Sabri A. Mahmoud and Mohammed M. Mandurah, “CATIB: A Bilingual Authoring Language
with Hypertext and Multimedia Capabilities.” Saudi Computer Journal, Volume 1, Number 1, Nov.
1994, pp. 36-51.

Keywords: CATIB, Arabic Programming Languages, Course Ware Development,
Hypertext.

CATIB: A BILINGUAL AUTHORING LANGUAGE WITH
HYPERTEXT AND MULTIMEDIA CAPA]‘?-ILITIES'

Sabri A. Mahmoud and Mohammad M. Mandurah
College of Computer and Information Sciences
King Saud University
P.O.Box 51178
Riyadh 11543, Saudi Arabia E

A g5 e Lt e enas (R) (i) Al S 18 A RS el
wonst pl it el Y ale o Lgdas ol Ly abloy 2l edoa Gl y ot il e
Sl anl et g W 055 1SS LS sy Lgadas o i St (e allS
(CPM)gl ot e St pldid od Ll "™ e o i VAL L () 0 e
sdon s ((DOSY g Joiots pldis e bowss " TS) e e B gl s i L
A e 8 el Bl L) S S ey e B
oSS Al i e Baal e iy 3l e gt Akl i e ey B L

.h,J_,_—-u-'l;ASL_«C,l_._Ll.J_ - ‘|U(JJ-LUJLQ.3 ﬁ’h."a.c-——:f‘\—ﬂg"o-u{).‘—l‘q

Abstract; CATIB is a bilingual (Arabic/English) programming language that was
especially designed to facilitate the development of computer-assisted instruction (CAI)
courseware. The language has a simple syntax that makes it easy fornon -programmers,
such as teachers, to leamn the language and effectively use it in writing and editing CAl
courseware, An older version of CATIB was developed in 1984 to run under the then-
popular CP/M operating system. This paper discusses the development of a hew version
of CATIB that runs under MS-DOS. This version is actually an integrated environment
with a built-in screen editor, built-in Arabization routines, and with many enhanced
features. The paper examines in some detail the implementation of hypertext and
multimedia into CATIB for such features allow the development of effective CAI
courseware.

a

- 1. INTRODUCTION
The efforts to produce Arabic programming languages or to Arabize existing ones started early in
the 1970's. Early attempts concentrated on the development of Arabic interfaces to languages in
order that they could handle /O operations in Arabic [1]. Later attempts aimed at producing
programming languages with Arabic vocabulary. Examples of these attempts can be found in [2],
{3), [4), (5], (6], [71, [8], [9] [10],) The objective of these efforts was to produce general-
purpose programming languages, similar to BASIC or PASCAL, where the programmer can use
Arabic instructions and commands to code his programs.

Most of the Arabic 'programming languages that were developed in the past, however, were not
well received among programmers for several reasons. Firstly, programmers are professional

' This work is supported by KACST, Project #AR-11-42.

VOGO) saal v ad 36 13 gl gt 2

CATIB: A Bilingual Authoring Language with Sabri A. Mahmoud and Mohammad M. Mandurah

people who are usually very fluent in English. Thus, natural language is not a barrier that would
hinder their usage of an un-Arabized programming language. Secondly, programming languages
are witnessing remarkable improvements in their power and capabilities for they receiving
continuing support from the companies that produce them. Unfortunately, the Arabic counterparts
could not keep up with these advancements. The reason being, most of these Arabic programming
languages were developed as isolated research work that did not materialize into commercial
products receiving proper support and further development [11]. !

Nonetheless, one sector that aspires to the existence of an Arabic programrming language is the
educational sector. What is needed here is a programming language that facilitates the
development of educational courseware for computer-assisted instruction (CAl) applications. It is
essential in such programming languages to have an Arabic lexicon because not many of the,
intended users (teachers and students) are fluent in English. In addition, since the intended users
of such a programming language are non-professional programmers, these languages must be
user-friendly, easy to learn and use, and must have features that support the development of
effective educational courseware.

CATIB is one Arabic programming language specially developed for use in educational
applications. It is a bilingual authoring language with many features facilitating the development
of CAI courseware [12]. Without compromising the pedagogical objectives of the language,
CATIB has a simple syntax making it easy for non-programmers to learn the language, and use it
in developing useful applications. The work on the development of CATIB started in 1984. The
original version of the language was based on the then-popular CP/M operating system. In 1991,
the project received a grant from King Abdul-Aziz City for Science and Technology (KACST) in
Saudi Arabia to port the language to MS-DOS based machines and enhance it with advanced
features that reflect the advances in computer technology. KACST in Saudi Arabia is equivajent
to the National Science Foundation (NSF) in the U.S.A.

