MULTI-OBJECTIVE OPTIMIZATION MODELS FOR PROCESS TARGETING

 DEANSHIP OF GRADUATE STUDIES KING FAHD UNIVERSITY OF PETROLEUM \& MINERALSDHAHRAN, SAUDI ARABIA

In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE In

SYSTEMS ENGINEERING

JANUARY 2011

DEANSHIP OF GRADUATE STUDIES

This thesis, written by ASHRAF AHMED A. EL-GA'ALY under the direction of his thesis advisor and approved by his committee, has been presented to and accepted by Dean of Graduate Studies, in partial fulfillment of the requirement for the degree of MASTER OF SCIENCE IN SYSTEMS ENGINEERING.

Prof. Shokri Selim (Member)

Dean of Graduate Studies

Date $21 / 511$

Dedicated to

My Family Members

Father, Mother, Tariq, Dalia, Doa'a, Dania \& \mathcal{L} Marianne
$\mathcal{A l s o}$ in $\mathfrak{M e m o r i a m ~ o f ~} \mathcal{M y}$ Grandfather \mathcal{L} M \mathcal{M} Grandmother

ACKNOWLEDGMENT

All praises are for ALLAH, the most compassionate, the merciful. May peace and blessing be upon his prophet Mohammed (PBUH), his family and his companions. I thank ALLAH (SWT) for giving me the knowledge and patience to complete this thesis.

Acknowledgment is due the king Fahd University of Petroleum and Minerals for giving me this chance to accomplish this achievement. I appreciate the stimulating and pleasant environment in the university. Special thanks and appreciation to the Systems Engineering Department.

Many people supported me during the completion of this thesis with criticism, helpful, assistance and references. I'm deeply indebted and thankful to my academic and thesis advisor, Professor Salih Duffuaa, for this guidance, encouragement and support. He acted like a father more than an academician. Also, I would like to thank the committee members, Professor Shokri Selim and Dr. Chawki Fedjki. Their advice and patience in this thesis and during the entire master program and the courses they taught to me is appreciated. Special thanks to Professor Shokri Selim for his valuable effort and motivation.

Thanks are due to my friends and mates for their interest and cooperation, especially Mr . Mohammed Elhassan Seliaman for helping me with my admission. Thanks also due to everyone dropped a smile or a good wish on my way.

Last but certainly not least, I would than my family for their support, motivation and stand beside me. I would like to show my gratitude to every member of my dear family for the generous love and encouragement they give to me. This thesis is dedicated to all of them.

Table of Contents

LIST OF TABLES VII
LIST OF FIGURES IX
THESIS ABSTRACT (English) XIII
THESIS ABSTRACT (Arabic) XIV
CHAPTER 1 1
INTRODUCTION 1
1.1. PREFACE 1
1.2. DEFINITIONS OF QUALITY 1
1.2.1 STATISTICAL PROCESS CONTROL 2
1.2.2 QUALITY ASSURANCE 2
1.2.3 QUALITY ENGINEERING 3
1.2.4 QUALITY LOSS FUNCTION 4
1.2.5 TOTAL QUALITY MANAGEMENT 5
1.3. PROCESS TARGETING 6
1.4. INSPECTION 7
1.5. THESIS ORGANIZATION 9
CHAPTER 2 10
LITERTURE REVIEW AND OBJECTIVES 10
2.1 PREFACE 10
2.2 LITERTURE REVIEW 10
2.3 THESIS OBJECTIVES 28
2.4 MULTI-OBJECTIVE OPTIMIZATION (MOO) 28
2.5 PROCESS TARGETING MODEL 30
2.5.1 DESCRIBTION OF THE PRODUCTION PROCESS 31
2.6 PROBLEM FORMULATION 33
2.7 CONCLUSION 34
CHAPTER 3 35
MULTI-OBJECTIVE PROCESS TARGETING MODEL WITH 100\% ERROR-FREE INSPECTION SYSTEM 35
3.1 PREFACE 35
3.2 STATEMENT OF PROBLEM 35
3.3 MODEL DEVELOPMENT 36
3.3.1. OBJECTIVE I (PROFIT OBJECTIVE FUNCTION) 36
3.3.2. OBJECTIVE II (INCOME OBJECTIVE FUNCTION) 38
3.3.3. OBJECTIVE III (PRODUCT UNIFORMITY OBJECTIVE FUNCTION) 41
3.3.4. THE MULTI-OBJECTIVE OPTIMIZATION MODEL 43
3.4 RESULTS AND SENSITIVITY ANALYSIS 43
3.4.1. SOLUTION METHODOLOGY 43
3.4.2. NUMERICAL EXAMPLE 45
3.4.3. SENSITIVITY ANALYSIS FOR THE PARAMETERS 48
3.5 CONCLUSION 56
CHAPTER 4 57
MULTI-OBJECTIVE PROCESS TARGETING MODEL WITH 100\% ERROR-PRONE INSPECTION SYSTEM 57
4.1 PERFACE 57
4.2 STATEMENT OF PROBLEM 58
4.3 MODEL DEVELOPMENT 60
4.3.1. OBJECTIVE I (PROFIT OBJECTIVE FUNCTION) 61
4.3.2. OBJECTIVE II (INCOME OBJECTIVE FUNCTION) 65
4.3.3. OBJECTIVE III (PRODUCT UNIFORMITY OBJECTIVE FUNCTION) 71
4.3.4. THE MULTI-OBJECTIVE OPTIMIZATION FRAMEWORK 75
4.4 RESULTS AND SENSITIVITY ANALYSIS 76
4.4.1. SOLUTION METHODOLOGY 76
4.4.2. NUMERICAL EXAMPLE 77
4.4.3. SENSITIVITY ANALYSIS FOR THE PARAMETERS 85
4.5 CONCLUSION 90
CHAPTER 5 91
MULTI-OBJECTIVE PROCESS TARGETING MODEL WITH SAMPLING PLAN AND ERROR- FREE INSPECTION SYSTEM 91
5.1 PREFACE 91
5.2 DESCRIBTION OF THE PRODUCTION PROCESS 92
5.3 STATEMENT OF THE PROBLEM 94
5.4 MODEL DEVELOPMENT 94
5.4.1. OBJECTIVE I (PROFIT OBJECTIVE FUNCTION). 96
5.4.2. OBJECTIVE II (INCOME OBJECTIVE FUNCTION) 98
5.4.3. OBJECTIVE III (PRODUCT UNIFOMITY OBJECTIVE FUNCTION) 99
5.4.4. MULTI-OBJECTIVE OPTIMIZATION MODEL 101
5.5 RESULTS AND SENSITINITY ANALYSIS 102
5.5.1. SOLUTION METHODOLOGY 102
5.5.2. NUMERICAL EXAMPLE 103
5.5.3. SENSITIVITY ANALYSIS 107
5.6 CONCLUSION 120
CHAPTER 6 121
MULTI-OBJECTIVE PROCESS TARGETING MODEL WITH SAMPLING PLAN AND ERROR- PRONE INSPECTION SYSTEM 121
6.1 PREFACE 121
6.2 STATEMENT OF PROBLEM 122
6.3 MODEL DEVELOPMENT 123
6.3.1. OBJECTIVE I (PROFIT OBJECTIVE FUNCTION) 126
6.3.2. OBJECTIVE II (INCOME OBJECTIVE FUNCTION) 128
6.3.3. OBJECTIVE III (PRODUCT UNIFRMITY OBJECTIVE FUNCTION) 129
6.3.4 THE MULTI-OBJECTIVE OPTIMIZATION MODEL 131
6.4 RESULTS AND SENSITIVITY ANALYSIS 132
6.4.1. SOLUTION METHODOLOGY 132
6.4.2. NUMERICAL EXAMPLE 133
6.4.3. SENSITIVITY ANALYSIS FOR THE PARAMETERS 135
6.5 CONCLUSION 165
CHAPTER 7 166
CONCLUSION 166
7.1 PREFACE 166
7.2 MODELS COMPARISON 166
7.2.1. MODEL 1 VURSES MODEL 2 167
7.2.2. MODEL 3 VURSES MODEL 4 168
7.3 SUMMARY 168
7.4 FUTURE RESEARCH 169
Appendix A 172
Appendix B 179
Appendix C 262
Appendix D 274
REFERENCES 290
VITA 298

LIST OF TABLES

Table 3-1 The optimum values of the three objective functions of model 1 45
Table 3-2 The set of non-inferior solution of model 1 48
Table 3-3 The sensitivity analysis of the process standard deviation on the profit objective function of model 1 48
Table 3-4 The sensitivity analysis of the process standard deviation on the income objective function of model 1 49
Table 3-5 The sensitivity analysis of the process standard deviation on the product uniformity objective function of model 1 49
Table 3-6 The sensitivity analysis of the cost parameters on the profit objective function of model 1 51
Table 3-7 The sensitivity analysis of the cost parameters on the income objective function of model 1 52
Table 3-8 The sensitivity analysis of the cost parameters on the product uniformity objective function of model 1 53
Table 4-1 Loss in profit due to product misclassification 60
Table 4-2 Penalties due to product misclassification 60
Table 4-3 The optimum values of the three bojective functionsof model 2. 78
Table 4-4 The set of non-inferior solutions of model 2 79
Table 4-5 The sensitivity analysis of the correlation coefficient on the profit objective function of model 2 85
Table 4-6 The sensitivity analysis of the correlation coefficient on the income objective function of model 2 86
Table 4-7 The sensitivity analysis of the correlation coefficient on the product uniformity objective function of model 2 86
Table 4-8 The sensitivity analysis of the penalty costs on the profit objective function of model 2 87
Table 4-9 The sensitivity analysis of the penalty costs on the income objective function of model 2 88
Table 4-10 The sensitivity analysis of the penalty costs on the product uniformity objective function of model 2 89
Table 5-1 The optimum objevtive values of model 3. 104
Table 5-2 The set of non-inferior solutions of model 3 107
Table 5-3 The sensitivity analysis of the process standard deviation on the profit objective function of model 3 107
Table 5-4 The sensitivity analysis of the process standard deviation on the income objective function of model 3 108
Table 5-5 The sensitivity analysis of the process standard deviation on the product uniformity objective function of model 3 108
Table 5-6 The sensitivity analysis of the cost parameters on the profit obective function of model 3 109
Table 5-7 The sensitivity analysis of the cost parameters on the income objective function of model 3 111
Table 5-8 The sensitivity analysis of the cost parameters on the product uniformity objective function of model 3 112
Table 5-9 The sensitivity analysis of the sampling plan on the profit objective function of model 3 114
Table 5-10 The sensitivity analysis of the sampling plan on the income objective function of model 3 116
Table 5-11 The sensitivity analysis of the sampling plan on the product uniformity objective function of model 3 118
Table 6-1 The optimum objective values of the model 4 134
Table 6-2 The set of non-inferior solutions of model 4 134
Table 6-3 The sensitivity analysis of the two error types on the profit objective function of model 4 135
Table 6-4 The sensitivity analysis of the two error types on the income objective function of model 4 145
Table 6-5 The sensitivity analysis of the two error types on the product uniformity objective function of model 3 154
Table 7-1 Comparison between model 1 and model 2 167
Table 7-1 Comparison between model 3 and model 4 168

LIST OF FIGURES

Figure1-1 Step loss function 5
Figure 1-2 Taguchi symmetric quadratic loss function. 5
Figure 2-1 The classifications of the production process 31
Figure 2-2 The basic production process 32
Figure 3-1 Plot of the profit objective function of model 1 46
Figure 3-2 Plot of the income objective function of model 1 46
Figure 3-3 Plot of the product uniformity objective function of model 1 47
Figure 3-4 Plots of the three objective functions of model 1 47
Figure 4-1 Cut off points for the inspection error 59
Figure 5-1 The describtion of the production process 93
Figure 5-2 Plot of the profit objective function of model 3 105
Figure 5-3 Plot of the income objective function of model 3 105
Figure 5-4 Plot of the product uniformity objective function of model 3 106
Figure 5-5 Plot of the three objective functions of model 3 106
Figure 6-1 The profit objective function versus type II error for type I error equal 0. 138
Figure 6-2 The profit objective function versus type I error for type II error equal 0. 138
Figure 6-3 The profit objective function versus type II error for type I error equal 0.01 139
Figure 6-4 The profit objective function versus type I error for type II error equal 0.01 139
Figure 6-5 The profit objective function versus type II error for type I error equal 0.05 140
Figure 6-6 The profit objective function versus type I error for type II error equal0.05... 140
Figure 6-7 The profit objective function versus type II error for type I error equal0.1141
Figure 6-8 The profit objective function versus type I error for type II error equal $0.1 \ldots \ldots . ~ . ~ . ~ 141 ~$

Figure 6-9 The profit objective function versus type II error for type I error equal 0.15.. 142

Figure 6-10 The profit objective function versus type I error for type II error equal 0.15 142
Figure 6-11The profit objective function versus type II error for type I error equal 0.2 143
Figure 6-12 The profit objective function versus type I error for type II error equal 0.2 143
Figure 6-13 The profit objective function versus type II error for type I error equal 0.25 144
Figure 6-14 The profit objective function versus type I error for type II error equal 0.25 144
Figure 6-15 The income objective function versus type II error for type I error equal 0. 147
Figure 6-16 The income objective function versus type I error for type II error equal 0. 148
Figure 6-17 The income objective function versus type II error for type I error equal 0.01. 148
Figure 6-18 The income objective function versus type I error for type II error equal 0.01. 149
Figure 6-19 The income objective function versus type II error for type I error equal0.05 .149
Figure 6-20 The income objective function versus type I error for type II error equal 0.05 150
Figure 6-21 The income objective function versus type II error for type I error equal 0.1 150
Figure 6-22 The income objective function versus type I error for type II error equal 0.1 151
Figure 6-23 The income objective function versus type II error for type I error equal 0.15 151
Figure 6-24 The income objective function versus type I error for type II error equal 0.15 152

Figure 6-25The income objective function versus type II error for type I error equal

Figure 6-26 The income objective function versus type I error for type II error equal

Figure 6-27 The income objective function versus type II error for type I error equal 0.25 153
Figure 6-28 The income objective function versus type I error for type II error equal 0.2 154
Figure 6-29 The product uniformity objective function versus type II error for type I error equal 0 157
Figure 6-30 The product uniformity objective function versus type I error for type II error equal 0 158
Figure 6-31 The product uniformity objective function versus type II error for type I error equal 0.01 158
Figure 6-32 The product uniformity objective function versus type I error for type II error equal 0.01 159
Figure 6-33 The product uniformity objective function versus type II error for type I error equal 0.05 159
Figure 6-34 The product uniformity objective function versus type I error for type II error equal 0.05 160
Figure 6-35 The product uniformity objective function versus type II error for type I error equal 0.1 160
Figure 6-36 The product uniformity objective function versus type I error for type IIerror equal 0.1161
Figure 6-37 The product uniformity objective function versus type II error for type I error equal 0.15 161
Figure 6-38 The product uniformity objective function versus type I error for type II error equal 0.15 162
Figure 6-39 The product uniformity objective function versus type II error for type I error equal 0.2 162
Figure 6-40 The product uniformity objective function versus type I error for type II error equal 0.2 163
Figure 6-41 The product uniformity objective function versus type II error for type I error equal 0.25 163

Figure 6-42 The product uniformity objective function versus type I error for type II error equal 0.25 .

THESIS ABSTRACT

Name:	ASHRAF AHMED A. EL-GA'ALY
Title:	MULTI-OBJECTIVE OPTIMIZATION MODELS FOR PROCESS TARGETING
Degree:	MASTER OF SCIENCE
Major Field:	SYSTEMS ENGINEERING
Date of Degree:	JANUARY 2011

One of the most important decision problems in production planning and quality control is the determination of the optimal process parameters (mean and variance). Traditionally process targeting problems are formulated as a single objective optimization model. In this thesis the concept of multi-objective optimization is introduced to the process targeting problem. The multi-objective models that have been developed have three objectives: profit maximization, income maximization and product uniformity maximization measured by Taguchi quadratic loss function. Four multi-objective optimization models are developed under four different inspection policies. The first multi-objective optimization model is developed under 100% error-free inspection system. In the second multi-objective optimization model the inspection error free assumption is relaxed using cut-off point for inspection instead of the original specification limits. The third multi-objective optimization model is developed under sampling plan with error-free inspection system. The fourth multi-objective optimization model is developed where the sampling plan inspection system is subject to errors. A suitable and reliable multi-objective optimization technique is employed to generate the set of non-inferior solutions (Pareto optimal set). The utility of the models has been demonstrated using numerical examples. Sensitivity analysis is conducted to study the effect of the model's parameters and inspection errors on the sets of non-inferior solutions.

Keywords: process targeting, quality control, 100% inspection, sampling plan, inspection error, multi-objective optimization, non-inferior solution

KING FAHD UNIVERSITY OF PETROLUEM AND MINERALS

DHAHRAN-SAUDI ARABIA

خلاصة الاطروحة

الاسم: اشرف احمد علي الجعلي

العنوان: نماذج متعددة الاهداف لتحديد القيم المثلى للعمليات الصناعية
التخصص: هندسة النظم التناريخ: يناير2011

ازداد في الاونة الاخيرة الاهتمام باقتصـاديات ضبط الجودة لما لها من اههية قصوى في زيادة الارباح للمسؤسسات الصناعبة. من اهم مجالات اقتصـاديا ضبط الجودة "التصميم الاقتصـادي لبلر ميترات العمطيات الصناعية". منذ خمسينيات القرن الماضي تم اجر اء العديد من الدراسات في ه ذا المجال، كل هذه الدراسات اقترحت نماذج امثلية ذات دالة هدف واحدة "غاليا زيادة الربح او خفض التكلفة" للوصول الى القيم المثلىى لهذه البرميترات. في هذه الاطروحة تم استتباط مجمو عة من النماذج لتحديد القيم المثلى للبوميترات العمليات الصناعية باستخدام مفهوم الامثلية متعددة الاهداف . هذه الاهداف هي: زيادة الادة صـافي الارباح، زيادة صـافي الاخل و زيادة انتظام المنتجات باستخدام دالة الخسارة التربيعية.

في هذه الاطروحة تم بناء اربعة نماذج ذات اهداف متعددة تحت فرضيات فحص مختلفة للمنتج النموذج الاول تحت فرضية ان كل عناصر المنتج تفحص بلا اخطاء في عملية الفحص. طوُر النموذج الثاني حيث ثغص كل عناصر المنتج و لكن بفرض وجود اخطاء في نظام الفحص. النموذج الثنالث يتم فيه فحص المنتج بالاعتماد على عينة عشوائية من المنتج مع خلو الفصص من الاخطاء . اخيرا طوُر النموذج الرابع بلعخال فرضية وجود اخطاء في الفحص السابق ذو العينات العشو ائية.

تم حل امثلة للنماذج الاربعة السابقة لاختبار هذه النماذج باستخدام خوارزمية مناسبة لانشاء مجمو عة الحلول المثلى تحت مبدأ باريتو. كذلك درست و اختبرت حساسية هذه النماذج للتغيير في البارمترات المختلفة و للاخطاء في الفحص. تم ايضـا مقارنة هذه النماذج و نتائجها عند خلو نظام الفصص من الاخطاء مع اذا كان هناك اخطاء في الفحص. ختمت الاطروحة بـثهايم توصبات و مقترحات للبحوث المستقلبية في هذا المجال.

درجة المـاجستير العلوم

جامعة الملك فهد للبترول و المعادن
الظهران- المملكة العربية السعودية

يناير 2011

CHAPTER 1

INTRODUCTION

1.1. PREFACE

The objective of this chapter is to provide an overview of quality control and quality assurance approaches. The overview includes the basic definitions of quality, quality models and thesis organization.

1.2. DEFINITIONS OF QUALITY

In any production process, the product passes through a number of operations before it takes its final form. During these operations, a certain amount of variability will exist due to the presence of variation of raw material, environment etc. From this sense, quality control considered as an essential method to minimize this variability and improve the final product quality.

Quality itself is difficult to define, it is an abstract term. The definition has evolved over time. The following are the classical definitions of quality. Montgomery (2005)

- Definition 1: Quality is fitness for use.
- Definition 2: Meeting specifications.
- Definition 3: inversely proportional to variability.

Quality control (QC) can be defined as a procedure or set of procedures intended to ensure that a manufactured product or performed service adheres to a defined set of quality criteria or meets the requirements of the client or customer. In the next subsection established areas of quality will be presented.

1.2.1 STATISTICAL PROCESS CONTROL

Statistical process control (SPC) is the application of statistical methods to monitor and control a process to ensure that it operates at its full potential to produce conforming products. Under SPC, a process behaves predictably to produce as much conforming product as possible with the least possible waste. While SPC has been applied most frequently to control manufacturing lines, it applies equally well to any process with a measurable output. Key tool in SPC are control charts, a focus on continuous improvement and designed experiments. Montgomery (2005)

1.2.2 QUALITY ASSURANCE

It is a planned and systemic set of activities to ensure that variances in processes are clearly identified, assessed and improving defined processes for fulfilling the requirements of customers and product or service makers. This is usually done through standards such as ISO and quality auditing.

1.2.3 QUALITY ENGINEERING

The quality engineering philosophy Taguchi, et al. (1989) is not only to consider the quality of final product, but it considers the quality concept and quality cost through all phases of a product's life cycle. The life cycle begins with product planning and continues through the phases of product design, production process design, on-line production process control, market development and packaging, as well as maintenance and product services. From this standpoint, product quality is determined by the economic losses imposed upon society from the time a product is released for shipment. These losses caused by deviation in a product's functional characteristics from their specified nominal values.

Two types of uncontrollable factors can cause deviation from target values, external and internal factors. Operating environment variables (e.g. temperature) are examples of external factors. There are two categories of internal factors, deterioration (e.g. wearing out of parts) and manufacturing process imperfection (e.g. variation in machine setting).

Quality control activities at the product planning, design and production engineering phase are referred to as off-line quality engineering, whereas the quality control activities during actual production phase are referred to as on-line quality engineering. In the offline quality engineering three steps must be followed which namely system design, parameter design and tolerance design. On-line quality engineering includes activities such as production inspection, employment of adjustment processes, production process improvement and use of automatic control system.

1.2.4 QUALITY LOSS FUNCTION

Earlier, the concept of defective was widely used as a measurement of quality level. So, the loss incurs only if the shipped product is defective and any item falls within the specification limits is classified as a conforming item and no loss is incurred. Otherwise it is classified as nonconforming and economic loss is incurred. The step loss function was used to evaluate the quality loss of out of specifications (see Figure 1-1), but the loss is always incurred when a product's quality characteristic deviates from its target value, regardless of how small the deviation is. Taguchi proposed a quadratic penalty function for this deviation known as Taguchi quadratic loss function (see Figure 1-2).Taguchi, et al. (1989).

Taguchi function minimizes the loss of deviating from the target mean. Assume the loss due to a defective item is A, denote the loss function by $L(y)$ and expand it in a Taylor series about the target mean:
$L(y)=L(T)+L^{\prime}(T)(y-T)+\frac{L^{\prime \prime}(T)}{2}(y-T)^{2}+\cdots(1.1)$
$L(y)=0$ When $y=T$ and the minimum value attained at this point, its fist derivative with respect to T is zero. When we neglect terms with power higher than 2, equation (1.1) reduces to
$L(y)=\frac{L^{\prime \prime}(T)}{2}(y-T)^{2}(1.2)$
$L(y)=k(y-T)^{2}(1.3)$

Figure1-1 Step loss function

Figure1-2 Taguchi symmetric quadratic loss function

1.2.5 TOTAL QUALITY MANAGEMENT

Total Quality Management (TQM) is an approach that seeks to improve quality and performance which will meet or exceed customer expectations. This can be achieved by integrating all quality-related functions and processes throughout the company. TQM looks at the overall quality measures used by a company including managing quality
design and development, quality control and maintenance, quality improvement, and quality assurance. TQM takes into account all quality measures taken at all levels and involving all company employees. Besterfield, et al. (2003)

Another essential topic in quality control area is known as process targeting. This topic is discussed in detail in the next separate section.

1.3. PROCESS TARGETING

An important aspect in quality control area is the determination the optimum process parameter values from economic perspective, which is known as process targeting problem. This problem relates the product quality and conformity to the production cost by finding the optimum parameters and settings.

Due to the inherent variability discussed earlier, a product may or may not be able to meet the desirable specifications. To increase the acceptance level of a product, the process parameters could be set higher than their intended level, resulting in a cost of over doing (give away cost). Therefore, the process targeting problem objective is to find the optimum parameter settings which achieve the both issues, product quality and conformity and minimize the total cost resulting from quality cost, manufacturing cost, material cost, etc.

The initial process targeting model has been proposed by Springer (1951) which is defined as follows:

A can filling process is considered. The quality characteristic is assumed to be the net weight of the filled can. The value of this variable is a random variable y, which assumed to be normally distributed with known variance. This quality characteristic has a lower and upper specification limit, $L S L$ and $U S L$, respectively. A product is accepted if y falls within the specifications ($L S L \leq y \leq U S L$) and rejected otherwise. The inspection assumed to be 100%, automatic and error free. Finally, the objective is to minimize the expected total production cost.

The model formulated by Springer (1951) has been extended and modified several times in the literature. These extended models, proposed and relaxed different type of assumption. The assumptions include reprocessing the rejected items, measurement error, deal with the profit instead of the cost, use Taguchi quadratic loss function, etc.

This thesis focuses on this area of quality control.

1.4. INSPECTION

Inspection is the process of examining a product or a process to asses if specifications are met or not. It is usually the classification of a product under quality control aspect is done by inspection. The inspection can be done manually or automatic and sometime requires a specific type of measurement systems and tools. The most common inspection policies are no inspection, 100% inspection and acceptance sampling.

In the no inspection policy as the name states, there is no inspection done at all. It is obvious that, this policy involves a great amount of risk of accepting defective products.

In the 100% inspection policy all the produced items are inspected, removing the defective ones (which may be reprocessed, scrapped, replaced with good items, etc.). The incurred cost by this policy is higher than any other policy, but the outgoing quality is better.

The previous two policies are two extremes since the former incurs low cost but low outgoing quality also, where the later has a perfect outgoing quality but incurs high cost. In the middle of these two extremes the acceptance sampling policy takes place. In this policy a sample should be picked at random from the lot, and on the basis of information that was yielded by the sample, a decision should be made regarding the disposition of the lot. In general, the decision is either to accept or reject the lot. There are several types and dimensions of acceptance sampling plans; one should determine which plan to use according to the process nature and the precision. Some of these dimensions are single, double or multiple (sequential) sample plans, rectifying or non-rectifying plan etc.

Finally, an essential issue with any inspection policy is that of the inspection perfection Hong and Elsayed (1999) and Duffuaa and Siddiqui (2003).The inspection system is not perfect. The terms accuracy and precision are often used in this connection. Accurate measurement system is the one that contains no systemic negative or positive error about the true value, which is known as unbiased measurement. On the other hand, high precision means that the measurement system has a little or no random variability in the measured value.

1.5. THESIS ORGANIZATION

The problem of process targeting is the focus of this thesis. The problem of process targeting has been formulated as a multi-objective optimization problem under different conditions

The rest of the thesis is organized as follows: chapter 2 presents the literature review. Chapter 3 contains the first multi-objective optimization model with 100% error-free inspection is used as means of quality control. Chapter 4 contains the second multiobjective optimization model under 100% error-prone inspection system. Chapter 5 contains the third multi-objective optimization model with sampling plan error-free inspection system. Chapter 6 contains the fourth multi-objective optimization model under sampling plan error-prone inspection system. Finally, chapter 7 contains summary of the results of the four above developed models and future research suggestions.

CHAPTER 2

LITERTURE REVIEW AND OBJECTIVES

2.1 PREFACE

The purpose of this chapter is to present the literature review on the process targeting area. Next, the concept of the multi-objective optimization and some of the algorithms for solving the multi-objective optimization models are explained. The basic models which are used in this thesis are presented at the end of the chapter.

2.2 LITERTURE REVIEW

Springer (1951) is the first who initiated the targeting problem. He has developed the first model to determine the optimum process target mean for a canning process. The model assumed to be normally distributed with upper and lower specification limits and known mean. He has considered the cost of under filling and over filling as fixed but different. The model aims to find the optimum process target mean that minimizes the expected total cost.

Bettes (1962) addressed the same model as Springer (1951). This model based on trial and error to find the optimum process target mean.

Hunter and Kartha (1977) proposed a model to determine the optimum process target mean of a filling process that maximizes the expected total income. The quality characteristic assumed to be normally distributed with lower specification limit. Cans with quality characteristic value above the specification limit are sold at a fixed price and cans with quality characteristic value below the specification limit are rejected and sold in secondary markets at a reduced price. They have provided a monograph that aids to find the optimum process target mean for any set of cost variables.

Nelson (1979) provided a monograph for the model presented in Springer (1951).

Carlsson (1984) modified the work of Hunter and Kartha (1977) to include the fixed cost and the variable cost and applied his model in a steel beam industry. He derived a more general income function where a premium was added when the product displayed a high quality and a deduction was made when the product exhibited an inferior quality.

Bisgaard, et al. (1984) extended the model of Hunter and Kartha (1977). The assumption that the under filled cans are sold in secondary markets is unrealistic as empty cans are sold at the same reduced prices as well as near full can. In this model cans drop below the lower specification limit are sold in secondary markets at reduces price proportional of the can content. Industrial examples of different distributions of the process are provided such as, normal, lognormal and Poisson distributions.

Golhar (1987) the assumption made in Bisgaard, et al. (1984) is unrealistic because it creates infinite number of selling prices for each filling amount below the specification limit. Hence, Golhar (1987) modified this assumption and formulated another model. In this model cans drop below the specification limit are empted and refilled at fixed reprocessing cost.

Vidal (1988) provided a graphical method to determine the optimum process target mean for the model in Bisgaard, et al. (1984).

Golhar and Pollock (1988) extended the model in Golhar (1987) to include an upper specification limit, and reduce the cost associated with reprocessing cans exceed the upper specification limit. This model turn to the model in Golhar (1987) as the upper specification limit tends to infinity.

Rahim and Banerjee (1988) are the first to consider a process with linear drift. They have proposed a search algorithm and graphical method to find the optimum production run length.

Carlsson (1989) proposed a model to find the optimum process target mean under acceptance sampling for the case of two variable quality characteristics.

Schmidt and Pfeifer (1989) investigated the effects of the variance reduction and the associated cost saving in a single level canning process. The relationship between the percentage reduction in the standard deviation and the cost saving, assumed to be simple linear relationship.

Schmidt and Pfeifer (1991) extended the model in Golhar (1987) to a two level canning process to determine both process target mean and the upper specification limit. A comparison between a single and two level canning process and the associated cost saving is proposed also.

Boucher and Jafari (1991) extended the model in Hunter and Kartha (1977) by introducing a single sampling inspection plan instead of 100% inspection.

Molly (1991) formulated the problem of a uniform filling process under compliance testing. The objective was to minimize the non-compliance and give-away cost.

Golhar and Pollock (1992) studied the effect of variance reduction on the expected total cost for the model in Golhar and Pollock (1988).

Dodson (1993) developed a cost model to determine the optimum process mean that minimizes the total expected cost considering both upper and lower specification limits. He assumed that the variable price for conforming items with a linear relation with the ingredient amount.

Bai and Lee (1993) formulated a model to determine the optimum target mean of a filling process in which inspection based on a correlated variable instead of the quality characteristic itself.

Arcelus and Rahim (1994) proposed an algorithm to determine the optimum target mean for both variable and attribute quality characteristic simultaneously.

Al-Sultan (1994) addressed the problem of two machines in series with inspection sampling plan. He has proposed an algorithm to find the optimum target mean for two machines in series, with single sampling inspection at each machine.

Lee andKim (1994) considered a filling process where a lower specification limit is given and the outgoing cans are inspected with a surrogate variable which is correlated with the quality characteristic of interest. Under and over filled cans are emptied and refilled. A profit model is constructed which involves selling price, filling, rework, inspection, and penalty costs to determine the optimal process mean, cutoff value and upper specification limit.

Das (1995) proposed a non-iterative numerical method to find the optimum process target mean based on Hunter and Kartha (1977) model and discussed the importance of process variability.

Ladeny (1995) proposed a model where the over and under filled item are reprocessed at a different cost. The model objective is to determine the optimum process target mean that maximizes the expected total profit.

Mihalko and Golhar (1995) were the first who consider the process variance as a decision variable as well as the process target mean. The proposed model finds a confidence interval for the optimum process target mean for the case of unknown process variance.

Liu, et al. (1995) developed a model to determine the optimum process target mean and upper specification limit for a filling process with limited capacity constraint.

Arcelus (1996) introduced Taguchi quadratic loss function. The process target mean in this model is trade-off between the target process mean that maximizes (minimizes) the expected total profit (the expected total cost) for the manufacturer and the target mean of the society.

Aecelus and Rahim (1996) presented four models for different assumptions related to finding a trade-off between conformity and uniformity. Taguchi quadratic loss function has been used to measure products uniformity.

Chen and Chung (1996) considered the quality selection problem in which the process mean shifts to out of control state as a result of an assignable cause at a random point in time that follows exponential distribution. An economic model was proposed for determining the optimum process target mean and production run length, which are determined by the tradeoff among the expected total revenue, the adjustment cost and the inspection cost.

Pulak and Al-Sultan (1996) developed a model to determine the optimum process target mean under rectifying inspection plan that maximizes the expected total profit. They have also considered the effect of variance reduction in the cost saving.

Lee and Jang (1997) introduced the case of three-class screening. In this model the products are sold in two different markets with different price structures. They have developed two models in this paper. The first model, to determine the optimum process target mean when the inspection based on the quality characteristic it's self. The second
model, to determine the optimum process target mean when the inspection based on a correlated variable.

Liu and Taghavachari (1997) studied the economic selection of the process target mean and the upper specification limit of filling process under capacity constraints. The filling amount assumed to follow an arbitrary continuous distribution, and the upper specification limit can be presented by a very simple formulation regardless of the shape of distribution.

Pulak and Al-Sultan (1997) presented a computer program for nine different process targeting problem models.

Al-Sultan and Al-Fawzan (1997a) extended the model in Rahim and Banerjee (1988), assumed a process with random linear drift with known standard deviation and both specification limits. The model objective is to determine the optimum process target mean and production cycle length.

Al-Sultan and Al-Fawzan (1997b) investigated the effect of variance reduction in the expected total cost in the model proposed by Rahim and Banerjee (1988). The optimum process target mean and production run length are determined.

Roan, et al. (1997) considered other production parameters i.e. setup cost and raw material procurement policies. They have adopted two discount polices in the model and assumed that the production rate is a function of the process mean.

Cain and Janssen (1997) proposed a model to determine the optimum process target mean where the cost is asymmetrical across the target. The cost assumed to be linear below lower specification limit and quadratic above upper specification limit.

Pollock and Golhar (1998) assumed a filling process with constant demand and capacity constraint. Using a profit function that includes the cost of production and a penalty for under-production, the optimum process target mean can be found.

Al-Sultan and Al-Fawzan (1998) developed a model to determine the optimal initial process mean and production run which minimizes the total cost. They studied a multistage production system where the processing at each stage was performed by a process that deteriorated randomly with time.

Wen and Mergen (1999) proposed a model that helps minimize the quality costs when the process is not capable of meeting specification limits. The proposed method, which is a special case of the one proposed by Springer (1951), is a short-term measure to deal with the loss due to incapability of the process. The process is assumed to be in statistical control but not 100% capable of meeting the specification limits.

Hong and Elsayed (1999) studied the effect of measurement error on the optimal target mean for the case of two-class screening process.

Hong, et al (1999) considered the situation where there are several markets with different cost/price structures. They have provided methods for determining the optimum target mean and specification limits for each market those maximize the expected total cost. They have assumed that all items are inspected prior to shipment, and the inspection is
performed on a variable which is highly correlated with the quality characteristic of interest.

Pfeifer (1999) presented a general model for a filling process consisting of a piecewise linear profit function with two break points.

Phillips and Cho (2000) developed a model to determine the optimum process target mean of skewed and symmetric process distribution. Beta distribution is considered in the model which can be shaped and scaled to fit most of skewed and symmetric process distributions. The model uses the quadratic loss function to evaluate the quality cost within the specification and determines the optimum process target mean which minimizes the expected total cost.

Rahim and Al-Sultan (2000) considered the problem of simultaneously determining the optimal target mean and target variance for a process. The model aims to reduce the total expected cost and the product variability.

Rahim and Shaibu (2000) proposed a model similar to the model in Springer (1951) but in term of profit instead of cost. A product within the specifications incurs a profit p. a product below the lower specification limit or above the upper specification limit incurs cost Cl or Cu , respectively. The model determines the optimum process target mean which maximizes the expected total profit.

Roan, et al. (2000) incorporated the issues associated with production setup and raw material procurement into the classical process targeting problem. The product is assumed to have a lower specification limit, and the non-conforming items are scrapped
with no salvage value. The production cost of an item is a linear function of the amount of the raw material used in producing the item. The proposed model aims to determine the optimum process target mean, production run size and material order quantity which minimize the expected total cost.

Shao, et al. (2000) proposed a model where several grades of consumer specifications may be sold within the same market. In such situations, manufacturers may hold goods that have been rejected by one customer to sell the same goods to another consumer in the same market later. The expected profit function for such firms must consider the holding costs as well as the profits associated with this sales strategy. The model objective is to determine the optimum process target mean that maximizes the expected total profit.

Siddiqui (2001) developed a multi class targeting model under error and error free measurement system. The effect of measurement error eliminate by set optimal cut off points. The product uniformity also considered using Taguchi quadratic loss function.

Hung (2001) presented a trade-off model between the product quality and the adjustment cost to determine both the optimum process target mean and variance, which minimize the expected total cost. The symmetric Taguchi quadratic loss function is adapted to for measuring the loss of profit due to deviate from the process mean within the specification limits.

Lee, et al. (2001) proposed a model to determine the optimum process target mean and specification limits under single and two-stage screening. In single-stage screening case
inspection can be used directly on the quality characteristic of interest or on a variable that is correlated with the quality characteristic.

Lee and Elsayed (2002) considered the problem of determining the optimum process target mean and screening limits of a surrogate variable associated with product quality under a two-stage screening procedure. In this procedure, the surrogate variable is inspected first to decide whether an item should be accepted, rejected or the quality characteristic of interest is then observed to classify the undecided items. The model finds the optimum process target mean and screening limits which maximize the expected total profit.

Chen and Chou (2002) modified Wen and Mergen (1999) model by including Taguchi quadratic loss function for a one sided specification limit to evaluate the quality cost. The model objective is determining the optimum process target mean.

Chen, et al. (2002a) proposed another modified Wen and Mergen(1999) cost model with asymmetric linear and quadratic loss function to measure the quality cost of products within specification limits, for determining the optimum process target mean.

Chen, et al. (2002b) proposed a similar modification in Wen and Mergen (1999) model like Chen et al. (2002) to determine the optimum process target mean. Here, two specific conditions are considered: 1) the process standard deviation is proportional to the process mean. 2) The auto correlated process.

Duffuaa and Siddiqui (2002) proposed two process targeting models for three-class screening. Product uniformity considered in the models using Taguchi quadratic loss function.

Teeravaraprug and Cho (2002) extended Taguchi univariate loss function to a multivariate quality loss function. The model included the same three cost elements. Their model could also be used for the case where co-variances among the quality characteristics exist.

Chen and Chou (2003) proposed another modification in Wen and Mergen (1999) model. They have studied the effect of multiple quality characteristics in the original model. The bivariate quality characteristic and asymmetric quadratic loss function are taking into account in the development of the cost model.

Duffuaa and Siddiqui (2003) proposed a process targeting model for three-class screening. The case of measurement error present in inspection system is considered in this model.

Kim and Cho (2003) proposed a similar model of Phillips and Cho (2000) to determine the optimum process target mean. In this model, Weibull distribution is used to fit most of skewed and symmetric process distributions.

Lee, et al. (2004) used a similar concept as Golhar (1987), with upper and lower specification limits. Over and under filled cans are empted and refill again, with the assumption that the reprocessing cost is proportional of the amount of ingredient in a container can that is not changed after reprocessing. The proposed economic model
consists of the selling price and the cost of production, inspection, reprocessing and quality, the later cost evaluated using Taguchi quadratic loss function. The objective of the model is to determine the optimum process target mean where the process standard deviation is known.

Rahim and Tuffaha (2004) revisited Chen and Chung (1996) problem and used Taguchi's loss function and an upper limit for the process parameter to determine the optimal process mean and production run. They used a sampling inspection in addition to 100% inspection and provided a comparison between them. They showed that the target mean in the sampling case was always higher than the 100% inspection case, while the production run was almost the same in both scenarios.

Bowling, et al. (2004) are the first who discussed the roles of a Markovian approach and then develops the general form of a Markovian model for optimum process target levels within the framework of a multi-stage serial production system which maximize the expected profit per item.

Chen and Chou (2004) modified the model in Hung (2001) to determine the optimum process target mean and variance, by considering both the linear and quadratic asymmetric loss function to evaluate the quality cost.

Kulos (2005) developed a profit model to determine the optimum target mean for a product has two quality characteristics which produced by two machines in series.

Fareedduddain (2005) developed four process targeting models with different inspection policies for two stage production process in series for a product with two quality characteristics.

Teeravaraprug (2005) considered a situation of two market products. In this case, a product was classified into two grades with respect to market specifications. It was reasonably assumed in the model that each grade had its price and the manufacturers could not produce every item to a good grade due to the variation of product performance. An optimization procedure was proposed to identify the optimal initial value of a process target. However, he assumed that the variance was constant which needs to be relaxed in future.

Chen and Chou (2005) further presented a modified Wen and Mergen (1999) model with log-normal distribution. The step loss function and the piecewise linear loss function of product are considered in the modified model to determine the optimum process target mean.

Chen (2005) proposed a modified Pulak and Al-Sultan (1997) model, by considering both the lot tolerance percentage defective (LTPD) and the average outgoing quality limit (AOQL). In this model the optimum process target mean which maximizes the expected total profit is obtained.

Lee, et al. (2005) considered the problem of determining the optimum process target mean and screening limits under single-screening procedure. Two surrogate variables
correlated to the quality characteristic of interest are observed simultaneously in the single-screening procedure.
$\mathbf{L i} \mathbf{(2 0 0 5)}$ stated that, using a quadratic loss function when the actual loss function is non quadratic may yield incorrect input parameter levels. In certain situations, a linear loss function is more appropriate in industrial applications. Hence, the optimum process target mean is determined under a truncated asymmetrical linear loss function to describe unbalanced tolerance design, which minimizes the total expected cost.

Hong, et al. (2006) most of the models in the targeting literature assumed the nominal the best quality characteristic. The authors here have developed a cost model assuming that the quality characteristic of interest is the larger the better (L-Type). The objective of the model is to determine the optimum process mean and tolerance limits.

Jordan and Maghsoodloo (2006) proposed a profit model with fixed selling price, a linear cost to produce and fixed reprocessing cost under the uniform distribution. The objective of this model is to find the optimum process target mean and upper specification limit.

Chen (2006a) proposed a modified Wen and Mergen (1999) cost model with mixed quality loss function to determine the optimum process target mean. The mixed quality loss function includes a quadratic loss function for products within the specifications and a piecewise linear loss function for products out of specifications.

Chen (2006b) presented a modified economic manufacturer quantity (EMQ) model with imperfect product quality. The quality of products within the specifications is measured
using asymmetric quadratic loss function, products drop below the lower specification limit are scrapped and products fall above the upper specification limit are reworked again. Perfect and imperfect rework procedures are considered to determine the optimum process target mean and production quantity.

Mujahid and Duffuaa (2007) proposed a process targeting model for a product with multi-characteristic and these quality characteristics cannot be measured directly but calculated indirectly from multi-input process parameter. The relation between the observed parameters and the required characteristics is addressed using fuzzy techniques. A genetic algorithm is developed to obtain optimal process targets.

Lee, et al. (2007) developed a model for determining the optimum target mean for a production process where multiple products are processed. The quality characteristic of the products assumed to be normally distributed with known variances and common process mean. Product fail to meet the specifications are scrapped. The objective of the model is to find the common process mean which maximizes the expected total profit.

Chen andLai (2007a) proposed a modified Al-Sultan and Pulak (1997) model to determine the optimum process target mean under rectifying inspection plan, with Taguchi quadratic loss function for measuring the quality cost within the specifications. Assume that the non-conforming items found in the sample of accepted lot are replaced by conforming ones.

Chen and Lai (2007b) proposed an integrated model with EMQ model and Chen and Lai (2007a) model to determine the optimum process target mean, specification limits and production quantity which maximize the expected total profit.

Hong and Cho (2007) proposed a model for jointly determine the optimum process target mean and tolerance limits for several markets with different cost structures. The effect of measurement error has been investigated in the model.

Tahera, et al. (2008) provided a review paper for the work that has been done in the area of economic selection of process parameters including process mean and production run.

Chen and Chen (2008) modified Bowling, et al. (2004)by taking into account the quality cost for the work-in-process and the finished product within the specification limits based on the bivariate quality loss function.

Duffuaa, et al. (2009a) developed a profit model to determine the optimum target mean for a product with two quality characteristics produced by two processes in series. The quality of the product is controlled by an error free 100% inspection plan. The proposed model aims to determine the optimum process target mean that maximizes the total expected profit by determined by the setting of the first process, whereas the second quality characteristic depends on the setting of the two processes.

Duffuaa, et al. (2009b) developed a profit model to determine the optimum target mean similar to the model in Duffuaa, et al. (2009a). In this model the product also assumed to have two quality characteristics produced by two processes in series, but the inspection plan used in this model is an error free single sample inspection plan. As well as the first
model, this model determines the optimum process target mean that maximizes the total expected profit using the same procedure.

Chen and Khoo (2009) proposed an integrated model with production and quality. The model consists of, a modified Al-Sultan (1994) model with k machines in a serial production system based on a single sampling inspection plan and EMQ model. The symmetric quadratic loss function is used to evaluate the quality cost within the specifications. The model objective is to determine the optimum process target mean and production quantity which maximize the expected total profit.

Chen (2009a) modified the economic manufacturer quantity model (EMQ) with imperfect quality. Hence, it is necessary to include the quality cost in the EMQ model. The objective of this model to determine the optimum process target mean and production run length which minimizes the expected total cost. Taguchi symmetric quadratic loss function is used to evaluate the product quality cost within the specification limits.

Chen (2009b) proposed a model to determine the optimum process target mean and production run length those maximize the expected total profit of the EMQ model with perfect rework process. Taguchi quadratic loss function for the larger the better (L-Type) quality characteristic used to evaluate the quality cost within the specification limits.

Chen (2010) modified the model in Al-Sultan (1994) model with k machines in a serial production system based on a single sampling inspection plan and EMQ model like the modification made in Chen and Khoo (2009). Here the author used the asymmetric
quadratic loss function to evaluate the quality cost within the specifications instead of the symmetrical function used in Chen and Khoo (2009). The model objective is to determine the optimum process target mean and production quantity which maximize the expected total profit.

The literature review revealed that the process targeting problem has not been modeled in a multi-objective optimization framework. Hence, a need for research in this area exists.

2.3 THESIS OBJECTIVES

The following objectives are planned to be accomplished during the course of the thesis:

1. Develop a multi-objective process targeting model using 100% inspection as a mean for product quality control assuming perfect inspection.
2. Develop a multi-objective process targeting model using acceptance sampling as a mean for product quality control assuming perfect inspection.
3. Generalized the two model developed in objectives 1 and 2 to situation where inspection error is present.

2.4 MULTI-OBJECTIVE OPTIMIZATION (MOO)

In many real-world problems, decisions depends on multiple and conflicting criteria. There is usually not a unique solution that simultaneously optimizes all criteria. Multi-
objective optimization aims to identify the best trade-off between these criteria. The general multi-objective model is given as:

$$
\max _{x \in X} \boldsymbol{f}(\boldsymbol{x})=\left[f_{1}(\boldsymbol{x}), f_{1}(\boldsymbol{x}), \ldots ., f_{n}(\boldsymbol{x})\right]
$$

Where X is the feasible region defined with m constraints as:

$$
X=\left\{\boldsymbol{x} \mid g_{i}(\boldsymbol{x}) \leq 0 ; i=1,2, \ldots, m\right\}
$$

Multi-objective optimization problems can be found in various fields that include: product and process design, finance, aircraft design, the oil and gas industry, automobile design, or wherever optimal decisions need to be taken in the presence of trade-offs between two or more conflicting objectives. An example of multi-objective optimization problems is maximizing the profit and minimizing the cost of a product. Another example is minimizing the weight while maximizing the strength of a particular component.

There are no certain optimality conditions for the multi-objectives optimizations problems because a solution which maximizes one objective will not, in general, maximize any of the other objectives. In other word, what is optimal in term of one of the n objectives is usually non-optimal for the other n-1 objectives. Hence, a concept called non inferiority "non-dominance" will serve a similar purpose for multi-objective optimization just like the single objective optimization optimality conditions.

A feasible solution to a multi-objective optimization problem is said to be non-inferior if there exists no other feasible solution that will yield an improvement in one objective without causing degradation in at least one other objective. Mathematically, \boldsymbol{x}^{*} is said to be a non-inferior solution of a general multi-objective optimization problem like the one
defined above if there no $\boldsymbol{x} \in X$ (feasible) such that $f_{i}(\boldsymbol{x}) \geq f_{i}\left(\boldsymbol{x}^{*}\right)$ for all $j=1,2, . ., n$ with strict inequality for at least one j. Miettinen (1999), Cohon (1978) and Chankong and Haimes (1983).

The following techniques are commonly used to generate and characterize the set of noninferior solutions for the multi-objective optimization problems. These techniques transform the multi-objective problem into single objective or series of single objective problems then, used the classical optimality conditions to determine their solutions. The set of non-inferior solutions is obtained from these solutions. The techniques are:

- The weighting method $P(\boldsymbol{w})$.

The idea is to associate each objective function with a weighting coefficient and minimize/maximize the weighted sum of the objectives. In this way, the multiple objective functions are transformed into a single objective function.

- The $\mathrm{K}^{\text {th }}$ objective, ε constraint method $P_{k}(\varepsilon)$.

In this method, one of the objective functions is selected to be optimized and all the other objective functions are converted into constraints by setting an upper bound to each of them.

- The $K^{\text {th }}$ objective, lagrangian method $P_{k}(\varepsilon)$.

2.5 PROCESS TARGETING MODEL

The problem formulated in this section will be used in different settings in this thesis. It will be the basis for the research work in all of the coming chapters.

2.5.1 DESCRIBTION OF THE PRODUCTION PROCESS

This industrial production process produces items that have a quality characteristic y with two control limits. Primary market specification limit (LSL) and secondary market specification limit (L). Produces items may fall into three categories or areas. First, an item whose quality characteristic is above the primary market specification limit ($y \geq$ $L S L$), is sold in a primary market at a regular price $\$ a$ but, have give away cost $\$ g$ per item of excess quality measure for a good item. Then, an item whose quality characteristic locates between the two $\operatorname{limits}(L \leq y<L S L)$, is sold in a secondary market at reduced price $\$ r$ where $r<a$. Finally, am item has a quality characteristic below the secondary market specification limit $(y<L)$, is reworked again incurring rework cost $\$ R$. The production cost is assumed to be known and constant per item $\$ c$. This item processing cost consists of several costs (processing, labor, inspection, etc).The quality characteristic of interest y is normally distributed with unknown mean T and known standard deviation σ.

Figure 2-1 the classifications of the production process

A schematic flowchart for the production process described above is given in (Figure 2-
2).

Figure 2-2 The basic production process

2.6 PROBLEM FORMULATION

Consider the production process in figure 2.2. Let y be the measured quality characteristic of the product that has two specification limits (LSL and L)and a target value T.(e.g. in the can filling problem the quality characteristic is the net weight of the material in the can and in a painting problem the quality characteristic could be the thickness of the paint). The net selling price of a product that meets primary market specification is $\$ a$ and the selling price of a product which meets secondary market specification is $\$ r(a>$ $r)$. Let g denotes the excess material measured for accepted item $(g>0)$. The problem under consideration is to find the optimal process target mean that optimizes the following three objectives:

- Maximizing net profit.
- Maximizing net income.
- Maximizing product uniformity measured by the deviation from a specified target as measured by Taguchi quadratic loss function.

It is to be noted that minimizing Taguchi quadratic loss function will ensure product uniformity around a target value.

Here in our model, there are three objectives $(\mathrm{n}=3$) and one constraint ($\mathrm{m}=1$). There are three objectives: maximizing the net profit, maximizing the net income and maximizing the product uniformity. Thus, the multi-objective optimization model for our study will be as:
$\max \boldsymbol{f}(T)=\left[f_{1}(T), f_{2}(T),-f_{3}(T)\right](2.1)$
subject to $\quad T \geq L S L$

Where
$f_{1}(T)$: The expected profit per item for the production process.
$f_{2}(T)$: The expected income per item for the production process.
$f_{3}(T)$: The expected loss resulting from deviation from the target mean per item for the production process.

2.7 CONCLUSION

In this chapter, the literature in the area of process targeting is reviewed, followed by a clear statement of the problem and the modeling framework for the problem. Next, two models are given using 100\% error-free and error-prone inspection system and other two models using error-free and error-prone sampling plan.

CHAPTER 3

MULTI-OBJECTIVE PROCESS TARGETING MODEL WITH 100\% ERROR-FREE INSPECTION SYSTEM

3.1 PREFACE

The purpose of this chapter is to develop a multi-objective optimization model for the problem stated in chapter 2, and will be described in section 3.2 of this chapter. The model developed in this chapter assumes an error-free 100% inspection policy for product quality control. The model has three objective functions to be maximized with respect to the process target mean. The utility of the model has been demonstrated using an example from the literature. Sensitivity analysis is conducted for the model's parameters to assess the sensitivity of the results in section 3.4.

3.2 STATEMENT OF PROBLEM

Consider the production process that mentioned in chapter two (figure 2-1).The quality characteristic y for items produced is normally distributed with unknown mean T, known standard deviation σ. The primary market and secondary market specification limits LSL
and L , respectively. If an item is conforming ($y \geq L S L$) then, it is sold at a regular price $\$ a$ and costs $\$ g$ per item of excess quality. If it is conforming to secondary market item ($L \leq y<L S L$) then, it is sold at reduced price $\$ r$.If it is non-conforming $(y<L)$ then, rework with cost $\$ R$. The production cost is assumed to be known and constant $\$ c$. After the items are being produced they are 100% inspected using an error-free measurement system. The problem here is to develop a multi-objective optimization model to determine the optimum process target mean.

3.3 MODEL DEVELOPMENT

Three objective functions will be developed under the condition of the above production process. These three objectives will form the multi-objective framework under which the optimum process target mean will be determined.

3.3.1. OBJECTIVE I (PROFIT OBJECTIVE FUNCTION)

The first objective is a profit objective function, which attempts to maximize the total expected profit per item for the production process mentioned above. Let P the profit per item and $E(P)$ its expected value. Hence, P is given by the following equation

$$
P=\left\{\begin{array}{lr}
a-g(y-L S L)-c y & \text { if } y \geq L S L \tag{3.1}\\
r-c y & \text { if } L \leq y<L S L \\
E(P)-R-c y & \text { if } y<L
\end{array}\right.
$$

Now the expected profit can be found as the following
$E(P)$
$=a \int_{L S L}^{\infty} f(y) d y g \int_{L S L}^{\infty} y f(y) d y+g \cdot L S L \int_{L S L}^{\infty} f(y) d y-c \int_{L S L}^{\infty} y f(y) d y+r \int_{L}^{L S L} f(y) d y$
$-c \int_{L}^{L S L} y f(y) d y+E(P) \int_{-\infty}^{L} f(y) d y-R \int_{-\infty}^{L} f(y) d y$
$-c \int_{-\infty}^{L} y f(y) d y$

Where:
$f(y)=\frac{1}{\sqrt{2 \pi \sigma}} e^{\frac{1}{2 \sigma}(y-T)^{2}}$ is the normal distribution density function with mean T and standard deviation σ. Let $z=\frac{y-T}{\sigma}$ then,
$\varphi(z)=\frac{1}{\sqrt{2 \pi}} e^{z^{2}}$ is the standard normal distribution density function. Now consider the following:
$\int_{-\infty}^{y} f(y) d y=\int_{-\infty}^{\frac{y-T}{\sigma}} \varphi(z) d z=\Phi(z)$ the \quad standard \quad normal \quad cumulative distribution function.

Now let's define the following:

$$
\begin{gathered}
\alpha=\frac{L S L-T}{\sigma}, \quad \delta=\frac{L-T}{\sigma} \\
\beta=\Phi\left(\frac{L S L-T}{\sigma}\right)=\Phi(\alpha), \quad \gamma=\Phi\left(\frac{L-T}{\sigma}\right)=\Phi(\delta)
\end{gathered}
$$

Standardizing the normal distribution function to standard normal using the transformation $z=\frac{y-T}{\sigma}$ and β, γ we get:

$$
\begin{align*}
& E(P)=a(1-\beta)-g \int_{L S L}^{\infty} y f(y) d y+g \cdot L S L(1-\beta)+r(\beta-\gamma)+\gamma E(P)-\gamma R \\
&-c \int_{-\infty}^{\infty} y f(y) d y \tag{3.3}
\end{align*}
$$

By simplifying and rearranging the last equation, the total expected profit is the following

$$
\begin{gather*}
E(P)=\frac{(a+g \cdot L S L)(1-\beta)}{(1-\gamma)}-\frac{g}{(1-\gamma)} \int_{L S L}^{\infty} y f(y) d y+\frac{r(\beta-\gamma)}{(1-\gamma)}-\frac{\gamma \cdot R}{(1-\gamma)} \\
-\frac{c \cdot T}{(1-\gamma)} \tag{3.4}
\end{gather*}
$$

3.3.2. OBJECTIVE II (INCOME OBJECTIVE FUNCTION)

Objective 2 is a modified version of Hunter and Karta (1977) model. The objective of this function is to maximize the net income per item for the production process described previously in chapter 2 . Let I denotes the income per item and $E(I)$ be the expected income per item. Hence, I is given by the following equation
$I=\left\{\begin{array}{lr}a-g(y-L S L) & \text { if } y \geq L S L \\ r & \text { if } L \leq y<L S L S \\ E(I)-R & \text { if } y<L\end{array}\right.$

Hence, the expected income per item is the following

$$
\begin{align*}
& E(I)=a \int_{L S L}^{\infty} f(y) d y-g \int_{L S L}^{\infty} y f(y) d y+g \cdot L S L \int_{L S L}^{\infty} f(y) d y+r \int_{L}^{L S L} f(y) d y \\
& \quad+E(I) \int_{-\infty}^{L} f(y) d y-R \int_{-\infty}^{L} f(y) d y \tag{3.6}
\end{align*}
$$

Standardizing the normal distribution function to standard normal using the transformation $z=\frac{y-T}{\sigma}$ and β, γ we get:
$E(I)=a(1-\beta)-g \int_{L S L}^{\infty} y f(y) d y+g \cdot L S L(1-\beta)+r(\beta-\gamma)+\gamma E(I)-\gamma R$

Simplify and rearrange this equation, the expected income per item is the following

$$
\begin{equation*}
E(I)=\frac{(a+g \cdot L S L)(1-\beta)}{(1-\gamma)}-\frac{g}{(1-\gamma)} \int_{L S L}^{\infty} y f(y) d y+\frac{r(\beta-\gamma)}{(1-\gamma)}-\frac{\gamma R}{(1-\gamma)} \tag{3.8}
\end{equation*}
$$

Both functions (expected profit and expected income) have not simplified integration. This integration can be simplified as following

From the conditional expectation we have

$$
\begin{equation*}
E(y \mid y \geq L S L)=\frac{\int_{L S L}^{\infty} y f(y) d y}{\int_{L S L}^{\infty} f(y) d y} \tag{3.9}
\end{equation*}
$$

This expectation is a one sided truncated normal distribution, which has the following formula

$$
E(y \mid y \geq L S L)=T+\sigma \lambda(\alpha)(3.10)
$$

Where:

$$
\begin{equation*}
\lambda(\alpha)=\frac{\emptyset(\alpha)}{1-\Phi(\alpha)}, \lambda(\alpha)=\frac{\emptyset(\alpha)}{1-\beta} \tag{3.11}
\end{equation*}
$$

Hence, we can find the expression of the integration

$$
\begin{equation*}
\int_{L S L}^{\infty} y f(y) d y=E(y \mid y \geq L S L) \cdot \int_{L S L}^{\infty} f(y) d y \tag{3.12}
\end{equation*}
$$

By substituting (3.10) in (3.12), we get

$$
\begin{equation*}
\int_{L S L}^{\infty} y f(y) d y=[T+\sigma \lambda(\alpha)] \cdot[1-\Phi(\alpha)] \tag{3.13}
\end{equation*}
$$

Now, substitute (3.11) in (3.13)

$$
\begin{equation*}
\int_{L S L}^{\infty} y f(y) d y=\left[T+\frac{\sigma \emptyset(\alpha)}{1-\beta}\right] \cdot(1-\beta) \tag{3.14}
\end{equation*}
$$

Rearrange the right hand side we end up with

$$
\begin{equation*}
\int_{L S L}^{\infty} y f(y) d y=[T(1-\beta)+\sigma \emptyset(\alpha)] \tag{3.15}
\end{equation*}
$$

Now, using (3.15) the profit function "equation (2.4)" can be written as

$$
\begin{align*}
E(P)= & \frac{(a+g \cdot L S L)(1-\beta)}{(1-\gamma)}-\frac{g[T(1-\beta)+\sigma \emptyset(\alpha)]}{(1-\gamma)}+\frac{r(\beta-\gamma)}{(1-\gamma)}-\frac{\gamma R}{(1-\gamma)} \\
& -\frac{c \cdot T}{(1-\gamma)} \tag{3.16}
\end{align*}
$$

Similarly, the income function "equation (2.8)" is written as

$$
\begin{equation*}
E(I)=\frac{(a+g \cdot L S L)(1-\beta)}{(1-\gamma)}-\frac{g[T(1-\beta)+\sigma \emptyset(\alpha)]}{(1-\gamma)}+\frac{r(\beta-\gamma)}{(1-\gamma)}-\frac{\gamma R}{(1-\gamma)} \tag{3.17}
\end{equation*}
$$

3.3.3. OBJECTIVE III (PRODUCT UNIFORMITY OBJECTIVE FUNCTION)

In this section, the product uniformity function will be developed. The production process under study has no upper specification limit. Hence, the quality level and product uniformity are evaluated by using the loss function approach for the larger the better type of tolerance. In this type there is no predetermined target level and the larger the value of the characteristic, the better. Under this type of tolerance the optimal (ideal) target value is hypothetically ∞, and the loss incurred when the quality characteristic falls below the lower specification limit (i.e. LSL). Particularly in this model, as well the quality characteristic y falls away from LSL as more cost incurs due to the more excess material used. Therefore, this cost prevents the target mean of approaching ∞.

The loss function of the larger the better tolerance type is obtain by the following

$$
L(\boldsymbol{y})=k \sum_{i=1}^{n} \frac{1}{y_{i}{ }^{2}}
$$

In the above formula, n is the sample size and k is the quality loss coefficient $k=R \Delta^{2} . \Delta$ is the tolerance limit, which in the larger the better case is the lower specification limit.

In the production process under study the produced item is classified into three areas based on specifications, conforming to primary market, conforming to secondary market and non-conforming. Hence, the quality loss function will be

$$
L(y)=\left\{\begin{array}{lr}
\frac{k}{y^{2}}+g(y-L S L) & \text { if } y \geq L S L \tag{3.18}\\
\frac{k}{y^{2}}+(a-r) & \text { if } L<y<L S L \\
\frac{k}{y^{2}}+a+R & \text { if } y<L
\end{array}\right.
$$

Now the expected loss is given by

$$
\begin{align*}
E(L(y))=k & \int_{L S L}^{\infty} \frac{1}{y^{2}} f(y) d y+g \int_{L S L}^{\infty}(y-L S L) f(y) d y+k \int_{L}^{L S L} \frac{1}{y^{2}} f(y) d y \\
& +(a-r) \int_{L}^{L S L} f(y) d y+k \int_{-\infty}^{L} \frac{1}{y^{2}} f(y) d y+(a+R) \int_{-\infty}^{L} f(y) d y \tag{3.19}
\end{align*}
$$

Standardizing the normal distribution function to standard normal using the transformation $z=\frac{y-T}{\sigma}$ and β, γ we get:

$$
\begin{gather*}
E(L(y))=k \int_{-\infty}^{\infty} \frac{1}{y^{2}} f(y) d y+g[T(1-\beta)+\sigma \emptyset(\alpha)]-g \cdot L S L(1-\beta) \\
+(a-r)(\beta-\gamma)+(a+R) \gamma \tag{3.20}
\end{gather*}
$$

3.3.4. THE MULTI-OBJECTIVE OPTIMIZATION MODEL

Now we are ready to formulate the multi-objective optimization framework for the problem defined in section 3.1., using the formulation in section 2.5. The multi-objective model is given by the following

$$
\max \boldsymbol{f}(\boldsymbol{T})=\left[f_{1}(\boldsymbol{T}), f_{2}(\boldsymbol{T}), f_{3}(\boldsymbol{T})\right]
$$

Subject to

$$
T \geq L S L
$$

Where:
$f_{1}(\boldsymbol{T})=E(P)$ equation 3.16
$f_{2}(\boldsymbol{T})=E(I)$ equation 3.17
$f_{3}(\boldsymbol{T})=-E(L(y))$ equation 3.20

3.4 RESULTS AND SENSITIVITY ANALYSIS

In this section, an illustrative example for the model developed above is presented using parameters from the literature. This is followed by sensitivity analysis for these model's parameters, to discover their effect on the results.

