1 + Jk−1x
t
k = x̃ak−1 + Jk−1Ax

a
k−1 (3.30)

Multiplying the LHS of Eq. (3.29) by the transpose of the LHS of Eq. (3.30), and

equate that with the corresponding result of the RHS of Eq. (3.29) and Eq. (3.30),

we have

(x̃tk + Jkx
t
k+1)(x̃

t
k−1 + Jk−1x

t
k)
T = (x̃ak + JkAx

a
k)(x̃

a
k−1 + Jk−1Ax

a
k−1)

T

By taking the expectation of both sides we get

P t
k,k−1 + JkE(xtk+1(x

t
k)
T )JTk−1

= P k−1
k,k−1 −KkCP

k−1
k,k−1 + JkAKkCP

k−1
k,k−1 + JkAE(xak(x

a
k−1)

T )ATJTk−1,
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where

E(x̃ak(x̃
a
k−1)

T ) = E(x̃fk −Kk(yk − Cxfk)(x̃
a
k−1)

T )

= P k−1
k,k−1 −KkE((C(xk − xfk + vk))(x̃

a
k−1)

T )

= P k−1
k,k−1 −KkCE((x̃fk)(x̃

a
k−1)

T )

= P k−1
k,k−1 −KkCP

k−1
k,k−1.

Also

E(xak(x̃
a
k−1)

T ) = E{(xfk +Kk(Cx̃
f
k + vk))((x̃

a
k−1)

T )}

= KkCP
k−1
k,k−1.

Using

E(xtk+1(x
t
k)
T ) = E(xk+1x

T
k )− P t

k+1,k = AE(xkx
T
k−1)A

T + AQ− P t
k+1,k

and

E(xak(x
a
k−1)

T ) = E{(xfk +Kk(yk + Cxfk))(x
a
k−1)

T}

= E(xfk(x
a
k−1)

T )

= E(xkx
T
k−1)− P k−1

k,k−1,
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and after straightforward simplifications, we obtain

P t
k,k−1 = P k−1

k,k−1 −KkCP
k−1
k,k−1 + JkAKkCP

k−1
k,k−1 − JkAP

k−1
k,k−1A

TJTk−1 − JkAQJTk−1

+JkP
t
k+1,kJ

T
k−1

= (I −KkC)P k−1
k,k−1 + JkA(KkCP

k−1
k,k−1 − P

k−1
k,k−1A

T −Q)JTk−1

+JKP
t
k+1,kJ

T
k−1

= P a
k J

T
k−1 − JkAP a

k J
T
k−1 + JkP

t
k+1,kJ

T
k−1

= P a
k J

T
k−1 + Jk(P

t
k+1,k − AP a

k )JTk−1.
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Chapter 4

IDENTIFICATION OF THE

LINEAR GAUSSIAN

STATE-SPACE MODEL

4.1 Introduction

System identification is a general term to describe the mathematical tools and al-

gorithms that build dynamical models from measurement data [23,40,60]. System

identification plays an important role in uncertain dynamical systems.
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The Expectation-Maximization (EM) algorithm is a broadly applicable approach to

the iterative computation of the maximum likelihood (ML) estimates, useful in a va-

riety of incomplete data problems. On each iteration of the EM algorithm, there are

two steps; the Expectation step (E-step) and the Maximization step (M-step). Thus,

the algorithm is called the EM algorithm. This name was given by Dempster, Laird,

and Rubin (1977) in their fundamental paper [9]. The EM algorithm is a technique

that can be use to estimate the parameters after filling in the initial values for the

missing data. The latter are then updated by their predicted values using these initial

parameter estimates. The parameters are then re-estimated, and so on, proceeding

iteratively until convergence. Indeed, this technique is so intuitive and natural. The

EM have been formulated and applied to a variety of problems even before the work of

Dempster, Laird, and Rubin (1977)[9]. But it was in this the work that the ideas were

synthesized, a general formulation of the EM algorithm was established, its properties

investigated, and a host of traditional and non-traditional applications indicated [47].

The formulation of the EM algorithm is given in Section 2.5.

The identification of a linear Gaussian state-space model was introduced by Shumway

and Stoffer [59], when they identified the linear state-space model and estimated the

parameters of the state space model using the expectation maximization algorithm

(EM). Shumway and Stoffer used a Kalman filter and a Kalman smoother to estimate

the parameters. The Kalman filter and the Kalman smoother are the basic tools to
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calculate the expectation in the E-step. The aim of this chapter is to study the iden-

tification of the linear Gaussian state-space model by using the EM algorithm, where

the Kalman filter and the Kalman smoother are applied in computing the E-step. In

the M-step, we apply the rule of differentiation which was introduced in Section 2.8.

This chapter is organized as follows; In the next section, we recall the linear state-

space model which was introduced earlier. In Section 4.3, we present the technique

of the identification by using the expectation maximization (EM) algorithm to esti-

mate the parameters of the state-space model. We summarize the procedure of the

identification in Section 4.4 .

4.2 The state-space model

Recall the linear Gaussian state-space model with dynamical system

xk+1 = Axk + wk (4.1)

and measurements system

yk = Cxk + vk, (4.2)

where, as before, A is the transition matrix (n × n matrix). C is the measurements

matrix (p× 1 matrix), wk and vk are the system noise and measurement noise respec-

tively, where wk ∼ N(0, Q) and vk ∼ N(0, R), and Gaussian, white, and uncorrelated.
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The initial state vector x0 is assumed to be a Gaussian random vector with mean µ

and covariance V, i.e., x0 ∼ N(µ, V ).

4.3 Maximum likelihood estimation by the EM al-

gorithm

To obtain the maximum Likelihood estimator of the parameters in the model, we use

the EM algorithm [9,47]. Shumway and Stouffer [59] introduced the EM algorithm

for the linear Gaussian state-space model.

Let {x}t1 = {x1, · · · , xt} be a sequence of state variables, and {y}t1 = {y1, · · · , yt} be

a sequence of measurements. The joint likelihood function of the measurements and

state variables can be computed by using Bayes’ rule as follows,

p(y1, · · · , yt, x1, · · · , xt) = p(yt|xt, {x}t−1
1 , {y}t−1

1 )p({x}t−1
1 , {y}t−1

1 )

= p(yt|xt)p(xt|{x}t−1
1 , {y}t−1

1 )p({y}t−1
1 , {x}t−1

1 )

= p(yt|xt)p(xt|xt−1)p({x}t−1, {x}t−1
1 )

= · · ·

=
t−1∏
k=0

p(yk|xk))(
t−1∏
k=0

p(xk+1|xk)p(x0).
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Thus

p({x}t1, {y}t1 : α) = p(x0)
t−1∏
k=0

p(xk+1, xk)
t−1∏
k=0

p(yk|xk)

where α = {A,C,Q,R, µ} is the parameter vector in the model. V is assumed to be

known. The probability density functions p(x0), p(xk+1|xk) and p(yk|xk) are given by

p(x0) =
1

(2π)n/2|V |1/2
exp{−1/2(x0 − µ)TV −1(x0 − µ)}

p(xk+1|xk) =
1

(2π)n/2|Q|1/2
exp{−1/2(xk+1 − Axk)TQ−1(xk+1 − Axk)}

p(yk|xk) =
1

(2π)p/2|R|1/2
exp{−1/2(yk − Cxk)TR−1(yk − Cxk)}.

