THE ENHANCEMENT OF CATIB WITH GRAPHICS, SPEECH
AND SOUND EFFECTS

by
Mohammad M. Mandurah, Sabri A. Mahmoud

College of Computer and Information Sciences
King Saud University
P.0.Box 51178, Riyadh 11543

and
Fouad A. Dehlawi

Electrical Engineering Department
College of Engineering
King Abdul-Aziz University, Jeddah

Abstract:

The enhancement of CATIB is discussed in this paper with
special emphasis on the implementations of the advanced features
of the language. These include features such as support of high
resolution graphics, support of speech synthesis and sound/music
subsystems, and commands for text presentation and highlighting.
Files that contain speech data or sound/music data can be acces-
sed by the user, and the data can be sent to the appropriate
device. Graphics commands are also implemented in CATIB to allow
the wuser to fully utilize the powerful graphics capablities of
the hardware. Using CATIB in the development of CAI courseware,
graphics, speech messages and sound effects can be combined and
intermixed with the text to enhance the effectiveness of the
educational material.

1. Introduction:

CATIB is the first Arabic programming language that was
especially developed to facilitate the production of CAI course-

ware. The language is so designed to have a very simple syntax
with highly conversat10na1 nature. This makes it easy for persons
with no prior experience in programming, - such as teachers, to

learn the language and effectively use it in writing and editing
CA]l courseware.

CATIB was first introduced at the 7th Saudi National Compu-
ter Conference that was held in Riyadh in 1984, and a paper that
defines the language appeared in the conference proceeding [1].
Since then, the language has been subjected to several improve-
ments and revisions that can be summarized in the following:

i- the general instruction format was redefined for better
performance and ease of use.
ii- implementation of instructions to process speech and
music data.
iii- implementation of instructions to fac111tate graphics
creation and manipulation.

The development of CATIB is part of a large project suppor-
ted by SANCST to develop computer-assisted instructional systems
for the Arab societies [2]. This paper reviews the current status
of CATIB, with emphasis on the 1mp1ementat10n of the advanced
features in the language.

2. Definition of the Language:

The general instruction format of CATIB was redefined to
enhance the language performance and further simplify 1its |wuse.
Under the new definition, CATIB keywords can be used as full
words or as two characters abbreviations. .. CATIB instructions now
follow the following format:

<keyword> b [<cond>] : [<message>]

where

<keyword>. is CATIB full keyword §r téb-characters
abbreviation for the keyword.

b blank. .

[<cond>] an optional conditional which could be

yes, y, no, n.

[<message>] an optional message which could be:
a. a text to be operated on
b. an instruction modifier
c. empty (not used).

The new definition of the language allows the same keyword
to be used to define different forms of an instruction. This
feature has several advantages. First, each instruction has the
power of several instructions. Secondly, the user does not have
to remember many keywords. The different forms of the instruc-
tions were kept consistent. To clarify the above points, the
following - exapmle shows how a CATIB keyword is used to form
different instructions.

The basic "Uktob" keyword can have the following forms:

Uktob ! [<message>]
Uktob Y : [<message>]
Uktob N : [<{message>]
Uktob

Uktob Y
Uktob N

i u

Uktobh : [<message>]
Uktobh Y: [<message>]
Uktobh N: [<message)]
Uktobh

Uktobh Y:
Uktobh N:

o un

_ where
[{message>] could have the following forms:

(1) and empty or blank string.

(2) a string of characters to be typed.

(3) a string of characters to be typed with embedded
string or integer variables.

(4) a string or integer variable or both whose content
are to be typed.

R indicates that the content of the "accept" buffer
should be typed.

"h" adding "h" to the keyword "uktob" specifies that no
" carriage return/line feed is needed.

The general CATIB user program has the form given below. A
user program is very simple with few required statements to
simplify the use of the language by persons who have no program-
ming background. A program consists of a main part and subroutines
part. The main part is formed from any number of CATIB statements
terminated by the END statement. A subroutine must start with a
label and end with and END statement. The depth of the nested

subroutines is limited to 5, which we think is adequate for CATIB
applications.