3.4.1. SOLUTION METHODOLOGY

The proposed solution methodology consists of three main steps:

- Step 1: each objective function is evaluated individually using a uniform line search method with step length λ in the interval $I=[L S L, L S L+b]$, where b is an appropriate positive number.
- Step 2: Generate the set of non-inferior points:
i. Define $T_{\min }=\operatorname{Min}\left(T_{1}{ }^{*}, T_{2}{ }^{*}, T_{3}{ }^{*}\right)$ and $T_{\max }=\operatorname{Max}\left(T_{1}{ }^{*}, T_{2}{ }^{*}, T_{3}{ }^{*}\right)$
ii. Let $T_{i}=T_{\min }+i \lambda \epsilon\left[T_{\min }, T_{\max }\right]: i=1,2, . ., n$ and

$$
T_{j}=T_{\min }+j \lambda \epsilon\left[T_{\min }, T_{\max }\right]: j=1,2, . ., n
$$

iii. The point T_{i} is a non-inferior point if there is no T_{j} such that:

$$
\left\{f_{k}\left(T_{j}\right) \geq f_{k}\left(T_{i}\right): \forall k=1,2,3\right\}
$$

- Step 3: Rank the set of non-inferior points:
i. Normalize: $\frac{\boldsymbol{f}_{\boldsymbol{k}}\left(\boldsymbol{T}_{\boldsymbol{i}}\right)}{\boldsymbol{f}_{\boldsymbol{k}}\left(\boldsymbol{T}_{i}{ }^{*}\right)}, \mathrm{i}=1,2, . ., \mathrm{n}$ and $\mathrm{k}=1,2,3$
ii. Define the normalized $\operatorname{sum} \boldsymbol{S}_{i}$ as: $\boldsymbol{S}_{i}=\sum_{k=1}^{3} \frac{\boldsymbol{f}_{k}\left(\boldsymbol{T}_{i}\right)}{\boldsymbol{f}_{\boldsymbol{k}}\left(\boldsymbol{T}_{i}{ }^{*}\right)}$
iii. Define the percentage absolute deviation $\boldsymbol{P} \boldsymbol{A} \boldsymbol{D}_{\boldsymbol{i}}$ as: $\boldsymbol{P A D} \boldsymbol{D}_{\boldsymbol{i}}=\frac{\left|3-\boldsymbol{S}_{i}\right| * \mathbf{1 0 0}}{3}$,

$$
\mathrm{i}=1,2,3
$$

iv. Rank the points according to $\boldsymbol{P A D}_{\boldsymbol{i}}$ from the smallest to the largest.

The smaller the $\boldsymbol{P A D}_{\boldsymbol{i}}$, the higher preference of the point.

3.4.2. NUMERICAL EXAMPLE

Consider a production process, which produces products have a normally distributed quality characteristic y. If quality characteristic is above the primary market specification $L S L=10$, then it sold at a regular price $\$ 80$, If the quality characteristic is below the LSL but above the secondary market specification $L=9$, then it sold at a reduced price $\$ 67.5$, and if the quality characteristic falls below L, the item reworked with cost $\$ 4$. The processing cost of an item is $\$ 7$, and the excess material cost per item of material is $\$ 2$. The process standard deviation σ is 0.5 . The uniform search is conducted over the interval $T \in[10,20]$. Table 3.1 below summarizes the obtained results

Table 3-1 The optimum values of the three objective functions of model 1

	PROFIT OBJECTIVE $f_{1}(T)$	INCOM OBJECTIVE $f_{2}(T)$	UNIFORATY OBJECTIVE $f_{3}(T)$
T^{*}	10.4	10.9	11
$f_{i}\left(T^{*}\right)$	3.1673098	77.658091	-5.675613

Figures 3-1, 3-2, 3-3 and 3-4 show the plot of the profit objective, income objective, uniformity objective and the three objectives together in the interval [10,20], respectively.

Figure 3-1 plot of the profit objective function of model 1

Figure 3-2 plot of the income objective function of model 1

Figure 3-3 plot of the product uniformity objective function of model 1

Figure 3-4 plots of the three objective functions of model 1

Now, the set of non-inferior solution is summarized in table 3-2 below,

Table 3-2 The set of non-inferior solution of model 1

\boldsymbol{T}^{*}	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.4	3.167309802	76.1537998	-7.764953331	$5^{\text {th }}$
10.5	3.099189011	76.69854063	-7.058077932	$3^{\text {rd }}$
10.6	2.86417834	77.11519903	-6.521806878	$1^{\text {st }}$
10.7	2.480891594	77.4061361	-6.136839835	$2^{\text {nd }}$
10.8	1.969783196	77.58181372	-5.882176319	$4^{\text {th }}$
10.9	1.35257024	77.65809079	-5.735727303	$6^{\text {th }}$
11	0.650897802	77.65333657	-5.675613137	$7^{\text {th }}$

3.4.3. SENSITIVITY ANALYSIS FOR THE PARAMETERS

In this section, the effect of the process standard deviation σ and the cost parameters (c, g and R), on the target meant value, on the objective function values and on the set of noninferior solutions is studied.

First, the effect of the standard deviation on the three objective function values and the process target mean is stated on tables 3-3, 3-4 and 3-5 below

Table 3-3 The sensitivity analysis of the process standard deviation on the profit objective function of model 1 .

σ PROFIT		T	OBJECTIVE VALUE	CHANGE PERCENTAGE
0.875	$+75 \%$	10.7	-1.12031988	-135.371%
0.75	$+50 \%$	10.6	0.458104358	-85.536%
0.625	$+25 \%$	10.5	1.913844804	-39.575%

0.5	original	10.4	3.167309802	0%
0.375	-25%	10.4	4.268106251	34.7549%
0.25	-50%	10.3	5.542292242	74.98422%
0.125	-75%	10.2	7.315086901	130.9558%

Table 3-4 The sensitivity analysis of the process standard deviation on the income objective function of model 1 .

σ		INCOME		
		T	$\begin{gathered} \text { OBJECTIVE } \\ \text { VALUE } \end{gathered}$	CHANGE PERCENTAGE
0.875	+75\%	11.3	76.47681202	-1.52113\%
0.75	+50\%	11.2	76.83362848	-1.06166\%
0.625	+25\%	11.1	77.22887969	-0.55269\%
0.5	original	10.9	77.65809079	0\%
0.375	-25\%	10.8	78.13873997	0.61893\%
0.25	-50\%	10.6	78.66257878	1.2935\%
0.125	-75\%	10.3	79.25766026	2.05976\%

Table 3-5 The sensitivity analysis of the process standard deviation on the product uniformity objective function of model 1.

σ		UNIFORMITY		
0.875	$+75 \%$	11.6	-6.79449756	-19.713895%
0.75	$+50 \%$	11.4	-6.40717641	-12.88959%
0.625	$+25 \%$	11.2	-6.03781297	-6.381686%
0.5 (original)	original	11	-5.675613137	0%

0.375	-25%	10.8	-5.303156339	6.5624064%
0.25	-50%	10.6	-4.903364272	13.606439%
0.125	-75%	10.4	-4.512636459	20.490767%

From the tables above, it is clear that the profit objective function is very sensitive to the change in the process standard deviation more than the income objective function. This can be explained as following: in equations 3.16 and 3.17 the profit objective function has the term $\frac{c . T}{(1-\gamma)}$ more than the income objective function. As the standard deviation increases, the value of γ increases, consequently, the whole term value increases more than 70 which is the minimum value of the term $c . T$.

From table 3-4, the process standard deviation has a moderate effect on the product uniformity objective function. This is because; in equation 3.25 the standard deviation affects both the probabilities and the value of the random variable y (i.e. the quality characteristic).

The sets of non-inferior solutions for the above mentioned sensitivity analysis of the process standard deviation can be found on appendix A .

Now, the effect of the three cost parameters (c, g and R) on the three objective functions is stated on tables 3-6, 3-7 and 3-8 below.

Table 3-6 The sensitivity analysis of the cost parameters on the profit objective function of model 1.

SENSITIVITY		PROFIT		
PARAMETER	CHANGE	T	OBJECTIVE VALUE	CHANGE PERCENTAGE
$\begin{gathered} c=10 \\ g=3 \\ R=6 \end{gathered}$	+50\%	10.3	-33.731	-1164.97\%
$\begin{gathered} \hline c=8.7 \\ g=2.5 \\ R=5 \end{gathered}$	+25\%	10.3	-15.34	-584.322\%
$\begin{aligned} & \mathrm{c}=8.4 \\ & \mathrm{~g}=2.4 \\ & \mathrm{R}=4.8 \end{aligned}$	+20\%	10.3	-11.6618	-468.193\%
$\begin{gathered} \hline \mathrm{c}=8.05 \\ \mathrm{~g}=2.3 \\ \mathrm{R}=4.6 \\ \hline \end{gathered}$	+15\%	10.4	-7.9642	-351.449\%
$\begin{aligned} & \mathrm{c}=7.7 \\ & \mathrm{~g}=2.2 \\ & \mathrm{R}=4.4 \end{aligned}$	+10\%	10.4	-4.2537	-234.299\%
$\begin{gathered} \mathrm{c}=7.35 \\ \mathrm{~g}=2.1 \\ \mathrm{R}=4.2 \end{gathered}$	+5\%	10.4	-0.54318	-117.149\%
$\begin{aligned} & \mathrm{c}=7 \\ & \mathrm{~g}=2 \\ & \mathrm{R}=4 \\ & \hline \end{aligned}$	original	10.4	3.16731	0\%
$\begin{gathered} \hline c=6.65 \\ g=1.9 \\ R=3.8 \\ \hline \end{gathered}$	-5\%	10.4	6.8778	117.1495\%
$\begin{aligned} & \mathrm{c}=6.3 \\ & \mathrm{~g}=1.8 \\ & \mathrm{R}=3.6 \end{aligned}$	-10\%	10.5	10.5924	234.4281\%
$\begin{gathered} \hline \mathrm{c}=5.95 \\ \mathrm{~g}=1.7 \\ \mathrm{R}=3.4 \\ \hline \end{gathered}$	-15\%	10.5	14.339	352.717\%
$\begin{aligned} & \mathrm{c}=5.6 \\ & \mathrm{~g}=1.6 \\ & \mathrm{R}=3.2 \end{aligned}$	-20\%	10.5	18.0856	471.0069\%
$\begin{gathered} c=5.25 \\ g=1.5 \\ R=3 \end{gathered}$	-25\%	10.5	21.83215	589.2963\%

$\mathrm{c}=3.5$ $\mathrm{~g}=1$ $\mathrm{R}=2$	-50%	10.7	40.7377	1186.191%

Table 3-7 The sensitivity analysis of the cost parameters on the income objective function of model 1.

SENSITIVITY		INCOME		
PARAMETER	CHANGE	T	OBJECTIVE VALUE	CHANGE PERCENTAGE
$\begin{gathered} c=10 \\ g=3 \\ \mathrm{R}=6 \end{gathered}$	+50\%	10.8	76.71428	-1.21535\%
$\begin{gathered} \mathrm{c}=8.7 \\ \mathrm{~g}=2.5 \\ \mathrm{R}=5 \end{gathered}$	+25\%	10.9	77.18468	-0.6096\%
$\begin{aligned} & \mathrm{c}=8.4 \\ & \mathrm{~g}=2.4 \\ & \mathrm{R}=4.8 \end{aligned}$	+20\%	10.9	77.27936	-0.48769\%
$\begin{gathered} c=8.05 \\ \mathrm{~g}=2.3 \\ \mathrm{R}=4.6 \end{gathered}$	+15\%	10.9	77.37404	-0.36577\%
$\begin{aligned} & \mathrm{c}=7.7 \\ & \mathrm{~g}=2.2 \\ & \mathrm{R}=4.4 \end{aligned}$	+10\%	10.9	77.46873	-0.2438\%
$\begin{gathered} \hline \mathrm{c}=7.35 \\ \mathrm{~g}=2.1 \\ \mathrm{R}=4.2 \end{gathered}$	+5\%	10.9	77.56341	-0.1219\%
$\begin{aligned} & \mathrm{c}=7 \\ & \mathrm{~g}=2 \\ & \mathrm{R}=4 \end{aligned}$	original	10.9	77.6581	0\%
$\begin{gathered} c=6.65 \\ g=1.9 \\ R=3.8 \end{gathered}$	-5\%	11	77.75647	0.12668\%
$\begin{aligned} & c=6.3 \\ & \mathrm{~g}=1.8 \\ & \mathrm{R}=3.6 \end{aligned}$	-10\%	11	77.8596	0.25949\%
$\begin{gathered} c=5.95 \\ g=1.7 \\ R=3.4 \end{gathered}$	-15\%	11	77.96274	0.39229\%

$\mathrm{c}=5.6$ $\mathrm{~g}=1.6$ $\mathrm{R}=3.2$	-20%	11	78.06587	0.5251%
$\mathrm{c}=5.25$ $\mathrm{~g}=1.5$ $\mathrm{R}=3$	-25%	11	78.169005	0.6579%
$\mathrm{c}=3.5$ $\mathrm{~g}=1$ $\mathrm{R}=2$	-50%	11.1	78.70615	1.34958%

Table 3-8 The sensitivity analysis of the cost parameters on the product uniformity objective function of model 1.

SENSITIVITY		UNIFORMITY		
PARAMETER	CHANGE	T	$\begin{gathered} \text { OBJECTIVE } \\ \text { VALUE } \\ \hline \end{gathered}$	CHANGE PERCENTAGE
$\begin{gathered} \mathrm{c}=10 \\ \mathrm{~g}=3 \\ \mathrm{R}=6 \end{gathered}$	+50\%	11	-8.370162477	-47.47591626\%
$\begin{gathered} c=8.7 \\ \mathrm{~g}=2.5 \\ \mathrm{R}=5 \end{gathered}$	+25\%	11	-7.022887807	-23.73795813\%
$\begin{aligned} & \mathrm{c}=8.4 \\ & \mathrm{~g}=2.4 \\ & \mathrm{R}=4.8 \end{aligned}$	+20\%	11	-6.753432873	-18.9903665\%
$\begin{gathered} \hline \mathrm{c}=8.05 \\ \mathrm{~g}=2.3 \\ \mathrm{R}=4.6 \\ \hline \end{gathered}$	+15\%	11	-6.483977939	-14.24277488\%
$\begin{aligned} & \mathrm{c}=7.7 \\ & \mathrm{~g}=2.2 \\ & \mathrm{R}=4.4 \end{aligned}$	+10\%	11	-6.214523005	-9.49518326\%
$\begin{gathered} c=7.35 \\ g=2.1 \\ R=4.2 \end{gathered}$	+5\%	11	-5.94506807	-4.747591631\%
$\begin{aligned} & \mathrm{c}=7 \\ & \mathrm{~g}=2 \\ & \mathrm{R}=4 \end{aligned}$	original	11	-5.675613137	0\%
$\begin{gathered} c=6.65 \\ g=1.9 \\ R=3.8 \end{gathered}$	-5\%	11	-5.406158203	4.74759162\%

$\mathrm{c}=6.3$ $\mathrm{~g}=1.8$ $\mathrm{R}=3.6$	-10%	11.1	-5.130876966	9.597838297%
$\mathrm{c}=5.95$ $\mathrm{~g}=1.7$ $\mathrm{R}=3.4$	-15%	11.1	-4.855533464	14.44918202%
$\mathrm{c}=5.6$ $\mathrm{~g}=1.6$ $\mathrm{R}=3.2$	-20%	11.1	-4.580189962	19.30052575%
$\mathrm{c}=5.25$ $\mathrm{~g}=1.5$ $\mathrm{R}=3$	-25%	11.1	-4.30484646	24.15186948%
$\mathrm{c}=3.5$ $\mathrm{~g}=1$ $\mathrm{R}=2$	-50%	11.2	-2.919419727	48.56203803%

It is clear from tables 3-6 and 3-7, that the profit objective function is more sensitive to the change in the cost parameters than the income objective function. Again, the term $\frac{c . T}{(1-\gamma)}$ is the only difference between the two objective functions (equations 3.16 and 3.17). This term contains the production cost c , which has the largest value among the other two cost parameters. Also, the minimum value of the enumerator is 70 . Therefore, the value of the profit objective function is affected by any change in the production cost parameters c. Also, this result can be verified using the derivatives of the profit and income objective functions with respect to the cost parameters.

$$
\begin{aligned}
& \frac{\partial E(P)}{\partial g}=\frac{\partial E(I)}{\partial g}=\frac{L S L(1-\beta)-[T(1-\beta)+\sigma \emptyset(\alpha)]}{(1-\gamma)} \\
& \frac{\partial E(P)}{\partial R}=\frac{\partial E(I)}{\partial R}=\frac{-\gamma}{(1-\gamma)}
\end{aligned}
$$

$\frac{\partial E(P)}{\partial c}=\frac{-T}{(1-\gamma)}$
$\frac{\partial E(I)}{\partial c}=0$

From the four equations above, it is clear that the rate of changes in the profit and the income objective functions with respect to one item changes in the excess material cost " g " and the rework cost " R " are the same. But, the change in the profit objective function due to one item change in the production cost " c " is very large, while, there is no change in the income objective function associated with change in the production cost " c ".

In table 3-8, the product uniformity is sensitive to the change in the cost parameters. This sensitivity comes from the considerable amount of change in the quality loss coefficient k and the associate penalties due to any change in the cost parameter values. This can be shown using the partial derivatives for the product uniformity objective function
$\frac{\partial-E(L(y))}{\partial g}=-[T(1-\beta)+\sigma \emptyset(\alpha)]+L S L(1-\beta)$
$\frac{\partial-E(L(y))}{\partial R}=-L S L^{2} \int_{-\infty}^{\infty} \frac{1}{y^{2}} f(y) d y-\gamma$
$\frac{\partial-E(L(y))}{\partial c}=0$

The sets of non-inferior solutions for the above mentioned sensitivity analysis of the process standard deviation can be found on appendix A .

3.5 CONCLUSION

In this chapter, a multi-objective optimization model is developed for a process targeting problem. Three objective functions are maximized simultaneously to find the optimum setting of the process target mean. 100\% error-free inspection policy is used for product quality control. The set of non-inferior solutions was generated for an example contains some data from the process targeting literature. Sensitivity analysis for the process standard deviation and the cost parameters was conducted, to study their effect on the process target mean setting and the three objective function values. In the model developed in this chapter, inspection is assumed to be error free. This assumption is relaxed in chapter 4.

CHAPTER 4

MULTI-OBJECTIVE PROCESS TARGETING MODEL WITH 100\% ERROR-PRONE INSPECTION SYSTEM

4.1 PERFACE

The purpose of this chapter is to extend the multi-objective model developed in charter three to the case where the inspection system (manually or automated) is error prone. This assumption is more realistic assumption as conformed in the literature. The motivation behind this extension is the fact that measurement system can cause considerable loss due to misclassification of the products. This loss can be either a loss in profit due to misclassify a higher quality product as a lower quality product, or vice versa. The loss per item due to this error may seem small, however, the overall loss may be in millions (considering millions of items produced per year). The rest of the assumptions and conditions under which the model has been developed are the same as chapter three for the same production process described in chapter two (section 2.5). This chapter is organized as follows: the problem description is presented in section 4.2, and the model development in section 4.3. An illustrative example is shown in section 4.4,
followed by sensitivity analysis for the model's parameters in section 4.5. The conclusion of this chapter is stated in section 4.6.

4.2 STATEMENT OF PROBLEM

Consider the production process described in chapter 2 (figure 2-1). In this process the produced item has a normally distributed quality characteristic y with unknown mean T , known standard deviation σ, primary market and secondary market specification limits LSL and L. Items conforming to primary market ($y \geq L$) are sold at $\$ a$ and incur a cost of $\$ g$ per item of excess material. Items conforming to secondary market ($L \leq y<L S L$) are sold at $\$ r$. Non-conforming items $(y<L)$ are reworked with cost $\$ R$. The production cost is known and constant $\$ c$. Now consider the case where the inspection system is error prone. Thus, it tends to misclassify the produced items according to their quality characteristic level. Hence, the measured quality characteristic has an observed value (i.e. x) which is different from the actual value (i.e. y) due to the presence of inspection error. Both quality characteristics (the observed X and the actual Y) are normally distributed and the relation between them is the following
$X=Y+\varepsilon$

Where ε is a random variable which represents the inspection error. ε has a normal distribution with mean 0 and known standard deviation $\varepsilon \sim N\left(0, \sigma_{\varepsilon}\right)$.

The correlation coefficient between the actual and observed quality characteristics ρ is given by the formula

$$
\begin{equation*}
\rho=1-\frac{\sigma_{\varepsilon}{ }^{2}}{\sigma_{x}{ }^{2}}=\frac{\sigma_{y}{ }^{2}}{\sigma_{x}{ }^{2}} \tag{4.2}
\end{equation*}
$$

Since, the actual and observed quality characteristics are both normally distributed; then, their joint distribution is bivariate normal distribution which is given by

$$
\begin{equation*}
f(y, x)=\frac{1}{2 \pi \sigma_{y} \sigma_{x} \sqrt{1-\rho^{2}}} e^{\frac{1}{2\left(1-\rho^{2}\right)}\left[\frac{(y-\mu)^{2}}{\sigma_{y}{ }^{2}}+\frac{(x-\mu)^{2}}{\sigma_{x}{ }^{2}}-\frac{2 \rho(y-\mu)(x-\mu)}{\sigma_{y} \sigma_{x}}\right]} \tag{4.3}
\end{equation*}
$$

To reduce the effect of the inspection error, instead of using the original limits (LSL and L) for inspection, we based the inspection on new limits (cut off points) and use these new limits as the classification criteria (figure 4-1).

Figure 4-1 Cut off points for the inspection error

The location of these cut off points depends on many factors, such as: the loss in profit due to misclassifying a higher quality product into a lower quality, the penalty associated with misclassifying a lower quality product with a higher quality, the value of the mean, the value of the standard deviation...etc.

Prior to model development, the types of losses and penalties associated with misclassification of the items will be described. First, there are three type of loss in profit due to misclassify a higher quality product as a lower quality product (table 4-1).

Table 4-1 Loss in profit due to product misclassification

Loss in profit	Due to
a-r	Classify a primary market item as a secondary market item
a	Classify a primary market item as a non-conforming item
r	Classify a secondary market item as a non-conforming item

Also, there are three types of penalties associated with misclassify a lower quality product as a higher quality product. These penalties reflect on replacement and warranty costs and loss of good will and customer dissatisfaction (table 4-2).

Table 4-2 Penalties due to product misclassification

Penalty	Due to
b_{1}	Classify secondary market item as a primary market item
b_{2}	Classify a non-conforming item as a primary market item
b_{3}	Classify a non-conforming item as a secondary market item

The problem we are trying to solve here is to develop a multi-objective optimization model that provides the optimum process target mean and cut off points.

4.3 MODEL DEVELOPMENT

The multi-objective optimization framework will be developed below with three objective functions as stated on the thesis objectives. The multi-objective will be solved
to find the optimum value of the process target mean and the value of the two cut off points too.

4.3.1. OBJECTIVE I (PROFIT OBJECTIVE FUNCTION)

As the previous chapter, the first objective function in the multi-objective optimization model is the profit objective. Here, a profit objective function will be developed for the production process under study. The goal is to find the values of the process target mean and the cut off points those maximize the profit function.

Now let P the profit per item, and $E(P)$ be its expected value. Hence, P is given by the following equation

$$
P=\left\{\begin{array}{lr}
a-g(y-L S L)-c y & \text { if } x \geq w_{1}, y \geq L S L \tag{4.4}\\
a-c y-b_{1} & \text { if } x \geq w_{1}, L \leq y<L S L \\
a-c y-b_{2} & \text { if } x \geq w_{1}, y<L \\
r-(a-r)-c y & \text { if } w_{2} \leq x<w_{1}, y \geq L S L \\
r-c y & \text { if } w_{2} \leq x<w_{1}, L \leq y<L S L \\
r-c y-b_{3} & \text { if } x<w_{2}, y<L \\
E(P)-R-a-c y & \text { if } x<w_{2}, y \geq L S L \\
E(P)-R-r-c y & \text { if } x<w_{2}, L \leq y<L S L \\
E(P)-R-c y & \text { if } x<w_{2}, y<L
\end{array}\right.
$$

Now the derivation of the expected profit per item can be express as the following

$$
\begin{aligned}
& E(P)=a \int_{w_{1}}^{\infty} \int_{L S L}^{\infty} f(x, y) d y d x-g \int_{w_{1}}^{\infty} \int_{L S L}^{\infty} y . f(x, y) d y d x \\
& +g \cdot L S L \int_{w_{1}}^{\infty} \int_{L S L}^{\infty} f(x, y) d y d x-c \int_{w_{1}}^{\infty} \int_{L S L}^{\infty} y \cdot f(x, y) d y d x \\
& +a \int_{w_{1}}^{\infty} \int_{L}^{L S L} f(x, y) d y d x-c \int_{w_{1}}^{\infty} \int_{L}^{L S L} y . f(x, y) d y d x-b_{1} \int_{w_{1}}^{\infty} \int_{L}^{L S L} f(x, y) d y d x \\
& +a \int_{w_{1}}^{\infty} \int_{-\infty}^{L} f(x, y) d y d x-c \int_{w_{1}}^{\infty} \int_{-\infty}^{L} y \cdot f(x, y) d y d x-b_{2} \int_{w_{1}}^{\infty} \int_{-\infty}^{L} f(x, y) d y d x \\
& +r \int_{w_{2}}^{w_{1}} \int_{L S L}^{\infty} f(x, y) d y d x-(a-r) \int_{w_{2}}^{w_{1}} \int_{L S L}^{\infty} f(x, y) d y d x-c \int_{w_{2}}^{w_{1}} \int_{L S L}^{\infty} y . f(x, y) d y d x \\
& +r \int_{w_{2}}^{w_{1}} \int_{L}^{L S L} f(x, y) d y d x-c \int_{w_{2}}^{w_{1}} \int_{L}^{L S L} y \cdot f(x, y) d y d x \\
& +r \int_{w_{2}}^{w_{1}} \int_{-\infty}^{L} f(x, y) d y d x-c \int_{w_{2}}^{w_{1}} \int_{-\infty}^{L} y . f(x, y) d y d x-b_{3} \int_{w_{2}}^{w_{1}} \int_{-\infty}^{L} f(x, y) d y d x \\
& +E(P) \int_{-\infty}^{w_{2}} \int_{L S L}^{\infty} f(x, y) d y d x-R \int_{-\infty}^{w_{2}} \int_{L S L}^{\infty} f(x, y) d y d x-a \int_{-\infty}^{w_{2}} \int_{L S L}^{\infty} f(x, y) d y d x \\
& -c \int_{-\infty}^{w_{2}} \int_{L S L}^{\infty} y \cdot f(x, y) d y d x \\
& +E(P) \int_{-\infty}^{w_{2}} \int_{L}^{L S L} f(x, y) d y d x-R \int_{-\infty}^{w_{2}} \int_{L}^{L S L} f(x, y) d y d x-r \int_{-\infty}^{w_{2}} \int_{L}^{L S L} f(x, y) d y d x \\
& -c \int_{-\infty}^{w_{2}} \int_{L}^{L S L} y . f(x, y) d y d x
\end{aligned}
$$

$$
\begin{align*}
&+E(P) \int_{-\infty}^{w_{2}} \int_{-\infty}^{L} f(x, y) d y d x \\
& \quad-R \int_{-\infty}^{w_{2}} \int_{-\infty}^{L} f(x, y) d y d x-c \int_{-\infty}^{w_{2}} \int_{-\infty}^{L} y \cdot f(x, y) d y d x \tag{4.5}
\end{align*}
$$

By arranging and add the similar terms we get the following

$$
\begin{align*}
& E(P)=a \int_{w_{1}}^{\infty} \int_{-\infty}^{\infty} f(x, y) d y d x \\
&-g \int_{w_{1}}^{\infty} \int_{L S L}^{\infty} y \cdot f(x, y) d y d x \\
&+g \cdot L S L \int_{w_{1}}^{\infty} \int_{L S L}^{\infty} f(x, y) d y d x \\
&-b_{1} \int_{w_{1}}^{\infty} \int_{L}^{L S L} f(x, y) d y d x \\
&-b_{2} \int_{w_{1}}^{\infty} \int_{-\infty}^{L} f(x, y) d y d x \\
&+r \int_{w_{2}}^{w_{1}} \int_{-\infty}^{\infty} f(x, y) d y d x-(a-r) \int_{w_{2}}^{w_{1}} \int_{L S L}^{\infty} f(x, y) d y d x \\
&-b_{3} \int_{w_{2}}^{w_{1}} \int_{-\infty}^{\infty} f(x, y) d y d x \\
&+E(P) \int_{-\infty}^{w_{2}} \int_{-\infty}^{\infty} f(x, y) d y d x-R \int_{-\infty}^{w_{2}} \int_{-\infty}^{\infty} f(x, y) d y d x \\
&-a \int_{-\infty}^{w_{2}} \int_{L S L}^{\infty} f(x, y) d y d x-r \int_{-\infty}^{w_{2}} \int_{L}^{L S L} f(x, y) d y d x \\
&-c \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y \cdot f(x, y) d y d x \tag{4.6}
\end{align*}
$$

Arrange and add more we get
$E(P)$
$=a \int_{w_{1}}^{\infty} \int_{-\infty}^{\infty} f(x, y) d y d x$
$-g \int_{w_{1}}^{\infty} \int_{L S L}^{\infty} y . f(x, y) d y d x$
$+g \cdot L S L \int_{w_{1}}^{\infty} \int_{L S L}^{\infty} f(x, y) d y d x$
$-b_{1} \int_{w_{1}}^{\infty} \int_{L}^{L S L} f(x, y) d y d x-b_{2} \int_{w_{1}}^{\infty} \int_{-\infty}^{L} f(x, y) d y d x$
$+r \int_{w_{2}}^{w_{1}} \int_{-\infty}^{\infty} f(x, y) d y d x+r \int_{w_{2}}^{w_{1}} \int_{L S L}^{\infty} f(x, y) d y d x-b_{3} \int_{w_{2}}^{w_{1}} \int_{-\infty}^{\infty} f(x, y) d y d x$
$+E(P) \int_{-\infty}^{w_{2}} \int_{-\infty}^{\infty} f(x, y) d y d x$
$-R \int_{-\infty}^{w_{2}} \int_{-\infty}^{\infty} f(x, y) d y d x-a \int_{-\infty}^{w_{1}} \int_{L S L}^{\infty} f(x, y) d y d x-r \int_{-\infty}^{w_{2}} \int_{L}^{L S L} f(x, y) d y d x$
$-c \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} y . f(x, y) d y d x$

Finally, we can reduce the expected profit function to the following

$$
\begin{align*}
& E(P) \\
& \begin{aligned}
&=a \int_{w_{1}}^{\infty} f(x) d x-g \int_{w_{1}}^{\infty} \int_{L S L}^{\infty} y \cdot f(x, y) d y d x+g \cdot L S L \int_{w_{1}}^{\infty} \int_{L S L}^{\infty} f(x, y) d y d x+r \int_{w_{2}}^{w_{1}} f(x) d x \\
&+E(P) \int_{-\infty}^{w_{2}} f(x) d x-R \int_{-\infty}^{w_{2}} f(x) d x-c T-b_{1} \int_{w_{1}}^{\infty} \int_{L}^{L S L} f(x, y) d y d x \\
&-b_{2} \int_{w_{1}}^{\infty} \int_{-\infty}^{L} f(x, y) d y d x-b_{3} \int_{w_{2}}^{w_{1}} \int_{-\infty}^{L} f(x, y) d y d x \\
&-a \int_{-\infty}^{w_{1}} \int_{L S L}^{\infty} f(x, y) d y d x+r \int_{w_{2}}^{w_{1}} \int_{L S L}^{\infty} f(x, y) d y d x \\
&-r \int_{-\infty}^{w_{2}} \int_{L}^{L S L} f(x, y) d y d x
\end{aligned}
\end{align*}
$$

4.3.2. OBJECTIVE II (INCOME OBJECTIVE FUNCTION)

Here, we are going to develop an income objective function, which by maximize we can obtain the optimum values of the process target mean and the cut off points.

Define I as the income per item and $E(I)$ its expected value. Hence, I is given by the following equation

$$
I=\left\{\begin{array}{lr}
a-g(y-L S L) & \text { if } x \geq w_{1}, y \geq L S L \tag{4.9}\\
a-b_{1} & \text { if } x \geq w_{1}, L \leq y<L S L \\
a-b_{2} & \text { if } x \geq w_{1}, y<L \\
r & \text { if } w_{2} \leq x<w_{1}, y \geq L S L \\
r & \text { if } w_{2} \leq x<w_{1}, L \leq y<L S L \\
r-b_{3} & \text { if } w_{2} \leq x<w_{1}, y<L \\
E(I)-R & \text { if } x<w_{2}, y \geq L S L \\
E(I)-R & x<w_{2}, L \leq y<L S L \\
E(I)-R & \text { if } x<w_{2}, y<L
\end{array}\right.
$$

Now the derivation of the expected income per item can be express as the following

$$
\begin{gathered}
E(I)=a \int_{w_{1}}^{\infty} \int_{L S L}^{\infty} f(x, y) d y d x-g \int_{w_{1}}^{\infty} \int_{L S L}^{\infty} y \cdot f(x, y) d y d x \\
+g \cdot L S L \int_{w_{1}}^{\infty} \int_{L S L}^{\infty} f(x, y) d y d x \\
+a \int_{w_{1}}^{\infty} \int_{L}^{L S L} f(x, y) d y d x-b_{1} \int_{w_{1}}^{\infty} \int_{L}^{L S L} f(x, y) d y d x \\
+a \int_{w_{1}}^{\infty} \int_{-\infty}^{L} f(x, y) d y d x-b_{2} \int_{w_{1}}^{\infty} \int_{-\infty}^{L} f(x, y) d y d x \\
+r \int_{w_{2}}^{w_{1}} \int_{L S L}^{\infty} f(x, y) d y d x
\end{gathered}
$$

$$
\begin{align*}
& +r \int_{w_{2}}^{w_{1}} \int_{L}^{L S L} f(x, y) d y d x \\
& +r \int_{w_{2}}^{w_{1}} \int_{-\infty}^{L} f(x, y) d y d x-b_{3} \int_{w_{2}}^{w_{1}} \int_{-\infty}^{L} f(x, y) d y d x \\
& +E(I) \int_{-\infty}^{w_{2}} \int_{L S L}^{\infty} f(x, y) d y d x-R \int_{-\infty}^{w_{2}} \int_{L S L}^{\infty} f(x, y) d y d x \\
& +E(I) \int_{-\infty}^{w_{2}} \int_{L}^{L S L} f(x, y) d y d x-R \int_{-\infty}^{w_{2}} \int_{L}^{L S L} f(x, y) d y d x \\
& +E(I) \int_{-\infty}^{w_{2}} \int_{-\infty}^{L} f(x, y) d y d x-R \int_{-\infty}^{w_{2}} \int_{-\infty}^{L} f(x, y) d y d x \tag{4.10}
\end{align*}
$$

Now, add the similar term together

$$
\begin{align*}
& E(I)=a \int_{w_{1}}^{\infty} \int_{-\infty}^{\infty} f(x, y) d y d x-g \int_{w_{1}}^{\infty} \int_{L S L}^{\infty} y \cdot f(x, y) d y d x \\
&+g \cdot L S L \int_{w_{1}}^{\infty} \int_{L S L}^{\infty} f(x, y) d y d x+r \int_{w_{2}}^{w_{1}} \int_{-\infty}^{\infty} f(x, y) d y d x \\
&+E(I) \int_{-\infty}^{w_{2}} \int_{-\infty}^{\infty} f(x, y) d y d x-R \int_{-\infty}^{w_{2}} \int_{-\infty}^{\infty} f(x, y) d y d x \\
&-b_{1} \int_{w_{1}}^{\infty} \int_{L}^{L S L} f(x, y) d y d x-b_{2} \int_{w_{1}}^{\infty} \int_{-\infty}^{L} f(x, y) d y d x \\
& \quad-b_{3} \int_{w_{2}}^{w_{1}} \int_{-\infty}^{L} f(x, y) d y d x \tag{4.11}
\end{align*}
$$

Then, the expected income per item is given by the following

$$
\begin{align*}
& E(I)=a \int_{w_{1}}^{\infty} f(x) d x-g \int_{w_{1}}^{\infty} \int_{-\infty}^{\infty} y \cdot f(x, y) d y d x+g \cdot L S L \int_{w_{1}}^{\infty} \int_{L S L}^{\infty} f(x, y) d y d x \\
&+r \int_{w_{2}}^{w_{1}} f(x) d x+E(I) \int_{-\infty}^{w_{2}} f(x) d x-R \int_{-\infty}^{w_{2}} f(x) d x \\
& \quad-b_{1} \int_{w_{1}}^{\infty} \int_{L}^{L S L} f(x, y) d y d x-b_{2} \int_{w_{1}}^{\infty} \int_{-\infty}^{L} f(x, y) d y d x \\
& \quad-b_{3} \int_{w_{2}}^{w_{1}} \int_{-\infty}^{L} f(x, y) d y d x \tag{4.12}
\end{align*}
$$

Now consider the following notations:

Let $f(y)=\frac{1}{\sqrt{2 \pi \sigma}} e^{\frac{1}{2 \sigma}(y-T)^{2}}$ is the normal distribution density function. Let $z=\frac{y-T}{\sigma}$ then, $\varphi(z)=\frac{1}{\sqrt{2 \pi}} e^{z^{2}}$ is the standard normal distribution density function. Now consider the following:
$\int_{-\infty}^{y} f(y) d y=\int_{-\infty}^{\frac{y-T}{\sigma}} \varphi(z) d z=\Phi(z)$ the \quad standard \quad normal \quad distribution \quad cumulative probability function.

Now let's define the following:

$$
\alpha=\frac{L S L-T}{\sigma}, \quad \delta=\frac{L-T}{\sigma}
$$

$$
\begin{gathered}
\beta=\Phi\left(\frac{L S L-T}{\sigma}\right)=\Phi(\alpha), \quad \gamma=\Phi\left(\frac{L-T}{\sigma}\right)=\Phi(\delta) \\
\omega=\frac{w_{1}-T}{\sigma}, \quad \eta=\frac{w_{2}-T}{\sigma} \\
\Omega=\Phi\left(\frac{w_{1}-T}{\sigma}\right)=\Phi(\omega), \quad \xi=\Phi\left(\frac{w_{2}-T}{\sigma}\right)=\Phi(\eta)
\end{gathered}
$$

Accordingly equation (4.6) can be written as

$$
\begin{align*}
& E(P)=a(1-\Omega)-g \int_{w_{1}}^{\infty} \int_{-\infty}^{\infty} y \cdot f(x, y) d y d x+g \cdot L S L \int_{w_{1}}^{\infty} \int_{L S L}^{\infty} f(x, y) d y d x \\
&+r(\Omega-\xi)+E(P) \xi-R \xi-c T-b_{1} \int_{w_{1}}^{\infty} \int_{L}^{L S L} f(x, y) d y d x \\
&-b_{2} \int_{w_{1}}^{\infty} \int_{-\infty}^{L} f(x, y) d y d x-b_{3} \int_{w_{2}}^{w_{1}} \int_{-\infty}^{L} f(x, y) d y d x \tag{4.13}
\end{align*}
$$

By arranging the $\mathrm{E}(\mathrm{p})$ in the left hand side the function is written as

$$
\begin{align*}
& E(P)=\frac{a(1-\Omega)}{(1-\xi)}+\frac{r(\Omega-\xi)}{(1-\xi)}-\frac{R \xi}{(1-\xi)}-\frac{c T}{(1-\xi)} \\
&-\frac{g}{(1-\xi)} \int_{w_{1}}^{\infty} \int_{-\infty}^{\infty} y \cdot f(x, y) d y d x+\frac{g \cdot L S L}{(1-\xi)} \int_{w_{1}}^{\infty} \int_{-\infty}^{\infty} f(x, y) d y d x+ \\
& \quad-\frac{b_{1}}{(1-\xi)} \int_{w_{1}}^{\infty} \int_{L}^{L S L} f(x, y) d y d x \\
&-\frac{b_{2}}{(1-\xi)} \int_{w_{1}}^{\infty} \int_{-\infty}^{L} f(x, y) d y d x-\frac{b_{3}}{(1-\xi)} \int_{w_{2}}^{w_{1}} \int_{-\infty}^{L} f(x, y) d y d x \\
& \quad-\frac{a}{(1-\xi)} \int_{-\infty}^{w_{1}} \int_{L S L}^{\infty} f(x, y) d y d x+\frac{r}{(1-\xi)} \int_{w_{2}}^{w_{1}} \int_{L S L}^{\infty} f(x, y) d y d x \\
&-\frac{r}{(1-\xi)} \int_{-\infty}^{w_{2}} \int_{L}^{L S L} f(x, y) d y d x \tag{4.14}
\end{align*}
$$

Similarly, equation (4.10) can be written as
$E(I)$
$=a(1-\Omega)-g \int_{w_{1}}^{\infty} \int_{-\infty}^{\infty} y \cdot f(x, y) d y d x+g \cdot L S L \int_{w_{1}}^{\infty} \int_{L S L}^{\infty} f(x, y) d y d x+r(\Omega-\xi)$
$+E(I)-R \xi-b_{1} \int_{w_{1}}^{\infty} \int_{L}^{L S L} f(x, y) d y d x-b_{2} \int_{w_{1}}^{\infty} \int_{-\infty}^{L} f(x, y) d y d x$
$-b_{3} \int_{w_{2}}^{w_{1}} \int_{-\infty}^{L} f(x, y) d y d x$

Rearranging E (I) on the left hand side we get

$$
\begin{align*}
E(I)= & \frac{(a+g \cdot L S L)(1-\Omega)}{(1-\xi)}+\frac{r(\Omega-\xi)}{(1-\xi)}-\frac{R \xi}{(1-\xi)} \\
& -\frac{g}{(1-\xi)} \int_{w_{1}}^{\infty} \int_{-\infty}^{\infty} y \cdot f(x, y) d y d x+\frac{g \cdot L S L}{(1-\xi)} \int_{w_{1}}^{\infty} \int_{-\infty}^{\infty} f(x, y) d y d x+ \\
& -\frac{b_{1}}{(1-\xi)} \int_{w_{1}}^{\infty} \int_{L}^{L S L} f(x, y) d y d x \\
& -\frac{b_{2}}{(1-\xi)} \int_{w_{1}}^{\infty} \int_{-\infty}^{L} f(x, y) d y d x-\frac{b_{3}}{(1-\xi)} \int_{w_{2}}^{w_{1}} \int_{-\infty}^{L} f(x, y) d y d x \tag{4.16}
\end{align*}
$$

4.3.3. OBJECTIVE III (PRODUCT UNIFORMITY OBJECTIVE FUNCTION)

In this section, we will develop a loss function for the production process under study (figure 2-1) based on Taguchi quadratic loss function. By minimizing the developed loss function with respect to the process target mean and cut off points we will maximize the product uniformity around the process mean.

Consider the production process under study (figure 2-1), the product quality characteristic y is the larger the better type. Hence hypothetically, the optimum value of the process mean is ∞, but, the higher mean the more material used and more cost incurs. So, the value of the process mean will never approach ∞.

$$
L(\boldsymbol{y})=k \sum_{i=1}^{n} \frac{1}{y_{i}^{2}}
$$

In the above formula, n is the sample size and k is the quality loss coefficient $k=R \Delta^{2}$.
Δ is the tolerance limit, which in the larger the better case is the lower specification limit. In the production process under study a produced item is classified into three areas based on specifications, conforming to primary market, conforming to secondary market and non-conforming. Also due to the error presence, the observed quality characteristic x differs from the actual quality characteristic y. Hence, the quality loss function will be

Now, let $\mathrm{E}(\mathrm{L}(\mathrm{y})$) be the expectation of the loss function above. Hence, $\mathrm{E}(\mathrm{L}(\mathrm{y})$) is given by the following

$$
\begin{align*}
& E(L(y)) \\
& =k \int_{w_{1}}^{\infty} \int_{L S L}^{\infty} \frac{1}{y^{2}} f(x, y) d y d x+g \int_{w_{1}}^{\infty} \int_{L S L}^{\infty} y f(x, y) d y d x-g L S L \int_{w_{1}}^{\infty} \int_{L S L}^{\infty} f(x, y) d y d x \\
& +k \int_{w_{1}}^{\infty} \int_{L}^{L S L} \frac{1}{y^{2}} f(x, y) d y d x+b_{1} \int_{w_{1}}^{\infty} \int_{L}^{L S L} f(x, y) d y d x+k \int_{w_{1}}^{\infty} \int_{-\infty}^{L} \frac{1}{y^{2}} f(x, y) d y d x \\
& +b_{2} \int_{w_{1}}^{\infty} \int_{-\infty}^{L} \frac{1}{y^{2}} f(x, y) d y d x+k \int_{w_{2}}^{w_{1}} \int_{L S L}^{\infty} \frac{1}{y^{2}} f(x, y) d y d x \\
& +(a-r) \int_{w_{2}}^{w_{1}} \int_{L S L}^{\infty} f(x, y) d y d x+k \int_{w_{2}}^{w_{1}} \int_{L}^{L S L} \frac{1}{y^{2}} f(x, y) d y d x \\
& +(a-r) \int_{w_{2}}^{w_{1}} \int_{L}^{L S L} f(x, y) d y d x+k \int_{w_{2}}^{w_{1}} \int_{-\infty}^{L} \frac{1}{y^{2}} f(x, y) d y d x \\
& +(a-r) \int_{w_{2}}^{w_{1}} \int_{-\infty}^{L} f(x, y) d y d x+b_{3} \int_{w_{2}}^{w_{1}} \int_{-\infty}^{L} f(x, y) d y d x \\
& +k \int_{-\infty}^{w_{2}} \int_{L S L}^{\infty} \frac{1}{y^{2}} f(x, y) d y d x+a \int_{-\infty}^{w_{2}} \int_{L S L}^{\infty} f(x, y) d y d x+R \int_{-\infty}^{w_{2}} \int_{L S L}^{\infty} f(x, y) d y d x \\
& +k \int_{-\infty}^{w_{2}} \int_{L}^{L S L} \frac{1}{y^{2}} f(x, y) d y d x+a \int_{-\infty}^{w_{2}} \int_{L}^{L S L} f(x, y) d y d x+R \int_{-\infty}^{w_{2}} \int_{L}^{L S L} f(x, y) d y d x \\
& +k \int_{-\infty}^{w_{2}} \int_{-\infty}^{L} \frac{1}{y^{2}} f(x, y) d y d x+a \int_{-\infty}^{w_{2}} \int_{-\infty}^{L} f(x, y) d y d x \\
& +R \int_{-\infty}^{w_{2}} \int_{-\infty}^{L} f(x, y) d y d x \tag{4.18}\\
& +
\end{align*}
$$

By rearranging the above formula we find the following

$$
\begin{align*}
& E(L(y)) \\
& =k \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{y^{2}} f(x, y) d y d x+g \int_{w_{1}}^{\infty} \int_{L S L}^{\infty} y f(x, y) d y d x-g L S L \int_{w_{1}}^{\infty} \int_{L S L}^{\infty} f(x, y) d y d x \\
& +(a-r) \int_{w_{2}}^{w_{1}} \int_{-\infty}^{\infty} f(x, y) d y d x+a \int_{-\infty}^{w_{2}} \int_{-\infty}^{\infty} f(x, y) d y d x+R \int_{-\infty}^{w_{2}} \int_{-\infty}^{\infty} f(x, y) d y d x \\
& +b_{1} \int_{w_{1}}^{\infty} \int_{L}^{L S L} f(x, y) d y d x+b_{2} \int_{w_{1}}^{\infty} \int_{-\infty}^{L} f(x, y) d y d x \\
& +b_{3} \int_{w_{2}}^{w_{1}} \int_{-\infty}^{L} f(x, y) d y d x \tag{4.19}
\end{align*}
$$

Now, adding the similar terms together we get the following

$$
\begin{align*}
& E(L(y)) \\
& =k \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{y^{2}} f(x, y) d y d x+g \int_{w_{1}}^{\infty} \int_{L S L}^{\infty} y f(x, y) d y d x-g L S L \int_{w_{1}}^{\infty} \int_{L S L}^{\infty} f(x, y) d y d x \\
& +(a-r) \int_{w_{2}}^{w_{1}} f(x) d x+a \int_{-\infty}^{w_{2}} f(x) d x+R \int_{-\infty}^{w_{2}} f(x) d x \\
& +b_{1} \int_{w_{1}}^{\infty} \int_{L}^{L S L} f(x, y) d y d x+b_{2} \int_{w_{1}}^{\infty} \int_{-\infty}^{L} f(x, y) d y d x \\
& +b_{3} \int_{w_{2}}^{w_{1}} \int_{-\infty}^{L} f(x, y) d y d x \tag{4.20}
\end{align*}
$$

Using the standard normal distribution and the notations defined in the previous section the expected loss can be written as

$$
\begin{align*}
E(L(y))=k & \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{1}{y^{2}} f(x, y) d y d x+g \int_{w_{1}}^{\infty} \int_{L S L}^{\infty} y f(x, y) d y d x \\
& -g L S L \int_{w_{1}}^{\infty} \int_{L S L}^{\infty} f(x, y) d y d x+a \Omega-r(\Omega-\xi)+R \xi \\
& +b_{1} \int_{w_{1}}^{\infty} \int_{L}^{L S L} f(x, y) d y d x+b_{2} \int_{w_{1}}^{\infty} \int_{-\infty}^{L} f(x, y) d y d x \\
& +b_{3} \int_{w_{2}}^{w_{1}} \int_{-\infty}^{L} f(x, y) d y d x \tag{4.21}
\end{align*}
$$

4.3.4. THE MULTI-OBJECTIVE OPTIMIZATION FRAMEWORK

In this section, the multi-objective optimization model will be formulated in the same fashion described in section 2.5. The model goal is to find the optimum values of the process target mean and the two cut off points which maximize the three objectives simultaneously. The objectives are total expected profit per item, the total expected income per item and the product uniformity. The multi-objective optimization model is given by

$$
\max \boldsymbol{f}(\boldsymbol{T})=\left[f_{1}(\boldsymbol{T}), f_{2}(\boldsymbol{T}), f_{3}(\boldsymbol{T})\right]
$$

Subject to

$$
T \geq L S L
$$

Where
$f_{1}(\boldsymbol{T})=E(P)$ equation 4.14
$f_{2}(\boldsymbol{T})=E(I)$ equation 4.16
$f_{3}(\boldsymbol{T})=-E(L(y))$ equation 4.21

4.4 RESULTS AND SENSITIVITY ANALYSIS

In this section, an illustrative example for the model developed above is presented using parameters from the literature. This is followed by sensitivity analysis for these model's parameters, to discover their effect on the results.

4.4.1. SOLUTION METHODOLOGY

The proposed solution methodology consists of three main steps:

- Step 1: each objective function is evaluated individually using a uniform line search method with step length λ in the interval $I_{1}=[L S L, L S L+b]$. Then, for each $T \in I_{1}$, conduct a cyclic search and evaluate the three objective values for w_{1} and w_{2} in \quad the \quad intervals $\quad I_{2}=[L S L-d, L S L+d]$ and $I_{3}=[L-d, L+$ d]repectively. Where b and dare appropriate positive numbers.
- Step 2: Generate the set of non-inferior points as following:
i. Define $T_{\min }=\operatorname{Min}\left(T_{1}{ }^{*}, T_{2}{ }^{*}, T_{3}{ }^{*}\right)$ and $T_{\max }=\operatorname{Max}\left(T_{1}{ }^{*}, T_{2}{ }^{*}, T_{3}{ }^{*}\right)$
ii. Let $T_{i}=T_{\text {min }}+i \lambda \epsilon\left[T_{\text {min }}, T_{\text {max }}\right]: i=1,2, . ., n$ and

$$
T_{j}=T_{\min }+j \lambda \epsilon\left[T_{\min }, T_{\max }\right]: j=1,2, . ., n
$$

iii. The point $\left(T_{i}, w_{1}, w_{2}\right)$ is a non-inferior point if there is no $\left(T_{j}, w_{1}, w_{2}\right)$
such that:

$$
\left\{f_{k}\left(T_{j}, w_{1}, w_{2}\right) \geq f_{k}\left(T_{i}, w_{1}, w_{2}\right): \forall k=1,2,3\right\}
$$

- Step 3: Rank the set of non-inferior points as following:
i. Normalize: $\frac{\boldsymbol{f}_{\boldsymbol{k}}\left(\boldsymbol{T}_{\boldsymbol{i}}\right)}{\boldsymbol{f}_{\boldsymbol{k}}\left(\boldsymbol{T}_{\boldsymbol{i}}{ }^{*}\right)}, \mathrm{i}=1,2, . ., \mathrm{n}$ and $\mathrm{k}=1,2,3$
ii. Define the normalized $\operatorname{sum} \boldsymbol{S}_{\boldsymbol{i}}$ as: $\boldsymbol{S}_{\boldsymbol{i}}=\sum_{\boldsymbol{k}=\mathbf{1}}^{3} \frac{\boldsymbol{f}_{\boldsymbol{k}}\left(\boldsymbol{T}_{\boldsymbol{i}}\right)}{\boldsymbol{f}_{\boldsymbol{k}}\left(\boldsymbol{T}_{\boldsymbol{i}}{ }^{*}\right)}$
iii. Define the percentage absolute deviation $\boldsymbol{P} \boldsymbol{A} \boldsymbol{D}_{\boldsymbol{i}}$ as: $\boldsymbol{P A D} \boldsymbol{D}_{\boldsymbol{i}}=\frac{\left|3-\boldsymbol{S}_{i}\right| * \mathbf{1 0 0}}{3}$,

$$
\mathrm{i}=1,2,3
$$

iv. Rank the points according to $\boldsymbol{P} \boldsymbol{A} \boldsymbol{D}_{\boldsymbol{i}}$ from the smallest to the largest.

The smaller the $\boldsymbol{P A D}_{\boldsymbol{i}}$, the higher preference of the point.

4.4.2. NUMERICAL EXAMPLE

Consider a production process, which produces products that have a normally distributed quality characteristic y. If the value of the quality characteristic is above the primary
market specification $L S L=10$, then it sold at a regular price of $\$ 80$, If the quality characteristic is below the LSL but above the secondary market specification $L=9$, then it sold at a reduced price $\$ 67.5$, and if the quality characteristic falls below L, the item reworked with cost $\$ 4$. The inspection system tends to make some classification error, if a secondary market product is classified as a primary market product, then the producer compensates the customer with penalty $b_{1}=a-r$, if a non-conforming product is classified as a primary market product, then the producer compensates the customer with penalty $b_{2}=a$, finally, if a secondary market product is classified as a non-conforming product, then the producer compensates the customer with penalty $b_{3}=r$. The processing cost of an item is $\$ 7$, and the excess material cost per item of material is $\$ 2$. The process standard deviation is 0.5 and the correlation coefficient between the actual quality characteristic y and the observed one x is $\rho=0.85$, i.e. $\sigma_{\varepsilon}=0.210042$ and $\sigma_{x}=$ 0.542326.The uniform search is conducted over the interval $T \in[10,20]$, and the cyclic search over $w_{1} \in[9.5,10.5]$ and $w_{2} \in[8.5,9.5]$. Table 4.1 below summarizes the obtained results

Table 4-3 The optimum values of the three objective factions of model 2

	PROFIT OBJECTIVE $f_{1}(T)$	INCOM OBJECTIVE $f_{2}(T)$	UNIFORATY OBJECTIVE $f_{3}(T)$
T^{*}	10.6	11.1	11
$w_{1}{ }^{*}$	9.8	9.5	9.5
$w_{2}{ }^{*}$	8.5	9.7	8.5
$f_{i}\left(T^{*}\right)$	1.403287191	77.40167523	-5.626598613

The above result can be interpret as the following, the primary market cut-off point w_{1} is lower than the primary market specification limit (LSL) which means, more lower quality items will be classify as a higher quality specially, more secondary market items classify as primary market items. The reason behind that; the penalty cost which the producer is going to pay for this misclassification is $\$(\mathrm{a}-\mathrm{r})$ which is in our example $\$ 12.5$, but in the other way around, if w_{1} is larger than the primary market specification limit (LSL) then, more primary market items are classified as secondary market item and the loss in the profit is also $\$(\mathrm{a}-\mathrm{r})$ plus excess material cost of the primary market items fall actually above LSL. Therefore, it's more profitable to set the primary market cut-off point w_{1} below the primary market specification limit LSL. For the secondary market cut-off point w_{2} of the income objective function, it is located above the secondary market specification limit L. this because there is no production cost in the income objective function and the rework cost is smaller than the penalty cost of classifying a conforming item as defective one. Therefore, if a defective item is classified as a primary market or a secondary market item then, the loss in profit are $\$$ a and $\$ r$, respectively. While in the other way around, if a defective item is classified as a primary market or a secondary market item will be reworked at $\$ 4$.

The set of non-inferior solution is given below in table 4-2

Table 4-4 The set of non-inferior solutions of model 2

T^{*}	$w_{2}{ }^{*}$	$w_{1}{ }^{*}$	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.6	8.5	9.8	1.4023514	75.8249	-6.5366195	$38^{\text {th }}$
10.6	8.6	9.8	1.397201	75.827165	-6.538841	$37^{\text {th }}$

10.7	8.5	9.5	1.2550251	76.173132	-6.0013327	19th
10.7	8.6	9.5	1.2523356	76.174189	-6.0024873	$20^{\text {th }}$
10.7	8.7	9.5	1.2459373	76.175885	-6.0052983	$22^{\text {nd }}$
10.7	8.8	9.5	1.231711	76.178418	-6.0116453	$24^{\text {th }}$
10.7	8.5	9.6	1.3239929	76.264166	-6.0218072	$1{ }^{\text {st }}$
10.7	8.6	9.6	1.3213065	76.265226	-6.0229618	$2^{\text {nd }}$
10.7	8.7	9.6	1.3149146	76.266927	-6.0257728	$4^{\text {th }}$
10.7	8.8	9.6	1.3007011	76.269471	-6.0321198	$7^{\text {th }}$
10.7	8.9	9.6	1.2710886	76.273049	-6.0454743	$13^{\text {th }}$
10.7	8.5	9.7	1.3847704	76.370876	-6.0669894	$18^{\text {th }}$
10.7	8.6	9.7	1.3820879	76.371939	-6.068144	$17^{\text {th }}$
10.7	8.7	9.7	1.3757038	76.373647	-6.070955	$16^{\text {th }}$
10.7	8.8	9.7	1.3615057	76.376203	-6.077302	$14^{\text {th }}$
10.7	8.9	9.7	1.3319224	76.379804	-6.0906565	$10^{\text {th }}$
10.7	9	9.7	1.2739064	76.384679	-6.1170001	$8^{\text {th }}$
10.7	8.5	9.8	1.3904112	76.463277	-6.1512987	$26^{\text {th }}$
10.7	8.6	9.8	1.3877328	76.464343	-6.1524533	$25^{\text {th }}$
10.7	8.7	9.8	1.3813585	76.466056	-6.1552642	$23^{\text {rd }}$
10.7	8.8	9.8	1.3671777	76.468623	-6.1616113	$21^{\text {st }}$
10.7	8.9	9.8	1.3376216	76.472245	-6.1749658	$15^{\text {th }}$
10.7	9	9.8	1.2796682	76.477157	-6.2013094	3 rd
10.7	8.5	9.9	1.2862996	76.508581	-6.2954959	$12^{\text {th }}$
10.7	8.6	9.9	1.2836251	76.509648	-6.2966505	$11^{\text {th }}$
10.7	8.7	9.9	1.277252	76.511364	-6.2994615	9th
10.7	8.8	9.9	1.2630869	76.513936	-6.3058085	$6^{\text {th }}$
10.7	8.9	9.9	1.2335674	76.517568	-6.319163	$5^{\text {th }}$
10.8	8.5	9.5	1.1271668	76.739529	-5.7817284	$50^{\text {th }}$
10.8	8.6	9.5	1.1258212	76.740007	-5.7823064	$51^{\text {st }}$

10.8	8.7	9.5	1.1225443	76.740796	-5.783745	$52^{\text {nd }}$
10.8	8.8	9.5	1.1150808	76.742013	-5.7870692	54th
10.8	8.9	9.5	1.0991336	76.743789	-5.7942384	$58^{\text {th }}$
10.8	8.5	9.6	1.1612563	76.789973	-5.7955729	39th
10.8	8.6	9.6	1.1599117	76.790453	-5.7961509	$40^{\text {th }}$
10.8	8.7	9.6	1.156637	76.791243	-5.7975896	$42^{\text {nd }}$
10.8	8.8	9.6	1.1491778	76.792463	-5.8009137	44th
10.8	8.9	9.6	1.1332386	76.794245	-5.8080829	48 ${ }^{\text {th }}$
10.8	9	9.6	1.1011338	76.796771	-5.8226053	55 ${ }^{\text {th }}$
10.8	8.5	9.7	1.1957843	76.859088	-5.8301669	$30^{\text {th }}$
10.8	8.6	9.7	1.1944409	76.859568	-5.830745	$31^{\text {st }}$
10.8	8.7	9.7	1.1911681	76.860361	-5.8321835	$32^{\text {nd }}$
10.8	8.8	9.7	1.1837138	76.861584	-5.8355077	$34^{\text {th }}$
10.8	8.9	9.7	1.1677846	76.863375	-5.8426769	36 ${ }^{\text {th }}$
10.8	9	9.7	1.1356989	76.865916	-5.8571993	$43^{\text {rd }}$
10.8	9.1	9.7	1.0744326	76.869517	-5.8850141	57th
10.8	8.5	9.8	1.1851012	76.914856	-5.8949957	27th
10.8	8.6	9.8	1.1837591	76.915337	-5.8955737	$28^{\text {th }}$
10.8	8.7	9.8	1.1804903	76.916131	-5.8970123	29th
10.8	8.8	9.8	1.1730396	76.917358	-5.9003364	33rd
10.8	8.9	9.8	1.1571186	76.919155	-5.9075056	35 ${ }^{\text {th }}$
10.8	9	9.8	1.1250548	76.921709	-5.9220281	41 ${ }^{\text {st }}$
10.8	9.1	9.8	1.0638261	76.925333	-5.9498428	$56^{\text {th }}$
10.8	9.2	9.8	0.9523607	76.930598	-6.0005302	$61^{\text {st }}$
10.8	8.5	9.9	1.0865845	76.932917	-6.0075076	45 ${ }^{\text {th }}$
10.8	8.6	9.9	1.0852436	76.933399	-6.0080856	$46^{\text {th }}$
10.8	8.7	9.9	1.0819773	76.934194	-6.0095242	47th
10.8	8.8	9.9	1.0745317	76.935421	-6.0128484	49th

10.8	8.9	9.9	1.0586208	76.93722	-6.0200176	$53^{\text {rd }}$
10.8	9	9.9	1.0265764	76.939778	-6.03454	59th
10.8	9.1	9.9	0.9653832	76.943409	-6.0623548	$60^{\text {th }}$
10.8	9.2	9.9	0.8539811	76.948688	-6.1130421	$62^{\text {nd }}$
10.9	8.5	9.5	0.7945182	77.102799	-5.6641578	79th
10.9	8.6	9.5	0.7938692	77.103007	-5.6644366	80 ${ }^{\text {th }}$
10.9	8.7	9.5	0.7922509	77.103359	-5.665146	81 ${ }^{\text {st }}$
10.9	8.8	9.5	0.7884738	77.103919	-5.6668244	83 rd
10.9	8.9	9.5	0.7801921	77.104769	-5.6705364	$84^{\text {th }}$
10.9	8.5	9.6	0.8011632	77.121101	-5.6714697	$74^{\text {th }}$
10.9	8.6	9.6	0.8005146	77.12131	-5.6717485	$75^{\text {th }}$
10.9	8.7	9.6	0.7988968	77.121662	-5.6724579	$76^{\text {th }}$
10.9	8.8	9.6	0.7951206	77.122223	-5.6741363	$78^{\text {th }}$
10.9	8.9	9.6	0.7868417	77.123074	-5.6778483	82 ${ }^{\text {nd }}$
10.9	9	9.6	0.769703	77.124338	-5.6855738	85 ${ }^{\text {th }}$
10.9	8.5	9.7	0.8223379	77.167329	-5.697633	$63^{\text {rd }}$
10.9	8.6	9.7	0.8216896	77.167537	-5.6979118	$64^{\text {th }}$
10.9	8.7	9.7	0.8200725	77.16789	-5.6986213	$65^{\text {th }}$
10.9	8.8	9.7	0.8162979	77.168452	-5.7002996	69 ${ }^{\text {th }}$
10.9	8.9	9.7	0.8080221	77.169306	-5.7040116	71 ${ }^{\text {st }}$
10.9	9	9.7	0.7908897	77.170576	-5.7117372	$73^{\text {rd }}$
10.9	9.1	9.7	0.7572151	77.172478	-5.7269673	$86^{\text {th }}$
10.9	8.5	9.8	0.8064574	77.200429	-5.7459983	$66^{\text {th }}$
10.9	8.6	9.8	0.8058094	77.200637	-5.7462771	67th
10.9	8.7	9.8	0.8041931	77.200991	-5.7469865	68th
10.9	8.8	9.8	0.8004209	77.201554	-5.7486648	$70^{\text {th }}$
10.9	8.9	9.8	0.7921478	77.202409	-5.7523768	$72^{\text {nd }}$
10.9	9	9.8	0.7750222	77.203683	-5.7601024	77th

10.9	9.1	9.8	0.7413605	77.205592	-5.7753325	87 ${ }^{\text {th }}$
10.9	9.2	9.8	0.6782012	77.208533	-5.8039454	$90^{\text {th }}$
10.9	9.3	9.8	0.5645413	77.213205	-5.855431	$93^{\text {rd }}$
10.9	9.4	9.8	0.5130571	77.220761	-5.9444938	$94^{\text {th }}$
10.9	8.9	9.9	0.7078054	77.205636	-5.8371174	88 ${ }^{\text {th }}$
10.9	9	9.9	0.6906832	77.20691	-5.8448429	89th
10.9	9.1	9.9	0.6570354	77.208819	-5.860073	$91^{\text {st }}$
10.9	9.2	9.9	0.5938994	77.211762	-5.888686	$92^{\text {nd }}$
10.9	9.3	9.9	0.4802765	77.216436	-5.9401715	95th
10.9	9.4	9.9	0.4288601	77.223997	-6.0292343	$96^{\text {th }}$
11	8.5	9.5	0.2947733	77.300181	-5.6265986	$104{ }^{\text {th }}$
11	8.6	9.5	0.2944716	77.300268	-5.6267282	105 ${ }^{\text {th }}$
11	8.7	9.5	0.293701	77.300418	-5.6270653	106 ${ }^{\text {th }}$
11	8.8	9.5	0.2918571	77.300666	-5.6278823	109 ${ }^{\text {th }}$
11	8.9	9.5	0.2877063	77.301056	-5.6297363	$111^{\text {th }}$
11	9	9.5	0.2788702	77.301663	-5.6337028	$114^{\text {th }}$
11	9.1	9.5	0.2609828	77.302621	-5.6417551	117 ${ }^{\text {th }}$
11	8.5	9.7	0.2935329	77.32439	-5.6470831	97th
11	8.6	9.7	0.2932313	77.324477	-5.6472127	98 ${ }^{\text {th }}$
11	8.7	9.7	0.2924608	77.324628	-5.6475498	99th
11	8.8	9.7	0.2906182	77.324876	-5.6483668	$100^{\text {th }}$
11	8.9	9.7	0.2864688	77.325267	-5.6502208	$108^{\text {th }}$
11	9	9.7	0.2776363	77.325875	-5.6541873	$112^{\text {th }}$
11	9.1	9.7	0.2597554	77.326837	-5.6622397	$115^{\text {th }}$
11	9.2	9.7	0.2251564	77.328401	-5.677842	118 ${ }^{\text {th }}$
11	8.5	9.8	0.2810179	77.346623	-5.6825449	101 ${ }^{\text {st }}$
11	8.6	9.8	0.2807164	77.34671	-5.6826745	$102^{\text {nd }}$
11	8.7	9.8	0.2799461	77.346861	-5.6830117	$103{ }^{\text {rd }}$

11	8.8	9.8	0.2781033	77.347109	-5.6838286	107 ${ }^{\text {th }}$
11	8.9	9.8	0.2739556	77.347501	-5.6856826	$110^{\text {th }}$
11	9	9.8	0.2651245	77.348111	-5.6896491	$113^{\text {th }}$
11	9.1	9.8	0.2472483	77.349074	-5.6977015	$116^{\text {th }}$
11	9.2	9.8	0.2126571	77.350643	-5.7133038	119 ${ }^{\text {th }}$
11	9.3	9.8	0.1484049	77.353267	-5.7422927	120 ${ }^{\text {th }}$
11	9.4	9.8	0.1149032	77.357708	-5.7941148	$121{ }^{\text {st }}$
11	9.5	9.8	-0.165024	77.365177	-5.8834448	$122^{\text {nd }}$
11.1	8.5	9.5	-0.335427	77.367999	-5.6488571	129 ${ }^{\text {th }}$
11.1	8.6	9.5	-0.335563	77.368034	-5.6489151	$130^{\text {th }}$
11.1	8.7	9.5	-0.335917	77.368096	-5.6490696	$131{ }^{\text {st }}$
11.1	8.8	9.5	-0.336785	77.368201	-5.6494531	$132^{\text {nd }}$
11.1	8.9	9.5	-0.338793	77.368373	-5.6503464	$133{ }^{\text {rd }}$
11.1	9	9.5	-0.34319	77.368653	-5.6523122	135 ${ }^{\text {th }}$
11.1	9.1	9.5	-0.352364	77.369119	-5.6564236	$136{ }^{\text {th }}$
11.1	9.2	9.5	-0.37068	77.369919	-5.6646426	$138{ }^{\text {th }}$
11.1	8.5	9.6	-0.384925	77.32377	-5.6407851	$140^{\text {th }}$
11.1	8.6	9.6	-0.38506	77.323805	-5.6408431	$141^{\text {st }}$
11.1	8.7	9.6	-0.385414	77.323867	-5.6409976	$142^{\text {nd }}$
11.1	8.8	9.6	-0.386282	77.323972	-5.641381	$143{ }^{\text {rd }}$
11.1	8.9	9.6	-0.38829	77.324143	-5.6422744	$144^{\text {th }}$
11.1	9	9.6	-0.392687	77.324422	-5.6442401	$145^{\text {th }}$
11.1	9.1	9.6	-0.40186	77.324886	-5.6483516	147 ${ }^{\text {th }}$
11.1	8.5	9.7	-0.328898	77.391504	-5.6657618	$123{ }^{\text {rd }}$
11.1	8.6	9.7	-0.329033	77.391539	-5.6658198	$124^{\text {th }}$
11.1	8.7	9.7	-0.329387	77.391601	-5.6659742	125 ${ }^{\text {th }}$
11.1	8.8	9.7	-0.330255	77.391706	-5.6663577	$126^{\text {th }}$
11.1	8.9	9.7	-0.332262	77.391878	-5.6672511	127 ${ }^{\text {th }}$

11.1	9	9.7	-0.336659	77.392159	-5.6692168	$128^{\text {th }}$
11.1	9.1	9.7	-0.345831	77.392627	-5.6733282	$134^{\text {th }}$
11.1	9.2	9.7	-0.364143	77.393429	-5.6815473	$137^{\text {th }}$
11.1	9.3	9.7	-0.399267	77.394838	-5.6973196	$139^{\text {th }}$
11.1	9.4	9.7	-0.420155	77.397326	-5.7264621	$146^{\text {th }}$
11.1	9.5	9.7	-0.580005	77.401675	-5.7784074	$148^{\text {th }}$

4.4.3. SENSITIVITY ANALYSIS FOR THE PARAMETERS

In this section, the sensitivity analysis for the correlation coefficient ρ and the penalty costs is conducted, to study their effect on the model and the results

First, the effect of the correlation coefficient between actual quality characteristic y and the observed quality characteristic x is studied. Four cases are tested in tables 4-3, 4-4 and 4-5 below show the effect of the correlation coefficient on the three objective functions.

