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CHAPTER 1 

 

 
INTRODUCTION 

 

 
Today’s Power system is a complex network, sometimes made of thousands of buses and 

hundreds of generators. Available power generation usually does not situated near a 

growing of load center. In order to meet the growing power demand, utilities have an 

interest in better utilization of available power system capacities, existing generation and 

existing power transmission network, instead of building new transmission lines and 

expanding substations. On the other hand, power flows in some of the transmission lines 

are overloaded, which has as an overall effect of deteriorating voltage profiles and 

decreasing system stability and security. In addition, existing traditional transmission 

facilities, in most cases, are not designed to handle the control requirements of complex 

and highly interconnected power systems. This overall situation requires the review of 

traditional transmission methods and practices, and the creation of new concepts, which 

would allow the use of existing generation and transmission lines up to their full 

capabilities without reduction in system stability and security.  
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The line impedance, the receiving and sending ends voltages, and phase angle 

between the voltages determine the transmitted electrical power over a line. Therefore, by 

controlling, one or more of the transmitted power factors; it is possible to control the 

active as well as the reactive power flow over a line. 

 In the past, power systems could not be controlled fast enough to handle dynamic 

system condition. This problem was solved by over-design; transmission systems were 

designed with generous stability margins to recover from anticipated operating 

contingencies caused by faults, line and generator outages, and equipment failures. 

 Series capacitor, shunt capacitor, and phase shifter are different approaches to 

increase the power system transmission lines loadability. In past days, all these devices 

were controlled and switched mechanically and were, therefore, relatively slow. They are 

very useful in a steady state operation of power systems but from a dynamical point of 

view, their time response is too slow to effectively damp transient oscillations. If 

mechanically controlled systems were made to respond faster, power system security 

would be significantly improved, allowing the full utilization of system capability while 

maintaining adequate levels of stability. This concept and advances in the field of power 

electronics led to a new approach introduced by the Electric Power Research Institute 

(EPRI) in the late 1980. Called Flexible AC Transmission Systems or simply FACTS, it 

was an answer to a call for a more efficient use of already existing resources in present 

power systems while maintaining and even improving power system security.  

 In order to clearly determine the goals of this thesis, the concept of “stability” 

must be defined. A definition given in [1] is as follows: 
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“Power system stability may be broadly defined as that property of a power system that 

enables it to remain in a state of operating equilibrium under normal operating conditions 

and to regain an acceptable state of equilibrium after being subjected to a disturbance.” 

 From this general definition, two categories of stability are derived: small-signal 

and transient stability. Small-signal stability is the ability of the system to return to a 

normal operating state following a small disturbance. Investigations involving this 

stability concept usually involve the analysis of the linearized state space equations that 

define the power system dynamics. Transient stability is the ability of the system to return 

to a normal operating state following a severe disturbance, such as a single or multi-phase 

short-circuit or a generator loss. Under these conditions, the linearized power system 

model does not usually apply and the nonlinear equations must be used directly for the 

analysis, and must be solved by direct methods or by iterative step-by-step procedures. 

 Since the development of interconnection of large electric power systems, there 

have been spontaneous system oscillations at very low frequencies in order of 0.2-3.0Hz. 

Once started, the oscillation would continue for a while and then disappear, or continue to 

grow, causing system separation [3]. There are two electromechanical modes of 

oscillations have reported [4];  

• local mode, with a frequency 0.8-3 Hz, which is related to oscillation in a single 

generator or a group of generators in the same area oscillate against each other; 

and  

• Inter-area mode, with frequency 0.2-0.8 Hz, in which the units in one area 

oscillate against those in other area.  
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 In order to damp these power system oscillations and increase system oscillations 

stability, the installation of Power System Stabilizer (PSS) is both economical and 

effective. PSSs have been used for many years to add damping to electromechanical 

oscillations. To date, most major electric power system plants in many countries are 

equipped with PSS [5]. However, PSSs suffer a drawback of being liable to cause great 

variations in the voltage profile and they may even result in leading power factor 

operation and losing system stability under severe disturbances. In addition, in a 

deregulated environment, placement may be problematical due to generator ownership.   

 Recently appeared FACTS (Flexible AC Transmission System)-based stabilizer 

offer an alternative way in damping power system oscillation. Although, the damping 

duty of FACTS controllers often is not their primary function, the capability of FACTS-

based stabilizers to increase power system oscillation damping characteristics has been 

recognized [6]. 

 However, uncoordinated local control FACTS devises and PSSs always causes 

destabilizing interaction. To improve overall system performance, many studies were 

made on the coordinated design between FACTS and PSSs controllers.    

 

1.1 Literature Review 

1.1.1 Power System Stabilizers 

The power system stabilizer is a supplementary control system, which is often applied as 

part of excitation control system. The basic function of the PSS is to apply a signal to the  
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excitation system, creating electrical torques to the rotor, in phase with speed variation, 

that damp out power oscillations.  

 In the past decades, the utilization of supplementary excitation control signals for 

improving the dynamic stability of power systems has received much attention. Extensive 

research has been conducted in such fields as effect of PSS on power system stability, 

PSS input signals, PSS optimum locations, and PSS tuning techniques. 

 DeMello and Concordia in 1969 [7] presented the concepts of synchronous 

machine stability as affected by excitation control. They established an understanding of 

the stabilizing requirements for static excitation systems. Their work developed insights 

into effects of excitation systems and requirement of supplementary stabilizing action for 

such systems based on the concept of damping and synchronizing torques.  

 Klein et al. [8, 9] presented the simulation studies into the effects of stabilizers on 

inter-area and local modes of oscillations in interconnected power systems. It was shown 

that the PSS location and the voltage characteristics of the system loads are significant 

factor in the ability of a PSS to increase the damping of inter-area oscillations. 

  Nowadays, the conventional lead-lag power system stabilizer is widely used by 

the power system utility [10]. Other types of PSS such as proportional-integral power 

system stabilizer (PI-PSS) and proportional-integral-derivative power system stabilizer 

(PID-PSS) have also been proposed [11-12].  

 Several approaches have been applied to PSS design problem. These include pole 

placement, H∞, optimal control, adaptive control, variable structure control, and different 

optimization and artificial intelligence techniques [13-28].   
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Since the primary function of the PSS is to add damping to the power oscillations, 

basic control theory would indicate that any signal in which the power oscillation is 

observable is a good candidate for input signal. Some readily available signals are 

generator rotor speed, calculated bus frequency, and electrical power. Most PSS controls 

today are based on an accelerating power input design, providing robust damping over a 

wide range of operating conditions, with minimum interaction [29]. 

  The problem of the most appropriate locations for PSSs in multi-machines power 

system has been addresses in many papers. Sequentially select the optimum location of 

PSS using eigenvalue analysis techniques has been introduced in [30]. Hsu and Chen [31] 

have proposed a novel technique to identify the optimum PSS locations by participation 

factor (PF).  

         

1.1.2 FACTS Devices 

Series capacitor, shunt capacitor, and phase shifter are different approaches to increase the 

power system loadability. In past decades, all these devices were controlled mechanically 

and were, therefore, relatively slow. They are very useful in a steady state operation of 

power systems but from a dynamical point of view, their time response is too slow to 

effectively damp transient oscillations. If mechanically controlled systems were made to 

respond faster, power system security would be significantly improved, allowing the full 

utilization of system capability while maintaining adequate levels of stability. This 

concept and advances in the field of power electronics led to a new approach introduced 

by the Electric Power Research Institute (EPRI) in the late 1980. Called Flexible AC  
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Transmission Systems or simply FACTS, it was an answer to a call for a more efficient 

use of already existing resources in present power systems while maintaining and even 

improving power system security. In [33], the author introduced this new concept, 

initiating a new direction in power system research. Developments in the field of high 

voltage power electronics have made possible the practical realization of FACTS 

controllers. 

 

1.1.2.1 First Generation FACTS Devices (G1) 

Developments in the field of high voltage power electronics have made possible the 

practical realization of FACTS controllers. By the 1970s, the voltage and current rating of 

Thyristor had been increased significantly making them suitable for applications in high 

voltage power systems [34-35]. This made construction of modern Static Var 

Compensators (SVCs), Thyristor Controlled/Switched Series Capacitors (TCSCs/TSSCs), 

and Thyristor Controlled Phase Shifter Regulators (TCPSs). A fundamental feature of the 

thyristor based switching controllers is that the speed of response of passive power system 

components such as a capacitor or a reactor is enhanced, but their compensation capacity 

is still solely determined by the size of the reactive component. 

 A lot of different technique has been reported in the literature pertaining to 

investigating the effect of G1 FACTS devices "SVC, TCSC, and TCPS" on power system 

stability [38-64].  

 Wang and Swift [38] developed a novel unified Phillips-Heffron model for a 

power system equipped with a SVC, a TCSC and a TCPS. Damping torque coefficient  
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analysis has been performed, based on the proposed model, to study the effect of FACTS 

controllers damping for different loading conditions.  

 Abido & Abdel-Magid [39, 40] investigated the effectiveness of PSS and FACTS-

based controllers on power stability enhancements. For the proposed stabilizer design 

problem, an eigenvalue-based objective function to increase the system damping was 

developed. Then the GA used to search for the optimal stabilizer parameters.   

 Many approaches have been adopted to design the FACTS controller. Several 

approaches based on modern control theory have been applied to TCSC controller design 

[41-49]. Chen at al. [41] presented a state feedback controller for TCSC by using a pole 

placement technique. Cang and Chow [42] developed a time optimal control strategy for 

the TCSC where a performance index of time was minimized. A fuzzy logic controller for 

a TCSC was proposed in [43]. Heuristic optimization techniques have been implemented 

to search for the optimum TCSC based stabilizer parameters for the purpose of enhancing 

SMIB system stability [45-46]. In addition, different control scheme for a TCSC were 

proposed such as variable structure controller [48], bilinear generalized predictive 

controller [49], and H∞-based controller [50]. 

 A considerable attention has been directed to realization of various TCPS 

schemes. Baker et al [51] developed a control algorithm for SPS using stochastic optimal 

control theory. Edris [52] proposed a simple control algorithm based on equal area 

criterion. Jiang et al [53] proposed an SPS control technique based on nonlinear variable 

structure control theory. 
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In the literature, SVCs have been applied successfully to improve the transient 

stability of a synchronous machine [56]. Hammad [57] presented a fundamental analysis 

of the application of SVC for enhancing the stability performance of power systems. 

Then, the power damping enhancement by application of SVC has been analyzed [58-68]. 

It is shown that the SVC enhances the system damping of local as will as inter-area 

oscillation modes. Wang and Swift [58] used damping torque coefficients approach to 

investigate the SVC damping control of a SMIB system on the basis of Phillips-Heffron 

model. It was shown that the SVC damping control provides the power system with 

negative damping when it operates at a lower load condition than the dead point, the point 

at which SVC control produces zero damping effect. Robust SVC controllers based on 

H∞, structured singular value µ, and quantitative feedback theory QFT also have been 

presented to enhance system damping [63-65]. 

M. Noroozian [73-76] examined the enhancement of multimachine power system 

stability by use TCSCs and SVCs. SVC was found to be more effective for controlling 

power swings at higher levels of power transfer; when it design to damp the inter-area 

modes, it might excite the local modes, and its damping effect dependent on load 

characteristics. While TCSC is not sensitive to the load characteristic and when it is 

designed to damp the inter-area modes, it does not excite the local modes. 

    

1.1.2.2 Second Generation FACTS Devices 

A normal thyristor, having no current interruption capability, changes from on-state to 

off-state when the current drops below the holding current and, therefore, has a serious  
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deficiency that prevents its use in switched mode applications. With the development of 

the high voltage, high current Gate Turn-Off thyristors (GTOs, IGBTs … etc), it became 

possible to overcome this deficiency. Like the normal thyristor, a gate current pulse can 

turn on the GTO thyristor, while to turn it off, a negative gate-cathode voltage can be 

applied at any time. This feature and the improved ratings of GTOs made possible the use 

of Voltage-Sourced Converters (VSC) in power system applications [78]. 

 Voltage-sourced converters employ converters with GTOs/IGBTs or other turn-

off devices, diodes and a dc capacitor to generate a synchronous voltage of fundamental 

frequency and controllable magnitude and phase angle. If a VSC is connected to the 

transmission system via a shunt transformer, it can generate or absorb reactive power 

from the bus to which it is connected. Such devices are Static Compensator or 

STATCOM, Static Synchronous Series Compensator (SSSC), and a Unified Power Flow 

Controller (UPFC). STATCOM form the 2nd generation FACTS device is considered.   

 STATCOM previously referred to as STATCON, ASVC or ASVG, resembles in 

many respects a rotating machine used for reactive power compensation. The principles 

of a STATCOM can be found in [36].  

 Application of STATCOM for stability improvement has been discussed in the 

literature [79-107]. A comparative study between the conventional SVC and STATCOM 

in damping power system oscillation is given in [79]. The results show the superiorly of 

STATCOM-based controller over SVC-based controller in increasing the damping of low 

frequency oscillations. 
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Wang in [80], established the linearized Phillips-Hefferon model of power system 

installed with a STATCOM and demonstrated the application of the model in analyzing 

the damping effect of the STATCOM. Both cases of SMIB and multimachine power 

system were studied. Then the work was extended in [81, 82] to study the negative 

interactions between STATCOM AC and DC control. To overcome the reported negative 

interaction a technique to design a decoupled multivariable sampled regulator for multi-

input multi output systems was applied for the coordinated control of STATCOM AC and 

DC voltage. 

 A robust controller for providing damping to power system through STATCOM is 

presented in [83-86]. The loop-shaping technique has been employed to design the 

controllers. It was observed that a robust controller in the speed loop, with nominal 

voltage feedback, effectively damps the electromechanical oscillations for a wide range of 

operating conditions.  

 In [87], an adaptive fuzzy controller is incorporated into the supplementary 

control of STATCOM to enhance the damping of inter-area oscillation exhibited by a 

two-area four-machine interconnected power system.  

 Two new variable structure fuzzy control algorithms for controlling the reactive 

component of the STATCOM current are presented in [88]. The signal input to the 

proposed controller obtained from a combination of generator speed deviation and 

STATCOM bus voltage deviation. 
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Lee and Sun in [89], used the Linear Quadratic Regulator (LQR) method to design 

the state feedback gain of STATCOM controller to increase the damping of a SMIB 

power system. 

 Nonlinear control theory has been applied to design STATCOM damping 

controller in [90]. Comparison of PSS, SVC, and STATCOM controllers for damping 

power system oscillations using Hopf bifurcation theory is presented in [97]. 

 STATCOM active power injection/absorption control function has better 

performance for the power swing damping and can improve the transient stability. But 

STATCOM itself cannot control the active power injection/absorption to power system. 

A STATCOM with energy storage system can control both the reactive and the active 

power, thus providing more flexible power system operation [98]. 

 With more advanced energy storage systems, such as Battery Energy Storage 

System (BESS) and Superconducting Magnetic Energy Storage (SMES) [99], are 

commercially available for power system transmission and distribution level application. 

In [100], the steady-state characteristics of STATCOM with energy storage were 

discussed in detail. Power system stability improvement by energy storage type 

STATCOM has been studied in [101-104]. 

   

1.1.2.3 Coordination Design Between FACTS-Based Controllers and PSS 

Uncoordinated FACTS-based stabilizers and PSSs always cause destabilizing 

interactions. To improve overall system performance, many researches were made on the  
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coordination between PSSs and FACTS Power Oscillation Damping (POD) controllers 

[105-117]. 