3.

needs

(L)

(2)

(3)

CATIB User Program Form

{CATIB program’ {main program> {{subroutine,..}]

<méin’program> {<statement>,.....} <end>

(statement> {<label> ! {statement>}

{label> "% character string’ ”

(statement> (CATIB defined statement>

{subroutine> (label> {<(statementd>,....} <end>
where

< > at least one entry is required

() optional entry

{ } entry repeated any number of times

character string is enclosed

or, either entry is possible

Enhanced Features of CATIB:

Several instruction were added to CATIB to cover certain
of CAI applications and to make the language more powerful
and easier to use. These are the following:

Jump [<YIN>] : >P

This instruction can be used to jump to the next prob-
lem. A possible use for the instruction is to skip more
explanations in a lesson if his answers were satisfac-
tory.

Remarkw [<Y!N>] : [<message)]

NV
NV
NV

This instruction can be used to write remarks to a file
to help tracking the student activities for the purpose
of evaluating his performance.

H clear all previous variables
$ clear all previous string variables
@ clear all previous integer variables

These instruction which clear the variables assist the
efficient utilization of memory space.

(4) PR

This is a problem indicator. It can be used with the
(Jump : >P) instruction described above.

(6) CN {<cond>] :4[<message>]
CNh [<cond>] : {<message>]

These instructions center the message on the screen and
skip to the next line (CN) or hang (CNh).

(6) CP [<cond>] : [<messageD]
CP [<cond>] P =
CPh [<cond>] : [<message>]
CPh [<cond>] :=)

These instructions are similar to the "uktob" instruc-
tion with its different variations. However, these
instructions send the text to the printer, not to the
screen.

(7) Foot : [<(text>]

Type the tekt at the bottom of the screen and execute
an "accept" command. This instruction can be used to
put the display of screens under user control.

(8) JF : <LM>,<RM>
cJ :

These instructions control the flag for margin justi-
fication. JF sets the left margin at LM and the right
margin at RM. CJ cancels margin~justification.

4, Implementation of Speech Instructions:

Speech provides a natural and efficient channel of communi-
cation between the computer and the user. Studies have shown that
the students learm more by increasing the number of channels that
communicate the educational material to them (the ear in addition
to the eye) [(3,4]. Realizing the importance of speach, especial-
ly for CAI systems, a speech synthesis subsystem has been deve-
loped in this project [B]. The speech output unit is based on the
Texas Instruments’ TMS-5220 Voice Synthesis Processor (VSP). This
chip uses linear predictive coding (LPC) to generate high quality
speech at low data rate.

In this section, the structure of the commands that allow
the wuser of CATIB to exploit the capability of the speech sub-
system is discussed. This starts with a discussion to the types
of speech data and then to the algorithms used in implementing
the speech commands.

4.1 Speech Data:

The nature of the speech messages to be used in ' CATIB
should be analyzed before deciding on the suitable structure and
algorithms to be used in implementing the speech statements. The
speech messages in CATIB can be divided into two general types:

(1) course independent speech messges (global messages).
(2) course dependent speech messages.

The course independent speech messages are of repetitive

nature (1i.e. the same message is used again and again in almost
every course). In this type, some messages can be interchanged
with others without any change to the required meaning. Examples

of this type of messages are the following:

(a) messages to respond to a correct answer from the student
(b) messages to respond to a wrong answer from the student
(c) operational messages ...etc

The usage of specific words is normally not necessary or
required. In fact, the use of different messages to a student
response, say a correct answer, is better than using the same
message again and again; it is less boring to the student.

The course dependent messages, on the other hand, rarely
repeat and the exact words of the teacher should be produced.
This message type is part of the course material and hence does
not repeat. It is normally used once.

As shown above, the two speech messages types are of dif-
ferent nature. Hence, for better performance of CATIB speech
messages, the two is to be implemented differently.