Table 4-5 The sensitivity analysis of the correlation coefficient on the profit objective function of model 2.

ρ	PROFIT					
	T	w_{2}	w_{1}	OBJECTIVE VALUE	CHANGE PERCENTAGE	
0.95	10.6	8.5	9.9	1.89158168	34.88642%	
0.90	10.6	8.5	9.8	1.624591083	15.84764%	
0.85 (original)	10.6	8.5	9.8	1.403287191	0%	
0.8	10.7	8.5	9.7	1.271954429	-9.298453%	
0.75	10.7	8.5	9.6	1.10925804	-20.90014%	

Table 4-6 The sensitivity analysis of the correlation coefficient on the income objective function of model 2.

ρ	INCOME					
	T	w_{2}	w_{1}	OBJECTIVE VALUE	CHANGE PERCENTAGE	
0.95	11	9.5	10	77.60560789	0.263473%	
0.90	11.1	9.5	9.9	77.41250907	0.013997%	
0.85 (original)	11.1	9.5	9.7	77.40167523	0%	
0.8	11.1	9.5	9.7	77.38962532	-0.015568%	
0.75	11.1	9.5	9.5	77.35064151	-0.06593%	

Table 4-7 The sensitivity analysis of the correlation coefficient on the product uniformity objective function of model 2.

ρ	UNIFORMITY				
	T	w_{2}	w_{1}	OBJECTIVE VALUE	CHANGE PERCENTAGE
0.95	12.4	8.5	9.8	-3.820241898	32.10388%
0.90	11.2	8.5	9.6	-5.619766639	0.121423%
0.85 (original)	11	8.5	9.5	-5.626598613	0%
0.8	11	8.5	9.5	-5.633498691	-0.12263%
0.75	11	8.5	9.5	-5.644154922	-0.31202%

It is clear that as the correlation coefficient ρ increases the error standard deviation decreases as well. Therefore, as the correlation coefficient value increased the deviation between the actual and observed quality characteristics is decreased and approaches zero.

Hence, the model tends to be closer to the model in chapter three with no inspection error.

The higher the value of the correlation coefficient, the higher value for the three objective function values (profit, income and product uniformity) because, if the correlation coefficient value is high then, more produced items are classified correctly according to their quality characteristic values therefore, no more penalty cost is going to be paid. While the small value of the correlation coefficient means more produced items are misclassified due to the high deviation between the actual and observed quality characteristics. Hence, more penalties are going to be paid which resulting in more loss which reduce the net profit and income per item and more variability between the produced items.

The sets of non-inferior solutions of the sensitivity analysis on the correlation coefficient can be found in appendix B.

Now, we come to the sensitivity analysis of the penalty cost parameters (table 4-2). These penalties associated with classifying and selling a lower quality product as a higher quality one. In the original model the producer compensates the customer by what the customer has paid for the higher quality. Ten cases are tested; tables 4-8, 4-9 and 4-10 summarize the results of the conducted sensitivity analysis on the penalty cost parameters.

Table 4-8 The sensitivity analysis of the penalty costs on the profit objective function of model 2

penalties	T	$w_{2}{ }^{*}$	$w_{1}{ }^{*}$	OBJECTIVE VALUE	CHANGE PERCENTAGE
$+50 \%$	10.7	8.5	9.8	1.093482413	-22.02508%
$+25 \%$	10.7	8.5	9.8	1.242172255	-11.42218%
$+20 \%$	10.7	8.5	9.8	1.271910224	-9.301605%
$+15 \%$	10.7	8.5	9.8	1.301648192	-7.1810264%
$+10 \%$	10.7	8.5	9.8	1.331386161	-5.0604475%
Original	10.6	8.5	9.8	1.403287191	10.6
-10%	1.6	8.5	9.8	1.485551432	5.9328933%
-15%	10.6	8.5	9.8	1.526683553	8.865976%
-20%	10.6	8.5	9.8	1.567815673	11.79906%
-25%	10.6	8.5	9.7	1.612108094	14.957497%
-50%	10.6	8.5	9.7	1.857968755	32.48953%

Table 4-9 The sensitivity analysis of the penalty costs on the income objective function of model 2

INCOME					
penalties	T	$w_{2}{ }^{*}$	$w_{1}{ }^{*}$	OBJECTIVE VALUE	CHANGE PERCENTAGE
$+50 \%$	11.1	9.5	9.9	77.3420366	-0.077051%
$+25 \%$	11.1	9.5	9.7	77.36845583	-0.042918%
$+20 \%$	11.1	9.5	9.7	77.37509971	-0.0343346%
$+15 \%$	11.1	9.5	9.7	77.38174359	-0.0257509%
$+10 \%$	11.1	9.5	9.7	77.38838747	-0.0171673%

Original	11.1	9.5	9.7	77.40167523	0%
-10%	11.1	9.5	9.7	77.41496299	0.0171673%
-15%	11.1	9.5	9.7	77.42160687	0.025751%
-20%	11.1	9.5	9.7	77.42825075	0.034335%
-25%	11.1	9.5	9.7	77.43489463	0.042918%
-50%	11.1	9.5	9.8	77.46811403	0.085836%

Table 4-10 The sensitivity analysis of the penalty costs on the product uniformity objective function of model 2 .

PRODUCT UNIFORMITY					
penalties	T	$w_{2}{ }^{*}$	$w_{1}{ }^{*}$	OBJECTIVE VALUE	CHANGE PERCENTAGE
$+50 \%$	11.1	8.5	9.6	-5.714670912	1.56528%
$+25 \%$	11.1	8.5	9.6	-5.67772801	-0.908709%
$+20 \%$	11.1	8.5	9.6	-5.67033943	-0.777394%
$+15 \%$	11	8.5	9.6	-5.6625449	-0.638864%
$+10 \%$	11	8.5	9.6	-5.65064017	-0.427284%
Original	11	8.5	9.5	-5.62659861	0%
-10%	11	8.5	9.5	-5.60098779	0.45517%
-15%	11	8.5	9.5	-5.58818238	0.68276%
-20%	11	8.5	9.5	-5.57537697	0.91035%
-25%	11	8.5	9.5	-5.56257156	1.13794%

-50%	10.9	8.8	9.5	-5.464147477	2.8872%

It is clear that, as well the penalty cost values increases the net the three objective values decrease, since the producer pays more if the items' quality is misclassified. For the larger increase in the penalty cost, the cut-off points are wider than the original case to reduce the probability to the misclassification.

The sets of non-inferior solutions of the sensitivity analysis on the penalty costs can be found in appendix B.

4.5 CONCLUSION

In this chapter, a multi-objective optimization model has been developed for process targeting problem. Three objective functions are maximized simultaneously to find the optimum setting of the process target mean. The assumption of the inspection error is relaxed in this chapter and the concept of cut-off points is used to reduce the impact of the error. The set of non-inferior solutions was generated for an example contains some data from the process targeting literature. Sensitivity analysis for the correlation coefficient between the actual and observed quality characteristics and the penalty cost parameters was conducted, to study their effect on the optimal process target mean and the three objective function values.

CHAPTER 5

MULTI-OBJECTIVE PROCESS TARGETING MODEL WITH SAMPLING PLAN AND ERRORFREE INSPECTION SYSTEM

5.1 PREFACE

In this chapter a multi-objective optimization model has been developed for a process targeting problem. The production process used in the development of this chapter and the next one is described in section 5.2. In this production process sampling plan is used as the mean for product quality control. The sampling plan inspection is considered to be error-free which the assumption that will be relaxed is in the next chapter. After defining the production process, the process targeting problem statement and a multi-objective optimization model for this production process are stated in sections 5.3 and 5.4, respectively. The utility of the developed model has been shown using a numerical example from the literature and sensitivity analysis is conducted on the parameters in section 5.5. The chapter is concluded in section 5.6.

5.2 DESCRIBTION OF THE PRODUCTION PROCESS

Consider a production process described in figure 5.1 that produces items have quality characteristic y with unknown mean value T and known standard deviation value σ. The quality characteristic has a lower specification limit LSL. Also assume that, no inspection takes place before producing a lot of size N . Then a sample of size n is drawn from the lot. Now there are three cases: first case, the number of non-conforming items in the sample is less than or equal to a pre-determined first rejection criteria d_{1} (accepting number of non-conforming item in the sample), then, the lot is sold in a primary market for $\$ a$ per item. Second case, the number of non-conforming items in the sample falls between the first rejection criteria d_{1} and the second rejection criteria $d_{2}\left(d_{1}<d_{2}\right)$, then, the lot is sold in a secondary market for $\$ r(r<a)$ per item. The third and last case, the number of non-conforming items in the sample exceeds d_{2}, then, the entire lot is reworked for a cost $\$ R$ per item.

Figure 5-1 The description of the production process under sampling plan

5.3 STATEMENT OF THE PROBLEM

Consider the production process described in figure (5-1).A produced item is classified as defect if its quality characteristic does not meet the specification (falls below the lower specification limit LSL). After producing a lot of size N , a sample of size n is drawn from the lot and all the items in the sample are inspected. The number of the defective in the sample D is compared with the values of the two critical values d_{1} and $d_{2}: d_{1}<$ d_{2} (allowed number of defects). If the number of observed defectives in the sample D is less than d_{1}, the lot is accepted and sold in a primary market at a regular price, the cost of excess quality is considered in this situation. Then, If D falls between d_{1} and d_{2}, then, the lot is sold at secondary market at a reduced price. If D is greater than d_{2}, the whole lot is reworked again. The production and inspection cost per item c and I, respectively, are fixed and known.

A multi-objective optimization model will be developed next. By applying an appropriate optimization technique, the optimum process target mean id obtained.

5.4 MODEL DEVELOPMENT

In this section, a multi-objective optimization model has been developed. This model consists of three objective functions, expected profit per item, expected income per item and product uniformity. The development of these objectives is based on the production process in figure 5-1.

Now, let's determine the probabilities of classifying the lot to be sold in a primary market, secondary market or to be reworked.

First, the probability that an item falls below LSL is given by the following

$$
\begin{equation*}
p(y<L S L)=\Phi\left(\frac{L S L-T}{\sigma}\right)=\beta \tag{5.1}
\end{equation*}
$$

The distribution of number of defectives in an incoming lot follows the binomial probability distribution with parameter β.

The lot is said to be primary market conforming if the number of defects in the sample is less that d_{1} with probability

$$
\begin{equation*}
p\left(D \leq d_{1}\right)=\sum_{i=0}^{d_{1}}\binom{n}{i} \beta^{i}(1-\beta)^{n-i} \tag{5.2}
\end{equation*}
$$

The probability of classifying the lot as a secondary market conforming is

$$
\begin{align*}
& p\left(d_{1}<D \leq d_{2}\right)=\sum_{i=0}^{d_{2}}\binom{n}{i} \beta^{i}(1-\beta)^{n-i}-\sum_{i=0}^{d_{1}}\binom{n}{i} \beta^{i}(1-\beta)^{n-i} \tag{5.3}\\
& p\left(d_{1}<D \leq d_{2}\right)=\sum_{i=d_{1}+1}^{d_{2}}\binom{n}{i} \beta^{i}(1-\beta)^{n-i} \tag{5.4}
\end{align*}
$$

Finally, the probability of reworking the whole entire lot is

$$
\begin{equation*}
p\left(D>d_{2}\right)=\sum_{i=d_{2+1}}^{n}\binom{n}{i} \beta^{i}(1-\beta)^{n-i}=1-\sum_{i=0}^{d_{2}}\binom{n}{i} \beta^{i}(1-\beta)^{n-i} \tag{5.5}
\end{equation*}
$$

Also, define y^{\prime} as the expected value of the quality characteristic y where y is above the lower specification limit

$$
\begin{equation*}
y^{\prime}=E(y \mid y \geq L S L)=\frac{\int_{L S L}^{\infty} y f(y) d y}{\int_{L S L}^{\infty} f(y) d y} \tag{5.6}
\end{equation*}
$$

5.4.1. OBJECTIVE I (PROFIT OBJECTIVE FUNCTION)

Let's define Pro and E (Pro) to be the profit per lot and its expectation, respectively. Also, define P and $\mathrm{E}(\mathrm{P})$ as the profit per item and its expected value, respectively. Starting by defining the profit per lot formula, we will end up with an equation for the expected profit per item as the following

$$
\text { Pro }=\left\{\begin{array}{lr}
a N-g(y-L S L) N-I n-c y N & \text { if } D \leq d_{1} \tag{5.7}\\
r N-I n-c y N & \text { if } d_{1}<D \leq d_{2} \\
E(\text { Pro })-R N-I n-c y N & \text { if } D>d_{2}
\end{array}\right.
$$

Now the expected profit per lot is given by

$$
\begin{align*}
E(\text { Pro })=a N & \cdot p\left(D \leq d_{1}\right)-g(y-L S L) N \cdot p\left(D \leq d_{1}\right)-I n \cdot p\left(D \leq d_{1}\right) \\
& -c y N \cdot p\left(D \leq d_{1}\right)+r N \cdot p\left(d_{1}<D \leq d_{2}\right)-\operatorname{In} \cdot p\left(d_{1}<D \leq d_{2}\right) \\
& \left.- \text { cyN.p(} d_{1}<D \leq d_{2}\right)+E(\text { Pro }) \cdot p\left(D>d_{2}\right)-R N \cdot p\left(D>d_{2}\right) \\
& - \text { In } \cdot p\left(D>d_{2}\right)-c y N \cdot p\left(D>d_{2}\right) \tag{5.8}
\end{align*}
$$

Rearranging the above equation we get

$$
\begin{array}{r}
E(\text { Pro })=\frac{1}{1-p\left(D>d_{2}\right)}\left[a N \cdot p\left(D \leq d_{1}\right)-g(y-L S L) N \cdot p\left(D \leq d_{1}\right)\right. \\
\left.+r N \cdot p\left(d_{1}<D \leq d_{2}\right)-R N \cdot p\left(D>d_{2}\right)-I n-c T N\right] \tag{5.9}
\end{array}
$$

Divide all the terms by N we get the expected profit per item as the following

$$
\begin{gather*}
E(P)=\frac{1}{1-p\left(D>d_{2}\right)}\left[a \cdot p\left(D \leq d_{1}\right)-g(y-L S L) \cdot p\left(D \leq d_{1}\right)+r \cdot p\left(d_{1}<D \leq d_{2}\right)\right. \\
\left.-R \cdot p\left(D>d_{2}\right)-I \frac{n}{N}-c T\right] \tag{5.10}
\end{gather*}
$$

The term $1-p\left(D>d_{2}\right)$ is equivalent top $\left(D \leq d_{2}\right)$. So, the expected profit per item can be written as

$$
\begin{align*}
\left.E(P)=\frac{1}{p(D \leq} d_{2}\right)
\end{align*} a \cdot p\left(D \leq d_{1}\right)-g(y-L S L) \cdot p\left(D \leq d_{1}\right)+r \cdot p\left(d_{1}<D \leq d_{2}\right) .
$$

Now, y is replaced by $y^{\prime}=E(y \mid y \geq L S L)=$, where $\mathrm{f}(\mathrm{y})$ is the normal distribution density function.

$$
\begin{align*}
& E(P)=\frac{1}{p\left(D \leq d_{2}\right)}\left[a \cdot p\left(D \leq d_{1}\right)-g\left(y^{\prime}-L S L\right) \cdot p\left(D \leq d_{1}\right)+r \cdot p\left(d_{1}<D \leq d_{2}\right)\right. \\
& \left.-R \cdot p\left(D>d_{2}\right)-I \frac{n}{N}-c T\right] \tag{5.12}
\end{align*}
$$

5.4.2. OBJECTIVE II (INCOME OBJECTIVE FUNCTION)

Let Inc, E (Inc), I and E (I) be the total income per lot, expected income per lot, income per item and expected income per item, respectively.

Now, the total income per lot is given by

$$
\text { Inc }=\left\{\begin{array}{lr}
a N-g(y-L S L) N & \text { if } D \leq d_{1} \tag{5.13}\\
r N & \text { if } d_{1}<D \leq d_{2} \\
E(\text { Inc })-R N & \text { if } D>d_{2}
\end{array}\right.
$$

Now the expected income per lot is given by

$$
\begin{gather*}
E(\operatorname{Inc})=a N \cdot p\left(D \leq d_{1}\right)-g(y-L S L) N \cdot p\left(D \leq d_{1}\right)+r N \cdot p\left(d_{1}<D \leq d_{2}\right) \\
+E(\text { Inc }) \cdot p\left(D>d_{2}\right)-R N \cdot p\left(D>d_{2}\right) \tag{5.14}
\end{gather*}
$$

Rearranging the above equation we get

$$
\begin{gather*}
E(\operatorname{Inc})=\frac{1}{1-p\left(D>d_{2}\right)}\left[a N \cdot p\left(D \leq d_{1}\right)-g(y-L S L) N \cdot p\left(D \leq d_{1}\right)\right. \\
\left.+r N \cdot p\left(d_{1}<D \leq d_{2}\right)-R N \cdot p\left(D>d_{2}\right)\right] \tag{5.15}
\end{gather*}
$$

Divide all the terms by N we get the expected profit per item as the following

$$
\begin{gather*}
E(I)=\frac{1}{1-p\left(D>d_{2}\right)}\left[a \cdot p\left(D \leq d_{1}\right)-g(y-L S L) \cdot p\left(D \leq d_{1}\right)+r \cdot p\left(d_{1}<D \leq d_{2}\right)\right. \\
\left.-R \cdot p\left(D>d_{2}\right)\right] \tag{5.16}
\end{gather*}
$$

While1 $-p\left(D>d_{2}\right)=p\left(D \leq d_{2}\right)$, so, equation 5.19 can be written as

$$
\begin{align*}
\left.E(I)=\frac{1}{p(D \leq} d_{2}\right), & {\left[a \cdot p\left(D \leq d_{1}\right)-g(y-L S L) \cdot p\left(D \leq d_{1}\right)+r \cdot p\left(d_{1}<D \leq d_{2}\right)\right.} \\
& \left.-R \cdot p\left(D>d_{2}\right)\right] \tag{5.17}
\end{align*}
$$

Again, replace y with $y^{\prime}=E(y \mid y \geq L S L)$

$$
\begin{align*}
\left.E(I)=\frac{1}{p(D \leq} d_{2}\right) & {\left[a \cdot p\left(D \leq d_{1}\right)-g\left(y^{\prime}-L S L\right) \cdot p\left(D \leq d_{1}\right)+r \cdot p\left(d_{1}<D \leq d_{2}\right)\right.} \\
& \left.-R \cdot p\left(D>d_{2}\right)\right] \tag{5.18}
\end{align*}
$$

5.4.3. OBJECTIVE III (PRODUCT UNIFOMITY OBJECTIVE FUNCTION)

In this section, a loss function for the production process under study (figure 5-1) has been developed based on Taguchi quadratic loss function. By minimizing the developed loss function with respect to the process target mean we will ensure the product uniformity around the process target mean will be ensured.

The product quality characteristic y has the larger the better quality type. Hence theoretically, the optimum value of the process mean is ∞, but, the higher mean the more material used and more cost incurs. So, the value of the process mean will never approach ∞. The loss function of the larger the better quality type is given by

$$
L(\boldsymbol{y})=k \sum_{i=1}^{N} \frac{1}{y_{i}^{2}}
$$

k is the quality loss coefficient $k=R \Delta^{2}$ and Δ is the tolerance limit, which in the larger the better case is the lower specification limit. By defining Loss and E (Loss) as the loss and the expected loss per lot, respectively, the expected loss per item is given by

$$
\text { Loss }\left\{\begin{array}{lr}
(N-n) L_{01}+n L_{11} & \text { if } D \leq d_{1} \tag{5.19}\\
(N-n) L_{02}+n L_{12} & \text { if } d_{1}<D \leq d_{2} \\
(N-n) L_{03}+n L_{13} & \text { if } D>d_{2}
\end{array}\right.
$$

Where
L_{01}, L_{02} and L_{03} are the expected quality loss per uninspected item and L_{11}, L_{12} and L_{13} are the expected quality loss per inspected item. These terms are given by

$$
\begin{align*}
& L_{01}=k \int_{-\infty}^{\infty} \frac{1}{y^{2}} f(y) d y+g\left(y^{\prime}-L S L\right) \tag{5.20}\\
& L_{02}=k \int_{-\infty}^{\infty} \frac{1}{y^{2}} f(y) d y+(a-r) \tag{5.21}\\
& L_{03}=k \int_{-\infty}^{\infty} \frac{1}{y^{2}} f(y) d y+a+R \tag{5.22}\\
& L_{11}=\frac{k \int_{L S L}^{\infty} \frac{1}{y^{2}} f(y) d y}{\int_{L S L}^{\infty} f(y) d y}+g\left(y^{\prime}-L S L\right) \tag{5.23}\\
& L_{12}=\frac{k \int_{-\infty}^{L S L} \frac{1}{y^{2}} f(y) d y}{\int_{-\infty}^{L S L} f(y) d y}+(a-r) \tag{5.24}
\end{align*}
$$

$$
\begin{equation*}
L_{13}=\frac{k \int_{-\infty}^{L S L} \frac{1}{y^{2}} f(y) d y}{\int_{-\infty}^{L S} f(y) d y}+a+R \tag{5.25}
\end{equation*}
$$

Hence, the expected loss can be expressed as

$$
\begin{align*}
E(\text { LOSS })=[& \left.(N-n) L_{01}+n L_{11}\right] p\left(D \leq d_{1}\right)+\left[(N-n) L_{02}+n L_{12}\right] p\left(d_{1}<D \leq d_{2}\right) \\
& +\left[(N-n) L_{03}+n L_{13}\right] p\left(D>d_{2}\right) \tag{5.26}
\end{align*}
$$

Dividing by N , the expected loss per item is given by

$$
\begin{gather*}
E(L)=\left[\left(1-\frac{n}{N}\right) L_{01}+\frac{n}{N} L_{11}\right] p\left(D \leq d_{1}\right)+\left[\left(1-\frac{n}{N}\right) L_{02}+\frac{n}{N} L_{12}\right] p\left(d_{1}<D \leq d_{2}\right) \\
+\left[\left(1-\frac{n}{N}\right) L_{03}+\frac{n}{N} L_{13}\right] p\left(D>d_{2}\right) \tag{5.27}
\end{gather*}
$$

5.4.4. MULTI-OBJECTIVE OPTIMIZATION MODEL

Now we can use the three objective functions developed above to build up a multiobjective maximization framework to obtain the optimum process target mean which maximizes the three objectives simultaneously. The multi-objective optimization model is given by

$$
\max \boldsymbol{f}(\boldsymbol{T})=\left[f_{1}(\boldsymbol{T}), f_{2}(\boldsymbol{T}), f_{3}(\boldsymbol{T})\right]
$$

Subject to

$$
T \geq L S L
$$

Where
$f_{1}(\boldsymbol{T})=E(P)$ equation 5.12
$f_{2}(\boldsymbol{T})=E(I)$ equation 5.18
$f_{3}(\boldsymbol{T})=-E(L)$ equation 5.27

5.5 RESULTS AND SENSITINITY ANALYSIS

In this section, an illustrative example for the developed model is presented. Followed by, sensitivity analysis for the model's parameters (i.e. the process standard deviation, the costs parameters and the sample parameters), to assess changes in these parameters on the model optimal values.

5.5.1. SOLUTION METHODOLOGY

The proposed solution methodology consists of three main steps:

- Step 1: each objective function is evaluated individually using a uniform line search method with step length λ in the interval $I=[L S L, L S L+b]$, where b is an appropriate positive number.
- Step 2: Generate the set of non-inferior points as following:
i. \quad Define $T_{\min }=\operatorname{Min}\left(T_{1}{ }^{*}, T_{2}{ }^{*}, T_{3}{ }^{*}\right)$ and $T_{\max }=\operatorname{Max}\left(T_{1}{ }^{*}, T_{2}{ }^{*}, T_{3}{ }^{*}\right)$
ii. Let $T_{i}=T_{\text {min }}+i \lambda \in\left[T_{\text {min }}, T_{\text {max }}\right]: i=1,2, . ., n$ and

$$
T_{j}=T_{\min }+j \lambda \epsilon\left[T_{\min }, T_{\max }\right]: j=1,2, . ., n
$$

iii. The point T_{i} is a non-inferior point if there is no T_{j} such that:

$$
\left\{f_{k}\left(T_{j}\right) \geq f_{k}\left(T_{i}\right): \forall k=1,2,3\right\}
$$

- Step 3: Rank the set of non-inferior points as following:
i. Normalize: $\frac{f_{k}\left(\boldsymbol{T}_{i}\right)}{\boldsymbol{f}_{\boldsymbol{k}}\left(\boldsymbol{T}_{i}{ }^{*}\right)}, \mathrm{i}=1,2, . ., \mathrm{n}$ and $\mathrm{k}=1,2,3$
ii. Define the normalized $\operatorname{sum} \boldsymbol{S}_{\boldsymbol{i}}$ as: $\boldsymbol{S}_{\boldsymbol{i}}=\sum_{\boldsymbol{k}=\mathbf{1}}^{3} \frac{\boldsymbol{f}_{\boldsymbol{k}}\left(\boldsymbol{T}_{\boldsymbol{i}}\right)}{\boldsymbol{f}_{\boldsymbol{k}}\left(\boldsymbol{T}_{\boldsymbol{i}}{ }^{*}\right)}$
iii. Define the percentage absolute deviation $\boldsymbol{P} \boldsymbol{A} \boldsymbol{D}_{\boldsymbol{i}}$ as: $\boldsymbol{P A D} \boldsymbol{D}_{\boldsymbol{i}}=\frac{\mid \mathbf{3 - \boldsymbol { S } _ { i } | * \mathbf { 1 0 0 }}}{3}$,
$\mathrm{i}=1,2,3$
iv. Rank the points according to $\boldsymbol{P A D}_{\boldsymbol{i}}$ from the smallest to the largest.

The smaller the $\boldsymbol{P A D _ { \boldsymbol { i } }}$, the higher preference of the point.

5.5.2. NUMERICAL EXAMPLE

Consider a production process, that produces items with a quality characteristic that is normally distributed with unknown mean T and known standard deviation $\sigma=0.5$. The
items have a lower specification limit $\mathrm{LSL}=10$. A sampling inspection is used to control the product quality. The sampling plan used after a lot is produced, a sample of size $\mathrm{n}=10, d_{1}=1$ and $d_{2}=2$. The processing cost $\mathrm{c}=\$ 6$, the inspection cost $\mathrm{I}=\$ 1$ and the excess material cost $\mathrm{g}=\$ 2$. If the number of non-conforming items in the sample is $d_{1}=1$ then, the lot is sold in a primary market at $\$ 80$ per item. Is the number of nonconforming items in the lot is more than $d_{1}=1$ and less than $d_{2}=2$ the, the lot is sold in a secondary market at $\$ 67.5$ per item. Finally, if the number of non-conforming items in the sample is more than $d_{2}=2$ then, the lot is reworked again for $\$ 4$ per item. To solve this problem, an exhausted uniform search in the interval [10, 20], is done for each objective of the multi-objective model in section 5.4.4, the step size for the search is 0.1 . Table 5-1 gives the optimum target value for each objective function individually.

Table 5-1 The optimum objective values of the model 3.

	PROFIT OBJECTIVE $f_{1}(T)$	INCOME OBJECTIVE $f_{2}(T)$	UNIFORATY OBJECTIVE $f_{3}(T)$
T^{*}	10.9	11	11.1
$f_{i}\left(T^{*}\right)$	11.83637	77.6829438	-5.64234248

The three graphs below show the plot of each of the three objective functions.

Figure 5-2 the plot of the profit objective function of model 3

Figure 5-3 the plot of the income objective function of model 3

Figure 5-4 the plot of the product uniformity objective function of model 3

Figure 5-5 the plot of the three objective functions of model 3

Now, the next table 5-2 gives the set of non-inferior solutions of model 3.

Table 5-2 The set of non-inferior solutions of model 3.

T^{*}	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.9	11.83636534	77.55884946	-6.18650541	$3^{\text {rd }}$
11	11.58010795	77.68294383	-5.740859358	$1^{\text {st }}$
11.1	11.00730867	77.64728356	-5.64234248	$2^{\text {nd }}$

5.5.3. SENSITIVITY ANALYSIS

In this section, the effects of the process standard deviation, the cost parameters and the sampling plan parameters are studied. First, the model is evaluated for several values of the standard deviation ($\sigma \pm 25 \%, \sigma \pm 50 \%$ and $\sigma \pm 75 \%$). Tables 5-3, 5-4 and 5-5 below show the change in the objective values for the individual objectives.

Table 5-3 The sensitivity analysis of the process standard deviation on the profit objective function of model 3

SENSITIVITY		PROFIT		
σ	CHANGE	T	OBJECTIVE VALUE	CHANGE PERCENTAGE
0.875	$+75 \%$	11.5	6.666397	-43.6787%
0.75	$+50 \%$	11.3	8.355732	-29.4063%
0.625	$+25 \%$	11.1	10.07473	-14.8833%
0.5	original	10.9	11.83637	0%
0.375	-25%	10.7	13.65979	15.4053%
0.25	-50%	10.5	15.56447	31.49707%
0.125	-75%	10.3	17.49711	47.825%

Table 5-4 The sensitivity analysis of the process standard deviation on the income objective function of model 3

SENSITIVITY		INCOME		
σ	CHANGE	T	OBJECTIVE VALUE	CHANGE PERCENTAGE
0.875	$+75 \%$	11.6	76.27216	-1.8161%
0.75	$+50 \%$	11.4	76.72193	-1.2371%
0.625	$+25 \%$	11.2	77.19075	-0.6336%
0.5	original	11	77.68294	0%
0.375	-25%	10.8	78.19931	0.66471%
0.25	-50%	10.6	78.72272	1.3385%
0.125	-75%	10.3	79.32102	2.1087%

Table 5-5 The sensitivity analysis of the process standard deviation on the product uniformity objective function of model 3

SENSITIVITY		UNIFORMITY		
σ	CHANGE	T	OBJECTIVE VALUE	CHANGE PERCENTAGE
0.875	$+75 \%$	11.8	-6.819991542	-20.87163%
0.75	$+50 \%$	11.6	-6.431747957	-13.9907%
0.625	$+25 \%$	11.3	-6.047053157	-7.172742%
0.5	original	11.1	-5.64234248	0%
0.375	-25%	10.9	-5.259194178	6.790589%
0.25	-50%	10.6	-4.848154617	14.075499%
0.125	-75%	10.3	-4.456025046	21.02526%

In the tables above, it is clear that the profit objective function is more sensitive to the change in the process standard deviation than the income objective function. This can be explained as following: in equations 5.12 and 5.18 the profit objective function have the term $c . T$ more than the income objective function where, the other terms are the same in both objectives.

From table 5-5, the process standard deviation has a moderate effect on the product uniformity objective function. This is because; as well as the standard deviation value increases the product variability increases. Hence, the loss due to this variability increases.

The sets of non-inferior solutions for the above mentioned sensitivity analysis of the process standard deviation can be found on appendix C.

Next, the sensitivity analysis conducted on the cost parameters (c, g, R and I) are shown in tables 5-6, 5-7 and 5-8

Table 5-6 The sensitivity analysis of the cost parameters on the profit objective function of model 3 .

COST PARAMETERS	CHANGE	PROFIT		
		T	$\begin{gathered} \text { OBJECTIVE } \\ \text { VALUE } \\ \hline \end{gathered}$	CHANGE PERCENTAGE
$\begin{gathered} \mathrm{c}=9 \\ \mathrm{~g}=3 \\ \mathrm{R}=6 \\ \mathrm{I}=1.5 \end{gathered}$	+50\%	10.9	-21.97325	-285.642\%
$\begin{gathered} c=7.5 \\ \mathrm{~g}=2.5 \\ \mathrm{R}=5 \\ \mathrm{I}=1.25 \end{gathered}$	+25\%	10.9	-5.068444	-142.821\%

$\begin{aligned} & \mathrm{c}=7.2 \\ & \mathrm{~g}=2.4 \\ & \mathrm{R}=4.8 \\ & \mathrm{I}=1.2 \end{aligned}$	+20\%	10.9	-1.687482	-114.257\%
$\begin{gathered} \mathrm{c}=6.9 \\ \mathrm{~g}=2.3 \\ \mathrm{R}=4.6 \\ \mathrm{I}=1.15 \end{gathered}$	+15\%	10.9	1.69348	-85.6926\%
$\begin{aligned} & \mathrm{c}=6.6 \\ & \mathrm{~g}=2.2 \\ & \mathrm{R}=4.4 \\ & \mathrm{I}=1.1 \end{aligned}$	+10\%	10.9	5.07444	-57.1284\%
$\begin{gathered} \mathrm{c}=6.3 \\ \mathrm{~g}=2.1 \\ \mathrm{R}=4.2 \\ \mathrm{I}=1.05 \end{gathered}$	+5\%	10.9	8.455403	-28.564\%
$\begin{gathered} \mathrm{c}=6 \\ \mathrm{~g}=2 \\ \mathrm{R}=4 \\ \mathrm{I}=1 \end{gathered}$	original	10.9	11.8364	0\%
$\begin{gathered} \mathrm{c}=5.7 \\ \mathrm{~g}=1.9 \\ \mathrm{R}=3.8 \\ \mathrm{I}=0.95 \end{gathered}$	-5\%	10.9	15.21733	28.5642\%
$\begin{aligned} & \mathrm{c}=5.4 \\ & \mathrm{~g}=1.8 \\ & \mathrm{R}=3.6 \\ & \mathrm{I}=0.9 \end{aligned}$	-10\%	10.9	18.59829	57.1284\%
$\begin{gathered} \mathrm{c}=5.1 \\ \mathrm{~g}=1.7 \\ \mathrm{R}=3.4 \\ \mathrm{I}=0.85 \end{gathered}$	-15\%	10.9	21.97925	85.6926\%
$\begin{gathered} \mathrm{c}=4.8 \\ \mathrm{~g}=1.6 \\ \mathrm{R}=3.2 \\ \mathrm{I}=0.8 \end{gathered}$	-20\%	10.9	25.3602	114.2568\%
$\begin{gathered} \mathrm{c}=4.5 \\ \mathrm{~g}=1.5 \\ \mathrm{R}=3 \\ \mathrm{I}=0.75 \end{gathered}$	-25\%	10.9	28.74117	142.821\%

$\mathrm{c}=3$	-50%	11	45.6688	285.8348%
$\mathrm{~g}=1$				
$\mathrm{R}=2$				
$\mathrm{I}=0.5$				

Table 5-7 The sensitivity analysis of the cost parameters on the income objective function of model 3.

$\begin{gathered} \text { COST } \\ \text { PARAMETERS } \end{gathered}$	CHANGE	INCOME		
		T	OBJECTIVE VALUE	CHANGE PERCENTAGE
$\begin{gathered} \mathrm{c}=9 \\ \mathrm{~g}=3 \\ \mathrm{R}=6 \\ \mathrm{I}=1.5 \end{gathered}$	+50\%	11	76.64566	-1.3353\%
$\begin{gathered} c=7.5 \\ \mathrm{~g}=2.5 \\ \mathrm{R}=5 \\ \mathrm{I}=1.25 \end{gathered}$	+25\%	11	77.1643	-0.6676\%
$\begin{aligned} & \mathrm{c}=7.2 \\ & \mathrm{~g}=2.4 \\ & \mathrm{R}=4.8 \\ & \mathrm{I}=1.2 \end{aligned}$	+20\%	11	77.26803	-0.5341\%
$\begin{gathered} \mathrm{c}=6.9 \\ \mathrm{~g}=2.3 \\ \mathrm{R}=4.6 \\ \mathrm{I}=1.15 \end{gathered}$	+15\%	11	77.37176	-0.4006\%
$\begin{aligned} & \mathrm{c}=6.6 \\ & \mathrm{~g}=2.2 \\ & \mathrm{R}=4.4 \\ & \mathrm{I}=1.1 \end{aligned}$	+10\%	11	77.47549	-0.2671\%
$\begin{aligned} & \mathrm{c}=6.3 \\ & \mathrm{~g}=2.1 \\ & \mathrm{R}=4.2 \\ & \mathrm{I}=1.05 \end{aligned}$	+5\%	11	77.57922	-0.13353\%
$\begin{gathered} \mathrm{c}=6 \\ \mathrm{~g}=2 \\ \mathrm{R}=4 \\ \mathrm{I}=1 \\ \hline \end{gathered}$	original	11	77.68294	0\%
$\begin{aligned} & \mathrm{c}=5.7 \\ & \mathrm{~g}=1.9 \\ & \mathrm{R}=3.8 \\ & \mathrm{I}=0.95 \\ & \hline \end{aligned}$	-5\%	11	77.78667	0.13353\%

$\mathrm{c}=5.4$ $\mathrm{~g}=1.8$ $\mathrm{R}=3.6$ $\mathrm{I}=0.9$	-10%	11	77.8904	0.26706%
$\mathrm{c}=5.1$				
$\mathrm{~g}=1.7$				
$\mathrm{R}=3.4$				
$\mathrm{I}=0.85$	-15%	11	77.99413	0.40059%
$\mathrm{c}=4.8$ $\mathrm{~g}=1.6$ $\mathrm{R}=3.2$ $\mathrm{I}=0.8$	-20%	11.1	78.09838	0.5348%
$\mathrm{c}=4.5$				
$\mathrm{~g}=1.5$				
$\mathrm{R}=3$				
$\mathrm{I}=0.75$	-25%	11.1	78.21115	0.67995%
$\mathrm{c}=3$ $\mathrm{~g}=1$ $\mathrm{R}=2$ $\mathrm{I}=0.5$				

Table 5-8 The sensitivity analysis of the cost parameters on the product uniformity objective function of model 3.

COST PARAMETERS	CHANGE	UNIFORMITY		
		T	$\begin{gathered} \text { OBJECTIVE } \\ \text { VALUE } \end{gathered}$	CHANGE PERCENTAGE
$\begin{gathered} \mathrm{c}=9 \\ \mathrm{~g}=3 \\ \mathrm{R}=6 \\ \mathrm{I}=1.5 \end{gathered}$	+50\%	11.1	-8.402917629	-48.92605\%
$\begin{gathered} \mathrm{c}=7.5 \\ \mathrm{~g}=2.5 \\ \mathrm{R}=5 \\ \mathrm{I}=1.25 \end{gathered}$	+25\%	11.1	-7.022630055	-24.46302\%
$\begin{aligned} & \mathrm{c}=7.2 \\ & \mathrm{~g}=2.4 \\ & \mathrm{R}=4.8 \\ & \mathrm{I}=1.2 \end{aligned}$	+20\%	11.1	-3.918456834	-19.57042\%
$\begin{aligned} & \mathrm{c}=6.9 \\ & \mathrm{~g}=2.3 \end{aligned}$	+15\%	11.1	-6.470515025	-14.67781\%

$\begin{gathered} \mathrm{R}=4.6 \\ \mathrm{I}=1.15 \end{gathered}$				
$\begin{aligned} & \mathrm{c}=6.6 \\ & \mathrm{~g}=2.2 \\ & \mathrm{R}=4.4 \\ & \mathrm{I}=1.1 \end{aligned}$	+10\%	11.1	-6.19445751	-9.785209\%
$\begin{gathered} \hline \mathrm{c}=6.3 \\ \mathrm{~g}=2.1 \\ \mathrm{R}=4.2 \\ \mathrm{I}=1.05 \end{gathered}$	+5\%	11.1	-5.918399995	-4.892605\%
$\begin{gathered} \mathrm{c}=6 \\ \mathrm{~g}=2 \\ \mathrm{R}=4 \\ \mathrm{I}=1 \end{gathered}$	original	11.1	-5.702071834	0\%
$\begin{gathered} \mathrm{c}=5.7 \\ \mathrm{~g}=1.9 \\ \mathrm{R}=3.8 \\ \mathrm{I}=0.95 \end{gathered}$	-5\%	11.1	-5.366284965	4.892605\%
$\begin{gathered} c=5.4 \\ \mathrm{~g}=1.8 \\ \mathrm{R}=3.6 \\ \mathrm{I}=0.9 \end{gathered}$	-10\%	11.1	-5.09022745	9.7852095\%
$\begin{gathered} \mathrm{c}=5.1 \\ \mathrm{~g}=1.7 \\ \mathrm{R}=3.4 \\ \mathrm{I}=0.85 \end{gathered}$	-15\%	11.1	-4.814169935	14.67781\%
$\begin{aligned} & \mathrm{c}=4.8 \\ & \mathrm{~g}=1.6 \\ & \mathrm{R}=3.2 \\ & \mathrm{I}=0.8 \end{aligned}$	-20\%	11.1	-4.53811242	19.57042\%
$\begin{gathered} \mathrm{c}=4.5 \\ \mathrm{~g}=1.5 \\ \mathrm{R}=3 \\ \mathrm{I}=0.75 \end{gathered}$	-25\%	11.1	-4.262054905	24.463024\%
$\begin{gathered} \mathrm{c}=3 \\ \mathrm{~g}=1 \\ \mathrm{R}=2 \\ \mathrm{I}=0.5 \end{gathered}$	-50\%	11.2	-2.863589664	49.24821\%

Tables 5-6, 5-7 and 5-8 show that, the profit objective function is more sensitive to the change in the cost parameters than the income objective function. Again, in equations
5.12 and 5.18 the profit objective function has the term $c . T$ more than the income objective function while, the other terms are the same in both objectives. From the partial derivatives we found that
$\frac{\partial E(P)}{\partial c}=\frac{-T}{(1-\gamma)}$
$\frac{\partial E(I)}{\partial c}=0$

Since, the production cost c has the larger value among the other cost parameters; the objective function is more sensitive to the change in the cost parameters.

The product uniformity objective function is also sensitive to the change in the cost parameters. These parameters are found in the loss function penalty coefficients. Hence, any change in the coefficient values is affects the whole terms of the objective function.

The sets of non-inferior solutions for the above mentioned sensitivity analyses of the process standard deviation are provided in appendix C.

Finally, the sensitivity analysis is conducted on the sampling plan parameters (n, d_{1} and d_{2}. Tables 5-9, 5-10 and 5-11 below summarize the sensitivity analysis results

Table 5-9 The sensitivity analysis of the sampling plan on the profit objective function of model 3.

PROFIT					
n	$\left(d_{1}, d_{2}\right)$	T	OBJECTIVE VALUE	CHANGE PERCENTAGE	
	$(0,1)$	11.2	9.360474119	-20.9177%	

10	$(0,2)$	11.1	9.753242295	-17.599\%
	$(0,3)$	11.1	9.77129749	-17.4468\%
	$\begin{gathered} (1,2) \\ \text { original } \end{gathered}$	10.9	11.83636534	0\%
	$(1,3)$	10.8	12.18375682	2.93495\%
	$(1,4)$	10.8	12.26386554	3.6118\%
	$(2,3)$	10.7	13.26242657	12.048\%
	$(2,4)$	10.7	13.57646639	14.701\%
	$(3,4)$	10.6	14.33949263	21.1478\%
15	$(0,1)$	11.2	8.744479718	-26.12\%
	$(0,2)$	11.2	9.142436937	-22.76\%
	$(0,3)$	11.1	9.157758964	-22.63\%
	$(1,2)$	11	11.13211418	-5.95\%
	$(1,3)$	11.9	11.45855927	-3.192\%
	$(1,4)$	11.9	11.54990293	-2.42\%
	$(2,3)$	11.8	12.40218186	4.78\%
	$(2,4)$	11.8	12.79389989	8.09\%
	$(3,4)$	11.7	13.44030909	13.551\%

$20,1)$	11.3	8.405659994	-28.984%	
	$(0,2)$	11.2	8.753126819	-26.049%
	$(0,3)$	11.2	8.787386522	-25.76%
	$(1,2)$	11.1	10.61357049	-10.33%
	$(1,3)$	11	11.01133371	-6.97%
	$(1,4)$	11	11.06566177	-6.511%
	$(2,3)$	10.9	11.94056178	0.88%
				3.144%
	$(3,4)$	10.9	12.20852788	

Table 5-10 The sensitivity analysis of the sampling plan on the income objective function of model 3 .

INCOME				
n	$\left(d_{1}, d_{2}\right)$	T	$\begin{gathered} \text { OBJECTIVE } \\ \text { VALUE } \end{gathered}$	CHANGE PERCENTAGE
10	$(0,1)$	11.4	76.94108915	-0.955\%
	$(0,2)$	11.4	76.93952299	-0.957\%
	$(0,3)$	11.4	76.9395123	-0.957\%
	$(1,2)$ original	11	77.68294383	0\%
	$(1,3)$	11	77.67550697	-0.0096\%

	$(1,4)$	11	77.67520438	-0.0099\%
	$(2,3)$	11.8	78.01733228	0.43\%
	$(2,4)$	11.8	78.00853039	0.419\%
	$(3,4)$	11.7	78.21368967	0.683\%
	$(0,1)$	11.4	76.8231002	-1.107\%
	$(0,2)$	11.4	76.81957049	-1.1114\%
	$(0,3)$	11.4	76.81953134	-1.1115\%
	$(1,2)$	11.1	77.55049018	-0.171\%
15	$(1,3)$	11.1	77.54423525	-0.179\%
	$(1,4)$	11.1	77.54397096	-0.1789\%
	$(2,3)$	10.9	77.88600613	0.261\%
	$(2,4)$	10.9	77.87629082	0.2489\%
	$(3,4)$	10.8	78.09086967	0.525\%
	$(0,1)$	11.5	76.73992795	-1.214\%
	$(0,2)$	11.5	76.73815734	-1.216\%
	$(0,3)$	11.5	76.73814298	-1.2162\%
	$(1,2)$	11.2	77.44181378	-0.3104\%

20	$(1,3)$	11.2	77.43856956	-0.3146%
	$(1,4)$	11.2	77.43845566	-0.315%
	$(2,3)$	11	77.79122507	0.1394%
	$(2,4)$	11	77.78557459	0.1321%
	$(3,4)$	10.9	77.98644881	0.3907%

Table 5-11 The sensitivity analysis of the sampling plan on the product uniformity objective function of model 3 .

UNIFORMITY				
n	$\left(d_{1}, d_{2}\right)$	T	$\begin{aligned} & \hline \text { OBJECTIVE } \\ & \text { VALUE } \end{aligned}$	CHANGE PERCENTAGE
10	$(0,1)$	11.4	-6.177481789	-7.605524\%
	$(0,2)$	11.4	-6.156901291	-7.247032\%
	$(0,3)$	11.4	-6.156760703	-7.244583\%
	$(1,2)$ original	11.1	-5.740859358	0\%
	$(1,3)$	11.1	-5.62143552	2.080243\%
	$(1,4)$	11.1	-5.62091966	2.089229\%
	$(2,3)$	10.9	-5.420989624	5.571809\%
	$(2,4)$	10.9	-5.400897762	5.921789\%
	$(3,4)$	10.8	-5.308036399	7.539341\%

	$(3,4)$	10.9	-5.446779763	5.122571%

In above tables, the current sample plan is not the optimum. Other sample size and critical values could be better for the three objective function values. The optimum sample plan when the sample size is 10 and ($d_{1}=3, d_{2}=4$), the smallest possible value for the sample size and the greatest possible value of the rejection criteria. The reason for that is, in that case the probability of accepting the lot is the maximum possible since, for a small sample size a if there is a large number of defective items (i.e. 3 and 4) the lot still accepted.

The sets of non-inferior solutions for the above mentioned sensitivity analysis of the process standard deviation can be found on appendix C.

5.6 CONCLUSION

In this chapter, a multi-objective optimization model is developed for a process targeting problem. The model consists of three objective functions that are maximized simultaneously to find the optimum setting of the process target mean. Sampling plan is used as the mean of quality control of the product. An illustrative example contains some data from the process targeting literature has been used to generate the set of non-inferior solutions, followed by sensitivity analysis for the model's parameters to assess their effect on the process target mean setting and the three objective function values. The inspection system used in this model is assumed to be error-free. The inspection error assumption will be relaxed in the next chapter.

CHAPTER 6

MULTI-OBJECTIVE PROCESS TARGETING MODEL WITH SAMPLING PLAN AND ERRORPRONE INSPECTION SYSTEM

6.1 PREFACE

In this chapter the model of the previous chapter has been modified to the case where the sampling plan inspection system is error prone. Classically, sampling plans have assumed that the inspection process is perfect. But in reality, an inspector (human or automated) is subjected to commit two types of errors:

- Type I error: Classifying a non-defective item as defective, it means inspectors reject a conforming item.
- Type II error: classifying a defective item as non-defective, it means inspectors accept a nonconforming item.

The inspection error can cause a considerable amount of loss due to misclassification of the product quality characteristics. This loss can be interpreted as replacement cost, warranty cost, loss of goodwill and customer dissatisfaction, loss of profit by selling a
higher quality item as a lower quality one,...etc. The development of this chapter is based on the production process described in section 5.2 of chapter five. The rest of the assumptions are the same as in chapter 5 .In section 6.2 of this chapter the targeting problem is stated. Next a multi-objective optimization model is developed in section 6.3. An illustrative example of the model followed by sensitivity analysis for the model's parameters is presented in section 6.4. Finally, section 6.5 concludes the chapter.

6.2 STATEMENT OF PROBLEM

Consider the production process described in chapter 5 (figure 5-1). The product has a normally distributed quality characteristic y with unknown mean T and known standard deviation σ. The product is said to be non-conforming if its quality characteristic falls below the lower specification limit $y<L S L$. A sampling plan is used for product quality control as follows: after producing N items a sample of size n is drawn. Then, the lot is sold in a primary market if the number of non-conforming items in the sample $D \leq$ d_{1}. The lot is sold in a secondary market if $d_{1}<D \leq d_{2}$ and the lot send for rework again if $D>d_{2}$. The production and inspection cost per item are c and I, respectively, are fixed and known.

Next the effect of inspection error on the sampling plan decision is addressed. Under the inspection error the observed numbers of conforming and non-conforming items n D_{e} and D_{e} in the sample are different from the actual numbers $n-D$ and D. Also, the probability of conformity and non-conformity are affected by the presence of the inspection error. This deviation is resulted when the numbers of conforming and non-
conforming items are subject to type I and type II errors $\left(e_{1}, e_{2}\right)$, respectively. Consequently, the comparison is made between the observed number of non-conforming items D_{e} and the rejection criteria d_{1} and d_{2}.

6.3 MODEL DEVELOPMENT

In this section, the model is developed. Next the objectives functions of the multiobjective optimization model are formulated.

Let's start our argument by defining type I and type II errors probabilities. Type I error (also known as the producer's risk because it denotes the probability that a good lot will be rejected) is the probability of rejecting a lot when it is acceptable. Acceptable means that the true proportion of defective items in the lot is less than or equal to a desired target level of proportion of defectives in the lot (the poorest level for the supplier's process that the consumer would consider to be acceptable as a process average) referred to it as acceptable quality level (AQL).

Hence, the probability of type I error is given by

$$
\begin{gather*}
e_{1}=p\left(D>d_{1} \mid q=q_{1}\right)=\sum_{i=d_{1}+1}^{n}\binom{n}{i} q_{1}{ }^{i}\left(1-q_{1}\right)^{n-i} \\
=1-\sum_{i=0}^{d_{1}}\binom{n}{i} q_{1}{ }^{i}\left(1-q_{1}\right)^{n-i} \tag{6.1}
\end{gather*}
$$

Where q_{1} is the AQL.

Type II error (also known as the consumer's risk because it denotes the probability of accepting a lot of poor quality) is the probability of accepting a lot when it is defective. The lot is considered unacceptable if the true proportion of defective items in the lot exceeds a target level of proportion of defectives in the lot (the poorest level of quality that the consumer is willing to accept in an individual lot) referred to it as lot tolerance percent of defective (LTPD).

Hence, the probability of type II error is given by

$$
\begin{equation*}
e_{2}=p\left(D \leq d_{1} \mid q=q_{2}\right)=\sum_{i=0}^{d_{1}}\binom{n}{i} q_{2}{ }^{i}\left(1-q_{2}\right)^{n-i} \tag{6.2}
\end{equation*}
$$

Where q_{2} is the LTPD.

Note that, the AQL and LTPD are not characteristics of the sampling plan, but the former is a characteristic of the supplier's process, while the later specified by the consumer.

Both, the probability of non-conformity and the observed number of non-conforming items are affected by the two types of error like Maghsoodloo (1987), Hassen and Manaspiti (1982) and Duffuaa et al. (2009b). Accordingly, the probability of nonconformity β_{e} is given by

$$
\begin{equation*}
\beta_{e}=\beta\left(1-e_{2}\right)+(1-\beta) e_{1} \tag{6.3}
\end{equation*}
$$

Where

$$
\begin{equation*}
\beta=p(y<L S L)=\Phi\left(\frac{L S L-T}{\sigma}\right) \tag{6.4}
\end{equation*}
$$

The observed number of non-conforming items D_{e} is given by

$$
\begin{equation*}
D_{e}=D\left(1-e_{2}\right)+(n-D) e_{1} \tag{6.5}
\end{equation*}
$$

The observed number of non-conforming items in a sample of size n follows binomial distribution with parameter β_{e}.

The lot is classified as accepted and sold in a primary market if the observed number of defects in the sample is less that d_{1}. The probability of that is

$$
\begin{equation*}
p\left(D_{e} \leq d_{1}\right)=\sum_{i=0}^{d_{1}}\binom{n}{i} \beta_{e}{ }^{i}\left(1-\beta_{e}\right)^{n-i} \tag{6.6}
\end{equation*}
$$

The probability of classifying the lot as secondary market conforming and sold in a secondary market is

$$
\begin{align*}
& p\left(d_{1}<D_{e} \leq d_{2}\right)=\sum_{i=0}^{d_{2}}\binom{n}{i} \beta_{e}{ }^{i}\left(1-\beta_{e}\right)^{n-i}-\sum_{i=0}^{d_{1}}\binom{n}{i} \beta_{e}{ }^{i}\left(1-\beta_{e}\right)^{n-i} \tag{6.7}\\
& p\left(d_{1}<D_{e} \leq d_{2}\right)=\sum_{i=d_{1}+1}^{d_{2}}\binom{n}{i} \beta_{e}{ }^{i}\left(1-\beta_{e}\right)^{n-i} \tag{6.8}
\end{align*}
$$

Finally, the probability of rejecting and reworking the whole entire lot is

$$
\begin{equation*}
p\left(D_{e}>d_{2}\right)=\sum_{i=d_{2+1}}^{n}\binom{n}{i} \beta_{e}{ }^{i}\left(1-\beta_{e}\right)^{n-i}=1-\sum_{i=0}^{d_{2}}\binom{n}{i} \beta_{e}{ }^{i}\left(1-\beta_{e}\right)^{n-i} \tag{6.9}
\end{equation*}
$$

Let y^{\prime} be the expected value of the quality characteristic y when y is above the lower specification limit

$$
\begin{equation*}
y^{\prime}=E(y \mid y \geq L S L)=\frac{\int_{L S L}^{\infty} y f(y) d y}{\int_{L S L}^{\infty} f(y) d y} \tag{6.10}
\end{equation*}
$$

In the next subsections, the objective functions of the multi-objective optimization model will be developed. The three objective functions will be developed in the same basis of the three objective functions in the previous chapter (5.3)

6.3.1. OBJECTIVE I (PROFIT OBJECTIVE FUNCTION)

Like we did in section (5.3.1), define pro and E (pro) to be the profit per lot and its expectation, respectively. Also, define p and $\mathrm{E}(\mathrm{p})$ as the profit per item and its expected value, respectively. Starting by building the profit per lot formula, we will reach the final equation of the expected profit per item.

$$
\text { Pro }=\left\{\begin{array}{lr}
a N-g(y-L S L) N-I n-c y N & \text { if } D_{e} \leq d_{1} \tag{6.11}\\
r N-I n-c y N & \text { if } d_{1}<D_{e} \leq d_{2} \\
E(\text { Pro })-R N-I n-c y N & \text { if } D_{e}>d_{2}
\end{array}\right.
$$

Now the expected profit per lot is given by

$$
\begin{align*}
E(\text { Pro })=a N & . p\left(D_{e} \leq d_{1}\right)-g(y-L S L) N \cdot p\left(D_{e} \leq d_{1}\right)-I n \cdot p\left(D_{e} \leq d_{1}\right) \\
& \left.- \text { cyN.p(} D_{e} \leq d_{1}\right)+r N \cdot p\left(d_{1}<D_{e} \leq d_{2}\right)-I n \cdot p\left(d_{1}<D_{e} \leq d_{2}\right) \\
& \left.- \text { cyN.p(} d_{1}<D_{e} \leq d_{2}\right)+E\left(\text { Pro } \cdot p\left(D_{e}>d_{2}\right)-R N \cdot p\left(D_{e}>d_{2}\right)\right. \\
& - \text { In.p }\left(D_{e}>d_{2}\right)-\operatorname{cyN} \cdot p\left(D_{e}>d_{2}\right) \tag{6.12}
\end{align*}
$$

Rearranging the above equation we get

$$
\begin{array}{r}
E(\text { Pro })=\frac{1}{1-p\left(D_{e}>d_{2}\right)}\left[a N \cdot p\left(D_{e} \leq d_{1}\right)-g(y-L S L) N \cdot p\left(D_{e} \leq d_{1}\right)\right. \\
\left.+r N \cdot p\left(d_{1}<D_{e} \leq d_{2}\right)-R N \cdot p\left(D_{e}>d_{2}\right)-I n-c T N\right] \tag{6.13}
\end{array}
$$

Divide all the terms by N we get the expected profit per item as the following

$$
\begin{array}{r}
E(P)=\frac{1}{1-p\left(D_{e}>d_{2}\right)}\left[a \cdot p\left(D_{e} \leq d_{1}\right)-g(y-L S L) \cdot p\left(D_{e} \leq d_{1}\right)\right. \\
\left.+r \cdot p\left(d_{1}<D_{e} \leq d_{2}\right)-R \cdot p\left(D_{e}>d_{2}\right)-I \frac{n}{N}-c T\right] \tag{6.14}
\end{array}
$$

The term $1-p\left(D_{e}>d_{2}\right)$ is equivalent top $\left(D_{e} \leq d_{2}\right)$. So, the expected profit per item can be written as

$$
\begin{align*}
& E(P)=\frac{1}{p\left(D_{e} \leq d_{2}\right)}\left[a \cdot p\left(D_{e} \leq d_{1}\right)-g(y-L S L) \cdot p\left(D_{e} \leq d_{1}\right)+r \cdot p\left(d_{1}<D_{e} \leq d_{2}\right)\right. \\
& \left.\quad-R \cdot p\left(D_{e}>d_{2}\right)-I \frac{n}{N}-c T\right] \tag{6.15}
\end{align*}
$$

Now, replace y by its conditional expectation y^{\prime}

$$
\begin{gather*}
E(P)=\frac{1}{p\left(D_{e} \leq d_{2}\right)}\left[a \cdot p\left(D_{e} \leq d_{1}\right)-g\left(y^{\prime}-L S L\right) \cdot p\left(D_{e} \leq d_{1}\right)+r \cdot p\left(d_{1}<D_{e} \leq d_{2}\right)\right. \\
\left.-R \cdot p\left(D_{e}>d_{2}\right)-I \frac{n}{N}-c T\right] \tag{6.16}
\end{gather*}
$$

6.3.2. OBJECTIVE II (INCOME OBJECTIVE FUNCTION)

Again here, let's define Inc, E (Inc), I and E (I) as the total income per lot, expected income per lot, income per item and expected income per item, respectively.

Now, the total income per lot is given by

$$
\text { Inc }=\left\{\begin{array}{lr}
a N-g(y-L S L) N & \text { if } D_{e} \leq d_{1} \tag{6.17}\\
r N & \text { if } d_{1}<D_{e} \leq d_{2} \\
E(\text { Inc })-R N & \text { if } D_{e}>d_{2}
\end{array}\right.
$$

Now the expected income per lot is given by

$$
\begin{gather*}
E(\text { Inc })=a N \cdot p\left(D_{e} \leq d_{1}\right)-g(y-L S L) N \cdot p\left(D_{e} \leq d_{1}\right)+r N \cdot p\left(d_{1}<D_{e} \leq d_{2}\right) \\
+E(\text { Inc }) \cdot p\left(D_{e}>d_{2}\right)-R N \cdot p\left(D_{e}>d_{2}\right) \tag{6.18}
\end{gather*}
$$

Rearranging the above equation we get

$$
\begin{gather*}
E(\operatorname{Inc})=\frac{1}{1-p\left(D_{e}>d_{2}\right)}\left[a N \cdot p\left(D_{e} \leq d_{1}\right)-g(y-L S L) N \cdot p\left(D_{e} \leq d_{1}\right)\right. \\
\left.+r N \cdot p\left(d_{1}<D_{e} \leq d_{2}\right)-R N \cdot p\left(D_{e}>d_{2}\right)\right] \tag{6.19}
\end{gather*}
$$

Divide all the terms by N we get the expected profit per item as the following

$$
\begin{gather*}
E(I)=\frac{1}{1-p\left(D_{e}>d_{2}\right)}\left[a \cdot p\left(D_{e} \leq d_{1}\right)-g(y-L S L) \cdot p\left(D_{e} \leq d_{1}\right)\right. \\
\left.+r \cdot p\left(d_{1}<D_{e} \leq d_{2}\right)-R \cdot p\left(D_{e}>d_{2}\right)\right] \tag{6.20}
\end{gather*}
$$

While1 $-p\left(D_{e}>d_{2}\right)=p\left(D_{e} \leq d_{2}\right)$, so, the expected income per item can be written as

$$
\begin{align*}
& E(I)=\frac{1}{p\left(D_{e} \leq d_{2}\right),}\left[a \cdot p\left(D_{e} \leq d_{1}\right)-g(y-L S L) \cdot p\left(D_{e} \leq d_{1}\right)+r \cdot p\left(d_{1}<D_{e} \leq d_{2}\right)\right. \\
&\left.-R \cdot p\left(D_{e}>d_{2}\right)\right] \tag{6.21}
\end{align*}
$$

Now, replace y by its conditional expectation y^{\prime}

$$
\begin{align*}
&\left.E(I)=\frac{1}{p\left(D_{e} \leq\right.} \leq d_{2}\right), \\
& {\left[a \cdot p\left(D_{e} \leq d_{1}\right)-g\left(y^{\prime}-L S L\right) \cdot p\left(D_{e} \leq d_{1}\right)+r \cdot p\left(d_{1}<D_{e} \leq d_{2}\right)\right.} \tag{6.21}\\
&\left.-R \cdot p\left(D_{e}>d_{2}\right)\right]
\end{align*}
$$

6.3.3. OBJECTIVE III (PRODUCT UNIFRMITY OBJECTIVE FUNCTION)

Here, we will develop a loss function for the production process in (figure 5-1) based on Taguchi quadratic loss function in the same fashion in section 5.2.3. Minimizing the developed loss function is equivalent to maximizing the product uniformity around the process target mean. .