 Gibbard et al. [106] investigated the interactions between and the effectiveness of 

PSSs and FACTS- based controllers in multimachine systems based on the analysis of 

both the perturbations in induced torque coefficients and the shifts in rotor modes 

resulting from increments in stabilizer gains.  

 A little work has been devoted in the literature to study the coordination control of 

excitation and FACTS stabilizers.  A coordinated optimal controller for the excitation 

system and a SVC located on the generator bus of a SMIB system was presented in [107].  

Rahim and Nassimi [108] presented optimum control strategies for both the SVC and 

exciter. Hiyama et al [109] presented a coordinated fuzzy logic-based scheme for PSS and 

switched series capacitor modules to enhance overall power system stability. Abdel-

Magid and Abido [110] presented Robust coordinated design of excitation and TCSC-

based stabilizers using genetic algorithm. Pourbeik and Gibbard [111] presented a two-

stage method for the simultaneous coordination of PSSs and FACTS-based lead-lag 

controllers in multimachine power systems by using the concept of induced damping and 

synchronizing torque coefficients.  

 Coordination between PSS and STATCOM-based stabilizer has also been studied 

[113-115]. Stabilization of generator oscillations using PID STATCOM damping 

controllers and PID PSSs is presented in [113]. The parameters of the proposed damping 

controllers were solved by left shifting both modes to the desired locations on the 

complex plane using a unified approach based on modal control theory. 
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1.2 Thesis Objectives 

The objective of this thesis is to investigate the power system stability enhancement via 

power system stabilizers (PSSs) and Flexible AC Transmission System (FACTS) based 

controllers. This study includes coordination design between PSSs and FACTS-based 

controllers. The procedure to achieve the thesis objective is as follows: 

 
1. For a SMIB system equipped with PSS and FACTS devises namely (TCSC, SVC, 

TCPS, and STATCOM), the linearized models were developed. 

2. Singular Value Decomposition (SVD) analysis is employed as a controllability 

measure of the different control signals on the system electromechanical mode 

that will be identified using Participation Factor (PF) technique.    

3. The design problem of PSS and different FACTS controllers are formulated as an 

optimization problem. The Particle Swarm Optimization (PSO) algorithm is 

employed to search for optimal controller’s parameters by maximizes the 

minimum damping ratio of all complex eigenvalues.  

4. Eigenvalue analysis is carried out to assess the effectiveness of the proposed 

stabilizers on enhancing the EM mode stability. 

5. Coordination design of PSS and FACTS controllers is carried out by considering 

more than one stabilizer in the design process. 

6. The design process is extended to make the controller robust. This done by 

considering a wide range of the operation conditions during the design. 
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7. For more practical power system the TCSC and SVC are modeled in two different 

multimachine power systems and the linearized model are developed accordingly. 

8. Steps 3-5 are repeated for the multimachine power system. 

9. The eigenvalue analysis and the nonlinear time-domain simulation used 

throughout the thesis to validate the effectiveness of the proposed controllers. The 

controllers are simulated and tested under different operating conditions. 

 

1.3 Thesis Organization 

This thesis is organized as follows: in Chapter 2, introduction and basic operating 

principles of FACTS devices namely (TCSC, SVC, TCPS, and STATCOM) are 

introduced in addition to their power oscillation damping (POD) controller structure used 

in this thesis. 

 Chapter 3 concentrates on the power system linear and non-linear models. These 

models include: a SMIB system model equipped with PSS, and G1 FACTS devices 

(TCSC, SVC and TCPS), a SMIB system model equipped with a STATCOM, and a 

multimachine power system equipped with PSS, TCSC and SVC. 

 Chapter 4 presents some tools and techniques used in the controllers design 

process. These tools are Particle Swarm Optimization (PSO), controllability 

measurement, participation factor, and modal analysis. In addition, the problem 

formulation is outlined in this chapter. 
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 The stabilizers design, eigenvalue analysis, and nonlinear simulation of a SMIB 

equipped with PSS, and G1 FACTS-based stabilizers are presented in chapter 5, while 

chapter 6 is devoted to SMIB with a PSS and a STATCOM-based stabilizer. 

 Chapter 7 concentrates on the multimachine system equipped with PSS, TCSC, 

and SVC. Eigenvalue analysis and nonlinear simulation results for two different  

multimachine systems are presented. Conclusions and future work are discussed in 

chapter 8. 
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CHAPTER 2 

 

 
FLEXIBLE AC TRANSMISSION SYSTEM (FACTS) 

 

 
2.1 Controlled Series Capacitor (CSC)  

2.1.1 Introduction and Basic Operating Principles 

Series capacitors are connected in series with transmission lines to compensate for the 

inductive reactance of the line, increasing the maximum transmittable power and reducing 

the effective reactive power loss. Power transfer control can be done continuously and 

rather fast using, for example, the Thyristor Controlled Series Capacitors (TCSC) or 

Thyristor Switch Series Capacitors (TSSC), making it very useful to dynamically control 

power oscillations in power systems [24-28]. However, the problem with these devices is 

that that it can form a series resonant circuit in series with the reactance of the 

transmission line, thus limiting the rating of the TCSC to a range of 20 to 70 % the line 

reactance. Fig. 2.1 shows the basic configuration of a TCSC. Same figure could be used 

for TSSC but without a series reactance with the thyristor.  

 TCSC controllers use thyristor controlled reactors (TCR) in parallel with capacitor 

segments (C) of a series capacitor bank. This combination allows the capacitive reactance  
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to be smoothly controlled over a wide range and switched upon command to a condition 

where the bi-directional thyristor pairs conduct continuously (full cycle) and insert an 

inductive reactance into the line.  

 

 

2.1.2 Power Flow Modulation 

 The real power flow through a transmission line, between bus i & j, equipped with 

a TCSC or TSSC, Fig. 2.2, is obtained by: 
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Fig.2.1: TCSC Configuration 
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where α is the thyristor firing angle. 

Hence, the real power flow through the transmission line can be adjusted by controlling 

the compensation level k. 

 

Fig. 2.2: Transmission line with a TCSC 

 

2.1.3 Damping Controller Model 

To utilize the Controlled Series Compensation devices for improving the system 

damping, a supplementary damping controller is installed. The conventional Lead-Lag 

controller is used throughout this thesis as a damping controller. 

The damping controllers are design to produce an electrical torque in phase with 

the speed deviation. The speed deviation ∆ω is considered as the input to the damping 

controllers. The lead-lag block contains the stabilizer Gain block determines the amount 

of damping. Next, the washout sub-block, used to reduce the over-response of the 

damping during severe event and serves as a high-pass filter, with a time constant that 

allows the signal associated with oscillations in rotor speed to pass unchanged; without 

this block, the steady state changes would modify the terminal voltages. Finally, the time 

constants of the Phase compensator block are chosen so that the phase lag/lead of the 

system is fully compensated.   

CSCjX ijjX
j jV δ∠i iV δ∠
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The complete TCSC controller structure is shown in Fig. 2.3. The output signal of 

the TCSC is the desired capacitive/inductive compensation signal, noted as XTCSC.  

 

Fig. 2.3: TCSC with lead-lag controller 

The structure shown in Fig. 2.3 is expressed as 

  sTCSCTCSC
ref
TCSCsTCSC TXuXKX /))(( −−=

•

   (2.5) 

 

2.2 Static VAR Compensator (SVC) 

2.2.1 Introduction and Basic Operating Principles 

 The SVC is the most important FACTS device that has been used for a number of 

years to improve transmission line economics by resolving dynamic voltage problems. 

The accuracy, availability and fast response enable SVC’s to provide high performance 

steady state and transient voltage control compared with classical shunt compensation. 

SVCs can perform the duty of providing rapidly controlled Vars more appropriately and 

thus, by maintaining the voltage, inherently improve transient stability. 

- 
uTCSC 

XTCSC 

max
TCSCX

min
TCSCX

∆ω  

min
TCSCu

max
TCSCu

+ 

s

s

sT
K
+1

ref
TCSCX

Lead-Lag Controller 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

+ 4

3

2

1

1
1

1
1

1 sT
sT

sT
sT

sT
sT

K
w

w



   

 

 
21 

 

 In addition to maintaining the reference voltage, SVC can improve the system 

damping by modulate the reference voltage signal. Such controller use auxiliary control 

signals to modulate the voltage level to suit the rate of change of phase angle or power 

follow.    

 Fig. 2.4 and Fig. 2.5 show typical configuration of a SVC with voltage control and 

its V-I characteristic respectively. The Fixed Capacitor FC that provides a permanently 

reactive power and also it designed to act as a harmonic filter. Other two thyristors, 

Thyristor Controlled Reactor (TCR) and Thyristor Switched Capacitor (TSC) are 

controlled to provide the required reactive power by the system. Not every SVC needs all 

above elements.  

    

 Fig.2.4: SVC Configuration 
 
 
 
 
 

 

FC TCR TSC 
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Fig. 2.5: SVC V-I Characteristic 
 

 

2.2.2 Power Flow Modulation 

 The real power flow through a transmission line with a SVC located at the middle 

of the line, Fig. 2.6 is described by: 

  )sin(2 im
ij

mi

X
VV

P δ=       (2.6) 

where δim=δi-δm. Since the SVC is located at the electrical midpoint of the line, δim≈δij/2 

and Vm≈Vj. therefore, the real power can be obtained by: 

  )2/sin(2 ij
ij

ji

X
VV

P δ=       (2.7) 

The equivalent susceptance of the SVC, BSVC, is given by 
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  )(1 αL
C

SVC B
X

B −=       (2.8) 

and 

  
L

L X
B

π
ααπα )2sin(22)( +−

= ; παπ ≤≤2/    (2.9) 

where α is the thyristor firing angle. 

 

Fig. 2.6: Transmission line with a SVC 
 

2.2.3 Damping Controller Model 

The SVC damping controller structure is shown in Fig. 2.7. The susceptance of the SVC, 

BSVC, could be expressed as: 

  sSVCSVC
ref
SVCsSVC TBuBKB /))(( −−=

•

    (2.10) 
where ref

SVCB  is the SVC reference susceptance. 

 

Fig. 2.7: SVC with lead-lag controller 

uSVC 

- 

BSVC 

max
SVCB

min
SVCB

∆ω  

min
SVCu

max
SVCu

+ 

s

s

sT
K
+1

ref
SVCB

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
+

+ 4

3

2

1

1
1

1
1

1 sT
sT

sT
sT

sT
sT

K
w

w

SVCjB

m mV δ∠2/ijjX 2/ijjX
j jV δ∠i iV δ∠



   

 

 
24 

 

2.3 Thyristor-Controlled Phase Shifter (TCPS) 

2.3.1 Introduction and Basic Operating Principles 

The basic function of a phase shifter is to provide a means to control power flow in a 

transmission line. This is accomplished by modifying the voltage phase angle by inserting 

a variable quadrature voltage in series with the transmission line. The phase of the output 

voltage can be varied relative to that of the input voltage by simply varying the magnitude 

of the series quadrature voltage. 

 Historically, this has been accomplished by specially connected mechanical 

regulating transformers; because the power flow on the transmission line is proportional 

to the sine of the angle across the line, the steady state power flow can he controlled by 

utilizing a phase-shifter to vary the angle across the line. The effectiveness of traditional 

phase shifters in performing this function is well demonstrated in practice. 

 Just as traditional phase shifters can be employed to alter steady-state power flow, 

they can be used to alter transient power flow during system disturbances or outages, if 

the phase shifter angle can be changed rapidly. Rapid phase angle control could be 

accomplished by replacing the mechanical tap changer of by a thyristor-switching 

network. 

 Transmission angle control can also be applied to damp power oscillations. This 

could be achieved by varying the active power flow in the line so as to counteract the 

accelerating and decelerating swings of the disturbed machine(s).  
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Fig.2.8: TCPS Configuration 

 

2.3.2   Power Flow Modulation 

The real power flow through a transmission line equipped with a TCPS is obtained by: 

  )sin( Φ−= ij
ij

ji

X
VV

P δ       (2.11) 

where Ф is the phase shift in the voltage phase angle resulting from the TCPS. 

 Hence, the real power flow through the transmission line can be modulated by 

controlling the angle Ф. 

 

Fig. 2.9: Transmission line with a TCPS 
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2.3.3 Damping Controller Model 

Similarly, Fig. 2.10 shows a TCPS equipped with a lead-lag stabilizer. The TCPS phase 

angle is expressed as 

  sTCPSTCPS
ref
TCPSsTCPS TuK /))(( Φ−−Φ=Φ

•

   (2.12) 

 

Fig. 2.10: TCPS with lead-lag controller 

 

2.4 Static Synchronous Compensator (STATCOM) 

2.4.1 Introduction and Basic Operating Principles  

The STATCOM is given this name because in a steady state operating regime it replicates 

the operating characteristics of a rotating synchronous compensator. The basic electronic 

block of a STATCOM is a voltage-sourced converter that converts a dc voltage at its 

input terminals into a three-phase set of ac voltages at fundamental frequency with 

controllable magnitude and phase angle. 
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A STATCOM can be used for voltage regulation in a power system, having as an 

ultimate goal the increase in transmittable power, and improvements of steady-state 

transmission characteristics and of the overall stability of the system. Under light load 

conditions, the controller is used to minimize or completely diminish line over voltage; on  

 

the other hand, it can be also used to maintain certain voltage levels under heavy loading 

conditions. 

 In its simplest form, the STATCOM is made up of a coupling transformer, a VSC, 

and a dc energy storage device. The energy storage device is a relatively small dc 

capacitor, and hence the STATCOM is capable of only reactive power exchange with the 

transmission system. If a dc storage battery or other dc voltage source were used to 

replace the dc capacitor, the controller can exchange real and reactive power with the 

transmission system, extending its region of operation from two to four quadrants. Figs. 

2.11 and 2.12 show a functional model and the V-I characteristic of a STATCOM 

respectively.  

Fig.2.11: STATCOM Configuration 
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 The STATCOM’s output voltage magnitude and phase angle can be varied. By 

changing the phase angle ψ of the operation of the converter switches relative to the phase 

of the ac system bus voltage, the voltage across the dc capacitor can be controlled, thus 

controlling the magnitude of the fundamental component of the converter ac output 

voltage, as dco cVV = . 

 

Fig. 2.12: STATCOM V-I characteristic 

 

2.4.2 Power Flow Modulation 

The STATCOM is modeled as a voltage-sourced converter behind a step down 

transformer as shown in Fig. 2.11. The STATCOM generates a controllable AC-voltage 

source )sin()( ψω −= tVtV oout behind the leakage reactance. The voltage difference 

between the STATCOM bus AC voltage and )(tVout  produces active and reactive power 

exchange between the STATCOM and the power system. 
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( ) ψψψ ∠=+= DCDCo cVicVV sincos      (2.13) 

)sincos( ψψ LQLD
DC

DC II
C

c
dt

dV
+=      (2.14) 

Where, for the PWM inverter, c = mk and k is the ratio between AC and DC voltage; m is 

the modulation ratio defined by PWM, and ψ    is defined by the PWM. 

 

2.4.3 Damping Controller Model 

There are two basic controllers implemented in STATCOM, an AC voltage regulation 

and a DC voltage regulation shown in Fig. 2.13 and Fig. 2.14 respectively. The AC 

voltage controller regulates the reactive power exchange while the DC controller 

regulates the active power exchange with the power system. The DC voltage across the 

DC capacitor of the STATCOM is controlled to be constant for normal operation of the 

PWM inverter.  