Now, by taking the logarithm of the joint likelihood function we get

logP ({x}t1, {y}t1; ᾱ) = −1/2 log |V | − 1/2(x0 − µ)TV −1(x0 − µ)

− t
2

log |Q| − 1

2

t−1∑
k=0

(xk+1 − Axk)TQ−1(xk+1 − Axk)

− t
2

log |R| − 1

2

t−1∑
k=0

(yk − Cxk)TR−1(yk − Cxk)

+const.

In the EM algorithm, to estimate the maximum likelihood parameter vector α̂, the
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conditional expectation of the joint log-likelihood

q(α|ᾱ) = E(logP ({xk}t1, {y}t1, α|{y}t1, ᾱ)

= −1

2
log |V | − 1

2
Tr(V −1Et{(x0 − µ)(x0 − µ)T}

− t
2

log |Q| − 1

2
Tr{Q−1

t−1∑
k=0

(Et(xk+1 − Axk)(xk+1 − Axk)T )}

− t
2

log |R| − 1

2
Tr{R−1

t−1∑
k=0

(Et(yk − Cxk)(yk − Cxk)T )}

+const.

= −1

2
log |V | − 1

2
Tr{V −1Et(x0x

T
0 − x0µ

T − µxT0 − µµT )}

− t
2

log |Q| − 1

2
Tr{Q−1

t−1∑
k=0

Et(xk+1x
T
k+1 − xk+1x

T
kA

T − AxkxTk+1

+Axkx
T
kA

T )}

− t
2

log |R| − 1

2
Tr{R−1

t−1∑
k=0

(Et(yky
T
k − ykxTkCT − CxkyTk + Cxkx

T
kC

T )}

+const.

Now taking conditional expectation on {y}t1 we get,

q(α|αi) = E[log p({x}t1, {y}t1, |α)|{y}t1, θi]

= −1

2
log |V | − 1

2
Tr{V −1(pt0 + (xt0 − µ)(xt0 − µ)T ]

− t
2

log |Q| − 1

2
Tr{Q−1(σ − γAT − AγT + AβAT )]

− t
2

log |R| − 1

2
Tr{R−1

t−1∑
k=0

[ξ − εCT − CεT + CβCT ] + const,
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where

P t
0 = E(x0x

T
0 )

σ =
t−1∑
k=0

Et(xk+1x
T
k+1)

β =
t−1∑
k=0

Et(xkx
T
k )

γ =
t−1∑
k=0

Et(xk+1x
T
k )

ξ =
t−1∑
k=0

Et(yky
T
k )

ε =
t−1∑
k=0

Et(ykx
T
k ).

The quantities σ, β and γ can be computed using the Kalman smoother where

β =
t−1∑
k=0

(P t
k + xtk(x

t
k)
T ), (4.3)

γ =
t−1∑
k=0

(P t
k+1,k + xtk+1(x

t
k)
T ), (4.4)

σ =
t−1∑
k=0

(P t
k + xtkx

tT

k ), (4.5)

such that xtk, P
t
k and P t

k+1,k, can be found using the Kalman filter and the Kalman

smoother. More precisely,

xtk = Et(xk) = E(xk|{y}t1)

P t
k = Cov(xk|{y}t1)
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and

P t
k,k−1 = Cov(xk, xk−1|{y}t1),

• The M-step

The parameters of the system A,C,Q,R and µ, are collected in the vector α =

{A,C,Q,R, µ}. To estimate these parameters, we take the corresponding partial

derivatives of the expected log-likelihood function, and set to zero, then solve. So

that, αi is updated to αi+1 .

Thus,

αi+1 = {A(i+ 1), C(i+ 1), Q(i+ 1), R(i+ 1), µ(i+ 1)},

is obtained by maximizing the log likelihood function with respect to each parameter.

The value of µ is

µ = xt0 = Et(x0). (4.6)

Now, by completing the square for the log likelihood function with respect to A, we

get,

q(α|αi) = E[log p({x}t1, {y}t1, |α)|{y}t1, θi]

= −1

2
log |V | − 1

2
Tr{V −1(pt0 + (xt0 − µ)(xt0 − µ)T ]

− t
2

log |Q| − 1

2
Tr{Q−1(σ − (A− γβ−1)β(A− γβ−1)T )}

− t
2

log |R| − 1

2
Tr{R−1

t−1∑
k=0

[ξ − εCT − CεT + CβCT ] + const.
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Hence,

A(i+ 1) = γβ−1. (4.7)

Substituting the value of A, and taking the partial derivative with respect to Q, and

then equating the result with zero we get,

− t
2
Q−1 − 1

2
Q−1{(σ − γβ−1γT )}Q−1 = 0,

hence,

Q(i+ 1) = t−1(σ − γβ−1γT ). (4.8)

By the same argument, we find the value of C to be

C(i+ 1) = εβ−1. (4.9)

Similarly, substituting the value of C, taking the partial derivative with respect to R,

and equating the result with zero we get,

R(i+ 1) = t−1(ξ − εβ−1εT ). (4.10)

4.4 Summary

The procedure of the identification of the parameters of the state-space model (4.1)

and (4.2) using the EM algorithm to obtain the maximum likelihood estimation vector
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α̂ is summarized as follows:

1. Select initial values of µ(0), A(0), C(0), Q(0), R(0), and compute xtk, P
t
k and P t

k,k−1

using the Kalman smoother.

2. Calculate the conditional expectation of the log Likelihood function.

3. Calculate Equations (4.6)-(4.10) and find the next iterative estimated parameters

that maximize the conditional expectation of the log Likelihood.

4. Insert the new parameters in the state-space model, and compute the Kalman

smoother.

5. Repeat the steps 2,3, and 4 until the log likelihood converge.
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Chapter 5

BILINEAR FILTERING

PROBLEM

5.1 Introduction

When the dynamical system and measurements system of the state-space model

are linear, the Kalman filter is the optimal estimator. However, in most processes

of interest the dynamical and/or the measurements systems are nonlinear and so a

suitable extension of the Kalman filter is needed. In this chapter, we introduce a

new nonlinear model of bilinear type and describe a new approach to generalize the
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Kalman filter. Indeed, the well-known Lorenz-96 model [41,42] and Lotka-Volterra

model [3,20,61] which are used for atmospheric dynamics, biology, chemistry, and

control systems are special cases of our bilinear model. More precisely, the Lorenz-

96 the Lotka-Volterra models can be obtained from our model when the coefficient

matrices are chosen properly. The model consists of a nonlinear state and a linear

measurements equation. The specific nonlinearity is of the bilinear form depending

on the system dynamics. Previously, bilinear models consisted of bilinear function of

the input and state dynamics [71,51,54].

In the next section, we introduce a new nonlinear Gaussian discrete state space model

and present a new bilinear Kalman filter and a bilinear Kalman smoother which is

an extension of the Kalman filter and Kalman smoother occurring in the linear case.