The product quality characteristic y has the larger the better quality type with a theoretical process mean ∞. The process mean will never approach ∞ since as larger as the process mean approaches more excess material cost carries out. The loss function of the larger the better quality type has the following formula

$$
L(\boldsymbol{y})=k \sum_{i=1}^{N} \frac{1}{y_{i}^{2}}
$$

$k=R \Delta^{2}$ is the quality loss coefficient and Δ is the tolerance limit, which in the larger the better case is the lower specification limit. By Defining Loss and E (Loss) as the loss and the expected loss per lot, respectively, the expected loss per item is given by

$$
\text { Loss }\left\{\begin{array}{lr}
(N-n) L_{01}+n L_{11} & \text { if } D_{e} \leq d_{1} \tag{6.22}\\
(N-n) L_{02}+n L_{12} & \text { if } d_{1}<D_{e} \leq d_{2} \\
(N-n) L_{03}+n L_{13} & \text { if } D_{e}>d_{2}
\end{array}\right.
$$

L_{01}, L_{02} and L_{03} are the expected quality loss per uninspected item and L_{11}, L_{12} and L_{13} are the expected quality loss per inspected item. These terms are given by

$$
\begin{align*}
& L_{01}=k \int_{-\infty}^{\infty} \frac{1}{y^{2}} f(y) d y+g\left(y^{\prime}-L S L\right) \tag{5.23}\\
& L_{02}=k \int_{-\infty}^{\infty} \frac{1}{y^{2}} f(y) d y+(a-r) \tag{5.24}\\
& L_{03}=k \int_{-\infty}^{\infty} \frac{1}{y^{2}} f(y) d y+a+R \tag{5.25}\\
& L_{11}=\frac{k \int_{L S L}^{\infty} \frac{1}{y^{2}} f(y) d y}{\int_{L S L}^{\infty} f(y) d y}+g\left(y^{\prime}-L S L\right) \tag{5.26}\\
& L_{12}=\frac{k \int_{-\infty}^{L S L} \frac{1}{y^{2}} f(y) d y}{\int_{-\infty}^{L S L} f(y) d y}+(a-r) \tag{5.27}\\
& L_{13}=\frac{k \int_{-\infty}^{L S L} \frac{1}{y^{2}} f(y) d y}{\int_{-\infty}^{L S L} f(y) d y}+a+R \tag{5.28}
\end{align*}
$$

Hence, the expected loss can be expressed as

$$
\begin{align*}
E(L O S S)=[& \left.(N-n) L_{01}+n L_{11}\right] p\left(D_{e} \leq d_{1}\right) \\
& +\left[(N-n) L_{02}+n L_{12}\right] p\left(d_{1}<D_{e} \leq d_{2}\right) \\
& +\left[(N-n) L_{03}+n L_{13}\right] p\left(D_{e}>d_{2}\right) \tag{5.29}
\end{align*}
$$

Dividing by N , the expected loss per item is given by

$$
\begin{gather*}
E(L)=\left[\left(1-\frac{n}{N}\right) L_{01}+\frac{n}{N} L_{11}\right] p\left(D_{e} \leq d_{1}\right)+\left[\left(1-\frac{n}{N}\right) L_{02}+\frac{n}{N} L_{12}\right] p\left(d_{1}<D_{e} \leq d_{2}\right) \\
+\left[\left(1-\frac{n}{N}\right) L_{03}+\frac{n}{N} L_{13}\right] p\left(D_{e}>d_{2}\right) \tag{5.30}
\end{gather*}
$$

6.3.4. THE MULTI-OBJECTIVE OPTIMIZATION MODEL

Now we can use the three objective functions developed above to build up a multiobjective maximization framework to obtain the optimum process target mean which maximizes the three objectives simultaneously. The multi-objective optimization model is given by

$$
\max \boldsymbol{f}(\boldsymbol{T})=\left[f_{1}(\boldsymbol{T}), f_{2}(\boldsymbol{T}), f_{3}(\boldsymbol{T})\right]
$$

Subject to

$$
T \geq L S L
$$

Where
$f_{1}(\boldsymbol{T})=E(P)$ equation 6.16
$f_{2}(\boldsymbol{T})=E(I)$ equation 6.21
$f_{3}(\boldsymbol{T})=-E(L)$ equation 6.30

6.4 RESULTS AND SENSITIVITY ANALYSIS

In this section, the above developed model is illustrated through an example. Followed by, sensitivity analysis for the two types of inspection error.

6.4.1. SOLUTION METHODOLOGY

The same method used to generate the set of the non-inferior solution previously is used here with the following three steps:

- Step 1: each objective function is evaluated individually using a uniform line search method with step length λ in the interval $I=[L S L, L S L+b]$, where b is an appropriate positive number.
- Step 2: Generate the set of non-inferior points as following:
i. Define $T_{\min }=\operatorname{Min}\left(T_{1}{ }^{*}, T_{2}{ }^{*}, T_{3}{ }^{*}\right)$ and $T_{\max }=\operatorname{Max}\left(T_{1}{ }^{*}, T_{2}{ }^{*}, T_{3}{ }^{*}\right)$
ii. Let $T_{i}=T_{\text {min }}+i \lambda \epsilon\left[T_{\text {min }}, T_{\text {max }}\right]: i=1,2, . ., n$ and

$$
T_{j}=T_{\min }+j \lambda \epsilon\left[T_{\min }, T_{\max }\right]: j=1,2, . ., n
$$

iii. The point T_{i} is a non-inferior point if there is no T_{j} such that:

$$
\left\{f_{k}\left(T_{j}\right) \geq f_{k}\left(T_{i}\right): \forall k=1,2,3\right\}
$$

- Step 3: Rank the set of non-inferior points as following:
i. Normalize: $\frac{\boldsymbol{f}_{\boldsymbol{k}}\left(\boldsymbol{T}_{\boldsymbol{i}}\right)}{\boldsymbol{f}_{\boldsymbol{k}}\left(\boldsymbol{T}_{i}{ }^{*}\right)}, \mathrm{i}=1,2, . ., \mathrm{n}$ and $\mathrm{k}=1,2,3$
ii. Define the normalized $\operatorname{sum} \boldsymbol{S}_{\boldsymbol{i}}$ as: $\boldsymbol{S}_{\boldsymbol{i}}=\sum_{\boldsymbol{k}=\mathbf{1}}^{3} \frac{\boldsymbol{f}_{\boldsymbol{k}}\left(\boldsymbol{T}_{\boldsymbol{i}}\right)}{\boldsymbol{f}_{\boldsymbol{k}}\left(\boldsymbol{T}_{\boldsymbol{i}}{ }^{*}\right)}$
iii. Define the percentage absolute deviation $\boldsymbol{P} \boldsymbol{A} \boldsymbol{D}_{\boldsymbol{i}}$ as: $\boldsymbol{P A D} \boldsymbol{D}_{\boldsymbol{i}}=\frac{\mid \mathbf{| 3 - \boldsymbol { S } _ { i } | * \mathbf { 1 0 0 }}}{3}$,

$$
\mathrm{i}=1,2,3
$$

iv. Rank the points according to $\boldsymbol{P} \boldsymbol{A D}_{\boldsymbol{i}}$ from the smallest to the largest.

The smaller the $\boldsymbol{P A D} \boldsymbol{D}_{\boldsymbol{i}}$, the higher preference of the point.

6.4.2. NUMERICAL EXAMPLE

The example parameters are the same as those used in chapter five. Consider a production process, which produced items have a normally distributed quality characteristic with unknown mean T and known standard deviation $\sigma=0.5$. The items have a lower specification limit $\mathrm{LSL}=10$. A sampling inspection is conducted after the items being processed. The sampling plan used after process 1 is: $\mathrm{n}=10, d_{1}=1$ and $d_{2}=$ 2. The processing cost $\mathrm{c}=\$ 6$, the inspection cost $\mathrm{I}=\$ 1$ and the excess material cost $\mathrm{g}=$ \$2. If the number of non-conforming items in the sample is $d_{1}=1$ then, the lot is sold in
a primary market at $\$ 80$ per item. Is the number of non-conforming items in the lot is more than $d_{1}=1$ and less than $d_{2}=2$ the, the lot is sold in a secondary market at $\$ 67.5$ per item. Finally, if the number of non-conforming items in the sample is more than $d_{2}=2$ then, the lot is reworked again for $\$ 4$ per item. The inspection system is subject to make some classification error, some conforming items are rejected (type I error) with probability $e_{1}=0.01$ whereas, some of the defective items are classified as conforming items (type II error) with probability $e_{2}=0.05$. In order to solve this problem, an exhausted uniform search in the interval [10, 20], is done for each objective of the multiobjective model in section 6.3.4, the step size for the search is 0.1 . Table 6 - 1 gives the optimum target value for each objective function individually.

Table 6-1 The optimum objective values of the model 4.

	PROFIT OBJECTIVE $f_{1}(T)$	INCOME OBJECTIVE $f_{2}(T)$	UNIFORATY OBJECTIVE $f_{3}(T)$
T^{*}	10.9	11.1	11.2
$f_{i}\left(T^{*}\right)$	11.41625671	77.5186716	-5.825714523

Now, the set of non-inferior solutions of the model is the following

Table 6-2 The set of non-inferior solutions of model 4.

T^{*}	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.9	11.41625671	77.36259089	-6.642330423	$4^{\text {th }}$
11	11.28985493	77.5179858	-6.051419421	$1^{\text {st }}$
11.1	10.81165882	77.5186716	-5.848369095	$2^{\text {nd }}$
11.2	10.16814236	77.42895097	-5.825714523	$3^{\text {rd }}$

6.4.3. SENSITIVITY ANALYSIS FOR THE PARAMETERS

In this section, the effect of the type I and type II errors on the model is studied. Eightyfour combinations of the two error types are tested. The results are summarized in tables 6-3, 6-4 and 6-5 below

Table 6-3 below gives the effect of the two types of error on the profit objective function

Table 6-3 The sensitivity analysis of the two error types on the profit objective function of model 4.

	PROFIT		
$\left(e_{1}, e_{2}\right)$	T	OBJECTIVE VALUE	CHANGE PERCENTAGE
$(0,0)$	10.9	11.83636534	3.6799158%
$(0,0.01)$	10.9	11.85324691	3.827789%
$(0,0.05)$	10.9	11.91874836	4.401545%
$(0,0.1)$	10.9	11.99610828	5.07917%
$(0,0.15)$	10.9	12.06851167	5.713387%
$(0,0.2)$	10.8	12.14222604	6.359084%
$(0,0.25)$	10.8	12.30080469	7.748144%
$(0.01,0)$	10.9	11.30587488	-0.966883%
$(0.01,0.01)$	10.9	11.32838134	-0.76974%
$(0.01,0.05)$			
"original"	10.9	11.41625671	0%
$(0.01,0.1)$	10.9	11.52129524	0.92008%
$(0.01,0.15)$	10.9	11.62104616	1.793841%

(0.01,0.2)	10.9	11.71556677	2.621788\%
(0.01,0.25)	10.9	11.80491618	3.40444\%
$(0.05,0)$	11.1	8.427358894	-26.1811\%
$(0.05,0.01)$	11.1	8.440415982	-26.0667\%
$(0.05,0.05)$	11.1	8.49228712	-25.6123\%
(0.05,0.1)	11	8.573064435	-24.9048\%
(0.05,0.15)	11	8.691676613	-23.8658\%
(0.05,0.2)	11	8.80785728	-22.8481\%
(0.05,0.25)	11	8.921618937	-21.8516\%
$(0.1,0)$	11.2	1.551619197	-86.40869\%
(0.1,0.01)	11.2	1.566840995	-86.2754\%
(0.1,0.05)	11.2	1.627572643	-85.7434\%
(0.1,0.1)	11.2	1.703137758	-85.0815\%
(0.1,0.15)	11.2	1.778315427	-84.42296\%
(0.1,0.2)	11.1	1.896180181	-83.3905\%
(0.1,0.25)	11.1	2.02795672	-82.2362\%
$(0.15,0)$	11.3	-10.7319061	-194.005\%
$(0.15,0.01)$	11.3	-10.7173106	-193.878\%
(0.15,0.05)	11.3	-10.658998	-193.3668\%
(0.15,0.1)	11.2	-10.561716	-192.515\%
$(0.15,0.15)$	11.2	-10.431573	-191.3747\%

(0.15,0.2)	11.2	-10.301968	-190.2395\%
(0.15, 0.25)	11.2	-10.172898	-189.1089\%
(0.2,0)	11.3	-30.8570258	-370.2902\%
(0.2,0.01)	11.3	-30.833276	-370.0822\%
(0.2,0.05)	11.3	-30.738385	-369.251\%
$(0.2,0.1)$	11.3	-30.620009	-368.2141\%
$(0.2,0.15)$	11.3	-30.501898	-367.1795\%
(0.2,0.2)	11.3	-30.384051	-366.1472\%
$(0.2,0.25)$	11.2	-30.255426	-365.0205\%
(0.25,0)	11.4	-63.34724	-654.886\%
(0.25,0.01)	11.4	-63.326331	-654.7031\%
(0.25,0.05)	11.3	-63.208556	-653.6715\%
(0.25,0.1)	11.3	-63.0169846	-651.9934\%
(0.25,0.15)	11.3	-62.8258521	-650.3192\%
$(0.25,0.2)$	11.3	-62.6351573	-648.6488\%
(0.25,0.25)	11.3	-62.4448993	-646.982\%

Figure 6-1 The profit objective function versus type II error for type I error equal 0

Figure 6-2 The profit objective function versus type I error for type II error equal 0

Figure 6-3 The profit objective function versus type II error for type I error equal 0.01

Figure 6-4 The profit objective function versus type I error for type II error equal 0.01

Figure 6-5 The profit objective function versus type II error for type I error equal 0.05

Figure 6-6 The profit objective function versus type I error for type II error equal 0.05

Figure 6-7 The profit objective function versus type II error for type I error equal 0.1

Figure 6-8 The profit objective function versus type I error for type II error equal 0.1

Figure 6-9 The profit objective function versus type II error for type I error equal 0.15

Figure 6-10 The profit objective function versus type I error for type II error equal 0.15

Figure 6-11 The profit objective function versus type II error for type I error equal 0.2

Figure 6-12 The profit objective function versus type I error for type II error equal 0.2

Figure 6-13 The profit objective function versus type II error for type I error equal 0.25

Figure 6-14 The profit objective function versus type I error for type II error equal 0.2

Table 6-4 below gives the effect of the two types of error on the income objective function

Table 6-4 The sensitivity analysis of the two error types on the income objective function of model 4.

	INCOME		
$\left(e_{1}, e_{2}\right)$	T	OBJECTIVE VALUE	CHANGE PERCENTAGE
$(0,0)$	11	77.682944	0.21191\%
$(0,0.01)$	11	77.686762	0.216839\%
$(0,0.05)$	11	77.701742	0.236163\%
$(0,0.1)$	11	77.719796	0.259453\%
$(0,0.15)$	11	77.737085	0.28176\%
$(0,0.2)$	11	77.753589	0.30305\%
$(0,0.25)$	11	77.769286	0.3233\%
$(0.01,0)$	11.1	77.50690767	-0.01518\%
(0.01,0.01)	11.1	77.50928142	-0.01211\%
$\begin{gathered} (0.01,0.05) \\ \text { "original" } \\ \hline \end{gathered}$	11.1	77.5186716	0\%
(0.01,0.1)	11	77.54181293	0.029853\%
(0.01,0.15)	11	77.56503665	0.05981\%
(0.01,0.2)	11	77.5876398	0.08897\%
(0.01,0.25)	11	77.60960485	0.117304\%
$(0.05,0)$	11.2	76.5285911	-1.277216\%
(0.05,0.01)	11.2	76.5309699	-1.274147\%

(0.05,0.05)	11.1	76.5426265	-1.25911\%
(0.05,0.1)	11.1	76.5637928	-1.231805\%
(0.05,0.15)	11.1	76.5848587	-1.20463\%
(0.05,0.2)	11.1	76.6058226	-1.17759\%
(0.05,0.25)	11.1	76.6266826	-1.15068\%
$(0.1,0)$	11.2	74.8926587	-3.38759\%
(0.1,0.01)	11.2	74.89559424	-3.3838\%
(0.1,0.05)	11.2	74.90733063	-3.368661\%
(0.1,0.1)	11.2	74.92198802	-3.34975\%
(0.1,0.15)	11.2	74.93663082	-3.33086\%
(0.1,0.2)	11.2	74.95125895	-3.31199\%
$(0.1,0.25)$	11.2	74.96587237	-3.29314\%
$(0.15,0)$	11.3	73.01649674	-5.80786\%
(0.15,0.01)	11.3	73.0183326	-5.80549\%
(0.15,0.05)	11.2	73.02998251	-5.7905\%
(0.15,0.1)	11.2	73.04640692	-5.76927\%
(0.15,0.15)	11.2	73.06281388	-5.74811\%
(0.15,0.2)	11.2	73.07920347	-5.72697\%
(0.15,0.25)	11.2	73.09557579	-5.70585\%
$(0.2,0)$	11.3	70.89631056	-8.54292\%
(0.2,0.01)	11.3	70.89848406	-8.54012\%
(0.2,0.05)	11.3	70.90717369	-8.52891\%

			-8.51491%
$(0.2,0.1)$	11.3	70.91802591	-8.50093%
$(0.2,0.15)$	11.3	70.92886725	-8.48695%
$(0.2,0.2)$	11.3	70.93969776	-8.46474%
$(0.2,0.25)$	11.2	70.95691837	-11.9322%
$(0.25,0)$	11.4	68.2689721	-11.9302%
$(0.25,0.01)$	11.4	68.27050596	-11.9223%
$(0.25,0.05)$	11.4	68.2766389	-11.9092%
$(0.25,0.1)$	11.3	68.28678873	-11.89098%
$(0.25,0.15)$	11.3	68.30094281	-11.8727%
$(0.25,0.2)$	11.3	68.3150757	-11.85454%
$(0.25,0.25)$	11.3	68.32918746	

Figure 6-15 The income objective function versus type II error for type I error equal

Figure 6-16 The income objective function versus type I error for type II error equal 0

Figure 6-17 The income objective function versus type II error for type I error equal 0.01

Figure 6-18 The income objective function versus type I error for type II error equal 0.01

Figure 6-19 The income objective function versus type II error for type I error equal 0.05

Figure 6-20 The income objective function versus type I error for type II error equal 0.05

Figure 6-21 The income objective function versus type II error for type I error equal 0.1

Figure 6-22 The income objective function versus type I error for type II error equal 0.1

Figure 6-23 The income objective function versus type II error for type I error equal 0.15

Figure 6-24 The income objective function versus type I error for type II error equal 0.15

Figure 6-25 The income objective function versus type II error for type I error equal 0.2

Figure 6-26 The income objective function versus type I error for type II error equal 0.2

Figure 6-27 The income objective function versus type II error for type I error equal 0.25

Figure 6-28 The income objective function versus type I error for type II error equal 0.25

Table 6-5 below gives the effect of the two types of error on the product uniformity objective function

Table 6-5 The sensitivity analysis of the two error types on the product uniformity objective function of model 3.

	UNIFORMITY		
$\left(e_{1}, e_{2}\right)$	T	OBJECTIVE VALUE	CHANGE PERCENTAGE
$(0,0)$	11.1	-5.64234248	3.147632%
$(0,0.01)$	11.1	-5.640134637	3.18553%
$(0,0.05)$	11.1	-5.631562559	3.332672%
$(0,0.1)$	11.1	-5.621425757	3.506673%

$(0,0.15)$	11.1	-5.611923423	3.669783\%
$(0,0.2)$	11.1	-5.603046722	3.822154\%
$(0,0.25)$	11.1	-5.594786633	3.963941\%
$(0.01,0)$	11.2	-5.834456515	-0.150059\%
(0.01,0.01)	11.2	-5.832688876	-0.119717\%
$\begin{gathered} (0.01,0.05) \\ \text { "original" } \end{gathered}$	11.2	-5.825714523	0\%
(0.01,0.1)	11.2	-5.817212125	0.145946\%
(0.01,0.15)	11.2	-5.808947774	0.287806\%
(0.01,0.2)	11.1	-5.79063127	0.602214\%
(0.01,0.25)	11.1	-5.772849716	0.907439\%
$(0.05,0)$	11.4	-7.754803392	-33.113344\%
$(0.05,0.01)$	11.4	-7.752803474	-33.079014\%
(0.05,0.05)	11.4	-7.744815613	-32.9419\%
(0.05,0.1)	11.4	-7.734857358	-32.770964\%
(0.05,0.15)	11.4	-7.724928623	-32.600535\%
$(0.05,0.2)$	11.4	-7.715029402	-32.4306\%
$(0.05,0.25)$	11.4	-7.705159689	-32.261196\%
(0.1,0)	11.6	-13.7704828	-136.37414\%
(0.1,0.01)	11.6	-13.76938227	-136.3553\%
(0.1,0.05)	11.5	-13.7643516	-136.2689\%

(0.1,0.1)	11.5	-13.75343889	-136.08158\%
(0.1,0.15)	11.5	-13.74253316	-135.8944\%
(0.1,0.2)	11.5	-13.73163443	-135.7073\%
(0.1,0.25)	11.5	-13.72074268	-135.5203\%
$(0.15,0)$	11.7	-23.41583945	-301.93936\%
(0.15,0.01)	11.7	-23.41510003	-301.9267\%
(0.15,0.05)	11.7	-23.41214247	-301.8759\%
(0.15,0.1)	11.7	-23.40844573	-301.8124\%
$(0.15,0.15)$	11.6	-23.40204915	-301.7026\%
(0.15,0.2)	11.6	-23.39447922	-301.573\%
$(0.15,0.25)$	11.6	-23.38691029	-301.4428\%
(0.2,0)	11.8	-35.12750418	-502.97332\%
$(0.2,0.01)$	11.8	-35.12711772	-502.9667\%
(0.2,0.05)	11.8	-35.12557191	-502.9402\%
(0.2,0.1)	11.8	-35.12363966	-502.90698\%
(0.2,0.15)	11.8	-35.12170741	-502.8738\%
(0.2,0.2)	11.8	-35.11977518	-502.8406\%
$(0.2,0.25)$	11.7	-35.11630989	-502.78117\%
$(0.25,0)$	12.1	-47.16354917	-709.57536\%
(0.25,0.01)	12	-47.16348944	-709.5743\%

$(0.25,0.05)$	12	-47.16319308	-709.5692%
$(0.25,0.1)$	12	-47.16282262	-709.5629%
$(0.25,0.15)$	12	-47.16245217	-709.5565%
$(0.25,0.2)$	12	-47.16208171	-709.5501%
$(0.25,0.25)$	12	-47.16171125	-709.544%

Figure 6-29 The product uniformity objective function versus type II error for type I error equal 0

Figure 6-30 The product uniformity objective function versus type I error for type II error equal 0

Figure 6-31 The product uniformity objective function versus type II error for type I error equal 0.01

Figure 6-32 The product uniformity objective function versus type I error for type II error equal 0.01

Figure 6-33 The product uniformity objective function versus type II error for type I error equal 0.05

Figure 6-34 The product uniformity objective function versus type I error for type II error equal 0.05

Figure 6-35 The product uniformity objective function versus type II error for type I error equal 0.1

Figure 6-36 The product uniformity objective function versus type I error for type II error equal 0.1

Figure 6-37 The product uniformity objective function versus type II error for type I error equal 0.15

Figure 6-38 The product uniformity objective function versus type I error for type II error equal 0.15

Figure 6-39 The product uniformity objective function versus type II error for type I error equal 0.2

Figure 6-40 The product uniformity objective function versus type I error for type II error equal 0.2

Figure 6-41 The product uniformity objective function versus type II error for type I error equal 0.25

Figure 6-40 The product uniformity objective function versus type I error for type II error equal 0.25

From the three tables and the subsequent graphs above, it's clear that the type I error has a significant impact on the objective values. On the other hand, type II error has a slight impact on them. This can be explained by the fact that when the inspection system incurs type I error that led to reject more conforming lots and consider them as secondary market lots or defectives, so this makes more loss in the profit. Type II error let to the opposite, more lower quality lots classified as higher quality ones, and while there is no penalties apply to avoid that, more lower quality lot are sold as higher quality and make more profit. Since the probability of classifying an item as conforming is very high (0.96407, 0.986097 and 0.986097 for the profit, income and uniformity objective, respectively) comparing to the probability of rejection (0.03593, 0.013903and 0.013903 for the profit, income and uniformity objective, respectively). Therefore, the occurrence
of type I error tends to be higher than type II. In the future research on this model, there must be a penalties in term of loss in profit associated with type I error and in term of customers dissatisfaction and replacement and warranty cost associated with type II error.

6.5 CONCLUSION

In this chapter, a multi-objective optimization model has been developed for a process targeting problem using acceptance sampling. This inspection system is assumed to be error-prone, which means that some conforming items are rejected due to the presence of type I error, and some of the defective items are accepted due to the presence of type II error. The overall result will be in classifying higher quality lots as lower quality ones, or classifying lower quality lots as higher quality ones. The model developed consists of three objective functions maximized simultaneously to find the optimum setting of the process target mean. An illustrative example contains some data from the process targeting literature has been used to generate the set of non-inferior solutions, followed by sensitivity analysis to study the effect of the two types of error on the process target mean setting and the three objective function values.

CHAPTER 7

CONCLUSION

7.1 PREFACE

This chapter concludes the work conducted in this thesis. A brief summary of the models developed in the thesis is provided in section 7.2. Section 7.3, contains comparison between the models developed in the thesis. Finally, section 7.4 suggests directions for further research.

7.2 MODELS COMPARISON

This section provides comparisons between the models developed in the thesis. These comparisons show the effect of the inspection error on the objective function values under the two policies (100\% inspection system and sampling plan inspection system). In section 7.3.1 model 1 (multi-objective optimization model for process targeting under 100% error-free inspection) and model 2 (multi-objective optimization model for process targeting under 100% error-prone inspection) are compared. Then, in section 7.3.2 model

3 (multi-objective optimization model for process targeting under sampling plan errorfree inspection) and model 4 (multi-objective optimization model for process targeting under sampling plan error-free inspection) are compared.

7.2.1. MODEL 1 VURSES MODEL 2

Table 7-1 Comparison between model 1 and model 2.

	MODEL 1		MODEL 2		CHANGE PERCENTAGE
	T	OBJECTIVE VALUE	T	OBJECTIVE VALUE	
PROFIT	10.4	3.1673098	10.6	1.4032872	55.694666%
INCOME	10.9	77.6580908	11.1	77.4016752	0.3301852%
UNIFORMITY	11	-5.6756131	11	-5.6265986	-0.8635988%

The above table shows that, model 2 has lower objective values for the profit and income objective functions due to the presence of inspection errors. For the uniformity function of model 2 has no more terms than the function of model 1 but the penalties of misclassifying the lower quality items as higher quality ones. These penalties in the numerical example used have the same values of the loss function penalties. Hence, the optimal value of product uniformity function of model 2 is almost the same as the one of model 1.

7.2.2. MODEL 3 VURSES MODEL 4

Table 7-2 Comparison between model 3 and model 4.

	MODEL 3		MODEL 4		CHANGE PERCENTAGE
	T	OBJECTIVE VALUE	T	OBJECTIVE VALUE	
PROFIT	10.9	11.836365	10.9	11.4162567	3.5493044%
INCOME	11	77.6829438	11.1	77.51936716	0.211465%
UNIFORMITY	11.1	-5.64234248	11.2	-5.825714523	3.249928%

The above table shows that, model 3 has higher objective values than model 4 even though no penalty is applied to reduce the impact of inspection errors. The reason for that has been stated in chapter 6 that the impact of type I error in reducing the objective values is higher than type II error since rejecting an accepted lot due to type I error resulted in losing more profit than the gain in the profit of accepting a defective lot due to the presence of type II error.

7.3 SUMMARY

The problem considered in this thesis is the determination of the optimal target mean for a process using the multi-objective optimization under various quality control policies. The multi-objective optimization models consist of three objective functions to be maximized to determine the optimal target mean. These objectives are: the net profit per item, the net income per item and the product uniformity. The major contributions of this thesis are:

- Four different process targeting multi-objective models have developed.
- The first model is developed for the above stated problem where product quality is controlled by 100% error-free inspection system (Model 1)
- The second model is developed for the above stated problem where product quality is controlled by 100% error-prone inspection system (Model 2)
- The third model is developed for the above stated problem where product quality is controlled by sampling plan error-free inspection system (Model 1)
- The fourth model is developed for the above stated problem where product quality is controlled by sampling plan error-prone inspection system (Model 1)
- Examples from the literature are solved using the four process targeting models.
- Sensitivity analysis for all process targeting models has been conducted to study the effect of changing the models' parameters, on the optimal target mean and objective functions optimal values.
- The effect of inspection errors has been studied for models where inspection is error present.

7.4 FUTURE RESEARCH

The work done in this thesis can be extended in several directions. The following points list some of the possible extensions:

- Modify the production process where the product has an upper specification limit (USL).
- Generalize the models to the case that the product has n-class screening classification.
- Extend the models where the production process parameters are unknown (e.g. LSL, L, σ etc.), and determine as decision variables of the optimization models.
- Extend the models where the sampling plan parameters are unknown (e.g. $n, \mathrm{~d}_{1}, \mathrm{~d}_{2}$ etc) and determine as decision variables of the optimization models.
- In the model under sampling plan error-prone inspection system, there must be a penalties in term of loss in profit associated with type I error and in term of customers dissatisfaction and replacement and warranty cost associated with type II error.
- Use a penalty method for the occurrence of type I and type II error in the sampling plan. This penalty can be in term of loss of profit for type II error as more conforming item are rejected, and be in term of loss of customer goodwill, warranty and replacement cost for type II error as more defective item are accepted.
- Develop the models with different type of sampling plans (e.g. multiple).
- Develop the model under the assumption that the process deteriorates and shift over time. Different drift functions (e.g. linear, quadratic etc) and distribution functions (e.g. exponential, weibull etc) can be used for that purpose.
- Integrate these quality models with other production and inventory models
- Develop the model under the constraints of certain demand rate and production capacity.
- Extend the models where the production process has multi-stage processes in series.
- Extend the model where the product has multiple quality characteristics either dependent or independent.
- Develop a multi-objective targeting model with other criteria rather than profit, income and product uniformity.
- Develop the models where the product has different cost functions and structures.

Appendix A

Appendix A contains the sets of non-inferior solutions for the two sensitivity analysis cases conducted on chapter three, "multi-objective process targeting model with 100% error-free inspection system". The two sensitivity analysis cases are conducted on the parameters, the standard deviation σ and the cost parameters (c, g and R).

Tables from 1 to 6 give the set non-inferior solutions for each case of change in the process standard deviation.

Table 1 The set of non-inferior solutions for the case of the process standard deviation "+25\%".

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.5	1.913844804	76.02134369	-8.269226785	$4^{\text {th }}$
10.6	1.827711898	76.4180887	-7.579630407	$2^{\text {nd }}$
10.7	1.587599553	76.73288095	-7.047723238	$1^{\text {st }}$
10.8	1.21558231	76.96620301	-6.651235415	$3^{\text {rd }}$
10.9	0.731578173	77.12193962	-6.369773455	$5^{\text {th }}$
11	0.153741047	77.20668705	-6.184694794	$6^{\text {th }}$
11.1	-0.501412767	77.22887969	-6.079085768	$7^{\text {th }}$
11.2	-1.219036349	77.19788394	-6.03781297	$8^{\text {th }}$

Table 2 The set of non-inferior solutions for the case of the process standard deviation "+50\%".

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.6	0.458104358	75.89900885	-8.963298844	$3^{\text {rd }}$
10.7	0.405567031	76.19267775	-8.244784041	$1^{\text {st }}$

10.8	0.204459596	76.42931559	-7.676481878	$2^{\text {nd }}$
10.9	-0.12423526	76.60924543	-7.238314152	$4^{\text {th }}$
11	-0.561761929	76.73431145	-6.911691119	$5^{\text {th }}$
11.1	-1.09134911	76.8076931	-6.679661091	$6^{\text {th }}$
11.2	-1.698047015	76.83362848	-6.526976701	$7^{\text {th }}$
11.3	-2.368615335	76.81708739	-6.440101917	$8^{\text {th }}$
11.4	-3.091437293	76.76343402	-6.407176405	$9^{\text {th }}$

Table 3 The set of non-inferior solutions for the case of the process standard deviation "+75\%".

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.7	-1.120319882	75.78038347	-9.75747918	$3^{\text {rd }}$
10.8	-1.131136079	75.99883274	-9.00790943	$1^{\text {st }}$
10.9	-1.282872168	76.17507736	-8.39769818	$2^{\text {nd }}$
11	-1.557554771	76.30953337	-7.910826248	$4^{\text {th }}$
11.1	-1.938874514	76.40333859	-7.531958249	$5^{\text {th }}$
11.2	-2.412056227	76.45830199	-7.246697694	$6^{\text {th }}$
11.3	-2.963767008	76.47681202	-7.041760414	$7^{\text {th }}$
11.4	-3.582046572	76.4617154	-6.905077611	$8^{\text {th }}$
11.5	-4.256247511	76.41617907	-6.825840433	$9^{\text {th }}$
11.6	-4.976976334	76.34354793	-6.794497563	$1^{\text {th }}$

Table 4 The set of non-inferior solutions for the case of the process standard deviation "-25\%".

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.4	4.268106251	77.07498513	-6.645041313	$4^{\text {th }}$
10.5	4.120916845	77.62324475	-6.021304028	$2^{\text {nd }}$
10.6	3.758254285	77.95899041	-5.615219727	$1^{\text {st }}$

10.7	3.21625538	78.11647282	-5.390462478	$3^{\text {rd }}$
10.8	2.538679994	78.13873997	-5.303156339	$5^{\text {th }}$

Table 5 The set of non-inferior solutions for the case of the process standard deviation "-50\%".

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.3	5.542292242	77.64229943	-6.134775309	$4^{\text {th }}$
10.4	5.537005911	78.33700669	-5.36764863	$2^{\text {nd }}$
10.5	5.130391484	78.63039156	-5.003914263	$1^{\text {st }}$
10.6	4.462578778	78.66257878	-4.903364272	$3^{\text {rd }}$

Table 6 The set of non-inferior solutions for the case of the process standard deviation "-75\%".

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.2	7.315086901	78.7150869	-5.131321736	$3^{\text {rd }}$
10.3	7.157660262	79.25766026	-4.514390516	$1^{\text {st }}$
10.4	6.38719231	79.18719231	-4.512636459	$2^{\text {nd }}$

Tables from 7 to 18 give the set non-inferior solutions for each case of change in the cost parameters.

Table 7 The set of non-inferior solutions for the case of the cost parameters "+5\%".

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.4	-0.543176941	76.09263755	-8.012167808	$1^{\text {st }}$
10.5	-0.647402796	76.63191641	-7.307266389	$2^{\text {nd }}$
10.6	-0.921074504	77.04249722	-6.773659588	$3^{\text {rd }}$
10.7	-1.344784555	77.32672218	-6.392071779	$4^{\text {th }}$
10.8	-1.897572095	77.49505995	-6.141498586	$5^{\text {th }}$
10.9	-2.557388395	77.56340819	-5.999813044	$6^{\text {th }}$

11	-3.30235782	77.55020288	-5.945068071	$7^{\text {th }}$

Table 8 The set of non-inferior solutions for the case of the cost parameters "+10\%".

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.4	-4.253663683	76.03147531	-8.259382286	$4^{\text {th }}$
10.5	-4.393994602	76.56529218	-7.556454846	$2^{\text {nd }}$
10.6	-4.706327348	76.96979541	-7.025512297	$1^{\text {st }}$
10.7	-5.170460703	77.24730826	-6.647303722	$3^{\text {rd }}$
10.8	-5.764927386	77.40830619	-6.400820853	$5^{\text {th }}$
10.9	-6.46734703	77.46872558	-6.263898785	$6^{\text {th }}$
11	-7.255613442	77.4470692	-6.214523005	$7^{\text {th }}$

Table 9 The set of non-inferior solutions for the case of the cost parameters "+15\%".

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.4	-7.964150426	75.97031307	-8.506596764	$2^{\text {nd }}$
10.5	-8.140586408	76.49866795	-7.805643303	$4^{\text {th }}$
10.6	-8.491580192	76.89709361	-7.277365007	$6^{\text {th }}$
10.7	-8.996136852	77.16789433	-6.902535666	$7^{\text {th }}$
10.8	-9.632282678	77.32155242	-6.66014312	$5^{\text {th }}$
10.9	-10.37730566	77.37404297	-6.527984526	$3^{\text {rd }}$
11	-11.20886906	77.34393551	-6.483977939	$1^{\text {st }}$

Table 10 The set of non-inferior solutions for the case of the cost parameters "+20\%".

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.3	-11.66180252	75.26337206	-9.644273786	$8^{\text {th }}$
10.4	-11.67463717	75.90915082	-8.753811241	$6^{\text {th }}$
10.5	-11.88717821	76.43204373	-8.05483176	$4^{\text {th }}$
10.6	-12.27683304	76.8243918	-7.529217716	$2^{\text {nd }}$
10.7	-12.821813	77.08848041	-7.157767609	$1^{\text {st }}$

10.8	-13.49963797	77.23479866	-6.919465388	$3^{\text {rd }}$
10.9	-14.2872643	77.27936037	-6.792070268	$5^{\text {th }}$
11	-15.16212469	77.24080183	-6.753432873	$7^{\text {th }}$

Table 11 The set of non-inferior solutions for the case of the cost parameters "+25\%".

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.3	-15.33997428	75.20708258	-9.89016877	$8^{\text {th }}$
10.4	-15.38512391	75.84798858	-9.001025719	$7^{\text {th }}$
10.5	-15.63377002	76.3654195	-8.304020217	$4^{\text {th }}$
10.6	-16.06208588	76.75168999	-7.781070425	$2^{\text {nd }}$
10.7	-16.64748915	77.00906649	-7.412999553	$1^{\text {st }}$
10.8	-17.36699326	77.14804489	-7.178787655	$3^{\text {rd }}$
10.9	-18.19722293	77.18467776	-7.056156009	$5^{\text {th }}$
11	-19.11538031	77.13766814	-7.022887807	$6^{\text {th }}$

Table 12 The set of non-inferior solutions for the case of the cost parameters "+50\%".

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.3	-33.73083305	74.92563518	-11.11964369	$8^{\text {th }}$
10.4	-33.93755762	75.54217737	-10.23709811	$7^{\text {th }}$
10.5	-34.36672905	76.03229838	-9.549962503	$5^{\text {th }}$
10.6	-34.9883501	76.38818094	-9.040333973	$3^{\text {rd }}$
10.7	-35.77586989	76.61199687	-8.68915927	$1^{\text {st }}$
10.8	-36.70376972	76.71427607	-8.475398991	$2^{\text {nd }}$
10.9	-37.74701611	76.71126473	-8.376584714	$4^{\text {th }}$
11	-38.88165842	76.62199972	-8.370162477	$6^{\text {th }}$

Table 13 The set of non-inferior solutions for the case of the cost parameters "-5\%".

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.4	6.877796544	76.21496204	-7.517738853	$7^{\text {th }}$
10.5	6.845780817	76.76516486	-6.808889475	$5^{\text {th }}$
10.6	6.649431183	77.18790084	-6.269954169	$3^{\text {rd }}$

10.7	6.306567742	77.48555002	-5.881607892	$1^{\text {st }}$
10.8	5.837138488	77.66856749	-5.622854052	$2^{\text {nd }}$
10.9	5.262528874	77.7527734	-5.471641562	$4^{\text {th }}$
11	4.604153425	77.75647025	-5.406158203	$6^{\text {th }}$

Table 14 The set of non-inferior solutions for the case of the cost parameters "10\%".

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.5	10.59237262	76.83178908	-6.559701018	$7^{\text {th }}$
10.6	10.43468403	77.26060265	-6.018101459	$4^{\text {th }}$
10.7	10.13224389	77.56496395	-5.626375948	$2^{\text {nd }}$
10.8	9.704493779	77.75532125	-5.363531785	$1^{\text {st }}$
10.9	9.172487509	77.84745601	-5.207555821	$3^{\text {rd }}$
11	8.557409047	77.85960393	-5.136703269	$5^{\text {th }}$
11.1	7.879037734	77.80997101	-5.130876966	$6^{\text {th }}$

Table 15 The set of non-inferior solutions for the case of the cost parameters "15\%".

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.5	14.33896443	76.89841331	-6.310512561	$7^{\text {th }}$
10.6	14.21993687	77.33330446	-5.76624875	$5^{\text {th }}$
10.7	13.95792004	77.64437787	-5.371144005	$3^{\text {th }}$
10.8	13.57184907	77.84207502	-5.104209518	$1^{\text {st }}$
10.9	13.08244614	77.94213862	-4.94347008	$2^{\text {nd }}$
11	12.51066467	77.96273762	-4.867248335	$4^{\text {th }}$
11.1	11.87611183	77.92199326	-4.855533464	$6^{\text {th }}$

Table 16 The set of non-inferior solutions for the case of the cost parameters "20\%".

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.5	18.08555624	76.96503753	-6.061324104	$7^{\text {th }}$
10.6	18.00518971	77.40600627	-5.51439604	$6^{\text {th }}$

10.7	17.78359619	77.72379179	-5.115912061	$4^{\text {th }}$
10.8	17.43920436	77.92882878	-4.84488725	$1^{\text {st }}$
10.9	16.99240478	78.03682122	-4.679384339	$2^{\text {nd }}$
11	16.46392029	78.0658713	-4.597793402	$3^{\text {rd }}$
11.1	15.87318592	78.0340155	-4.580189962	$5^{\text {th }}$

Table 17 The set of non-inferior solutions for the case of the cost parameters "25\%".

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.5	21.83214804	77.03166176	-5.812135647	$7^{\text {th }}$
10.6	21.79044256	77.47870808	-5.262543331	$6^{\text {th }}$
10.7	21.60927234	77.80320572	-4.860680118	$5^{\text {th }}$
10.8	21.30655965	78.01558255	-4.585564983	$2^{\text {nd }}$
10.9	20.90236341	78.13150383	-4.415298598	$1^{\text {st }}$
11	20.41717591	78.16900499	-4.328338468	$3^{\text {rd }}$
11.1	19.87026001	78.14603775	-4.30484646	$4^{\text {th }}$

Table 18 The set of non-inferior solutions for the case of the cost parameters "50\%".

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.7	40.73765308	78.20027533	-3.584520401	$6^{\text {th }}$
10.8	40.64333611	78.44935137	-3.288953648	$5^{\text {th }}$
10.9	40.45215659	78.60491686	-3.094869893	$4^{\text {th }}$
11	40.18345402	78.68467341	-2.981063798	$1^{\text {st }}$
11.1	39.85563048	78.70614897	-2.928128951	$2^{\text {nd }}$
11.2	39.48481086	78.68502303	-2.919419727	$3^{\text {rd }}$

Appendix B

Appendix B contains the sets of non-inferior solutions for the sensitivity analysis on the correlation coefficient between the actual and observed quality characteristics conducted on chapter four, "multi-objective process targeting model with 100% error-prone inspection system".

Tables from 1 to 4 give the set non-inferior solutions for each case of change in the correlation coefficient.

Table 1 The set of non-inferior solutions for the case of the correlation coefficient " ρ = 0.9".

T^{*}	$w_{2}{ }^{*}$	$w_{1}{ }^{*}$	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.6	8.5	9.8	1.6245911	75.894422	-6.3071411	$26^{\text {th }}$
10.6	8.6	9.8	1.6218141	75.896608	-6.3079889	$25^{\text {th }}$
10.6	8.7	9.8	1.6142884	75.900011	-6.3104933	$22^{\text {nd }}$
10.6	8.8	9.8	1.5963259	75.904919	-6.3171296	$21^{\text {st }}$
10.6	8.5	9.9	1.5954693	75.991882	-6.4515413	$31^{\text {st }}$
10.6	8.6	9.9	1.5926845	75.994071	-6.4523891	$30^{\text {th }}$
10.6	8.7	9.9	1.5851564	75.997483	-6.4548935	$28^{\text {th }}$
10.7	8.5	9.6	1.4013659	76.299437	-5.9113483	$23^{\text {rd }}$
10.7	8.6	9.6	1.3999264	76.300449	-5.9117756	$24^{\text {th }}$
10.7	8.7	9.6	1.3959611	76.302061	-5.9130683	$27^{\text {th }}$
10.7	8.8	9.6	1.3863049	76.304443	-5.9165721	$29^{\text {th }}$
10.7	8.9	9.6	1.3649539	76.307743	-5.9250759	$32^{\text {nd }}$
10.7	8.5	9.7	1.5065992	76.417184	-5.9358745	$13^{\text {th }}$
10.7	8.6	9.7	1.5051616	76.418198	-5.9363017	$14^{\text {th }}$

10.7	8.7	9.7	1.5012005	76.419814	-5.9375945	$15^{\text {th }}$
10.7	8.8	9.7	1.491553	76.422206	-5.9410983	$16^{\text {th }}$
10.7	8.9	9.7	1.4702191	76.425525	-5.949602	$17^{\text {th }}$
10.7	9	9.7	1.4266421	76.429931	-5.9682407	$20^{\text {th }}$
10.7	8.5	9.8	1.5696872	76.521394	-5.9927633	$10^{\text {th }}$
10.7	8.6	9.8	1.5682508	76.52241	-5.9931905	9th
10.7	8.7	9.8	1.5642936	76.524031	-5.9944833	$8^{\text {th }}$
10.7	8.8	9.8	1.5546519	76.526431	-5.9979871	$4^{\text {th }}$
10.7	8.9	9.8	1.5333235	76.529767	-6.0064909	$1^{\text {st }}$
10.7	9	9.8	1.4897701	76.534205	-6.0251296	$11^{\text {th }}$
10.7	9.1	9.8	1.4065231	76.540041	-6.0625147	$18^{\text {th }}$
10.7	8.5	9.9	1.5268731	76.578139	-6.1078313	7th
10.7	8.6	9.9	1.5254359	76.579156	-6.1082585	$6^{\text {th }}$
10.7	8.7	9.9	1.5214702	76.580779	-6.1095513	$5^{\text {th }}$
10.7	8.8	9.9	1.511825	76.583184	-6.1130551	$3^{\text {rd }}$
10.7	8.9	9.9	1.4904965	76.586529	-6.1215588	$2^{\text {nd }}$
10.7	9	9.9	1.446923	76.590985	-6.1401975	$12^{\text {th }}$
10.7	9.1	9.9	1.3636582	76.596853	-6.1775826	19th
10.8	8.5	9.5	1.1590425	76.757536	-5.7212962	$62^{\text {nd }}$
10.8	8.6	9.5	1.1583235	76.757987	-5.7215036	$63^{\text {rd }}$
10.8	8.7	9.5	1.1563112	76.758723	-5.7221459	$64^{\text {th }}$
10.8	8.8	9.5	1.1513097	76.759841	-5.7239265	$65^{\text {th }}$
10.8	8.5	9.6	1.2193498	76.815718	-5.7261944	$53^{\text {rd }}$
10.8	8.6	9.6	1.2186314	76.81617	-5.7264017	54 ${ }^{\text {th }}$
10.8	8.7	9.6	1.2166203	76.816908	-5.7270441	$56^{\text {th }}$
10.8	8.8	9.6	1.2116214	76.818027	-5.7288246	$57^{\text {th }}$
10.8	8.9	9.6	1.2003057	76.81963	-5.7332493	$58^{\text {th }}$
10.8	9	9.6	1.1765876	76.821844	-5.7431992	$60^{\text {th }}$

10.8	8.5	9.7	1.2883852	76.89438	-5.7448489	$44^{\text {th }}$
10.8	8.6	9.7	1.2876674	76.894833	-5.7450563	$45^{\text {th }}$
10.8	8.7	9.7	1.285657	76.895572	-5.7456986	$46^{\text {th }}$
10.8	8.8	9.7	1.2806609	76.896695	-5.7474792	47 ${ }^{\text {th }}$
10.8	8.9	9.7	1.2693509	76.898303	-5.7519039	49th
10.8	9	9.7	1.2456439	76.900531	-5.7618537	$51^{\text {st }}$
10.8	9.1	9.7	1.1990533	76.903613	-5.7823817	$55^{\text {th }}$
10.8	8.5	9.8	1.3244587	76.961186	-5.7879255	$33^{\text {rd }}$
10.8	8.6	9.8	1.3237413	76.961639	-5.7881328	$34^{\text {th }}$
10.8	8.7	9.8	1.3217328	76.962379	-5.7887751	$35^{\text {th }}$
10.8	8.8	9.8	1.3167361	76.963505	-5.7905557	$36^{\text {th }}$
10.8	8.9	9.8	1.3054264	76.965119	-5.7949804	37th
10.8	9	9.8	1.2817267	76.967358	-5.8049302	$43^{\text {rd }}$
10.8	9.1	9.8	1.2351466	76.97046	-5.8254582	$50^{\text {th }}$
10.8	9.2	9.8	1.1484665	76.974899	-5.8648969	59th
10.8	8.5	9.9	1.2790306	76.991057	-5.8761987	$38^{\text {th }}$
10.8	8.6	9.9	1.2783128	76.991511	-5.8764061	39th
10.8	8.7	9.9	1.2763035	76.992251	-5.8770484	$40^{\text {th }}$
10.8	8.8	9.9	1.2713049	76.993378	-5.878829	$41^{\text {st }}$
10.8	8.9	9.9	1.2599914	76.994995	-5.8832536	$42^{\text {nd }}$
10.8	9	9.9	1.2362843	76.997238	-5.8932035	48 ${ }^{\text {th }}$
10.8	9.1	9.9	1.1896902	77.00035	-5.9137314	$52^{\text {nd }}$
10.8	9.2	9.9	1.1029841	77.004806	-5.9531702	$61^{\text {st }}$
10.8	9.3	9.9	0.9490262	77.011496	-6.0246774	67th
10.8	9.4	9.9	0.9371869	77.021927	-6.1482741	$66^{\text {th }}$
10.9	8.5	9.5	0.8159972	77.114899	-5.658244	97 ${ }^{\text {th }}$
10.9	8.6	9.5	0.8156511	77.115093	-5.6583409	$98^{\text {th }}$
10.9	8.7	9.5	0.8146664	77.115416	-5.658648	99th

10.9	8.8	9.5	0.8121681	77.115919	-5.6595191	$100^{\text {th }}$
10.9	8.5	9.6	0.8447417	77.139121	-5.6597281	89th
10.9	8.6	9.6	0.8443957	77.139315	-5.6598249	$90^{\text {th }}$
10.9	8.7	9.6	0.8434112	77.139638	-5.6601321	$91^{\text {st }}$
10.9	8.8	9.6	0.8409131	77.140142	-5.6610031	$93{ }^{\text {rd }}$
10.9	8.9	9.6	0.8351235	77.140886	-5.6632198	94th
10.9	9	9.6	0.8226643	77.141959	-5.6683362	95 ${ }^{\text {th }}$
10.9	8.5	9.7	0.8909944	77.193087	-5.6739454	79th
10.9	8.6	9.7	0.8906487	77.193281	-5.6740423	80 ${ }^{\text {th }}$
10.9	8.7	9.7	0.8896645	77.193604	-5.6743495	81 ${ }^{\text {st }}$
10.9	8.8	9.7	0.8871673	77.194109	-5.6752205	$82^{\text {nd }}$
10.9	8.9	9.7	0.8813796	77.194856	-5.6774372	$83{ }^{\text {rd }}$
10.9	9	9.7	0.8689242	77.195933	-5.6825536	86 ${ }^{\text {th }}$
10.9	9.1	9.7	0.8437363	77.197501	-5.6934162	88 ${ }^{\text {th }}$
10.9	8.5	9.8	0.9112015	77.235734	-5.7056322	$68^{\text {th }}$
10.9	8.6	9.8	0.9108559	77.235928	-5.7057291	69th
10.9	8.7	9.8	0.9098718	77.236252	-5.7060362	$70^{\text {th }}$
10.9	8.8	9.8	0.9073757	77.236758	-5.7069073	$71^{\text {st }}$
10.9	8.9	9.8	0.9015881	77.237506	-5.709124	$72^{\text {nd }}$
10.9	9	9.8	0.8891344	77.238587	-5.7142403	$73{ }^{\text {rd }}$
10.9	9.1	9.8	0.8639498	77.240162	-5.725103	85 ${ }^{\text {th }}$
10.9	9.2	9.8	0.8156431	77.24255	-5.7466331	$92^{\text {nd }}$
10.9	8.5	9.9	0.870491	77.249997	-5.7709422	$74^{\text {th }}$
10.9	8.6	9.9	0.8701452	77.250192	-5.7710391	75 ${ }^{\text {th }}$
10.9	8.7	9.9	0.8691615	77.250516	-5.7713462	$76^{\text {th }}$
10.9	8.8	9.9	0.8666605	77.251022	-5.7722172	77th
10.9	8.9	9.9	0.860874	77.251771	-5.7744339	$78^{\text {th }}$
10.9	9	9.9	0.8484142	77.252852	-5.7795503	84th

10.9	9.1	9.9	0.823225	77.25443	-5.790413	87th
10.9	9.2	9.9	0.7749071	77.256823	-5.8119431	$96^{\text {th }}$
10.9	9.3	9.9	0.686363	77.260626	-5.8522972	$102^{\text {nd }}$
10.9	9.4	9.9	0.6758909	77.266867	-5.9245001	$101^{\text {st }}$
11	8.5	9.5	0.3083583	77.307992	-5.622508	127th
11	8.6	9.5	0.3081977	77.308072	-5.6225516	$128^{\text {th }}$
11	8.7	9.5	0.3077329	77.308208	-5.6226929	$130^{\text {th }}$
11	8.8	9.5	0.3065288	77.308425	-5.6231031	$132^{\text {nd }}$
11	8.9	9.5	0.3036695	77.308756	-5.6241724	135 ${ }^{\text {th }}$
11	9	9.5	0.2973492	77.309253	-5.6267069	137 ${ }^{\text {th }}$
11	8.5	9.6	0.3095713	77.300956	-5.6197666	125 ${ }^{\text {th }}$
11	8.6	9.6	0.3094107	77.301036	-5.6198102	$126^{\text {th }}$
11	8.7	9.6	0.3089462	77.301172	-5.6199516	129th
11	8.8	9.6	0.307742	77.301389	-5.6203617	131 ${ }^{\text {st }}$
11	8.9	9.6	0.3048825	77.30172	-5.6214311	$134^{\text {th }}$
11	8.5	9.7	0.3441327	77.342417	-5.6312265	$113^{\text {th }}$
11	8.6	9.7	0.3439721	77.342496	-5.6312701	$114^{\text {th }}$
11	8.7	9.7	0.3435071	77.342632	-5.6314115	$116^{\text {th }}$
11	8.8	9.7	0.3423039	77.34285	-5.6318216	117 ${ }^{\text {th }}$
11	8.9	9.7	0.339445	77.343182	-5.632891	119 ${ }^{\text {th }}$
11	9	9.7	0.3331264	77.34368	-5.6354255	121 ${ }^{\text {st }}$
11	9.1	9.7	0.3199717	77.344442	-5.6409654	$123{ }^{\text {rd }}$
11	9.2	9.7	0.2939498	77.345662	-5.6522978	136 ${ }^{\text {th }}$
11	8.5	9.8	0.3577358	77.372387	-5.6542666	$103{ }^{\text {rd }}$
11	8.6	9.8	0.3575752	77.372467	-5.6543102	104 ${ }^{\text {th }}$
11	8.7	9.8	0.3571103	77.372603	-5.6544515	105 ${ }^{\text {th }}$
11	8.8	9.8	0.3559065	77.372821	-5.6548617	106 ${ }^{\text {th }}$
11	8.9	9.8	0.3530486	77.373154	-5.655931	107 ${ }^{\text {th }}$

11	9	9.8	0.3467298	77.373653	-5.6584655	$108^{\text {th }}$
11	9.1	9.8	0.3335769	77.374418	-5.6640054	$115^{\text {th }}$
11	9.2	9.8	0.3075573	77.375643	-5.6753378	$124^{\text {th }}$
11	9.3	9.8	0.2583258	77.377697	-5.6973013	$138^{\text {th }}$
11	8.5	9.9	0.3256307	77.379269	-5.7010925	$109^{\text {th }}$
11	8.6	9.9	0.32547	77.379349	-5.701136	$110^{\text {th }}$
11	8.7	9.9	0.3250057	77.379485	-5.7012774	$111^{\text {th }}$
11	8.8	9.9	0.3238037	77.379703	-5.7016876	$112^{\text {th }}$
11	8.9	9.9	0.3209411	77.380035	-5.7027569	$118^{\text {th }}$
11	9	9.9	0.3146264	77.380535	-5.7052914	$120^{\text {th }}$
11	9.1	9.9	0.3014682	77.3813	-5.7108313	$122^{\text {nd }}$
11	9.2	9.9	0.2754426	77.382526	-5.7221637	$133^{\text {rd }}$
11	9.3	9.9	0.2262005	77.384583	-5.7441272	$140^{\text {th }}$
11	9.4	9.9	0.2180791	77.388123	-5.7848139	$139^{\text {th }}$
11	9.5	9.9	-0.0202238	77.394225	-5.8572291	$141^{\text {st }}$
11.1	8.5	9.5	-0.3264716	77.372847	-5.6463515	$162^{\text {nd }}$
11.1	8.6	9.5	-0.3265435	77.372878	-5.6463703	$163^{\text {rd }}$
11.1	8.7	9.5	-0.326755	77.372933	-5.646433	$164^{\text {th }}$
11.1	8.8	9.5	-0.3273147	77.373023	-5.6466189	$165^{\text {th }}$
11.1	8.9	9.5	-0.328677	77.373164	-5.6471156	$166^{\text {th }}$
11.1	8.5	9.7	-0.32208	77.403614	-5.6482924	$155^{\text {th }}$
11.1	8.6	9.7	-0.3221519	77.403645	-5.6483113	$156^{\text {th }}$
11.1	8.7	9.7	-0.3223631	77.4037	-5.6483739	$157^{\text {th }}$
11.1	8.8	9.7	-0.3229231	77.403791	-5.6485598	$158^{\text {th }}$
11.1	8.9	9.7	-0.3242855	77.403932	-5.6490566	$159^{\text {th }}$
11.1	9	9.7	-0.3273803	77.404154	-5.6502661	$161^{\text {st }}$
11.1	9.1	9.7	-0.3340156	77.404509	-5.6529894	$167^{\text {th }}$
11.1	9.2	9.7	-0.3475582	77.40511	-5.6587407	$169^{\text {th }}$
1						

11.1	9.3	9.7	-0.3740288	77.40617	-5.6702701	$172^{\text {nd }}$
11.1	9.4	9.7	-0.3797613	77.40808	-5.6923863	$171^{\text {st }}$
11.1	9.5	9.7	-0.5139268	77.411509	-5.7331715	$174^{\text {th }}$
11.1	8.5	9.8	-0.3086186	77.397824	-5.6655346	$142^{\text {nd }}$
11.1	8.6	9.8	-0.3086904	77.397856	-5.6655535	$143^{\text {rd }}$
11.1	8.7	9.8	-0.3089017	77.397911	-5.6656161	$144^{\text {th }}$
11.1	8.8	9.8	-0.3094616	77.398001	-5.665802	$145^{\text {th }}$
11.1	8.9	9.8	-0.3108239	77.398142	-5.6662988	$146^{\text {th }}$
11.1	9	9.8	-0.3139184	77.398364	-5.6675084	$147^{\text {th }}$
11.1	9.1	9.8	-0.3205533	77.398719	-5.6702316	$148^{\text {th }}$
11.1	8.5	9.9	-0.3290801	77.404612	-5.6985071	$149^{\text {th }}$
11.1	8.6	9.9	-0.329152	77.404644	-5.698526	$150^{\text {th }}$
11.1	8.7	9.9	-0.3293639	77.404699	-5.6985886	$151^{\text {st }}$
11.1	8.8	9.9	-0.3299232	77.404789	-5.6987745	$152^{\text {nd }}$
11.1	8.9	9.9	-0.3312857	77.404931	-5.6992713	$153^{\text {rd }}$
11.1	9	9.9	-0.3343806	77.405152	-5.7004808	$154^{\text {th }}$
11.1	9.1	9.9	-0.3410163	77.405508	-5.7032041	$160^{\text {th }}$
11.1	9.2	9.9	-0.3545601	77.406108	-5.7089554	$168^{\text {th }}$
11.1	9.4	9.9	-0.3867665	77.409079	-5.742601	$170^{\text {th }}$
11.1	9.5	9.9	-0.520936	77.412509	-5.7833862	$173^{\text {rd }}$

Table 2 The set of non-inferior solutions for the case of the correlation coefficient " ρ = 0.95".

