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Abstract. Given a graph G on n vertices, the total distance of G is defined as σ(G) =
1
2

∑
u,v∈V (G) d(u, v), where d(u, v) is the number of edges in a shortest path between u

and v. We define the d-dimensional hypercube tree Td and show that it has a minimum
total distance σ(Td) = 2σ(Hd) −

(
n
2

)
= dn2

2 −
(
n
2

)
over all spanning trees of Hd, where

Hd is the d-dimensional binary hypercube. It follows that the average distance of Td is
µ(Td) = 2µ(Hd)− 1 = d

(
1 + 1

n−1

)
− 1.

Keywords. Average distance, Total distance, Average delay, Wiener index, Hypercube
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1 Introduction

Let G = (V,E) be a connected undirected graph with |V (G)| = n. The order of G is n.
For u, v ∈ V (G), the distance between u and v, denoted by dG(u, v), is the length of a
shortest path between u and v, where the length of a path is defined as the number of
edges along the path. For v ∈ V (G), the distance of v, is defined as

dG(v) =
∑

u∈V (G)

dG(v, u).

The total distance of the graph G is defined as

σ(G) =
1
2

∑
v∈V (G)

dG(v),

that is, the sum of distances between all unordered pairs. The average distance is
defined as

µ(G) =
1(
n
2

) σ(G).

The average distance, also known as transmission delay, is one of the most important
measures of the efficiency of an interconnection network modeled by a graph. The
diameter of a graph, which is the maximum node-to-node distance, is one of the factors



taken into account when investigating a communication network. However, these pairs
of nodes realizing the diameter may account for only a small fraction of the total number
of pairs. Therefore, the average distance may be a more effective measure of the average
performance of a network than its diameter, as it is an indicator for the expected travel
time between two randomly chosen points of the network.

The average distance has been investigated by several authors and under different names,
such as mean distance [6], total distance [16], transmission [17], total routing cost [23],
and Wiener index [3, 22], with the latter being the oldest and most common. Given a
network, which is modeled by a graph G, it may be possible to replace G by a subgraph
H of G without significantly affecting the quality of communication. In this work, it
is shown that in the case of the hypercube network, using the hypercube tree instead
(which is defined in Section 3), it is possible to reduce the number of links by a factor
of log n at the expense of increasing the average distance by a factor less than 2.

Algorithmic aspects of the average distance are investigated in [4] and [6]. In general,
when the graph is weighted, finding a spanning tree with minimum average distance (or
total distance), also called a MAD, is NP-hard [14]. Entringer, Kleitman and Székely
[8] showed that there is a spanning tree whose average distance is less than twice the
average distance of the original, and that such a tree can be found in polynomial time.
The Wiener index, defined as σ(G), was originally introduced by Harold Wiener [22] in
1947, and has numerous applications in physical chemistry [15]. It has been extensively
studied (see [3] for an excellent survey and results).

The hypercube tree, which will be defined in Sec. 3, is known in the literature as the
“spanning binomial tree” (SBT) mostly in the context of communication and broad-
casting in the hypercube [1, 10, 12]. The names “completely unbalanced spanning tree”
(CUST) [21] and “hypercube tree” also appeared in the contexts of fault-tolerant com-
puting and diagnosis of hypercube multicomputer systems to isolate faulty processors [5].

Broadcasting and personalized communication in a hypercube is done by constructing
a spanning binomial tree with a root at the source node and following the links of this
tree to broadcast the message to all the nodes [10, 12]. In [1], the same strategy (with
some modification) was used for broadcasting in the multilevel hierarchical hypercube
network MLH.

Distributed-memory hypercube computers are exposed to faults at the node and edge
levels, which result in significant performance degradation. Expensive approaches were
proposed to improve the fault tolerance of hypercube networks by using spares or by
reconfiguration [19, 21], like the use of spare links and nodes [2], augmenting each node
with one extra node [11], the use of multiple virtual nodes on each node for workload
redistribution under faults [18], or reconfiguring the run-time system [19] in the case of
faults. For a fixed number of nodes, the completely unbalanced spanning tree used in
[21] requires much less number of edges than a hypercube. When the number of faulty
edges and their distribution still allow a tree to be formed in hypercube, reconfiguring the
running application to a tree provides a continuation scheme in the presence of faults. In

2



other words, a running hypercube application may switch to a tree-like reconfiguration
in the presence of faulty edges. This leads to a smooth degradation in application
throughput as the network performance is only twice that of the original hypercube. So,
the tree presents a reconfiguration scheme for improving hypercube resilience to faulty
edges.