Section 5.3 is devoted to present a derivation of the new bilinear filtering algorithm

which we refer to as the bilinear Kalman filter. In Section 5.4, the derivation of the

new bilinear smoother algorithm is introduced and we will name it the bilinear Kalman

smoother.

75



5.2 A Bilinear state-space model

In this section, we present the bilinear Gaussian discrete state-space model. This

model is described by

xk+1 = Axk +B(xk ⊗ xk) + wk; (5.1)

yk = Cxk + vk; (5.2)

where;

xk ∈ Rn is the state vector,

yk ∈ Rp is the measurements vector,

while the matrices A ∈ Rn×n, B ∈ Rn×n(n+1)
2 and C ∈ Rp×n are the parameters of the

model.

The noise corruption signals wk ∈ Rn and vk ∈ Rp are white, uncorrelated and Gaus-

sian with zero mean and covariances Q and R respectively. That is,

wk ∼ N(0, Q),

vk ∼ N(0, R).

Also,

E(wkw
T
l ) =


Q, for k=l

0, for k 6=l,
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E(vkv
T
l ) =


R, for k=l

0, for k 6=l,

and

E(wkv
T
k ) = 0.

Here, xk⊗xk denotes the Kronecker product of the state xk with itself. The definition

of the Kronecker product is given in Section 2.7.

The Lorenz-96 model [41,42] is given by

dxk
dt

= (xk+1 − xk−2)xk−1 − xk + F, (5.3)

for k = 1, ..., n. Where F is the forcing constant which is independent of k. In this

model, the definition of xk is extended in such a way that they form cyclic boundary

conditions; that is, for all values of k,

xk−n = xk and xk+n = xk.

For example, when n = 3, we have the following system

dx1

dt
= −x1

dx2

dt
= −x2
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dx3

dt
= −x3 + (x3x2 − x1x2).

This system can be reformulated as,

d
dt


x1

x2

x3

 = −


x1

x2

x3

+


0 0 0 0 0 0

0 0 0 0 0 0

0 −1 0 0 1 0





x2
1

x1x2

x1x3

x2
2

x2x3

x2
3


Comparing the last expression with our bilinear model (5.1), we conclude that;

A = −I3

and

B =


0 0 0 0 0 0

0 0 0 0 0 0

0 −1 0 0 1 0

 .

Thus, the well-known Lorenz 96 model is a special case of our new bilinear model.

Dealing with the nonlinear term creates a lot of technicality as well as mathemati-

cal computations. For this reason we introduce the following approximation of the

nonlinear term. Using Taylor expansion we get,

zk = zjk + f ′(xjk)(xk − x
j
k) +

1

2
H(xk, x

j
k)(xk − x

j
k),
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where,

zjk = Ej(zk)

f ′(x) = [
∂xixj
∂xl

]i,j,l=1,2,...,m,

H(xk+1, x
j
k+1) =



(xk+1 − xjk+1)
TD1

(xk+1 − xjk+1)
TD2

...

(xk+1 − xjk+1)
TDm



and, D =


D1

...

Dm

 is the m2 ×m matrix of second derivatives.

• Reasonable approximations for zjk:

All approximations are based on replacing the term (xk − xjk)T in the last expression

by a reasonable approximation.

• In the case of prediction, the interest is in computations involving (xk − xk−1
k ).

We take,

(xk − xk−1
k ) ≈ (xk−2

k − xk−1
k ),
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with x−1
1 = 0. That is,

zk = zk−1
k + f ′(xk−1

k )(xk − xk−1
k ) +

1

2
H(xk−2

k , xk−1
k )(xk − xk−1

k ),

• In the case of filtering, the interest is in computations involving (xk − xkk).

We take,

(xk − xkk) ≈ (xk−1
k − xkk).

This means that,

zk = zkk + f ′(xkk)(xk − xkk) +
1

2
H(xk−1

k , xkk)(xk − xkk),

• In the case of smoothing, the interest is in computations involving (xk − xk+1
k ).

We take,

(xk − xk+1
k ) ≈ (xk+2

k − xk+1
k ),

with xN+1
N−1 = 0. This means that,

zk = zk+1
k + f ′(xk+1

k )(xk − xk+1
k ) +

1

2
H(xk+2

k , xk+1
k )(xk − xk+1

k ),

Thus, we can summarize all previous cases in the following equation;

zk = zjk + f ′(xjk)(xk − x
j
k) +

1

2
H(xj±1

k , xjk)(xk − x
j
k) (5.4)

= zjk + V j
k (xk − xjk),

where,

V j
k = f ′(xjk) +

1

2
H(xj±1

k , xjk). (5.5)
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The nonlinearity presents challenge as far as the great sensitivity in the structure

and the components of these systems, such as the parameters of the system.

For example, in the nonlinear Lotka-Volterra model which is of the form

xk+1 = (I + hA)xk + rhBzk,

where, zk = xk ⊗ xk and B =

 1 1 0

0 −1 0

 . For different choices of the parameter

A and considering different values of h and r, the obtained results are completely

different, although we deal with the same nonlinear model. Results of many cases are

described in Figures 5.1, 5.2 and 5.3, as follows:

Figure 5.1: When A =

 0 1

−1 0

, h = 0.1 and r = 0.1.

Figure 5.2: When A =

 2 0

0 −1

, h = 0.1 and r = −1.

Figure 5.3: When A =

 2 0

0 −1

 , h = 0.1 and r = 1.
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The other challenges of the nonlinearity are the identification and the filtering. Typ-

ically approaches concentrated on linearization, such as the extended Kalman filter

and/or replacing the nonlinear system with a set of systems, such as the ensemble

Kalman filter. These challenges will be discussed in the next chapter.
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5.3 A Bilinear Kalman filter

In recent years, the state space representation and the associated Kalman recursions

have had a profound impact on the time series analysis and many related areas.

The techniques were originally developed in connection with control of linear systems

[7,16,52].

Here, we have a nonlinear system and thus, using the linear Kalman filter is not

possible in this case for two reasons; the first is self-evident; the linear Kalman filter

is appropriate only for linear systems. Secondly, we do not want to approximate our

nonlinear system by a linear one as in the case of the extended Kalman filter [16,19].

Therefore, we need to derive a nonlinear filter suitable for the nonlinear system.

In this section, we derive a bilinear filter associated with the bilinear state space model

defined by (5.1) and (5.2). We call it the bilinear Kalman filter.

We will adopt the following notations to derive the bilinear Kalman filter:

zk = xk ⊗ xk

xtk = E{xk|{y}t1} = Et(xt)

P t
k = Et{(xk − xtk)(xk − xtk)T}

ztk = E{zk|{y}t1} = Et(zt)

Ṗ t
k = Et{(zk − ztk)(zk − ztk)T}
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P̈ t
k = Et{(xk − xtk)(zk − ztk)T},

where

1 ≤ k ≤ t

1 ≤ t ≤ n

and {y}t1 is the measurements sequence

{y}t1 = {y1, ..., yt}.

In the following theorem, we state the bilinear Kalman filter.