 Installing both PI DC and PI AC voltage regulators lead to system instability 

[81,82], if they are designed independently, because of the interaction of the two 

controllers. Coordination design of the two controllers is necessary to avoid negative 

damping to the power system. 

 Because both of AC and DC STATCOM voltage regulators controllers are not 

designed for power oscillation damping (POD) duty, an auxiliary conventional lead-lag 

structure damping controller on the AC/DC voltage control loops of the STATCOM as 

shown are proposed in the design. 
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CHAPTER 3 

 

 
POWER SYSTEM MODEL  

 

 
3.1 Generator and Excitation model  

The generator is represented by the 3rd order model consisting of the swing equation and 

the generator internal voltage equation. The swing equation can be written as  

  ( 1)bδ ω ω
•

= −        (3.1) 

  ( ( 1)) /m eP P D Mω ω
•

= − − −      (3.2) 

The internal voltage, Eq
’, is given by 

  '''' /))'(( doqdddfdq TEixxEE −−−=
•

    (3.3) 

The real power output of the generator is described as 

  e d d q qP v i v i= +        (3.4) 

 The excitation system can be represented by the IEEE type-ST1 system shown in 

Fig. 3.1, and is described by 

  AfdPSSrefAfd TEuvVKE /))(( −+−=
•

   (3.5) 



   

 

 
32 

 

  2 2 1/ 2( )d qv v v= +        (3.6) 

  d q qv x i=        (3.7) 

  ' '
q q d dv E x i= −        (3.8) 

 A conventional lead-lag PSS is installed in the feedback loop to generate a 

supplementary stabilizing signal upss, see Fig. 3.1. The PSS input is the change in the 

machine speed. 

 

Fig. 3.1: IEEE type-ST1 excitation system with PSS 
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3.2 Single Machine Infinite Bus (SMIB) Power System   

 

3.2.1 Phillips-Heffron model of SMIB system installed with G1 FACTS 

Devices 

In the design of electromechanical mode damping controllers, the linearized incremental 

model around a nominal operating point is usually employed. The SMIB system shown in 

Fig. 3.2 is considered, where the detailed system data is shown the Appendix A.  

Referring to Fig. 3.2, the d and q components of the machine current i and terminal 

voltage v can be written as  

qd jiii +=          (3.9) 

qd jvvv +=         (3.10) 

The voltage vs can be written as 

ijXvv TCSCs −= ,         (3.11) 

where i is the generator armature current.  

 

 

Fig. 3.2: SMIB with G1 FACTS Devices 
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The d and q components of vs can be written as 

qqssd ixv =           (3.12) 

ddsqsq ixEv '' −=          (3.13) 

where 

TCSCqqs Xxx +=          (3.14) 

TCSCdds Xxx += ''          (3.15) 

The voltage 'v  can be written as 

TCPS

ss

k
v

k
v

v
Φ∠

=='        (3.16) 

The d and q components of 'v can be written as 

[ ]Φ+Φ= sincos1'
sqsdd vv

k
v       (3.17) 

[ ]Φ−Φ= sincos1'
sdsqq vv

k
v       (3.18) 

The load current  

LL Yvi '= ,          (3.19) 

where the load admittance YL is given as 

jbgYL +=         (3.20) 

The d and q components of iL can be written as 

''
qdLd bvgvi −=         (3.21) 

''
dqLq bvgvi +=         (3.22) 

Then, the line current 
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Ll iii −=           (3.23) 

The d and q components of il can be written as 

Lddld iii −=         (3.24) 

Lqqlq iii −=         (3.25) 

The midpoint voltage  

Zivv lm −= '         (3.26) 

Hence, the d and q components of vm can be written as 

qdqdmd XiRivcvcv +−−= '
2

'
1       (3.27) 

qdqdmq RiXivcvcv −−+= '
1

'
2       (3.28) 

where  

XbRgc −+= 11         (3.29) 

XgRbc +=2         (3.30) 

The SVC current can be given as 

SVCmSVC Yvi =         (3.31) 

Then the line current in this section  il1 is given as 

SVCll iii −=1         (3.32) 

The infinite bus voltage  

Zivv lmb 1−=         (3.33) 

The components of bv  can be written as 

11sin qdmdbbd XiRivvv +−== δ       (3.34) 
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11cos qdmqbbq RiXivvv −−== δ       (3.35) 

Substituting (3.12)-(3.33) into (3.34) and (3.35), the following two equations can be 

obtained 

'
743 sin qbqd Ecvicic +=+ δ       (3.36)  

'
865 cos qbqd Ecvicic −=+ δ       (3.37) 

Solving (3.36) and (3.37) simultaneously, id and iq expressions can be obtained. 

Linearizing (3.36) and (3.37) at the nominal loading condition, ∆id and ∆iq can be 

expressed in terms of ∆δ, '
qE∆ , SVCB∆ , TCSCX∆ , and TCPS∆Φ  as follows. 

TCPSTCSCSVCqbqd cXcBcEcvicic ∆Φ+∆+∆+∆+∆=∆+∆ 13119
'

743 cos δδ  (3.38) 

TCPSTCSCSVCqbqd cXcBcEcvicic ∆Φ+∆+∆+∆−∆−=∆+∆ 141210
'

865 sin δδ  (3.39) 

Solving (3.38) and (3.39) simultaneously, ∆id and ∆iq can be expressed as 

TCPSTCSCSVCqd cXcBcEcci ∆Φ+∆+∆+∆+∆=∆ 232119
'

1715 δ   (3.40) 

TCPSTCSCSVCqq cXcBcEcci ∆Φ+∆+∆+∆+∆=∆ 242220
'

1816 δ   (3.41) 

The constants c1-c24 are expressions of : 

00
'
00

'  and ,,,,,,,,, TCPSTCSCSVCqqodqdL XBEiixxYZ Φ  

The linearized form of vd and vq can be written as  

qqd ixv ∆=∆         (3.42) 

ddqq ixEv ∆−∆=∆ ''        (3.43) 

Using Equations (3.40) to (3.41), the following expressions can be easily obtained 
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TCPSpTCSCpXSVCpBqe KXKBKEKKP ∆Φ+∆+∆+∆+∆=∆ Φ
'

21 δ   (3.44) 

TCPSqTCSCqXSVCqBfdqdo KXKBKKEEsTK ∆Φ−∆−∆−∆−∆=∆+ Φδ4
''

3 )(  (3.45) 

TCPSvTCSCvXSVCvBq KXKBKEKKv ∆Φ+∆+∆+∆+∆=∆ Φ
'

65 δ   (3.46) 

where the constants K1-K6, KpB, KpX, KpΦ, KqB, KqX, KqΦ, KvB, KvX, and KvΦ are expressions 

of c1-c24. 

The above linearizing procedure yields the following linearized power system model 
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Fig. 3.3: Block diagram of the linearized SMIB model installed with G1 FACTS Devices 
 

 

3.2.2 Phillips-Heffron model of SMIB system installed with STATCOM 

Fig. 3.4 is a SMIB power system installed with a STATCOM which consists of a 

coupling transformer with a leakage reactance xt , Voltage Source Converter (VSC),  and 

a DC capacitor. The VSC generates a controllable AC-voltage source Vo behind the 

leakage reactance. From the Fig. 3.4 the STSTCOM dynamics described as [80], 

 

 qd jIII 333 +=        (3.48) 

 ( ) ψψψ ∠=+= DCDCo cVicVV sincos     (3.49) 
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 )sincos( ψψ LQLD
DC

DC II
C

c
dt

dV
+=      (3.50) 

 

Where, for the PWM inverter, c = mk and k is the ratio between AC and DC voltage; m is 

the modulation ratio defined by PWM, and ψ    is defined by the PWM. 

 

Fig. 3.4: Single machine with STATCOM 
 

The terminal voltage Vt can be written as 

⎥
⎦

⎤
⎢
⎣

⎡
+++−+= bO

ttt

VV
X
Xi

X
XXjVt

X
XjXijXiVt 2

1
122

2111 )()(   (3.51) 

Rearranging the above equation to be 
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)(

cossin

1''1

111

1321

ddqqqqdt

qd

bbb

bO

iXejiXjVVV

jiii

jVVV

where

ijCVVCVtC

−+=+=

+=

+=

=−−

δδ   

C1, C2, and C3 are constant. 

From the above it is possible to obtain 

31

2
1

sincos
CXC
VcVCi

q

bdc
q +

+
=

δψ       (3.52) 

3'1

2'1
1

cossin
CXC

VcVCeC
i

d

bdcq
d +

+−
=

δψ
     (3.53) 

Linearizing equation 3.52 & 3.53 yield to 

dcqd VCcCCCECi ∆+∆+∆+∆+∆=∆ 16151413'71 ψδ     (3.54) 

dcq VCcCCCi ∆+∆+∆+∆=∆ 12111091 ψδ       (3.55) 

The linearized form of vd and vq can be written as  

qqd ixv ∆=∆         (3.56) 

ddqq ixEv ∆−∆=∆ ''        (3.57) 

Using Equations (5.54) to (5.57), the following expressions can be easily obtained 

ψδ ψ ∆+∆+∆+∆+∆=∆ ppcpdcqe KcKVdcKEKKP '
21   (3.58) 

ψδ ψ ∆+∆+∆−∆−∆=∆+ qqcqdcfdqdo KcKVdcKKEEsTK 4
''

3 )(   (3.59) 
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ψδ ψ ∆+∆+∆+∆+∆=∆ vvcvdcq KcKVdcKEKKv '
65    (3.60) 

where the constants K1-K6, Kpdc, Kpc, Kpψ, Kqdc, Kqc, Kqψ, Kvdc, Kvc, and Kvψ are expressions 

of c1-c12. 

The above linearizing procedure yields the following linearized power system model: 
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3.3 Multimachine Power System 

In this section the SMIB model is extended to describe a multi-machine electric power 

system. Because of the interaction among machines, the K1-K6 become matrices. Same 

machine model describe in section 3.1 is used but for n-machine. 
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3.3.1 Phillips-Heffron model of multi-machine system 

To find K1-K6 matrices, the initial conditions must be found first and the admittance 

matrix reduced to be in order of machines number. 

Let the generator current matrix equation be 

[ ] [ ] [ ]VYI t=             (3.62) 

For the ith machine of an n-machine system in the machine coordinates d-q, the current 

has n terms [1]. 

∑
=

+++ −+=+=
n

j

j
qjdjqj

j
qiijqidii

ikijijik eIXXeEYjiii
1

)(')90( ])([ δββδo

   (3.63) 

[ ]∑
=

−+−=
n

j
qjijdjqjqjijijdi ICXXESYi

1

'' )(      (3.63.a) 

[ ]∑
=

−+=
n

j
qjijdjqjqjijijqi ISXXECYi

1

'' )(       (3.64) 

where 

)cos( ijijijC δβ −=  ,  

)sin( ijijijS δβ −=  

Linearizing (3.63) & (3.64) yields 

]][[]][[]][[][ '
qdqddd IMEQPI ∆+∆+∆=∆ δ      (3.65) 

]][[]][[]][[ '
qqqqq EQPIL ∆+∆=∆ δ       (3.66) 

Where 

ijISXXECYP qjijdjqjqjijijdij ≠−+−= ])([ ''  

ijICXXESYP qjijdjqjqjijijqij ≠−−−= ])([ ''  
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∑∑
≠≠

−=−=
ij

qijqii
ij

dijdii PPPP ,  

njCYQSYQ ijijqijijijdij ,,1, L=−=−=  

ijdjqjijqij SXXYL )( '−−=  

iidiqiiiqii SXXYL )(1 '−−= , njCXXYM ijdjqjijdij ,,1,)( ' L=−=  

Initial values of ijqjq andIE δ,,'  (for ijC  and ijS ), nj ,,1L= , must be used.  

The solutions of ][][ qd IandI ∆∆  3.65 & 3.66 become 

]][[]][[][ ' δ∆+∆=∆ dqdd FEYI        (3.67) 

]][[]][[][ ' δ∆+∆=∆ qqqq FEYI        (3.68) 

Solving (3.04)-(3.08), linearizing, and substituting for ∆idi and ∆iqi from (3.67) and (3.68) 

results in 

'
1 2e qP K K Eδ∆ = ∆ + ∆         (3.69) 

where  

][][1 qtdt FQFDK +=  ,  

][][][2 qiioqtdt IYQYDK ++=   

and  qiodiqit IXXD )( '−=  ,  

 '' )( qiodiodiqit EIXXQ +−=   

The internal voltage equation for n-machines may be written 

]1[]1[
1

4
'

3
3

'
3

'
j

n

j
ijqj

n

ij ij
FDiiiqiiidoi KE

K
EKEKsT δ∆−∆−∆=∆+ ∑∑

=≠

   (3.70) 
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Where 

1' ]]][[]1[[3 −−+= diididi YXXK  ,  

]][[ '
4 diididi FXXK −=  

Moreover, linearizing the terminal voltage to be: 

'
5 6 qv K K Eδ∆ = ∆ + ∆         (3.71) 

Where 

'
5 v q q v d dK D x F Q x F= −        (3.72) 

'
6 v q q v d d vK D x Y Q x Y Q= − +        (3.73) 

1
0 0v dD v v−=          (3.74) 

1
0 0v qQ v v−=          (3.75) 

It should be noticed that v0 and vd0 are diagonal matrices of the respective initial 

conditions. 
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Fig. 3.5: Linearized model of the ith machine in multimachine power system 
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3.3.2 Phillips-Heffron model of multi-machine Installed With SVC & TCSC 

In the previous multimachine model, the Y-matrix is assumed to be constant. If a FACTS-

device is to be added to the system, this assumption is no longer valid. The Y-matrix will 

be a function of the FACTS device control signal. We assume, for n-machines power 

system, a FACTS device will be installed at node K for SVC and between nodes R and K 

for TCSC. In order to obtain a systematic expression for Yij which includes the influence 

of the FACTS-based stabilizers, the following procedure is carried out: 

1. From the load flow, convert the loads as a constant admittance in the admittance 

matrix. 

2. Form Yaug by modifying the admittance matrix to include the transient reactance 

'
dX of the machines. 

3. Reduce the Yaug by deleting all buses except the internal generator and FACTS 

device nodes to form YFACTS.               

    If n is the number of machines, the YFACTS size will be: 

• (n+1) × (n+1) in case of SVC is installed; and 

• (n+2) × (n+2) in case of TCSC is installed. 

4. RRY  sub matrix shown below contains nodes associated with FACTS-stabilizer,   

 ⎥
⎦

⎤
⎢
⎣

⎡
=

RRRN

NRNN
FACTS YY

YY
Y      (3.76) 

• For SVC-based stabilizer YRR is 1×1 matrix and the output signal BSVC is 

modeled as:  
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SVCkkRR jByY −= , where kky is the self admittance at node K  

• For TCSC-based stabilizer YRR is 2×2 matrix and the output signal XCSC is 

modeled as:     
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jXzz
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Y  (3.77)  

 

5. FACTSY  is further reduced to 

 1
NN NR RR RNY Y Y Y Y−= −       (3.78) 

Now, linearizing equation (3.63) taking into account the FACTS-based stabilizer output 

∆F, which can be ∆BSVC or ∆XCSC.     
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 (3.79) 

]][[]][[]][[]][[][ ' FIAIMEQPI ndqdqddd ∆+∆+∆+∆=∆ δ    (3.80) 

]][[]][[]][[]][[ ' FIAEQPIL nqqqqqq ∆+∆+∆=∆ δ     (3.81) 

Thus we can obtain 

]][[]][[]][[][ ' FIBFEYI nddqdd ∆+∆+∆=∆ δ      (3.82) 

]][[]][[]][[][ ' FIBFEYI nqqqqq ∆+∆+∆=∆ δ      (3.83) 

Linearizing (3.1)-(3.8) for n-machine system the following model is obtained, 

ωωδ ∆=∆ Os          (3.84) 
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)( '
21

1 FIKEKDKMs nPq ∆−∆−∆−∆−=∆ − ωδω     (3.85) 

]][ 4
''

3 FIKKEEsTK nqjFDiqidoi ∆−∆−∆=∆+ δ     (3.86) 

][)1( '
65 FIKUEKKKEsT nVPSSqAFDA ∆+∆+∆+∆−=∆+ δ     (3.87) 

Fig. 3.6 shows a block diagram of the ith machine in a multimachine power system 

equipped with a G1 FACTS device. 