This paper discusses the development of the version of CATIB running under MS-DOS operating
system. This version is actually an integrated environment with a built-in screen editor and with
many enhanced features. In particular, the paper examines, in some detail, the implementation of
hypertext into CATIB.

2. CATIB PROGRAMMING ENVIRONMENT 1

The original programming language, CATIB, was conceptually designed after the well-known
language PILOT, "Programmed Inquiry Learning and Teaching" [13]. PILOT isa specialized
language oriented towards the development of educational dialogues, drills, tests, etc., rather than
towards computations which are well handled by general purpose languages. Similar {0 PILOT,
CATIB is an interpreted language with a simple syntax. A program written in CATIB is composed
of consecutive statements' lines; each line may contain a maximum of one statement. A statement
line has the following format:

[<statement>] : <text> | <expression> .

The <statement> in CATIB syntax is optional; if it does not appear in the line, the interpreter will
repeat the statement in the previous line. . "

A sample program written in CATIB is given in the Appendix. As can be seen, each line in the
program follows the format described above. The example is somewhat lengthy as it was intended

Saudi Computer Journal 37 Vol I Nol

s g3 ek s 3 gaF S0

to demonstrate the hypermedia capability of the language. This feature will be examined in more

Jatazll Jatiw iy iyl P padi A s aall PR FUSNS LS

detail later in the paper.

Table 1: Instructions of CATIB for MS-DOS Based Machines

I- Input/Output Instructions:

ACcept
AcceptHang
AcceptSingle
AcceptLine
CeNter
CenterHang
CenterPrinter
FooT

Hyper

" InputMax
ReMark
Remark Write
SaY

TypE
TypeHang
TypePrint

TypePrintHang

accept an answer.

accept an answer on the same line.

accept a single character.

accept a line of characters.

center the text on the display line.

center the text on the display and keep cursor on same line.
center the text on the printer.

indicate end of a screen display. Halt and prompt.
display help message on how to process hypertexts

input maximum number of characters.

indicate that the whole line is a remark.

write a remark.

a special instruction to output a recorded sound message.
type a message on the display.

type a message and keep cursor on the same line.

type a message on display and print it.

type and print a message, and keep cursor on same line.

II- Control Flow Instructions:

Do .. WHile
EnD

For

JumP

PAuse
PRoblem
SuBroutine
SubroutineR
SWitch

joop between Do and While keywords.

end of subroutine of program.

loop a predetermined number of iterations.
jump to a label.

pause waiting for a press on the keyboard.
start a problem.

call a subroutine.

make a rondom call to a subroutine from a list.
a multiway decision.

T11- Screen Handling Instructions:

CancelJustify
ClearS
ClearL
ClearE
ClearHome
CloseWindow
CursorMove
JustiFy
SetColor
UseWindow
WiNdow

v osaall v A

cancel a previous justification command.
clear screen.
clear from cursor position to end of line.
clear from cursor position to end of screen.
clear screen and home the cursor.
close a specified window.
move cursor to indicated coordinates.
set the margins for justification.

set the color of the text that follows.
make a specified window the active window.
open a window for display.

33 I

iy yaralh el W

CATIB: A Bilingual Authoring Language with ... Sabri A. Mahmoud and Mahamimd M. Mandurah
\
Table 1 (continued)

IV- String Manipulation Instructions: !

CoMpare compare two expressions or variables.
LeNgth calculate the lengh of a string.

MAtch match with any of the listed patterns.
MatchJump match and then jump if no match is found.
StrCat append one string to another.

StrcOpy copy one string into another.

StreMp compare one string to another.

VAI convert a string to integer.

V- Mathematical Functions:

Abs compute the absolute value of the argument.
ComPute compute an expression (string or integer expressions).
Cosine compute the cosine of the given angle.

Exp compute the exponential e to the specified power.
Log calculate the logarithm of the argument with base 10.
NewVariable clear the content of a variable.

Sine compute the sine of the given angle.

Sqr calculate the square of the argument.

SqrT calculate the square root of the argument.

Tan compute the tangent of the given angle.

VI- Graphics Instructions:

ARc draw a circular arc.

BAr draw a two-dimensional bar.

CiRcle draw a circle with the given center coordi
ELlipse draw an ellipse.

Getlmage save a bit image of the specified region of
GetPixel get the color of the specified point on the

LiNe draw a line between to the two given poin
PolY draw the outline of a polygon.