4.2 Structure of Speech Statements:

In designing the structure and algorithms to implement
CATIB speech statements, we have to examine the requirements of
CAI applications. These can be summarized in the following:

(a) Simple structure and speech statements to make it easy
for the teacher to use.

(b) The use of reasonable size of storage. Speech data
require much more storage than text data; nearly 10
KByte for one minute of speech.

(c) Whenever possible, different speech messages should be
used in response to the student answers to avoid boring
him.

To fulfill the above requirements two types of speech
instructions had to be implemented in CATIB: lesson independent
and lesson dependent instructions.

4.2.1 Lesgson Independent Instructions:

The
data and they have the following forms:

(ix SG [<cond>]

This form means:

lesson independent instructions use global speech

{file~name> [<,message—number>]

say the message specified by
message—-number in the file named file—name.

If

the message number is zero or absent then say

a random message from that file.

(ii) SG [<cond>] {message>

Here <{message> 1s a string of characters.

This

instruction means say the message given by the

character string <message>.

The lesson independent (global) speech messages are kept

different files for ease of reference,

and simplification of processing of CATIB statements.
of related messages are kept in one file with a special name.
all speech messages used to respond to a student correct
and so on.

example,
answer are kept in a seperate file,

in

retrieving speech data,
Each group

For

These speech data

files are produced once and are used by all courses.

For ease of use of the above messages,
their contents of speech messages are printed
for quick reference
message, the teacher
message number from that file.

If a teacher finds it difficult to use the above

he can use the second form described above.
teacher has to write the message to be said in
rammer at a later stage will scan the text of
replace all global lesson independent speech
corresponding message-numbers and file-names.
messages do not exist in current files, they
incorporated in the current speech files or in

4,2.2 Lesson Dependent Instructions:

all file names

by the teachers using CATIB.
need only specify the file name

Using this form,

and
cards
any
the

on seperate
To use
and

technique,
the
{message>. A prog-
CATIB lessons and
messages by their
If any of these
can be created and
new speech files.

The lesson dependent instructions use speech data that

are dependent on the lesson under run.
may any of the following forms:

(1) SY [<cond>] {message>

Say the text of the message
(ii) TS [<cond>] : <message>

Type the message on

These type of instructions

the screen and say it.

(iii) TSH [<cond>] : <message>

Same as (1i) But the cursor on the screen stays
on the same line (i.e. no CRLF).

The <{message> in the above instructions are caracter strings
that represent the actual text need to be said to the student.
These speech messages must be converted into speech data that can
be sent to the speech sybsysten. For this purpose, a speech pre-
processor program performs the conversion task in the following
steps:

(1) A preprocessor program scans the CATIB lesson for any

{message> within a lesson dependent speech instruction. A file
will be created that contains all messages that need to be con-
verted into speech data. These messages will be arranged sequen-
tially according to their occurance in the lesson. This ©process

can be done manually also.

(2) The speech data for the messages will be then generated
on the speech development system and stored in another file under
the same name of the lesson and with extension (.sph). The speech
data will be arranged in the same sequence of the messages.

(3) Another program then scans the CATIB lesson again and
replaces all <messages> with their respective file-names and
message-numbers. The final executable version of the 1lesson
should not have any speech (messages>, =~ and all speech instruc-
tions should refer to file—-names and message—numbers. -

5. Implementatioh of Music and Sound Effects:

Music and sound effects can be effective tools to attract
the attention of the students and increase their interest and
enthusiasm in learning. Advancement in electronics technology has
resulted in the production of many sophisticated single-chip
music and sound generators. In this project, a music-sound sub-
system is also developed that is based on the General Instruments
AY-3-8910 programmable sound generator. Upon receiving the appro-—
priate commands and data such sound generators can generate a
variety of tunes, melodies and sound effects.