 

 
  
Fig. 3.6: Linearized model of the ith machine in multimachine power system with SVC & 

TCSC 
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CHAPTER 4 

 

 
PROPOSED APPROACH 

 

 
In this chapter the proposed approach is illustrated as follows. The location of the reactive 

power compensation devices and PSSs are identified in multimachine power system by 

using modal analysis method and participation factor technique respectively. Then, the 

controllability measurement is employed by different controllers’ inputs. Finally, the PSO 

is proposed in this thesis to search for optimal parameters setting.   

      

4.1 Modal Analysis Method 

The modal analysis method is based on the linear steady-state power flow equations of 

the system, which usually expressed in the following form 

⎥
⎦

⎤
⎢
⎣

⎡
∆
∆

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
∆
∆

VQ
P

V

V θ

θ

θ  
JJ
JJ

QQ

PP
       (4.1) 

Where 

∆P = Vector of increment changes in bus active power 

∆Q = Vector of increment changes in bus reactive power 
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∆φ = Vector of increment changes in bus voltage angle 

∆V = Vector of increment changes in bus voltage magnitude 

and the matrix relating the variables is the Jacobian matrix. The voltage stability is 

affected by variations in both P and Q, but the method of modal analysis examines only 

variation of Q with respect to V. therefore, if we set ∆P = 0, we have the following result 

for ∆Q. 

[ ]

Q

V

∆=

∆−=∆

−

−

1
R

PV
1

PQQV

J      

JJJJQ θθ

       (4.2) 

where JR is called the reduced Jacobian matrix of the system. This matrix determines the 

change in voltage that occurs from injection of reactive power into the system at any bus. 

 We can also write the equation in another war that is more helpful, by using the 

eigenvalues and eigenvectors of the reduced Jacobian, with the following result. 

QV
i i

ii ∆=∆ ∑ λ
ηξ         (4.3) 

where 

ξi = Right eigenvector matrix of JR 

ηi = Left eigenvector matrix of JR 

λi = The ith  eigenvalue of JR 

 This technique permits the use of eigen analysis to determine the voltage 

sensitivity of reactive power injections. The technique is referred to as "modal analysis." 

The system is voltage stable if the eigenvalues of the Jacobian are all positive, which 

means that the V-Q sensitivity is positive.  
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4.2  Participation Factor (PF) Technique 

The state equations of the linearized model can be used to determine the eigenvalues of 

the system matrix A. Out of these eigenvalues; there is a mode of oscillations related to 

machine inertia. For the stabilizers to be effective, it is extremely important to identify the 

eigenvalue associated with the electromechanical mode. In this study, the participation 

factors (PF) method [37] is used. 

PF analysis aids in the identification of how each dynamic variable affects a given mode 

or eigenvalue. Specifically, given a linear system: 

    Axx =
•

      (4.4) 

a participation factor is a sensitivity measure of an eigenvalue to a diagonal entry of the 

system A matrix. This is defined as 

    
kk

i
ki a

p
∂
∂

=
λ       (4.5) 

where λi is the ith system eigenvalue, akk is a diagonal entry in the system A matrix, and pki 

is the participation factor relating the kth state variable to the ith eigenvalue. The 

participation factor may also be defined by 

    
i

t
i

ikki
ki vw

vwp =      (4.6) 

 

 

where wki and vki are the kth entries in the left and right eigenvector associated with the ith 

eigenvalue. 
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4.3 Controllability Measurement 

To measure the controllability of the electromechanical mode by a given input, the 

singular value decomposition (SVD) is employed in this study. Mathematically, if G is an 

m×n complex matrix then there exist unitary matrices W and V with dimensions of m×m 

and n×n respectively such that G can be written as 

G = W ∑ VH           (4.7) 

Where 
0...with  
),.....,(

   ,
00
0

1

111

≥≥≥
=Σ

⎥
⎦

⎤
⎢
⎣

⎡Σ
=Σ

r

rdiag
σσ

σσ
      (4.8) 

where r = min{m,n} and σ1,…,σr are the singular values of G.  

 The minimum singular value σr represents the distance of the matrix G from the 

all matrices with a rank of r–1. This property can be utilized to quantify modal 

controllability. In this study, the matrix H in (4.7) can be written as H = [h1,h2, h3,h4] 

where hi is the column of matrix H corresponding to the i-th input. The minimum singular 

value, σmin, of the matrix [λI–A  hi] indicates the capability of the i-th input to control the 

mode associated with the eigenvalue λ. As a matter of fact, the higher the σmin, the higher 

the controllability of this mode by the input considered. Having been identified, the 

controllability of the electromechanical mode can be examined with all inputs in order to 

identify the most effective one to control that mode. 
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4.4 Implementation 

4.4.1  Objective Function 

To optimize the stabilizers parameters, an eigenvalue based objective function is 

considered. The objective function is formulated to increase the damping factor or the 

damping ratio of the electromechanical mode eigenvalues. Therefore, the system response 

to disturbances will be improved. The function can be defined as 

J = min{ζi :   ζi  is the minimum electromechanical mode damping ratio of 

of the ith loading condition}     (4.9)      

where ζi is the damping ratio of the electromechanical mode eigenvalue. It is clear that 

the objective function will identify the minimum value of the damping ratio among 

electromechanical modes of all loading conditions considered in the design process. 

Hence, it is aimed to Maximize J in order to increase the damping ratios of 

electromechanical modes. This will reduce the system response overshoots and enhance 

the system damping characteristics. 

 

4.4.2 Optimization Problem Formulation 

In this study, the proposed objective function is optimized individually. The problem 

constraints are the stabilizer optimized parameter bounds. Therefore, the design problem 

can be formulated as the following optimization problem. 
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Maximize J          

Subject to 

Ki
min ≤Ki≤ Ki

max 

T1i
min ≤ T1i ≤ T1i

max  

T3i
min ≤ T3i ≤ T3i

max 

  

The proposed approach employs PSO algorithm to solve this optimization problem and 

search for optimal set of the stabilizer parameters, {Ki, T1i, T3i, i = Number of stabilizers 

considered}. 

 

4.5 Particle Swarm Optimization Algorithm 

4.5.1 Overview 

Like evolutionary algorithms, PSO technique conducts search using a population of 

particles. Each particle represents a candidate solution to the problem. In PSO System, 

particles change their positions by flying around in a multi dimensional search space until 

a relatively unchanging position has been encountered, or until computational limitations 

are exceeded. In social science context, a PSO system combines a social-only model and 

a cognition-only model [49]. The social-only component suggests that individuals ignore 

their own experience and adjust their behavior according to the successful beliefs of 

individuals in the neighborhood. On the other hand, the cognition-only component treats 

individuals as isolated beings. The advantages of PSO over other traditional optimization 

techniques can be summarized as follows: - 
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• PSO is a population-based search algorithm i.e., PSO has implicit parallelism. This 

property ensures PSO to be less susceptible to getting trapped on local minima. 

• PSO uses objective function information to guide the search in the problem space. 

Therefore, PSO can easily deal with non-differentiable objective functions. 

• PSO uses probabilistic transition rules, not deterministic rules. Hence, P80 is a kind 

of stochastic optimization algorithm that can search a complicated and uncertain area. 

This makes PSO more flexible and robust than conventional methods. 

• Unlike GA and other heuristic algorithms, PSO has the flexibility to control the 

balance between the global and local exploration of the search space. 

 

4.5.2 PSO Algorithm 

The basic elements of PSO technique are briefly stated and defined as follows: - 

 Particle, X(t), It is a candidate solution represented by an m-dimensional real-valued 

vector, where m is the number of optimized parameters. At time t, the jth particle Xj (t) 

can be described as Xj (t)=[xj, 1(t), ..., xj,m(t)], where xs are the optimized parameters 

and xj,k(t) is the position of the jth particle with respect to the kth dimension, i.e., the 

value of the kth optimized parameter in the jth candidate solution. 

 Population, pop(t),: It is a set of n particles at time t, i.e., pop(t)=[X1(t), ..., Xn(t)]T. 

 Swarm: it is an apparently disorganized population of moving particles that tend to 

cluster together while each particle seems to be moving in a random direction. 

 Particle velocity, V(t),: It is the velocity of the moving particles represented by an m-

dimensional real-valued vector. At time t, the jth particle velocity Vj(t) can be   
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described as )(...,),()( ,1, tvtvtV mjjj = , where vj,k(t) is the velocity component of the jth 

particle w.r.t. kth dimension. 

 Inertia weight, w(t),: It is a control parameter that is used to control the impact of the 

previous velocities on the current velocity. Hence, it influences the trade-off between 

the global and local exploration abilities of the particles [12] For initial stages of the 

search process, large inertia weight to enhance the global exploration is recommended 

while, for last stages, the inertia weight is reduced for better local exploration. 

 Individual best, )(* tX ,: As a particle moves through the search space, it compares its 

fitness value at the current position to the best fitness value it has ever attained at any 

time up to the current time. The best position that is associated with the best fitness 

encountered so far is called the individual best, )(* tX . For each particle in the swarm, 

)(* tX can be determined and updated during the search. In a minimization problem 

with objective function J , the individual best of the J th particle )(* tX j
 is determined.  

 Global best, )(** tX  ,: It is the best position among all individual best positions 

achieved so far. Hence, the global best can be determined as 

( )( ) ( ) njtt XJXJ j ,,1,)(***
L=< . For simplicity, assume that ( ))(**** tXJJ = . 

 Stopping criteria: These are the conditions under which the search will terminate. In 

this study, the search will stop if one of tile following criteria is satisfied: (a) the 

number of iterations since the last change of the best solution is greater than a pre 

specified number; or (b) the number of iterations reaches the maximum allowable 

number. 
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CHAPTER 5 

 

 
ANALYSIS AND DESIGN OF A PSS, AND G1 FACTS-

BASED STABILIZERS IN A SMIB SYSTEM 

 

 
This chapter shows the analysis and design of a PSS and G1 FACTS-Based stabilizers in 

a single machine infinite bus system. Same work have been reported in [39] using Genetic 

Algorithm (GA) as controller parameters tuning tool. While in this thesis PSO has been 

applied to the optimization problem to search for optimal settings of the proposed 

stabilizers.  This will test and validate the developed work in this thesis in terms of 

modeling, PSO technique and the developed computer codes.  

  

5.1 Controllability Measure 

With each input signal of PSS, SVC-based stabilizer, TCSC-based stabilizer, and TCPS-

based stabilizer in the linearized model given in (3.47), the minimum singular value σmin 

has been estimated to measure the controllability of the electromechanical mode from that 

input. For comprehensive understanding of the coordination problem requirements, the 

minimum singular value has been estimated for each stabilizer over a wide range of 
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operating conditions. Specifically, for a range of 84 loading conditions specified by P = 

[0.05 - 1.4] pu with a step of 0.05 pu and Q = [-0.4 - 0.4] pu with a step of 0.4 pu, σmin has 

been estimated. At each loading condition in the specified range, the system model is 

linearized, the electromechanical mode is identified, and the SVD-based controllability 

measure is implemented. 

For comparison purposes, the minimum singular values for all inputs at Qe= - 0.4, 0.0 

and 0.4 pu are shown in Figs. 5.1-5.3, respectively. From these Figs., the following can be 

noticed: 

(a) At light loading conditions, the capabilities of PSS, SVC, and TCSC to control the 

electromechanical mode are considerably lower compared to that of TCPS.  

(b) The electromechanical mode controllability via PSS and SVC is almost the same 

over the entire range of loading conditions. 

(c) The electromechanical mode is more controllable with TCSC and TCPS compared 

to PSS and SVC. 

(d) The electromechanical mode controllability by TCSC changes almost linearly with 

the practical system loading. 

(e) The electromechanical mode is most controllable by TCSC at heavy loading. 

(f) As Q increases, the electromechanical mode controllability via TCSC becomes 

dominant at lower loading levels. 
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Fig. 5.1: Minimum singular value with all stabilizers at Q = -0.4 pu 

 
Fig. 5.2: Minimum singular value with all stabilizers at Q = 0 pu 
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Fig. 5.3: Minimum singular value with all stabilizers at Q = +0.4 pu 

 

5.2 Stabilizer Tuning and Simulation Results  

To increase the system damping to the electromechanical model, the objective function J 

defined below is proposed. 

{ }minJ ζ=       

Where ζ  is the electromechanical mode damping ratio. 

This objective function will identify the minimum value of damping ratio among 

electromechanical modes of all loading condition considered in the design process 

To assess the effectiveness of the proposed controllers, four different loading 

conditions are considered for eigenvalue analysis. These conditions and disturbances are: 

1. Nominal loading (Pe, Qe)=(1.0,0.015) pu. 
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2. Light loading (Pe, Qe)=(0.3,0.015) pu. 

3. Heavy loading (Pe, Qe)=(1.1,0.40) pu. 

 

5.2.1 Single Point Tuning 

In this section, the stabilizers are tuned with only the nominal loading condition, (Pe, 

Qe)=(1.0,0.015) pu, taken into account. 

 

5.2.1.1 Individual Design 

a) Stabilizer design 

Based on the linearized power system model in equation (3.47), PSO has been applied to 

the optimization problem to search for optimal settings of the proposed stabilizers. The 

final settings of the optimized parameters for the proposed stabilizers are given in Table 

5.1. The convergence rate of the objective function is shown in Fig. 5.4.  

 

Table 5.1: Optimal parameter settings, single point tuning, individual design 

 PSS SVC TCSC TCPS 
K 22.7119 94.4022 100 100 
T1 0.1538 1 0.0759 0.0846 
T2 0.1 0.3 0.1 0.1 
T3 0.1714 0.01 0.0787 0.0844 
T4 0.1 0.3 0.1 0.1 
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Fig. 5.4: Variation of the objective function of all stabilizers 

 

b) Eigenvalue Analysis 

The system eigenvalues with the proposed stabilizers for nominal, light and heavy loading 

conditions are given in Tables 5.2-5.4, respectively, where the first row represents the 

electromechanical mode eigenvalues and their damping ratios. 

 The first bolded rows of these tables represent the EM mode eigenvalue and its 

damping ratio. It is clear that the proposed stabilizers greatly improve the system stability. 