Putlmage output a previously saved bit image onto t
PutPixel output a pixel at a specified point on the s
ReCtangle draw a rectangle.

VII- File Control Instructions:
CLose close the indicated file.
OPen open the indicated file.

VIII- Environment Control Instructions:

FreeMemory free a previously allocated

. memory.
GetDate display the current date.
GetMemory allocate an area of memory.
GetTime display the current time.

Saudi Computer Journal 39 Vol | Nol

o) gbis daf g 3 puf (S pe0 soamell Jasl 1yl o gt S wath Rl 20 G S 1

The first line in the program starts with the statement 'remark’ to indicate that the text in this line is
a remark and should receive no further processing. The second line has the statement "clears’, it
tells the interpreter to clear the screen. Then, we see several lines that contain the statement 'type’.
Each one of these lines tells the interpreter to send the texton the line to be displayed on the
screen. More explanations about writing and running CATIB programs will be given in later
sections of the paper.

The vocabulary of the original version of CATIB that was developed for CP/M-based machines
contained about 33 statements. The MS-DOS version of CATIB is a much improved version with
many enhancements. The simple syntax has been preserved, but the list of statements and
instruction in CATIB vocabulary now contains many powerful instruction.% that allow the
development of a variety of applications. Table 1 lists the instructions supported: by the language
[14]. CATIB now has 72 instructions distributed into eight groups: 1-Input/Output Instructions, 1I-
Control Flow Instructions, Iil-Screen Handling Instructions, IV-String Manipulation Instructions,
V-Mathematical Instructions and Functions, VI-Graphics Instructions, VII-Fiie !Control
-Instructions, and VIII-Environment Control Instructions. Table 2 lists the number of instructions
in each group.

Table 2: The number of CATIB instructions in each group

Instruction Group Number of
instructions
1 | Input/Output Instructions 17
2 | 11-Control Flow Instructions 9
3 | Screen Handling Instructions 11
4 | String Manipulation Instructions 8
5 | Mathematical Instructions and 10
Functions
6 | Graphics Instructions 11
7 | File Control Instructions 2
8 | Environment Control 4
Instructions

The current version of CATIB is a complete bilingual programming environment with a built-in
screen editor. When CATIB is loaded and runs, it displays the opening screen simulated in Figure
1. Here the user can choose the language of the environment, the language of the text, to go to the
editor, to go to CATIB, or to quit the application. The user can move between these selections in
the main menu using the cursor keys. As he moves between these selections, a help message is
displayed at the bottom of the screen. Figure 1 shows the English environment of CATIB in which
all menus, messages, commands and instructions are in English, and writing is from left to right.

By continuously pressing the 'Enter key while the selection from the main menu is on
'Environment, the user can toggle between the Arabic and English environments. Figure 2 show§
the opening screen of CATIB in the Arabic mode in which all menus, messages, commands and
instructions are in Arabic, and writing is from right to left. CATIB has its own transparent
Arabization shell that is loaded on top of DOS to enable input and output of bilingual texts. Pull-

Vosaad 1l 40 s g el W

u,
Y

/ CATIB: A Bilingual Authoring Language with ... Sabri A. Mahmoud and Mohammad M. Mandurah

[Environment: Engiish] Teut: Engish Editor cetib guit

‘;.:-‘
Toggte the environment language batween Arabic and English
Figure 1: Opening screenof CATIB (English mode)
Eud S pepalipes gy tyadt | e i |
L

Luald 11y e i bt Al pad

| | —

Figure 2: Opening screen of CATIB (A;abic mode)

Saudi Computer Journal : 41 Vol I Nol

o, ki hnf g 3 gak (S b sadacd) ol Wiy 33 yill oyt SAASL ot Al T el 3 1 S

Figure 3 shows the opening screen of the 'Screen Editor' that is part of the authoring system. The
figure displays an example of the menu system in CATIB. This particular example shows the
options available under the selection 'System'. As can be seen, the user can toggle between Arabic
and English from any place within the application. It is beyond the scope of this paper to describe
the detailed operation of CATIB. These details can be found in CATIB User Manual {15]. We
would like in the remaining part of this paper to examine some of the novel features in CATIB.

Fiia - Window Tenut Blotk -Eo‘tn*ﬁ'-is:un:h:=?-=i:npﬁ:ms| SQStam II

Macros..

Directory..

change directory
Erecute CATIB program
Operating system..

Help

Environment language..
Text tanguage..