Theorem 5.3.1. For the bilinear state-space model defined by (5.1) and (5.2), we

have

xkk+1 = Axkk +Bzkk (5.6)

P k
k+1 = AP k

kA
T + AP̈ k

kB
T +B(P̈ k

k )TAT +BṖ k
kB

T +Q. (5.7)

with

xk+1
k+1 = xkk+1 +Kk+1[yk − Cxkk+1] (5.8)

P k+1
k+1 = [I −Kk+1C]P k

k+1 (5.9)

P̈ k+1
k+1 = P k+1

k+1 [V k+1
k+1 ]T (5.10)

Ṗ k+1
k+1 = (V k+1

k+1 )P̈ k+1
k+1 (5.11)
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where

Kk+1 = P k
k+1C

T [CP k
k+1C

T +R]−1 (5.12)

and

V k+1
k+1 = f ′(xk+1

k+1) +
1

2
H(xkk+1, x

k+1
k+1), (5.13)

for k = 0, ..., t.

Proof. First, we derive the forecast steps which are given in Eq.(5.6) and Eq.(5.7).

That is, we consider the case t < k in the previous notations. We derive Eq.(5.6) as

follows

xkk+1 = Ek(xk+1)

= Ek(Axk +Bzk + wk)

= AEk(xk) +BEk(zk) + Ek(wk)

= Axkk +Bzkk .

Also,

P k
k+1 = Ek{(xk+1 − xkk+1)(xk+1 − xkk+1)

T}

= Ek{(Axk +Bzk + wk − Axkk −Bzkk)(Axk +Bzk + wk − Axkk −Bzkk)T}

= Ek{[A(xk − xkk) +B(zk − zkk) + wk][A(xk − xkk) +B(zk − zkk) + wk]
T}
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= Ek{[A(xk − xkk) +B(zk − zkk) + wk][(xk − xkk)TAT + (zk − zkk)TBT + wTk ]}

= Ek{A(xk − xkk)(xk − xkk)TAT + A(xk − xkk)(zk − zkk)TBT +B(zk − zkk)(xk − xkk)TAT

+B(zk − zkk)(zk − zkk)TBT + wkw
T
k }

= AP k
kA

T + AP̈ k
kB

T +B(P̈ k
k )TAT +BṖ k

kB
T +Q

which is Eq.(5.7).

Now, when t = k, we derive the filtering steps. Let

ρk = yk − Ek−1(yk)

= yk − Ek−1(Cxk − vk)

= yk − Cxk−1
k

= Cxk − Cxk−1
k + vk

= C(xk − xk−1
k ) + vk,

for k = 1, ..., t. Thus, we notice that,

Ek−1(ρk) = ρk−1
k = 0 (5.14)
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and

Σk+1 = Var(ρk+1)

= E{[C(xk+1 − xkk+1) + vk][C(xk+1 − xkk+1) + vk]
T}

= CE{[xk+1 − xkk+1][xk+1 − xkk+1]
T}CT + E(vkv

T
k )

= CP k
k+1C

T +R.

Also that,

Ek(ρk+1y
T
k ) = Ek((yk+1 − ykk+1)y

T
k ) = 0, (5.15)

which means that the innovations are independent of the past measurements. On the

other hand, the conditional covariance between xk+1 and ρk+1 is computed as follows

Cov(xk+1, ρk+1) = Cov(xk+1 − xkk+1, C(xk+1 − xkk+1) + vk)

= E{[(xk+1 − xkk+1)− E(xk+1 − xkk+1)]

[C(xk+1 − xkk+1) + vk − CE(xk+1 − xkk+1)]
T}

= P k
k+1C

T .

From these results, we conclude that xk+1 and ρk+1 have a Gaussian joint conditional

distribution on {y}k1. That is,

{

 xk+1

ρk+1

 |{y}k1} ∼ N{

 xkk+1

0

 ,

 P k
k+1 P k

k+1C
T

CP k
k+1 Σk+1

}. (5.16)
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Now, applying Lemma 2.1.6.1., we have

xk+1
k+1 = Ek+1(xk+1)

= Ek{xk+1|ρk+1}

= Ek(xk+1) + Cov(xk+1, ρk+1)Σ
−1
k+1ρk+1

= xkk+1 + P k
k+1C

T [CP k
k+1C

T +R]−1ρk+1

= xkk+1 +Kk+1[yk+1 − Cxkk+1];

where

Kk+1 = P k
k+1C

T [CP k
k+1C

T +R]−1

represents the Kalman gain.

To derive Eq.(5.9), we use Eq.(5.16) and apply Lemma 2.1.6.1 to get

P k+1
k+1 = Cov(xk+1, ρk+1)

= Cov(xk+1)− Cov(xk+1, ρk+1)Σ
−1
k+1Cov(ρk+1, xk+1)

= P k
k+1 − P k

k+1C
T [CP k

k+1C
T +R]−1CP k

k+1

= P k
k+1 −Kk+1CP

k
k+1

= [I −Kk+1C]P k
k+1 .
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To derive Eq.(5.10), we use Eq.(5.4) as follows:

P̈ k+1
k+1 = E((xk+1 − xk+1

k+1)(zk+1 − zk+1
k+1)T )

= E(((xk+1 − xk+1
k+1)(xk+1 − xk+1

k+1)
T )[V k+1

k+1 ]T

= P k+1
k+1 [V k+1

k+1 ]T .

By employing similar arguments for deriving Eq(5.11), we obtain

Ṗ k+1
k+1 = E((zk+1 − zk+1

k+1)(zk+1 − zk+1
k+1)T )

= (V k+1
k+1 )E((xk+1 − xk+1

k+1)(xk+1 − xk+1
k+1)

T )[V k+1
k+1 ]T

= (V k+1
k+1 )P k+1

k+1 [V k+1
k+1 ]T

= (V k+1
k+1 )P̈ k+1

k+1 .

5.4 A Bilinear Kalman smoother

In this section, we will consider the problem when t > k+1. As mentioned earlier, this

kind of estimators is called a smoother. Here, we derive a bilinear Kalman smoother

associated with the bilinear state-space model (5.1) and (5.2).

For convenience, we introduce the following notations:

P t
k1,k2

= E{(xk1 − xtk1)(xk2 − x
t
k2

)T}
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Ṗ t
k1,k2

= E{(zk1 − ztk1)(zk2 − z
t
k2

)T}

P̈ t
k1,k2

= E{(xk1 − xtk1)(zk2 − z
t
k2

)T}.

The next lemma is needed in the derivation of the bilinear Kalman smoother.

Lemma 5.4.1. Let,

εk+1 = {vk+1, ..., vt, wk+2, ..., wt}.

Then, for 1 ≤ k ≤ t− 1, {y}k1,{xk+1 − xkk+1} and εk+1 build {y}t1.

Proof. Recall that

zk+1 = zjk + V j
k+1(xk+1 − xjk+1),

that is,

(zk+1 − zjk) ∈ {(xk+1 − xjk+1)}.