It is also clear that the PSS, SVC and TCSC have relatively poor capabilities to enhance 

the EM mode damping when the system operates at light loading. 
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Table 5.2: System eigenvalues of nominal loading condition, single point tuning, 
individual design 

Base Case PSS SVC TCSC TCPS 
0.2954±i4.9569 

-0.0595 
-3.24±i5.6425 

0.4716 
-2.267±i4.615

0.4443 
-3.502±i4.062 

0.6384 
-3.134±i3.574 

0.6510 
10.393± i3.287 -3.399±i5.919 -2.491±i5.072 -5.784±i6.710 -7.012±i7.995 

 -19.497 -20.4518 -11.4678±i1.2 -11.04±i0.835 
 -7.414 -14.2613 -18.679 -17.8032 
 -0.2055 -2.6307 -0.209 -0.2099 
  -0.2010   

 

Table 5.3: System eigenvalues of light loading condition, single point tuning, individual 
design 

Base Case PSS SVC TCSC TCPS 
-0.009±i4.8503 

0.0019 
-0.874±i5.0613 

0.1548 
-0.1818±i4.72 

0.0387 
-0.829±i5.1324 

0.1631 
-4.513±i6.612 

0.5826 
-11.08± i3.834 -6.986±i5.539 -7.048±i2.084 -9.9196±i3.821 -9.343±i3.493 

 -16.77 -19.9164 -19.534 -17.3745 
 -7.7027 -9.9346 -10.7282 -10.763 
 -0.2023 -2.5516 -8.4324 -4.3337 
  -0.1998 -0.2031 -0.2121 

 

Table 5.4: System eigenvalues of Heavy loading condition, single point tuning, individual 
design 

Base Case PSS SVC TCSC TCPS 
0.4852±i3.6903 

-0.1304 
-1.4861±i3.587 

0.3141 
-2.8346±i5.266 

0.4948 
-5.838±i7.6134 

0.6014 
-7.657±i8.583 

0.8495 
-11.583± i3.696 -5.111±i7.088 -1.4863±i2.67 -10.356±i0.763 -2.9227±i1.72 

 -19.628 -20.9455 -18.0527 -10.85±i0.856 
 -7.363 -13.1445 -7.4194 -17.2997 
 -0.2092 -4.1267 -2.3077 -0.2230 
  -0.2039 -0.227  
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c) Non linear time domain simulation 

The single machine infinite bus system shown in Fig. 3.2 is considered for nonlinear 

simulation studies. 6-cycle 3-φ fault, on the infinite bus was created, at all loading 

conditions, to study the performance of the proposed controllers. Simulation results at 

nominal condition are only shown.  

 The rotor angle, speed deviation, and electrical power responses at nominal 

operating condition, are shown in Figs. 5.5-5.7 respectively. It can be readily seen that the 

TCSC and TCPS performs better than PSS in terms of reduction of overshoot and settling 

time. This is consistent with the eigenvalues analysis results. Figs. 5.8 and 5.9 show the 

control effort provided by the stabilizing signal of PSS, UPSS and the reactance of TCSC, 

XTCSC respectively. 

 
Fig. 5.5: Rotor angle response for 6-cycle fault with nominal loading single point tuning, 

individual design 
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Fig. 5.6: Rotor speed response for 6-cycle fault with nominal loading, single point tuning, 

individual design 

 
Fig. 5.7: Electrical power response for 6-cycle fault with nominal loading, single point 

tuning, individual design 
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Fig. 5.8: PSS stabilizing signal response for 6-cycle fault with nominal loading, single 

point tuning, individual design 

 
 Fig. 5.9: Xtcsc stabilizing signal response for 6-cycle fault with nominal loading, 

single point tuning, individual design 
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5.2.1.2 Coordinated Design [PSS & SVC] 

The singular value decomposition-based controllability measure analysis shows that the 

PSS and SVC-based stabilizer need to be coordinated for better performance of the 

system. In this section the coordinated design of PSS and SVC-based stabilizer is 

addressed at the nominal operating point. 

  

a) Stabilizer design 

Both stabilizers PSS & SVC are simultaneously tuned by PSO search for the optimum 

controllers parameter settings that maximize the minimum damping ratio of all the system 

complex eigenvalues at nominal loading condition. The final settings of the optimized 

parameters for the proposed stabilizers are given in Table 5.5.  

 It can be noticed when both proposed stabilizers are available, SVC and PSS, the 

parameters' settings of the stabilizers are retuned in coordinated approach in order to 

avoid the negative interaction between stabilizers and to get better system performance 

campared with individual stabilizer. 

 The convergence rate of the objective function when PSS and SVC-based 

controller are designed individually and in a coordinated manner is shown in Fig. 5.10. It 

is clear that the coordinated design of PSS and SVC-based stabilizer improves greatly the 

system damping compared to their individual application. 
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Table 5.5: Optimal parameter settings, single point tuning, coordinated design 

 Individual Coordinated 
 PSS SVC PSS SVC 

K 22.7119 94.4022 47.6518 100 
T1 0.2751 1 0.0922 0.6782 
T2 0.1 0.3 0.1 0.3 
T3 ------- 0.01 ------- ------- 
T4 ------- 0.3 ------- ------- 

 
 

 
Fig. 5.10: Variation of the objective function of PSS & SVC-based stabilizer 

 

b) Eigenvalue Analysis 

The system eigenvalues along with damping ratios with and without the proposed PSS 

and SVC when applied individually and through coordinated design are given in Tables 

5.6, 5.7, and 5.8 for nominal, light, and heavy loading conditions respectively. It is quite 
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evident that the system stability is greatly enhanced with the coordinated design approach 

as damping ratio of the electromechanical mode eigenvalue has been greatly improved. 

The first bolded rows of these tables represent the EM mode eigenvalue and its damping 

ratio. 

Table 5.6: System eigenvalues of nominal loading condition, single point tuning, 
coordinated design 

Base Case PSS SVC PSS & SVC 
0.2954±i4.9569 -2.742±i5.1325 

(0.4713)* 
-2.4914±i5.0715 

(0.4409)* 
-6.4334±i6.0455 

(0.7287)* 
10.393± i3.287 -3.2078±i6.0025 -2.2673±i4.6153 -6.0325±i5.6683 

 -18.2917 -20.4518 -18.8178 
 -0.2043 -2.6307 -17.268 
  -0.2010 -2.4971 
   -0.2142 , -0.2 

 

Table 5.7: System eigenvalues of light loading condition, single point tuning, coordinated 
design 

Base Case PSS SVC PSS & SVC 
0.2954±i4.9569 -0.7834±i5.0205 

(0.1542)* 
-0.1819±i4.7239 

(0.0385)* 
-0.9533±i5.5766 

(0.1685)* 
10.393± i3.287 -6.584±i4.969 -7.0478±i2.084 -10.1032±i3.3448 

 -15.4592 -19.9164 -20.3168 
 -0.2018 -9.9351 -8.11 
  -2.5516 -2.9841 
  -0.1998 -0.205, -0.2 

 

Table 5.8: System eigenvalues of heavy loading condition, single point tuning, 
coordinated design 

Base Case PSS SVC PSS & SVC 
0.2954±i4.9569 -2.742±i5.1325 

(0.4713)* 
-2.4914±i5.0715 

(0.4409)* 
-7.2294±i7.7547 

(0.682)* 
10.393± i3.287 -3.2078±i6.0025 -2.2673±i4.6153 -8.6767±i3.652 

 -18.2917 -20.4518 -2.4001±i0.5035 
 -0.2043 -2.6307 -16.8875 
  -0.2010 -0.229 
   -0.2 
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c) Non linear time domain simulation 

A 6-cycle 3-φ fault has been simulated on the infinite bus of SMIB system shown Fig. 3.2 

at all loading conditions, in order to study the performance of the proposed controllers. 

Simulation results at nominal condition only are shown.  

 Figs. 5.11-5.13 show the system responses at the nominal loading condition where 

the coordinated design of PSS and SVC is compared to individual design. It can be seen 

that the coordinated design of PSS and SVC provide the best damping characteristics. 

  

 
Fig. 5.11: Rotor angle response for 6-cycle fault with nominal loading, single point 

tuning, coordinated design 
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Fig. 5.12: Rotor speed response for 6-cycle fault with nominal loading, single point 

tuning, coordinated design 

 
Fig. 5.13: Terminal voltage response for 6-cycle fault with nominal loading, single point 

tuning, coordinated design 
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5.2.1.3 Coordinated Design [PSS & TCSC] 

The controllability measure analysis based on the singular value decomposition indicates 

that the PSS and TCSC-based stabilizers do not perform well individually at light loading 

condition. In this section, a coordinated design of PSS and TCSC-based stabilizer is 

considered at the nominal loading condition. 

 

a) Stabilizer design 

Both stabilizers PSS & TCSC are simultaneously tuned by PSO searching for the 

optimum controllers parameter settings that maximize the minimum damping ratio of all 

the system complex eigenvalues at nominal loading condition. The final settings of the 

optimized parameters for the proposed stabilizers are given in Table 5.9.  

 It can be noticed when both proposed stabilizers, PSS and TCSC, are available, 

the parameters' settings of the stabilizers are retuned in coordinated approach in order to 

avoid the negative interaction between stabilizers and to get better system performance 

campared with individual stabilizer. 

 The convergence rate of the objective function when PSS and TCSC-based 

controllers are designed individually and in a coordinated manner is shown in Fig. 5.14. It 

is clear that the coordinated design of PSS and TCSC-based stabilizer improves greatly 

the system damping compared to their individual application. 
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Table 5.9: Optimal parameter settings, single point tuning, coordinated design 

 Individual Coordinated 
 PSS TCSC PSS TCSC 

K 18.0815 100 30.6035 55.1371 
T1 0.2751 0.0598 0.1305 0.2052 
T2 0.1 0.1 0.1 0.1 

 
 

 
Fig. 5.14: Variation of the objective function of PSS & TCSC-based stabilizer 

 

b) Eigenvalue Analysis 

The system eigenvalues without and with the proposed stabilizers at nominal, light, and 

heavy loading conditions are given in Tables 5.10, 5.11, and 5.12 respectively, where the 

first row represents the electromechanical mode eigenvalues and their damping ratios.   
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Table 5.10: System eigenvalues of nominal loading condition, single point tuning, 
coordinated design 

Base Case PSS TCSC PSS & TCSC 
0.2954±i4.9569 -2.742±i5.1325 

(0.4713)* 
-6.0555±i7.2993 

(0.6385)* 
-5.9399±3.199i 

(0.8804)* 
10.393± i3.287 -3.2078±i6.0025 -3.2762±i3.949 -6.9852±3.7456i 

 -18.2917 -19.1764 -12.166±6.6527i 
 -0.2043 -12.3468 -10 
  -0.209 -0.2132 
   -0.2 

 

Table 5.11: System eigenvalues of light loading condition, single point tuning, 
coordinated design 

Base Case PSS TCSC PSS & TCSC 
0.2954±i4.9569 -0.7834±i5.0205 

(0.1542)* 
-0.8483±i5.1189 

(0.1635)* 
-1.5346±5.268i 

(0.2797)* 
10.393± i3.287 -6.584±i4.969 -9.8646±i3.8603 -7.3358±3.5404i 

 -15.4592 -19.695 -16.225±2.6325i 
 -0.2018 -9.0717 -10 
  -2.5516 -0.205 
  -0.2031 -0.2 

 

Table 5.12: System eigenvalues of heavy loading condition, single point tuning, 
coordinated design 

Base Case PSS TCSC PSS & TCSC 
0.2954±i4.9569 -2.742±i5.1325 

(0.4713)* 
-6.0961±i8.086 

(0.602)* 
-12.611±9.676i 

(0.7943)* 
10.393± i3.287 -3.2078±i6.0025 -18.8166 -9.1436±5.682 

 -18.2917 -10.3688 -10 
 -0.2043 -6.3914 -4.1877 
  -2.3998 -2.4685 
  -0.2269 -0.2375,-0.2 
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c) Non linear time domain simulation 

A 6-cycle 3-φ fault has been simulated on the infinite bus of SMIB system shown Fig. 3.2 

at all loading conditions, in order to study the performance of the proposed controllers. 

Simulation results at light condition only are shown.  

 Figs. 5.15-17 show the system responses at the nominal loading condition where 

the coordinated design is compared to individual design. It can be seen that the 

coordinated design of PSS & TCSC provide the best damping characteristics.   

 

 
 Fig. 5.15: Rotor angle response for 6-cycle fault with light loading, single point 

tuning, coordinated design 
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Fig. 5.16: Rotor speed response for 6-cycle fault with light loading, single point tuning, 

coordinated design 

 
Fig. 5.17: Terminal voltage speed response for 6-cycle fault with light loading, single 

point tuning, coordinated design 
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5.2.2 Multiple Point Tuning 

In this section, the FACTS-based controllers' parameters are optimized over a wide range 

of operating conditions and system parameter uncertainties in order to have robust 

stabilizers. Four loading conditions represent nominal, light, heavy, and leading power 

factor are considered. Each loading condition is considered without and with parameter 

uncertainties as given in Table 5.13. Hence, the total number of points considered for 

design process is 16. 

 Tables 5.14 and 5.15 list the open-loop eigenvalues and corresponding damping 

ratios associated with the EM modes of all the 16 points considered in the robust design 

process, respectively. It is evident that most of these modes are unstable. 

 

Table 5.13: Loaing conditions and parameter uincertainties 

Loading Condition (P, Q) in pu Parameter uncertainties 
Normal (1.0 , 0.015) No parameter uncertainties 
Heavy (1.1 , 0.1) 30% increase of line reactance X 
Light (0.3 , 0.015) 25% decrease of machine inertia M 
Leading pf (0.7, -0.3) 30% decrease of field time constant Tdo

' 

   
 
 

Table 5.14: Open-loop eignvalues associated with the electromechanical modes of all 
points considered in robust design process 

 
 

No parameter 
uncertainties 

30% increase of 
line reactance 

X 

25% decrease 
of machine 
inertia M 

30% decrease 
of field time 
constant Tdo

' 

Normal 0.2954±4.957i 0.367±4.227i 0.3516±5.6718i 0.2742±5.0473i 
Heavy 0.413±4.7252i 0.5042±3.8936i 0.4944±5.387i 0.3786±4.847i 
Light -.0053±4.675i -0.0026±3.929i -0.0066±5.400i -0.0041±4.674i 
Leading pf 0.0264±5.487i 0.0603±5.0166i 0.03±6.3302i 0.0283±5.4943i 
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Table 5.15: Damping ratio of open-loop eignvalues associated with the electromechanical 
modes for all point concidered in the robust design process 

 No parameter 
uncertainties 

30% increase of 
line reactance 

X 

25% decrease 
of machine 
inertia M 

30% decrease 
of field time 
constant Tdo

' 

Normal -0.0595 -0.0874 -0.0619 -0.0541 
Heavy -0.0871 -0.1288 -0.0914 -0.0777 
Light 0.0011 0.0006 0.0012 0.0009 
Leading pf -0.0048 -0.0121 -0.0047 -0.0052 
 

 

5.2.2.1 Individual Design 

The PSS, TCSC, SVC, and TCPS stabilizers will be designed in this section but taking in 

to account all operation conditions mentioned above during the design process. 

 

a) Stabilizer design 

PSO is applied to tune the stabilizers' parameters in order to maximize the minimum 

damping ratio of all the complex eigenvalues associated with the 16 operating points. The 

final settings of the optimized parameters for the proposed stabilizers are given in Table 

5.16. The convergence rate of the objective function is shown in Fig. 5.18. 

   

Table 5.16: Optimal Parameter Settings, multiple point tuning, individual design 

 PSS SVC TCSC TCPS 
K 26.237 100 100 100 
T1 0.1918 0.01 0.018 0.1388 
T2 0.1 0.3 0.1 0.1 
T3 0.2016 1 0.2741 0.0489 
T4 0.1 0.3 0.1 0.1 
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Fig. 5.18: Variation of the objective function of PSS & FACTS-based stabilizers, 

multiple-point tuning, individual design 
 

b) Eigenvalue Analysis 

The system eigenvalues without and with the proposed stabilizers at nominal, light, and 

heavy loading conditions are given in Tables 5.17, 5.18, and 5.19 respectively, where the 

first row represents the electromechanical mode eigenvalues and their damping ratios.   