Figure 3: Built-in screen editor of CATIB

Two particular features in CATIB that deserve special discussion is the support of hypermedia.
These are major enhancements in CATIB as they facilitate the development of effective
educational courseware. The implementation of these features in CATIB is discussed in some
detail later in this paper. For the sake of readers who do not speak Arabic, all the examples
discussed here were developed under the English evironment of CATIB.

3. HYPERTEXT AND CAI

Hypertext is an approach to information management in which data is stored in a network of nodes
connected by links. Nodes can contain text, graphics, audio, video, as well as source code or other
forms of data. The nodes, and in some systems the network itself, are meant to be viewed through
an interactive browser and manipulated through a structure editor [16]. During the past few years,
interest in hypertext has accelerated sharply. To understand why hypertext is attracting such
attention, one must understand how a hypertext "“document® differs from a conventional paper
document.

In most conventional paper documents - such as journal articles, technical manuals, or novels -
physical structure and logical structure are closely related. Physically, the document is a long
linear sequence of words that has been divided into lines and pages for conve11i¢nce. Logically, the
document is also linear: words are combined to form sentences, sentences {0 form paragraphs,
paragraphs to form sections, etc. '

—

|
Vosael Y als 42 3 yronl el e

CATIB: A Bilingual Authoring Language with ... Sabri A. Mahmoud and Mohammad M. Mandurah

Many other paper documents - such as encyclopedias, dictionaries, and other reference works -
separate logical structure from physical structure. Physically, these documents are linear sequences
of independent units, such as articles on specific topics or entries for individual words. Logically,
they are more complex. The reader seldom reads such documents from beginning to end, but
rather searches them to locate the article or entry of interest (a form of random access), then reads
that portion sequentially. However, the reader is likely to encounter various cross references to
other entries. To follow those pointers, the reader must locate the appropriate volume, find the
appropriate entry, and then the relevant portion. The logical structure of reference and other
similar documents is, thus, more complex, They have a sequential structure that aids search, but
the logical path for the reader is a network that can crisscross the entire document of set of
documents, from one item to another, to another, etc. Such documents are more flexible but they
are also cumbersome, particularly when they appear in large, multi-volume formats.

Hypertext documents, in which information is stored in nodes connected by links, provide most of
the flexibility of reference works as well as add a number of new features. Each node can be
thought of as analogous to a short section of an encyclopedic article or perhaps a graphics image
with a brief explanation, The links join these sections to one another to form the article as a whole
and the articles to form the encyclopedia. These links are usually shown for each node as a "from”
link pointing to the node just read and a set of "to" links that indicate the multiple nodes which one
may select to read next [17], [18]).

Furthermore, while conventional publications are limited to text and graphics, hypertext nodes
offer sound, video sequences, animation, even computer programs that begin running when the
nodes in which they are stored are selected. Also, while the organizational and cross-reference
structures of conventional documents are fixed at the time of printing, hypertext links and nodes
can be changed dynamically. Information in individual nodes can be updated, new nodes can be
linked into the overall hypertext structure, and new links added to show new relationships.

4. IMPLEMENTATION OF HYPERTEXT IN CATIB:

In the design of CATIB, we tried to borrow many of the better features found in different
programming languages. Following the example set by assembly language, in CATIB any line of
the code can have a label through which it can be called as a subroutine, or to which control flow
can be transferred . A label-name in CATIB is identified by a star at the beginning of the line
immediately preceding the label itself. In the sample program in the Appendix we can see many
labels: *Edit, *Watch, *Format, *Evaluate, *Zoom, and *Qutput at lines 20,53,82, 101, 120, and
135 respectively. Line numbers are added to facilitate referring to specific commands. We found
that this technique is a very flexible way to store and access knowledge in the program. For
example, we can have the following label: *Test3_Lessons$, to indicate that this label is the entry
of Test3 on Lesson5, after which is added the code of the test. This test can then be addressed from
anywhere in the program using its label.

Utilising this labelling feature in CATIB, enabled simple and flexible implementation of
hypertext. A hypertext keyword is treated as a label of a subroutine that should be called and
executed. When the user selects a hypertext word or phrase, CATIB searches for the line number
that has a label matching the hypertexted phrase. CATIB then commences execution of all the
instruction lines following that label. Before jumping to the label, CATIB stores the return
address. Once an 'end:’ statement is encountered, CATIB returns to the original text.