Knowing that,

yk+1 = Cxk+1 + vk+1,

and

ykk+1 = Cxkk+1,

yield

yk+1 − ykk+1 = C(xk+1 − xkk+1) + vk+1.
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Thus,

{y}k+1
1 = {{y}k1, yk+1}

= {{y}k1, yk+1 − ykk+1}

= {{y}k1, xk+1 − xkk+1, vk+1}.

Similarly,

yk+2 − ykk+2 = CA(xk+1 − xkk+1) + CB(zk+1 − zkk+1) + Cwk+1 + vk+2,

and hence,

{y}k+2
1 = {{y}k+1

1 , yk+2}

= {{y}k+1
1 , yk+2 − ykk+2}

= {{y}k1, xk+1 − xkk+1, vk+1, zk+1 − zkk+1, wk+1, vk+2}

= {{y}k1, xk+1 − xkk+1, vk+1, wk+1, vk+2}.

Continuing, we see that {y}t1 is generated by yk, xk+1 − xkk+1 and εk+1.

We state the bilinear Kalman smoother in the following theorem.

Theorem 5.4.2. Consider the bilinear state-space model (5.1) and (5.2),with xtt and

P t
t as given in Theorem 5.3.1. Then for k = t− 1, ..., 1, we have

xtk = xkk + Jk(x
t
k+1 − xkk+1) (5.17)

92



P t
k = P k

k + Jk[P
t
k+1 − P k

k+1]J
T
k ; (5.18)

where,

Jk = [P k
kA

T + P̈ k
kB

T ][P k
k+1]

−1. (5.19)

Proof. For 1 ≤ k ≤ t− 1, we define

εk+1 = {vk+1, ..., vt, wk+2, ..., wt} .

Let

τk+1 = Ek{xk|xk+1 − xkk+1, εk+1}.

We notice that, xk and εk+1 are independent, and the sequence of measurements

{y}k1,{xk+1 − xkk+1} and εk+1 are mutually independent. So that, by applying Lemma

2.1.6.1., we obtain,

τk+1 = Ek{xk|xk+1 − xkk+1, εk+1}

= xkk + Cov(xk, xk+1 − xkk+1)[Var(xk+1 − xkk+1)]
−1(xk+1 − xkk+1)

Now, we compute Cov(xk, xk+1 − xkk+1) as follows

Cov(xk, xk+1 − xkk+1) = Cov(xk, Axk +Bzk + wk − xkk+1)

= Ek{[xk − xkk][Axk +Bzk + wk − xkk+1 − Axkk −Bzkk + xkk+1]
T}

= Ek{[xk − xkk][A(xk − xkk) +B(zk − zkk) + wk]
T}
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= Ek{[(xk − xkk)(xk − xkk)TAT + (xk − xkk)(zk − zkk)TBT ]}

= P k
kA

T + P̈ k
kB

T ,

and

Var(xk+1 − xkk+1) = E{(xk+1 − xkk+1)(xk+1 − xkk+1)
T}

= P k
k+1.

Thus,

τk+1 = xkk + [P k
kA

T + P̈ k
kB

T ][P k
k+1]

−1[xk+1 − xkk+1]

= xkk + Jk(xk+1 − xkk+1),

where

Jk = [P k
kA

T + P̈ k
kB

T ][P k
k+1]

−1.

By using Lemma 5.4.1, we conclude that,

xtk = Et(xk)

= Et(τk+1)

= xkk + Jk(x
t
k+1 − xkk+1),

which proves Eq.(5.17). To derive Eq(5.18), we subtract Eq.(5.17) from xk and use

Eq.(5.6);

xk − xtk = xk − xkk − Jk(xtk+1 − xkk+1)

= xk − xkk − Jk(xtk+1 − Axkk −Bzkk)

94



and hence,

(xk − xtk) + Jkx
t
k+1 = (xk − xkk) + JkAx

k
k + JkBz

k
k . (5.20)

Multiplying both sides of Eq.(5.20) by the transpose of itself and taking the expecta-

tion, we have

P t
k + JkE(xtk+1(x

t
k+1)

T )JTk = P k
k + JkAE(xkk(x

k
k)
T )ATJTk + JkBE(zkk(zkk)T )BTJTk

+JkAE(xkk(z
k
k)T ))BTJTk + JkBE(zkk(xkk)

T ))ATJTk .

Also,

E(xtk+1(x
t
k+1)

T ) = E(xk+1x
T
k+1)− P t

k+1

= AE(xkx
T
k )AT + AE(xk(zk)

T ))BT +BE(zk(xk)
T ))AT

+BE(zk(zk)
T )BT +Q− P t

k+1

and

E(xkk(x
k
k)
T ) = E(xkx

T
k )− P k

k ,

E(xkk(z
k
k)T ) = E(xkz

T
k )− P̈ k

k ,

E(zkk(zkk)T ) = E(zkz
T
k )− Ṗ k

k .

Therefore,

P t
k + Jk[AP

k
kA

T + AP̈ k
kB

T +B(P̈ k
k )TAT +BṖ k

kB
T +Q− P t

k+1]Jk = P k
k ,
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and since,

P k
k+1 = AP k

kA
T + AP̈ k

kB
T +B(P̈ k

k )TAT +BṖ k
kB

T +Q

we get,

P t
k = P k

k + Jk[P
t
k+1 − P k

k+1]J
T
k ,

which is Eq. (5.18) and the proof is completed now.

In the next theorem, we introduce the bilinear lag-one covariance smoother to obtain

P t
k+1,k and P̈ t

k+1,k.

Theorem 5.4.3. Consider the state-space model (5.1) and (5.2). Then,

P t
k+1,k = AP k

k +B(P̈ k
k )T (5.21)

and

P̈ t
k+1,k = P t

k+1,k[V
t
k ]T (5.22)

where P k
k and V t

k are defined as before.

Proof. First, by the previous notations, we get

P t
k+1,k = Et((xk+1 − xk+1

k+1)(xk − x
k
k)
T )

= Et((Axk −Bzk + wk − Axkk −Bzkk)(xk − xkk)T )

= Et((A(xk − xkk) +B(zk − zkk) + wk)(xk − xkk)T )
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= Et((A(xk − xkk)(xk − xkk)T +B(zk − zkk)(xk − xkk)T )

= AEt((xk − xkk)(xk − xkk)T ) +BEt((zk − zkk)(xk − xkk)T )

= AP k
k +B(P̈ k

k )T

and also,

P̈ t
k+1,k = Et((xk+1 − xtk+1)(zk − zkk)T )

= Et((xk+1 − xtk+1)(V
t
k (xk − xkk))T )

= Et((xk+1 − xtk+1)(xk − xkk)T [V t
k ]T )

= Et((xk+1 − xtk+1)(xk − xkk)T )[V t
k ]T

= P t
k+1,k[V

t
k ]T .
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Chapter 6

IDENTIFICATION OF A

BILINEAR MODEL VIA THE

BILINEAR EM ALGORITHM

6.1 Introduction

System identification is a general term to describe mathematical tools and algo-

rithms that build dynamical models from measured data. It plays an important role

in uncertain control systems. The identification of nonlinear systems has been a chal-
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lenging research area since Wiener published his work on nonlinear random theory in

1958 [64].

One of the objectives of this dissertation is to identify the bilinear state space model.