The commands in CATIB that allows the manipulation of music
and sound effects have only one form:

PY [<cond>] : <file-name> (,<piece-number>]

This command means: play a music or sound effect
piece given by piece-number from a data file given
by file—-name. If piece—number is absent or equal
to zero, then CATIB will play a random piece from
that file. '

CATIB processes the data for music and sound effects in a

similar way as it does to speech data. The data for music and
sound effects pieces must be prepared separately and put in data
files with appropriate names. File cards can also be prepared

that show the conents of each music and sound file.

6. Inplementation of Graphics Instructions:

Graphics 1s an essential element in CAI systems. Figures,
shapes, pictures and charts are frequently used to explain con-
cepts and i1ideas, represent data and results, simulate equations
and processes, and to carry knowledge and information that are
difficult to describe in words [(6-8]. Therefore, CAI systems
(hardware and software) must be provided with all the tools to
benefit from the many advantages and uses of graphics.

Fortunately, the terminal developed in this project 1is
equipped with an advances graphics display controller (GDC) that
is based on the NEC uPD-7220 chip [2,98]. This device 1is an
intelligent microprocessor peripheral with a powerful instruction
set that allow it to manage the display memory and generate high
resolution graphics.

In the original definition of CATIB, several graphics and
cursor and text control commands have been proposed [2]. In the
following, the opcodes and formats for some of these commands are
defined. Also, a description to each command and how to use it is
given.

a) ENTER GRAPHICS MODE:

This command signals the terminal to enter into the
graphics mode and interpret all coming information as graphics
data and commands. All of the graphics commands and data are
built of seven-bit binary words (parity bit not used). A command
or data byte that is equal to zero is not permitted because some
operating systems filter out any zero-valued bytes.

Command Form : ESC 0
b) MOVE TO (X,Y):
The wvirtual pointer is assigned the absolute coordinates
(X,Y). Although the terminal has a resolution of 640 dots x 408
lines, X and Y have maximum values of 1024 to allow for future
enhancements.
Command Form:
opcode P 0 1. 1 0] 1 X1 X0
1st operand P 1 X7 X6 X5 X4 X3 X2

2nd operand P 1 Y3 Y2 Yl YO X9 XB

3rd operand P 1 Y9 Y8 Y7 Y6 Y5 Y4
In designing the opcode and operand bytes, the parity bit is

not used and bit 6 in the opernds bytes are set to 1 so that a
zero-valued-byte is avoided.

c) POINT AT (X,Y):

The virtual pointer is assigned the absolute coordinates
(X,Y).

Command Form:
operand ‘ P 0 0 1 1 0 X1 XO
The 1lst, 2nd and 3rd operands are the same as in MOVE TO command.
d) LINE TO (X,Y):

A line 1is drawn from, but not including, the wvirtual
pointer’s currently assigned absolute coordinate to the absolute
coordinate (X,Y). The line drawn is subject to the current line
style. At the completion of this command, the virtual pointer is
assigned the absolute coordinate (X,Y).

Command Form:
opcode P 0 1 1 0 0 X1 X0
The 1lst, 2nd and 3rd operands are same as in MOVE TO command.
e) RECTANGLE TO (X,Y):

A rectangle is drawn with the virtual pointer’s currently
assigned absolute address as one coordinate and the absolute
coordinate (X,Y) as the diagonally opposite vertice. At the
completin of this command, the virtual pointer is assigned the
absolute coordinate (X,Y). The rectangle’s sides drawn are sub-
jected to the current line style.

Command Form:
operand P 0 1 0 1 0 XL X0
The lst, 2nd and 3rd operands are same as in MOVE TO command.
f) AREA FILL TO (X,Y):

This command is similar to RECTANGLE-TO command; however,
the area inside the rectangle is filled. Starting at, but not
including, the virtual pointer’s currently assigned absolute
coordinate, a horizontal line is drawn to the opposite side of
the rectangle. When possible, a second line starting at the
original side of the rectangle is drawn adjacent to the first

line. This procedure is repeated until the area is filled. The
line drawn is subject to the line style attribute.