2 Preliminaries

The eccentricity of a node v, denoted by ecc(v), in a connected graph G is the length
of a longest of all shortest paths between v and every other node in G. The maximum
eccentricity is the graph diameter. The minimum graph eccentricity is called the graph
radius, denoted by ρ(G). The center C of a graph is the set of vertices of graph ec-
centricity equal to the graph radius (also called the set of central points). A branch B
of a tree T at a vertex v is a maximal subtree containing v as a leaf. The weight of
a branch B, denoted by bw(B) is the number of edges in B. The branch weight of a
vertex v, denoted by bw(v), is the maximum branch weight amongst all branches at v.
Equivalently, bw(v) is the maximum number of vertices in a connected component of
T − v. A centroid of a tree T is the set of vertices of T with minimum branch weight.
The following theorem is due to Jordan [13].

Theorem 1. If C is the centroid of a tree T of order n, then one of the following holds:
(i) C = {c} and bw(c) ≤ (n− 1)/2, (ii) C = {c0, c1} and bw(c0) = bw(c1) = n/2. In both
cases, if v ∈ V (T )− C, then bw(v) ≥ n/2.

Zelinka [24] characterized the set of vertices with minimum distance in a tree.

Theorem 2. The set of vertices with minimum distance in a tree T is the centroid C
of T .

3 The hypercube tree

The (binary) d-dimensional hypercube Hd, d ≥ 0, is defined as an undirected graph with
n = 2d vertices and dn/2 = d2d−1 edges. The vertices are labeled with all elements
in {b1b2 . . . bd | bi ∈ {0, 1}}, and there is an edge between two vertices u and v if and
only if u and v differ in exactly one bit. The left subcube or 0-cube 0Hd is the induced
subgraph of Hd on {0b1b2 . . . bd−1 | bi ∈ {0, 1}}. Similarly, the right subcube or 1-cube
1Hd is the induced subgraph of Hd on {1b1b2 . . . bd−1 | bi ∈ {0, 1}}.

For d = 1, 2, . . ., we define the d-dimensional hypercube tree rooted at vertex 00 . . . 0(d ze-
ros), which we denote by Td, as a rooted tree whose set of vertices is V (Hd), and whose
set of edges E(Td) is constructed using one of the following two construction methods
(see Fig. 1 for an example).
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Figure 1: Construction of T3 from T2. (a) Recursive. (b) Iterative.

1. (Recursive). If d = 1, then E(T1) = {(0, 1)}. Otherwise, Td is constructed recur-
sively by linking the roots of two copies of Td−1 by an edge and designating one of
its two ends as the root. That is,

E(Td) = {(0u, 0v) | (u, v) ∈ E(Td−1)}∪{(1u, 1v) | (u, v) ∈ E(Td−1)}∪{(0d, 10d−1)}.

2. (Iterative). If d = 1, then E(T1) = {(0, 1)}. Otherwise, Td is constructed from
Td−1 by attaching a leaf node to each vertex in Td−1. That is,

E(Td) = {(u0, v0) | (u, v) ∈ E(Td−1)} ∪ {(v0, v1) | v ∈ V (Td−1)}.

It should be noted that Td can be constructed by applying ordinary breadth-first traversal
on Hd starting from vertex 0d. However, using BFS costs Θ(dn) = Θ(n log n), while
direct construction costs only Θ(n).

Similar to the hypercube, we define the left subtree or 0-tree 0Td as the induced subtree
of Td on V (0Hd), and the right subtree or 1-tree 1Td as the induced subtree of Td on
V (1Hd). In other words, 0Td is Td−1 with every label prefixed with 0, and 1Td is Td−1

with every label prefixed with 1. For brevity, we will call a vertex even (odd) if its label
is the binary representation of an even (odd) integer.

Theorem 3. For d = 1, 2, . . ., let Td and T
′
d be two trees obtained using the iterative

and the recursive construction methods, respectively. Then Td = T
′
d.

Proof. Fix a vertex v = x1x2 . . . xj−1100 . . . 0 (different from the root 00 . . . 0), where
|v| = d, and xi ∈ {0, 1}, 1 ≤ i < j ≤ d. We show in both constructions that

p(v) = x1x2 . . . xj−1000 . . . 0

is the parent of v. By construction of Td, when v was first created at possibly some
earlier stage of the construction, its label was of the form x1x2 . . . xj−11 and the label of
its parent was of the form x1x2 . . . xj−10. From that point on, a zero would be appended
to the labels of both v and p(v). This proves the parental relationship assertion for Td.
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We now prove the assertion for T
′
d. To this end, rewrite v as

v = yj−1yj−2 . . . y1100 . . . 0.

We show, by induction on d, that the parent of v in T
′
d is

p(v) = yj−1yj−2 . . . y1000 . . . 0.