When the nonlinearity consists of the Kronecker product of the states with input, the

identification step suffers no problem, because the system automatically reduce to a

linear identification problem (see [17,51,54]).

In this chapter, our aim is to introduce the identification of the bilinear state space

model defined by (5.1) and (5.2) in Section 5.2 where we use the expectation max-

imization algorithm. In the next section, we present the method of identifying the

parameters of our nonlinear model by using the expectation maximization algorithm.

6.2 Identification of the bilinear state-space model

The expectation maximization (EM) algorithm is an iterative technique can be used

for obtaining the maximum likelihood estimation [see Section 2.5]. According to the

EM algorithm, the steps are:

1. The expectation (E) step: we compute

q(θ, θ(i)) = E{log p(θ,X, Y )|Y }
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where p(θ,X, Y ) is the maximum likelihood function.

2. The maximization (M) step: maximize q(θ, θ(i)) with respect to θ.

Here, the symbol θ refers to the parameters vector

θ = {A,B,C,Q,R, V, µ}

and

X = {x}t1 = {x1, ..., xt},

Y = {y}t1 = {y1, ..., yt}
.

The following theorem accomplishes the expectation step.

Theorem 6.2.1. Consider the bilinear state-space model (5.1) and (5.2) with the

following assumptions

x0 ∼ N(µ, V )

wk ∼ N(0, Q)

vk ∼ N(0, R).
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Then,

q(θ, θ(i)) = E{log p(θ,X, Y )|Y }

= −1

2
log |V | − 1

2
Tr{V −1(∆− x̂0µ

T − µx̂0
T + µµT )}

− t
2

log |Q| − 1

2
Tr{Q−1(Θ−ΨAT − ΠBT − AΨT

+AΦAT −BΠT +BΛBT )}

− t
2

log |R| − 1

2
Tr{R−1(δ − ΩCT − CΩT + CΦCT )}

+const.,

where

∆ = Et(x0x
T
0 )

x̂0 = Et(x0)

Θ =
t−1∑
k=0

Et(xk+1x
T
k+1)

Φ =
t−1∑
k=0

Et(xkx
T
k )

Ψ =
t−1∑
k=0

Et(xk+1x
T
k )

Π =
t−1∑
k=0

Et(xk+1z
T
k )

Γ =
t−1∑
k=0

Et(xkz
T
k )
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Λ =
t−1∑
k=0

Et(zkz
T
k )

Ω =
t−1∑
k=0

Et(ykx
T
k )

δ =
t−1∑
k=0

(yky
T
k )

and

zk = xk ⊗ xk

Proof. We know that the dynamical systems are Markovian, and the joint likeli-

hood function can be computed by using Beyes’ rule as follows

p(θ,X, Y ) = p(y1, ..., yt, x1, ..., xt)

= p(yt, xt|{x}t−1
1 , {y}t−1

1 )p({x}t−1
1 , {y}t−1

1 )

= p(yt|xt)p(xt|{x}t−1
1 , {y}t−1

1 )p({y}t−1
1 , {x}t−1

1 )

= p(yt|xt)p(xt+1|xt)p({y}t−1
1 , {x}t−1

1 )

= ...

= (
t∏

k=1

p(yk|xk))p(
t∏

k=1

p(xk+1|xk))p(x0) .

By using the assumptions on x0, wk and vk, the probability density functions p(x0),

p(xk+1|xk) and p(yk|xx) are given by

p(x0) =
1

(2π)
n
2 |V | 12

exp{−1

2
(x0 − µ)TV −1(x0 − µ)}
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p(xk+1|xk) =
1

(2π)
n
2 |Q| 12

exp{−1

2
(xk+1 − Axk −Bzk)TQ−1(xk+1 − Axk −Bzk)}

and

p(yk|xk) =
1

(2π)
p
2 |R| 12

exp{−1

2
(yk − Cxk)TR−1(yk − Cxk)}

where

zk = xk ⊗ xk .

Now, substituting these density functions in the log likelihood function and taking the

logarithm of both sides we get

L = log p(y1, ..., yt, x1, ..., xt)

= −1

2
log |V | − 1

2
(x0 − µ)TV −1(x0 − µ)

− t
2

log |Q| − 1

2

t−1∑
k=0

(xk+1 − Axk −Bzk)TQ−1(xk+1 − Axk −Bzk)

− t
2

log |R| − 1

2

t∑
k=0

(yk − Cxk)TR−1(yk − Cxk) + const

= p(θ,X, Y ) .

Taking the conditional expectation and applying the rule

E(XTAX) = Tr[AE(XXT )], (6.1)

103



we get

q(θ, θ(i)) = Et{log p(θ,X, Y )}

= −1

2
log |V | − 1

2
Tr(V −1Et{(x0 − µ)(x0 − µ)T}

− t
2

log |Q| − 1

2
Tr{Q−1

t−1∑
k=0

(Et(xk+1 − Axk −Bzk)(xk+1 − Axk −Bzk)T )}

− t
2

log |R| − 1

2
Tr{R−1

t∑
k=0

(Et(yk − Cxk)(yk − Cxk)T )}

+const.

= −1

2
log |V | − 1

2
Tr{V −1Et(x0x

T
0 − x0µ

T − µxT0 − µµT )}

− t
2

log |Q| − 1

2
Tr{Q−1

t−1∑
k=0

Et(xk+1x
T
k+1 − xk+1x

T
kA

T − xk+1z
T
k B

T − AxkxTk+1

+Axkx
T
kA

T + Axkz
T
k B

T −BzkxTk+1 +Bzkx
T
kA

T +Bzkz
T
k B

T )}

− t
2

log |R| − 1

2
Tr{R−1

t∑
k=1

(Et(yky
T
k − ykxTkCT − CxkyTk + Cxkx

T
kC

T )}

+const.

Since odd moments of Gaussian random variables vanish,

Et(xkz
T
k ) = 0. (6.2)

Furthermore,

Et(xk+1z
T
k ) = Et((Axk +Bzk + wk)z

T
k )

= BEt(zkz
T
k ).
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Put,

∆ = Et(x0x
T
0 )

x̂0 = Et(x0)

Θ =
t−1∑
k=0

Et(xk+1x
T
k+1)

Φ =
t−1∑
k=0

Et(xkx
T
k )

Ψ =
t−1∑
k=0

Et(xk+1x
T
k )

Π =
t−1∑
k=o

Et(xk+1z
T
k )

Λ =
t−1∑
k=0

Et(zkz
T
k )

Ω =
t−1∑
k=0

Et(ykx
T
k )

δ =
t−1∑
k=0

(yky
T
k )

Substituting these expressions, we get

q(θ, θ(i)) = E{log p(θ,X, Y )|Y }

= −1

2
log |V | − 1

2
Tr{V −1(∆− x̂0µ

T − µx̂0
T + µµT )}

− t
2

log |Q| − 1

2
Tr{Q−1(Θ−ΨAT − ΠBT − AΨT + AΦAT −BΠT +BΛBT )}

− t
2

log |R| − 1

2
Tr{R−1(δ − ΩCT − CΩT + CΦCT )}

+const.
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and therefore, the proof is completed.