Table 5.17: System eigenvalues of nominal loading condition, multiple point tuning, 
individual design 

Base Case PSS SVC TCSC TCPS 
0.2954±i4.9569 -2.187±3.703i 

(0.5086)* 
-2.106±4.129i 

(0.4543)* 
-1.7396±2.933i 

(0.5101)* 
-2.6992±3.354i

(0.627)* 
10.393± i3.287 -3.679±9.698i -2.581±5.689i -5.052±13.226i -6.673±9.84i 

 -21.9581 -20.4815 -26.0657 -20.1497 
 -6.4977 -14.3843 -13.8848 -13.3961 
 -0.2063 -2.6205 -6.653 -7.8953 
  -0.2011 -0.2087 -0.2099 
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Table 5.18: System eigenvalues of light loading condition, multiple point tuning, 
individual design 

Base Case PSS SVC TCSC TCPS 
-0.009±i4.8503 
-11.08± i3.834 

-1.2186±4.758i 
(0.2481)* 

-0.192±4.715i 
(0.0407)* 

-1.312±4.608i 
(0.2738)* 

-5.719±8.0537i 
(0.579)* 

 -6.1162±7.042i -6.866±2.34i -7.3889±6.334i -4.411±2.327i 
 -18.5957 -19.9112 -9.995±3.004i -9.8844±2.821i 
 -6.9276 -10.2981 -22.7998 -20.1527 
 -0.2027 -2.5365 -0.203 -0.2121 
  -0.1998 ------ ----- 

 

Table 5.19: System eigenvalues of heavy loading condition, multiple point tuning, 
individual design 

Base Case PSS SVC TCSC TCPS 
0.4852±i3.6903 
-11.583± i3.696 

-1.4308±2.926i 
(0.4393)* 

-1.4374±2.536i 
(0.493)* 

-1.615±1.561i 
(0.7191)* 

-2.471±1.836i 
(0.8027) 

 -4.453±9.557i -2.8078±5.576i -4.799±14.163i -7.072±10.36i 
 -21.89 -21.0007 -27.1984 -20.1725 
 -6.5262 -13.257 -11.0208 -12.7972 
 -0.2106 -4.1101 -9.1219 -8.1166 
  -0.2041 -0.2258 -0.2229 

 

c) Non linear time domain simulation 

The nonlinear time domain simulations have been carried out at different loading 

conditions. System responses at nominal loading are only shown. 

  Figs. 5.19-5.21 show the system response for 6-cycle fault disturbance at the 

nominal loading condition. It can be seen that both TCSC & TCPS-based stabilizers 

provide the best damping characteristics and enhance the first swing stability at this 

loading condition. 
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Fig. 5.19: Rotor angle response for 6-cycle fault with nominal loading, multiple point 

tuning, individual design 

 
Fig. 5.20: Rotor speed response for 6-cycle fault with nominal loading, multiple point 

tuning, individual design 
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Fig. 5.21: Terminal voltage response for 6-cycle fault with nominal loading, multiple 

point tuning, individual design 
 

5.2.2.2 Coordinated Design [PSS & TCSC] 

In this section the coordinated design of PSS and TCSC-based stabilizer is carried out 

considering all the 16 operating points mentioned earlier in Table 5.13. 

 

a) Stabilizer design 

Both stabilizers PSS and TCSC-based stabilizer are simultaneously tuned by PSO search 

for the optimum controllers' parameter settings that maximize the minimum damping ratio 

of all the system complex eigenvalues at the all operating points considered in Table 5.13. 

The final settings of the optimized parameters for the proposed stabilizers are given in 

Table 5.20.  
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 It can be noticed when both proposed stabilizers are available, PSS and TCSC, the 

parameters' settings of the stabilizers are retuned in coordinated approach in order to 

avoid the negative interaction between stabilizers and to get better system performance 

campared with individual stabilizer. 

 The convergence rate of the objective function when PSS and TCSC-based 

controller are designed individually and in a coordinated manner is shown in Fig. 5.22. It 

is clear that the coordinated design of PSS and TCSC-based stabilizer improves greatly 

the system damping compared to their individual application. 

 

Table 5.20: Optimal Parameters Setting, multiple point tuning, coordinated design 

 Individual Coordinated 
 PSS TCSC PSS TCSC 

K 17.6843 100 36.627 100 
T1 0.4399 0.1101 0.1356 0.1869 
T2 0.1 0.1 0.1 0.1 
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Fig. 5.22: Variation of the objective function of PSS & TCSC-based stabilizers, multiple-

point tuning, coordinated design 
  

 

b) Eigenvalue Analysis 

The system eigenvalues along with damping ratios without and with the proposed PSS 

and TCSC-based stabilizer when applied individually and through coordinated design are 

given in Tables 5.21, 5.22, and 5.23 for nominal, light, and heavy loading conditions 

respectively. It is quite evident that the system stability is greatly enhanced with the 

coordinated design approach as damping ratio of the electromechanical mode eigenvalue 

has been greatly improved. 
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Table 5.21: System eigenvalues of nominal loading condition, multiple point tuning, 
coordinated design 

Base Case PSS TCSC PSS & TCSC 
0.2954±i4.9569 
10.393± i3.287 

-1.7797±3.5104i 
(0.4522)* 

-2.2811±3.6808i 
(0.5268)* 

-10.2418±2.2651i 
(0.9764)* 

 -3.2445±9.0286i -10.2153±9.8381i -10.6052±13.086i 
 -20.1432 -15.7506 -10 
 -0.204 -9.4434 -5.2044 
  -0.2089 -3.2772 
   -0.2201 , -0.2 

 

Table 5.22: System eigenvalues of light loading condition, multiple point tuning, 
coordinated design 

Base Case PSS TCSC PSS & TCSC 
0.2954±i4.9569 -1.159±4.6623i 

(0.2412)* 
-0.9376±4.8891i 

(0.1884)* 
-2.5849±5.194i 

(0.4455)* 
10.393± i3.287 -5.4599±6.294i -10.1213±4.0989i -6.469±3.9289i 

 -16.9561 -17.88 -16.060±4.1408i 
 -0.2017 -10.2668 -10 
  -0.203 -0.2071 
   -0.2 

 

Table 5.23: System eigenvalues of heavy loading condition, multiple point tuning, 
coordinated design 

Base Case PSS TCSC PSS & TCSC 
0.2954±i4.9569 -1.01±2.8409i 

(0.335)* 
-2.8201±1.4207i 

(0.8931)* 
-10.28±4.467 

(0.9172)* 
10.393± i3.287 -4.045±8.7143i -10.8002±11.06i -11.5737±15.507 

 -20.0789 -13.0194 -10 
 -0.2067 -9.9091 -5.3502 
  -0.2265 -1.0825 
   -0.2556,-0.2 
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c) Non linear time domain simulation 

The nonlinear time domain simulations have been carried out at different loading 

conditions. System responses at light loading condition are only shown. 

  Figs. 5.23-5.25 show the system response for 6-cycle fault disturbance at the light 

loading condition. It can be seen that the coordinated design provides the best damping 

characteristics and enhance the system stability at this loading condition. 

 

 
Fig. 5.23: Rotor angle response for 6-cycle fault with light loading, multiple point tuning, 

coordinated design 
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Fig. 5.24: Rotor speed response for 6-cycle fault with light loading, multiple point tuning, 

coordinated design 

 
Fig. 5.25: Terminal voltage response for 6-cycle fault with light loading, multiple point 

tuning, coordinated design 
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CHAPTER 6 

 

 
ANALYSIS AND DESIGN OF A STATCOM-BASED 

STABILIZER IN A SMIB SYSTEM 

 

 
6.1 Controllability Measure 

With each input signals of STATCOM-based stabilizer (ψ & С) in the linearized model, 

the minimum singular value σmin has been estimated to measure the controllability of the 

electromechanical mode from that input. The minimum singular value has been estimated 

for each STATCOM signal over a wide range of operating conditions. Specifically, for a 

range of 84 loading conditions specified by P = [0.05 - 1.0] pu with a step of 0.05 pu and 

Q = [-0.4 - 0.4] pu with a step of 0.4 pu, σmin has been estimated. At each loading 

condition in the specified range, the system model is linearized, the electromechanical 

mode is identified, and the SVD-based controllability measure is implemented. 

 The capabilities of ψ & С STATCOM signals to control the electromechanical 

modes over the specified range of operating conditions are given in Figs 6.1-6.3. 

 It can be seen that the controllability of the electromechanical mode with the ψ 

and С increases with loading at lagging and leading power factor and slightly increasing  
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at unity power factor. However, the controllability of the electromechanical mode with 

the ψ is higher in all cases.  

 

 

 
Fig. 6.1: Minimum singular value with STATCOM stabilizer at Q = -0.4 pu 
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Fig. 6.2: Minimum singular value with STATCOM stabilizer at Q = 0.4 pu 

 
Fig. 6.3: Minimum singular value with STATCOM stabilizer at Q = 0.0 pu 
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6.2 Stabilizer Tuning and Simulation Results  

To increase the system damping to the electromechanical model, the objective function J 

defined below is proposed. 

{ }ζmax=J       

Where ζ  is the minimum electromechanical mode damping ratio. 

 This objective function will identify the minimum value of damping ratio among 

electromechanical modes of all loading condition considered in the design process 

 To assess the effectiveness of the proposed controllers, four different loading 

conditions are considered for eigenvalue analysis. These conditions and disturbances are: 

4. Nominal loading (Pe, Qe)=(1.0,0.015) pu. 

5. Light loading (Pe, Qe)=(0.3,0.015) pu. 

6. Heavy loading (Pe, Qe)=(1.1,0.40) pu. 

 

6.2.1 Single Point Tuning 

6.2.1.1 Individual and Coordinated Design [C & ψ] 

In this section, the stabilizers are tuned with only the nominal loading condition, (Pe, 

Qe)=(1.0,0.015) pu, taken into account. 

 

a. Stabilizer Design 

Based on the linearized power system model in Equation (3.61), PSO has been applied to 

the optimization problem to search for optimal settings of the proposed stabilizers for  
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individual and coordinate design. The final settings of the optimized parameters for the 

proposed stabilizers are given in Table 6.1.  

 It can be noticed when both proposed stabilizers are available the parameters' 

setting of the stabilizers are retuned in coordinated approach in order to avoid the  

negative interaction between them and to get better system performance campared with 

individual stabilizer. 

 The convergence rate of the objective function when (C and ψ)-based controllers 

are designed individually and in a coordinated manner is shown in Fig. 6.4. It is clear that 

the coordinated design of (C and ψ)-based controllers improves greatly the system 

damping compared to their individual application. 

 

Table 6.1: Optimal parameter settings of C & ψ, single point tuning 

 Individual Coordinated 

 C-based 
Controller 

ψ-based 
Controller 

C-based 
Controller 

ψ-based 
Controller 

Controller gain- K 64.9796 100 100 73.0863 
T1 0.2360 1 1 0.01 
T2 0.3 0.3 0.3 0.03 
T3 0.01 0.1194 0.1928 0.0227 
T4 0.3 0.3 0.3 0.3 

KDCP 4.1105 6.0994 6.526 
KDCI 0.1 30 8.7255 
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Fig. 6.4: Variation of the objective function of C and ψ -based stabilizers, individual and 

coordinated design 
 

 

b. Eigenvalue Analysis 

The system eigenvalues along with damping ratios with the proposed STATCOM 

stabilizer inputs when applied individually and through coordinated design are given in 

Tables 6.2, 6.3, and 6.4 for nominal, light, and heavy loading conditions respectively. The 

first bolded rows of these tables represent the EM mode eigenvalue and its damping ratio. 

It is quite evident that the system stability is greatly enhanced with the coordinated design 

approach as damping ratio of the electromechanical mode eigenvalue has been improved. 
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Table 6.2: System eigenvalues of nominal loading condition, for C and ψ -based 
stabilizers, individual and coordinated design 

C-based controller ψ-based controller Coordinated [C & ψ]-
based Controllers 

-3.3450±i5.5037 
(0.5194)* 

-3.6099±i4.5054 
(0.6253)* 

-1.7522±2.0658i 
 (0.6468)* 

-8.266±i13.5474 -3.38±i4.2187 -4.7995±5.6680i 
-2.9323±i4.8003 -7.052±i8.7904 -7.0383±8.2187i 

-30.609 -33.5399 -12.0577±14.1712i 
-10.0791 -13.926 -28.0022 
-8.3729 -5.04 -3.3333, -3.3333 

-2.4998, -0.2010 -0.2005, -0.073 -1.35,-0.2014, -0.2 
 
 
Table 6.3: System eigenvalues of light loading condition, for C and ψ -based stabilizers, 

individual and coordinated design 
C-based controller ψ-based controller Coordinated [C & ψ]-

based Controllers 
-0.0016±5.9385i 

(0.0003)* 
-1.6141±3.3763i 

(0.4313)* 
-1.5465±1.9132i 

 (0.6286)* 
-7.7107±11.2521i -4.1675±8.1737i -11.3038±12.6054i 
-4.7197±1.5434i -9.1086±1.8221i -10.8543±7.5714i 

-32.3761 -33.1148 -9.8525±1.8315i 
-11.2558 -12.3299 -31.7381 
-8.8406 -4.9544 -3.3333, -3.3333 

-2.8775, -0.2004 -0.1997, -0.0349 -1.3619,-0.2001, -0.2 
 
 
Table 6.4: System eigenvalues of heavy loading condition, for C and ψ -based stabilizers, 

individual and coordinated design 
C-based controller ψ-based controller Coordinated [C & ψ]-

based Controllers 
-3.0825±7.6321i 

(0.3745)* 
-3.0424±7.6094i 

(0.3712)* 
-4.9094±8.7769i 

(0.4882)* 
-2.1097±2.6633i -1.8564±2.9938i -1.2227±1.7363i 
-9.2434±10.7717i -9.0752±4.2969i -6.8634±5.0554i 
-9.7802±1.4011i -33.6218 -14.3675±12.8397i 

-29.0001 -14.2651 -24.5599 
-3.233 -4.7629 -3.3333, -3.3333 
-0.2029 -0.2022, -0.0677 -1.377,-0.2049, -0.2 
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c. Non linear time domain simulation 

The single machine infinite bus system shown in Fig. 3.4 is considered for nonlinear 

simulation studies.  

 A 6-cycle 3-φ fault on the infinite bus was created, at all loading conditions, to 

study the performance of the proposed controllers.  

 Figs. 6.5- 6.7 show the speed deviation, electrical power, and STATCOM DC 

voltage responses at nominal operating condition where the coordinated design of 

STATCOM C & ψ controllers is compared to individual design. It can be seen that, at this 

loading condition, both individually design STATCOM controllers are performed well in 

stabilizing the system which confirm the eigenvalue analysis. While there is a good 

improvement in the system response when coordinated design is considered.         