T^{*}	$w_{2}{ }^{*}$	$w_{1}{ }^{*}$	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.6	8.5	9.8	1.8237557	76.242936	-6.2247416	$151^{\text {st }}$
10.6	8.6	9.8	1.8218902	76.245073	-6.2249094	$150^{\text {th }}$
10.6	8.7	9.8	1.8160764	76.24839	-6.2255443	$149^{\text {th }}$
10.6	8.8	9.8	1.8011945	76.253146	-6.2280119	$148^{\text {th }}$

10.6	8.5	9.9	1.8915817	76.495123	-6.3169947	$156^{\text {th }}$
10.6	8.6	9.9	1.8897113	76.497267	-6.3171625	155 ${ }^{\text {th }}$
10.6	8.7	9.9	1.8839014	76.500599	-6.3177974	$154^{\text {th }}$
10.6	8.8	9.9	1.8690276	76.505385	-6.320265	$153{ }^{\text {rd }}$
10.6	8.9	9.9	1.8355228	76.511795	-6.3285254	$152^{\text {nd }}$
10.7	8.5	9.7	1.5977509	76.58221	-5.9055632	126 ${ }^{\text {th }}$
10.7	8.6	9.7	1.5967781	76.583193	-5.905642	125 ${ }^{\text {th }}$
10.7	8.7	9.7	1.5937271	76.58475	-5.9059561	$123{ }^{\text {rd }}$
10.7	8.8	9.7	1.5857883	76.587032	-5.9072185	$122^{\text {nd }}$
10.7	8.9	9.7	1.5675279	76.590155	-5.9115507	121 ${ }^{\text {st }}$
10.7	9	9.7	1.5292449	76.594229	-5.9236509	119 ${ }^{\text {th }}$
10.7	8.5	9.8	1.727634	76.798855	-5.9286065	$138^{\text {th }}$
10.7	8.6	9.8	1.7266628	76.799841	-5.9286852	137 ${ }^{\text {th }}$
10.7	8.7	9.8	1.7236167	76.801404	-5.9289994	135 ${ }^{\text {th }}$
10.7	8.8	9.8	1.715686	76.803699	-5.9302618	$134^{\text {th }}$
10.7	8.9	9.8	1.6974364	76.806847	-5.9345939	131 ${ }^{\text {st }}$
10.7	9	9.8	1.6591879	76.810972	-5.9466942	128 ${ }^{\text {th }}$
10.7	9.1	9.8	1.5846902	76.816307	-5.9747011	127 ${ }^{\text {th }}$
10.7	8.5	9.9	1.7677534	76.988393	-6.0007951	147 ${ }^{\text {th }}$
10.7	8.6	9.9	1.7667827	76.989382	-6.0008739	$146^{\text {th }}$
10.7	8.7	9.9	1.7637309	76.99095	-6.001188	145 ${ }^{\text {th }}$
10.7	8.8	9.9	1.7558026	76.993255	-6.0024504	$144^{\text {th }}$
10.7	8.9	9.9	1.7375645	76.996426	-6.0067826	$143{ }^{\text {rd }}$
10.7	9	9.9	1.6993187	77.000596	-6.0188828	$142{ }^{\text {nd }}$
10.7	9.1	9.9	1.6248456	77.006016	-6.0468898	$130^{\text {th }}$
10.7	9.2	9.9	1.4882983	77.013267	-6.1030683	$124^{\text {th }}$
10.7	8.5	10	1.6100951	77.066665	-6.1710231	$141^{\text {st }}$
10.7	8.6	10	1.6091224	77.067654	-6.1711019	$140^{\text {th }}$

10.7	8.7	10	1.6060731	77.069225	-6.171416	139 ${ }^{\text {th }}$
10.7	8.8	10	1.5981357	77.071534	-6.1726785	$136{ }^{\text {th }}$
10.7	8.9	10	1.5798721	77.074715	-6.1770106	$132{ }^{\text {nd }}$
10.7	9	10	1.541596	77.078903	-6.1891109	129 ${ }^{\text {th }}$
10.8	8.5	9.5	1.1781638	76.789752	-5.7186956	$46^{\text {th }}$
10.8	8.6	9.5	1.1776733	76.790186	-5.7187313	45 ${ }^{\text {th }}$
10.8	8.7	9.5	1.176127	76.790888	-5.7188809	$44^{\text {th }}$
10.8	8.5	9.6	1.2610626	76.889006	-5.7193299	$52^{\text {nd }}$
10.8	8.6	9.6	1.2605725	76.889441	-5.7193656	51 ${ }^{\text {st }}$
10.8	8.7	9.6	1.2590274	76.890144	-5.7195152	$50^{\text {th }}$
10.8	8.8	9.6	1.2549411	76.891197	-5.7201365	49 ${ }^{\text {th }}$
10.8	8.9	9.6	1.2453385	76.892674	-5.7223215	$48^{\text {th }}$
10.8	8.5	9.7	1.3564907	77.019021	-5.7226628	$61^{\text {st }}$
10.8	8.6	9.7	1.3560011	77.019457	-5.7226985	$60^{\text {th }}$
10.8	8.7	9.7	1.3544566	77.020161	-5.7228482	59 ${ }^{\text {th }}$
10.8	8.8	9.7	1.3503728	77.021217	-5.7234695	$58^{\text {th }}$
10.8	8.9	9.7	1.3407757	77.022702	-5.7256544	57th
10.8	9	9.7	1.3201495	77.024708	-5.7319062	$56^{\text {th }}$
10.8	8.5	9.8	1.4448634	77.173846	-5.7399112	$78^{\text {th }}$
10.8	8.6	9.8	1.4443744	77.174282	-5.7399469	77th
10.8	8.7	9.8	1.4428322	77.174989	-5.7400966	$76^{\text {th }}$
10.8	8.8	9.8	1.4387489	77.176049	-5.7407179	$75^{\text {th }}$
10.8	8.9	9.8	1.4291541	77.177543	-5.7429028	70 ${ }^{\text {th }}$
10.8	9	9.8	1.4085398	77.179567	-5.7491546	67th
10.8	9.1	9.8	1.3672753	77.182308	-5.7640241	$64^{\text {th }}$
10.8	8.5	9.9	1.4672506	77.312812	-5.79427	$84^{\text {th }}$
10.8	8.6	9.9	1.4667616	77.313249	-5.7943057	$83{ }^{\text {rd }}$
10.8	8.7	9.9	1.4652198	77.313958	-5.7944554	$82^{\text {nd }}$

10.8	8.8	9.9	1.461137	77.315022	-5.7950767	$81^{\text {st }}$
10.8	8.9	9.9	1.4515435	77.316523	-5.7972615	$80^{\text {th }}$
10.8	9	9.9	1.4309319	77.318565	-5.8035133	$79^{\text {th }}$
10.8	9.1	9.9	1.3896726	77.321338	-5.8183829	$71^{\text {st }}$
10.8	9.2	9.9	1.3117676	77.325257	-5.8491596	$62^{\text {nd }}$
10.8	9.3	9.9	1.1717027	77.33114	-5.907258	$54^{\text {th }}$
10.8	8.5	10	1.339307	77.372708	-5.9246476	$74^{\text {th }}$
10.8	8.6	10	1.3388173	77.373145	-5.9246833	$73^{\text {rd }}$
10.8	8.7	10	1.3372739	77.373855	-5.9248329	$72^{\text {nd }}$
10.8	8.8	10	1.3331876	77.37492	-5.9254542	$69^{\text {th }}$
10.8	8.9	10	1.3235868	77.376425	-5.9276391	$68^{\text {th }}$
10.8	9	10	1.3029599	77.378474	-5.9338909	$66^{\text {th }}$
10.8	9.1	10	1.2616706	77.381261	-5.9487605	$63^{\text {rd }}$
10.8	9.2	10	1.1837083	77.385207	-5.9795371	$55^{\text {th }}$
10.8	9.3	10	1.0435381	77.39114	-6.0376356	$47^{\text {th }}$
10.8	9.4	10	1.0523002	77.400516	-6.1409748	$53^{\text {rd }}$
10.9	8.5	9.5	0.8286047	77.136536	-5.6262442	$40^{\text {th }}$
10.9	8.6	9.5	0.8283664	77.136721	-5.6262598	$41^{\text {st }}$
10.9	8.7	9.5	0.8276112	77.137026	-5.6263284	$42^{\text {nd }}$
10.9	8.8	9.5	0.8255812	77.137492	-5.6266225	$43^{\text {rd }}$
10.9	8.5	9.6	0.8814161	77.201005	-5.6266835	$34^{\text {th }}$
10.9	8.6	9.6	0.881178	77.20119	-5.6266991	$35^{\text {th }}$
10.9	8.7	9.6	0.8804229	77.201495	-5.6267678	$36^{\text {th }}$
10.9	8.8	9.6	0.8783933	77.201963	-5.6270619	$37^{\text {th }}$
10.9	8.9	9.6	0.8735211	77.202636	-5.6281216	$38^{\text {th }}$
10.9	8.5	9.7	0.9405203	77.285162	-5.6282706	$23^{\text {rd }}$
10.9	8.6	9.7	0.9402824	77.285347	-5.6282862	$24^{\text {th }}$
10.9	8.7	9.7	0.9395276	77.285653	-5.6283549	$25^{\text {th }}$
10						

10.9	8.8	9.7	0.9374987	77.286121	-5.628649	$27^{\text {th }}$
10.9	8.9	9.7	0.9326281	77.286797	-5.6297087	$28^{\text {th }}$
10.9	9	9.7	0.9218942	77.28774	-5.6328155	29th
10.9	9.1	9.7	0.8998026	77.28907	-5.6404113	$32^{\text {nd }}$
10.9	8.5	9.8	0.9997002	77.393322	-5.6409377	$6^{\text {th }}$
10.9	8.6	9.8	0.9994624	77.393508	-5.6409533	$5^{\text {th }}$
10.9	8.7	9.8	0.9987079	77.393814	-5.641022	$3^{\text {rd }}$
10.9	8.8	9.8	0.9966805	77.394284	-5.6413161	$1^{\text {st }}$
10.9	8.9	9.8	0.9918108	77.394962	-5.6423758	$2^{\text {nd }}$
10.9	9	9.8	0.9810803	77.395912	-5.6454826	$10^{\text {th }}$
10.9	9.1	9.8	0.9589957	77.397255	-5.6530784	$15^{\text {th }}$
10.9	9.2	9.8	0.9160288	77.399248	-5.6693062	$26^{\text {th }}$
10.9	8.5	9.9	1.011969	77.493165	-5.6804177	$21^{\text {st }}$
10.9	8.6	9.9	1.0117312	77.493351	-5.6804332	$20^{\text {th }}$
10.9	8.7	9.9	1.0109775	77.493657	-5.6805019	$19^{\text {th }}$
10.9	8.8	9.9	1.0089461	77.494128	-5.680796	$18^{\text {th }}$
10.9	8.9	9.9	1.0040794	77.494809	-5.6818557	17th
10.9	9	9.9	0.993347	77.495765	-5.6849625	$13^{\text {th }}$
10.9	9.1	9.9	0.9712658	77.49712	-5.6925583	$4^{\text {th }}$
10.9	9.2	9.9	0.9283032	77.499136	-5.7087862	$16^{\text {th }}$
10.9	9.3	9.9	0.8485911	77.502336	-5.7405143	$31^{\text {st }}$
10.9	8.5	10	0.9140683	77.539327	-5.7765235	7th
10.9	8.6	10	0.9138303	77.539513	-5.7765391	$8^{\text {th }}$
10.9	8.7	10	0.9130761	77.53982	-5.7766077	9th
10.9	8.8	10	0.9110502	77.540291	-5.7769019	$11^{\text {th }}$
10.9	8.9	10	0.9061742	77.540973	-5.7779616	$12^{\text {th }}$
10.9	9	10	0.8954428	77.541932	-5.7810684	$14^{\text {th }}$
10.9	9.1	10	0.8733433	77.543292	-5.7886641	$22^{\text {nd }}$

10.9	9.2	10	0.8303576	77.54532	-5.804892	$30^{\text {th }}$
10.9	9.3	10	0.7506017	77.54854	-5.8366201	$39^{\text {th }}$
10.9	9.4	10	0.7539147	77.553898	-5.8951802	$33^{\text {rd }}$
10.9	9.5	10	0.3653543	77.562952	-5.9986743	$65^{\text {th }}$
11	8.5	9.7	0.3800187	77.410724	-5.6042254	$109^{\text {th }}$
11	8.6	9.7	0.3799071	77.4108	-5.604232	$110^{\text {th }}$
11	8.7	9.7	0.3795508	77.410927	-5.6042623	$111^{\text {th }}$
11	8.8	9.7	0.3785786	77.411126	-5.6043962	$112^{\text {th }}$
11	8.9	9.7	0.3761916	77.41142	-5.6048905	$115^{\text {th }}$
11	9	9.7	0.3707967	77.411844	-5.6063755	$116^{\text {th }}$
11	9.1	9.7	0.3593762	77.412468	-5.6101089	$117^{\text {th }}$
11	8.5	9.8	0.4208933	77.486346	-5.6136859	$92^{\text {nd }}$
11	8.6	9.8	0.4207818	77.486422	-5.6136925	$93^{\text {rd }}$
11	8.7	9.8	0.4204255	77.48655	-5.6137228	$94^{\text {th }}$
11	8.8	9.8	0.4194529	77.486749	-5.6138568	$95^{\text {th }}$
11	8.9	9.8	0.4170671	77.487044	-5.614351	$96^{\text {th }}$
11	9	9.8	0.4116727	77.48747	-5.6158361	$97^{\text {th }}$
11	9.1	9.8	0.4002552	77.488099	-5.6195694	$104^{\text {th }}$
11	9.2	9.8	0.3773568	77.48908	-5.6278051	$108^{\text {th }}$
11	8.5	9.9	0.428181	77.556981	-5.6415279	$85^{\text {th }}$
11	8.6	9.9	0.4280695	77.557056	-5.6415345	$86^{\text {th }}$
11	8.7	9.9	0.4277139	77.557184	-5.6415648	$87^{\text {th }}$
11	8.8	9.9	0.4267434	77.557384	-5.6416987	$88^{\text {th }}$
11	8.9	9.9	0.4243535	77.55768	-5.642193	$89^{\text {th }}$
11	9	9.9	0.4189647	77.558108	-5.643678	$90^{\text {th }}$
11	9.1	9.9	0.407545	77.55874	-5.6474114	$91^{\text {st }}$
11	9.2	9.9	0.3846468	77.55973	-5.655647	$101^{\text {st }}$
11	9.3	9.9	0.3407922	77.561386	-5.6723278	$113^{\text {th }}$

11	9.4	9.9	0.3415297	77.564277	-5.7042779	107th
11	8.5	10	0.3578965	77.593146	-5.7098247	98 ${ }^{\text {th }}$
11	8.6	10	0.3577849	77.593222	-5.7098313	99th
11	8.7	10	0.3574292	77.59335	-5.7098616	$100^{\text {th }}$
11	8.8	10	0.3564583	77.59355	-5.7099956	$102{ }^{\text {nd }}$
11	8.9	10	0.3540743	77.593846	-5.7104898	$103{ }^{\text {rd }}$
11	9	10	0.3486769	77.594275	-5.7119748	105 ${ }^{\text {th }}$
11	9.1	10	0.337253	77.59491	-5.7157082	$106^{\text {th }}$
11	9.2	10	0.3143465	77.595904	-5.7239439	$114^{\text {th }}$
11	9.3	10	0.2704754	77.597568	-5.7406246	$120^{\text {th }}$
11	9.4	10	0.2711881	77.600475	-5.7725748	$118^{\text {th }}$
11	9.5	10	0.0468588	77.605608	-5.8312102	$133^{\text {rd }}$
11.9	8.5	9.5	-7.3803355	75.919689	-5.0020876	201 ${ }^{\text {st }}$
11.9	8.6	9.5	-7.3803355	75.919689	-5.0020876	$202{ }^{\text {nd }}$
11.9	8.7	9.5	-7.3803356	75.919689	-5.0020876	$203{ }^{\text {rd }}$
11.9	8.8	9.5	-7.3803359	75.919689	-5.0020877	204 ${ }^{\text {th }}$
11.9	8.9	9.5	-7.3803367	75.919689	-5.0020878	205 ${ }^{\text {th }}$
11.9	9	9.5	-7.380339	75.919689	-5.0020881	206 ${ }^{\text {th }}$
11.9	9.1	9.5	-7.3803454	75.919689	-5.0020892	207 ${ }^{\text {th }}$
11.9	9.2	9.5	-7.3803625	75.919689	-5.0020925	$208^{\text {th }}$
11.9	9.3	9.5	-7.3804062	75.91969	-5.0021018	209th
11.9	9.4	9.5	-7.3804271	75.919691	-5.0021266	$210^{\text {th }}$
11.9	9.5	9.5	-7.380774	75.919695	-5.0021908	219 ${ }^{\text {th }}$
11.9	8.5	9.6	-7.1021939	76.197877	-5.0903965	157th
11.9	8.6	9.6	-7.102194	76.197877	-5.0903965	$158^{\text {th }}$
11.9	8.7	9.6	-7.102194	76.197877	-5.0903965	159 ${ }^{\text {th }}$
11.9	8.8	9.6	-7.1021943	76.197877	-5.0903965	$160^{\text {th }}$
11.9	8.9	9.6	-7.1021951	76.197877	-5.0903966	$161^{\text {st }}$

11.9	9	9.6	-7.1021974	76.197877	-5.0903969	$162^{\text {nd }}$
11.9	9.1	9.6	-7.1022038	76.197878	-5.090398	$163{ }^{\text {rd }}$
11.9	9.2	9.6	-7.1022209	76.197878	-5.0904013	$164^{\text {th }}$
11.9	9.3	9.6	-7.1022645	76.197878	-5.0904106	165 ${ }^{\text {th }}$
11.9	9.4	9.6	-7.1022853	76.19788	-5.0904355	$166^{\text {th }}$
11.9	9.5	9.6	-7.1026321	76.197884	-5.0904996	167 ${ }^{\text {th }}$
11.9	8.5	9.7	-7.1034507	76.196742	-5.0898428	$168^{\text {th }}$
11.9	8.6	9.7	-7.1034507	76.196742	-5.0898428	169 ${ }^{\text {th }}$
11.9	8.7	9.7	-7.1034508	76.196742	-5.0898428	170 ${ }^{\text {th }}$
11.9	8.8	9.7	-7.103451	76.196742	-5.0898428	171 ${ }^{\text {st }}$
11.9	8.9	9.7	-7.1034518	76.196742	-5.0898429	$172^{\text {nd }}$
11.9	9	9.7	-7.1034542	76.196742	-5.0898432	$173{ }^{\text {rd }}$
11.9	9.1	9.7	-7.1034606	76.196742	-5.0898443	$174{ }^{\text {th }}$
11.9	9.2	9.7	-7.1034776	76.196742	-5.0898476	175 ${ }^{\text {th }}$
11.9	9.3	9.7	-7.1035213	76.196743	-5.0898569	$176{ }^{\text {th }}$
11.9	9.4	9.7	-7.1035421	76.196745	-5.0898818	177 ${ }^{\text {th }}$
11.9	9.5	9.7	-7.1038888	76.196749	-5.0899459	178 ${ }^{\text {th }}$
11.9	8.5	9.8	-7.8955794	75.404902	-4.8583388	245 ${ }^{\text {th }}$
11.9	8.6	9.8	-7.8955794	75.404902	-4.8583388	$246^{\text {th }}$
11.9	8.7	9.8	-7.8955795	75.404902	-4.8583388	247th
11.9	8.8	9.8	-7.8955798	75.404902	-4.8583388	$248^{\text {th }}$
11.9	8.9	9.8	-7.8955806	75.404902	-4.8583389	249 ${ }^{\text {th }}$
11.9	9	9.8	-7.8955829	75.404902	-4.8583393	$250^{\text {th }}$
11.9	9.1	9.8	-7.8955893	75.404903	-4.8583404	251 ${ }^{\text {st }}$
11.9	9.2	9.8	-7.8956064	75.404903	-4.8583437	252 ${ }^{\text {nd }}$
11.9	9.3	9.8	-7.8956501	75.404903	-4.858353	$253{ }^{\text {rd }}$
11.9	9.4	9.8	-7.8956712	75.404905	-4.8583778	$254{ }^{\text {th }}$
11.9	9.5	9.8	-7.8960187	75.404908	-4.8584419	255 ${ }^{\text {th }}$

11.9	8.5	9.9	-7.614286	75.686839	-4.9365568	$234{ }^{\text {th }}$
11.9	8.6	9.9	-7.614286	75.686839	-4.9365568	235 ${ }^{\text {th }}$
11.9	8.7	9.9	-7.6142861	75.686839	-4.9365568	236 ${ }^{\text {th }}$
11.9	8.8	9.9	-7.6142864	75.686839	-4.9365568	237 ${ }^{\text {th }}$
11.9	8.9	9.9	-7.6142872	75.686839	-4.9365569	238 ${ }^{\text {th }}$
11.9	9	9.9	-7.6142895	75.686839	-4.9365572	239th
11.9	9.1	9.9	-7.6142959	75.68684	-4.9365583	$240^{\text {th }}$
11.9	9.2	9.9	-7.6143129	75.68684	-4.9365617	$241^{\text {st }}$
11.9	9.3	9.9	-7.6143567	75.68684	-4.9365709	$242{ }^{\text {nd }}$
11.9	9.4	9.9	-7.6143777	75.686842	-4.9365958	$243{ }^{\text {rd }}$
11.9	9.5	9.9	-7.6147248	75.686846	-4.9366599	$244^{\text {th }}$
11.9	8.5	10	-7.3802407	75.922229	-5.0028329	190 ${ }^{\text {th }}$
11.9	8.6	10	-7.3802408	75.922229	-5.0028329	191 ${ }^{\text {st }}$
11.9	8.7	10	-7.3802408	75.922229	-5.002833	$192{ }^{\text {nd }}$
11.9	8.8	10	-7.3802411	75.922229	-5.002833	$193{ }^{\text {rd }}$
11.9	8.9	10	-7.3802419	75.922229	-5.0028331	$194^{\text {th }}$
11.9	9	10	-7.3802442	75.922229	-5.0028334	195 ${ }^{\text {th }}$
11.9	9.1	10	-7.3802507	75.922229	-5.0028345	196 ${ }^{\text {th }}$
11.9	9.2	10	-7.3802677	75.922229	-5.0028378	197 ${ }^{\text {th }}$
11.9	9.3	10	-7.3803114	75.92223	-5.0028471	198 ${ }^{\text {th }}$
11.9	9.4	10	-7.3803323	75.922232	-5.0028719	199th
11.9	9.5	10	-7.3806792	75.922236	-5.0029361	$200^{\text {th }}$
11.9	8.5	10.1	-7.3817631	75.923363	-5.0041035	211 ${ }^{\text {th }}$
11.9	8.6	10.1	-7.3817631	75.923363	-5.0041035	212 ${ }^{\text {th }}$
11.9	8.7	10.1	-7.3817632	75.923363	-5.0041035	$213^{\text {th }}$
11.9	8.8	10.1	-7.3817634	75.923363	-5.0041035	$214^{\text {th }}$
11.9	8.9	10.1	-7.3817642	75.923363	-5.0041036	$215^{\text {th }}$
11.9	9	10.1	-7.3817666	75.923363	-5.0041039	$216^{\text {th }}$

11.9	9.1	10.1	-7.3817729	75.923363	-5.0041051	$217^{\text {th }}$
11.9	9.2	10.1	-7.38179	75.923363	-5.0041084	$218^{\text {th }}$
11.9	9.3	10.1	-7.3818337	75.923364	-5.0041176	$220^{\text {th }}$
11.9	9.4	10.1	-7.3818546	75.923365	-5.0041425	$221^{\text {st }}$
11.9	9.5	10.1	-7.3822016	75.923369	-5.0042066	$222^{\text {nd }}$
11.9	8.5	10.2	-7.3855239	75.924598	-5.0067994	$223^{\text {rd }}$
11.9	8.6	10.2	-7.3855239	75.924598	-5.0067994	$224^{\text {th }}$
11.9	8.7	10.2	-7.385524	75.924598	-5.0067994	$225^{\text {th }}$
11.9	8.8	10.2	-7.3855243	75.924598	-5.0067994	$226^{\text {th }}$
11.9	8.9	10.2	-7.3855251	75.924598	-5.0067995	$227^{\text {th }}$
11.9	9	10.2	-7.3855274	75.924598	-5.0067998	$228^{\text {th }}$
11.9	9.1	10.2	-7.3855338	75.924598	-5.0068009	$229^{\text {th }}$
11.9	9.2	10.2	-7.3855509	75.924598	-5.0068042	$230^{\text {th }}$
11.9	9.3	10.2	-7.3855945	75.924599	-5.0068135	$231^{\text {st }}$
11.9	9.4	10.2	-7.3856154	75.9246	-5.0068384	$232^{\text {nd }}$
11.9	9.5	10.2	-7.3859624	75.924604	-5.0069025	$233^{\text {rd }}$
11.9	8.5	10.3	-7.2840771	76.03504	-5.0120062	$179^{\text {th }}$
11.9	8.6	10.3	-7.2840772	76.03504	-5.0120062	$180^{\text {th }}$
11.9	8.7	10.3	-7.2840772	76.03504	-5.0120062	$181^{\text {st }}$
11.9	8.8	10.3	-7.2840775	76.03504	-5.0120062	$182^{\text {nd }}$
11.9	8.9	10.3	-7.2840783	76.03504	-5.0120063	$183^{\text {rd }}$
11.9	9	10.3	-7.2840805	76.03504	-5.0120066	$184^{\text {th }}$
11.9	9.1	10.3	-7.284087	76.03504	-5.0120077	$185^{\text {th }}$
11.9	9.2	10.3	-7.2841044	76.035041	-5.012011	$186^{\text {th }}$
11.9	9.3	10.3	-7.2841475	76.035041	-5.0120203	$187^{\text {th }}$
11.9	9.4	10.3	-7.2841687	76.035043	-5.0120452	$188^{\text {th }}$
11.9	9.5	10.3	-7.2845158	76.035047	-5.0121093	$189^{\text {th }}$
12	8.5	9.5	-8.4559994	75.544012	-4.9056786	$278^{\text {th }}$
10						

12	8.6	9.5	-8.4559994	75.544012	-4.9056786	279th
12	8.7	9.5	-8.4559995	75.544012	-4.9056786	280 ${ }^{\text {th }}$
12	8.8	9.5	-8.4559995	75.544012	-4.9056787	281 ${ }^{\text {st }}$
12	8.9	9.5	-8.4559998	75.544012	-4.9056787	$282^{\text {nd }}$
12	9	9.5	-8.4560007	75.544012	-4.9056788	$283{ }^{\text {rd }}$
12	9.1	9.5	-8.456003	75.544012	-4.9056792	284 ${ }^{\text {th }}$
12	9.2	9.5	-8.4560095	75.544012	-4.9056803	285 ${ }^{\text {th }}$
12	9.3	9.5	-8.4560266	75.544012	-4.9056836	$286{ }^{\text {th }}$
12	9.4	9.5	-8.4560365	75.544013	-4.9056929	287 ${ }^{\text {th }}$
12	9.5	9.5	-8.4561084	75.544014	-4.9057178	288 ${ }^{\text {th }}$
12	8.5	9.8	-9.1896315	74.8106	-4.7005937	$322^{\text {nd }}$
12	8.6	9.8	-9.1896315	74.8106	-4.7005937	$323{ }^{\text {rd }}$
12	8.7	9.8	-9.1896316	74.8106	-4.7005937	$324^{\text {th }}$
12	8.8	9.8	-9.1896316	74.8106	-4.7005937	325 ${ }^{\text {th }}$
12	8.9	9.8	-9.1896319	74.8106	-4.7005938	326 ${ }^{\text {th }}$
12	9	9.8	-9.1896328	74.8106	-4.7005939	327 ${ }^{\text {th }}$
12	9.1	9.8	-9.1896351	74.8106	-4.7005942	328 ${ }^{\text {th }}$
12	9.2	9.8	-9.1896416	74.8106	-4.7005954	329th
12	9.3	9.8	-9.1896588	74.810601	-4.7005987	$330^{\text {th }}$
12	9.4	9.8	-9.1896687	74.810601	-4.700608	331 ${ }^{\text {st }}$
12	9.5	9.8	-9.1898117	74.810602	-4.7006329	$332{ }^{\text {nd }}$
12	8.5	9.9	-8.7943685	75.206185	-4.8107267	311 ${ }^{\text {th }}$
12	8.6	9.9	-8.7943685	75.206185	-4.8107267	$312^{\text {th }}$
12	8.7	9.9	-8.7943685	75.206185	-4.8107267	313 ${ }^{\text {th }}$
12	8.8	9.9	-8.7943686	75.206185	-4.8107268	$314^{\text {th }}$
12	8.9	9.9	-8.7943689	75.206185	-4.8107268	$315^{\text {th }}$
12	9	9.9	-8.7943697	75.206185	-4.8107269	$316^{\text {th }}$
12	9.1	9.9	-8.7943721	75.206185	-4.8107273	317 ${ }^{\text {th }}$

12	9.2	9.9	-8.7943786	75.206185	-4.8107284	318 ${ }^{\text {th }}$
12	9.3	9.9	-8.7943957	75.206185	-4.8107317	319th
12	9.4	9.9	-8.7944056	75.206186	-4.810741	$320^{\text {th }}$
12	9.5	9.9	-8.7945485	75.206187	-4.8107659	321 ${ }^{\text {st }}$
12	8.5	10	-8.455959	75.545285	-4.9060323	267th
12	8.6	10	-8.455959	75.545285	-4.9060323	268 ${ }^{\text {th }}$
12	8.7	10	-8.455959	75.545285	-4.9060323	269 ${ }^{\text {th }}$
12	8.8	10	-8.4559591	75.545285	-4.9060323	$270^{\text {th }}$
12	8.9	10	-8.4559594	75.545285	-4.9060323	271 ${ }^{\text {st }}$
12	9	10	-8.4559602	75.545285	-4.9060324	$272^{\text {nd }}$
12	9.1	10	-8.4559626	75.545285	-4.9060328	$273{ }^{\text {rd }}$
12	9.2	10	-8.4559691	75.545285	-4.9060339	$274{ }^{\text {th }}$
12	9.3	10	-8.4559862	75.545286	-4.9060373	275 ${ }^{\text {th }}$
12	9.4	10	-8.455996	75.545286	-4.9060466	276 ${ }^{\text {th }}$
12	9.5	10	-8.4561388	75.545288	-4.9060714	277 ${ }^{\text {th }}$
12	8.5	10.1	-8.4566323	75.546017	-4.9066568	289 ${ }^{\text {th }}$
12	8.6	10.1	-8.4566323	75.546017	-4.9066568	290 ${ }^{\text {th }}$
12	8.7	10.1	-8.4566323	75.546017	-4.9066568	291 ${ }^{\text {st }}$
12	8.8	10.1	-8.4566324	75.546017	-4.9066568	292 ${ }^{\text {nd }}$
12	8.9	10.1	-8.4566327	75.546017	-4.9066568	293 ${ }^{\text {rd }}$
12	9	10.1	-8.4566335	75.546017	-4.9066569	294 ${ }^{\text {th }}$
12	9.1	10.1	-8.4566358	75.546017	-4.9066573	295 ${ }^{\text {th }}$
12	9.2	10.1	-8.4566423	75.546017	-4.9066584	296 ${ }^{\text {th }}$
12	9.3	10.1	-8.4566594	75.546017	-4.9066618	297th
12	9.4	10.1	-8.4566693	75.546018	-4.9066711	298 ${ }^{\text {th }}$
12	9.5	10.1	-8.4568121	75.546019	-4.9066959	299 ${ }^{\text {th }}$
12	8.5	10.2	-8.4584068	75.546967	-4.9080238	$300^{\text {th }}$
12	8.6	10.2	-8.4584068	75.546967	-4.9080238	$301{ }^{\text {st }}$

12	8.7	10.2	-8.4584068	75.546967	-4.9080238	$302{ }^{\text {nd }}$
12	8.8	10.2	-8.4584069	75.546967	-4.9080238	$303{ }^{\text {rd }}$
12	8.9	10.2	-8.4584072	75.546967	-4.9080238	304 ${ }^{\text {th }}$
12	9	10.2	-8.458408	75.546967	-4.9080239	305 ${ }^{\text {th }}$
12	9.1	10.2	-8.4584103	75.546967	-4.9080243	306 ${ }^{\text {th }}$
12	9.2	10.2	-8.4584168	75.546967	-4.9080254	307th
12	9.3	10.2	-8.4584339	75.546968	-4.9080288	308 ${ }^{\text {th }}$
12	9.4	10.2	-8.4584438	75.546968	-4.9080381	309th
12	9.5	10.2	-8.4585866	75.54697	-4.9080629	$310^{\text {th }}$
12	8.5	10.3	-8.2681369	75.742303	-4.9107579	256 ${ }^{\text {th }}$
12	8.6	10.3	-8.2681369	75.742303	-4.9107579	257 ${ }^{\text {th }}$
12	8.7	10.3	-8.268137	75.742303	-4.9107579	258 ${ }^{\text {th }}$
12	8.8	10.3	-8.2681371	75.742303	-4.9107579	259th
12	8.9	10.3	-8.2681373	75.742303	-4.910758	$260^{\text {th }}$
12	9	10.3	-8.2681382	75.742303	-4.9107581	261 ${ }^{\text {st }}$
12	9.1	10.3	-8.2681405	75.742303	-4.9107584	$262^{\text {nd }}$
12	9.2	10.3	-8.2681469	75.742303	-4.9107596	263rd
12	9.3	10.3	-8.2681641	75.742303	-4.9107629	264 ${ }^{\text {th }}$
12	9.4	10.3	-8.2681739	75.742304	-4.9107722	265 ${ }^{\text {th }}$
12	9.5	10.3	-8.2683166	75.742305	-4.9107971	266 ${ }^{\text {th }}$
12.1	8.5	9.5	-9.2880785	75.411922	-4.8022278	$333{ }^{\text {rd }}$
12.1	8.6	9.5	-9.2880785	75.411922	-4.8022278	334 ${ }^{\text {th }}$
12.1	8.7	9.5	-9.2880785	75.411922	-4.8022278	335 ${ }^{\text {th }}$
12.1	8.8	9.5	-9.2880785	75.411922	-4.8022278	336 ${ }^{\text {th }}$
12.1	8.9	9.5	-9.2880786	75.411922	-4.8022278	337th
12.1	9	9.5	-9.2880786	75.411922	-4.8022278	338 ${ }^{\text {th }}$
12.1	9.1	9.5	-9.2880789	75.411922	-4.8022279	339th
12.1	9.2	9.5	-9.2880797	75.411922	-4.8022283	$340^{\text {th }}$

12.1	9.3	9.5	-9.2880821	75.411922	-4.8022295	341 ${ }^{\text {st }}$
12.1	9.4	9.5	-9.2880844	75.411922	-4.8022328	$342^{\text {nd }}$
12.1	9.5	9.5	-9.2881083	75.411922	-4.8022421	$343{ }^{\text {rd }}$
12.1	8.5	9.8	-10.594838	74.105173	-4.520671	377 ${ }^{\text {th }}$
12.1	8.6	9.8	-10.594838	74.105173	-4.520671	378 ${ }^{\text {th }}$
12.1	8.7	9.8	-10.594838	74.105173	-4.520671	379th
12.1	8.8	9.8	-10.594838	74.105173	-4.520671	$380^{\text {th }}$
12.1	8.9	9.8	-10.594838	74.105173	-4.520671	381 ${ }^{\text {st }}$
12.1	9	9.8	-10.594838	74.105173	-4.5206711	$382^{\text {nd }}$
12.1	9.1	9.8	-10.594839	74.105173	-4.5206712	$383{ }^{\text {rd }}$
12.1	9.2	9.8	-10.594839	74.105173	-4.5206716	$384{ }^{\text {th }}$
12.1	9.3	9.8	-10.594842	74.105173	-4.5206727	385 ${ }^{\text {th }}$
12.1	9.4	9.8	-10.594844	74.105173	-4.5206761	386 ${ }^{\text {th }}$
12.1	9.5	9.8	-10.594868	74.105173	-4.5206853	387th
12.1	8.5	9.9	-10.089244	74.610804	-4.6701412	$355^{\text {th }}$
12.1	8.6	9.9	-10.089244	74.610804	-4.6701412	356 ${ }^{\text {th }}$
12.1	8.7	9.9	-10.089244	74.610804	-4.6701412	357th
12.1	8.8	9.9	-10.089244	74.610804	-4.6701412	358 ${ }^{\text {th }}$
12.1	8.9	9.9	-10.089244	74.610804	-4.6701412	359th
12.1	9	9.9	-10.089244	74.610804	-4.6701412	$360^{\text {th }}$
12.1	9.1	9.9	-10.089245	74.610804	-4.6701414	361 ${ }^{\text {st }}$
12.1	9.2	9.9	-10.089245	74.610804	-4.6701417	$362^{\text {nd }}$
12.1	9.3	9.9	-10.089248	74.610804	-4.6701429	$363{ }^{\text {rd }}$
12.1	9.4	9.9	-10.08925	74.610804	-4.6701462	364 ${ }^{\text {th }}$
12.1	9.5	9.9	-10.089274	74.610805	-4.6701555	365 ${ }^{\text {th }}$
12.1	8.5	10.2	-9.28884	75.412335	-4.8033521	$344^{\text {th }}$
12.1	8.6	10.2	-9.28884	75.412335	-4.8033521	$345^{\text {th }}$
12.1	8.7	10.2	-9.28884	75.412335	-4.8033521	346 ${ }^{\text {th }}$

12.1	8.8	10.2	-9.28884	75.412335	-4.8033521	347 ${ }^{\text {th }}$
12.1	8.9	10.2	-9.28884	75.412335	-4.8033521	348 ${ }^{\text {th }}$
12.1	9	10.2	-9.2888401	75.412335	-4.8033521	349th
12.1	9.1	10.2	-9.2888403	75.412335	-4.8033522	$350^{\text {th }}$
12.1	9.2	10.2	-9.2888411	75.412335	-4.8033526	351 ${ }^{\text {st }}$
12.1	9.3	10.2	-9.2888435	75.412335	-4.8033538	$352^{\text {nd }}$
12.1	9.4	10.2	-9.2888458	75.412335	-4.8033571	$353{ }^{\text {rd }}$
12.1	9.5	10.2	-9.2888697	75.412336	-4.8033664	$354{ }^{\text {th }}$
12.2	8.5	9.5	-10.702254	74.697746	-4.6878667	388 ${ }^{\text {th }}$
12.2	8.6	9.5	-10.702254	74.697746	-4.6878667	389th
12.2	8.7	9.5	-10.702254	74.697746	-4.6878667	$390^{\text {th }}$
12.2	8.8	9.5	-10.702254	74.697746	-4.6878667	391 ${ }^{\text {st }}$
12.2	8.9	9.5	-10.702254	74.697746	-4.6878667	$392^{\text {nd }}$
12.2	9	9.5	-10.702254	74.697746	-4.6878667	393rd
12.2	9.1	9.5	-10.702254	74.697746	-4.6878668	$394{ }^{\text {th }}$
12.2	9.2	9.5	-10.702255	74.697746	-4.6878669	395 ${ }^{\text {th }}$
12.2	9.3	9.5	-10.702255	74.697746	-4.6878673	$396{ }^{\text {th }}$
12.2	9.4	9.5	-10.702256	74.697746	-4.6878684	397 ${ }^{\text {th }}$
12.2	9.5	9.5	-10.702265	74.697746	-4.6878718	398 ${ }^{\text {th }}$
12.2	8.5	9.8	-12.165694	73.234311	-4.3159275	421 ${ }^{\text {st }}$
12.2	8.6	9.8	-12.165694	73.234311	-4.3159275	$422^{\text {nd }}$
12.2	8.7	9.8	-12.165694	73.234311	-4.3159275	$423{ }^{\text {rd }}$
12.2	8.8	9.8	-12.165694	73.234311	-4.3159275	424 ${ }^{\text {th }}$
12.2	8.9	9.8	-12.165694	73.234311	-4.3159275	425 ${ }^{\text {th }}$
12.2	9	9.8	-12.165694	73.234311	-4.3159275	426 ${ }^{\text {th }}$
12.2	9.1	9.8	-12.165694	73.234311	-4.3159276	427 ${ }^{\text {th }}$
12.2	9.2	9.8	-12.165694	73.234311	-4.3159277	428 ${ }^{\text {th }}$
12.2	9.3	9.8	-12.165695	73.234311	-4.3159281	429th

12.2	9.4	9.8	-12.165696	73.234311	-4.3159292	430 ${ }^{\text {th }}$
12.2	9.5	9.8	-12.165705	73.234311	-4.3159326	431 ${ }^{\text {st }}$
12.2	8.5	9.9	-11.497034	73.902987	-4.5112641	399th
12.2	8.6	9.9	-11.497034	73.902987	-4.5112641	$400^{\text {th }}$
12.2	8.7	9.9	-11.497034	73.902987	-4.5112641	401 ${ }^{\text {st }}$
12.2	8.8	9.9	-11.497034	73.902987	-4.5112641	$402{ }^{\text {nd }}$
12.2	8.9	9.9	-11.497034	73.902987	-4.5112641	$403{ }^{\text {rd }}$
12.2	9	9.9	-11.497034	73.902987	-4.5112642	404 ${ }^{\text {th }}$
12.2	9.1	9.9	-11.497034	73.902987	-4.5112642	405 ${ }^{\text {th }}$
12.2	9.2	9.9	-11.497034	73.902987	-4.5112643	406 ${ }^{\text {th }}$
12.2	9.3	9.9	-11.497035	73.902987	-4.5112647	407 ${ }^{\text {th }}$
12.2	9.4	9.9	-11.497036	73.902987	-4.5112659	408 ${ }^{\text {th }}$
12.2	9.5	9.9	-11.497044	73.902987	-4.5112692	409th
12.2	8.5	10.2	-10.348675	75.051868	-4.6883769	$366^{\text {th }}$
12.2	8.6	10.2	-10.348675	75.051868	-4.6883769	367 ${ }^{\text {th }}$
12.2	8.7	10.2	-10.348675	75.051868	-4.6883769	$368^{\text {th }}$
12.2	8.8	10.2	-10.348675	75.051868	-4.6883769	369th
12.2	8.9	10.2	-10.348675	75.051868	-4.6883769	$370^{\text {th }}$
12.2	9	10.2	-10.348675	75.051868	-4.6883769	371 ${ }^{\text {st }}$
12.2	9.1	10.2	-10.348675	75.051868	-4.688377	$372^{\text {nd }}$
12.2	9.2	10.2	-10.348675	75.051868	-4.6883771	$373{ }^{\text {rd }}$
12.2	9.3	10.2	-10.348676	75.051868	-4.6883775	$374{ }^{\text {th }}$
12.2	9.4	10.2	-10.348677	75.051868	-4.6883786	$375^{\text {th }}$
12.2	9.5	10.2	-10.348686	75.051868	-4.688382	376 ${ }^{\text {th }}$
12.3	8.5	9.5	-11.984695	74.115305	-4.5562038	410 ${ }^{\text {th }}$
12.3	8.6	9.5	-11.984695	74.115305	-4.5562038	411 ${ }^{\text {th }}$
12.3	8.7	9.5	-11.984695	74.115305	-4.5562038	412 ${ }^{\text {th }}$
12.3	8.8	9.5	-11.984695	74.115305	-4.5562038	413 ${ }^{\text {th }}$

12.3	8.9	9.5	-11.984695	74.115305	-4.5562038	414 ${ }^{\text {th }}$
12.3	9	9.5	-11.984695	74.115305	-4.5562038	415 ${ }^{\text {th }}$
12.3	9.1	9.5	-11.984695	74.115305	-4.5562038	416 ${ }^{\text {th }}$
12.3	9.2	9.5	-11.984695	74.115305	-4.5562038	417 ${ }^{\text {th }}$
12.3	9.3	9.5	-11.984695	74.115305	-4.556204	418 ${ }^{\text {th }}$
12.3	9.4	9.5	-11.984696	74.115305	-4.5562043	419 ${ }^{\text {th }}$
12.3	9.5	9.5	-11.984699	74.115305	-4.5562055	$420^{\text {th }}$
12.3	8.5	9.8	-13.894815	72.205187	-4.0833647	$443{ }^{\text {rd }}$
12.3	8.6	9.8	-13.894815	72.205187	-4.0833647	444 ${ }^{\text {th }}$
12.3	8.7	9.8	-13.894815	72.205187	-4.0833647	445 ${ }^{\text {th }}$
12.3	8.8	9.8	-13.894815	72.205187	-4.0833647	446 ${ }^{\text {th }}$
12.3	8.9	9.8	-13.894815	72.205187	-4.0833647	447 ${ }^{\text {th }}$
12.3	9	9.8	-13.894815	72.205187	-4.0833647	448 ${ }^{\text {th }}$
12.3	9.1	9.8	-13.894815	72.205187	-4.0833647	449 ${ }^{\text {th }}$
12.3	9.2	9.8	-13.894815	72.205187	-4.0833648	$450^{\text {th }}$
12.3	9.3	9.8	-13.894815	72.205187	-4.0833649	451 ${ }^{\text {st }}$
12.3	9.4	9.8	-13.894816	72.205187	-4.0833653	$452^{\text {nd }}$
12.3	9.5	9.8	-13.894819	72.205187	-4.0833664	$453{ }^{\text {rd }}$
12.4	8.5	9.5	-13.538757	73.261243	-4.3986531	$432^{\text {nd }}$
12.4	8.6	9.5	-13.538757	73.261243	-4.3986531	$433{ }^{\text {rd }}$
12.4	8.7	9.5	-13.538757	73.261243	-4.3986531	434 ${ }^{\text {th }}$
12.4	8.8	9.5	-13.538757	73.261243	-4.3986531	435 ${ }^{\text {th }}$
12.4	8.9	9.5	-13.538757	73.261243	-4.3986531	436 ${ }^{\text {th }}$
12.4	9	9.5	-13.538757	73.261243	-4.3986531	437th
12.4	9.1	9.5	-13.538757	73.261243	-4.3986531	$438{ }^{\text {th }}$
12.4	9.2	9.5	-13.538757	73.261243	-4.3986531	439 ${ }^{\text {th }}$
12.4	9.3	9.5	-13.538757	73.261243	-4.3986531	$440^{\text {th }}$
12.4	9.4	9.5	-13.538757	73.261243	-4.3986532	$441^{\text {st }}$

12.4	9.5	9.5	-13.538758	73.261243	-4.3986536	$442^{\text {nd }}$
12.4	8.5	9.8	-15.775175	71.024826	-3.8202419	$454^{\text {th }}$
12.4	8.6	9.8	-15.775175	71.024826	-3.8202419	$455^{\text {th }}$
12.4	8.7	9.8	-15.775175	71.024826	-3.8202419	$456^{\text {th }}$

Table 3 The set of non-inferior solutions for the case of the correlation coefficient " ρ $=0.8$ ".

T^{*}	$w_{2}{ }^{*}$	$w_{1}{ }^{*}$	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.7	8.5	9.5	1.230949442	76.17091996	-6.02182623	$7^{\text {th }}$
10.7	8.6	9.5	1.226555488	76.17200414	-6.02413977	$5^{\text {th }}$
10.7	8.7	9.5	1.217075267	76.17367876	-6.02910681	$4^{\text {th }}$
10.7	8.8	9.5	1.197723954	76.17615081	-6.03920977	$1^{\text {st }}$
10.7	8.5	9.6	1.267874199	76.24499651	-6.05778164	$17^{\text {th }}$
10.7	8.6	9.6	1.263481891	76.246084	-6.06009518	$16^{\text {th }}$
10.7	8.7	9.6	1.254004891	76.24776507	-6.06506221	$14^{\text {th }}$
10.7	8.8	9.6	1.234659676	76.25024935	-6.07516517	$11^{\text {th }}$
10.7	8.9	9.6	1.197154894	76.2538005	-6.094698	$3^{\text {rd }}$
10.7	8.5	9.7	1.271954429	76.31577443	-6.12210081	$2^{\text {th }}$
10.7	8.6	9.7	1.267556836	76.31686501	-6.12441442	$19^{\text {th }}$
10.7	8.7	9.7	1.258079515	76.31855226	-6.12938146	$18^{\text {th }}$
10.7	8.8	9.7	1.2387397	76.32104823	-6.13948442	$5^{\text {th }}$
10.7	8.9	9.7	1.201237572	76.32462089	-6.15901717	$8^{\text {th }}$
10.7	9	9.7	1.13190993	76.3296444	-6.19503719	$9^{\text {th }}$
10.7	8.5	9.8	1.208286409	76.3637973	-6.22935412	$13^{\text {th }}$
10.7	8.6	9.8	1.203892726	76.36489002	-6.23166773	$12^{\text {th }}$
10.7	8.7	9.8	1.194409854	76.36658145	-6.23663476	$10^{\text {th }}$
10.7	8.8	9.8	1.175052773	76.36908536	-6.24673772	$6^{\text {th }}$
10.7	8.9	9.8	1.137531354	76.37267257	-6.26627048	$2^{\text {nd }}$

10.8	8.5	9.5	1.108601899	76.73673332	-5.7966258	$30^{\text {th }}$
10.8	8.6	9.5	1.10632648	76.73723559	-5.79781966	$31^{\text {st }}$
10.8	8.7	9.5	1.101310685	76.73803681	-5.80044141	$32^{\text {nd }}$
10.8	8.8	9.5	1.090829585	76.73926579	-5.80590335	$34^{\text {th }}$
10.8	8.9	9.5	1.070001329	76.74110303	-5.81673426	37th
10.8	8.5	9.6	1.124669575	76.78075846	-5.82364509	$22^{\text {nd }}$
10.8	8.6	9.6	1.122395253	76.78126178	-5.82483889	$24^{\text {th }}$
10.8	8.7	9.6	1.1173795	76.78206496	-5.82746063	$26^{\text {th }}$
10.8	8.8	9.6	1.106900476	76.78329777	-5.83292257	29th
10.8	8.9	9.6	1.086074164	76.78514226	-5.84375352	33rd
10.8	9	9.6	1.046561324	76.78787392	-5.86426723	41 ${ }^{\text {st }}$
10.8	8.5	9.7	1.11337402	76.8204874	-5.87277011	$21^{\text {st }}$
10.8	8.6	9.7	1.111099449	76.82099159	-5.8739639	$23^{\text {rd }}$
10.8	8.7	9.7	1.106083192	76.82179655	-5.87658565	$25^{\text {th }}$
10.8	8.8	9.7	1.095603183	76.82303283	-5.88204759	$28^{\text {th }}$
10.8	8.9	9.7	1.074775006	76.82488387	-5.89287854	27th
10.8	9	9.7	1.035258743	76.82762757	-5.91339224	$40^{\text {th }}$
10.8	9.1	9.7	0.963419752	76.83170972	-5.95062296	$44^{\text {th }}$
10.8	8.5	9.8	1.043516115	76.83758153	-5.95530745	$35^{\text {th }}$
10.8	8.6	9.8	1.041238649	76.8380861	-5.95650124	$36^{\text {th }}$
10.8	8.7	9.8	1.036221233	76.83889175	-5.95912305	$38^{\text {th }}$
10.8	8.8	9.8	1.025734457	76.84012952	-5.964585	39th
10.8	8.9	9.8	1.004892109	76.84198346	-5.97541588	$42^{\text {nd }}$
10.8	9	9.8	0.965358042	76.84473232	-5.9959296	43 rd
10.8	9.1	9.8	0.893476693	76.84882368	-6.03316031	$45^{\text {th }}$
10.9	8.5	9.5	0.780424014	77.0997294	-5.67453509	$51^{\text {st }}$
10.9	8.6	9.5	0.779286109	77.09995296	-5.67512945	$53{ }^{\text {rd }}$
10.9	8.7	9.5	0.776719818	77.10032124	-5.67646533	$55^{\text {th }}$

10.9	8.8	9.5	0.771228079	77.10090828	-5.67931743	57th
10.9	8.9	9.5	0.760033855	77.10182677	-5.68512144	$60^{\text {th }}$
10.9	8.5	9.6	0.785144762	77.12469845	-5.69415842	$46^{\text {th }}$
10.9	8.6	9.6	0.784006907	77.12492228	-5.69475277	47 ${ }^{\text {th }}$
10.9	8.7	9.6	0.78144072	77.12529111	-5.69608866	$48^{\text {th }}$
10.9	8.8	9.6	0.775949192	77.12587926	-5.69894076	49 ${ }^{\text {th }}$
10.9	8.9	9.6	0.76475538	77.12679993	-5.70474477	$58^{\text {th }}$
10.9	9	9.6	0.742942268	77.12823566	-5.71604104	$61^{\text {st }}$
10.9	8.5	9.7	0.767713309	77.14485225	-5.73028281	$50^{\text {th }}$
10.9	8.6	9.7	0.766575269	77.1450763	-5.73087717	$52^{\text {nd }}$
10.9	8.7	9.7	0.76400869	77.14544556	-5.73221306	$54^{\text {th }}$
10.9	8.8	9.7	0.758516384	77.14603461	-5.73506516	$56^{\text {th }}$
10.9	8.9	9.7	0.747321727	77.14695704	-5.74086917	59th
10.9	9	9.7	0.725505061	77.1483961	-5.75216544	$62^{\text {nd }}$
10.9	9.1	9.7	0.684722662	77.15065758	-5.77325898	$63^{\text {rd }}$
10.9	9.2	9.7	0.611369185	77.15425099	-5.81115155	$64^{\text {th }}$
10.9	9.3	9.7	0.484106884	77.16000149	-5.87678174	$65^{\text {th }}$
10.9	9.4	9.7	0.431327894	77.16919067	-5.98656075	$60^{\text {th }}$
11	8.5	9.5	0.284352303	77.29721688	-5.63349869	$70^{\text {th }}$
11	8.6	9.5	0.283802331	77.29731251	-5.63378426	$71^{\text {st }}$
11	8.7	9.5	0.282533292	77.29747529	-5.63444149	$73^{\text {rd }}$
11	8.8	9.5	0.279750224	77.29774502	-5.63588029	$74^{\text {th }}$
11	8.9	9.5	0.273927828	77.29818655	-5.63888669	$76^{\text {th }}$
11	9	9.5	0.262266581	77.2989103	-5.64490261	$83^{\text {rd }}$
11	8.5	9.6	0.283741339	77.31072343	-5.64729917	67th
11	8.6	9.6	0.283191431	77.31081914	-5.64758473	$68^{\text {th }}$
11	8.7	9.6	0.281922318	77.31098206	-5.64824197	$69^{\text {th }}$
11	8.8	9.6	0.279138967	77.31125208	-5.64968076	$72^{\text {nd }}$

11	8.9	9.6	0.273316881	77.31169422	-5.65268716	$75^{\text {th }}$
11	9	9.6	0.261655581	77.31241915	-5.65870308	$81^{\text {st }}$
11	9.1	9.6	0.239225274	77.31361887	-5.67026592	$86^{\text {th }}$
11	9.5	9.6	-0.21966457	77.33373468	-5.90588387	$84^{\text {th }}$
11	8.5	9.7	0.265827022	77.31947134	-5.67287897	77th
11	8.6	9.7	0.265277026	77.31956709	-5.67316454	$78^{\text {th }}$
11	8.7	9.7	0.264007723	77.31973011	-5.67382177	79 ${ }^{\text {th }}$
11	8.8	9.7	0.261223976	77.32000032	-5.67526057	$80^{\text {th }}$
11	8.9	9.7	0.255401091	77.32044285	-5.67826697	$82^{\text {nd }}$
11	9	9.7	0.243738228	77.32116855	-5.68428288	$85^{\text {th }}$
11	9.1	9.7	0.221304956	77.3223697	-5.69584573	87 ${ }^{\text {th }}$
11	9.2	9.7	0.179754655	77.3243765	-5.71724646	88 ${ }^{\text {th }}$
11	9.3	9.7	0.105481281	77.32773879	-5.75546327	89 ${ }^{\text {th }}$
11	9.4	9.7	0.068154741	77.33333592	-5.82140699	$90^{\text {th }}$
11	9.5	9.7	-0.23764436	77.34251456	-5.93146367	$91^{\text {st }}$
11.1	8.5	9.5	-0.34211137	77.36618881	-5.65350337	$92^{\text {nd }}$
11.1	8.6	9.5	-0.34236815	77.36622817	-5.6536358	93rd
11.1	8.7	9.5	-0.34297464	77.36629744	-5.65394808	$94^{\text {th }}$
11.1	8.8	9.5	-0.34433864	77.36641682	-5.65464945	$98^{\text {th }}$
11.1	8.9	9.5	-0.34726916	77.36662125	-5.65615506	$100^{\text {th }}$
11.1	9	9.5	-0.35330479	77.36697322	-5.65925408	$102{ }^{\text {nd }}$
11.1	8.5	9.6	-0.34541566	77.37236087	-5.66262015	$95^{\text {th }}$
11.1	8.6	9.6	-0.34567252	77.37240025	-5.66275259	$96^{\text {th }}$
11.1	8.7	9.6	-0.3462793	77.37246955	-5.66306486	97th
11.1	8.8	9.6	-0.3476432	77.37258899	-5.66376623	99th
11.1	8.9	9.6	-0.35057359	77.37279356	-5.66527184	101 ${ }^{\text {st }}$
11.1	9	9.6	-0.35660978	77.37314581	-5.66837087	$103{ }^{\text {rd }}$
11.1	9.1	9.6	-0.36856115	77.37375844	-5.67450443	$110^{\text {th }}$

11.1	9.5	9.6	-0.63746915	77.38547402	-5.8121809	$115^{\text {th }}$
11.1	8.5	9.7	-0.35949212	77.37650345	-5.68051624	$104^{\text {th }}$
11.1	8.6	9.7	-0.35974901	77.37654284	-5.68064868	$105^{\text {th }}$
11.1	8.7	9.7	-0.36035585	77.37661216	-5.68096095	$106^{\text {th }}$
11.1	8.8	9.7	-0.36171991	77.37673164	-5.68166233	$107^{\text {th }}$
11.1	8.9	9.7	-0.3646506	77.3769363	-5.68316793	$108^{\text {th }}$
11.1	9	9.7	-0.37068742	77.37728873	-5.68626696	$109^{\text {th }}$
11.1	9.1	9.7	-0.38264002	77.37790173	-5.69240052	$111^{\text {th }}$
11.1	9.2	9.7	-0.40544969	77.37897535	-5.70410022	$112^{\text {th }}$
11.1	9.3	9.7	-0.44748214	77.38085335	-5.72564679	$113^{\text {th }}$
11.1	9.4	9.7	-0.47258661	77.38410351	-5.76400598	$114^{\text {th }}$
11.1	9.5	9.7	-0.65157505	77.38962532	-5.83007699	$116^{\text {th }}$

Table 4 The set of non-inferior solutions for the case of the correlation coefficient " ρ = 0.75".

T^{*}	$w_{2}{ }^{*}$	$w_{1}{ }^{*}$	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.7	8.5	9.5	1.1071554	76.028135	-6.051098	$11^{\text {th }}$
10.7	8.6	9.5	1.1022219	76.029366	-6.055172	$8^{\text {th }}$
10.7	8.7	9.5	1.0920356	76.031367	-6.0632092	$6^{\text {th }}$
10.7	8.8	9.5	1.0717027	76.034413	-6.0784165	$3^{\text {rd }}$
10.7	8.5	9.6	1.109258	76.052306	-6.1022086	$15^{\text {th }}$
10.7	8.6	9.6	1.1043246	76.053539	-6.1062827	$13^{\text {th }}$
10.7	8.7	9.6	1.0941386	76.055543	-6.11432	$10^{\text {th }}$
10.7	8.8	9.6	1.0738062	76.058594	-6.1295272	$4^{\text {th }}$
10.7	8.9	9.6	1.0348045	76.062994	-6.1571775	$1^{\text {st }}$
10.7	8.5	9.7	1.0782618	76.067246	-6.1852364	$9^{\text {th }}$
10.7	8.6	9.7	1.0733262	76.06848	-6.1893104	$7^{\text {th }}$
10.7	8.7	9.7	1.0631362	76.070486	-6.1973476	$5^{\text {th }}$

10.7	8.8	9.7	1.0427966	76.073541	-6.2125549	$2^{\text {nd }}$
10.8	8.5	9.5	1.0185319	76.632407	-5.8181961	$12^{\text {th }}$
10.8	8.6	9.5	1.015919	76.632996	-5.820368	$14^{\text {th }}$
10.8	8.7	9.5	1.0104109	76.633984	-5.8247533	$17^{\text {th }}$
10.8	8.8	9.5	0.9991862	76.635549	-5.8332552	$20^{\text {th }}$
10.8	8.9	9.5	0.9771867	76.637914	-5.8491101	$22^{\text {nd }}$
10.8	9	9.5	0.9358071	76.641383	-5.8776042	$24^{\text {th }}$
10.8	9.1	9.5	0.8610864	76.646427	-5.9270334	$26^{\text {th }}$
10.8	9.2	9.5	0.7313016	76.653802	-6.0099162	$28^{\text {th }}$
10.8	8.5	9.6	1.0045626	76.634794	-5.8571808	$16^{\text {th }}$
10.8	8.6	9.6	1.0019493	76.635382	-5.8593526	$18^{\text {th }}$
10.8	8.7	9.6	0.9964404	76.636371	-5.863738	$19^{\text {th }}$
10.8	8.8	9.6	0.9852141	76.637936	-5.8722399	$21^{\text {st }}$
10.8	8.9	9.6	0.9632114	76.640301	-5.8880948	$23^{\text {rd }}$
10.8	9	9.6	0.9218258	76.643772	-5.9165888	$25^{\text {th }}$
10.8	9.1	9.6	0.8470948	76.648817	-5.9660181	$27^{\text {th }}$
10.9	8.5	9.5	0.7173857	77.026437	-5.6899576	$29^{\text {th }}$
10.9	8.6	9.5	0.7160451	77.026708	-5.691077	$30^{\text {th }}$
10.9	8.7	9.5	0.7131587	77.027179	-5.6933919	$31^{\text {st }}$
10.9	8.8	9.5	0.7071503	77.027955	-5.6979928	$32^{\text {nd }}$
10.9	8.9	9.5	0.6951109	77.029182	-5.7067978	$33^{\text {rd }}$
10.9	9	9.5	0.6719271	77.031082	-5.7230514	$34^{\text {th }}$
10.9	9.1	9.5	0.629005	77.034006	-5.7520352	$35^{\text {th }}$
10.9	9.2	9.5	0.5524685	77.038527	-5.8020267	$36^{\text {th }}$
10.9	9.3	9.5	0.4207195	77.045564	-5.8855124	$37^{\text {th }}$
10.9	9.4	9.5	0.3469729	77.056515	-6.0206081	$38^{\text {th }}$
11	8.5	9.5	0.2415957	77.247382	-5.6441549	$39^{\text {th }}$
11	8.6	9.5	0.2409295	77.247503	-5.644713	$40^{\text {th }}$

11	8.7	9.5	0.2394637	77.247719	-5.6458955	$41^{\text {st }}$
11	8.8	9.5	0.2363453	77.24809	-5.6483063	$42^{\text {nd }}$
11	8.9	9.5	0.2299529	77.248705	-5.6530434	$43^{\text {rd }}$
11	9	9.5	0.2173433	77.249707	-5.6620291	$44^{\text {th }}$
11	9.1	9.5	0.193394	77.251331	-5.6785069	$45^{\text {th }}$
11	9.2	9.5	0.1495293	77.253973	-5.7077504	$46^{\text {th }}$
11	9.3	9.5	0.0719007	77.258274	-5.758023	$47^{\text {th }}$
11	9.4	9.5	0.0204495	77.265232	-5.8417931	$48^{\text {th }}$
11	9.5	9.5	-0.2819797	77.276332	-5.9771575	$49^{\text {th }}$
11.1	8.5	9.5	-0.3700862	77.33352	-5.6606208	$50^{\text {th }}$
11.1	8.6	9.5	-0.3704068	77.333572	-5.66089	$51^{\text {st }}$
11.1	8.7	9.5	-0.3711281	77.333668	-5.6614747	52 rd
11.1	8.8	9.5	-0.3726973	77.33384	-5.6626982	$53^{\text {rd }}$
11.1	8.9	9.5	-0.3759902	77.334138	-5.6651677	$54^{\text {th }}$
11.1	9	9.5	-0.382648	77.334647	-5.6699834	$55^{\text {th }}$
11.1	9.1	9.5	-0.3956263	77.335515	-5.6790676	$56^{\text {th }}$
11.1	9.2	9.5	-0.4200522	77.336992	-5.6956605	$57^{\text {th }}$
11.1	9.3	9.5	-0.4645101	77.339499	-5.7250298	$58^{\text {th }}$
11.1	9.4	9.5	-0.4988194	77.343706	-5.7754308	$59^{\text {th }}$
11.1	9.5	9.5	-0.6768416	77.350642	-5.8593235	$60^{\text {th }}$

Tables from 5 to 14 give the set non-inferior solutions for each case of change in the penalty cost parameters.

Table 5 The set of non-inferior solutions for the case of the penalty cost parameters "+10\%".