Remark 6.2.2. From Theorem 6.2.1, we note that to compute q(θ, θ(i)), it is neces-

sary to compute the quantities Θ,Φ,Ψ,Π and Λ. Indeed, Θ,Φ and Ψ may be calcu-

lated directly by using the bilinear Kalman filter and the bilinear Kalman smoother

which have been introduced in Theorems 5.3.1. and 5.4.2., respectively. By using the

notations introduced in Chapter 5, we have

Θ =
t−1∑
k=0

Et(xk+1x
T
k+1) =

t−1∑
k=0

(xtk+1(x
t
k+1)

T + P t
k+1).

Φ =
t−1∑
k=0

Et(xkx
T
k ) =

t−1∑
k=0

(xtk(x
t
k)
T + P t

k).

and

Ψ =
t−1∑
k=0

Et(xk+1x
T
k ) =

t−1∑
k=0

(xtk+1(x
t
k)
T + P t

k+1,k)

where P t
k+1,k can be computed from Theorem 5.4.3.

We compute the quantity Π as follows,

Π =
t−1∑
k=0

Et(xk+1z
T
k ) =

t−1∑
k=0

(xtk+1(z
t
k)
T + P̈ t

k+1,k)

where P̈ t
k+1,k can be found by using Theorem 5.4.3. The term

Λ =
t−1∑
k=0

Et(zkz
T
k )

=
t−1∑
k=0

(ztk(z
t
k)
T + Ṗ t

k),
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where

Ṗ t
k = (V t

k )P̈ t
k.

The next step of the EM algorithm is to maximize the function q(θ, θ(i)) with respect

to the parameters vector θ.

Theorem 6.2.3. The function q(θ, θ(i)) which is given in Theorem 6.2.1. is maxi-

mized over θ provided that we choose

µ = x̂0

V = ∆

A = ΨΦ−1

B = ΠΛ−1

Q = 1
t
(Θ−ΨTΦ−1Ψ− ΠΛ−1ΠT )

C = ΩΦ−1

and

R = t−1{δ − ΩΦ−1ΩT}.

Proof. Define the following functions,

q1(µ, V ) = −1

2
log |V | − 1

2
Tr{V −1(∆− x̂0µ

T − µx̂0
T + µµT )}
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q2(A,B,Q) = − t
2

log |Q| − 1
2
Tr{Q−1(Θ−ΨAT − ΠBT − AΨT + AΦAT

−BΠT +BΛBT )}

and

q3(C,R) = − t
2

log |R| − 1

2
Tr{R−1(δ − ΩCT − CΩT + CΦCT )}

Hence, the log likelihood function becomes

q(θ, θ(i)) = q1(µ, V ) + q2(A,B,Q) + q3(C,R) + const.

Since q1(µ, V ) depends only on µ and V and since q2(A,B,Q) contains the parameters

A,B and Q while q3(C,R) depends on the parameters C and R, the function q(θ, θ(i))

will be maximized by maximizing each of the subfunctions q1(µ, V ), q2(A,B,Q) and

q3(C,R) separately.

Now, from the function q1(µ, V ), we conclude that

µ = x̂0. (6.3)

Substituting this in q1(µ, V ), and then using the results of differentiation given in

Section 2.8 (the partial derivative with the respect to V ), and equating to zero, we

get

∂

∂V
q1(µ, V ) = −1

2
V −1 +

1

2
V −1∆V −1 = 0

and thus,

V = ∆.
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By completing the square with respect to A, we obtain

q2(A,B,Q) = − t
2

log |Q| − 1

2
Tr{Q−1(Θ− (A−ΨΦ−1)Φ(A−ΨΦ−1)T

−ΠBT −BΠT +BΛBT )},

and so, we conclude that

A = ΨΦ−1.

In a similar manner, we find the value of B as follows,

B = ΠΛ−1.

Substituting the values of A and B in q2(A,B,Q) we observe that

q2(A,B,Q) = − t
2

log |Q| − 1

2
Tr{Q−1(Θ−ΨTΦ−1Ψ− ΠΛ−1ΠT )} (6.4)

Applying the partial divertive of q2(A,B,Q) with respect to the parameter Q and

applying the obtained result to zero yields

− t
2
Q−1 +

1

2
Q−1{(Θ−ΨTΦ−1Ψ− ΠΛ−1ΠT )}Q−1 = 0

and hence,

Q =
1

t
(Θ−ΨTΦ−1Ψ− ΠΛ−1ΠT ).

Now, the function q3(C,R) can be reduced to

q3(C,R) = − t
2

log |R| − 1

2
Tr{R−1(δ − (C − ΩΦ−1)Φ(C − ΩΦ−1)T )} . (6.5)
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From the last equation, we find that

C = ΩΦ−1. (6.6)

Taking the partial derivative of q3(C,R) with respect to the variable R and then,

equating it with zero, we have

− t
2
R−1 +

1

2
R−1[δ − ΩCT − CΩT + CΦCT ]R−1 = 0 (6.7)

and therefore,

R = t−1[δ − ΩCT − CΩT + CΦCT ]

= t−1[δ − ΩΦ−1ΩT ].
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Chapter 7

SIMULATION AND

APPLICATION TO THE

LOTKA-VOLTERRA MODELS

7.1 Introduction

Applications are very important in this field of research as it illustrates the efficiency

of the theoretical work and demonstrates its relevance to real life problems. Applica-

tions consist of transforming purely theoretical results to reality by applying them in
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various applied fields. In this dissertation, we have developed a nonlinear state-space

model of a bilinear class. The new development of our bilinear model generalizes some

famous nonlinear models which had been applied in many fields of the real life, such

as atmospheric studies, biology, chemistry, economics, engineering, neural networks

and control systems [3,41,42,61]. We also derived new filter (the bilinear Kalman fil-

ter) and smoother (the bilinear Kalman smoother) algorithms that suit our bilinear

model. Furthermore, we included a new technique to identify the parameters of the

new bilinear model via another generalization of the expectation maximization (EM)

algorithm, where the bilinear Kalman filter and the bilinear Kalman smoother are

employed to estimate the parameters of the model.

In this chapter, we will apply our new results to the nonlinear estimation and, our

method to the nonlinear identification of the Lotka-Volterra nonlinear model. This

model has applications in various domains of life science, such as biology, chemistry,

economic and neural networks [3,61]. In the next section, we introduce a general

review and the mathematical framework for Lotka-Volterra model. In Section 7.3, the

bilinear Kalman filter and the bilinear Kalman smoother are applied to simultaneously

estimate states and parameters from noise data of a Lotka-Volterra system.
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7.2 The nonlinear Lotka-Volterra model

The famous Lotka-Volterra equations play a fundamental role in the mathematical

modeling of various ecological and chemical systems. The LotkaVolterra equations

have been widely used in economic theory and neural networks. The LotkaVolterra

predator-prey model was initially proposed by Alfred J. Lotka in the theory of auto-

catalytic chemical reactions in 1910. Vito Volterra, who made a statistical analysis

of fish catches in the Adriatic independently investigated the equations in 1926 [20].