Let y0 = 1 in the definition of v and y0 = 0 in the definition of p(v). When d = 1, v = 1
and the parent of vertex 1 is 0. So assume that d ≥ 2. Let u′ and v′ be two vertices in
T ′d−1, where

u′ = yj−2yj−3 . . . y1000 . . . 0 and v′ = yj−2yj−3 . . . y1100 . . . 0;

both of length d − 1. By induction, u′ = p(v′). To construct T
′
d from T ′d−1, the edge

(u′, v′) will be doubled: one copy will belong to the 0-tree of T
′
d, in which case the labels

of both u′ and v′ are prefixed with 0, and the other copy will belong to the 1-tree of T
′
d,

in which case the labels of both u′ and v′ are prefixed with 1. Hence, in T
′
d, if yj−1 = 0,

then
p(0yj−2yj−3 . . . y1100 . . . 0) = 0yj−2yj−3 . . . y1000 . . . 0,

and, if yj−1 = 1, then

p(1yj−2yj−3 . . . y1100 . . . 0) = 1yj−2yj−3 . . . y1000 . . . 0.

We conclude that the parental relationship assertion is true for T
′
d too.

Now, since v is arbitrary, it follows that the parent of any vertex other than the root
is the same in both trees Td and T

′
d. This, in turn, implies the natural isomorphism

φ : V (T )→ V (T ′) defined by φ(v) = v for all v in {0, 1}d, from which we conclude that
Td = Td

′.

4 Computing the total distance

First, we compute the distance of the root of Td dTd
(0d) =

∑
w∈V (Td) dTd

(0d, w), and
establish some relationships between distances in the hypercube tree Td and its corre-
sponding hypercube graph Hd.

Lemma 1. Let Td be a d-dimensional hypercube tree. Then,

(i) ∀v ∈ V (Td) dTd
(0d, v) = dHd

(0d, v).

(ii) dTd
(0d) = dHd

(0d) = dn/2.
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Proof. (i) The proof is by induction on d ≥ 1. For d = 1, it is true, so suppose that
d ≥ 2. Observe that, by construction, for any vertex 0u in the 0-tree 0Td,

dTd
(0d, 0u) = d0Td

(0d, 0u)
= dTd−1

(0d−1, u) (1)
= dHd−1

(0d−1, u) (by induction)
= dHd

(0d, 0u), (2)

and for any vertex 1v in the 1-tree 1Td,

dTd
(0d, 1v) = 1 + d1Td

(10d−1, 1v)
= 1 + dTd−1

(0d−1, v) (3)
= 1 + dHd−1

(0d−1, v) (by induction)
= dHd

(0d, 1v). (4)

Hence, we conclude that

∀v ∈ V (Td) dTd
(0d, v) = dHd

(0d, v).

(ii) Since there are n/2 distances from 0d to vertices in the 0-tree and n/2 distances from
0d to vertices in the 1-tree, which additionally contribute n/2 to the total distance, and
by (1) and (3), dTd

(0d) can be expressed by the recurrence

dTd
(0d) =

{
1 if d = 1
2dTd−1

(0d−1) + (n/2) if d > 1,

whose solution is dTd
(0d) = dn/2. By part (i), dTd

(0d) = dHd
(0d) = dn/2.

Theorem 4. The total distance of the hypercube tree Td is

σ(Td) = 2σ(Hd)−
(
n

2

)
=
dn2

2
−
(
n

2

)
,

which is minimal over all spanning trees of Hd.

Proof. First, note that by Lemma 1 and the symmetry of the hypercube graph,

σ(Hd) =
n

2
dHd

(0d) =
dn2

4
. (5)

Next, we find the total distance between all vertices in the 0-tree and all vertices in the
1-tree. Let u ∈ 0Td and v ∈ 1Td. Then, we have (see Fig. 2)

dTd
(u, v) = d0Td

(u, 0d) + (1 + d1Td
(10d−1, v)).
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Figure 2: Proof of Theorem 4.

Using (2) and (4), we obtain

dTd
(u, v) = dHd

(0d, u) + dHd
(0d, v). (6)

Summing over all vertices u ∈ 0Td and v ∈ 1Td yields

∑
u∈0Td

∑
v∈1Td

dTd
(u, v) =

∑
u∈0Hd

∑
v∈1Hd

(
dHd

(0d, u) + dHd
(0d, v)

)
(7)

=
n

2

∑
u∈0Hd

dHd
(0d, u) +

n

2

∑
v∈1Hd

dHd
(0d, v)

=
n

2

∑
w∈Hd

dHd
(0d, w)

=
n

2
dHd

(0d)

= σ(Hd),

where the last equality follows from Eqn. 5. Since σ(Td) is the sum of total distances in
the 0-tree, 1-tree and the total distance between all vertices in the 0-tree and all vertices
in the 1-tree, σ(Td) can be expressed by the recurrence

σ(Td) =
{

1 if d = 1
2σ(Td−1) + σ(Hd) if d > 1.

whose solution is

σ(Td) = 2σ(Hd)−
(

2d

2

)
,

and, by Eqn. 5,

σ(Td) =
d22d

2
−
(

2d

2

)
.