T^{*}	$w_{2}{ }^{*}$	$w_{1}{ }^{*}$	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.7	8.5	9.5	1.167674	76.085324	-6.0891388	$19^{\text {th }}$

10.7	8.6	9.5	1.165607	76.08647	-6.0902013	$20^{\text {th }}$
10.7	8.7	9.5	1.160432	76.088303	-6.0928703	$21^{\text {st }}$
10.7	8.8	9.5	1.1485352	76.091024	-6.0990186	$23^{\text {rd }}$
10.7	8.5	9.6	1.2441908	76.183908	-6.1020634	$1^{\text {st }}$
10.7	8.6	9.6	1.2421261	76.185057	-6.1031259	$2^{\text {nd }}$
10.7	8.7	9.6	1.2369556	76.186896	-6.1057949	$4^{\text {th }}$
10.7	8.8	9.6	1.2250677	76.189629	-6.1119432	$6^{\text {th }}$
10.7	8.9	9.6	1.1997591	76.193441	-6.125046	$10^{\text {th }}$
10.7	8.5	9.7	1.3145403	76.300192	-6.1376722	$18^{\text {th }}$
10.7	8.6	9.7	1.3124776	76.301344	-6.1387346	$17^{\text {th }}$
10.7	8.7	9.7	1.3073113	76.30319	-6.1414037	$15^{\text {th }}$
10.7	8.8	9.7	1.2954316	76.305937	-6.147552	$14^{\text {th }}$
10.7	8.9	9.7	1.2701386	76.309775	-6.1606547	9th
10.7	9	9.7	1.2198495	76.314908	-6.1867107	$3^{\text {rd }}$
10.7	8.5	9.8	1.3313862	76.403801	-6.2107731	$26^{\text {th }}$
10.7	8.6	9.8	1.329324	76.404957	-6.2118356	$25^{\text {th }}$
10.7	8.7	9.8	1.3241599	76.406809	-6.2145046	$24^{\text {th }}$
10.7	8.8	9.8	1.312283	76.409567	-6.2206529	$22^{\text {nd }}$
10.7	8.9	9.8	1.2869889	76.413428	-6.2337557	$16^{\text {th }}$
10.7	9	9.8	1.2367107	76.418604	-6.2598117	$7^{\text {th }}$
10.7	8.5	9.9	1.2393065	76.461143	-6.3429328	$13^{\text {th }}$
10.7	8.6	9.9	1.2372417	76.4623	-6.3439953	$12^{\text {th }}$
10.7	8.7	9.9	1.2320654	76.464155	-6.3466644	$11^{\text {th }}$
10.7	8.8	9.9	1.2201777	76.466921	-6.3528126	$8^{\text {th }}$
10.7	8.9	9.9	1.19487	76.470794	-6.3659153	$5^{\text {th }}$
10.8	8.5	9.5	1.0670762	76.679228	-5.8420285	$50^{\text {th }}$
10.8	8.6	9.5	1.0660305	76.679746	-5.8425658	$51^{\text {st }}$
10.8	8.7	9.5	1.0633639	76.680597	-5.8439408	$54^{\text {th }}$

10.8	8.8	9.5	1.057105	76.681901	-5.8471743	$5^{\text {th }}$
10.8	8.5	9.6	1.1060252	76.734532	-5.851013	$39^{\text {th }}$
10.8	8.6	9.6	1.1049801	76.735052	-5.8515505	$40^{\text {th }}$
10.8	8.7	9.6	1.1023148	76.735904	-5.8529254	$41^{\text {st }}$
10.8	8.8	9.6	1.0960585	76.737211	-5.8561589	$45^{\text {th }}$
10.8	8.9	9.6	1.0824275	76.739104	-5.8632116	$47^{\text {th }}$
10.8	9	9.6	1.0546331	76.741753	-5.8775991	$53^{\text {rd }}$
10.8	8.5	9.7	1.1468508	76.809945	-5.879309	$31^{\text {st }}$
10.8	8.6	9.7	1.1458063	76.810465	-5.8798465	$32^{\text {nd }}$
10.8	8.7	9.7	1.1431416	76.81132	-5.8812213	$33^{\text {rd }}$
10.8	8.8	9.7	1.1368875	76.812632	-5.8844549	$34^{\text {th }}$
10.8	8.9	9.7	1.1232614	76.814533	-5.8915076	$36^{\text {th }}$
10.8	9	9.7	1.095476	76.817198	-5.905895	$38^{\text {th }}$
10.8	9.1	9.7	1.0420236	76.82092	-5.9335693	$52^{\text {nd }}$
10.8	8.5	9.8	1.1436881	76.873235	-5.9366163	$27^{\text {th }}$
10.8	8.6	9.8	1.1426436	76.873756	-5.9371537	$28^{\text {th }}$
10.8	8.7	9.8	1.1399801	76.874613	-5.9385286	$29^{\text {th }}$
10.8	8.8	9.8	1.1337239	76.875928	-5.9417621	$30^{\text {th }}$
10.8	8.9	9.8	1.1200946	76.877837	-5.9488148	$35^{\text {th }}$
10.8	9	9.8	1.0923099	76.880516	-5.9632023	$37^{\text {th }}$
10.8	9.1	9.8	1.0388555	76.884264	-5.9908766	$49^{\text {th }}$
10.8	8.5	9.9	1.0533959	76.899523	-6.0409017	$42^{\text {nd }}$
10.8	8.6	9.9	1.0523502	76.900044	-6.0414391	$43^{\text {rd }}$
10.8	8.7	9.9	1.049684	76.900902	-6.042814	$44^{\text {th }}$
10.8	8.8	9.9	1.0434224	76.902218	-6.0460476	$46^{\text {th }}$
10.8	8.9	9.9	1.0297826	76.90413	-6.0531002	$48^{\text {th }}$
10.8	9	9.9	1.0019779	76.906816	-6.0674877	$55^{\text {th }}$
10.8	9.1	9.9	0.9484866	76.910574	-6.095162	$57^{\text {th }}$
1						

10.8	9.2	9.9	0.850687	76.91596	-6.1457182	$58^{\text {th }}$
10.9	8.5	9.5	0.7546087	77.062797	-5.7041598	$76^{\text {th }}$
10.9	8.6	9.5	0.7540983	77.063022	-5.7044214	$77^{\text {th }}$
10.9	8.7	9.5	0.7527724	77.063401	-5.7051033	$78^{\text {th }}$
10.9	8.8	9.5	0.7495933	77.063999	-5.7067419	79th
10.9	8.5	9.6	0.764268	77.084114	-5.7084573	$71^{\text {st }}$
10.9	8.6	9.6	0.7637578	77.084339	-5.7087189	$72^{\text {nd }}$
10.9	8.7	9.6	0.7624318	77.084718	-5.7094008	$73^{\text {rd }}$
10.9	8.8	9.6	0.7592527	77.085317	-5.7110394	$74^{\text {th }}$
10.9	8.9	9.6	0.7521616	77.086218	-5.7146996	$75^{\text {th }}$
10.9	9	9.6	0.7373222	77.087539	-5.7223642	$82^{\text {nd }}$
10.9	8.5	9.7	0.7894327	77.134331	-5.7306305	59 ${ }^{\text {th }}$
10.9	8.6	9.7	0.7889227	77.134557	-5.7308921	$61^{\text {st }}$
10.9	8.7	9.7	0.7875971	77.134937	-5.731574	$63^{\text {rd }}$
10.9	8.8	9.7	0.7844187	77.135538	-5.7332126	$65^{\text {th }}$
10.9	8.9	9.7	0.7773291	77.136441	-5.7368728	67th
10.9	9	9.7	0.7624926	77.137768	-5.7445374	$69^{\text {th }}$
10.9	9.1	9.7	0.7331403	77.139727	-5.7597033	$80^{\text {th }}$
10.9	8.5	9.8	0.7784104	77.17229	-5.7741371	$60^{\text {th }}$
10.9	8.6	9.8	0.7779003	77.172515	-5.7743987	$62^{\text {nd }}$
10.9	8.7	9.8	0.7765746	77.172896	-5.7750806	$64^{\text {th }}$
10.9	8.8	9.8	0.7733965	77.173498	-5.7767192	$66^{\text {th }}$
10.9	8.9	9.8	0.7663056	77.174404	-5.7803794	$68^{\text {th }}$
10.9	9	9.8	0.7514679	77.175735	-5.788044	$70^{\text {th }}$
10.9	9.1	9.8	0.7221131	77.177702	-5.8032099	$81^{\text {st }}$
10.9	9.2	9.8	0.6668301	77.180692	-5.8317622	89 ${ }^{\text {th }}$
10.9	9.4	9.8	0.5397014	77.192956	-5.9722205	$92^{\text {nd }}$
10.9	8.5	9.9	0.6994715	77.180925	-5.8534683	83 rd

10.9	8.6	9.9	0.6989609	77.18115	-5.8537299	$84^{\text {th }}$
10.9	8.7	9.9	0.6976347	77.181531	-5.8544118	85 ${ }^{\text {th }}$
10.9	8.8	9.9	0.6944504	77.182133	-5.8560504	86 ${ }^{\text {th }}$
10.9	8.9	9.9	0.6873575	77.18304	-5.8597106	87 ${ }^{\text {th }}$
10.9	9	9.9	0.6725078	77.184372	-5.8673753	88 ${ }^{\text {th }}$
10.9	9.1	9.9	0.6431376	77.186341	-5.8825412	$90^{\text {th }}$
10.9	9.2	9.9	0.5878236	77.189335	-5.9110934	$91^{\text {st }}$
10.9	9.3	9.9	0.4880799	77.194044	-5.9625277	$93{ }^{\text {rd }}$
10.9	9.4	9.9	0.4605368	77.201616	-6.0515517	94 ${ }^{\text {th }}$
11	8.5	9.5	0.2692018	77.27457	-5.6522094	105 ${ }^{\text {th }}$
11	8.6	9.5	0.2689618	77.274664	-5.6523319	$106{ }^{\text {th }}$
11	8.7	9.5	0.2683258	77.274826	-5.6526577	107 ${ }^{\text {th }}$
11	8.8	9.5	0.2667673	77.27509	-5.6534579	$108^{\text {th }}$
11	8.9	9.5	0.2632051	77.275501	-5.6552897	$110^{\text {th }}$
11	9	9.5	0.25555	77.276133	-5.6592298	$112^{\text {th }}$
11	9.1	9.5	0.2399659	77.277117	-5.667254	119 ${ }^{\text {th }}$
11	8.5	9.6	0.2516808	77.26504	-5.6506402	$113^{\text {th }}$
11	8.6	9.6	0.2514406	77.265134	-5.6507627	$114^{\text {th }}$
11	8.7	9.6	0.2508049	77.265296	-5.6510884	$116^{\text {th }}$
11	8.8	9.6	0.2492461	77.265559	-5.6518886	$118^{\text {th }}$
11	8.5	9.7	0.2721968	77.303015	-5.6684584	95 ${ }^{\text {th }}$
11	8.6	9.7	0.2719568	77.303109	-5.6685809	$96{ }^{\text {th }}$
11	8.7	9.7	0.2713205	77.303271	-5.6689066	97 ${ }^{\text {th }}$
11	8.8	9.7	0.2697626	77.303535	-5.6697068	$100^{\text {th }}$
11	8.9	9.7	0.2662003	77.303948	-5.6715387	$103{ }^{\text {rd }}$
11	9	9.7	0.2585456	77.304581	-5.6754787	109 ${ }^{\text {th }}$
11	9.1	9.7	0.2429617	77.305568	-5.6835029	$115^{\text {th }}$
11	9.2	9.7	0.2127119	77.307155	-5.6990783	$120^{\text {th }}$

11	8.5	9.8	0.2627025	77.328269	-5.7008994	98 ${ }^{\text {th }}$
11	8.6	9.8	0.2624624	77.328362	-5.7010219	99th
11	8.7	9.8	0.261826	77.328525	-5.7013477	$101^{\text {st }}$
11	8.8	9.8	0.2602674	77.328789	-5.7021479	$102{ }^{\text {nd }}$
11	8.9	9.8	0.2567055	77.329202	-5.7039797	$104^{\text {th }}$
11	9	9.8	0.2490495	77.329838	-5.7079198	$111^{\text {th }}$
11	9.1	9.8	0.2334652	77.330828	-5.715944	$117^{\text {th }}$
11	9.2	9.8	0.2032133	77.332419	-5.7315194	$121^{\text {st }}$
11	9.3	9.8	0.1469282	77.335059	-5.7604851	$122^{\text {nd }}$
11	9.4	9.8	0.1275971	77.339504	-5.8122896	$123{ }^{\text {rd }}$
11	9.5	9.8	-0.1279232	77.346963	-5.9016076	$125^{\text {th }}$
11	9.4	9.9	0.0649066	77.340261	-5.8707431	$124^{\text {th }}$
11	9.5	9.9	-0.1906917	77.34772	-5.9600611	$126^{\text {th }}$
11.1	8.5	9.5	-0.3512255	77.352185	-5.6646713	$133{ }^{\text {rd }}$
11.1	8.6	9.5	-0.3513344	77.352222	-5.6647265	135 ${ }^{\text {th }}$
11.1	8.7	9.5	-0.3516286	77.352289	-5.6648764	$136{ }^{\text {th }}$
11.1	8.8	9.5	-0.3523656	77.3524	-5.6652531	137 th
11.1	8.9	9.5	-0.3540931	77.352581	-5.6661373	$138^{\text {th }}$
11.1	9	9.5	-0.357908	77.352872	-5.6680921	139th
11.1	9.1	9.5	-0.3659043	77.353349	-5.6721916	$140^{\text {th }}$
11.1	8.5	9.6	-0.399686	77.308993	-5.6555623	$144^{\text {th }}$
11.1	8.6	9.6	-0.399795	77.309031	-5.6556175	$145^{\text {th }}$
11.1	8.7	9.6	-0.4000892	77.309097	-5.6557674	$146{ }^{\text {th }}$
11.1	8.8	9.6	-0.4008266	77.309209	-5.6561441	$147^{\text {th }}$
11.1	8.9	9.6	-0.4025548	77.309389	-5.6570283	$148^{\text {th }}$
11.1	9	9.6	-0.406371	77.309678	-5.6589831	149 ${ }^{\text {th }}$
11.1	9.1	9.6	-0.4143703	77.310153	-5.6630826	$150^{\text {th }}$
11.1	8.5	9.7	-0.3422292	77.378157	-5.6791091	127th

11.1	8.6	9.7	-0.342338	77.378194	-5.6791643	$128^{\text {th }}$
11.1	8.7	9.7	-0.3426319	77.378261	-5.6793142	$129^{\text {th }}$
11.1	8.8	9.7	-0.3433692	77.378373	-5.6796909	$130^{\text {th }}$
11.1	8.9	9.7	-0.3450967	77.378554	-5.6805752	$131^{\text {st }}$
11.1	9	9.7	-0.3489114	77.378846	-5.6825299	$132^{\text {nd }}$
11.1	9.1	9.7	-0.356907	77.379324	-5.6866294	$134^{\text {th }}$
11.1	9.2	9.7	-0.3729124	77.380137	-5.6948369	141 th
11.1	9.3	9.7	-0.4036562	77.381552	-5.7105993	$142^{\text {nd }}$
11.1	9.4	9.7	-0.4164843	77.384043	-5.7397341	$143^{\text {rd }}$
11.1	9.5	9.7	-0.5619847	77.388387	-5.7916741	$151^{\text {st }}$

Table 6 The set of non-inferior solutions for the case of the penalty cost parameters "+15\%".

T^{*}	$w_{2}{ }^{*}$	$w_{1}{ }^{*}$	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.7	8.5	9.5	1.12376985	76.0414194	-6.13304184	$19^{\text {th }}$
10.7	8.5	9.6	1.20406172	76.1437788	-6.14219151	$2^{\text {nd }}$
10.7	8.6	9.6	1.20204189	76.144973	-6.14320793	$3^{\text {rd }}$
10.7	8.7	9.6	1.19693997	76.1468803	-6.145806	$4^{\text {th }}$
10.7	8.8	9.6	1.18514685	76.149708	-6.15185494	$6^{\text {th }}$
10.7	8.9	9.6	1.15995527	76.1536372	-6.16483179	$10^{\text {th }}$
10.7	8.5	9.7	1.27919806	76.2648496	-6.17301354	$17^{\text {th }}$
10.7	8.6	9.7	1.27718041	76.2660472	-6.17402996	$16^{\text {th }}$
10.7	8.7	9.7	1.27208293	76.2679617	-6.17662802	$15^{\text {th }}$
10.7	8.8	9.7	1.26029858	76.2708035	-6.18267696	$13^{\text {th }}$
10.7	8.9	9.7	1.23512368	76.2747596	-6.19565382	$8^{\text {th }}$
10.7	9	9.7	1.18496422	76.280023	-6.22156596	$1^{\text {st }}$
10.7	8.5	9.8	1.30164819	76.3740635	-6.24051036	$23^{\text {rd }}$
10.7	8.6	9.8	1.29963119	76.3752643	-6.24152677	$2^{\text {nd }}$

10.7	8.7	9.8	1.29453639	76.3771853	-6.24412484	$21^{\text {st }}$
10.7	8.8	9.8	1.28275534	76.3800398	-6.25017378	$20^{\text {th }}$
10.7	8.9	9.8	1.2575807	76.3840202	-6.26315064	$18^{\text {th }}$
10.7	9	9.8	1.2074344	76.3893281	-6.28906286	$7^{\text {th }}$
10.7	8.5	9.9	1.2155875	76.437424	-6.36665122	$14^{\text {th }}$
10.7	8.6	9.9	1.21356801	76.4386267	-6.36766764	$12^{\text {th }}$
10.7	8.7	9.9	1.20846129	76.4405513	-6.37026579	$11^{\text {th }}$
10.7	8.8	9.9	1.19667027	76.4434133	-6.37631465	$9^{\text {th }}$
10.7	8.9	9.9	1.17148327	76.4474078	-6.3892915	$5^{\text {th }}$
10.8	8.5	9.5	1.03692579	76.6490774	-5.8721785	$48^{\text {th }}$
10.8	8.6	9.5	1.03590001	76.6496158	-5.87269555	49 ${ }^{\text {th }}$
10.8	8.7	9.5	1.03326444	76.650498	-5.87403862	$50^{\text {th }}$
10.8	8.8	9.5	1.02704907	76.651845	-5.87722687	51 ${ }^{\text {st }}$
10.8	8.5	9.6	1.07830483	76.7068121	-5.87873314	$38^{\text {th }}$
10.8	8.6	9.6	1.07727967	76.7073512	-5.87925028	$40^{\text {th }}$
10.8	8.7	9.6	1.07464543	76.708235	-5.88059334	$41^{\text {st }}$
10.8	8.8	9.6	1.06843272	76.7095855	-5.88378151	$43^{\text {rd }}$
10.8	8.9	9.6	1.05485683	76.7115331	-5.89077593	$45^{\text {th }}$
10.8	8.5	9.7	1.12227948	76.7853738	-5.90388012	$28^{\text {th }}$
10.8	8.6	9.7	1.12125492	76.7859139	-5.90439725	29th
10.8	8.7	9.7	1.11862137	76.7868001	-5.90574023	$30^{\text {th }}$
10.8	8.8	9.7	1.11241119	76.7881552	-5.90892849	$32^{\text {nd }}$
10.8	8.9	9.7	1.09884042	76.7901119	-5.9159229	$33^{\text {rd }}$
10.8	9	9.7	1.07111718	76.7928396	-5.93024289	35th
10.8	8.5	9.8	1.12287753	76.8524244	-5.95742664	$24^{\text {th }}$
10.8	8.6	9.8	1.12185306	76.8529656	-5.95794369	$25^{\text {th }}$
10.8	8.7	9.8	1.1192208	76.8538537	-5.95928675	$26^{\text {th }}$
10.8	8.8	9.8	1.1130087	76.8552128	-5.96247493	27th

10.8	8.9	9.8	1.0994353	76.8571773	-5.96946934	$31^{\text {st }}$
10.8	9	9.8	1.07171352	76.8599199	-5.98378935	$34^{\text {th }}$
10.8	9.1	9.8	1.01832102	76.8637292	-6.01139341	$46^{\text {th }}$
10.8	8.5	9.9	1.03669864	76.8828256	-6.05759878	$36^{\text {th }}$
10.8	8.6	9.9	1.03567299	76.8833672	-6.05811583	37th
10.8	8.7	9.9	1.03303822	76.8842561	-6.05945889	39th
10.8	8.8	9.9	1.02682095	76.885617	-6.06264715	$42^{\text {nd }}$
10.8	8.9	9.9	1.0132375	76.8875851	-6.06964156	$44^{\text {th }}$
10.8	9	9.9	0.98549663	76.8903344	-6.08396151	47th
10.8	9.1	9.9	0.93206886	76.8941562	-6.11156557	52th
10.8	9.2	9.9	0.83432301	76.8995956	-6.16205625	$53^{\text {rd }}$
10.9	8.5	9.5	0.73460754	77.0427956	-5.72416086	$71^{\text {st }}$
10.9	8.6	9.5	0.7341057	77.0430291	-5.72441379	$72^{\text {nd }}$
10.9	8.7	9.5	0.73279322	77.0434217	-5.72508198	73 rd
10.9	8.8	9.5	0.72963339	77.0440396	-5.7267007	$75^{\text {th }}$
10.9	8.5	9.6	0.74577404	77.0656197	-5.72695116	$66^{\text {th }}$
10.9	8.6	9.6	0.74527235	77.0658534	-5.72720408	67th
10.9	8.7	9.6	0.74395988	77.0662463	-5.72787227	$68^{\text {th }}$
10.9	8.8	9.6	0.7408001	77.0668649	-5.729491	69th
10.9	8.9	9.6	0.73373382	77.0677905	-5.73312524	$70^{\text {th }}$
10.9	9	9.6	0.71892275	77.0691399	-5.74075946	77th
10.9	8.5	9.7	0.77293391	77.1178325	-5.74712925	$56^{\text {th }}$
10.9	8.6	9.7	0.77243239	77.1180664	-5.74738217	$58^{\text {th }}$
10.9	8.7	9.7	0.7711203	77.1184601	-5.74805036	59th
10.9	8.8	9.7	0.76796131	77.1190802	-5.74966908	$61^{\text {st }}$
10.9	8.9	9.7	0.76089663	77.1200089	-5.75330333	$63^{\text {rd }}$
10.9	9	9.7	0.74608874	77.1213644	-5.76093754	$65^{\text {th }}$
10.9	9.1	9.7	0.7167649	77.1233515	-5.77607135	$76^{\text {th }}$

10.9	8.5	9.8	0.76434094	77.15822	-5.78820655	$54^{\text {th }}$
10.9	8.6	9.8	0.76383937	77.1584542	-5.78845947	$55^{\text {th }}$
10.9	8.7	9.8	0.76252716	77.1588484	-5.78912766	57th
10.9	8.8	9.8	0.75936859	77.1594697	-5.79074638	$60^{\text {th }}$
10.9	8.9	9.8	0.75230273	77.1604008	-5.79438063	$62^{\text {nd }}$
10.9	9	9.8	0.73749383	77.161761	-5.80201484	$64^{\text {th }}$
10.9	9.1	9.8	0.7081681	77.163757	-5.81714864	$74^{\text {th }}$
10.9	9.2	9.8	0.65290977	77.166772	-5.84567057	$84^{\text {th }}$
10.9	9.4	9.8	0.52579857	77.179053	-5.98608387	87th
10.9	8.5	9.9	0.68810671	77.1695599	-5.86483312	$78^{\text {th }}$
10.9	8.6	9.9	0.68760465	77.1697942	-5.86508605	79th
10.9	8.7	9.9	0.68629207	77.1701886	-5.86575424	$80^{\text {th }}$
10.9	8.8	9.9	0.68312724	77.1708102	-5.86737296	81th
10.9	8.9	9.9	0.67605957	77.171742	-5.8710072	82 ${ }^{\text {nd }}$
10.9	9	9.9	0.66123907	77.1731035	-5.87864142	$83{ }^{\text {rd }}$
10.9	9.1	9.9	0.63189843	77.175102	-5.89377523	85 ${ }^{\text {th }}$
10.9	9.2	9.9	0.57661026	77.1781216	-5.92229715	86 ${ }^{\text {th }}$
10.9	9.3	9.9	0.47688401	77.1828485	-5.97370575	88 ${ }^{\text {th }}$
10.9	9.4	9.9	0.44934633	77.1904251	-6.06271045	89 ${ }^{\text {th }}$
11	8.5	9.5	0.25639638	77.2617645	-5.66501485	$100^{\text {th }}$
11	8.6	9.5	0.25615981	77.2618617	-5.66513382	$101{ }^{\text {st }}$
11	8.7	9.5	0.25552945	77.2620294	-5.66545386	$102{ }^{\text {nd }}$
11	8.8	9.5	0.25397915	77.2623014	-5.66624571	$103{ }^{\text {rd }}$
11	8.9	9.5	0.25042774	77.2627237	-5.66806645	106 ${ }^{\text {th }}$
11	9	9.5	0.24278503	77.2633682	-5.67199332	107th
11	8.5	9.6	0.23977599	77.2531353	-5.6625449	$110^{\text {th }}$
11	8.6	9.6	0.23953937	77.2532325	-5.66266388	111 ${ }^{\text {th }}$
11	8.7	9.6	0.23890925	77.2534002	-5.66298392	$112^{\text {th }}$

11	8.8	9.6	0.23735865	77.2536721	-5.66377577	$113{ }^{\text {th }}$
11	8.5	9.7	0.26150921	77.2923274	-5.67914598	$90^{\text {th }}$
11	8.6	9.7	0.26127264	77.2924247	-5.67926496	91 ${ }^{\text {st }}$
11	8.7	9.7	0.26064199	77.2925926	-5.67958499	$94^{\text {th }}$
11	8.8	9.7	0.25909236	77.2928651	-5.68037684	$96^{\text {th }}$
11	8.9	9.7	0.25554083	77.2932882	-5.68219758	98 ${ }^{\text {th }}$
11	9	9.7	0.24789863	77.2939345	-5.68612445	$104{ }^{\text {th }}$
11	9.1	9.7	0.23232763	77.2949343	-5.69413454	$108^{\text {th }}$
11	9.2	9.7	0.20208901	77.2965317	-5.70969642	$114^{\text {th }}$
11	8.5	9.8	0.25352522	77.3190913	-5.7100767	$92^{\text {nd }}$
11	8.6	9.8	0.25328864	77.3191886	-5.71019568	$93^{\text {rd }}$
11	8.7	9.8	0.25265792	77.3193567	-5.71051572	95 ${ }^{\text {th }}$
11	8.8	9.8	0.25110751	77.3196295	-5.71130757	97th
11	8.9	9.8	0.24755642	77.3200534	-5.7131283	99th
11	9	9.8	0.23991307	77.3207013	-5.71705518	$105^{\text {th }}$
11	9.1	9.8	0.22434183	77.3217043	-5.72506526	$109^{\text {th }}$
11	9.2	9.8	0.19410143	77.3233076	-5.74062714	$115^{\text {th }}$
11	9.3	9.8	0.13782408	77.3259551	-5.76958136	117 ${ }^{\text {th }}$
11	9.4	9.8	0.11849527	77.330402	-5.82137702	$118^{\text {th }}$
11	9.5	9.8	-0.13703047	77.3378556	-5.91068903	$120^{\text {th }}$
11	9.1	9.9	0.16344924	77.3241714	-5.7818077	$116^{\text {th }}$
11	9.4	9.9	0.0575185	77.3328724	-5.87811947	119th
11	9.5	9.9	-0.19808306	77.3403291	-5.96743148	121 ${ }^{\text {st }}$
11.1	8.5	9.5	-0.35913262	77.3442776	-5.67257836	129th
11.1	8.6	9.5	-0.35924013	77.3443165	-5.6726322	$130^{\text {th }}$
11.1	8.7	9.5	-0.35953201	77.3443853	-5.67277981	131 ${ }^{\text {st }}$
11.1	8.8	9.5	-0.36026574	77.3445003	-5.6731531	$132^{\text {nd }}$
11.1	8.9	9.5	-0.36198876	77.3446856	-5.6740328	$133{ }^{\text {rd }}$

11.1	9	9.5	-0.36579833	77.3449817	-5.67598205	$134^{\text {th }}$
11.1	9.1	9.5	-0.37378924	77.3454644	-5.6800756	$135^{\text {th }}$
11.1	8.5	9.6	-0.40707459	77.3016047	-5.66295085	$139^{\text {th }}$
11.1	8.6	9.6	-0.40718218	77.3016435	-5.6630047	$140^{\text {th }}$
11.1	8.7	9.6	-0.40747418	77.3017122	-5.6631523	$141^{\text {st }}$
11.1	8.8	9.6	-0.40820822	77.3018269	-5.66352559	$142^{\text {nd }}$
11.1	8.9	9.6	-0.4099319	77.3020116	-5.66440529	$143^{\text {rd }}$
11.1	9	9.6	-0.41374286	77.3023065	-5.66635454	$144^{\text {th }}$
11.1	9.1	9.6	-0.4217366	77.3027867	-5.6704481	$145^{\text {th }}$
11.1	8.5	9.7	-0.34890288	77.3714831	-5.68578276	$122^{\text {nd }}$
11.1	8.6	9.7	-0.34901032	77.371522	-5.6858366	$123^{\text {rd }}$
11.1	8.7	9.7	-0.34930196	77.3715909	-5.6859842	$124^{\text {th }}$
11.1	8.8	9.7	-0.35003591	77.3717061	-5.6863575	$125^{\text {th }}$
11.1	8.9	9.7	-0.35175891	77.3718917	-5.6872372	$126^{\text {th }}$
11.1	9	9.7	-0.35556826	77.3721887	-5.68918644	$127^{\text {th }}$
11.1	9.1	9.7	-0.36355836	77.3726729	-5.69328	$128^{\text {th }}$
11.1	9.2	9.7	-0.37955876	77.3734902	-5.70148177	$136^{\text {th }}$
11.1	9.3	9.7	-0.41029902	77.3749094	-5.71723913	$137^{\text {th }}$
11.1	9.4	9.7	-0.423126	77.3774012	-5.74637009	$138^{\text {th }}$
11.1	9.5	9.7	-0.56862854	77.3817436	-5.79830745	$146^{\text {th }}$

Table 7 The set of non-inferior solutions for the case of the penalty cost parameters "+20\%".

T^{*}	$w_{2}{ }^{*}$	$w_{1}{ }^{*}$	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.7	8.5	9.6	1.16393262	76.1036497	-6.18231962	$2^{\text {nd }}$
10.7	8.6	9.6	1.16195768	76.1048888	-6.18328998	$3^{\text {rd }}$
10.7	8.7	9.6	1.15692436	76.1068647	-6.18581708	$4^{\text {th }}$
10.7	8.8	9.6	1.14522597	76.1097871	-6.19176666	$6^{\text {th }}$

10.7	8.9	9.6	1.12015146	76.1138334	-6.20461763	$10^{\text {th }}$
10.7	8.5	9.7	1.24385581	76.2295073	-6.2083549	17th
10.7	8.6	9.7	1.24188319	76.23075	-6.20932527	$16^{\text {th }}$
10.7	8.7	9.7	1.2368546	76.2327334	-6.21185237	$15^{\text {th }}$
10.7	8.8	9.7	1.22516553	76.2356705	-6.21780194	$11^{\text {th }}$
10.7	8.9	9.7	1.20010877	76.2397447	-6.23065291	$8^{\text {th }}$
10.7	9	9.7	1.15007892	76.2451377	-6.25642126	$1^{\text {st }}$
10.7	8.5	9.8	1.27191022	76.3443255	-6.27024758	$25^{\text {th }}$
10.7	8.6	9.8	1.26993842	76.3455716	-6.27121795	$24^{\text {th }}$
10.7	8.7	9.8	1.26491284	76.3475617	-6.27374505	$22^{\text {nd }}$
10.7	8.8	9.8	1.25322771	76.3505122	-6.27969462	19th
10.7	8.9	9.8	1.22817246	76.3546119	-6.29254559	$18^{\text {th }}$
10.7	9	9.8	1.17815806	76.3600518	-6.31831402	7th
10.7	8.5	9.9	1.19186848	76.413705	-6.39036966	$14^{\text {th }}$
10.7	8.6	9.9	1.18989435	76.414953	-6.39134002	$13^{\text {th }}$
10.7	8.7	9.9	1.1848572	76.4169473	-6.3938672	$12^{\text {th }}$
10.7	8.8	9.9	1.17316282	76.4199059	-6.3998167	$9^{\text {th }}$
10.7	8.9	9.9	1.14809654	76.424021	-6.41266767	$5^{\text {th }}$
10.8	8.5	9.5	1.00677542	76.6189271	-5.90232854	47 ${ }^{\text {th }}$
10.8	8.6	9.5	1.00576955	76.6194854	-5.90282526	$48^{\text {th }}$
10.8	8.7	9.5	1.00316495	76.6203985	-5.90413648	49 ${ }^{\text {th }}$
10.8	8.5	9.6	1.05058442	76.6790917	-5.90645324	39th
10.8	8.6	9.6	1.0495792	76.6796507	-5.90695005	$40^{\text {th }}$
10.8	8.7	9.6	1.04697601	76.6805656	-5.90826126	$41^{\text {st }}$
10.8	8.8	9.6	1.04080699	76.6819598	-5.91140412	$42^{\text {nd }}$
10.8	8.9	9.6	1.02728614	76.6839624	-5.91834028	$44^{\text {th }}$
10.8	8.5	9.7	1.09770813	76.7608024	-5.92845119	27 ${ }^{\text {th }}$
10.8	8.6	9.7	1.09670356	76.7613626	-5.928948	$28^{\text {th }}$

10.8	8.7	9.7	1.09410115	76.7622799	-5.93025913	29th
10.8	8.8	9.7	1.08793483	76.7636788	-5.93340207	$31^{\text {st }}$
10.8	8.9	9.7	1.07441948	76.765691	-5.94033823	$32^{\text {nd }}$
10.8	9	9.7	1.04675833	76.7684808	-5.95459073	$36^{\text {th }}$
10.8	8.5	9.8	1.10206697	76.8316139	-5.97823696	$20^{\text {th }}$
10.8	8.6	9.8	1.10106254	76.8321751	-5.97873369	$21^{\text {st }}$
10.8	8.7	9.8	1.09846153	76.8330944	-5.9800449	$23^{\text {rd }}$
10.8	8.8	9.8	1.09229352	76.8344976	-5.98318776	$26^{\text {th }}$
10.8	8.9	9.8	1.07877598	76.836518	-5.99012392	$30^{\text {th }}$
10.8	9	9.8	1.05111712	76.8393235	-6.00437645	$33^{\text {rd }}$
10.8	9.1	9.8	0.9977865	76.8431947	-6.03191026	$45^{\text {th }}$
10.8	8.5	9.9	1.02000138	76.8661283	-6.07429585	$34^{\text {th }}$
10.8	8.6	9.9	1.01899582	76.86669	-6.07479258	$35^{\text {th }}$
10.8	8.7	9.9	1.01639242	76.8676103	-6.07610379	37th
10.8	8.8	9.9	1.01021948	76.8690155	-6.07924673	$38^{\text {th }}$
10.8	8.9	9.9	0.99669237	76.8710399	-6.08618289	$43^{\text {rd }}$
10.8	9	9.9	0.96901534	76.8738531	-6.10043536	$46^{\text {th }}$
10.8	9.1	9.9	0.91565114	76.8777385	-6.12796918	$50^{\text {th }}$
10.8	9.2	9.9	0.81795899	76.8832316	-6.17839429	$51^{\text {st }}$
10.9	8.5	9.5	0.71460642	77.0227945	-5.74416189	$70^{\text {th }}$
10.9	8.6	9.5	0.71411308	77.0230364	-5.74440619	$71^{\text {st }}$
10.9	8.7	9.5	0.71281408	77.0234426	-5.74506063	$72^{\text {nd }}$
10.9	8.5	9.6	0.72728012	77.0471258	-5.74544499	$64^{\text {th }}$
10.9	8.6	9.6	0.72678694	77.047368	-5.74568928	65 ${ }^{\text {th }}$
10.9	8.7	9.6	0.72548798	77.0477744	-5.74634371	66 ${ }^{\text {th }}$
10.9	8.8	9.6	0.72234753	77.0484123	-5.74794257	$67^{\text {th }}$
10.9	8.9	9.6	0.71530608	77.0493628	-5.7515509	$68^{\text {th }}$
10.9	9	9.6	0.70052331	77.0507405	-5.75915468	77th

10.9	8.5	9.7	0.7564351	77.1013337	-5.76362798	$55^{\text {th }}$
10.9	8.6	9.7	0.7559421	77.1015761	-5.76387227	$56^{\text {th }}$
10.9	8.7	9.7	0.75464353	77.1019833	-5.76452672	$58^{\text {th }}$
10.9	8.8	9.7	0.75150394	77.1026229	-5.76612557	59 ${ }^{\text {th }}$
10.9	8.9	9.7	0.74446421	77.1035765	-5.7697339	$61^{\text {st }}$
10.9	9	9.7	0.72968484	77.1049605	-5.77733767	$63^{\text {rd }}$
10.9	9.1	9.7	0.70038948	77.106976	-5.79243938	$73^{\text {rd }}$
10.9	8.5	9.8	0.75027145	77.1441505	-5.80227597	$52^{\text {nd }}$
10.9	8.6	9.8	0.74977841	77.1443932	-5.80252026	53 rd
10.9	8.7	9.8	0.74847977	77.1448011	-5.8031747	$54^{\text {th }}$
10.9	8.8	9.8	0.74534066	77.1454418	-5.80477356	57th
10.9	8.9	9.8	0.73829989	77.146398	-5.80838189	$60^{\text {th }}$
10.9	9	9.8	0.7235198	77.147787	-5.81598566	$62^{\text {nd }}$
10.9	9.1	9.8	0.69422308	77.149812	-5.83108736	69th
10.9	9.2	9.8	0.63898941	77.1528516	-5.85957896	$81^{\text {st }}$
10.9	8.5	9.9	0.67674189	77.1581951	-5.87619789	$74^{\text {th }}$
10.9	8.6	9.9	0.67624838	77.1584379	-5.87644219	$75^{\text {th }}$
10.9	8.7	9.9	0.6749494	77.1588459	-5.87709663	$76^{\text {th }}$
10.9	8.8	9.9	0.6718041	77.1594871	-5.87869548	$78^{\text {th }}$
10.9	8.9	9.9	0.66476169	77.1604441	-5.8823038	79th
10.9	9	9.9	0.64997032	77.1618347	-5.88990759	$80^{\text {th }}$
10.9	9.1	9.9	0.62065929	77.1638629	-5.90500929	$82^{\text {nd }}$
10.9	9.2	9.9	0.56539689	77.1669082	-5.93350088	$83^{\text {rd }}$
10.9	9.3	9.9	0.46568816	77.1716526	-5.98488383	$84^{\text {th }}$
10.9	9.4	9.9	0.43815587	77.1792347	-6.07386915	85 ${ }^{\text {th }}$
11	8.5	9.5	0.24359095	77.248959	-5.67782026	$96^{\text {th }}$
11	8.6	9.5	0.24335787	77.2490597	-5.67793571	97th
11	8.7	9.5	0.24273314	77.2492331	-5.67825004	98 ${ }^{\text {th }}$

11	8.8	9.5	0.24119103	77.2495133	-5.67903351	101 ${ }^{\text {st }}$
11	8.9	9.5	0.23765033	77.2499463	-5.68084316	$102^{\text {nd }}$
11	9	9.5	0.23002007	77.2506032	-5.68475684	$103{ }^{\text {rd }}$
11	8.5	9.6	0.22787123	77.2412305	-5.67444964	$106^{\text {th }}$
11	8.6	9.6	0.2276381	77.2413312	-5.67456509	107th
11	8.7	9.6	0.22701362	77.2415045	-5.67487942	$108^{\text {th }}$
11	8.8	9.6	0.22547123	77.2417846	-5.67566289	$109^{\text {th }}$
11	8.9	9.6	0.22192981	77.2422174	-5.67747254	$110^{\text {th }}$
11	8.5	9.7	0.25082157	77.2816398	-5.6898336	88 ${ }^{\text {th }}$
11	8.6	9.7	0.2505885	77.2817406	-5.68994905	$90^{\text {th }}$
11	8.7	9.7	0.24996349	77.2819141	-5.69026338	$91^{\text {st }}$
11	8.8	9.7	0.24842209	77.2821948	-5.69104685	$93^{\text {rd }}$
11	8.9	9.7	0.24488133	77.2826287	-5.6928565	95th
11	9	9.7	0.2372517	77.2832876	-5.69677018	$100^{\text {th }}$
11	9.1	9.7	0.22169356	77.2843003	-5.70476617	$105^{\text {th }}$
11	8.5	9.8	0.24434795	77.309914	-5.71925395	$86^{\text {th }}$
11	8.6	9.8	0.24411486	77.3100149	-5.71936941	87th
11	8.7	9.8	0.2434898	77.3101886	-5.71968374	89th
11	8.8	9.8	0.24194764	77.3104696	-5.72046721	$92^{\text {nd }}$
11	8.9	9.8	0.23840737	77.3109044	-5.72227686	94th
11	9	9.8	0.23077668	77.311565	-5.72619054	99th
11	9.1	9.8	0.21521847	77.3125809	-5.73418653	$104^{\text {th }}$
11	9.2	9.8	0.18498954	77.3141957	-5.74973492	$115^{\text {th }}$
11	9.3	9.8	0.12872002	77.316851	-5.77867759	119 ${ }^{\text {th }}$
11	9.4	9.8	0.1093934	77.3213001	-5.83046444	$120^{\text {th }}$
11	9.5	9.8	-0.14613772	77.3287483	-5.91977044	$122^{\text {nd }}$
11	8.5	9.9	0.18517888	77.3140915	-5.77428539	$111^{\text {th }}$
11	8.7	9.9	0.18432087	77.3143662	-5.77471517	$112^{\text {th }}$

11	8.8	9.9	0.18277992	77.3146473	-5.77549863	$113^{\text {th }}$
11	8.9	9.9	0.17923388	77.3150822	-5.77730829	$114^{\text {th }}$
11	9	9.9	0.17160509	77.315743	-5.78122197	$116^{\text {th }}$
11	9.1	9.9	0.15603728	77.3167594	-5.78921795	117 ${ }^{\text {th }}$
11	9.2	9.9	0.12579453	77.3183751	-5.80476635	$118^{\text {th }}$
11	9.4	9.9	0.05013037	77.3254843	-5.88549587	121 ${ }^{\text {st }}$
11	9.5	9.9	-0.20547443	77.3329377	-5.97480187	$123{ }^{\text {rd }}$
11.1	8.5	9.5	-0.36703969	77.3363705	-5.68048543	$131^{\text {st }}$
11.1	8.6	9.5	-0.36714583	77.3364108	-5.68053788	$132^{\text {nd }}$
11.1	8.7	9.5	-0.36743545	77.3364819	-5.68068321	$133{ }^{\text {rd }}$
11.1	8.8	9.5	-0.36816584	77.3366002	-5.68105311	$134^{\text {th }}$
11.1	8.9	9.5	-0.36988441	77.3367899	-5.68192825	135 ${ }^{\text {th }}$
11.1	9	9.5	-0.37368871	77.3370913	-5.683872	136 ${ }^{\text {th }}$
11.1	9.1	9.5	-0.38167413	77.3375795	-5.68795961	138 ${ }^{\text {th }}$
11.1	8.5	9.6	-0.41446318	77.2942161	-5.67033943	141 ${ }^{\text {st }}$
11.1	8.6	9.6	-0.41456938	77.2942563	-5.67039189	$142{ }^{\text {nd }}$
11.1	8.7	9.6	-0.41485913	77.2943273	-5.67053721	$143{ }^{\text {rd }}$
11.1	8.8	9.6	-0.41558982	77.2944453	-5.67090711	$144^{\text {th }}$
11.1	8.9	9.6	-0.41730904	77.2946345	-5.67178225	$145^{\text {th }}$
11.1	9	9.6	-0.42111473	77.2949347	-5.673726	$146^{\text {th }}$
11.1	9.1	9.6	-0.42910295	77.2954203	-5.67781361	147th
11.1	8.5	9.7	-0.35557655	77.3648094	-5.69245642	$124^{\text {th }}$
11.1	8.6	9.7	-0.35568262	77.3648497	-5.69250888	125 ${ }^{\text {th }}$
11.1	8.7	9.7	-0.35597199	77.3649209	-5.6926542	$126^{\text {th }}$
11.1	8.8	9.7	-0.35670259	77.3650394	-5.6930241	127h
11.1	8.9	9.7	-0.35842113	77.3652295	-5.69389924	$128^{\text {th }}$
11.1	9	9.7	-0.36222517	77.3655317	-5.69584299	129 ${ }^{\text {th }}$
11.1	9.1	9.7	-0.37020971	77.3660216	-5.6999306	$130^{\text {th }}$

11.1	9.2	9.7	-0.38620512	77.3668438	-5.70812661	$137^{\text {th }}$
11.1	9.3	9.7	-0.41694187	77.3682666	-5.72387898	$139^{\text {th }}$
11.1	9.4	9.7	-0.4297677	77.3707595	-5.75300608	$140^{\text {th }}$
11.1	9.5	9.7	-0.57527242	77.3750997	-5.80494078	$148^{\text {th }}$

Table 8 The set of non-inferior solutions for the case of the penalty cost parameters "+25\%".

T^{*}	$w_{2}{ }^{*}$	$w_{1}{ }^{*}$	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.7	8.5	9.6	1.1238035	76.063521	-6.222448	$2^{\text {nd }}$
10.7	8.6	9.6	1.1218735	76.064805	-6.223372	$3^{\text {rd }}$
10.7	8.7	9.6	1.1169088	76.066849	-6.225828	$4^{\text {th }}$
10.7	8.8	9.6	1.1053051	76.069866	-6.231678	$7^{\text {th }}$
10.7	8.5	9.7	1.2085136	76.194165	-6.243696	$1^{\text {th }}$
10.7	8.6	9.7	1.206586	76.195453	-6.244621	$13^{\text {th }}$
10.7	8.7	9.7	1.2016263	76.197505	-6.247077	$11^{\text {th }}$
10.7	8.8	9.7	1.1900325	76.200537	-6.252927	$9^{\text {th }}$
10.7	8.9	9.7	1.1650939	76.20473	-6.265652	$5^{\text {th }}$
10.7	9	9.7	1.1151936	76.210252	-6.291277	$1^{\text {st }}$
10.7	8.5	9.8	1.2421723	76.314588	-6.299985	$26^{\text {th }}$
10.7	8.6	9.8	1.2402456	76.315879	-6.300909	$24^{\text {th }}$
10.7	8.7	9.8	1.2352893	76.317938	-6.303365	$23^{\text {rd }}$
10.7	8.8	9.8	1.2237001	76.320985	-6.309215	$21^{\text {st }}$
10.7	8.9	9.8	1.1987642	76.325204	-6.321941	$17^{\text {th }}$
10.7	9	9.8	1.1488817	76.330775	-6.347565	$8^{\text {th }}$
10.7	8.5	9.9	1.1681494	76.389986	-6.414088	$16^{\text {th }}$
10.7	8.6	9.9	1.1662207	76.391279	-6.415012	$14^{\text {th }}$
10.7	8.7	9.9	1.1612531	76.393343	-6.417469	$12^{\text {th }}$
10.7	8.8	9.9	1.1496554	76.396398	-6.423319	$10^{\text {th }}$

10.7	8.9	9.9	1.1247098	76.400634	-6.436044	$6^{\text {th }}$
10.8	8.5	9.5	0.9766251	76.588777	-5.932479	$46^{\text {th }}$
10.8	8.6	9.5	0.9756391	76.589355	-5.932955	47th
10.8	8.5	9.6	1.022864	76.651371	-5.934173	$38^{\text {th }}$
10.8	8.6	9.6	1.0218787	76.65195	-5.93465	39th
10.8	8.7	9.6	1.0193066	76.652896	-5.935929	$41^{\text {st }}$
10.8	8.8	9.6	1.0131813	76.654334	-5.939027	$42^{\text {nd }}$
10.8	8.9	9.6	0.9997155	76.656392	-5.945905	$44^{\text {th }}$
10.8	8.5	9.7	1.0731368	76.736231	-5.953022	$25^{\text {th }}$
10.8	8.6	9.7	1.0721522	76.736811	-5.953499	27th
10.8	8.7	9.7	1.0695809	76.73776	-5.954778	29th
10.8	8.8	9.7	1.0634585	76.739202	-5.957876	$30^{\text {th }}$
10.8	8.9	9.7	1.0499985	76.74127	-5.964754	$31^{\text {st }}$
10.8	9	9.7	1.0223995	76.744122	-5.978939	$36^{\text {th }}$
10.8	8.5	9.8	1.0812564	76.810803	-5.999047	$18^{\text {th }}$
10.8	8.6	9.8	1.080272	76.811385	-5.999524	$19^{\text {th }}$
10.8	8.7	9.8	1.0777023	76.812335	-6.000803	$20^{\text {th }}$
10.8	8.8	9.8	1.0715783	76.813782	-6.003901	$22^{\text {nd }}$
10.8	8.9	9.8	1.0581167	76.815859	-6.010779	$28^{\text {th }}$
10.8	9	9.8	1.0305207	76.818727	-6.024964	$32^{\text {nd }}$
10.8	9.1	9.8	0.977252	76.82266	-6.052427	$43^{\text {rd }}$
10.8	8.5	9.9	1.0033041	76.849431	-6.090993	$33^{\text {rd }}$
10.8	8.6	9.9	1.0023187	76.850013	-6.091469	$34^{\text {th }}$
10.8	8.7	9.9	0.9997466	76.850965	-6.092749	35 ${ }^{\text {th }}$
10.8	8.8	9.9	0.993618	76.852414	-6.095846	37th
10.8	8.9	9.9	0.9801472	76.854495	-6.102724	$40^{\text {th }}$
10.8	9	9.9	0.9525341	76.857372	-6.116909	$45^{\text {th }}$
10.8	9.1	9.9	0.8992334	76.861321	-6.144373	$48^{\text {th }}$

10.8	9.2	9.9	0.801595	76.866868	-6.194732	49 ${ }^{\text {th }}$
10.9	8.5	9.6	0.7087862	77.028632	-5.763939	$62^{\text {nd }}$
10.9	8.6	9.6	0.7083015	77.028883	-5.764174	$63^{\text {rd }}$
10.9	8.7	9.6	0.7070161	77.029303	-5.764815	$64^{\text {th }}$
10.9	8.8	9.6	0.703895	77.02996	-5.766394	$65^{\text {th }}$
10.9	8.9	9.6	0.6968783	77.030935	-5.769977	67th
10.9	9	9.6	0.6821239	77.032341	-5.77755	$73^{\text {rd }}$
10.9	8.5	9.7	0.7399363	77.084835	-5.780127	$54^{\text {th }}$
10.9	8.6	9.7	0.7394518	77.085086	-5.780362	55 ${ }^{\text {th }}$
10.9	8.7	9.7	0.7381668	77.085507	-5.781003	$56^{\text {th }}$
10.9	8.8	9.7	0.7350466	77.086165	-5.782582	57th
10.9	8.9	9.7	0.7280318	77.087144	-5.786164	59th
10.9	9	9.7	0.7132809	77.088557	-5.793738	$61^{\text {st }}$
10.9	9.1	9.7	0.6840141	77.090601	-5.808807	$68^{\text {th }}$
10.9	8.5	9.8	0.736202	77.130081	-5.816345	$50^{\text {th }}$
10.9	8.6	9.8	0.7357175	77.130332	-5.816581	$51^{\text {st }}$
10.9	8.7	9.8	0.7344324	77.130754	-5.817222	$52^{\text {nd }}$
10.9	8.8	9.8	0.7313127	77.131414	-5.818801	$53^{\text {rd }}$
10.9	8.9	9.8	0.724297	77.132395	-5.822383	$58^{\text {th }}$
10.9	9	9.8	0.7095458	77.133813	-5.829956	$60^{\text {th }}$
10.9	9.1	9.8	0.6802781	77.135867	-5.845026	66 ${ }^{\text {th }}$
10.9	9.2	9.8	0.625069	77.138931	-5.873487	$76^{\text {th }}$
10.9	8.5	9.9	0.6653771	77.14683	-5.887563	69 ${ }^{\text {th }}$
10.9	8.6	9.9	0.6648921	77.147082	-5.887798	$70^{\text {th }}$
10.9	8.7	9.9	0.6636067	77.147503	-5.888439	$71^{\text {st }}$
10.9	8.8	9.9	0.660481	77.148164	-5.890018	$72^{\text {nd }}$
10.9	8.9	9.9	0.6534638	77.149146	-5.8936	$74^{\text {th }}$
10.9	9	9.9	0.6387016	77.150566	-5.901174	75 ${ }^{\text {th }}$

10.9	9.1	9.9	0.6094202	77.152624	-5.916243	77th
10.9	9.2	9.9	0.5541835	77.155695	-5.944705	$78^{\text {th }}$
10.9	9.3	9.9	0.4544923	77.160457	-5.996062	79th
10.9	9.4	9.9	0.4269654	77.168044	-6.085028	$80^{\text {th }}$
11	8.5	9.5	0.2307855	77.236154	-5.690626	$93{ }^{\text {rd }}$
11	8.6	9.5	0.2305559	77.236258	-5.690738	$94^{\text {th }}$
11	8.7	9.5	0.2299368	77.236437	-5.691046	95 ${ }^{\text {th }}$
11	8.8	9.5	0.2284029	77.236725	-5.691821	$96^{\text {th }}$
11	8.9	9.5	0.2248729	77.237169	-5.69362	97th
11	9	9.5	0.2172551	77.237838	-5.69752	98 ${ }^{\text {th }}$
11	8.5	9.6	0.2159665	77.229326	-5.686354	$101^{\text {st }}$
11	8.6	9.6	0.2157368	77.22943	-5.686466	$102^{\text {nd }}$
11	8.7	9.6	0.215118	77.229609	-5.686775	$103{ }^{\text {rd }}$
11	8.8	9.6	0.2135838	77.229897	-5.68755	104 ${ }^{\text {th }}$
11	8.9	9.6	0.2100531	77.230341	-5.689349	$105^{\text {th }}$
11	8.5	9.7	0.2401339	77.270952	-5.700521	$84^{\text {th }}$
11	8.6	9.7	0.2399044	77.271056	-5.700633	85 ${ }^{\text {th }}$
11	8.7	9.7	0.239285	77.271236	-5.700942	87th
11	8.8	9.7	0.2377518	77.271525	-5.701717	$88^{\text {th }}$
11	8.9	9.7	0.2342218	77.271969	-5.703515	$90^{\text {th }}$
11	9	9.7	0.2266048	77.272641	-5.707416	$92^{\text {nd }}$
11	9.1	9.7	0.2110595	77.273666	-5.715398	$100^{\text {th }}$
11	8.5	9.8	0.2351707	77.300737	-5.728431	$81^{\text {st }}$
11	8.6	9.8	0.2349411	77.300841	-5.728543	$82^{\text {nd }}$
11	8.7	9.8	0.2343217	77.30102	-5.728852	$83^{\text {rd }}$
11	8.8	9.8	0.2327878	77.30131	-5.729627	$86^{\text {th }}$
11	8.9	9.8	0.2292583	77.301755	-5.731425	89 ${ }^{\text {th }}$
11	9	9.8	0.2216403	77.302429	-5.735326	91 ${ }^{\text {st }}$

11	9.1	9.8	0.2060951	77.303458	-5.743308	99th
11	9.2	9.8	0.1758776	77.305084	-5.758843	111 ${ }^{\text {th }}$
11	9.3	9.8	0.1196159	77.307747	-5.787774	115 ${ }^{\text {th }}$
11	9.4	9.8	0.1002915	77.312198	-5.839552	$116^{\text {th }}$
11	9.5	9.8	-0.155245	77.319641	-5.928852	119th
11	8.5	9.9	0.1777126	77.306625	-5.781752	$106^{\text {th }}$
11	8.6	9.9	0.1774829	77.30673	-5.781864	107 ${ }^{\text {th }}$
11	8.7	9.9	0.1768638	77.306909	-5.782172	108 ${ }^{\text {th }}$
11	8.8	9.9	0.1753311	77.307198	-5.782947	109th
11	8.9	9.9	0.1717959	77.307644	-5.784746	$110^{\text {th }}$
11	9	9.9	0.1641799	77.308318	-5.788646	$112^{\text {th }}$
11	9.1	9.9	0.1486253	77.309347	-5.796628	113th
11	9.2	9.9	0.1183944	77.310975	-5.812163	114 ${ }^{\text {th }}$
11	9.3	9.9	0.0621085	77.313641	-5.841094	117 ${ }^{\text {th }}$
11	9.4	9.9	0.0427422	77.318096	-5.892872	$118^{\text {th }}$
11	9.5	9.9	-0.212866	77.325546	-5.982172	$120^{\text {th }}$
11.1	8.5	9.5	-0.374947	77.328463	-5.688393	128 ${ }^{\text {th }}$
11.1	8.6	9.5	-0.375052	77.328505	-5.688444	129 ${ }^{\text {th }}$
11.1	8.7	9.5	-0.375339	77.328578	-5.688587	$130^{\text {th }}$
11.1	8.8	9.5	-0.376066	77.3287	-5.688953	$131^{\text {st }}$
11.1	8.9	9.5	-0.37778	77.328894	-5.689824	$132^{\text {nd }}$
11.1	9	9.5	-0.381579	77.329201	-5.691762	$133{ }^{\text {rd }}$
11.1	9.1	9.5	-0.389559	77.329695	-5.695844	135 ${ }^{\text {th }}$
11.1	8.5	9.6	-0.421852	77.286828	-5.677728	138 ${ }^{\text {th }}$
11.1	8.6	9.6	-0.421957	77.286869	-5.677779	139th
11.1	8.7	9.6	-0.422244	77.286942	-5.677922	$140^{\text {th }}$
11.1	8.8	9.6	-0.422971	77.287064	-5.678289	141 ${ }^{\text {st }}$
11.1	8.9	9.6	-0.424686	77.287257	-5.679159	$142^{\text {nd }}$

11.1	9	9.6	-0.428487	77.287563	-5.681097	$143^{\text {rd }}$
11.1	9.1	9.6	-0.436469	77.288054	-5.685179	$144^{\text {th }}$
11.1	8.5	9.7	-0.36225	77.358136	-5.69913	$121^{\text {st }}$
11.1	8.6	9.7	-0.362355	77.358177	-5.699181	$122^{\text {nd }}$
11.1	8.7	9.7	-0.362642	77.358251	-5.699324	$123^{\text {rd }}$
11.1	8.8	9.7	-0.363369	77.358373	-5.699691	$124^{\text {th }}$
11.1	8.9	9.7	-0.365083	77.358567	-5.700561	$125^{\text {th }}$
11.1	9	9.7	-0.368882	77.358875	-5.7025	$126^{\text {th }}$
11.1	9.1	9.7	-0.376861	77.35937	-5.706581	$127^{\text {th }}$
11.1	9.2	9.7	-0.392851	77.360197	-5.714771	$134^{\text {th }}$
11.1	9.3	9.7	-0.423585	77.361624	-5.730519	$136^{\text {th }}$
11.1	9.4	9.7	-0.436409	77.364118	-5.759642	$137^{\text {th }}$
11.1	9.5	9.7	-0.581916	77.368456	-5.811574	$145^{\text {th }}$

Table 9 The set of non-inferior solutions for the case of the penalty cost parameters "+50\%".

T^{*}	$w_{2}{ }^{*}$	$w_{1}{ }^{*}$	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.7	8.5	9.7	1.031802332	76.01745385	-6.4204031	$9^{\text {th }}$
10.7	8.6	9.7	1.030099902	76.01896673	-6.42109713	$7^{\text {th }}$
10.7	8.7	9.7	1.025484648	76.02136346	-6.42319842	$4^{\text {th }}$
10.7	8.8	9.7	1.014367248	76.02487219	-6.42855181	$2^{\text {nd }}$
10.7	8.9	9.7	0.990019301	76.02965524	-6.4406475	$1^{\text {st }}$
10.7	8.5	9.8	1.093482413	76.16589772	-6.44867095	$3^{\text {nd }}$
10.7	8.6	9.8	1.091781774	76.16741491	-6.44936498	$3^{\text {st }}$
10.7	8.7	9.8	1.087171519	76.16982042	-6.45146627	$3^{\text {th }}$
10.7	8.8	9.8	1.076061987	76.17334646	-6.45681966	$2^{\text {th }}$
10.7	8.9	9.8	1.051723014	76.17816248	-6.46891535	$1^{\text {th }}$
10.7	9	9.8	1.002499995	76.18439371	-6.49382096	$3^{\text {th }}$

10.7	8.5	9.9	1.049554307	76.27139083	-6.53268029	$25^{\text {th }}$
10.7	8.6	9.9	1.047852392	76.27291109	-6.53337432	23 rd
10.7	8.7	9.9	1.043232687	76.27532274	-6.5354757	$18^{\text {th }}$
10.7	8.8	9.9	1.032118133	76.27886118	-6.540829	$13^{\text {th }}$
10.7	8.9	9.9	1.007776154	76.28370064	-6.55292468	$11^{\text {th }}$
10.8	8.5	9.6	0.884261988	76.51276925	-6.07277382	$36^{\text {th }}$
10.8	8.6	9.6	0.883376406	76.51344792	-6.07314871	37th
10.8	8.7	9.6	0.880959525	76.51454912	-6.0742688	$38^{\text {th }}$
10.8	8.5	9.7	0.950280055	76.61337433	-6.07587763	$14^{\text {th }}$
10.8	8.6	9.7	0.949395383	76.61405438	-6.07625251	$15^{\text {th }}$
10.8	8.7	9.7	0.946979845	76.6151586	-6.0773725	17 ${ }^{\text {th }}$
10.8	8.8	9.7	0.94107671	76.61682071	-6.08024359	19th
10.8	8.9	9.7	0.927893851	76.61916536	-6.08683021	27th
10.8	9	9.7	0.900605239	76.62232769	-6.10067781	$33^{\text {rd }}$
10.8	8.5	9.8	0.977203621	76.70675051	-6.10309892	$5^{\text {th }}$
10.8	8.6	9.8	0.976319421	76.70743195	-6.10347371	$6^{\text {th }}$
10.8	8.7	9.8	0.973905913	76.70853878	-6.1045938	$8^{\text {th }}$
10.8	8.8	9.8	0.968002447	76.71020652	-6.10746478	$10^{\text {th }}$
10.8	8.9	9.8	0.954820028	76.71256206	-6.1140514	$12^{\text {th }}$
10.8	9	9.8	0.927538715	76.71574509	-6.12789904	$22^{\text {nd }}$
10.8	9.1	9.8	0.874579381	76.71998757	-6.15501139	35 ${ }^{\text {th }}$
10.8	8.5	9.9	0.919817817	76.76594475	-6.1744783	$20^{\text {th }}$
10.8	8.6	9.9	0.918932826	76.766627	-6.17485308	$21^{\text {st }}$
10.8	8.7	9.9	0.916517652	76.76773555	-6.17597317	$24^{\text {th }}$
10.8	8.8	9.9	0.910610689	76.7694067	-6.17884426	$26^{\text {th }}$
10.8	8.9	9.9	0.897421578	76.77176913	-6.18543088	$29^{\text {th }}$
10.8	9	9.9	0.870127599	76.7749654	-6.19927844	$34^{\text {th }}$
10.8	9.1	9.9	0.817144772	76.77923209	-6.22639079	39th

10.8	9.2	9.9	0.719774847	76.78504742	-6.27642256	$40^{\text {th }}$
10.9	8.5	9.6	0.61631663	76.93616234	-5.85640795	$59^{\text {th }}$
10.9	8.6	9.6	0.615874526	76.93645554	-5.85660046	$60^{\text {th }}$
10.9	8.7	9.6	0.614656555	76.936943	-5.85717238	$61^{\text {st }}$
10.9	8.8	9.6	0.611632103	76.93769692	-5.85865203	$62^{\text {nd }}$
10.9	8.9	9.6	0.604739623	76.93879632	-5.86210485	$63^{\text {rd }}$
10.9	8.5	9.7	0.657442205	77.00234078	-5.8626204	$46^{\text {th }}$
10.9	8.6	9.7	0.657000361	77.0026344	-5.86281292	$47^{\text {th }}$
10.9	8.7	9.7	0.655782946	77.00312276	-5.86338484	$48^{\text {th }}$
10.9	8.8	9.7	0.652759698	77.00387861	-5.86486448	$49^{\text {th }}$
10.9	8.9	9.7	0.645869652	77.00498193	-5.8683173	$51^{\text {st }}$
10.9	9	9.7	0.631261462	77.00653712	-5.87573845	$52^{\text {nd }}$
10.9	8.5	9.8	0.665854474	77.05973354	-5.88669254	$41^{\text {st }}$
10.9	8.6	9.8	0.665412683	77.06002752	-5.88688506	$42^{\text {nd }}$
10.9	8.7	9.8	0.664195394	77.06051668	-5.88745697	$43^{\text {rd }}$
10.9	8.8	9.8	0.661173055	77.06127419	-5.88893662	$44^{\text {th }}$
10.9	8.9	9.8	0.654282832	77.0623809	-5.89238944	$45^{\text {th }}$
10.9	9	9.8	0.639675623	77.06394278	-5.89981059	$50^{\text {th }}$
10.9	9.1	9.8	0.610552968	77.06614191	-5.91471969	$56^{\text {th }}$
10.9	9.2	9.8	0.55546725	77.06932944	-5.94302926	$66^{\text {th }}$
10.9	8.5	9.9	0.608552936	77.09000617	-5.94438651	$53^{\text {rd }}$
10.9	8.6	9.9	0.608110773	77.09030033	-5.94457904	$54^{\text {th }}$
10.9	8.7	9.9	0.60689337	77.09078991	-5.94515096	$55^{\text {th }}$
10.9	8.8	9.9	0.603865317	77.0915483	-5.94663061	$57^{\text {th }}$
10.9	8.9	9.9	0.596974414	77.09265681	-5.95008342	$58^{\text {th }}$
10.9	9	9.9	0.582357812	77.09422221	-5.95750457	$64^{\text {th }}$
10.9	9.1	9.9	0.553224454	77.09642807	-5.97241367	$65^{\text {th }}$
10.9	9.2	9.9	0.498116648	77.099628	-6.00072324	$67^{\text {th }}$
10						

10.9	9.3	9.9	0.398513051	77.10447751	-6.05195229	$68^{\text {th }}$
10.9	9.4	9.9	0.371013054	77.11209185	-6.14082137	69th
11	8.5	9.6	0.156442683	77.16980199	-5.74587804	84th
11	8.6	9.6	0.156230502	77.16992361	-5.74597235	85 ${ }^{\text {th }}$
11	8.7	9.6	0.155639838	77.17013074	-5.74625241	87th
11	8.8	9.6	0.154146724	77.17046013	-5.74698562	90th
11	8.9	9.6	0.150669744	77.17095732	-5.74872876	$92^{\text {nd }}$
11	9	9.6	0.143113716	77.17168879	-5.75256327	94th
11	8.5	9.7	0.186695729	77.21751395	-5.7539593	$75^{\text {th }}$
11	8.6	9.7	0.186483633	77.2176357	-5.75405361	$76^{\text {th }}$
11	8.7	9.7	0.185892484	77.21784314	-5.75433367	77th
11	8.8	9.7	0.184400462	77.21817318	-5.75506688	$78^{\text {th }}$
11	8.9	9.7	0.18092436	77.21867175	-5.75681002	80 ${ }^{\text {th }}$
11	9	9.7	0.173370122	77.21940604	-5.76064453	81 ${ }^{\text {st }}$
11	9.1	9.7	0.157889135	77.22049585	-5.76855595	$83^{\text {rd }}$
11	8.5	9.8	0.189284314	77.25485035	-5.77431747	$70^{\text {th }}$
11	8.6	9.8	0.189072225	77.25497221	-5.77441178	$71^{\text {st }}$
11	8.7	9.8	0.188481083	77.25517987	-5.77469185	$72^{\text {nd }}$
11	8.8	9.8	0.186988422	77.25551043	-5.77542506	$73^{\text {rd }}$
11	8.9	9.8	0.18351307	77.25601009	-5.7771682	$74^{\text {th }}$
11	9	9.8	0.17595831	77.25674659	-5.78100271	79th
11	9.1	9.8	0.16047831	77.25784075	-5.78891412	$82^{\text {nd }}$
11	9.2	9.8	0.130318186	77.25952433	-5.80438158	96 ${ }^{\text {th }}$
11	8.5	9.9	0.140381337	77.269294	-5.81908283	86 ${ }^{\text {th }}$
11	8.6	9.9	0.140169111	77.2694159	-5.81917714	88 ${ }^{\text {th }}$
11	8.7	9.9	0.139578345	77.26962366	-5.8194572	89 ${ }^{\text {th }}$
11	8.8	9.9	0.138087036	77.26995442	-5.8201904	91 ${ }^{\text {st }}$
11	8.9	9.9	0.134606214	77.2704545	-5.82193355	93 rd

11	9	9.9	0.127053961	77.27119185	-5.82576806	$95^{\text {th }}$
11	9.1	9.9	0.111565559	77.2722877	-5.83367946	$97^{\text {th }}$
11	9.2	9.9	0.081393892	77.27397448	-5.84914693	$98^{\text {th }}$
11	9.3	9.9	0.025150632	77.27668269	-5.87802036	$99^{\text {th }}$
11	9.4	9.9	0.00580158	77.2811555	-5.92975428	$100^{\text {th }}$
11	9.5	9.9	-0.24982266	77.28858953	-6.0190242	$101^{\text {st }}$
11.1	8.5	9.5	-0.41448215	77.28892808	-5.72792785	$109^{\text {th }}$
11.1	8.6	9.5	-0.41458004	77.28897659	-5.72797199	$110^{\text {th }}$
11.1	8.7	9.5	-0.4148561	77.2890612	-5.72810364	$111^{\text {th }}$
11.1	8.8	9.5	-0.41556642	77.28919963	-5.72845316	$112^{\text {th }}$
11.1	8.9	9.5	-0.41725829	77.28941605	-5.72930096	$113^{\text {th }}$
11.1	9	9.5	-0.42103099	77.28974907	-5.73121172	$114^{\text {th }}$
11.1	8.5	9.6	-0.4587947	77.24988459	-5.71467091	$124^{\text {th }}$
11.1	8.6	9.6	-0.45889264	77.24993304	-5.71471506	$125^{\text {th }}$
11.1	8.7	9.6	-0.45916883	77.25001756	-5.7148467	$126^{\text {th }}$
11.1	8.8	9.6	-0.45987943	77.25015573	-5.71519622	$127^{\text {th }}$
11.1	8.9	9.6	-0.46157191	77.25037162	-5.71604402	$128^{\text {th }}$
11.1	9	9.6	-0.46534589	77.2507035	-5.71795479	$129^{\text {th }}$
11.1	9.1	9.6	-0.47330104	77.25122225	-5.72200671	$131^{\text {st }}$
11.1	8.5	9.7	-0.39561857	77.32476741	-5.73249841	$102^{\text {nd }}$
11.1	8.6	9.7	-0.39571637	77.32481596	-5.73254256	$103^{\text {rd }}$
11.1	8.7	9.7	-0.39599218	77.32490068	-5.73267419	$104^{\text {th }}$
11.1	8.8	9.7	-0.39670265	77.32503932	-5.73302372	$105^{\text {th }}$
11.1	8.9	9.7	-0.3983944	77.32525625	-5.73387152	$106^{\text {th }}$
11.1	9	9.7	-0.40216661	77.3255903	-5.73578228	$107^{\text {th }}$
11.1	9.1	9.7	-0.41011782	77.32611348	-5.7398342	$108^{\text {th }}$
11.1	9.2	9.7	-0.42608331	77.32696565	-5.74799564	$115^{\text {th }}$
11.1	9.3	9.7	-0.45679896	77.32840949	-5.76371807	$120^{\text {th }}$

11.1	8.5	9.9	-0.45668787	77.33155679	-5.77582151	$116^{\text {th }}$
11.1	8.6	9.9	-0.45678575	77.33160535	-5.77586566	$117^{\text {th }}$
11.1	8.7	9.9	-0.45706239	77.33169009	-5.7759973	$118^{\text {th }}$
11.1	8.8	9.9	-0.45777258	77.33182877	-5.77634682	$119^{\text {th }}$
11.1	8.9	9.9	-0.45946517	77.33204579	-5.77719462	$121^{\text {st }}$
11.1	9	9.9	-0.46323916	77.33238004	-5.77910539	$122^{\text {nd }}$
11.1	9.1	9.9	-0.47119398	77.33290362	-5.78315731	$123^{\text {rd }}$
11.1	9.2	9.9	-0.48716727	77.33375658	-5.79131875	$130^{\text {th }}$
11.1	9.3	9.9	-0.51789581	77.33520194	-5.80704118	$132^{\text {nd }}$
11.1	9.4	9.9	-0.53074045	77.33770445	-5.83614514	133 th
11.1	9.5	9.9	-0.67630273	77.3420366	-5.88806388	$134^{\text {th }}$

Table 10 The set of non-inferior solutions for the case of the penalty cost parameters "-10\%".