 Similarly, the simulation results with 6-cycle fault at light loading condition are 

shown in Figs. 6.8-6.9. The simulation results obtained clearly indicate that the proposed 

coordinated design outperforms both the individual designs in terms of first swing 

stability, overshoot, and settling time. On the other hand, the damping effort provided by 

the C is not sufficient to keep the system stable at this loading condition. These results 

confirm the conclusion drawn for eigenvalues analysis. The coordinated design with ψ 

solves the problem of very low damping ratio at light loading when C controller is 

considered. 
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Fig. 6.5: Rotor speed response for 6-cycle fault with nominal loading C & ψ, individual 

and coordinated design 

 
Fig. 6.6: Electrical power response for 6-cycle fault with nominal loading C & ψ, 

individual and coordinated design 
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Fig. 6.7: STATCOM DC voltage response for 6-cycle fault with nominal loading, C & ψ, 

individual and coordinated design 
 

 
Fig. 6.8: Rotor speed response for 6-cycle fault with light loading, C & ψ individual and 

coordinated design 
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Fig. 6.9: Electrical power response for 6-cycle fault with light loading, C & ψ, individual 

and coordinated design 
 

6.2.1.2 Coordinated Design [PSS & C] 

Another way of solving the negative damping of STATCOM C controller at light loading 

condition is by coordinated design with PSS, since the STATCOM ψ controller not 

always could be utilized because it required a sufficient storage energy which is usually 

not available.  

a. Stabilizer design 

Both stabilizers PSS & C are simultaneously and individually tuned by PSO searching for 

the optimum controllers parameter settings that maximize the minimum damping ratio of 

all the system complex eigenvalues at nominal loading condition. The final settings of the 

optimized parameters for the proposed stabilizers are given in Table 6.5. 
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 It can be noticed when both proposed stabilizers are available, C and PSS the 

parameters' settings of the stabilizers are retuned in coordinated approach in order to 

avoid the  negative interaction between them and to achieve better system performance 

campared with individual stabilizer. 

 The convergence rate of the objective function when PSS and C-based controllers 

are designed individually and in a coordinated manner is shown in Fig. 6.10. It is clear 

that the coordinated design of PSS and C-based stabilizer improves greatly the system 

damping compared to their individual application. 

 

Table 6.5: Optimal Parameter Settings of C & PSS for individual and coordinate design 

 Individual Coordinated 

 PSS-based 
Controller 

C-based 
Controller 

PSS-based 
Controller 

C-based 
Controller 

Controller 
gain- K 30.5918 100 100 100 

T1 0.1397 1 1 0.1539 
T2 0.1 0.3 0.1 0.3 
T3 0.3386 0.1198 0.435 0.0821 
T4 0.1 0.3 0.1 0.3 

KDCP 4.3113 6.0606 1.5638 
KDCI 11.0856 29.9173 0.1 
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Fig. 6.10: Variation of the objective function of PSS and C -based stabilizers, individual 

and coordinated design 
 

 

b. Eigenvalue Analysis 

The system eigenvalues with the proposed stabilizers at nominal, light, and heavy loading 

conditions are given in Tables 6.6, 6.7, and 6.8 respectively, where the first bolded row 

represents the electromechanical mode eigenvalues and their damping ratios noted as a 

star. It is clear that the negative damping of PSS and C-based controller at light loading 

condition has been resolved the coordinated design. 
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Table 6.6:System eigenvalues of nominal loading condition, for PSS and C -based 
stabilizers, individual and coordinated design 

PSS-based controller C-based controller Coordinated [C & PSS]-
based Controllers 

-4.5889±8.0127i  
(0.523)* 

-2.9310±4.779i  
(0.5228)* 

-3.507±2.4047i 
(0.8247)* 

-5.9827±10.7845i -3.3361±5.5459i -11.8341±7.9225i 
-3.1383±5.1145i -8.2703±13.4600i -3.0017±1.8594i 

-33.661 -30.5981 -15.6458±10.2583i 
-22.9822 -10.0375 -14.9053±2.0576i 
-7.2552 -8.4381 -2.7756, -0.2223 

-2.6544, -0.2051 -2.5001, -0.2010 -0.2, -0.064 
 
 

Table 6.7: System eigenvalues of light loading condition, for PSS and C -based 
stabilizers, individual and coordinated design 

PSS-based controller C-based controller Coordinated [C & PSS]-
based Controllers 

0.2482±5.6088i 
(-0.0442)* 

0.0031±5.942i 
(-0.0005)* 

-0.8527±4.1128i 
(0.203)* 

-7.6015±9.7016i -7.6977±11.1718i -6.693±5.5251i 
-8.262±2.7734i -4.735±1.5462i -14.1913±1.910i 

-33.1629 -32.3736 -4.2378±1.6409i 
-18.5597 -11.2622 -29.5845, -15.7221 
-7.7277 -8.8411 -2.8875, -0.2065 

-2.8651, -0.2017 -2.8779, -0.2004 -0.0642, -0.2 
 
 

Table 6.8: System eigenvalues of heavy loading condition, for PSS and C -based 
stabilizers, individual and coordinated design 

PSS-based controller C-based controller Coordinated [C & PSS]-
based Controllers 

-1.2221±4.9563i 
(0.2394)* 

-2.1083±2.6648i  
 (0.6205)* 

-1.3217±1.5608i 
(0.6462)* 

-4.3584±11.2561i -3.0515±7.6399i -16.9235±18.6221i 
-8.0453±3.3585i -9.2717±10.711i -4.3267±2.5399i 

-33.7839 -9.7933±1.3914i -11.1952±5.044i 
-22.4743 -28.9813 -15.2178±1.8584i 
-7.6578 -3.2337 -2.5986, -0.2301 

-2.8283, -0.2051 -0.2029 -0.2, -0.069 
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c. Non linear time domain simulation 

The single machine infinite bus system shown in Fig. 3.4 is considered for nonlinear 

simulation studies. 6-cycle 3-φ fault on the infinite bus was created, at all loading 

conditions, to study the performance of the proposed controllers. 

 Figs. 6.11-6.14 show the system response at nominal operating condition where 

the coordinated design of STATCOM C and PSS controllers is compared to individual 

design. Similarly the system response at light loading condition is shown in Figs. 6.15-

6.16. It can be seen that, at all loading conditions, the proposed coordinated design 

outperforms both the individual designs in terms of first swing stability, overshoot, and 

settling time. These results confirm the conclusion drawn for eigenvalues analysis. The 

coordinated design solves the problem of very low or negative damping ratio at light 

loading when C-based controller and PSS are considered. 
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Fig. 6.11: Rotor angle response for 6-cycle fault with nominal loading C & PSS, 

individual and coordinated design 

 
Fig. 6.12: Rotor speed response for 6-cycle fault with nominal loading, C & PSS, 

individual and coordinated design 
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Fig. 6.13: STATCOM "C" controller response for 6-cycle fault with nominal loading, C 

& PSS, individual and coordinated design 

 
Fig. 6.14: PSS response for 6-cycle fault with nominal loading, C & ψ, individual and 

coordinated design 
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Fig. 6.15: Rotor angle response for 6-cycle fault with light loading, C & PSS, individual 

and coordinated design 

 
Fig. 6.16: Rotor speed response for 6-cycle fault with light loading, C & PSS, individual 

and coordinated design 
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6.2.2 Multiple Point Tuning 

In this section, the STATCOM-based controllers' parameters with PSS are optimized over 

a wide range of operating conditions and system parameter uncertainties in order to have 

robust stabilizers. Four loading conditions represent nominal, light, heavy, and leading 

power factor are considered. Each loading condition is considered without and with 

parameter uncertainties as given in Table 6.9. Hence, the total number of points 

considered for design process is 16. 

 Tables 6.10 and 6.11 list the open-loop, STATCOM without POD controllers, 

eigenvalues and corresponding damping ratios associated with the EM modes of all the 16 

points considered in the robust design process, respectively. It is evident that modes 

belong to leading power factor are unstable. 

 

Table 6.9: Loaing conditions and parameter uincertainties 

Loading Condition (P, Q) in pu Parameter uncertainties 
Normal (1.0 , 0.015) No parameter uncertainties 
Heavy (1.1 , 0.1) 30% increase of line reactance X 
Light (0.3 , 0.015) 25% decrease of machine inertia M 
Leading pf (0.7, -0.3) 30% decrease of field time constant Tdo

' 

   
 

Table 6.10: Open-loop eignvalues associated with the electromechanical modes of all 
points considered in robust design process 

 No parameter 
uncertainties 

30% increase of 
line reactance 

X 
 

25% decrease 
of machine 
inertia M 

 

30% decrease 
of field time 
constant Tdo

' 

 
Normal -0.717±1.854i -1.5057±2.38i -0.9215±2.21i -0.3153±2.4402i 
Heavy -1.1804±2.10i -1.685±2.551i -1.366±2.464i -0.6484±2.48i 
Light -0.163±2.81i -0.318±2.392i -0.1786±3.249i -0.1285±2.84i 
Leading pf 0.5346±2.62i 0.1492±1.798i 0.4795±2.937i 0.5713±2.874i 
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Table 6.11: Damping ratio of open-loop eignvalues associated with the electromechanical 
modes for all point concidered in the robust design process 

 
No 

parameter 
uncertainties 

30% increase 
of line 

reactance 
X 

25% decrease 
of machine 
inertia M 

30% decrease 
of field time 
constant Tdo

' 

Normal 0.3608 0.5346 0.3847 0.1281 
Heavy 0.4885 0.5514 0.4849 0.253 
Light 0.0579 0.1319 0.0549 0.0451 
Leading pf -0.2001 -0.0827 -0.1611 -0.195 
 

6.2.2.1 Individual Design  

The STATCOM-based (C & ψ) stabilizers are design on individual basis taking into 

consideration all of the operating points specified above. PSO algorithm is used to 

optimize the stabilizer parameters that maximize the minimum damping ratio of all 

complex eigenvalues.   

a) Stabilizer design 

The convergence rate of the objective function when C and ψ-based stabilizers are design 

individually is shown in Fig. 6.17. The final setting of the optimize parameters for the 

proposed stabilizers are given in Table 6.12. 

 

Table 6.12: Optimal parameter settings for C & ψ, multiple point tuning, individual 
design 

Parameters C-based Controller ψ-based Controller 
Controller gain- K 100 64.9796 

T1 1 0.2360 
T2 0.3 0.3 
T3 0.1194 0.01 
T4 0.3 0.3 

KDCP 6.0994 4.1105 
KDCI 30 0.1 
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Fig. 6.17: Variation of the objective function of ψ and C -based stabilizers, multiple point 

tuning, individual design 
 

  

b) Eigenvalue Analysis 

The system eigenvalues without and with the proposed stabilizers at nominal, light, and 

heavy loading conditions are given in Tables 6.13, 6.14, and 6.15 respectively. The first 

row of these tables represents the electromechanical mode eigenvalues. It is clear that the 

proposed robust stabilizers are effective at all points considered. 
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Table 6.13: System eigenvalues of nominal loading condition, for C & ψ, multiple point 
tuning, individual design 

system with STATCOM 
No POD controllers C-based controller ψ-based controller 

-0.7174 ± 1.8546i 
(0.3608)* 

-1.4176±2.765i 
(0.4562)* 

-2.3108±2.2442i 
(0.7174)* 

-13.5086 -4.157±10.2611i -2.663±6.0705i 
-5.3029 -5.738±23.4564i -8.2258±17.7831i 
-0.1542 -31.8664 -33.5313 

 -14.1855 -13.5437 
 -9.6084 -7.1361 
 -2.3619, -0.2020 -0.2005, -0.0387 

 

Table 6.14: System eigenvalues of light loading condition, for C & ψ, multiple point 
tuning, individual design 

System with STATCOM 
No POD controllers C-based controller ψ-based controller 

-0.1301 ± 2.8384i 
(0.0458)* 

-1.4297±5.8473i 
(0.2375)* 

-1.8372±2.5677i 
(0.5819)* 

-11.1526 -4.1005±3.0398i -3.9219±5.2608i 
-8.8936 -5.4802±20.44i -7.6081±14.937i 
-0.0155 -32.67 -33.1106 

 -12.5483 -11.9736 
 -10.1345 -8.3866 
 -2.8401, -0.2009 -0.1996, -0.0094 

 

Table 6.15: System eigenvalues of heavy loading condition, for C & ψ, multiple point 
tuning, individual design 

System with STATCOM 
No POD controllers C-based controller ψ-based controller 

-1.0835±2.6517i 
(0.3783)* 

-1.2747±1.8069i 
(0.5764)* 

-1.8559±2.2192i 
(0.6415)* 

-1.7071 -4.1875±11.5564i -3.4708±6.1691i 
-13.0972 -5.6067±19.7289i -7.7395±14.3323i 
-6.8040 -31.1149 -33.6159 

 -13.4416 -13.2122 
 -10.4998 -7.671 
 -3.4676, -0.2062 -0.2023, -0.0337 

* dampig ratio 
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c) Non linear time domain simulation 

The nonlinear time domain simulations have been carried out at different loading 

conditions. Figs. 6.18-6.24 show the system response for 6-cycle fault disturbance at the 

nominal and light loading conditions. It can be seen that both C and ψ-based stabilizers 

provide an excellent damping characteristics and enhance the first swing stability at all 

loading conditions. 

 

 
Fig. 6.18: Rotor angle response for 6-cycle fault with nominal loading, multiple point 

tuning, individual design for C & ψ 
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Fig. 6.19: STATCOM DC voltage response for 6-cycle fault with nominal loading, 

multiple point tuning, individual design for C & ψ 
 

 
Fig. 6.20: STATCOM C controller response for 6-cycle fault with nominal loading, 

multiple point tuning, individual design for C & ψ 
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Fig. 6.21: STATCOM ψ controller response for 6-cycle fault with nominal loading, 

multiple point tuning, individual design for C & ψ 
 

 
Fig. 6.22: Rotor angle response for 6-cycle fault with light loading, multiple point tuning, 

individual design for C & ψ 
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Fig. 6.23: STATCOM bus voltage response for 6-cycle fault with light loading, multiple 

point tuning, individual design for C & ψ 

 
Fig. 6.24: STATCOM DC voltage response for 6-cycle fault with light loading, multiple 

point tuning, individual design for C & ψ 
 



   

 

 
114 

 

6.2.2.2 Coordinated Design [C and PSS] 

In this section the coordinated design of STATCOM-based C stabilizer and PSS is 

address over a wide range of operating conditions. PSO algorithm is used to optimize 

simultaneously the stabilizers parameters that maximize the minimum damping ratio of 

all complex eigenvalues. It is worth mentioning that the 16 loading conditions specified 

above are taken into consideration during the design process.   

 

a) Stabilizer design 

The convergence rate of the objective function when PSS and C-based controller are 

designed individually and in a coordinated manner is shown in Fig. 6.25. It is clear that 

the coordinated design of PSS and C-based stabilizer improves greatly the system 

damping compared to their individual application. The final settings of the optimized 

parameters for the proposed stabilizers are given in Table 6.16. 

 It can be noticed when both proposed stabilizers, C and PSS, are available the 

parameters' settings of the stabilizers are retuned in coordinated approach in order to 

avoid the  negative interaction between the controllers and to get better system 

performance campared with individual stabilizer. 
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Table 6.16: Optimal parameters Setting of C & PSS, multiple point tuning, individual and 
coordinated design 

 Individual Coordinated 

 C-based 
Controller 

PSS-based 
Controller 

C-based 
Controller 

PSS-based 
Controller 

Controller 
gain- K 100 14.7626 100 100 

T1 0.1 0.8355 0.7594 0.0303 
T2 0.3 0.1 0.3 0.1 
T3 1 0.1867 0.8527 0.2529 
T4 0.3 0.1 0.3 0.1 

KDCP 100 11.6042 7.5006 
KDCI 74 94.36 0.01 

 
 
 
 

 
Fig. 6.25: Variation of the objective function of PSS & C-based stabilizers, multiple-point 

tuning, coordinated design  
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b) Eigenvalue Analysis 

The system eigenvalues with the proposed stabilizers at nominal, light, and heavy loading 

conditions are given in Tables 6.17, 6.18, and 6.19 respectively, where the first bolded 

row represents the electromechanical mode eigenvalues and their damping ratios. 