Saudi Computer Journal 43 Val 1 Nol

o) ghin dak y 3 gak (S poo Sodadt sl gy il o et S it B A8 el A s

Figure 4 shows the structure of hypertext as is implemented into CATIB. The figure shows that
while the main lesson is being executed, the user selected more details about "phrase_b". CATIB
searches in the labels table for a label matching "phrase_b", and then transfers control to it after
saving the return address. The system presents the requested details of "phrase_b”, Once an ‘end:
statement is encountered in the subroutine "phrase_b", the user is returned to continue the
execution of the main program.

Point to Node

Node C

4

1
|
Point ta Point | Ls |

Figure 4: Hypertext links

The process of inserting hypertexted words or phrases in any CATIB program is as follows:
a. The programmer specifies a hypertexted word/phrase while programming by enclosing
the hypertexted phrase between stars and square brackets as follows: [*hypertext phrase*}.
b. The programmer then writes the details of this hypertexted word/phrase as a CATIB
subroutine with a label matching exactly the hypertexted phrase. In this part of code the
user may insert other hypertexted phrases.
. When CATIB code is executed by the user, CATIB displays hypertext phrases in a
different color. The user at this stage has several options :
i. Continue with the lesson by pressing the "Space-bar" key.
ii. Display the previous page Dy pressing "Pg Up" key.
iii. Activate the selected hypertext phrase by pressing "Enter" CATIB then calls the
corresponding subroutine and starts executing it.
iv. Select another hypertext phrase. This is done by pressing the "Tab" key for
forward movement to other phrases or "Shift-Tab" keys for backward movements,
After selecting the desired hypertext phrase, the user can activate the phrase by
pressing the "Enter” key.

This process is repeated every time information is displayed on the screen. Note that the hypertext
node, here, need not contain only text, but can be a full CATIB code that plays sounds or musie, or
display images and graphics. This is done by including CATIB instructions for playing sound,
displaying images, and generating graphics.

Voaded v il 44 13 g gl U

“
.

CATIB: A4 Bilingual Authoring Language with Sabri A. Mahmoud and Mohammad M; Mandurah

This implementation of hyptertext in CATIB has the following advantages :

1. It is userfriendly, as constructing a hypertext system is as easy as writing a CATIB program.

2. It does not require additional complex constructs to CATIB which is intended as a simple and
easy to learn language.

3. It enables the programmer to use all CATIB instructions in the hypertext nodes, and therefore
not restricted to text. Interactive instructions may be included in delivering more information about
any phrase. Text, graphics, and speech messages may be included in any hypertext node.

4. Older CATIB courseware may be easily modified to include hypertexts.

5. EXAMPLE OF A CATIB PROGRAM WITH HYPERTEXT

The following example demonstrates the use of CATIB in writing an instructional program
explaining the operation of a screen editor. The example also shows implementation of hypertext
is implemented in CATIB. This example is a section of the CAI-editor help document. The listing
of this program is given in the Appendix.

At the beginning of the lesson, the screen shown in Fig. 5 is displayed. This screen simulates the
outcome of executing the first 17 lines in the program. The Edit, Watch, Qutput, and Zoom words
are all enclosed between stars and square brackets, and will be displayed in a different color as
they are hypertexted words. In Fig. 5, the hypertexted phrases are underlined by a thin line or by a
thick line to simulate their different colors of display. A thin line under a word/phrase indicates a
hypertext word/phrase. A thick line under a hypertext word/phrase indicates that the word/phrase
is selected. From the figure, it can be seen that the "Edit" word is initially selected, line 7 of the
program.

A CATIB Program with hypertext feature

The integrated environment has three windows:
The Edit, the Watch, and the Qutput windows.
Normally, the Edit window is visible on top, and either the Watch window or
the output window is visible on the bottom. You can switch between the two

visible windows by pressing the F6 key. You can choose which window to
appear on the bottom of the screen by moving to the lower window and
pressing Alt-Fé.

The Zoom key (F5) enlarges the active window to nearly the full size of the

Figure 5: A lesson with hypertext phrases

Saudi Computer Journal 45 Vol I Nol

oy ghis daf y 3 gak (5 0 FENPEIN I Q)H\J,A$QUL§JEQH5M\Q\J.JJUU:_’;\Y

Line 17 in the program has the special statement 'hyper:". This statement tells CATIB to display a
help-message at the bottom of the screen to guide the user on how to select a hypertext
word/phrase. As shown in Fig. 5, the user has several options: select next word, select previous
word, execute a hypertext word/phrase, continue, page up, or retur.