T^{*}	$w_{2}{ }^{*}$	$w_{1}{ }^{*}$	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.6	8.5	9.7	1.4645917	75.777198	-6.332447	$31^{\text {st }}$
10.6	8.6	9.7	1.4602709	75.77926	-6.334869	$30^{\text {th }}$
10.6	8.5	9.8	1.4855514	75.907165	-6.45436	$34^{\text {th }}$
10.6	8.6	9.8	1.4812318	75.909233	-6.456782	$33^{\text {rd }}$
10.6	8.7	9.8	1.4709815	75.912486	-6.462379	$32^{\text {nd }}$
10.7	8.5	9.5	1.3432905	76.26094	-5.913527	$23^{\text {rd }}$
10.7	8.6	9.5	1.3410445	76.261907	-5.914773	$24^{\text {th }}$
10.7	8.7	9.5	1.3355959	76.263467	-5.917726	$26^{\text {th }}$
10.7	8.8	9.5	1.323322	76.265811	-5.924272	$28^{\text {th }}$
10.7	8.9	9.5	1.2975314	76.269136	-5.937878	$29^{\text {th }}$
10.7	8.5	9.6	1.4047072	76.344424	-5.941551	$5^{\text {th }}$
10.7	8.6	9.6	1.4024629	76.345394	-5.942798	$6^{\text {th }}$
10.7	8.7	9.6	1.397018	76.346958	-5.945751	$9^{\text {th }}$

10.7	8.8	9.6	1.3847513	76.349312	-5.952296	$11^{\text {th }}$
10.7	8.9	9.6	1.3589743	76.352656	-5.965903	$16^{\text {th }}$
10.7	9	9.6	1.3081459	76.357232	-5.992534	27th
10.7	8.5	9.7	1.4559093	76.441561	-5.996307	$18^{\text {th }}$
10.7	8.6	9.7	1.4536665	76.442533	-5.997553	17th
10.7	8.7	9.7	1.4482246	76.444103	-6.000506	$15^{\text {th }}$
10.7	8.8	9.7	1.4359638	76.446469	-6.007052	$14^{\text {th }}$
10.7	8.9	9.7	1.4101982	76.449834	-6.020658	$8^{\text {th }}$
10.7	9	9.7	1.3593907	76.454449	-6.04729	$10^{\text {th }}$
10.7	8.5	9.8	1.450338	76.522753	-6.091824	$22^{\text {nd }}$
10.7	8.6	9.8	1.4480951	76.523728	-6.093071	$21^{\text {st }}$
10.7	8.7	9.8	1.4426542	76.525303	-6.096024	$20^{\text {th }}$
10.7	8.8	9.8	1.4303934	76.527678	-6.10257	19th
10.7	8.9	9.8	1.4046219	76.531061	-6.116176	$13^{\text {th }}$
10.7	9	9.8	1.3538161	76.53571	-6.142807	$4^{\text {th }}$
10.7	9.1	9.8	1.2591734	76.542041	-6.192147	$25^{\text {th }}$
10.7	8.5	9.9	1.3341826	76.556019	-6.248059	$3^{\text {rd }}$
10.7	8.6	9.9	1.3319363	76.556995	-6.249306	$1^{\text {st }}$
10.7	8.7	9.9	1.3264817	76.558572	-6.252259	$2^{\text {nd }}$
10.7	8.8	9.9	1.3142075	76.560951	-6.258804	7th
10.7	8.9	9.9	1.2884169	76.564341	-6.272411	$12^{\text {th }}$
10.8	8.5	9.5	1.1876776	76.799829	-5.721428	$53^{\text {rd }}$
10.8	8.6	9.5	1.1865523	76.800268	-5.722047	$55^{\text {th }}$
10.8	8.7	9.5	1.1837618	76.800995	-5.723549	$56^{\text {th }}$
10.8	8.8	9.5	1.1773288	76.802125	-5.726964	$58^{\text {th }}$
10.8	8.9	9.5	1.1634743	76.803792	-5.73425	$63^{\text {rd }}$
10.8	8.5	9.6	1.2169069	76.845414	-5.740133	$45^{\text {th }}$
10.8	8.6	9.6	1.215782	76.845854	-5.740751	$46^{\text {th }}$

10.8	8.7	9.6	1.2129925	76.846582	-5.742254	$48^{\text {th }}$
10.8	8.8	9.6	1.2065614	76.847714	-5.745668	$50^{\text {th }}$
10.8	8.9	9.6	1.1927103	76.849387	-5.752954	$51^{\text {st }}$
10.8	9	9.6	1.1646703	76.85179	-5.767612	59 ${ }^{\text {th }}$
10.8	8.5	9.7	1.2451362	76.90823	-5.781025	37th
10.8	8.6	9.7	1.2440117	76.908671	-5.781643	$38^{\text {th }}$
10.8	8.7	9.7	1.2412225	76.909401	-5.783146	$40^{\text {th }}$
10.8	8.8	9.7	1.234793	76.910537	-5.786561	42st
10.8	8.9	9.7	1.2209451	76.912217	-5.793846	44th
10.8	9	9.7	1.1929114	76.914634	-5.808504	49th
10.8	9.1	9.7	1.1392176	76.918114	-5.836459	$61^{\text {st }}$
10.8	8.5	9.8	1.2269303	76.956477	-5.853375	$35^{\text {th }}$
10.8	8.6	9.8	1.2258057	76.956918	-5.853994	$36^{\text {th }}$
10.8	8.7	9.8	1.2230171	76.95765	-5.855496	39th
10.8	8.8	9.8	1.2165846	76.958789	-5.858911	$41^{\text {st }}$
10.8	8.9	9.8	1.2027319	76.960474	-5.866196	$43^{\text {rd }}$
10.8	9	9.8	1.1746955	76.962902	-5.880854	47th
10.8	9.1	9.8	1.1209936	76.966402	-5.908809	$60^{\text {th }}$
10.8	9.2	9.8	1.0230571	76.971566	-5.959628	$66^{\text {th }}$
10.8	8.6	9.9	1.1190588	76.966753	-5.974732	$52^{\text {nd }}$
10.8	8.7	9.9	1.1162672	76.967485	-5.976234	$54^{\text {th }}$
10.8	8.8	9.9	1.1098283	76.968624	-5.979649	57th
10.8	8.9	9.9	1.0959632	76.970311	-5.986935	$62^{\text {nd }}$
10.8	9	9.9	1.0679031	76.972741	-6.001592	$64^{\text {th }}$
10.8	9.1	9.9	1.0141575	76.976245	-6.029548	65 ${ }^{\text {th }}$
10.8	9.2	9.9	0.9161431	76.981416	-6.080366	$67^{\text {th }}$
10.9	8.5	9.5	0.8346132	77.142801	-5.624156	$84^{\text {th }}$
10.9	8.6	9.5	0.8340688	77.142992	-5.624452	85 ${ }^{\text {th }}$

10.9	8.7	9.5	0.8326889	77.143317	-5.625189	$86^{\text {th }}$
10.9	8.8	9.5	0.8294327	77.143839	-5.626907	$88^{\text {th }}$
10.9	8.9	9.5	0.8222418	77.144639	-5.630671	$89^{\text {th }}$
10.9	8.5	9.6	0.8382436	77.158089	-5.634482	$79^{\text {th }}$
10.9	8.6	9.6	0.8376994	77.15828	-5.634778	$80^{\text {th }}$
10.9	8.7	9.6	0.8363194	77.158606	-5.635515	$81^{\text {st }}$
10.9	8.8	9.6	0.833063	77.159128	-5.637233	$83^{\text {rd }}$
10.9	8.9	9.6	0.8258725	77.159929	-5.640997	$87^{\text {th }}$
10.9	9	9.6	0.81092	77.161137	-5.648783	$91^{\text {st }}$
10.9	9.1	9.6	0.78145	77.162972	-5.664078	$93^{\text {rd }}$
10.9	8.5	9.7	0.855428	77.200327	-5.664636	$68^{\text {th }}$
10.9	8.6	9.7	0.8548838	77.200518	-5.664932	$69^{\text {th }}$
10.9	8.7	9.7	0.8535041	77.200844	-5.665669	$70^{\text {th }}$
10.9	8.8	9.7	0.8502482	77.201367	-5.667387	$71^{\text {st }}$
10.9	8.9	9.7	0.8430588	77.202171	-5.67115	$76^{\text {th }}$
10.9	9	9.7	0.8281082	77.203384	-5.678937	$78^{\text {th }}$
10.9	9.1	9.7	0.798642	77.205229	-5.694231	$90^{\text {th }}$
10.9	8.5	9.8	0.8346884	77.228567	-5.717859	$72^{\text {nd }}$
10.9	8.6	9.8	0.8341441	77.228759	-5.718155	$73^{\text {rd }}$
10.9	8.7	9.8	0.8327641	77.229085	-5.718892	$74^{\text {th }}$
10.9	8.8	9.8	0.8295083	77.229609	-5.72061	$75^{\text {th }}$
10.9	8.9	9.8	0.8223169	77.230415	-5.724374	$77^{\text {th }}$
10.9	9	9.8	0.807364	77.231631	-5.732161	$82^{\text {nd }}$
10.9	9.1	9.8	0.7778932	77.233482	-5.747455	$92^{\text {nd }}$
10.9	9.2	9.8	0.7225116	77.236374	-5.776129	$94^{\text {th }}$
10.9	9.3	9.8	0.6227652	77.241015	-5.827665	$95^{\text {th }}$
10.9	9.4	9.8	0.5953127	77.248567	-5.916767	$96^{\text {th }}$
11	8.5	9.5	0.3204236	77.325792	-5.600988	$100^{\text {th }}$
1						

11	8.6	9.5	0.3201695	77.325871	-5.601124	101 ${ }^{\text {st }}$
11	8.7	9.5	0.319511	77.326011	-5.601473	$103{ }^{\text {rd }}$
11	8.8	9.5	0.3179197	77.326242	-5.602307	104 ${ }^{\text {th }}$
11	8.9	9.5	0.3143147	77.326611	-5.604183	109 ${ }^{\text {th }}$
11	9	9.5	0.3066098	77.327193	-5.608176	113 ${ }^{\text {th }}$
11	9.1	9.5	0.2909753	77.328126	-5.616256	$116^{\text {th }}$
11	8.5	9.7	0.3149474	77.345766	-5.625708	97 ${ }^{\text {th }}$
11	8.6	9.7	0.3146934	77.345845	-5.625844	98 ${ }^{\text {th }}$
11	8.7	9.7	0.3140345	77.345985	-5.626193	99th
11	8.8	9.7	0.3124437	77.346216	-5.627027	$102{ }^{\text {nd }}$
11	8.9	9.7	0.3088383	77.346586	-5.628903	107 ${ }^{\text {th }}$
11	9	9.7	0.3011333	77.347169	-5.632896	$112^{\text {th }}$
11	9.1	9.7	0.285498	77.348105	-5.640976	$115^{\text {th }}$
11	9.2	9.7	0.2552037	77.349646	-5.656606	$118^{\text {th }}$
11	8.5	9.8	0.2994116	77.364978	-5.66419	105 ${ }^{\text {th }}$
11	8.6	9.8	0.2991575	77.365057	-5.664327	$106^{\text {th }}$
11	8.7	9.8	0.2984985	77.365197	-5.664676	$108^{\text {th }}$
11	8.8	9.8	0.2969069	77.365429	-5.665509	$110^{\text {th }}$
11	8.9	9.8	0.2933017	77.365799	-5.667386	$111^{\text {th }}$
11	9	9.8	0.285595	77.366383	-5.671378	$114^{\text {th }}$
11	9.1	9.8	0.2699586	77.367321	-5.679459	117 ${ }^{\text {th }}$
11	9.2	9.8	0.2396609	77.368867	-5.695088	119 ${ }^{\text {th }}$
11	9.3	9.8	0.1833444	77.371475	-5.7241	$120^{\text {th }}$
11	9.4	9.8	0.1640046	77.375911	-5.77594	121 ${ }^{\text {st }}$
11	9.5	9.8	-0.091494	77.383392	-5.865282	$122^{\text {nd }}$
11.1	8.5	9.5	-0.319597	77.383813	-5.633043	129 ${ }^{\text {th }}$
11.1	8.6	9.5	-0.319712	77.383845	-5.633104	$130^{\text {th }}$
11.1	8.7	9.5	-0.320015	77.383903	-5.633263	131 ${ }^{\text {st }}$

11.1	8.8	9.5	-0.320765	77.384001	-5.633653	$132^{\text {nd }}$
11.1	8.9	9.5	-0.322511	77.384164	-5.634556	$133^{\text {rd }}$
11.1	9	9.5	-0.326346	77.384434	-5.636532	$135^{\text {th }}$
11.1	9.1	9.5	-0.334365	77.384889	-5.640656	$136^{\text {th }}$
11.1	9.2	9.5	-0.350391	77.385679	-5.648886	$138^{\text {th }}$
11.1	8.5	9.7	-0.315535	77.404851	-5.652414	$123^{\text {rd }}$
11.1	8.6	9.7	-0.315649	77.404883	-5.652475	$124^{\text {th }}$
11.1	8.7	9.7	-0.315952	77.404941	-5.652634	$125^{\text {th }}$
11.1	8.8	9.7	-0.316703	77.405039	-5.653024	$126^{\text {th }}$
11.1	8.9	9.7	-0.318448	77.405203	-5.653927	$127^{\text {th }}$
11.1	9	9.7	-0.322284	77.405473	-5.655904	$128^{\text {th }}$
11.1	9.1	9.7	-0.330302	77.40593	-5.660027	$134^{\text {th }}$
11.1	9.2	9.7	-0.346327	77.406722	-5.668258	$137^{\text {th }}$
11.1	9.3	9.7	-0.377085	77.408124	-5.68404	$139^{\text {th }}$
11.1	9.4	9.7	-0.389917	77.41061	-5.71319	$140^{\text {th }}$
11.1	9.5	9.7	-0.535409	77.414963	-5.765141	$141^{\text {st }}$

Table 11 The set of non-inferior solutions for the case of the penalty cost parameters "-15\%".

T^{*}	$w_{2}{ }^{*}$	$w_{1}{ }^{*}$	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.6	8.5	9.7	1.5137638	75.826371	-6.283277	$33^{\text {rd }}$
10.6	8.6	9.7	1.5093455	75.828334	-6.2858	$32^{\text {nd }}$
10.6	8.7	9.7	1.4989443	75.831425	-6.291548	$31^{\text {st }}$
10.6	8.5	9.8	1.5266836	75.948297	-6.41323	$36^{\text {th }}$
10.6	8.6	9.8	1.5222659	75.950268	-6.415753	$35^{\text {th }}$
10.6	8.7	9.8	1.5118682	75.953373	-6.421501	$34^{\text {th }}$
10.7	8.5	9.5	1.3871947	76.304844	-5.869624	$23^{\text {rd }}$
10.7	8.6	9.5	1.3849038	76.305767	-5.870916	$24^{\text {th }}$

10.7	8.7	9.5	1.3793868	76.307258	-5.87394	$25^{\text {th }}$
10.7	8.8	9.5	1.3670187	76.309508	-5.880585	$28^{\text {th }}$
10.7	8.9	9.5	1.3411119	76.312717	-5.894317	$30^{\text {th }}$
10.7	8.5	9.6	1.4448363	76.384553	-5.901423	$4^{\text {th }}$
10.7	8.6	9.6	1.4425471	76.385478	-5.902716	$7^{\text {th }}$
10.7	8.7	9.6	1.4370336	76.386974	-5.90574	$8^{\text {th }}$
10.7	8.8	9.6	1.4246722	76.389233	-5.912385	$12^{\text {th }}$
10.7	8.9	9.6	1.3987781	76.39246	-5.926117	$19^{\text {th }}$
10.7	9	9.6	1.347822	76.396908	-5.952892	27th
10.7	8.5	9.7	1.4912515	76.476903	-5.960965	$16^{\text {th }}$
10.7	8.6	9.7	1.4889637	76.477831	-5.962258	$15^{\text {th }}$
10.7	8.7	9.7	1.4834529	76.479332	-5.965282	$14^{\text {th }}$
10.7	8.8	9.7	1.4710969	76.481602	-5.971927	$11^{\text {th }}$
10.7	8.9	9.7	1.4452132	76.484849	-5.985659	$1^{\text {st }}$
10.7	9	9.7	1.394276	76.489335	-6.012434	$13^{\text {th }}$
10.7	9.1	9.7	1.2995168	76.495484	-6.061922	29 ${ }^{\text {th }}$
10.7	8.5	9.8	1.480076	76.552491	-6.062087	$22^{\text {nd }}$
10.7	8.6	9.8	1.4777878	76.553421	-6.06338	$21^{\text {st }}$
10.7	8.7	9.8	1.4722777	76.554927	-6.066404	$20^{\text {th }}$
10.7	8.8	9.8	1.4599211	76.557206	-6.073049	17th
10.7	8.9	9.8	1.4340302	76.56047	-6.086781	9th
10.7	9	9.8	1.3830925	76.564986	-6.113556	$5^{\text {th }}$
10.7	9.1	9.8	1.2883231	76.571191	-6.163043	$26^{\text {th }}$
10.7	8.5	9.9	1.3579017	76.579738	-6.224341	$2^{\text {nd }}$
10.7	8.6	9.9	1.35561	76.580669	-6.225633	$3^{\text {rd }}$
10.7	8.7	9.9	1.3500858	76.582176	-6.228657	$6^{\text {th }}$
10.7	8.8	9.9	1.337715	76.584458	-6.235302	$10^{\text {th }}$
10.7	8.9	9.9	1.3118037	76.587728	-6.249034	$18^{\text {th }}$

10.8	8.5	9.5	1.217828	76.82998	-5.691278	$54^{\text {th }}$
10.8	8.6	9.5	1.2166828	76.830399	-5.691917	$55^{\text {th }}$
10.8	8.7	9.5	1.2138613	76.831095	-5.693451	$56^{\text {th }}$
10.8	8.8	9.5	1.2073848	76.832181	-5.696912	$57^{\text {th }}$
10.8	8.9	9.5	1.1934755	76.833793	-5.704255	$61^{\text {st }}$
10.8	8.5	9.6	1.2446273	76.873135	-5.712413	$47^{\text {th }}$
10.8	8.6	9.6	1.2434825	76.873554	-5.713052	$48^{\text {th }}$
10.8	8.7	9.6	1.2406619	76.874252	-5.714586	$49^{\text {th }}$
10.8	8.8	9.6	1.2341871	76.87534	-5.718046	$52^{\text {nd }}$
10.8	8.9	9.6	1.2202809	76.876957	-5.72539	$53^{\text {rd }}$
10.8	9	9.6	1.1921796	76.879299	-5.740115	$58^{\text {th }}$
10.8	8.5	9.7	1.2697076	76.932802	-5.756454	$37^{\text {th }}$
10.8	8.6	9.7	1.2685631	76.933222	-5.757093	$39^{\text {th }}$
10.8	8.7	9.7	1.2657427	76.933921	-5.758627	41 st
10.8	8.8	9.7	1.2592693	76.935013	-5.762087	$43^{\text {rd }}$
10.8	8.9	9.7	1.2453661	76.936638	-5.769431	$45^{\text {th }}$
10.8	9	9.7	1.2172703	76.938993	-5.784156	$50^{\text {th }}$
10.8	9.1	9.7	1.1635161	76.942413	-5.812181	$59^{\text {th }}$
10.8	8.5	9.8	1.2477409	76.977288	-5.832565	$38^{\text {th }}$
10.8	8.6	9.8	1.2465962	76.977709	-5.833204	$40^{\text {th }}$
10.8	8.7	9.8	1.2437764	76.978409	-5.834738	$42^{\text {nd }}$
10.8	8.8	9.8	1.2372998	76.979504	-5.838198	$44^{\text {th }}$
10.8	8.9	9.8	1.2233913	76.981133	-5.845542	$46^{\text {th }}$
10.8	9	9.8	1.1952919	76.983498	-5.860267	$51^{\text {st }}$
10.8	9.1	9.8	1.1415281	76.986936	-5.888292	$60^{\text {th }}$
10.8	9.2	9.8	1.0435409	76.992049	-5.939176	$64^{\text {th }}$
10.8	9.3	9.8	0.8724918	76.999873	-6.027696	$66^{\text {th }}$
10.8	9	9.9	1.0843844	76.989222	-5.985118	$62^{\text {nd }}$
1						

10.8	9.1	9.9	1.0305752	76.992663	-6.013144	$63^{\text {rd }}$
10.8	9.2	9.9	0.9325071	76.99778	-6.064028	$65^{\text {th }}$
10.9	8.5	9.5	0.8546143	77.162802	-5.604155	$82^{\text {nd }}$
10.9	8.6	9.5	0.8540614	77.162985	-5.604459	$83{ }^{\text {rd }}$
10.9	8.7	9.5	0.8526681	77.163297	-5.60521	85 ${ }^{\text {th }}$
10.9	8.8	9.5	0.8493925	77.163799	-5.606948	86 ${ }^{\text {th }}$
10.9	8.9	9.5	0.8421769	77.164575	-5.610738	$88^{\text {th }}$
10.9	8.5	9.6	0.8567375	77.176583	-5.615988	$78^{\text {th }}$
10.9	8.6	9.6	0.8561848	77.176766	-5.616293	79th
10.9	8.7	9.6	0.8547913	77.177078	-5.617044	$80^{\text {th }}$
10.9	8.8	9.6	0.8515155	77.17758	-5.618782	$81^{\text {st }}$
10.9	8.9	9.6	0.8443003	77.178357	-5.622571	87 ${ }^{\text {th }}$
10.9	9	9.6	0.8293194	77.179537	-5.630388	89th
10.9	9.1	9.6	0.7998214	77.181344	-5.645715	$92^{\text {nd }}$
10.9	8.5	9.7	0.8719268	77.216825	-5.648137	$67^{\text {th }}$
10.9	8.6	9.7	0.8713741	77.217008	-5.648442	$68^{\text {th }}$
10.9	8.7	9.7	0.8699809	77.217321	-5.649192	69th
10.9	8.8	9.7	0.8667056	77.217824	-5.65093	$70^{\text {th }}$
10.9	8.9	9.7	0.8594912	77.218603	-5.65472	$74^{\text {th }}$
10.9	9	9.7	0.8445121	77.219788	-5.662537	77th
10.9	9.1	9.7	0.8150175	77.221604	-5.677863	90 ${ }^{\text {th }}$
10.9	8.5	9.8	0.8487579	77.242637	-5.70379	$71^{\text {st }}$
10.9	8.6	9.8	0.8482051	77.24282	-5.704095	$72^{\text {nd }}$
10.9	8.7	9.8	0.8468115	77.243133	-5.704845	$73^{\text {rd }}$
10.9	8.8	9.8	0.8435362	77.243637	-5.706583	$75^{\text {th }}$
10.9	8.9	9.8	0.8363198	77.244418	-5.710373	$76^{\text {th }}$
10.9	9	9.8	0.821338	77.245605	-5.71819	$84^{\text {th }}$
10.9	9.1	9.8	0.7918382	77.247427	-5.733516	$91^{\text {st }}$

10.9	9.2	9.8	0.7364319	77.250294	-5.76222	93 rd
10.9	9.3	9.8	0.63667	77.254919	-5.813783	94th
10.9	9.4	9.8	0.6092155	77.26247	-5.902904	95 ${ }^{\text {th }}$
11	8.5	9.5	0.333229	77.338597	-5.588182	97th
11	8.6	9.5	0.3329715	77.338673	-5.588323	99th
11	8.7	9.5	0.3323074	77.338807	-5.588677	$101^{\text {st }}$
11	8.8	9.5	0.3307078	77.33903	-5.589519	$103{ }^{\text {rd }}$
11	8.9	9.5	0.3270921	77.339388	-5.591406	$105^{\text {th }}$
11	9	9.5	0.3193748	77.339958	-5.595412	$112^{\text {th }}$
11	9.1	9.5	0.3037276	77.340879	-5.603507	115 ${ }^{\text {th }}$
11	8.5	9.7	0.325635	77.356453	-5.61502	$96{ }^{\text {th }}$
11	8.6	9.7	0.3253775	77.35653	-5.61516	$98^{\text {th }}$
11	8.7	9.7	0.324713	77.356664	-5.615515	$100^{\text {th }}$
11	8.8	9.7	0.323114	77.356887	-5.616357	$102{ }^{\text {nd }}$
11	8.9	9.7	0.3194978	77.357245	-5.618244	$104^{\text {th }}$
11	9	9.7	0.3117802	77.357816	-5.62225	$111^{\text {th }}$
11	9.1	9.7	0.2961321	77.358739	-5.630345	$114^{\text {th }}$
11	9.2	9.7	0.2658266	77.360269	-5.645988	117 ${ }^{\text {th }}$
11	8.5	9.8	0.3085889	77.374155	-5.655013	$106^{\text {th }}$
11	8.6	9.8	0.3083313	77.374231	-5.655153	107th
11	8.7	9.8	0.3076666	77.374365	-5.655508	$108^{\text {th }}$
11	8.8	9.8	0.3060667	77.374589	-5.65635	109th
11	8.9	9.8	0.3024507	77.374948	-5.658237	$110^{\text {th }}$
11	9	9.8	0.2947314	77.37552	-5.662243	$113^{\text {th }}$
11	9.1	9.8	0.279082	77.376444	-5.670338	$116{ }^{\text {th }}$
11	9.2	9.8	0.2487728	77.377979	-5.68598	$118^{\text {th }}$
11	9.3	9.8	0.1924485	77.38058	-5.715004	$119^{\text {th }}$
11	9.4	9.8	0.1731065	77.385013	-5.766853	$120^{\text {th }}$

11	9.5	9.8	-0.082387	77.392499	-5.856201	$121^{\text {st }}$
11.1	8.5	9.5	-0.31169	77.39172	-5.625136	$128^{\text {th }}$
11.1	8.6	9.5	-0.311806	77.391751	-5.625198	$129^{\text {th }}$
11.1	8.7	9.5	-0.312111	77.391806	-5.625359	$130^{\text {th }}$
11.1	8.8	9.5	-0.312865	77.391901	-5.625753	$131^{\text {st }}$
11.1	8.9	9.5	-0.314615	77.392059	-5.62666	$132^{\text {nd }}$
11.1	9	9.5	-0.318456	77.392324	-5.628642	$134^{\text {th }}$
11.1	9.1	9.5	-0.32648	77.392774	-5.632772	$135^{\text {th }}$
11.1	9.2	9.5	-0.342511	77.393559	-5.641008	$137^{\text {th }}$
11.1	8.5	9.7	-0.308861	77.411525	-5.645741	$122^{\text {nd }}$
11.1	8.6	9.7	-0.308977	77.411556	-5.645803	$123^{\text {rd }}$
11.1	8.7	9.7	-0.309282	77.411611	-5.645964	$124^{\text {th }}$
11.1	8.8	9.7	-0.310036	77.411706	-5.646358	$125^{\text {th }}$
11.1	8.9	9.7	-0.311786	77.411865	-5.647265	$126^{\text {th }}$
11.1	9	9.7	-0.315627	77.41213	-5.649247	$127^{\text {th }}$
11.1	9.1	9.7	-0.32365	77.412581	-5.653376	$133^{\text {rd }}$
11.1	9.2	9.7	-0.339681	77.413368	-5.661613	$136^{\text {th }}$
11.1	9.3	9.7	-0.370442	77.414767	-5.6774	$138^{\text {th }}$
11.1	9.4	9.7	-0.383276	77.417251	-5.706554	$139^{\text {th }}$
11.1	9.5	9.7	-0.528765	77.421607	-5.758507	$140^{\text {th }}$

Table 12 The set of non-inferior solutions for the case of the penalty cost parameters "-20\%".

T^{*}	$w_{2}{ }^{*}$	$w_{1}{ }^{*}$	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.6	8.5	9.7	1.56293596	75.8755427	-6.2341075	$33^{\text {rd }}$
10.6	8.6	9.7	1.55842008	75.8774089	-6.2367308	$32^{\text {nd }}$
10.6	8.7	9.7	1.54787246	75.8803534	-6.2426315	$31^{\text {st }}$
10.6	8.5	9.8	1.56781567	75.9894288	-6.3720998	$37^{\text {th }}$

10.6	8.6	9.8	1.56330003	75.9913017	-6.3747232	$36^{\text {th }}$
10.6	8.7	9.8	1.552755	75.9942595	-6.3806238	$35^{\text {th }}$
10.6	8.8	9.8	1.52978053	75.998612	-6.3931431	$34^{\text {th }}$
10.7	8.5	9.5	1.43109881	76.3487484	-5.8257205	$23^{\text {rd }}$
10.7	8.6	9.5	1.42876317	76.3496261	-5.8270593	$24^{\text {th }}$
10.7	8.7	9.5	1.42317782	76.3510487	-5.8301542	$25^{\text {th }}$
10.7	8.8	9.5	1.41071538	76.3532045	-5.8368987	$26^{\text {th }}$
10.7	8.9	9.5	1.38469233	76.3562973	-5.8507567	$30^{\text {th }}$
10.7	8.5	9.6	1.48496544	76.4246826	-5.8612948	$4^{\text {th }}$
10.7	8.6	9.6	1.48263136	76.4255625	-5.8626336	$5^{\text {th }}$
10.7	8.7	9.6	1.4770492	76.4269896	-5.8657284	$9^{\text {th }}$
10.7	8.8	9.6	1.46459304	76.4291542	-5.8724729	$15^{\text {th }}$
10.7	8.9	9.6	1.43858195	76.4322639	-5.8863309	$21^{\text {st }}$
10.7	9	9.6	1.3874982	76.4365841	-5.9132497	$27^{\text {th }}$
10.7	8.5	9.7	1.52659378	76.5122453	-5.925624	$14^{\text {th }}$
10.7	8.6	9.7	1.52426091	76.5131277	-5.9269628	$13^{\text {th }}$
10.7	8.7	9.7	1.51868121	76.51456	-5.9300576	$10^{\text {th }}$
10.7	8.8	9.7	1.50622991	76.5167348	-5.9368021	$3^{\text {rd }}$
10.7	8.9	9.7	1.48022807	76.519864	-5.9506601	$1^{\text {st }}$
10.7	9	9.7	1.42916135	76.5242201	-5.9775789	$16^{\text {th }}$
10.7	9.1	9.7	1.33427959	76.530247	-6.027214	$29^{\text {th }}$
10.7	8.5	9.8	1.50981397	76.5822293	-6.0323498	$20^{\text {th }}$
10.7	8.6	9.8	1.50748061	76.5831137	-6.0336886	$19^{\text {th }}$
10.7	8.7	9.8	1.50190127	76.5845502	-6.0367834	$18^{\text {th }}$
10.7	8.8	9.8	1.48944868	76.5867332	-6.0435279	$12^{\text {th }}$
10.7	8.9	9.8	1.46343839	76.5898779	-6.0573859	$2^{\text {td }}$
10.7	9	9.8	1.41236881	76.5942625	-6.0843048	$8^{\text {th }}$
10.7	9.1	9.8	1.31747284	76.6003405	-6.1339398	$28^{\text {th }}$
1						

10.7	8.5	9.9	1.3816207	76.6034572	-6.2006222	$6^{\text {th }}$
10.7	8.6	9.9	1.37928362	76.6043423	-6.201961	$7^{\text {th }}$
10.7	8.7	9.9	1.37368989	76.6057799	-6.2050559	$11^{\text {th }}$
10.7	8.8	9.9	1.36122241	76.6079655	-6.2118003	$17^{\text {th }}$
10.7	8.9	9.9	1.33519039	76.6111149	-6.2256583	$22^{\text {nd }}$
10.8	8.5	9.5	1.24797839	76.86013	-5.6611283	$55^{\text {th }}$
10.8	8.6	9.5	1.24681324	76.860529	-5.6617876	$56^{\text {th }}$
10.8	8.7	9.5	1.2439608	76.8611944	-5.6633536	$57^{\text {th }}$
10.8	8.8	9.5	1.2374407	76.8622366	-5.666859	$58^{\text {th }}$
10.8	8.9	9.5	1.22347666	76.8637942	-5.6742612	$60^{\text {th }}$
10.8	8.5	9.6	1.27234766	76.9008549	-5.6846925	$48^{\text {th }}$
10.8	8.6	9.6	1.27118292	76.9012544	-5.6853518	$49^{\text {th }}$
10.8	8.7	9.6	1.26833133	76.9019209	-5.6869179	$50^{\text {th }}$
10.8	8.8	9.6	1.26181286	76.9029657	-5.6904232	$52^{\text {nd }}$
10.8	8.9	9.6	1.24785163	76.9045279	-5.6978254	$54^{\text {th }}$
10.8	9	9.6	1.21968887	76.9068084	-5.7126178	$59^{\text {th }}$
10.8	8.5	9.7	1.2942789	76.9573732	-5.7318826	$38^{\text {th }}$
10.8	8.6	9.7	1.29311447	76.9577735	-5.732542	$39^{\text {th }}$
10.8	8.7	9.7	1.29026289	76.9584416	-5.734108	$41^{\text {st }}$
10.8	8.8	9.7	1.28374567	76.9594897	-5.7376134	$44^{\text {th }}$
10.8	8.9	9.7	1.26978699	76.9610585	-5.7450156	$46^{\text {th }}$
10.8	9	9.7	1.24162911	76.9633516	-5.759808	$51^{\text {st }}$
10.8	9.1	9.7	1.18781466	76.966711	-5.7879037	$61^{\text {st }}$
10.8	8.5	9.8	1.26855144	76.9980983	-5.8117543	$40^{\text {th }}$
10.8	8.6	9.8	1.2673867	76.9984992	-5.8124137	$42^{\text {nd }}$
10.8	8.7	9.8	1.26453568	76.9991685	-5.8139797	$43^{\text {rd }}$
10.8	8.8	9.8	1.25801496	77.000219	-5.8174851	$45^{\text {th }}$
10.8	8.9	9.8	1.24405058	77.0017926	-5.8248873	$47^{\text {th }}$
1						

10.8	9	9.8	1.21588832	77.0040947	-5.8396797	$53^{\text {rd }}$
10.8	9.1	9.8	1.16206266	77.0074708	-5.8677754	$62^{\text {nd }}$
10.8	9.2	9.8	1.06402469	77.0125331	-5.918725	$63^{\text {rd }}$
10.8	9.3	9.8	0.89294643	77.0203279	-6.0072991	$65^{\text {th }}$
10.8	9.2	9.9	0.94887117	77.0141437	-6.0476899	$64^{\text {th }}$
10.9	8.5	9.5	0.87461542	77.1828035	-5.5841537	$81^{\text {st }}$
10.9	8.6	9.5	0.87405407	77.1829774	-5.584467	$82^{\text {nd }}$
10.9	8.7	9.5	0.87264724	77.1832757	-5.5852314	$83^{\text {rd }}$
10.9	8.8	9.5	0.86935239	77.1837586	-5.5869892	$85^{\text {th }}$
10.9	8.9	9.5	0.86211199	77.1845097	-5.5908049	$87^{\text {th }}$
10.9	8.5	9.6	0.87523145	77.1950772	-5.5974944	$77^{\text {th }}$
10.9	8.6	9.6	0.87467017	77.1952512	-5.5978077	$78^{\text {th }}$
10.9	8.7	9.6	0.87326321	77.1955497	-5.5985722	$79^{\text {th }}$
10.9	8.8	9.6	0.8699681	77.1960329	-5.60033	$80^{\text {th }}$
10.9	8.9	9.6	0.86272801	77.1967847	-5.6041456	$86^{\text {th }}$
10.9	9	9.6	0.84771887	77.197936	-5.6119929	$88^{\text {th }}$
10.9	9.1	9.6	0.81819281	77.1997153	-5.6273514	$91^{\text {st }}$
10.9	8.5	9.7	0.88842562	77.2333242	-5.6316381	$66^{\text {th }}$
10.9	8.6	9.7	0.88786443	77.2334985	-5.6319514	$67^{\text {th }}$
10.9	8.7	9.7	0.88645765	77.2337975	-5.6327159	$68^{\text {th }}$
10.9	8.8	9.7	0.88316292	77.2342818	-5.6344737	$69^{\text {th }}$
10.9	8.9	9.7	0.87592361	77.2350359	-5.6382894	$73^{\text {rd }}$
10.9	9	9.7	0.86091601	77.2361917	-5.6461366	$76^{\text {th }}$
10.9	9.1	9.7	0.83139288	77.2379794	-5.6614951	$89^{\text {th }}$
10.9	8.5	9.8	0.86282741	77.2567065	-5.6897205	$70^{\text {th }}$
10.9	8.6	9.8	0.86226606	77.2568809	-5.6900339	$71^{\text {st }}$
10.9	8.7	9.8	0.86085893	77.2571802	-5.6907983	$72^{\text {nd }}$
10.9	8.8	9.8	0.85756413	77.2576653	-5.6925561	$74^{\text {th }}$
10						

10.9	8.9	9.8	0.85032263	77.2584207	-5.6963718	$75^{\text {th }}$
10.9	9	9.8	0.83531205	77.2595792	-5.7042191	$84^{\text {th }}$
10.9	9.1	9.8	0.80578323	77.2613722	-5.7195776	$90^{\text {th }}$
10.9	9.2	9.8	0.75035229	77.2642145	-5.7483119	$92^{\text {nd }}$
10.9	9.3	9.8	0.6505748	77.2688242	-5.7999	$93{ }^{\text {rd }}$
10.9	9.4	9.8	0.62311835	77.2763728	-5.8890403	94 ${ }^{\text {th }}$
11	8.5	9.5	0.34603444	77.3514025	-5.575377	95 ${ }^{\text {th }}$
11	8.6	9.5	0.34577344	77.3514753	-5.5755206	$96^{\text {th }}$
11	8.7	9.5	0.34510368	77.3516036	-5.5758806	97th
11	8.8	9.5	0.34349596	77.3518182	-5.5767311	101 ${ }^{\text {st }}$
11	8.9	9.5	0.33986955	77.3521655	-5.5786295	$103{ }^{\text {rd }}$
11	9	9.5	0.33213976	77.3527229	-5.5826487	109 ${ }^{\text {th }}$
11	9.1	9.5	0.31647997	77.3536309	-5.5907575	$113^{\text {th }}$
11	8.5	9.7	0.33632269	77.3671409	-5.6043326	98 ${ }^{\text {th }}$
11	8.6	9.7	0.33606166	77.3672137	-5.6044763	99th
11	8.7	9.7	0.33539149	77.3673421	-5.6048363	$100^{\text {th }}$
11	8.8	9.7	0.33378425	77.367557	-5.6056868	$102{ }^{\text {nd }}$
11	8.9	9.7	0.33015729	77.3679047	-5.6075851	104 ${ }^{\text {th }}$
11	9	9.7	0.32242713	77.3684631	-5.6116044	111 ${ }^{\text {th }}$
11	9.1	9.7	0.30676613	77.3693728	-5.6197131	$114^{\text {th }}$
11	9.2	9.7	0.27644958	77.3708923	-5.6353694	$116^{\text {th }}$
11	8.5	9.8	0.31776613	77.3833322	-5.6458359	105 ${ }^{\text {th }}$
11	8.6	9.8	0.31750505	77.383405	-5.6459796	$106^{\text {th }}$
11	8.7	9.8	0.31683477	77.3835336	-5.6463396	107th
11	8.8	9.8	0.31522659	77.3837486	-5.6471901	108 ${ }^{\text {th }}$
11	8.9	9.8	0.31159977	77.3840968	-5.6490884	$110^{\text {th }}$
11	9	9.8	0.30386783	77.3846561	-5.6531077	$112^{\text {th }}$
11	9.1	9.8	0.28820535	77.3855678	-5.6612164	115 ${ }^{\text {th }}$

11	9.2	9.8	0.25788468	77.3870908	-5.6768727	117 ${ }^{\text {th }}$
11	9.3	9.8	0.20155256	77.3896836	-5.7059077	$118^{\text {th }}$
11	9.4	9.8	0.18220832	77.394115	-5.7577651	119 ${ }^{\text {th }}$
11	9.5	9.8	-0.0732797	77.4016063	-5.8471192	$120^{\text {th }}$
11.1	8.5	9.5	-0.3037831	77.3996272	-5.6172289	127 ${ }^{\text {th }}$
11.1	8.6	9.5	-0.3039002	77.3996564	-5.6172924	128 ${ }^{\text {th }}$
11.1	8.7	9.5	-0.3042079	77.3997094	-5.617456	129 ${ }^{\text {th }}$
11.1	8.8	9.5	-0.3049651	77.399801	-5.617853	$130^{\text {th }}$
11.1	8.9	9.5	-0.3067192	77.3999551	-5.6187646	131 ${ }^{\text {st }}$
11.1	9	9.5	-0.3105657	77.4002144	-5.6207524	$133{ }^{\text {rd }}$
11.1	9.1	9.5	-0.318595	77.4006587	-5.6248876	$134^{\text {th }}$
11.1	9.2	9.5	-0.3346307	77.4014389	-5.6331297	136 ${ }^{\text {th }}$
11.1	8.5	9.7	-0.3021872	77.4181988	-5.6390671	$121^{\text {st }}$
11.1	8.6	9.7	-0.3023043	77.4182281	-5.6391306	$122^{\text {nd }}$
11.1	8.7	9.7	-0.3026117	77.4182811	-5.6392942	$123{ }^{\text {rd }}$
11.1	8.8	9.7	-0.3033692	77.4183728	-5.6396913	$124^{\text {th }}$
11.1	8.9	9.7	-0.3051234	77.4185272	-5.6406029	125 ${ }^{\text {th }}$
11.1	9	9.7	-0.3089699	77.418787	-5.6425906	$126^{\text {th }}$
11.1	9.1	9.7	-0.3169989	77.4192324	-5.6467258	$132^{\text {nd }}$
11.1	9.2	9.7	-0.3330342	77.4200148	-5.6549679	135 ${ }^{\text {th }}$
11.1	9.3	9.7	-0.3637991	77.4214094	-5.6707602	137th
11.1	9.4	9.7	-0.3766341	77.4238931	-5.6999181	138 ${ }^{\text {th }}$
11.1	9.5	9.7	-0.5221214	77.4282507	-5.7518741	139 ${ }^{\text {th }}$

Table 13 The set of non-inferior solutions for the case of the penalty cost parameters "-25\%".

T^{*}	$w_{2}{ }^{*}$	$w_{1}{ }^{*}$	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.6	8.5	9.7	1.61210809	75.9247148	-6.1849381	$34^{\text {th }}$

10.6	8.6	9.7	1.60749467	75.9264834	-6.1876618	$33^{\text {rd }}$
10.6	8.7	9.7	1.59680063	75.9292816	-6.1937146	$31^{\text {st }}$
10.6	8.8	9.7	1.57362292	75.93341	-6.2064434	$28^{\text {th }}$
10.6	8.5	9.8	1.60894779	76.030561	-6.3309699	$38^{\text {th }}$
10.6	8.6	9.8	1.60433413	76.0323358	-6.3336937	$37^{\text {th }}$
10.6	8.7	9.8	1.59364175	76.0351463	-6.3397465	$36^{\text {th }}$
10.6	8.8	9.8	1.57046671	76.0392982	-6.3524753	$35^{\text {th }}$
10.7	8.5	9.5	1.47500295	76.3926525	-5.7818175	$23^{\text {rd }}$
10.7	8.6	9.5	1.47262252	76.3934854	-5.7832023	$24^{\text {th }}$
10.7	8.7	9.5	1.46696879	76.3948397	-5.7863682	$25^{\text {th }}$
10.7	8.8	9.5	1.45441207	76.3969011	-5.793212	$26^{\text {th }}$
10.7	8.9	9.5	1.42827279	76.3998777	-5.8071959	$30^{\text {th }}$
10.7	8.5	9.6	1.52509454	76.4648117	-5.8211667	$9^{\text {th }}$
10.7	8.6	9.6	1.52271557	76.4656467	-5.8225515	$10^{\text {th }}$
10.7	8.7	9.6	1.5170648	76.4670052	-5.8257174	$13^{\text {th }}$
10.7	8.8	9.6	1.50451392	76.4690751	-5.8325612	$17^{\text {th }}$
10.7	8.9	9.6	1.47838576	76.4720677	-5.8465451	$21^{\text {st }}$
10.7	9	9.6	1.42717437	76.4762603	-5.8736077	$27^{\text {th }}$
10.7	8.5	9.7	1.56193603	76.5475875	-5.8902826	$7^{\text {th }}$
10.7	8.6	9.7	1.55955812	76.548425	-5.8916675	$6^{\text {th }}$
10.7	8.7	9.7	1.55390954	76.5497883	-5.8948333	$4^{\text {th }}$
10.7	8.8	9.7	1.54136295	76.5518679	-5.9016771	$2^{\text {nd }}$
10.7	8.9	9.7	1.51524298	76.5548789	-5.915661	$3^{\text {rd }}$
10.7	9	9.7	1.46404666	76.5591054	-5.9427236	$19^{\text {th }}$
10.7	9.1	9.7	1.36904235	76.5650098	-5.9925064	$32^{\text {nd }}$
10.7	8.5	9.8	1.53955194	76.6119672	-6.0026125	$12^{\text {th }}$
10.7	8.6	9.8	1.53717339	76.6128065	-6.0039974	$11^{\text {th }}$
10.7	8.7	9.8	1.53152482	76.6141737	-6.0071632	$8^{\text {th }}$
10						

10.7	8.8	9.8	1.51897631	76.6162608	-6.0140071	$5^{\text {th }}$
10.7	8.9	9.8	1.49284663	76.6192861	-6.027991	$1^{\text {st }}$
10.7	9	9.8	1.44164516	76.6235389	-6.0550536	$14^{\text {th }}$
10.7	9.1	9.8	1.34662256	76.6294902	-6.1048363	$29^{\text {th }}$
10.7	8.5	9.9	1.40533973	76.6271763	-6.1769037	$15^{\text {th }}$
10.7	8.6	9.9	1.40295728	76.628016	-6.1782886	$16^{\text {th }}$
10.7	8.7	9.9	1.39729397	76.629384	-6.1814545	$18^{\text {th }}$
10.7	8.8	9.9	1.38472986	76.6314729	-6.1882983	$20^{\text {th }}$
10.7	8.9	9.9	1.35857712	76.6345016	-6.2022822	$22^{\text {nd }}$
10.8	8.5	9.5	1.27812876	76.8902804	-5.6309782	$56^{\text {th }}$
10.8	8.6	9.5	1.2769437	76.8906595	-5.6316579	$57^{\text {th }}$
10.8	8.7	9.5	1.27406028	76.8912938	-5.6332558	$58^{\text {th }}$
10.8	8.8	9.5	1.26749665	76.8922926	-5.6368065	$59^{\text {th }}$
10.8	8.9	9.5	1.25347784	76.8937953	-5.6442669	$61^{\text {st }}$
10.8	8.5	9.6	1.30006807	76.9285753	-5.6569724	$49^{\text {th }}$
10.8	8.6	9.6	1.29888339	76.9289549	-5.6576521	$50^{\text {th }}$
10.8	8.7	9.6	1.29600075	76.9295903	-5.65925	$51^{\text {st }}$
10.8	8.8	9.6	1.2894386	76.9305914	-5.6628006	$52^{\text {nd }}$
10.8	8.9	9.6	1.27542232	76.9320986	-5.6702611	$55^{\text {th }}$
10.8	9	9.6	1.24719817	76.9343177	-5.685121	$60^{\text {th }}$
10.8	8.5	9.7	1.31885025	76.9819445	-5.7073115	$39^{\text {th }}$
10.8	8.6	9.7	1.31766583	76.9823248	-5.7079912	$40^{\text {th }}$
10.8	8.7	9.7	1.31478311	76.9829619	-5.7095891	$41^{\text {st }}$
10.8	8.8	9.7	1.30822202	76.983966	-5.7131398	$45^{\text {th }}$
10.8	8.9	9.7	1.29420793	76.9854794	-5.7206003	$47^{\text {th }}$
10.8	9	9.7	1.26598796	76.9877104	-5.7354601	$53^{\text {st }}$
10.8	9.1	9.7	1.21211316	76.9910096	-5.7636261	$62^{\text {nd }}$
10.8	8.5	9.8	1.289362	77.0189089	-5.790944	$42^{\text {nd }}$
1						

10.8	8.6	9.8	1.28817722	77.0192897	-5.7916237	$43^{\text {rd }}$
10.8	8.7	9.8	1.28529495	77.0199278	-5.7932216	$44^{\text {th }}$
10.8	8.8	9.8	1.27873014	77.0209342	-5.7967722	$46^{\text {th }}$
10.8	8.9	9.8	1.26470991	77.0224519	-5.8042327	$48^{\text {th }}$
10.8	9	9.8	1.23648472	77.0246911	-5.8190926	$54^{\text {th }}$
10.8	9.1	9.8	1.18259718	77.0280054	-5.8472586	$63^{\text {rd }}$
10.8	9.2	9.8	1.08450851	77.033017	-5.8982737	$64^{\text {th }}$
10.8	9.3	9.8	0.91340102	77.0407825	-5.9869026	$65^{\text {th }}$
10.9	8.5	9.5	0.89461655	77.2028046	-5.5641526	$80^{\text {th }}$
10.9	8.6	9.5	0.89404669	77.20297	-5.5644746	81 ${ }^{\text {st }}$
10.9	8.7	9.5	0.89262638	77.2032549	-5.5652528	$83^{\text {rd }}$
10.9	8.8	9.5	0.88931224	77.2037185	-5.5670305	$84^{\text {th }}$
10.9	8.9	9.5	0.8820471	77.2044448	-5.5708721	87th
10.9	9	9.5	0.86700943	77.2055666	-5.5787498	90 ${ }^{\text {th }}$
10.9	8.5	9.6	0.89372537	77.2135711	-5.5790005	$76^{\text {th }}$
10.9	8.6	9.6	0.89315557	77.2137366	-5.5793225	77th
10.9	8.7	9.6	0.89173512	77.2140216	-5.5801007	79th
10.9	8.8	9.6	0.88842067	77.2144855	-5.5818784	$82^{\text {nd }}$
10.9	8.9	9.6	0.88115576	77.2152124	-5.58572	$85^{\text {th }}$
10.9	9	9.6	0.86611832	77.2163355	-5.5935977	88 ${ }^{\text {th }}$
10.9	9.1	9.6	0.83656423	77.2180867	-5.6089883	$92^{\text {nd }}$
10.9	8.5	9.7	0.90492444	77.249823	-5.6151394	$66^{\text {th }}$
10.9	8.6	9.7	0.90435472	77.2499888	-5.6154613	$67^{\text {th }}$
10.9	8.7	9.7	0.90293441	77.2502742	-5.6162395	$68^{\text {th }}$
10.9	8.8	9.7	0.8996203	77.2507392	-5.6180172	69th
10.9	8.9	9.7	0.89235604	77.2514683	-5.6218588	$72^{\text {nd }}$
10.9	9	9.7	0.87731991	77.2525956	-5.6297365	$78^{\text {th }}$
10.9	9.1	9.7	0.8477683	77.2543549	-5.6451271	89 ${ }^{\text {th }}$

10.9	9.2	9.7	0.79232418	77.2571639	-5.6738917	$93{ }^{\text {rd }}$
10.9	8.5	9.8	0.87689691	77.270776	-5.6756511	70 ${ }^{\text {th }}$
10.9	8.6	9.8	0.87632701	77.2709418	-5.6759731	$71^{\text {st }}$
10.9	8.7	9.8	0.87490632	77.2712276	-5.6767513	$73^{\text {rd }}$
10.9	8.8	9.8	0.87159207	77.2716932	-5.678529	$74^{\text {th }}$
10.9	8.9	9.8	0.86432548	77.2724235	-5.6823706	$75^{\text {th }}$
10.9	9	9.8	0.84928608	77.2735532	-5.6902483	$86^{\text {th }}$
10.9	9.1	9.8	0.81972825	77.2753172	-5.7056389	$91^{\text {st }}$
10.9	9.2	9.8	0.76427265	77.2781348	-5.7344035	94 ${ }^{\text {th }}$
10.9	9.3	9.8	0.66447961	77.282729	-5.7860173	95 ${ }^{\text {th }}$
10.9	9.4	9.8	0.63702118	77.2902756	-5.875177	$96^{\text {th }}$
11	8.5	9.5	0.35883988	77.364208	-5.5625716	97th
11	8.6	9.5	0.35857539	77.3642772	-5.5627187	98 ${ }^{\text {th }}$
11	8.7	9.5	0.35789999	77.3643999	-5.5630845	99th
11	8.8	9.5	0.35628408	77.3646063	-5.5639433	$100^{\text {th }}$
11	8.9	9.5	0.35264695	77.3649429	-5.5658527	105 ${ }^{\text {th }}$
11	9	9.5	0.34490472	77.3654879	-5.5698852	$110^{\text {th }}$
11	9.1	9.5	0.32923232	77.3663832	-5.578008	115 ${ }^{\text {th }}$
11	8.5	9.7	0.34701033	77.3778285	-5.593645	$101^{\text {st }}$
11	8.6	9.7	0.3467458	77.3778979	-5.5937922	$102{ }^{\text {nd }}$
11	8.7	9.7	0.34606999	77.3780206	-5.5941579	$103{ }^{\text {rd }}$
11	8.8	9.7	0.34445452	77.3782272	-5.5950168	104 ${ }^{\text {th }}$
11	8.9	9.7	0.34081679	77.3785642	-5.5969262	$106^{\text {th }}$
11	9	9.7	0.33307406	77.37911	-5.6009587	$112^{\text {th }}$
11	9.1	9.7	0.3174002	77.3800069	-5.6090815	$116^{\text {th }}$
11	9.2	9.7	0.28707252	77.3815152	-5.6247513	$118^{\text {th }}$
11	8.5	9.8	0.3269434	77.3925094	-5.6366587	107 ${ }^{\text {th }}$
11	8.6	9.8	0.32667882	77.3925788	-5.6368058	108 ${ }^{\text {th }}$

11	8.7	9.8	0.32600289	77.3927017	-5.6371716	109 ${ }^{\text {th }}$
11	8.8	9.8	0.32438646	77.3929085	-5.6380304	111 ${ }^{\text {th }}$
11	8.9	9.8	0.32074882	77.3932458	-5.6399398	$113^{\text {th }}$
11	9	9.8	0.31300423	77.3937925	-5.6439723	$114^{\text {th }}$
11	9.1	9.8	0.29732871	77.3946912	-5.6520951	117 ${ }^{\text {th }}$
11	9.2	9.8	0.26699657	77.3962027	-5.6677649	119th
11	9.3	9.8	0.21065663	77.3987876	-5.6968115	$120^{\text {th }}$
11	9.4	9.8	0.19131019	77.4032169	-5.7486777	$121^{\text {st }}$
11	9.5	9.8	-0.0641724	77.4107136	-5.8380378	$122^{\text {nd }}$
11.1	8.5	9.5	-0.295876	77.4075342	-5.6093218	129th
11.1	8.6	9.5	-0.2959945	77.4075621	-5.6093867	$130^{\text {th }}$
11.1	8.7	9.5	-0.2963045	77.4076128	-5.6095526	131 ${ }^{\text {st }}$
11.1	8.8	9.5	-0.297065	77.4077011	-5.609953	$132^{\text {nd }}$
11.1	8.9	9.5	-0.2988236	77.4078508	-5.6108692	$133{ }^{\text {rd }}$
11.1	9	9.5	-0.3026753	77.4081048	-5.6128624	135 ${ }^{\text {th }}$
11.1	9.1	9.5	-0.3107101	77.4085436	-5.6170036	$136^{\text {th }}$
11.1	9.2	9.5	-0.3267506	77.4093189	-5.6252514	138 ${ }^{\text {th }}$
11.1	8.5	9.7	-0.2955135	77.4248725	-5.6323934	$123{ }^{\text {rd }}$
11.1	8.6	9.7	-0.295632	77.4249003	-5.6324584	$124^{\text {th }}$
11.1	8.7	9.7	-0.2959417	77.4249511	-5.6326242	125 ${ }^{\text {th }}$
11.1	8.8	9.7	-0.2967025	77.4250395	-5.6330247	126 ${ }^{\text {th }}$
11.1	8.9	9.7	-0.2984612	77.4251894	-5.6339408	127 ${ }^{\text {th }}$
11.1	9	9.7	-0.302313	77.4254439	-5.6359341	$128^{\text {th }}$
11.1	9.1	9.7	-0.3103475	77.4258838	-5.6400752	$134^{\text {th }}$
11.1	9.2	9.7	-0.3263878	77.4266611	-5.6483231	137th
11.1	9.3	9.7	-0.3571562	77.4280522	-5.6641203	139 ${ }^{\text {th }}$
11.1	9.4	9.7	-0.3699923	77.4305348	-5.6932822	$140^{\text {th }}$
11.1	9.5	9.7	-0.5154775	77.4348946	-5.7452408	$141^{\text {st }}$

Table 14 The set of non-inferior solutions for the case of the penalty cost parameters "-50\%".

T*	$w_{2}{ }^{*}$	$w_{1}{ }^{*}$	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.6	8.5	9.5	1.7645414	75.989835	-5.7220927	$3^{\text {rd }}$
10.6	8.6	9.5	1.759434	75.991106	-5.7253186	$4^{\text {th }}$
10.6	8.7	9.5	1.747997	75.993151	-5.7321319	9th
10.6	8.5	9.6	1.8245066	76.078432	-5.8116345	$6^{\text {th }}$
10.6	8.6	9.6	1.8194034	76.079707	-5.8148605	$5^{\text {th }}$
10.6	8.7	9.6	1.8079734	76.081762	-5.8216737	$2^{\text {nd }}$
10.6	8.8	9.6	1.7837943	76.084876	-5.8354504	$1^{\text {st }}$
10.6	8.5	9.7	1.8579688	76.170575	-5.9390907	27th
10.6	8.6	9.7	1.8528676	76.171856	-5.9423166	$26^{\text {th }}$
10.6	8.7	9.7	1.8414415	76.173922	-5.9491299	$24^{\text {th }}$
10.6	8.8	9.7	1.8172699	76.177057	-5.9629065	19th
10.6	8.9	9.7	1.7690112	76.181587	-5.989511	$12^{\text {th }}$
10.6	8.5	9.8	1.8146084	76.236222	-6.1253204	$34^{\text {th }}$
10.6	8.6	9.8	1.8095046	76.237506	-6.1285464	$32^{\text {nd }}$
10.6	8.7	9.8	1.7980755	76.23958	-6.1353597	$31^{\text {st }}$
10.6	8.8	9.8	1.7738976	76.242729	-6.1491363	$25^{\text {th }}$
10.7	8.5	9.5	1.6945236	76.612173	-5.5623023	$33^{\text {rd }}$
10.7	8.6	9.5	1.6919193	76.612782	-5.5639174	35th
10.7	8.7	9.5	1.6859236	76.613795	-5.5674381	$36^{\text {th }}$
10.7	8.8	9.5	1.6728955	76.615385	-5.5747787	37th
10.7	8.9	9.5	1.6461751	76.61778	-5.589392	39th
10.7	9	9.5	1.5943127	76.621313	-5.6171737	$42^{\text {nd }}$
10.7	8.5	9.6	1.7257401	76.665457	-5.6205262	$20^{\text {th }}$
10.7	8.6	9.6	1.7231366	76.666068	-5.6221413	$21^{\text {st }}$
10.7	8.7	9.6	1.7171428	76.667083	-5.625662	$22^{\text {nd }}$

10.7	8.8	9.6	1.7041183	76.668679	-5.6330026	$23^{\text {rd }}$
10.7	8.9	9.6	1.6774048	76.671087	-5.6476159	$30^{\text {th }}$
10.7	9	9.6	1.6255552	76.674641	-5.6753976	$38^{\text {th }}$
10.7	8.5	9.7	1.7386473	76.724299	-5.7135758	$7^{\text {th }}$
10.7	8.6	9.7	1.7360442	76.724911	-5.7151909	$10^{\text {th }}$
10.7	8.7	9.7	1.7300512	76.72593	-5.7187116	$13^{\text {th }}$
10.7	8.8	9.7	1.7170282	76.727533	-5.7260522	$15^{\text {th }}$
10.7	8.9	9.7	1.6903175	76.729953	-5.7406655	$17^{\text {th }}$
10.7	9	9.7	1.6384732	76.733532	-5.7684472	$28^{\text {th }}$
10.7	9.1	9.7	1.5428562	76.738824	-5.8189685	$40^{\text {th }}$
10.7	8.5	9.8	1.6882418	76.760657	-5.8539264	$8^{\text {th }}$
10.7	8.6	9.8	1.6856373	76.76127	-5.8555415	$11^{\text {th }}$
10.7	8.7	9.8	1.6796426	76.762291	-5.8590622	$14^{\text {th }}$
10.7	8.8	9.8	1.6666144	76.763899	-5.8664029	$16^{\text {th }}$
10.7	8.9	9.8	1.6398878	76.766327	-5.8810162	$18^{\text {th }}$
10.7	9	9.8	1.5880269	76.769921	-5.9087978	$29^{\text {th }}$
10.7	9.1	9.8	1.4923711	76.775239	-5.9593191	$41^{\text {st }}$
10.8	8.5	9.5	1.4288806	77.041032	-5.480228	$59^{\text {th }}$
10.8	8.6	9.5	1.427596	77.041312	-5.4810093	$60^{\text {th }}$
10.8	8.7	9.5	1.4245577	77.041791	-5.4827665	$61^{\text {st }}$
10.8	8.8	9.5	1.4177764	77.042572	-5.4865437	$63^{\text {rd }}$
10.8	8.9	9.5	1.4034837	77.043801	-5.4942955	$65^{\text {th }}$
10.8	9	9.5	1.3749507	77.045708	-5.5094927	$67^{\text {th }}$
10.8	8.5	9.6	1.4386701	77.067177	-5.5183719	$52^{\text {nd }}$
10.8	8.6	9.6	1.4373857	77.067457	-5.5191532	$53^{\text {rd }}$
10.8	8.7	9.6	1.4343478	77.067937	-5.5209103	$54^{\text {th }}$
10.8	8.8	9.6	1.4275673	77.06872	-5.5246876	$56^{\text {th }}$
10.9	9.6	1.4132757	77.069952	-5.5324393	$58^{\text {th }}$	

10.8	9	9.6	1.3847446	77.071864	-5.5476366	$64^{\text {th }}$
10.8	9.1	9.6	1.3305662	77.074846	-5.5761538	69th
10.8	8.5	9.7	1.441707	77.104801	-5.5844562	$43^{\text {rd }}$
10.8	8.6	9.7	1.4404226	77.105082	-5.5852375	$44^{\text {th }}$
10.8	8.7	9.7	1.4373842	77.105563	-5.5869946	45 ${ }^{\text {th }}$
10.8	8.8	9.7	1.4306038	77.106348	-5.5907719	$46^{\text {th }}$
10.8	8.9	9.7	1.4163126	77.107584	-5.5985236	$50^{\text {th }}$
10.8	9	9.7	1.3877822	77.109505	-5.6137209	57th
10.8	9.1	9.7	1.3336057	77.112502	-5.6422381	66th
10.8	9.4	9.7	1.0277215	77.137014	-5.9308218	71 ${ }^{\text {st }}$
10.8	8.5	9.8	1.3934148	77.122962	-5.6868924	47 ${ }^{\text {th }}$
10.8	8.6	9.8	1.3921298	77.123242	-5.6876737	48 ${ }^{\text {th }}$
10.8	8.7	9.8	1.3890913	77.123724	-5.6894308	49th
10.8	8.8	9.8	1.382306	77.12451	-5.6932081	51st
10.8	8.9	9.8	1.3680065	77.125749	-5.7009598	$55^{\text {th }}$
10.8	9	9.8	1.3394667	77.127673	-5.7161571	$62^{\text {nd }}$
10.8	9.1	9.8	1.2852698	77.130678	-5.7446743	$68^{\text {th }}$
10.8	9.2	9.8	1.1869276	77.135436	-5.7960172	$70^{\text {th }}$
10.8	9.3	9.8	1.015674	77.143056	-5.8849199	$72^{\text {nd }}$
10.9	8.5	9.5	0.9946222	77.30281	-5.4641475	$80^{\text {th }}$
10.9	8.6	9.5	0.9940098	77.302933	-5.4645126	82 ${ }^{\text {nd }}$
10.9	8.7	9.5	0.9925221	77.303151	-5.4653596	85 ${ }^{\text {th }}$
10.9	8.8	9.5	0.9891115	77.303518	-5.4672366	88 ${ }^{\text {th }}$
10.9	8.9	9.5	0.9817227	77.30412	-5.4712078	$92^{\text {nd }}$
10.9	9	9.5	0.9665444	77.305102	-5.4792377	95 ${ }^{\text {th }}$
10.9	8.5	9.6	0.9861949	77.306041	-5.4865314	$83^{\text {rd }}$
10.9	8.6	9.6	0.9855826	77.306164	-5.4868965	$84^{\text {th }}$
10.9	8.7	9.6	0.9840946	77.306381	-5.4877435	86 ${ }^{\text {th }}$

10.9	8.8	9.6	0.9806835	77.306748	-5.4896205	89 ${ }^{\text {th }}$
10.9	8.9	9.6	0.9732945	77.307351	-5.4935917	$93{ }^{\text {rd }}$
10.9	9	9.6	0.9581155	77.308333	-5.5016216	$96^{\text {th }}$
10.9	9.1	9.6	0.9284213	77.309944	-5.5171727	99th
10.9	8.5	9.7	0.9874185	77.332317	-5.5326457	$73^{\text {rd }}$
10.9	8.6	9.7	0.9868062	77.33244	-5.5330108	$74{ }^{\text {th }}$
10.9	8.7	9.7	0.9853182	77.332658	-5.5338578	$75^{\text {th }}$
10.9	8.8	9.7	0.9819072	77.333026	-5.5357348	$76{ }^{\text {th }}$
10.9	8.9	9.7	0.9745182	77.33363	-5.539706	77th
10.9	9	9.7	0.9593394	77.334615	-5.5477359	$90^{\text {th }}$
10.9	9.1	9.7	0.9296454	77.336232	-5.563287	97th
10.9	9.2	9.7	0.874083	77.338923	-5.5922033	$100^{\text {th }}$
10.9	9.4	9.7	0.7468236	77.350958	-5.7332019	$102{ }^{\text {nd }}$
10.9	8.5	9.8	0.9472444	77.341123	-5.605304	$78^{\text {th }}$
10.9	8.6	9.8	0.9466318	77.341247	-5.6056691	$79^{\text {th }}$
10.9	8.7	9.8	0.9451433	77.341465	-5.6065161	$81^{\text {st }}$
10.9	8.8	9.8	0.9417317	77.341833	-5.6083931	87th
10.9	8.9	9.8	0.9343397	77.342438	-5.6123643	$91^{\text {st }}$
10.9	9	9.8	0.9191562	77.343423	-5.6203942	$94^{\text {th }}$
10.9	9.1	9.8	0.8894533	77.345042	-5.6359453	98 ${ }^{\text {th }}$
10.9	9.2	9.8	0.8338744	77.347737	-5.6648616	101 ${ }^{\text {st }}$
10.9	9.3	9.8	0.7340037	77.352253	-5.7166036	$104^{\text {th }}$
10.9	9.4	9.8	0.7065353	77.35979	-5.8058602	$103{ }^{\text {rd }}$
11	8.5	9.5	0.4228671	77.428235	-5.4985445	105 ${ }^{\text {th }}$
11	8.6	9.5	0.4225851	77.428287	-5.4987093	106 ${ }^{\text {th }}$
11	8.7	9.5	0.4218816	77.428382	-5.4991036	107 ${ }^{\text {th }}$
11	8.8	9.5	0.4202247	77.428547	-5.5000043	$108^{\text {th }}$
11	8.9	9.5	0.416534	77.42883	-5.5019692	109th

11	9	9.5	0.4087295	77.429313	-5.5060676	$114^{\text {th }}$
11	9.1	9.5	0.3929941	77.430145	-5.5142609	$122^{\text {nd }}$
11	9.2	9.5	0.362616	77.431597	-5.5299982	$126^{\text {th }}$
11	9.3	9.5	0.3062572	77.434139	-5.5591024	129 ${ }^{\text {th }}$
11	9.5	9.5	0.0315437	77.44606	-5.7004029	$132^{\text {nd }}$
11	8.5	9.7	0.4004485	77.431267	-5.5402069	$110^{\text {th }}$
11	8.6	9.7	0.4001665	77.431319	-5.5403717	111 ${ }^{\text {th }}$
11	8.7	9.7	0.3994625	77.431413	-5.540766	$112^{\text {th }}$
11	8.8	9.7	0.3978059	77.431579	-5.5416668	$113^{\text {th }}$
11	8.9	9.7	0.3941143	77.431862	-5.5436316	115 ${ }^{\text {th }}$
11	9	9.7	0.3863087	77.432345	-5.54773	119 ${ }^{\text {th }}$
11	9.1	9.7	0.3705706	77.433177	-5.5559234	$124^{\text {th }}$
11	9.2	9.7	0.3401872	77.43463	-5.5716606	127 ${ }^{\text {th }}$
11	9.5	9.7	0.0090612	77.449101	-5.7420654	$133{ }^{\text {rd }}$
11	8.5	9.8	0.3728298	77.438396	-5.5907724	$116^{\text {th }}$
11	8.6	9.8	0.3725477	77.438448	-5.5909372	117 ${ }^{\text {th }}$
11	8.7	9.8	0.3718435	77.438542	-5.5913315	118 ${ }^{\text {th }}$
11	8.8	9.8	0.3701858	77.438708	-5.5922322	$120^{\text {th }}$
11	8.9	9.8	0.3664941	77.438991	-5.5941971	121 ${ }^{\text {st }}$
11	9	9.8	0.3586862	77.439474	-5.5982955	$123{ }^{\text {rd }}$
11	9.1	9.8	0.3429455	77.440308	-5.6064888	125 ${ }^{\text {th }}$
11	9.2	9.8	0.312556	77.441762	-5.622226	128 ${ }^{\text {th }}$
11	9.3	9.8	0.256177	77.444308	-5.6513303	$130^{\text {th }}$
11	9.4	9.8	0.2368195	77.448726	-5.7032406	131 ${ }^{\text {st }}$
11	9.5	9.8	-0.0186362	77.45625	-5.7926308	134 ${ }^{\text {th }}$
11.1	8.5	9.5	-0.2563406	77.44707	-5.5697864	$140^{\text {th }}$
11.1	8.6	9.5	-0.256466	77.447091	-5.5698583	$141^{\text {st }}$
11.1	8.7	9.5	-0.2567873	77.44713	-5.5700356	$142^{\text {nd }}$

11.1	8.8	9.5	-0.2575645	77.447202	-5.570453	$143^{\text {rd }}$
11.1	8.9	9.5	-0.2593453	77.447329	-5.5713919	$145^{\text {th }}$
11.1	9	9.5	-0.2632234	77.447557	-5.5734126	$146^{\text {th }}$
11.1	9.1	9.5	-0.2712856	77.447968	-5.5775835	$148^{\text {th }}$
11.1	9.2	9.5	-0.2873503	77.448719	-5.5858602	$150^{\text {th }}$
11.1	8.5	9.7	-0.2621452	77.458241	-5.5990251	$135^{\text {th }}$
11.1	8.6	9.7	-0.2622705	77.458262	-5.599097	$136^{\text {th }}$

Appendix C

Appendix c contains the sets of non-inferior solutions for the three sensitivity analysis cases conducted on chapter five, "multi-objective process targeting model with sampling plan error-free inspection system". The three sensitivity analysis cases are conducted on the parameters, the process standard deviation σ, the cost parameters ($\mathrm{c}, \mathrm{g}, \mathrm{R}$ and I) and the sampling plan parameters $\left(\mathrm{n}, d_{1}\right.$ and $\left.d_{2}\right)$.