Finally, note that, by Eqn. 7, the total distance between vertices in 0Td and 1Td, whose
paths must pass through the centroid, is minimum. Hence, if we assume that σ(Td−1)
is minimum, then it follows by induction that σ(Td) is also of minimum value.
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Theorem 4 gives rise to the following sequence for σ(Td), d = 1, 2, . . .

1, 10, 68, 392, 2064, 10272, . . . .

Let T = (V,E) be a tree and e = (u, v) be an edge of T . Let nu(e) denote the number of
vertices of T lying closer to u than v, and let nv(e) denote the number of vertices of T
lying closer to v than u. The following theorem was discovered by Wiener in 1947 [3, 22].

Theorem 5. Let T = (V,E) be a tree. Then, σ(T ) =
∑

e∈E(T ) nu(e)nv(e).

Define the weight of an edge e as w(e) = nu(e)nv(e). For 1 ≤ j ≤ d, let Ej(Td) denote
the set of edges in E(Td) with weight n

2j

(
n− n

2j

)
.

Proposition 1. Let Td be a d-dimensional hypercube tree. Then,

(i) E(Td) = E1(Td) ∪ E2(Td) ∪ . . . ∪ Ed(Td), and |Ej(Td)| = 2j−1, 1 ≤ j ≤ d.

(ii) σ(Td) =
∑d

j=1 2j−1 n
2j

(
n− n

2j

)
.

Proof. (i) If d = 1, then there is exactly one edge with weight 1, so suppose d ≥ 2.
Assume inductively that

E(Td−1) =
d−1⋃
j=1

Ej(Td−1), and |Ej(Td−1)| = 2j−1, 1 ≤ j ≤ d− 1.

Let e = (u, v) be an edge in Ej(Td−1) for some j, 1 ≤ j ≤ d− 1. By construction, Td is
obtained from Td−1 by attaching a leaf node to each vertex of Td−1. Hence, both nu(e)
and nv(e) are doubled, which means that E(Td) contains exactly 2j−1 edges with weight

2× 2× n/2
2j

(
n

2
− n/2

2j

)
=

n

2j

(
n− n

2j

)
.

Since e = (u, v) is arbitrary, we conclude that |Ej(Td)| = 2j−1 for 1 ≤ j ≤ d − 1.
Moreover, there will be n/2 additional edges in Td with weight n− 1, that is, |Ed(Td)| =
2d−1. It follows that E(Td) =

⋃d
j=1Ej(Td), and for 1 ≤ j ≤ d, |Ej(Td)| = 2j−1.

(ii) Follows from (i) and Theorem 5.

As illustrated in Fig. 3, there is an edge (the central edge) with weight (n/2)2, two edges
with weight (n/4)(3n/4), and in general 2j−1 edges with weight n

2j

(
n− n

2j

)
. In this

figure, the horizontal edge in the middle is the central edge of T8.
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Figure 3: T8. The horizontal edge in the middle is the central edge.

5 Mean distance

The average distance of the hypercube of dimension d ≥ 1 is computed as

µ(Hd) =
1(
n
2

)σ(Hd)

=
dn2

4
(
n
2

)
=

dn

2(n− 1)

=
d

2

(
1 +

1
n− 1

)
.

Similarly, the average distance of the hypercube tree of dimension d ≥ 1 is computed as

µ(Td) =
1(
n
2

)σ(Td)

=
1(
n
2

) (2σ(Hd)−
(
n

2

))
= 2µ(Hd)− 1 (8)

= d

(
1 +

1
n− 1

)
− 1.

Hence, we have

Theorem 6. The average distance of the hypercube tree is µ(Td) = d
(

1 + 1
n−1

)
− 1.
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6 Conclusion

Given a graph G, let s(G) = min{σ(T )/σ(G) | T is a spanning tree of G}. In [8], En-
tringer et al. have shown that for a connected graph G of order n, s(G) ≤ 2(1 − 1/n),
and equality is achieved if and only if G = Kn and T = K1,n−1. In [3], Banerjee et al.
stated that the dependence of s on the density of G is not clear, and conjectured that if
T is of minimum total distance over all possible spanning trees of Hd, then

s(Hd) = 2
(

1− 1
d

)
+

1
d2d−1

∼ 2. (9)

In Theorem 4, we proved that σ(Td) is of minimum total distance among all spanning
trees of Hd. Consequently, by (8),

s(Hd) = 2− 1/µ(Hd) = 2− 2(n− 1)
dn

= 2
(

1− 1
d

)
+

1
d2d−1

,

and s(Hd) has 2 as its limiting value.
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