If, for instance, the user wants more information about the hypertext word "Edit", he presses the
"Enter" key while the word "Edit" is being selected. This opens the hypertext screen shown in Fig.
6. From the listing in the Appendix, it can be seen that the hypertext node of "Edit" is actually a
subroutine that contains several lines of CATIB code, and that begins with the label "Edit", lines
20-52. During the compilation of the program the compiler searches for all labels in the program
and builds a table of them. These labels can be addressed using statements such as, 'Jump' and
'Subroutine', or they can be accessed as hypertext words.

If the hypertext node has more than one page, the screen will indicate the page number as shown
in the Fig. 6. After reading the above screen, if the user presses 'Space-bar’ key ‘for more
information on "Edit", the next page will be displayed. By repeatedly pressing 'PgUp' or ‘Space-
bar' keys, the user can read the different pages in the node. The user can return to the first screen
by pressing the 'ESC' key. From there, he can choose other hypertexted keywords if he desires.
Pressing 'Space-bar' or ‘ESC' in the first screen executes the rest of the code and terminates the
main CATIB program.

As has been mentioned before, the <statement> in a CATIB line is optional; thus, repeating the
instruction 'type’ in the sample program is optional. In CATIB, a line starting with ":' indicates that
the instruction of the current line is the same as the previous line. This is clearly shown in the
example in the code which describes the label "Zoom" and "Output", lines 4-17, 22-35, .. etc.

Edit Page |
Cursor Movement Commands:
Character left Cul-S or left arrow
Character right Ctrl-D or right arrow
Word left Ctrl-A or Ctrl-lefi arrow
Word right Ctsl-F or Ctrl-right arrow
Line up Ctrl-E or Up arrow
Line down Ctri-H or down arrow
Scroll up Ctri-W
Scroll down Cul-Z
Page up Ctri-R or PgUp
Page down Ctrl-C or PgDn
Last position Cul-Q

Tab | PgUp
Next word : i Next Page

Figure 6: “Hyper” help messages

Vosaal A A 46 23 paaadl v et s

CATIB: A Bilingual Authoring Language with ... Sabri A. Mahmoud and Mohammad M. Mandurah

7. IMPLEMENTATION OF MULTIMEDIA

CATIB has many instructions that facilitate the incorporation of multimedia in lessons. In Group
VI of CATIB instructions in Table 1, we find many instructions that can be used to create and
manipulate shapes and images. Of particular importance is the instruction 'Putimage’. When using
this instruction it should be followed by a file name that contains the image to be displayed. The
file should contain a bit image in the 'PCX' format. Hence, images, shapes, and graphics can be
easily intermixed with text in the lessons written in CATIB.

Also, CATIB supports sounds and voices. The special instruction 'Say' in Group I in Table 1 reads
the data of a digitized sound from a file and sends it to the speaker of the computer. In this version
of CATIB, the only sound system that is supported is the speaker in the PC. However, other sound
systems are planned to be supported in future versions of CATIB,; particularly, the popular Sound
Blaster card.

The samplie program in the Appendix demonstrates how to use the instruction 'Say". Line 18 of the
program contains the instruction 'Say: WINDEND.SPH', This instruction tells CATIB to open the
file: WINDEND.SPH, reads its contents of digitized speech messages, and sends it to the speaker.
The stored data in this file is a voice message to inform the user that there are no more pages of
" text following this line and that he has reached the end of the program or the subroutine. As can be
seen in other locations in the program, the same instruction has been inserted near the end of all
subroutines.

8. CONCLUSIONS

CATIB is a bilingual programming language that was developed to facilitate the production of
educational courseware. The language runs under MS-DOS, and it has a simple syntax that makes
it easy for non-programmers to learn the language and use it effectively to develop a variety of
applications. At the same time, the language has many advanced features that allow the
development of sophisticated applications. One major feature in CATIB is the support of hypertext
and multimedia. These capabilities are becoming essential in modern programming languages, and
can aid the development of effective educational courseware. ‘

The work in this project has been supported by a grant from KACST in Saudi Arabia. Therefore,
it is hoped that CATIB will receive continuing support for further developments. Future plans for
further developments include porting the language to other operating systems, particularly,
Windows and Unix.

ACKNOWLEDGMENTS

The authors would like to express their gratitude to the referees for their constructive
criticism. The incorporation of their suggestions and comments improved the clarity of the
final manuscript.

REFERENCES

[1] Ghandour, Z. "An Arabic Interface to APL," Proc. of the Conf. on Inf ormatics, Paris, 1976, 483-92.

[2] Dehlawi, FM.A., and Mandurah, M. "LPA: Another Arabic Programming Language,” Proc. of the Sth Saudi
NCC, 1985,. 20-60. .
[3] Hawaf, A.Y. "Design of an Arabic Programming Language ARABW with an Efficient Compiler,” Proc. of the
9th Saudi NCC, Vol. 2, 1986.