Tables from 1 to 6 give the set non-inferior solutions for each case of change in the process standard deviation.

Table 1 The set of non-inferior solutions for the case of the process standard deviation "+25\%".

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
11.1	10.07472601	77.08842988	-6.642660803	$3^{\text {rd }}$
11.2	9.826429212	77.1907462	-6.193699062	$1^{\text {st }}$
11.3	9.301315744	77.17004416	-6.047053157	$2^{\text {nd }}$

Table 2 The set of non-inferior solutions for the case of the process standard deviation "+50\%".

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
11.3	8.355732176	76.64641191	-7.05725555	$3^{\text {rd }}$
11.4	8.094171794	76.72193444	-6.629192048	$1^{\text {st }}$
11.5	7.595742405	76.70234241	-6.457740837	$2^{\text {nd }}$
11.6	6.962265828	76.61637574	-6.431747957	$4^{\text {th }}$

Table 3 The set of non-inferior solutions for the case of the process standard deviation "+75\%".

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
11.5	6.66639708	76.22292492	-7.444326095	$2^{\text {nd }}$
11.6	6.382860945	76.2721561	-7.046868637	$1^{\text {st }}$
11.7	5.897128526	76.24670817	-6.866258977	$3^{\text {rd }}$
11.8	5.285839051	76.16563256	-6.819991542	$4^{\text {th }}$

Table 4 The set of non-inferior solutions for the case of the process standard deviation -25\%".

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.7	13.65979111	78.07480013	-5.668341674	$3^{\text {rd }}$
10.8	13.34754949	78.19930768	-5.280750716	$1^{\text {st }}$
10.9	12.70027655	78.12441887	-5.259194178	$2^{\text {nd }}$

Table 5 the set of non-inferior solutions for the case of the process standard deviation "-50\%".

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.5	15.5644735	78.66354526	-5.069315758	$2^{\text {nd }}$
10.6	15.09869166	78.72272001	-4.848154617	$1^{\text {st }}$

Table 6 The set of non-inferior solutions for the case of the process standard deviation "-75\%".

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.3	17.49710676	79.32102114	-4.456025046	$1^{\text {st }}$

Tables from 7 to 6 give the set non-inferior solutions for each case of change in the cost parameters.

Table 7 The set of non-inferior solutions for the case of the cost parameters "+5\%".

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.9	8.455403447	77.46401177	-6.450326342	$2^{\text {nd }}$
11	8.171237462	77.57921514	-6.010780861	$1^{\text {st }}$
11.1	7.5625362	77.53450984	-5.918399995	$3^{\text {rd }}$

Table 8 The set of non-inferior solutions for the case of the cost parameters "+10\%".

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.9	5.074441551	77.36917408	-6.714147274	$2^{\text {nd }}$
11	4.762366971	77.47548644	-6.280702365	$1^{\text {st }}$
11.1	4.117763726	77.42173611	-6.19445751	$3^{\text {rd }}$

Table 9 The set of non-inferior solutions for the case of the cost parameters "+15\%".

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.9	1.693479654	77.27433639	-6.977968206	$1^{\text {st }}$
11	1.35349648	77.37175774	-6.550623869	$2^{\text {nd }}$
11.1	0.672991253	77.30896238	-6.470515025	$3^{\text {rd }}$

Table 10 The set of non-inferior solutions for the case of the cost parameters "+20\%".

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.9	-1.687482242	77.1794987	-7.241789138	$1^{\text {st }}$
11	-2.055374012	77.26802904	-6.820545373	$2^{\text {nd }}$
11.1	-2.77178122	77.19618865	-6.74657254	$3^{\text {rd }}$

Table 11 The set of non-inferior solutions for the case of the cost parameters "+25\%".

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.9	-5.068444139	77.08466101	-7.50561007	$1^{\text {st }}$
11	-5.464244503	77.16430035	-7.090466876	$2^{\text {nd }}$
11.1	-6.216553694	77.08341492	-7.022630055	$3^{\text {rd }}$

Table 12 The set of non-inferior solutions for the case of the cost parameters "+50\%".

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.9	-21.97325362	76.61047255	-8.824714731	$2^{\text {nd }}$
11	-22.50859696	76.64565686	-8.440074395	$1^{\text {st }}$
11.1	-23.44041606	76.51954628	-8.402917629	$3^{\text {rd }}$

Table 13 The set of non-inferior solutions for the case of the cost parameters "-5\%".

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.9	15.21732724	77.65368715	-5.922684478	$3^{\text {rd }}$
11	14.98897844	77.78667253	-5.470937854	$1^{\text {st }}$
11.1	14.45208115	77.76005729	-5.366284965	$2^{\text {nd }}$

Table 14 The set of non-inferior solutions for the case of the cost parameters "10\%".

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.9	18.59828914	77.74852484	-5.658863546	$3^{\text {rd }}$
11	18.39784894	77.89040123	-5.20101635	$1^{\text {st }}$
11.1	17.89685362	77.87283102	-5.09022745	$2^{\text {nd }}$

Table 15 The set of non-inferior solutions for the case of the cost parameters "15\%".

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.9	21.97925103	77.84336253	-5.395042613	$3^{\text {rd }}$
11	21.80671943	77.99412993	-4.931094846	$1^{\text {st }}$
11.1	21.34162609	77.98560475	-4.814169935	$2^{\text {nd }}$

Table 16 The set of non-inferior solutions for the case of the cost parameters "20\%".

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.9	25.36021293	77.93820022	-5.131221681	$3^{\text {rd }}$
11	25.21558992	78.09785862	-4.661173342	$1^{\text {st }}$
11.1	24.78639857	78.09837848	-4.53811242	$2^{\text {nd }}$

Table 17 The set of non-inferior solutions for the case of the cost parameters "25\%".

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.9	28.74117483	78.03303791	-4.867400749	$3^{\text {rd }}$
11	28.62446041	78.20158732	-4.391251839	$2^{\text {nd }}$
11.1	28.23117104	78.21115221	-4.262054905	$1^{\text {st }}$

Table 17 The set of non-inferior solutions for the case of the cost parameters "50\%".

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
11	45.66881287	78.72023081	-3.04164432	$3^{\text {rd }}$
11.1	45.45503341	78.77502085	-2.88176733	$1^{\text {st }}$
11.2	45.13323419	78.74536234	-2.863589664	$2^{\text {nd }}$

Tables from 19 to 44 give the set non-inferior solutions for each case of change in the sampling plan parameters.

Table 19 The set of non-inferior solutions for the case of the sampling plan $\mathbf{n = 1 0}$ and $\left(\mathbf{d}_{1}, \mathbf{d}_{2}\right)=(\mathbf{0}, \mathbf{1})$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
11.2	9.360474119	76.77561268	-6.655982416	$2^{\text {nd }}$
11.3	9.042489841	76.92723085	-6.298109225	$1^{\text {st }}$
11.4	8.501254315	76.94108915	-6.177481789	$3^{\text {rd }}$

Table 20 The set of non-inferior solutions for the case of the sampling plan $\mathbf{n = 1 0}$ and $\left(d_{1}, d_{2}\right)=(0,2)$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
11.1	9.753242295	76.39321719	-6.898224109	$3^{\text {rd }}$
11.2	9.53641877	76.76067507	-6.453546915	$1^{\text {st }}$
11.3	9.101314997	76.92211925	-6.230768263	$2^{\text {nd }}$
11.4	8.519387855	76.93952299	-6.156901291	$4^{\text {th }}$

Table 21 The set of non-inferior solutions for the case of the sampling plan $\mathbf{n = 1 0}$ and $\left(\mathbf{d}_{1}, \mathbf{d}_{2}\right)=(0,3)$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
11.1	9.77129749	76.39178637	-6.877317149	$3^{\text {rd }}$
11.2	9.540285505	76.76034678	-6.44908508	$1^{\text {st }}$
11.3	9.102048908	76.92205548	-6.229927306	$2^{\text {nd }}$
11.4	8.519511692	76.9395123	-6.156760703	$4^{\text {th }}$

Table 22 The set of non-inferior solutions for the case of the sampling plan $\mathbf{n = 1 0}$ and $\left(d_{1}, d_{2}\right)=(1,3)$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.8	12.18375682	77.09782023	-6.466255673	$4^{\text {th }}$
10.9	12.09350013	77.53273739	-5.878449542	$1^{\text {st }}$
11	11.65217974	77.67550697	-5.65486333	$2^{\text {nd }}$
11.1	11.02499717	77.64548605	-5.62143552	$3^{\text {rd }}$

Table 23 The set of non-inferior solutions for the case of the sampling plan $\mathbf{n = 1 0}$ and $\left(d_{1}, d_{2}\right)=(1,4)$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.8	12.26386554	77.09026018	-6.369701878	$4^{\text {th }}$
10.9	12.11019388	77.53104214	-5.85835768	$1^{\text {st }}$
11	11.65511223	77.67520438	-5.651359889	$2^{\text {nd }}$
11.1	11.02543349	77.64544172	-5.62091966	$3^{\text {rd }}$

Table 24 The set of non-inferior solutions for the case of the sampling plan $\mathbf{n = 1 0}$ and $\left(d_{1}, d_{2}\right)=(2,3)$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.7	13.26242657	77.87013541	-6.113472421	$3^{\text {rd }}$
10.8	13.10326887	78.01733228	-5.546749215	$1^{\text {st }}$
10.9	12.55039299	77.98963025	-5.420989624	$2^{\text {nd }}$

Table 25 The set of non-inferior solutions for the case of the sampling plan $\mathbf{n = 1 0}$ and $\left(d_{1}, d_{2}\right)=(2,4)$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.7	13.57646639	77.83578515	-5.728152316	$2^{\text {nd }}$
10.8	13.18213576	78.00853039	-5.45019542	$1^{\text {st }}$

10.9	12.56695834	77.9878066	-5.400897762	3 3rd

Table 26 The set of non-inferior solutions for the case of the sampling plan $\mathbf{n = 1 0}$ and $\left(d_{1}, d_{2}\right)=(3,4)$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.6	14.33949263	78.15612992	-5.667376398	$2^{\text {nd }}$
10.7	13.95437091	78.21368967	-5.349963065	$1^{\text {st }}$
10.8	13.32410365	78.15049828	-5.308036399	$3^{\text {rd }}$

Table 27 The set of non-inferior solutions for the case of the sampling plan $\mathrm{n}=15$ and $\left(\mathbf{d}_{1}, \mathbf{d}_{2}\right)=(\mathbf{0}, \mathbf{1})$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
11.2	8.744479718	76.41928726	-7.294068097	$4^{\text {th }}$
11.3	8.736985786	76.71593105	-6.605187458	$2^{\text {nd }}$
11.4	8.347186725	76.8231002	-6.325299884	$1^{\text {st }}$
11.5	7.758694927	76.80175157	-6.255269059	$3^{\text {rd }}$

Table 28 The set of non-inferior solutions for the case of the sampling plan $\mathbf{n = 1 5}$ and $\left(d_{1}, d_{2}\right)=(0,2)$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
11.2	9.142436937	76.38809215	-6.84076428	$3^{\text {rd }}$
11.3	8.871735463	76.70473266	-6.451686605	$1^{\text {st }}$
11.4	8.389062904	76.81957049	-6.277889096	$2^{\text {nd }}$
11.5	7.770678497	76.80075482	-6.241826845	$4^{\text {th }}$

Table 29 The set of non-inferior solutions for the case of the sampling plan $\mathrm{n}=15$ and $\left(\mathbf{d}_{1}, \mathbf{d}_{2}\right)=(0,3)$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE

11.1	9.157758964	75.79076508	-7.483816658	$5^{\text {th }}$
11.2	9.156596674	76.38698219	-6.824528632	$3^{\text {rd }}$
11.3	8.874463958	76.70450591	-6.448571601	$1^{\text {st }}$
11.4	8.389527443	76.81953134	-6.277362808	$2^{\text {nd }}$
11.5	7.770748677	76.80074899	-6.241748107	$4^{\text {th }}$

Table 30 The set of non-inferior solutions for the case of the sampling plan $\mathbf{n = 1 5}$ and $\left(d_{1}, d_{2}\right)=(1,2)$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
11	11.13211418	77.45151326	-6.213513937	$3^{\text {rd }}$
11.1	10.84852833	77.55049018	-5.799741391	$1^{\text {st }}$
11.2	10.24449243	77.49014764	-5.735878891	$2^{\text {nd }}$

Table 31 The set of non-inferior solutions for the case of the sampling plan $\mathbf{n = 1 5}$ and $\left(d_{1}, d_{2}\right)=(1,3)$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.9	11.45855927	76.99695957	-6.52013588	$4^{\text {th }}$
11	11.3775661	77.42731479	-5.922886479	$1^{\text {st }}$
11.1	10.91122914	77.54423525	-5.725828834	$2^{\text {nd }}$
11.2	10.25840192	77.48878744	-5.719643243	$3^{\text {rd }}$

Table 32 The set of non-inferior solutions for the case of the sampling plan $\mathbf{n = 1 5}$ and $\left(d_{1}, d_{2}\right)=(1,4)$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.9	11.54990293	76.98859681	-6.411374261	$4^{\text {th }}$
11	11.39463373	77.42563214	-5.902589276	$1^{\text {st }}$
11.1	10.91387843	77.54397096	-5.722702448	$2^{\text {nd }}$
11.2	10.25874674	77.48875372	-5.719240666	$3^{\text {rd }}$

Table 33 The set of non-inferior solutions for the case of the sampling plan $\mathbf{n = 1 5}$ and $\left(d_{1}, d_{2}\right)=(2,3)$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.8	12.40218186	77.72568937	-6.312950355	$3^{\text {rd }}$
10.9	12.34760583	77.88600613	-5.630515426	$1^{\text {st }}$
11	11.79631618	77.84606487	-5.503233813	$2^{\text {nd }}$

Table 34 The set of non-inferior solutions for the case of the sampling plan $\mathbf{n = 1 5}$ and $\left(d_{1}, d_{2}\right)=(2,4)$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.8	12.79389989	77.68442364	-5.839468984	$2^{\text {nd }}$
10.9	12.43759694	77.87629082	-5.521753807	$1^{\text {st }}$
11	11.81326494	77.84426335	-5.48293661	$3^{\text {rd }}$

Table 35 The set of non-inferior solutions for the case of the sampling plan $\mathbf{n = 1 5}$ and $\left(d_{1}, d_{2}\right)=(3,4)$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.7	13.44030909	78.004418	-5.914977208	$3^{\text {rd }}$
10.8	13.20034592	78.09086967	-5.432521854	$1^{\text {st }}$
10.9	12.58096026	78.01965413	-5.378079369	$2^{\text {nd }}$

Table 36 The set of non-inferior solutions for the case of the sampling plan $\mathbf{n = 2 0}$ and $\left(\mathbf{d}_{1}, \mathbf{d}_{2}\right)=(\mathbf{0}, \mathbf{1})$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
11.3	8.405659994	76.51153815	-6.941653628	$3^{\text {rd }}$
11.4	8.184904886	76.70733943	-6.482698061	$1^{\text {st }}$
11.5	7.676400607	76.73992795	-6.329197102	$2^{\text {nd }}$
11.6	7.022580119	76.66877679	-6.328003508	$4^{\text {th }}$

Table 37 The set of non-inferior solutions for the case of the sampling plan n=20and $\left(\mathbf{d}_{1}, \mathbf{d}_{2}\right)=(0,2)$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
11.2	8.753126819	76.031185	-7.225249485	$4^{\text {th }}$
11.3	8.645135666	76.49251677	-6.670303649	$2^{\text {nd }}$
11.4	8.259910745	76.70117058	-6.397997562	$1^{\text {st }}$
11.5	7.697967041	76.73815734	-6.305036827	$3^{\text {rd }}$

Table 38 The set of non-inferior solutions for the case of the sampling plan $\mathbf{n = 2 0}$ and $\left(\mathbf{d}_{1}, \mathbf{d}_{2}\right)=(0,3)$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
11.2	8.787386522	76.02871098	-7.186211357	$4^{\text {th }}$
11.3	8.651838223	76.49198439	-6.662679231	$1^{\text {st }}$
11.4	8.261062202	76.70107588	-6.39669571	$2^{\text {nd }}$
11.5	7.698141892	76.73814298	-6.304840879	$3^{\text {rd }}$

Table 39 The set of non-inferior solutions for the case of the sampling plan $\mathbf{n = 2 0}$ and $\left(d_{1}, d_{2}\right)=(1,2)$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
11.1	10.61357049	77.4250351	-6.040739284	$1^{\text {st }}$
11.2	10.1637556	77.44181378	-5.810152878	$2^{\text {nd }}$

Table 40 The set of non-inferior solutions for the case of the sampling plan $\mathbf{n = 2 0}$ and $\left(d_{1}, d_{2}\right)=(1,3)$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
11	11.01133371	77.11539346	-6.287607158	$3^{\text {rd }}$
11.1	10.76062865	77.41072445	-5.868072466	$1^{\text {st }}$
11.2	10.1972451	77.43856956	-5.771114749	$2^{\text {nd }}$

Table 41 The set of non-inferior solutions for the case of the sampling plan $\mathbf{n = 2 0}$ and $\left(d_{1}, d_{2}\right)=(1,4)$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
11	11.06566177	77.11034998	-6.223393792	$2^{\text {nd }}$
11.1	10.76941823	77.40986911	-5.857725789	$1^{\text {st }}$
11.2	10.19842084	77.43845566	-5.769743438	$3^{\text {rd }}$

Table 42 The set of non-inferior solutions for the case of the sampling plan $\mathbf{n = 2 0}$ and $\left(d_{1}, d_{2}\right)=(2,3)$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.9	11.94056178	77.71513527	-6.068296461	$3^{\text {rd }}$
11	11.68716532	77.79122507	-5.610220254	$1^{\text {st }}$
11.1	11.05264501	77.70274081	-5.575079744	$2^{\text {nd }}$

Table 43 The set of non-inferior solutions for the case of the sampling plan $\mathbf{n = 2 0}$ and $\left(d_{1}, d_{2}\right)=(2,4)$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.9	12.20852788	77.68717252	-5.746797985	$1^{\text {st }}$
11	11.74088638	77.78557459	-5.546006889	$2^{\text {nd }}$

Table 44 The set of non-inferior solutions for the case of the sampling plan $\mathbf{n = 2 0}$ and $\left(d_{1}, d_{2}\right)=(3,4)$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.8	12.87093703	77.96007474	-5.788951635	$2^{\text {nd }}$
10.9	12.50780416	77.98644881	-5.446779763	$1^{\text {st }}$

Appendix D

Appendix D contains the sets of non-inferior solutions for the sensitivity analysis case conducted on chapter six, "multi-objective process targeting model with sampling plan error-prone inspection system". The sensitivity analysis conducted on that chapter is on 48 different combinations of type I and type II errors.

Tables from 1 to 7 give the set non-inferior solutions seven different probabilities of type II error, while type I error probability is $\boldsymbol{e}_{\mathbf{1}}=\mathbf{0}$

Table 1 The set of non-inferior solutions $\boldsymbol{e}_{2}=0$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.9	11.83636534	77.55884946	-6.18650541	$3^{\text {rd }}$
11	11.58010795	77.68294383	-5.740859358	$1^{\text {st }}$
11.1	11.00730867	77.64728356	-5.64234248	$2^{\text {nd }}$

Table 2 The set of non-inferior solutions $\boldsymbol{e}_{2}=0.01$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.9	11.85324691	77.56727199	-6.168226926	$3^{\text {rd }}$
11	11.58629229	77.68676201	-5.734287174	$1^{\text {st }}$
11.1	11.00942879	77.64882447	-5.640134637	$2^{\text {nd }}$

Table 3 The set of non-inferior solutions $\boldsymbol{e}_{2}=0.05$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.9	11.91874836	77.60042383	-6.097352844	$3^{\text {rd }}$
11	11.61030315	77.70174185	-5.708796153	$1^{\text {st }}$

11.1	11.01766782	77.65485607	-5.631562559	$2^{\text {nd }}$

Table 4 The set of non-inferior solutions $\boldsymbol{e}_{2}=\mathbf{0 . 1}$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.9	11.9961083	77.6406154	-6.0137623	$2^{\text {nd }}$
11	11.6386958	77.7197957	-5.6787105	$1^{\text {st }}$
11.1	11.0274275	77.6620953	-5.6214258	$3^{\text {rd }}$

Table 5 The set of non-inferior solutions $\boldsymbol{e}_{2}=0.15$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.9	12.06851167	77.67936055	-5.935666905	$2^{\text {nd }}$
11	11.66530939	77.73708494	-5.650573686	$1^{\text {st }}$
11.1	11.03659453	77.66899603	-5.611923423	$3^{\text {rd }}$

Table 6 The set of non-inferior solutions $\boldsymbol{e}_{2}=0.2$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.8	12.14222604	77.48589247	-6.58944645	4th
10.9	12.13602774	77.7165932	-5.86299356	$2^{\text {nd }}$
11	11.69016788	77.75358872	-5.62435584	$1^{\text {st }}$
11.1	11.04517588	77.67555278	-5.60304672	$3^{\text {rd }}$

Table 7 The set of non-inferior solutions $\boldsymbol{e}_{\mathbf{2}}=0.25$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.8	12.30080469	77.55808261	-6.416513524	4th
10.9	12.19872859	77.75224463	-5.795662874	$1^{\text {st }}$
11	11.71329611	77.76928571	-5.60002589	$2^{\text {nd }}$

11.1	11.05317866	77.68176014	-5.594786633	3 rd

Tables from 8 to 14 give the set non-inferior solutions seven different probabilities of type II error, while type I error probability is $\boldsymbol{e}_{\mathbf{1}}=\mathbf{0 . 0 1}$

Table 8 The set of non-inferior solutions $\boldsymbol{e}_{2}=0$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.9	11.30587	77.31458	-6.76223	4 th
11	11.2433	77.49357	-6.10149	$2^{\text {nd }}$
11.1	10.79213	77.50691	-5.8691	$1^{\text {st }}$
11.2	10.15981	77.42343	-5.83446	$3^{\text {rd }}$

Table 9 The set of non-inferior solutions $\boldsymbol{e}_{2}=\mathbf{0 . 0 1}$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.9	11.32838	77.32427	-6.73778	4th
11	11.25277	77.4985	-6.0913	$1^{\text {st }}$
11.1	10.79609	77.50928	-5.86489	$2^{\text {nd }}$
11.2	10.1615	77.42454	-5.83269	$3^{\text {rd }}$

Table 10 The set of non-inferior solutions $\boldsymbol{e}_{2}=0.05$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.9	11.41626	77.36259	-6.64233	4th
11	11.28985	77.51799	-6.05142	$1^{\text {st }}$
11.1	10.81166	77.51867	-5.84837	$2^{\text {nd }}$
11.2	10.16814	77.42895	-5.82571	$3^{\text {rd }}$

Table 11 The set of non-inferior solutions $\boldsymbol{e}_{2}=0.1$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE

10.9	11.5213	77.40952	-6.52825	4th
11	11.33443	77.54181	-6.00353	$1^{\text {st }}$
11.1	10.83051	77.53017	-5.82838	$2^{\text {nd }}$
11.2	10.17625	77.43437	-5.81721	$3^{\text {rd }}$

Table 12 The set of non-inferior solutions $\boldsymbol{e}_{2}=0.15$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.9	11.62105	77.45531	-6.41996	$3^{\text {rd }}$
11	11.37704	77.56504	-5.95779	$1^{\text {st }}$
11.1	10.84867	77.5414	-5.80914	$2^{\text {nd }}$
11.2	10.18414	77.43969	-5.80895	$4^{\text {th }}$

Table 13 The set of non-inferior solutions $\boldsymbol{e}_{\mathbf{2}}=0.2$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.9	11.71557	77.49992	-6.31742	$3^{\text {rd }}$
11	11.41772	77.58764	-5.9142	$1^{\text {st }}$
11.1	10.86617	77.55236	-5.79063	$2^{\text {nd }}$

Table 14 The set of non-inferior solutions $\boldsymbol{e}_{2}=0.25$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
10.9	11.80492	77.54329	-6.22057	$2^{\text {nd }}$
11	11.45647	77.6096	-5.87272	$1^{\text {st }}$
11.1	10.88299	77.56304	-5.77285	$3^{\text {rd }}$

Tables from 14 to 21 give the set non-inferior solutions seven different probabilities of type II error, while type I error probability is $\boldsymbol{e}_{\mathbf{1}}=\mathbf{0 . 0 5}$

Table 15 The set of non-inferior solutions $e_{2}=0$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
11.1	8.427359	76.52136	-8.40026	$2^{\text {nd }}$
11.2	8.14389	76.52859	-7.98265	$1^{\text {st }}$
11.3	7.641951	76.45911	-7.80053	$3^{\text {rd }}$
11.4	7.013931	76.34143	-7.7548	$4^{\text {th }}$

Table 16 The set of non-inferior solutions $\boldsymbol{e}_{2}=\mathbf{0 . 0 1}$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
11.1	8.440416	76.52562	-8.38642	$2^{\text {nd }}$
11.2	8.150784	76.53097	-7.97534	$1^{\text {st }}$
11.3	7.645589	76.4604	-7.79668	$3^{\text {rd }}$
11.4	7.015833	76.34211	-7.7528	$4^{\text {th }}$

Table 17 The set of non-inferior solutions $\boldsymbol{e}_{2}=0.05$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
11.1	8.492287	76.54263	-8.33141	$2^{\text {nd }}$
11.2	8.178235	76.54047	-7.94624	$1^{\text {st }}$
11.3	7.660102	76.46557	-7.78135	$3^{\text {rd }}$
11.4	7.023429	76.34484	-7.74482	$4^{\text {th }}$

The 18 the set of non-inferior solutions $e_{2}=0.1$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
11	8.573064	76.47001	-8.96787	$4^{\text {th }}$
11.1	8.556324	76.56379	-8.26344	$2^{\text {nd }}$
11.2	8.212275	76.55231	-7.91013	$1^{\text {st }}$
11.3	7.678155	76.47202	-7.76227	$3^{\text {rd }}$

11.4	7.032898	76.34826	-7.73486	$5^{\text {th }}$

Table 19 The set of non-inferior solutions $\boldsymbol{e}_{2}=0.15$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
11	8.691677	76.50659	-8.84235	$4^{\text {th }}$
11.1	8.619473	76.58486	-8.19635	$2^{\text {nd }}$
11.2	8.246012	76.56411	-7.87434	$1^{\text {st }}$
11.3	7.696111	76.47845	-7.74329	$3^{\text {rd }}$
11.4	7.042337	76.35167	-7.72493	$5^{\text {th }}$

Table 20 The set of non-inferior solutions $\boldsymbol{e}_{2}=0.2$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
11	8.807857	76.54295	-8.71917	$4^{\text {th }}$
11.1	8.681736	76.60582	-8.13014	$1^{\text {st }}$
11.2	8.279445	76.57587	-7.83885	$2^{\text {nd }}$
11.3	7.71397	76.48488	-7.7244	$3^{\text {rd }}$
11.4	7.051748	76.35508	-7.71503	$5^{\text {th }}$

Table 21 The set of non-inferior solutions $\boldsymbol{e}_{2}=0.25$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
11	8.921619	76.57907	-8.59834	$3^{\text {rd }}$
11.1	8.743116	76.62668	-8.06482	$1^{\text {st }}$
11.2	8.312576	76.5876	-7.80366	$2^{\text {nd }}$
11.3	7.731732	76.49129	-7.70562	$4^{\text {th }}$
11.4	7.061129	76.35848	-7.70516	$5^{\text {th }}$

Tables from 22 to 28 give the set non-inferior solutions seven different probabilities of type II error, while type I error probability is $\boldsymbol{e}_{\mathbf{1}}=\mathbf{0 . 1}$

Table 22 The set of non-inferior solutions $e_{2}=0$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
11.2	1.551619	74.89266	-14.5677	$1^{\text {st }}$
11.3	1.340049	74.86548	-14.0983	$2^{\text {nd }}$
11.4	0.880425	74.78455	-13.865	$3^{\text {rd }}$
11.5	0.271272	74.67018	-13.7753	$4^{\text {th }}$
11.6	-0.42587	74.53588	-13.7705	$5^{\text {th }}$

Table 23 The set of non-inferior solutions $\boldsymbol{e}_{\mathbf{2}} \mathbf{= 0 . 0 1}$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
11.2	1.566841	74.89559	-14.5535	$1^{\text {st }}$
11.3	1.348401	74.86711	-14.0905	$2^{\text {nd }}$
11.4	0.884912	74.78542	-13.8608	$3^{\text {rd }}$
11.5	0.273618	74.67064	-13.7731	$4^{\text {th }}$
11.6	-0.42469	74.5361	-13.7694	$5^{\text {th }}$

Table 24 The set of non-inferior solutions $\boldsymbol{e}_{2}=0.05$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
11.2	1.627573	74.90733	-14.4968	$1^{\text {st }}$
11.3	1.381762	74.87364	-14.0593	$2^{\text {nd }}$
11.4	0.902846	74.78893	-13.844	$3^{\text {rd }}$
11.5	0.283001	74.67246	-13.7644	$4^{\text {th }}$

Table 25 The set of non-inferior solutions $\boldsymbol{e}_{2}=\mathbf{0 . 1}$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
11.2	1.703138	74.92199	-14.4262	$1^{\text {st }}$
11.3	1.42335	74.8818	-14.0203	$2^{\text {nd }}$
11.4	0.925229	74.79332	-13.8231	$3^{\text {rd }}$
11.5	0.294719	74.67473	-13.7534	$4^{\text {th }}$

Table 26 The set of non-inferior solutions $\boldsymbol{e}_{2}=0.15$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
11.2	1.778315	74.93663	-14.3558	$1^{\text {st }}$
11.3	1.464814	74.88995	-13.9814	$2^{\text {nd }}$
11.4	0.947575	74.7977	-13.8022	$3^{\text {rd }}$
11.5	0.306427	74.67701	-13.7425	$4^{\text {th }}$

Table 27 The set of non-inferior solutions $\boldsymbol{e}_{\mathbf{2}}=0.2$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
11.1	1.89618	74.93871	-14.9167	$2^{\text {nd }}$
11.2	1.853107	74.95126	-14.2856	$1^{\text {st }}$
11.3	1.506154	74.8981	-13.9425	$3^{\text {rd }}$
11.4	0.969883	74.80209	-13.7813	$4^{\text {th }}$
11.5	0.318125	74.67928	-13.7316	$5^{\text {th }}$

Table 28 The set of non-inferior solutions $\boldsymbol{e}_{2}=0.25$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
11.1	2.027957	74.96406	-14.7938	$2^{\text {nd }}$
11.2	1.927512	74.96587	-14.2158	$1^{\text {st }}$
11.3	1.54737	74.90624	-13.9038	$3^{\text {rd }}$

11.4	0.992154	74.80647	-13.7604	$4^{\text {th }}$
11.5	0.329812	74.68156	-13.7207	$5^{\text {th }}$

Tables from 29 to 35 give the set non-inferior solutions seven different probabilities of type II error, while type I error probability is $\boldsymbol{e}_{\mathbf{1}}=\mathbf{0 . 1 5}$

Table 29 The set of non-inferior solutions $e_{2}=0$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
11.3	-10.7319	73.0165	-24.0286	$1^{\text {st }}$
11.4	-11.0358	72.96396	-23.6728	$2^{\text {nd }}$
11.5	-11.5814	72.87685	-23.4954	$3^{\text {rd }}$
11.6	-12.2705	72.76909	-23.4248	$4^{\text {th }}$
11.7	-13.0419	72.64951	-23.4158	$5^{\text {th }}$

Table 30 The set of non-inferior solutions $\boldsymbol{e}_{\mathbf{2}}=\mathbf{0 . 0 1}$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
11.3	-10.7173	73.01833	-24.0181	$1^{\text {st }}$
11.4	-11.0279	72.96495	-23.6671	$2^{\text {nd }}$
11.5	-11.5773	72.87737	-23.4924	$3^{\text {rd }}$
11.6	-12.2684	72.76935	-23.4233	$4^{\text {th }}$
11.7	-13.0408	72.64964	-23.4151	$5^{\text {th }}$

Table 31 The set of non-inferior solutions $\boldsymbol{e}_{2}=\mathbf{0 . 0 5}$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
11.2	-10.6924	73.02998	-24.5776	$3^{\text {rd }}$
11.3	-10.659	73.02567	-23.9761	$1^{\text {st }}$
11.4	-10.9963	72.96891	-23.6443	$2^{\text {nd }}$

11.5	-11.5606	72.87943	-23.4804	$4^{\text {th }}$
11.6	-12.2599	72.77039	-23.4172	$5^{\text {th }}$
11.7	-13.0367	72.65014	-23.4121	$6^{\text {th }}$

Table 32 The set of non-inferior solutions $\boldsymbol{e}_{2}=0.1$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
11.2	-10.5617	73.04641	-24.4842	$3^{\text {rd }}$
11.3	-10.5863	73.03485	-23.9236	$1^{\text {st }}$
11.4	-10.9569	72.97385	-23.6158	$2^{\text {nd }}$
11.5	-11.5399	72.882	-23.4654	$4^{\text {th }}$
11.6	-12.2493	72.77168	-23.4096	$5^{\text {th }}$
11.7	-13.0315	72.65076	-23.4084	$6^{\text {th }}$

Table 33 The set of non-inferior solutions $\boldsymbol{e}_{2}=0.15$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
11.2	-10.4316	73.06281	-24.391	$2^{\text {nd }}$
11.3	-10.5137	73.04401	-23.8712	$1^{\text {st }}$
11.4	-10.9174	72.9788	-23.5873	$3^{\text {rd }}$
11.5	-11.5191	72.88458	-23.4505	$4^{\text {th }}$
11.6	-12.2387	72.77298	-23.402	$5^{\text {th }}$

Table 34 The set of non-inferior solutions $\boldsymbol{e}_{2}=0.2$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
11.2	-10.302	73.0792	-24.2979	$2^{\text {nd }}$
11.3	-10.4413	73.05317	-23.8189	$1^{\text {st }}$
11.4	-10.8781	72.98375	-23.5588	$3^{\text {rd }}$
11.5	-11.4983	72.88716	-23.4356	$4^{\text {th }}$

11.6	-12.2282	72.77427	-23.3945	$5^{\text {th }}$

Table 35 The set of non-inferior solutions $\boldsymbol{e}_{2}=\mathbf{0 . 2 5}$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
11.2	-10.1729	73.09558	-24.2049	$1^{\text {st }}$
11.3	-10.3691	73.06233	-23.7666	$2^{\text {nd }}$
11.4	-10.8388	72.98869	-23.5304	$3^{\text {rd }}$
11.5	-11.4776	72.88973	-23.4206	$4^{\text {th }}$
11.6	-12.2176	72.77556	-23.3869	$5^{\text {th }}$

Tables from 36 to 42 give the set non-inferior solutions seven different probabilities of type II error, while type I error probability is $\boldsymbol{e}_{\mathbf{1}}=\mathbf{0 . 2}$

Table 36 The set of non-inferior solutions $e_{2}=0$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
11.3	-30.857	70.89631	-35.9077	$1^{\text {st }}$
11.4	-31.0009	70.87233	-35.5081	$2^{\text {nd }}$
11.5	-31.5113	70.81087	-35.2901	$3^{\text {rd }}$
11.6	-32.24	70.72705	-35.1817	$4^{\text {th }}$
11.7	-33.0941	70.63042	-35.1368	$5^{\text {th }}$
11.8	-34.0177	70.52676	-35.1275	$6^{\text {th }}$

Table 37 The set of non-inferior solutions $\boldsymbol{e}_{2}=\mathbf{0 . 0 1}$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
11.3	-30.8333	70.89848	-35.8963	$1^{\text {st }}$
11.4	-30.988	70.87351	-35.5018	$2^{\text {nd }}$
11.5	-31.5045	70.81149	-35.2868	$3^{\text {rd }}$
11.6	-32.2365	70.72736	-35.18	$4^{\text {th }}$

11.7	-33.0924	70.63057	-35.136	$5^{\text {th }}$
11.8	-34.0169	70.52683	-35.1271	6th $^{\text {th }}$

Table 38 The set of non-inferior solutions $\boldsymbol{e}_{2}=0.05$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
11.3	-30.7384	70.90717	-35.8504	$1^{\text {st }}$
11.4	-30.9364	70.8782	-35.4767	$2^{\text {nd }}$
11.5	-31.4773	70.81394	-35.2735	$3^{\text {rd }}$
11.6	-32.2226	70.72859	-35.1733	$4^{\text {th }}$
11.7	-33.0856	70.63117	-35.1327	$5^{\text {th }}$
11.8	-34.0136	70.52711	-35.1256	$6^{\text {th }}$

Table 39 The set of non-inferior solutions $\boldsymbol{e}_{\mathbf{2}}=\mathbf{0 . 1}$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
11.3	-30.62	70.91803	-35.793	$1^{\text {st }}$
11.4	-30.872	70.88406	-35.4454	$2^{\text {nd }}$
11.5	-31.4433	70.81699	-35.257	$3^{\text {rd }}$
11.6	-32.2053	70.73013	-35.1649	$4^{\text {th }}$
11.7	-33.077	70.63192	-35.1286	$5^{\text {th }}$
11.8	-34.0096	70.52746	-35.1236	$6^{\text {th }}$

Table 40 The set of non-inferior solutions $\boldsymbol{e}_{\mathbf{2}}=\mathbf{0 . 1 5}$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
11.3	-30.5019	70.92887	-35.7356	$1^{\text {st }}$
11.4	-30.8077	70.88992	-35.414	$2^{\text {nd }}$
11.5	-31.4093	70.82005	-35.2405	$3^{\text {rd }}$
11.6	-32.1879	70.73168	-35.1565	$4^{\text {th }}$

11.7	-33.0685	70.63267	-35.1245	$5^{\text {th }}$
11.8	-34.0055	70.52781	-35.1217	$6^{\text {th }}$

Table 41 The set of non-inferior solutions $\boldsymbol{e}_{\mathbf{2}}=0.2$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
11.3	-30.3841	70.9397	-35.6783	$1^{\text {st }}$
11.4	-30.7434	70.89578	-35.3827	$2^{\text {nd }}$
11.5	-31.3754	70.82311	-35.224	$3^{\text {rd }}$
11.6	-32.1706	70.73322	-35.1481	$4^{\text {th }}$
11.7	-33.0599	70.63342	-35.1204	$5^{\text {th }}$
11.8	-34.0015	70.52816	-35.1198	$6^{\text {th }}$

Table 42 The set of non-inferior solutions $\boldsymbol{e}_{\mathbf{2}}=\mathbf{0 . 2 5}$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
11.2	-30.2554	70.95692	-36.0899	$3^{\text {rd }}$
11.3	-30.2665	70.95052	-35.6209	$1^{\text {st }}$
11.4	-30.6793	70.90163	-35.3513	$2^{\text {nd }}$
11.5	-31.3415	70.82617	-35.2075	$4^{\text {th }}$
11.6	-32.1533	70.73476	-35.1397	$5^{\text {th }}$
11.7	-33.0514	70.63416	-35.1163	$6^{\text {th }}$

Tables from 43 to 49 give the set non-inferior solutions seven different probabilities of type II error, while type I error probability is $\boldsymbol{e}_{\mathbf{1}}=\mathbf{0 . 2 5}$

Table 43 The set of non-inferior solutions $e_{2}=0$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
11.4	-63.3472	68.26897	-47.6209	$1^{\text {st }}$

11.5	-63.8471	68.23486	-47.4011	$2^{\text {nd }}$
11.6	-64.6769	68.17417	-47.2796	$3^{\text {rd }}$
11.7	-65.6964	68.09827	-47.2154	$4^{\text {th }}$
11.8	-66.821	68.014	-47.1833	$5^{\text {th }}$
11.9	-68.0015	67.92534	-47.1687	$6^{\text {th }}$
12	-69.2104	67.83445	-47.1636	$7^{\text {th }}$
12.1	-70.4332	67.74247	-47.1635	$8^{\text {th }}$

Table 44 The set of non-inferior solutions $\boldsymbol{e}_{2}=0.01$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
11.4	-63.3263	68.27051	-47.6149	$1^{\text {st }}$
11.5	-63.8361	68.23566	-47.3979	$2^{\text {nd }}$
11.6	-64.6713	68.17457	-47.278	$3^{\text {rd }}$
11.7	-65.6936	68.09846	-47.2146	$4^{\text {th }}$
11.8	-66.8197	68.0141	-47.1829	$5^{\text {th }}$
11.9	-68.0009	67.92538	-47.1686	6 $^{\text {th }}$
12	-69.2101	67.83446	-47.1635	$7^{\text {th }}$

Table 45 The set of non-inferior solutions $\boldsymbol{e}_{2}=\mathbf{0 . 0 5}$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
11.3	-63.2086	68.27261	-47.9479	$3^{\text {rd }}$
11.4	-63.2427	68.27664	-47.5908	$1^{\text {st }}$
11.5	-63.792	68.23887	-47.3852	$2^{\text {nd }}$
11.6	-64.6487	68.17619	-47.2715	$4^{\text {th }}$
11.7	-65.6825	68.09925	-47.2114	$5^{\text {th }}$
11.8	-66.8144	68.01447	-47.1814	6 $^{\text {th }}$
11.9	-67.9984	67.92555	-47.1679	$7^{\text {th }}$

12	-69.2091	67.83454	-47.1632	$8^{\text {th }}$

Table 46 The set of non-inferior solutions $\boldsymbol{e}_{2}=0.1$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
11.3	-63.017	68.28679	-47.893	$3^{\text {rd }}$
11.4	-63.1384	68.2843	-47.5606	$1^{\text {st }}$
11.5	-63.7369	68.24287	-47.3693	$2^{\text {nd }}$
11.6	-64.6206	68.17821	-47.2634	$4^{\text {th }}$
11.7	-65.6687	68.10023	-47.2075	$5^{\text {th }}$
11.8	-66.8078	68.01493	-47.1796	$6^{\text {th }}$
11.9	-67.9954	67.92576	-47.167	$7^{\text {th }}$
12	-69.2077	67.83463	-47.1628	$8^{\text {th }}$

Table 47 The set of non-inferior solutions $\boldsymbol{e}_{2}=0.15$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
11.3	-62.8259	68.30094	-47.8381	$2^{\text {nd }}$
11.4	-63.0341	68.29195	-47.5305	$1^{\text {st }}$
11.5	-63.6818	68.24687	-47.3533	$3^{\text {rd }}$
11.6	-64.5924	68.18023	-47.2553	$4^{\text {th }}$
11.7	-65.6548	68.10122	-47.2035	$5^{\text {th }}$
11.8	-66.8012	68.01539	-47.1777	6 $^{\text {th }}$
11.9	-67.9924	67.92597	-47.1662	$7^{\text {th }}$
12	-69.2064	67.83472	-47.1625	8 $^{\text {th }}$

Table 48 The set of non-inferior solutions $\boldsymbol{e}_{2}=0.2$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
11.3	-62.6352	68.31508	-47.7831	$2^{\text {nd }}$

11.4	-62.93	68.2996	-47.5004	$1^{\text {st }}$
11.5	-63.6267	68.25087	-47.3374	$3^{\text {rd }}$
11.6	-64.5643	68.18225	-47.2473	$4^{\text {th }}$
11.7	-65.6409	68.1022	-47.1996	$5^{\text {th }}$
11.8	-66.7946	68.01585	-47.1758	$6^{\text {th }}$
11.9	-67.9894	67.92617	-47.1653	$7^{\text {th }}$
12	-69.2051	67.83481	-47.1621	$8^{\text {th }}$

Table 49 The set of non-inferior solutions $\boldsymbol{e}_{2}=0.25$

T	PROFIT	INCOME	UNIFORMITY	PREFERENCE
11.3	-62.4449	68.32919	-47.7281	$1^{\text {st }}$
11.4	-62.8261	68.30724	-47.4702	$2^{\text {nd }}$
11.5	-63.5717	68.25487	-47.3215	$3^{\text {rd }}$
11.6	-64.5362	68.18427	-47.2392	$4^{\text {th }}$
11.7	-65.6271	68.10319	-47.1956	$5^{\text {th }}$
11.8	-66.7881	68.01631	-47.174	6 $^{\text {th }}$
11.9	-67.9864	67.92638	-47.1645	$7^{\text {th }}$
12	-69.2037	67.8349	-47.1617	8 $^{\text {th }}$

REFERENCES

Al-Sultan, K. S., 1994. An algorithm for the determination of the optimal target values of two machines in series with quality sampling plan. International Journal of Production Research, 32, pp 37-45.

Al-Sultan, K. S. and Al-Fawzan, M. A., 1997a. An extension of Rahim and Banerjee's model for a process with upper and lower specification limits. International Journal of Production Economics, 53, pp 265-280.

Al-Sultan, K. S. and Al-Fawzan, M. A., 1997b. Process improvement by variance reduction in a process in a linear drift. International journal of Production Research, 35, pp 1523-1533.

Al-Sultan, K. S. and Al-Fawzan, M. A., 1998. Determination of the optimal process means and production cycles for multistage production systems subject to process deterioration. Production Planning Control, 9(1), pp 66-73.

Arcelus, F. J., 1996. Uniformity of production vs. conformance to specifications in the canning problem. In : Al-Sultan, K. S. and Rahim, M.A.,(Eds), Optimization in Quality Control, Kluwer Academic Publishers,1996, pp 243-258.

Arcelus, F. J. and Rahim, M. A., 1994. Simultaneous economic selection of a variable and attribute target mean. Journal of Quality Technology, 26, pp 125-130.

Arcelus, F. J. and Rahim, M. A., 1996. Reducing performance variation in the canning problem. European Journal of Operational Research, 94, pp 477-487.

Bai, D. S. and Lee, M. K., 1993. Optimal target values for a filling process when inspection is based on a correlated variable. International Journal of Production Economics, 32, pp 327-334.

Besterfield, D. H., Besterfield-Michina, C., Besterfield, G. H. and Besterfield-Sacre, M., 2003. Total Quality Management, $3^{\text {rd }}$ edition.

Bettes, D., 1962. Finding an optimum target value in relation to a fixed lower limit and arbitrary upper limit. Applied Statistics, 11, pp 202-210

Bisgaard, Hunter, W. and Pallensen, L., 1984. Economic selection of quality of manufactured products. Technology Metrics, 26, pp 9-18.

Boucher, T. and Jafari, M., 1991. The optimum target value for single filling operations with quality sampling plans. Journal of Quality Technology, 23, pp 44-47.

Bowling, R., Khassawneh, M.T., Kaewkuekool, S. and Cho, B. R., 2004.Markovian approach to determining optimum process target levels for a multi stage serial production system. European Journal of Operational Research, 159, pp 636-650.

Cain, M. and Janssen, C., 1997. Target selection in process control under asymmetric costs. Journal of Quality Technology, 29, pp 464-468.

Carlsson, O., 1984 Determining the most profitable process level for a process under different sales conditions. Journal of Quality Technology, 16, pp 44-49.

Carlsson, O. 1989. Economic selection for a process level under acceptance sampling variables. Engineering Cost and Production Economics, 16, pp 69-78.

Chankong, V. and Haimes, Y. Y. 1983. Multiobjective Decision Making, Theory and Methodology. North-Holland series in system science and engineering.

Chen, C. H., 2005. Rectifying inspection plans applied in the determination of the optimum process mean. International journal of Information and Management Sciences, 16(3), pp 85-95.

Chen, C. H., 2006a. Determining the optimum process mean for a mixed quality loss function. International journal of Information and Management Sciences, 28, pp 571-576.

Chen, C. H., 2006b. The optimum selection of imperfect quality economic manufacturing quantity and process mean by considering quadratic loss function. Journal of Chinese Institute of Industrial Engineers, 23(1), pp 12-19.

Chen, C. H., 2009a. The modified economic manufacturing quantity model for product with quality loss function. Tamkang Journal of Science and Engineering, 12(2), pp 109112.

Chen, C. H., 2009b. The determination of production run length and process mean for a perfect rework process. Journal of Quality, 16(5), pp 337-345.

Chen, C. H., 2010. Modified economic manufacturing quantity model for product with quality loss under the serial production system and rectifying inspection plan. Journal of Quality, 17(2), pp 99-113.

Chen, C. H. and Chen, J. C., 2008. Optimum process mean setting based on bivariate quality loss function. Tamkang Journal of Science and Engineering, 11(4), pp 403-414.

Chen, C. H., Chou, C. Y., 2002. Determining the optimum process mean of a one-sided specification limit. International Journal of Advanced Manufacturing Technology, 20, pp 598-602.

Chen, C. H. and Chou, C. Y., 2003. Determining the optimum process mean under the bivariate quality characteristics. International Journal of Advanced Manufacturing Technology, 21, pp 313-316.

Chen, C. H. and Chou, C. Y., 2004. Set the optimum process parameters based on asymmetric quality loss function. Quality and Quantity, 38, pp 75-79.

Chen, C. H. and Chou, C. Y., 2005. Determining the optimum process mean a lognormal distribution. Quality and Quantity, 39, pp 119-124.

Chen, C. H., Chou, C. Y. and Hung, K. W., 2002a. Determining the optimum process mean under quality loss function. International Journal of Advanced Manufacturing Technology, 20, pp 598-602.

Chen, C. H., Chou, C. Y. and Hung, K. W., 2002b. Determining the optimum process mean for a poor process. International Journal of Advanced Manufacturing Technology, 20, pp 747-757.

Chen, S. L. and Chung, K. J., 1996. Determining the optimal production run and the most profitable process mean for a production process. International Journal of Production Research, 34, pp 2051-2058.

Chen C. H. and Kao H. S., 2009. Determination of the optimum process mean and screening limits based on quality loss function. Expert Systems with Applications, 36(3), pp 7332-7335.

Chen, C. H. and Khoo, M. B. C., 2009. Optimum process mean and manufacturing quantity setting for serial production system under the quality loss and rectifying inspection plan. Computers and Industrial Engineering, 57, pp 1080-1088.

Chen, C. H and Lai T., 2007a. Determination of optimum process mean based on quadratic loss function and rectifying inspection plan. European Journal of Operational Research, 182, pp 755-763.

Chen, C. H and Lai T., 2007b. Economic manufacturing quantity, optimum process mean and economic specification limits setting under the rectifying inspection plan. European Journal of Operational Research, 183, pp 336-344.

Cohon, J. L., 1978. Multiobjective Programming and Planning. Mathematics in Science and Engineering, volume 140. Academic press, Inc.

Das, B. L., 1995. Determining the optimal target value for a process with upper and lowe specifications. Quality Engineering, pp 393-402.

Dodson, C., 1993. Selection and evaluation of most profitable process targets for the control of canning quality. Computer and Industrial Engineering, 28, pp 259-266.

Duffuaa, S. O., Al-Turki, U. M. and Kolus, A. A., 2009a. A process targeting model for a product with two dependent quality characteristics using 100% inspection. International Journal of Production Research, 47(4), pp 1039-1053.

Duffuaa, S. O., Al-Turki, U. M. and Kolus, A. A., 2009b. Process-targeting model for a product with two dependent quality characteristics using acceptance sampling plans. International Journal of Production Research, 47(14), pp 4031-4046.

Duffuaa S. O. and Siddiqui, A. W., 2002. integrated process targeting and product uniformity model for three-class screening. International journal of Reliability, Quality and Safety Engineering, 9(3), pp 261-274.

Duffuaa S. O. and Siddiqui, A. W., 2003. Process targeting with multi-class screening and measurement error. International Journal of Production Research, 41, pp 1373-1391.

Fareeduddin, M., 2005. Optimal process parameters for two process based on product uniformity criteria. Thesis conducted at King Fahd University of Petroleum and Minerals.

Golhar, D., 1987. Determination of the best means contents for a canning problem. Journal of Quality Technology, 19, pp 82-84.

Golhar, D. and Pollock, S., 1988. Determination of the best mean and the upper limit for a canning problem. Journal of Quality Technology, 20, pp 188-192.

Golhar, D. and Pollock, S., 1992. Cost saving due to variance reduction in a canning problem. IIE Transactions, 24, pp 89-92.

Greene, W. H., 2003. Econometric Analysis, $5^{\text {th }}$ edition. Prentice Hall.
Hassen, M.Z. and Manaspiti,A., 1982.Qualitycontrol design for a single product manufacturing system subject to inspection error. Engineering Costs and Production Economics, 6, pp 99-117.

Hong, S. H. and Cho, B. R., 2007. Joint optimization of process target mean and tolerance limits with measurement errors under multi-decision alternatives. European Journal of Operational Research, 183, pp 327-335.

Hong, S. H. and Elsayed, E. A., 1999. The optimum mean for processes with normally distributed measurement error. Journal of Quality technology, 31(3), pp 338-344.

Hong, S. H., Elsayed, E. A., and Lee, M. K., 1999. Optimum mean value and screening limits for production processes with multi-class screening. International Journal of Production Research, 37(1), pp 155-163.

Hong, S. H., Kown, H. M., Lee, M. K. and Cho B. R., 2006. Joint optimization in process target and tolerance limit for L-type quality characteristic. International Journal of Production Research, 44(15), pp 3051-3060.

Hung, Y. F., 2001. Trade-off between quality and cost. Quality and Quantity, 35, pp 265276.

Hunter, W. and Kartha, C., 1977. Determining the most profitable target value for a production process. Journal of Quality Technology, 9, pp 176-181.

Jordan, V. and Maghsoodloo S., 2006. the optimum upper screening limit and optimum mean fill level to maximize expected net profit in the canning problem for the uniform distribution.IEE Annual Conference and Exhibition, pp 7.

Kim, Y. J. and Cho, B. R., 2003. Determining the optimum process mean for a skewed process. International journal of Industrial Engineering, 10(4), pp 555-561.

Kolus, A. A., 2005. Determining optimal target values for two processes in series. Thesis conducted at King Fahd University of Petroleum and Minerals.

Ladeny, S. P., 1995. Optimal set-up of a manufacturing process with unequal revenue from oversized and undersized items. Engineering Management Conference, IEEE, pp 428-432.

Lee, M. K., Kim, S. -B., Kwon, H. -M. and Hong, S. H., 2004. Economic selection of mean value for a filling process under quadratic quality loss. International journal of Reliability, Quality and Safety Engineering, 11(1), pp 81-90.

Lee, M. K. and Elsayed, E. A., 2002. Process mean and screening limits for filling processes under two-stage screening procedure. European Journal of Operational Research, 138(1), pp 118-126.

Lee, M. K., Hong, S. H. and Elsayed, E. A., 2001. The optimum target value under single and two-stage screenings. Journal of Quality Technology, 33 (4), pp 506-514.

Lee, M. K. and Jang, J. S., 1997. The optimal target values for a production process with three class screening. International Journal of Production Economics, 49, pp 91-99.

Lee, M. K. and Kim, G. S., 1994. Determination of the optimal target values for a filling process when inspection is based on a correlated variable. International Journal of Production Research, 37, pp 205-213.

Lee, M. K., Kown, H. M., Hong, S. H. and Kim Y. J., 2007. Determination of the optimum target value of a production process with multiple products. International Journal of Production Economics, 107, pp 173-178.

Lee, M. K., Kwon, H. M., Kim, Y. J. and Bae, J., 2005. Determination of optimum target values for a production process based on two surrogate variables. Lecture Note In Computer Science, 3483(IV), pp 232-240.

Li, M. H. C., 2005. A general model for process-setting with an asymmetrical linear loss function. European Journal of Operational Research, 159(3), pp 636-650.

Liu, W. and Taghavachari, M., 1997. The target mean problem for an arbitrary quality characteristic distribution. International Journal of Production Research, 35, pp 17131727.

Liu, J., Tang, K. and Chun, Y.H., 1995. Economic selection of the mean and upper limit for a container-filling process under capacity constraints. Optimization in Quality Control, pp 215-231.

Maghsoodloo, S., 1987. Inspection error effects on performance measures of a multistage sampling plan. IIE Transactions, 19: 3, pp 340 - 347.

Mihalko, D. P. and Golhar, D., 1995. Estimation of the optimal profit for a production process with unknown variance. International Journal of Production Research, 33, pp 2125-2131.

Miettinen, K., 1999. Nonlinear Multiobjective Optimization. Kluwer Academic Publishers, Boston.

Molly, B. J., 1991. Determining the optimal process mean and screening limits for a package subject to compliance testing. Journal of Quality Technology, 23, pp 318-323.

Montgomary, D. C., 2005. Introduction to Statistical Quality Control, $5^{\text {th }}$ edition. John and Wiley Sons, Inc.

Mujahid, S. N. and Duffuaa S. O., 2007. Process targeting of multi-characteristic product using fuzzy logic and genetic algorithm with an interval based Taguchi cost function. IEEE International Conference on Engineering and Engineering Management, pp 1204-1208.

Nelson, L., 1979. Monograph for setting process to minimize scrap cost. Journal of Quality Technology, 11, pp 84-50.

Pfeifer, P. E., 1999. A general piecewise linear canning problem model. Journal of Quality Technology, 31(3), pp 326-337.

Phillips, M. D. and Cho, B. R. E., 2000. A nonlinear model for determining the most economic process mean under a beta distribution. International Journal of Reliability, Quality and Safety Engineering, 7(1), pp 61-74.

Pollock, S. and Golhar, D., 1998. The canning problem revisited: the case of capacitated production and fixed demand. European Journal of Operations Research, 105, pp 475482.

Pulak, M. F. and Al-Sultan, K. S., 1996. The optimum targeting for a single filling operation with rectifying inspection. Omega, 24, pp 727-733.

Pulak, M. F. and Al-Sultan, K. S., 1997. A computer program for process mean targeting. Journal of Quality Technology, 29, pp 477-484.

Rahim, M. A. and Al-Sultan, K. S., 2000. Joint determination of the target value and variance for a process. Journal of Quality in Maintenance Engineering, 6, pp 192-199.

Rahim, M. A. and Banerjee, P. K., 1988. Optimal production run for a process with random linear drift. Omega, 16(4), pp 347-351.

Rahim, M. A. and Tuffaha, F., 2004. Integrated model for determining the optimal initial settings of the process mean and the optimal production run assuming quadratic loss functions. International Journal of Production Research, 42, pp 3281-3300.

Rahim, M. A. and Shaibu, A. B., 2000. Economic selection of optimal target value. Process Control Quality, 11, pp 364-381.

Roan, J., Gong, L. and Tang, K., 1997. Process mean determination under constant raw material supply. European Journal of Operational Research, 99, pp 353-365.

Roan, J., Gong, L. and Tang, K., 2000. Joint determination of process mean, production run length and material order quantity for a container filling process. International Journal of Production Economics, 63, pp 303-331.

Schmidt, R. and Pfeifer P. E., 1989. An economic evaluation of improvement in process capability for a single level canning problem. Journal of Quality Technology, 21, pp 16-19.

Schmidt, R. and Pfeifer P. E., 1991. Economic selection of the mean and upper limit for a canning problem with limited capacity. Journal of Quality Technology, 23, pp 312-317.

Shao, Y. E., Fowler, J. W. and Runger, G. C., 2000. Determining the optimal target for a process with multiple markets and variable holding cost. International Journal of Production Economics, 65(3), pp 229-242

Siddiqui, A. W., 2001. Targeting in multi-class screening under error and error-free measurement systems. Thesis conducted at King Fahd University of Petroleum and Minerals.

Springer, C., 1951. A method for determining the most economic position of a process mean. Industrial Quality Control, 8, pp 36-39

Taguchi G., Elsayed, E. A., and Hsiang, T., 1989. Quality Engineering in Production Systems. McGraw-Hill.

Tahera, K., Chan, W. M. and Ibrahim, R. N., 2008. Joint determination of process mean and production run: A review. International Journal of advanced Manufacturing Technology, 39, pp 388-400.

Teeravaraprug, J., 2005. Determining the optimal process mean of two market products. International Journal of Advanced Manufacturing Technology, 25, pp 12481253.

Teeravaraprug, J. and Cho, R. B., 2002. Designing the optimal process target levels for multiple quality characteristics. International Journal of Production Research, 40, pp 3754.

Vidal, R., 1988. A graphical method to select the optimum target value of a process. Engineering Optimization, 8, pp 285-291.

Wen, D. and Mergen, A. E., 1999. Running a process with poor capability. Quality Engineering, 11, pp 505-509.

VITA

Name Ashraf El-Ga’aly
Nationality Sudanese
Education B.Sc. degree in Statistics and Computer Science, University of Khartoum, Sudan, August 2007M.Sc. degree in Systems Engineering, King Fahd University ofPetroleum and Minerals (KFUPM), Dhahran, Saudi Arabia,January 2011
Permanent Khartoum, Sudan P.O. Box 315 Address
Tel: +249912818004
Current Address Dhahran, Saudi Arabia 31261. P.O. Box 8608
Tel: +966555640465
E-Mail
ash.gaaly@yahoo.com