There are two cases of Lotka-Volterra models; (i) competing species models and (ii)

predator-prey models [3]. The Lotka-Volterra predator-prey equations, are a pair of

first-order, non-linear, differential equations frequently used to describe the dynamics

of biological systems in which two species interact; predator and its prey. It is of the

form;

dx

dt
= λx− βxy (7.1)

dy

dt
= βxy − γy (7.2)

where y is the number of some predator and x is the number of corresponding prey;

dx
dt

and dy
dt

represent the growth of the two populations against time; t represents the

time; and λ, β and γ are parameters representing the interaction of the two species.

The Lotka-Volterra competing species is a system of ordinary differential equations of
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the form;

dx

dt
= λx(1− x)− βxy (7.3)

dy

dt
= γy(1− y)− βxy. (7.4)

Eq. (7.3) says that the population of species x grows according to a logistic law in

the absence of species y (that is, when y = 0). In addition, the rate of growth of x

is negatively proportional to y, representing competition between members of x and

members of y. The larger the population y, the smaller the growth rate of x. Similarly,

Eq. (7.4) describes the rate of growth for population y.

The Lotka-Volterra competing species model can be written in the form of our bilinear

model (Eq. (5.1)) with

A =

 λ 0

0 γ

 ,

and,

B =

 −λ −β 0

0 −β −γ

 .

The same can be done for the Lotka-Volterra predator-prey model (7.1) and (7.2).
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7.3 Simulation

In Chapter 5, we derived the bilinear Kalman filter and the bilinear Kalman smoother

for an underlying nonlinear system of bilinear types. In Chapter 6 we presented the

identification process for such systems via the EM algorithm. The nonlinear Lotka-

Volterra model is a mathematical model which has wide applications in ecological and

chemical systems. This model is a special case of our bilinear model. In this section

we will simulate the bilinear Kalman filter and the bilinear Kalman smoother algo-

rithms. This simulation demonstrates the utility and the usage of such algorithms to

estimate the states of the system. On the other hand, we also explain the usage of the

bilinear EM approach to maximum likelihood estimation which is proposed in this dis-

sertation, where, the identification of the parameters for the nonlinear Lotka-Volterra

model is done via the bilinear EM algorithm.

The simulations will enable us to see that the technique of the bilinear Kalman filter

and the bilinear Kalman smoother used to estimate the states of the system and pa-

rameters for a nonlinear dynamical system relative to a linear measurement system,

give a good approximation of the system states and also allow us to identify the param-

eters for such nonlinear dynamical systems. We conclude that the proposed algorithm

and the present method for identification perform well. We will carry out the simu-
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lation study in two steps using MATLAB codes. First, we simulate the performance

of our bilinear Kalman filter and bilinear Kalman smoother (which were derived in

Chapter 5). Secondly, we show the performance of using the bilinear EM approach in

estimating the parameters of a nonlinear Lotka-Volterra model. The methodology of

utilizing the bilinear EM algorithm with a nonlinear system was introduced in Chapter

6.

7.3.1 Simulation of the bilinear Kalman filter and the bilinear

Kalman smoother

Here, we provide a simulation example in order to illustrate the utility of the bilinear

Kalman filter and the bilinear Kalman smoother which were proposed in Chapter 5.

We consider the nonlinear Lotka-Voltera competition model in state-space form

xk+1 = Axk +Bzk + wk (7.5)

yk+1 = Cxk + vk (7.6)

where

A =

 1 0.1

−0.1 1

 ,
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B =

 0.01 0.01 0

0 −0.01 0

 ,

C =

 1 0

0 1

 ,

and the bilinear term zk = xk ⊗ xk (xk is the state vector) . The random noise wk

and vk are uncorrelated with wk ∼ (0,W ) and vk ∼ (0, V ), where, W = .0004I2 and

V = .0004I2. The initial state is x0 =

 1

1

 .

As usual, the error for the estimated quantities is required in order to state the reli-

ability of the results. The error is provided by the covariance matrix to compute the

difference between the true states and the estimated states. That is, if xk is the true

state, and xtk is the estimated state, then the estimation error can be computed by

the relation

ε =‖ xk − xtk ‖= (xk − xtk)T (xk − xtk). (7.7)

Now, in the bilinear Kalman filter, the estimated state is xk+1. The value of xkk+1

can be obtained by applying the equations which are given in Theorem 5.3.1. After

running the algorithm, we find that the error between the true states and the estimated

states via the bilinear Kalman filter is very small. The error in the case of the bilinear
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Kalman filter is given in Figures 7.1.

In the bilinear Kalman smoother, the estimated state is xtk+1, for t > k + 1. The

estimated state for the Lotka-Volterra model can be computed also by using the

bilinear Kalman smoother which is given in Theorem 5.4.2. By applying the equations

of this estimator to estimate the state xk, we find that, the error between the true state

and the estimated state is very small as illustrated in Figures 7.2. These results show

that our new estimator (the bilinear Kalman filter and the bilinear Kalman smoother)

work well since it is successfully applicable to a bilinear model due to the good results

which we have obtained in the simulation.
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7.3.2 Simulation of the parameters estimation via the bilinear

EM algorithm

We simulate the utility of the bilinear Kalman filter and the bilinear Kalman

smoother for estimating the bilinear system parameters via the well-known bilinear

EM approach. Here, we consider the Lotka-Volterra state-space model (7.5)–(7.6)

where the parameters A,B,C,W and V are unknown. The initial value for the state
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will be x0 =

 1

1

 , such that, x0 ∼ N(µ, P ). The additive noises wk and vk are

uncorrelated with wk ∼ (0,W ) and vk ∼ (0, V ), with initial estimates, W and V . The

estimation for the system parameters of the model (7.5)–(7.6) is determined from this

information about the model via the EM algorithm. We will start by initial guesses

for such parameters, and they are updated recursively until convergence to the true

system. That is, if the estimated parameters are very close to the true parameters,

we will obtain a small error between the estimated state and the true state. In the

E-step, we use Theorem 6.2.1. In the M-step we use Theorem 6.2.3.

In Figure 7.3, we display the error between the true state and the estimated state using

the estimated values of the parameters which we have obtained from the simulation

via the bilinear EM algorithm. The resulting small errors indicate that using the

bilinear EM approach to estimate the exact values of the parameters is very reliable .
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7.3.3 Comparison between the Bilinear Kalman filter and

the ensemble Kalman filter (EnKF) and the extended

Kalman filter (EKF)

The extended Kalman filter (EKF) and the ensemble Kalman filter (EnKF) are fa-

mous filters which are used with the nonlinear models. When we apply theses filters

(EKF and EnKF) with the nonlinear Lotka-Volterra model, we observe good results.

However, when we compare the results by applying the bilinear Kalman filter with
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the corresponding results by applying the extended Kalman filter (EKF) and the cor-

responding results by applying the ensemble Kalman filter (EnKF), we find that the

results of the error between the true states and the estimate states by applying the bi-

linear Kalman filter are smaller than the error from applying the EKF and the EnKF.

That is, the bilinear Kalman filter gives a more accurate result than the EKF and the

EnKF. These results are described in the following figures.
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