[4] Kasim, Z.S. "The Development of the Arabic Programming Language LAITH," 1. of Electronic Computers,
Baghdad, #3, 1978, pp. 28-45.

[5] Khayat, M.G. “The Arabic Programming Language DHAD," Proc. of the Workshop on Comput er Processing of
the Arabic Language, Kuwait, 1985.

Saudi Computer Journal 47 Vol I No!l

T Y sadali darle Yy z,;,un‘_,,,.m_-,u\s,msuma._:uq;'uw;w«

(6] Khidr, MZ, and Abdul-Majeed S. "GHAREEB: An Arabic Programming Language,” J. of Electronic
Computers, Baghdad, # 4, 1978, 480-97.

[7] Mahjoub, A., and Mathkour, H. "An Interactive Compiler for Arabic PASCAL," Proc. of the Regional Conf. on
Informatics and Arabization {IRSIT), Tunis, 1988, pp. 167-82.

[8) Nasser, H. "Design and Development of PASCAL-like Arabic Programming Language,” ProlL. ofthe 2nd Int.
Baghdad Conf. on Computer Technology and Applic ations, Baghdad, March 1986, C.3-2. |

191 Sadoun, H. "Arabic BASIC: A New Arabic MS-DOS Based Programming Language,” Proc. of the 12th Saudi
NCC, Riyadh, Oct. 1990, 449-61.

[10} Sayed, H. “Verbum (al-Qawl): An Arabic Programming Language,” Proc. of the 1st Seminar on I?il'mgual
Computing, Cambridge Univ., UK., Sept. 1089,. 1-13. ,

1} Mandursh, M.M. "Software Industry in the Arab Countries; Status, Current Issues, and Future Directions,” J. of
Information Technology for Development, Vol. 5, No. 2, June 1990,. 157-75.

[12) Mandurah, MM, and Azhar, 1. "CATIB: An Arabic Authoring Language for CAL" Proc. ofthe Tth Saudi
NCC, Riyadh, Jan. 1984, 271-8.

[13} Starkweathers, J. Nevada PILOT Reference Manual ,ELLIS Computing, 1982.

[14] Mandurah, MM., and Mahmoud, S.A. Development of An Advanced Arabic Authoring Language for CAI
Applications, KACST project #AR- 11-42, Progress Report #2, KACST, Riyadh, April 1992.

{15] Mandurah, MM., and Mahmoud, S.A. CATIB User Manual, to be published.

{16] Smith,] B., and We iss, S.F.(1988), "Hypertext", Comm. ofthe ACM, Vol. 31,No. 7, July 1988,. 816-9.

[17) Rada, R. Hypertext: from Text to Expertext , McGraw-Hill Co., UK., 1991

-[18} Shneiderman, B., and Kearsley, G.P. Hypertext Hands-On!, Addison Wesley Publishing Co., 1988

[19} Hashim, S.H. Exploring Hypertext Programming , Windcrest Books, 1990.

yosaad 4 alsh 48 203 gt o el WS

.,
.

CATIB: A Bilingual Authoring Language with ... Sabri A. Mahmoud and Mohammad M. Mandurah

Appendix
Source listing of a Sample Program in CATIB
remark : This is an example CATIB program to implement a hypertext example 1
clears : 2
type ! 3
- A CATIB program with hypertext feature 4
5
. The integrated environment has three windows: 6
The [*Edit*}, the [*Watch*], and the [*Output*] window. 7
. Normally, the Edit window is visible on top, 8
. and either the [*Watch*] window or the [*Qutput*) 9
. window is visible on the boftom. You can 10
. switch between the two visible windows by 11
. pressing the F 6 key.You can choose which window 12
: to appear on the bottom of the screen by 13
- moving to the lower window and pressing Alt -F6. 14
: The [*Zoom*] key (F 5) enlarges the active window 15
: to nearly the full size of the screen. 16
hyper: 17
say: windend.sph 18 ‘
end: 19
|
*Edit 20
type: Edit page | . 21
: 22
» Cursor Movement Commands 23 !
- Character left Ctrl-S or Left arrow 24
. Character right Ctrl-D or Right arrow 25
: Word left Ctrl-A or Ctrl-Left arrow 26
: Word right Ctrl-F or Ctrl-Right arrow 27
: Line up Ctrl-E or Up arrow 28
: Line down Ctrl-X or Down arow 29
: Scroll up Cul-W 30
: Scroll down Cul-Z 31
. Pageup Ctril-R or PgUp 32
: Page down Ctrl-C or PgDn 33
. Last position Cul-Q 34
: More .. 35
hyper : 36
type: Edit page 2 37
: 38
: Insert & Delete Commands 39
: 40
- Insert mode onfoff Ctrl -V orIns 41
. Insert line Ctrl -N 2
: Insert options Cul -00 43
: Delete line Cirl -Y 44
: Delete to end of line Cirl -QY 45
- Delete character left Ctrl -H or Backspace 46
. Delete character Ctrl -G or Del 47
. Delete wordright "Cutl -T 48
: Delete block Ctrl -KY 49
hyper: 50
say : windend.sph 51
end : 52