Command Form:
opcode P 0O 1 0 1 1 X1l X0
The 1lst, 2nd and 3rd operands are the same as MOVE TO command.
£) CIRCLE (R):
A circle with the radius R is drawn. The coordinates of
the center is the virtual pointer’s currently assigned absolute

coordinate. The radius of the circle has a maximum value of 255
dots. :

Command Form: -
opcode P 0 0 1 1 1 R1 RO
l1st operand P 1 R7 R6 R5 R4 R3 R2

h) LINE STYLE:

This command permits solid, dashed or dotted linés to be
gdenerated. The style of the line is determined by the pattern
byte (Z). The eight bit line style pattern is repetitively traced
to the screen when drawing a line.

Command Form:
opcode P 0 1 1 1 0 Z1 ZO0
lst operand P 1 297 Zb6 Z5 Z4 Z3 Z2

Examples of line styles are the following:

line style pattern byte
solid 11111111
dotted 10101010
dashed (long) 11110000
dashed (short) 11001100

i) SET COLOR (C):
This sets the default color for the following graphics.
One color out of 16 colors can be chosen although the terminal

currently supports 8 colors only.

Command Form:

opcode P 1 0 0 cC3 €2 Cl1 <c¢O

J) ERASE SCREEN:
This command clears the screen
-opcode P 0 0 0 0 1 X X
Here (%) means don’t care.
k) EXIT GRAPHICS MODE:

Exit graphics and return to alphanumeric mode.

opcode P 1 1 1 1 1 X X
In this section, only some of the basic graphics commands
are defined and implemented. More commands are under considera-
tion. These include pattern drawing, Turtle Graphics (similar to

LOGO), and graphics editing using light pens or digitizers.

7. Summary:

The incorporation of speech, music, sound effencts and
graphics in CATIB was discussed in this paper. The commands that
facilitate the use of these advanced features by CATIB users 1in
the development of CAI courseware were defined, and the implemen-
tation of these commands was discussed.

REFERENCES:

1- Mandurah, M.M. and El-Azhary, I., "CATIB: An Arabic Authoring
Language for CAI", Proc. of the 7th Saudi NCC, Riyadh, 1984,
pp. 271-278.

2- Mandurah, M.M. and DPehlawi, F.A., The Development of Computer
Assisted Instructional Systems in Arabic, SANCST project
AR-5-100, Saudi National Center for Science and Technology,
Riyadh, 1984.

3- Chapanis, A., Parrish, R.N., Ochman, R.B. and Weeks, G.D. "The
Effect of Four Communication Modes on the Linguistic Perfor-

mance of Teams During Cooperative Problem-Solving", Human
Factors, 19,_1977, pp. 101-126. : :

4- Neels, F., Lienard, J.S. and Mariani, J.J., "An Experiment of
Vocal Communication Applied to Computer-Aided Learning”,
Computers in Education, R. Lewis and D. Tagg (editors), North
Holland, 1981, pp. 337-341.

5- Mandurah, M.M., Kanawati, A.G., Kanawati, A.N. and El-Azhary,
: "The Development of a Speech Subsystem for Computer—Assisted

Instruction", Accepted for Presentation in the 8th Saudi NCC
to be held in Oct. 1985 in Al-Khobar, Saudi Arabia.

Paivio, A., Imagery and Verbal Processes, Holt Rinchart and
Winston, New York, 1971.

Lodding, K.&., "Iconic Interfacing", IEEE Computer Graphics,
Vol. 3, No. 2, March/April 1983, pp. 11-20.

Kent, E.W., The Brains of Men and Machines, McGraw Hill, New
York, 1981.

Mandurah, M.M. and Al-Mousa, A.0., "The Use of Graphics to
Generate High Quality Arabic Characters", Accepted for Presen-—

tation at the 8th Saudi NCC, to be held in Oct. 1885 in Al-
Khobar, Saudi Arabia.