Saudi Computer Journal 49 - Vol 1 Nol

e Rl tind

*Watch
type: waich page !

- The Watch window contains your watch expressions
. whose values are updated each time you execute

. a step of the program. You can use watches to

. follow what happens to your data structures as

: the program executes.

- Watches can include {*format*] specifiers that

. specify how they are 10 be displayed. This

. allows you to se€ YOur data in a convenient

: format.

: More ..
hyper:
type: Watch page 2

- While the Watch window is a convenient way 10

. check the values of variables and

. expressions as you tracc through your

- program, there are times when you only need

. 1o check the value once and not clutter the

. screen with another watch variable.

- That's when you might find it more convenient 0
. use the Debug [*Evaluate®] command, which lets
. you evaluate and modify the contents of

- variables and expressions.
hyper:
say - windend.sph
end:
*format
type: format

- A format specifier consists of an optional
: repeat count (an integer), followed by zero
. or more format characters.
.C Character. Shows special display
. characters for control characters
. (ASCI 0.31); by default, such
. characters are shown as ASCII values
- using the xx syntax. Affects
- characters and strings.
hyper:
type: D Decimal. All integer values are
. displayed in decimal. Affects simple
. integer expressions as well as
. structures containing integers.
hyper :
say : windend.sph
end.

*Evaluate
type ! Evaluate

Debug/Evaluate (Ctri -F4)
- Brings up an Evaluate window with three boxes.

[*Evaluate box*]
{*Result box*}

Vosaall VA 50

touncll Btk iy Tyt o e RS ol

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
7
7
73
74
75
76
77
78
19
80
81

82
83
84
85
86
87
88
89
90
9
92
93
94
95
96
97
93
99
100

101
102
103
104
105
106
107
108

'qa:...l\ ..,;,..LL'- us

Y

“.

o — -

)

L

CATIB: A Bilingual Authoring Lé:nguage with ...

[*New value box*]
- The [*Output*] window contains the output
: generated by your program. At startup, it
. will display the last screen from DOS. You
- can pan through this window using the cursor
: keys, as well as the Home, End, PgUp and
: PgDn keys. Use [*Zoom*] (F 3)to enlarge this
. window to almost the full screen.
hyper :
say: windend.sph
end:

*Zoom

: Zoom

Options/Environment/Zoom windows
- When the Zoom windows toggle is On, the
: [*edit*], {*watch*], or [*output*] window is expanded to
. full screen. You can still switch between
- the windows using F 6, but only one window at
- a time will be visible. When this item is
- toggled Off, you're returned to the
: split-screen environment containing the [*edit*]
. window and either the [*watch* Jor [*output*]
- window. F 5 is the hot key for this togele.

hyper:

say : windend.sph
end:

*Qutput

type: OQutput

- The Output window contains the output
: generated by your program. At startup, it
- will display the last screen from DOS. You
: can pan through this window using the cursor
: keys, as well as the Home, End, PgUp and
: PgDn keys. Use {*zoom*] (F 5)to enlarge this
- window to almost the full screen.
: Output 2/2
: The Qutput window has borders and is always
- shown in character mode. If your last screen
- was a graphics screen, or if you want to see
: ALL of the program’s output screen with no
: borders, use the User screen cormmand
: (Alt-F5} to view the last execution screen.
- This only works for text and CGA graphics.
hyper :
say : windend.sph
end:

Saudi Computer Journal 51

Sabri A. Mahmoud and Moha

109
110
111
112
113
114
115
116
117
118
119

120
121
122
123
124

mmad M. Mandurah

125 -

126
127
128
129
130
131
132
133
134

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

152

153

154

	CATIB A Bilingual Authoring Language with Hypertext and Multimedia Capabilities_Header.doc
	CATIB A Bilingual Authoring Language with Hypertext and Multimedia Capabilities J17.PDF