 It is clear that the multiple point tuning approach greatly improve the damping of 

PSS and C-based controller when they designed individually and in coordinated base at 

all loading conditions compared to single point tuning approach.   

Table 6.17:System eigenvalues of nominal loading condition for C & PSS, multiple point 
tuning, individual and coordinated design 

PSS-based controller C-based controller Coordinated [C & PSS]-
based Controllers 

-1.3939±3.4064i 
(0.3787)* 

-1.7807±4.1709i 
(0.3926)* 

-2.18±0.3558i 
(0.9869)* 

-4.6198±23.2043i -5.6621±5.6945i -2.4096±2.8059i 
-3.1499±12.4421i -9.7383±74.8348i -3.0017±1.8594i 

-33.7913 -31.1193 -7.3597±6.9137i 
-25.7516 -11.8722 -8.0924±18.0377i 
-10.5662 -2.5485 -19.4909±21.5831i 

-5.5446, -0.2021 -0.7464, -0.2010 -21.56, -0.2212, -0.0013,  
-0.2 

 

Table 6.18: System eigenvalues of light loading condition for C & PSS, multiple point 
tuning, individual and coordinated design 

PSS-based controller C-based controller Coordinated [C & PSS]-
based Controllers 

-1.1856±4.9329i 
(0.2337)* 

-0.5716±5.3103i 
(0.107)* 

-2.2467±4.2434i 
(0.4679)* 

-4.7757±19.9861i -9.6973±66.6855i -2.9996±0.3166i 
-5.1595±7.9238i -32.4474 -4.8401±6.2313i 

-33.2020 -11.4559 -9.8591±14.0236i 
-20.871 -7.2313 -16.5188±8.6456i 
-11.3574 -4.8161, -2.9789 -27.2779, -0.2066 

-5.8751, -0.2007 -0.7467, -0.2004 -0.2, -0.0013 
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Table 6.19: System eigenvalues of Heavy loading condition for C & PSS, multiple point 
tuning, individual and coordinated design 

PSS-based controller C-based controller Coordinated [C & PSS]-
based Controllers 

-1.1873±3.4128i 
(0.3286)* 

-1.9405±2.7727i 
(0.5734)* 

-1.5317±1.9208i 
(0.6235)* 

-3.6467±11.3826i -5.8787±6.5827i -8.3024±6.1164i 
-4.1092±20.2565i -9.7243±65.783i -8.9218±15.6938i 

-33.943 -29.9457 -19.0335±26.68211i 
-25.1739 -11.2856 -15.2178±1.8584i 
-11.3994 -3.599 -19.3247, -3.7895, -1.9486 

-5.5964, -0.2021 -0.7474, -0.203 -0.2248, -0.2, -0.0014 
 

 

c) Non linear time domain simulation 

The single machine infinite bus system shown in Fig. 3.4 is considered for nonlinear 

simulation studies. A 6-cycle 3-φ fault near to the infinite bus was applied, at all loading 

conditions, to study the performance of the proposed controllers.  

 The machine rotor angle and speed deviation responses, at nominal, light and 

heavy operating conditions, are shown in Figs. 6.26-6.31. It can be readily seen that the 

coordinated design system performs better than the individually designed in terms of 

reduction of overshoot and settling time. This is consistent with the eigenvalues analysis 

results.  
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Fig. 6.26: Rotor angle response for 6-cycle fault with nominal loading, multiple point 

tuning, coordinated design for C & PSS 

 
Fig. 6.27: Rotor speed response for 6-cycle fault with nominal loading, multiple point 

tuning, coordinated design for C & PSS 
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Fig. 6.28: Rotor angle response for 6-cycle fault with light loading, multiple point tuning, 

coordinated design for C & PSS 

 
Fig. 6.29: Rotor speed response for 6-cycle fault with light loading, multiple point tuning, 

coordinated design for C & PSS 
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Fig. 6.30: Rotor angle response for 6-cycle fault with heavy loading, multiple point 

tuning, coordinated design for C & PSS 

 
Fig. 6.31: Rotor speed response for 6-cycle fault with heavy loading, multiple point 

tuning, coordinated design for C & PSS 
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CHAPTER 7 

 

 
ANALYSIS AND DESIGN OF PSS, TCSC, AND SVC-BASED 

STABILIZERS IN MULTIMACHINE POWER SYSTEMS 

 

 
In this chapter the previous work is extended to multimachine power systems. Two 

multimachine power system examples are considered in this chapter. FACTS-based 

controllers namely TCSC and SVC are modeled one at a time in each power system. 

   

7.1 Example 1 : (3-machine, 9-bus system)  

The system considered in this section is the three-generator nine-bus system. The system 

one-line diagram is shown in Fig. 7.1. The details system data including the dynamic 

generators model and exciter data used along with load flow result are given in the 

Appendix B.  

 The system used consists of one area and it is called a loop system. Each load bus 

can be equipped with an SVC, while TCSC could be installed at any transmission line. 
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Fig. 7.1: Single line diagram of WSCC 3 generator 9 bus system 
 

 

7.1.1 System Analysis 

From the open loop system eigenvalue and participation factor analysis shown in Table 

7.1, the system exhibits two electromechanical modes. Both of them are classified as local 

modes, since they are within frequency range of 0.7-3 Hz. The frequencies, damping 

ratios and participation factors for these two electromechanical modes are given in Table 

7.1.  The second electromechanical mode has a very low damping ratio equal to (0.0386) 

and Generator no. 2 has the significant participation factor of that mode. Therefore, PSS 

is located at machine number #2.  
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Table 7.1: 3-machine system eigenvalues analysis 
Machines Participation 

Factor Eigenvalues Freq. Mode Damping
Ratio 

G1 G2 G3 
-1.4716 ±13.93i 2.2171 Local 0.1051 0.0106 0.227 1 
-0.3567 ± 9.237i 1.4702 Local 0.0386 0.4195 1 0.1611 
-9.8412 ±11.556i 1.8393  0.6483    
-10.311 ± 6.827i 1.0866  0.8338    
-11.275 ± 3.119i 0.4964  0.9638    

-3.8355 0  1    
-2.2889 0  1    
-0.0901 0  1    

-2 0  1    
 

 The location of SVC is selected based on the primary function of SVCs that is 

voltage and reactive power support. Then the SVC is utilized by installing POD controller 

to improve the system damping in addition to the main function. Modal Analysis Method 

is used to determine the voltage sensitivity of reactive power injections at each PQ buses.  

 From the Modal Analysis results shown in Table 7.2, the maximum contribution 

to the minimum eigenvalue of the reduced Jacobian is B-5. Therefore, bus number 5 is the 

most sensitive bus that required an SVC to improve the overall steady state voltage 

stability. While the location of TCSC is selected to be between bus # 5 and bus #7. 

 
Table 7.2: Modal analysis result for 3-machine system 

Eigenvalues of the reduced Jacobian PQ 
Buses 51.0829 46.6201 36.2943 5.9573 12.94 14.9075 
B-4 0.39413 0.40523 0.0019443 0.1258 0.066904 0.0059901 
B-5 0.095235 0.020286 0.035946 0.29986 0.027198 0.52147 
B-6 0.063316 0.032872 0.048438 0.27867 0.22398 0.35272 
B-7 0.23229 0.28062 0.24878 0.084615 0.144 0.0097038 
B-8 0.12824 0.19444 0.0082268 0.14538 0.49455 0.029159 
B-9 0.086789 0.06655 0.65666 0.065678 0.043365 0.080952 
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7.1.2 Individual Design 

Based on the linearized multimachine power system model shown in Fig. 3.6, PSO has 

been applied to the optimization problem to search for optimal settings of the proposed 

stabilizers for individual and coordinated design.  

 

7.1.2.1 Stabilizer Design 

The convergence rate of the objective function when PSS-2, SVC-based, and TCSC-

based controllers are designed individually is shown in Fig. 7.2. The final settings of the 

optimized parameters for the proposed stabilizers are given in Table 7.3. 

 

Table 7.3: Optimal parameter settings of PSS, SVC &TCSC single point tuning and 
individual design for 3-machine system 

 PSS SVC TCSC 
K 5.3502 296.9 235 
T1 0.1698 0.1138 0.25584 
T2 0.1 0.555 5.0 
T3 0.163 0.8567 4.04043 
T4 0.1 0.6579 1.0016 
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Fig. 7.2: Variation of the objective function of PSS, TCSC, & SVC stabilizers in   3-

machine power system 
 

7.1.2.2 Eigenvalue Analysis 

The system eigenvalues along with damping ratios without and with the proposed PSS, 

SVC-based, and TCSC-based stabilizers when applied individually are given in Table 7.4. 

The first two bolded rows of the table represent the EM modes eigenvalue and their 

damping ratios.  

 It is quite evident that the system damping is slightly enhanced in case of SVC 

installed at bus number #5, while the system damping is greatly improved with the PSS 

and TCSC. 
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Table 7.4: System eigenvalues in case of individual design of PSS, SVC & TCSC in 3-
machine system 

No Control PSS2 SVC TCSC 
-0.3567 ± 9.237i 

0.03*, 1.47** 
-2.6197±8.8188i   

0.2848*, 1.4036** 
-0.8749 ± 9.0971i 
0.0957*, 1.4478** 

-3.0890 ±12.9722i   
0.2316*, 2.0716** 

-1.4716 ±13.930i 
0.105*, 2.217** 

-3.9378±13.3213i 
0.2835*, 2.1202**  

-1.4034 ± 13.9371i 
0.1002*, 2.218** 

-3.1384 ±13.1498i 
0.2321*, 2.14** 

-9.8412 ±11.556i -4.6439±15.7356i -1.683 ± 0.7352i -10.6325 ±11.5240i 
-10.311 ± 6.827i -9.3227±8.5425i -2.7872 ± 0.4616i -6.3092 ±5.0442i 
-11.275 ± 3.119i -10.9059±4.7682i -9.6214 ± 11.6995i -0.9104 ±2.9083i 

-3.8355 -33.5124 ,-10.0730 -10.027 ±6.8689i -10.8508 ±3.5470i 
-2.2889 
-0.0901 

-3.7845, -2.2644 
-0.3867, -0.0460 

-11.3463 ± 3.102i 
-0.8842, -0.0193 

-17.0440, -3.9188 
-2.3042, -0.0005 

 -2.00 -2.0 -0.20, -2.00 
* damping ratio, ** frequency 

 

7.1.2.3 Nonlinear Time domain Simulation 

Figs. 7.3-7.5 show the speed deviations, rotor angles, and PSS2 controller responses 

respectively, for a 6-cycle three-phase fault at bus 7 at the end of line 5-7 at the base case 

while using the proposed PSS2.  

 Similarly, Figs. 7.6-7.8 show the simulation results with the proposed TCSC while 

Figs. 7.9-7.11 show results with SVC5.  

 Figs. 7.12-7.14 show the machines speed and angle response with the proposed 

PSS, SVC and TCSC all at one figure for better clarification.     

 It can be readily seen that PSS2 and TCSC are the most effective stabilizers in 

damping the EM modes oscillations. However, the system oscillations are relatively 

damped using SVC. This is in general consistency with eigenvalue analysis results. 
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Fig. 7.3: Speed response for 6-cycle fault with PSS2, individual design 

 
Fig. 7.4: Rotor angle response for 6-cycle fault with PSS2, individual design 
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Fig. 7.5: PSS-2 response for 6-cycle fault, individual design 

 
Fig. 7.6: Speed response for 6-cycle fault with TCSC, individual design 

 
 



   

 

 
129 

 

 
Fig. 7.7: Rotor angle response for 6-cycle fault with TCSC, individual design 

 

 
Fig. 7.8: TCSC response for 6-cycle fault, individual design 
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Fig. 7.9: Speed response for 6-cycle fault with SVC5, individual design 

 
Fig. 7.10: Rotor angle response for 6-cycle fault with SVC5, individual design 
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Fig. 7.11: SVC5 response for 6-cycle fault, individual design 

 
Fig. 7.12: Speed response of machine-2 for 6-cycle fault with PSS, SVC, and TCSC, 

individual design 
 



   

 

 
132 

 
Fig. 7.13: Speed response of machine-3 for 6-cycle fault with PSS, SVC, and TCSC, 

individual design 

 
Fig. 7.14: Rotor angle response for 6-cycle fault with PSS, SVC, and TCSC, individual 

design 
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7.1.3 Coordinated Design [TCSC & PSS] 

Both stabilizers PSS2 & TCSC are simultaneously tuned by PSO searching for the 

optimum controllers parameter settings that maximize the minimum damping ratio of all 

the system complex eigenvalues.  

 

7.1.3.1 Stabilizer Design 

The convergence rate of the objective function when PSS2 and TCSC-based controllers 

are designed individually and in a coordinated manner is shown in Fig. 7.15. It is clear 

that the coordinated design of PSS and TCSC-based stabilizer improves greatly the 

system damping compared to their individual application. The final settings of the 

optimized parameters for the proposed stabilizers are given in Table 7.5. 

 

Table 7.5: Optimal parameter settings of PSS and TCSC, coordinated design for 3-
machine system 

Coordinated Design Parameters 
PSS(2) TCSC 

K 1.6086 6.9277 
T1 0.978 0.0101 
T2 0.010 0.3289 
T3 ------- 0.0770 
T4 ------- 0.050 
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Fig. 7.15: Variation of the objective function of PSS & TCSC-based stabilizer, Individual 

& Coordinated design 
 

7.1.3.2 Eigenvalue Analysis 

The system eigenvalues with the proposed PSS2 and TCSC-based stabilizers when 

applied individually and by means of coordinated design is given in Table 7.6. The bold 

rows of this table represent the EM modes eigenvalues and their damping ratios. It is 

evident that, using the proposed coordinated stabilizers design, the damping ratio of the 

EM mode eigenvalue is greatly enhanced. Hence, it can be concluded that this improves 

the system stability. 
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Table 7.6: System eigenvalues with coordinated design of PSS2 & TCSC in 3-machine 
system 

PSS(2) TCSC PSS & TCSC 
-2.6197±8.8188i   

0.2848*, 1.4036** 
-3.0890 ±12.9722i   
0.2316*, 2.0716** 

-3.351±9.3204i 
0.34*, 1.483**  

-3.9378±13.3213i 
0.2835*, 2.1202**  

-3.1384 ±13.1498i 
0.2321*, 2.14** 

-4.7746 ± 13.8311i    
0.326*, 2.2013** 

-4.6439±15.7356i -10.6325 ±11.5240i -0.1759 ±0.17725i 
-9.3227±8.5425i -6.3092 ±5.0442i -4.9191±14.21366i 
-10.9059±4.7682i -0.9104 ±2.9083i -8.8257±7.73672i 

-33.5124 ,-10.0730 -10.8508 ±3.5470i -10.455±4.15703i 
-3.7845, -2.2644 
-0.3867, -0.0460 

-17.0440, -3.9188 
-2.3042, -0.0005 

-100, -101.7 
-19.99, -3.794 

-2.00 -0.20, -2.00 -2.2538, -0.516 
-0.20, -2.00 

* damping ratio, ** frequency 

 

7.1.3.3 Nonlinear Time domain Simulation 

Figs. 7.16-7.19 show the rotor angles and speed deviations responses, as well as PSS2 

stabilizing signal and TCSC response, respectively, for a 6-cycle three-phase fault at bus 

7 at the end of line 5-7 at the base case while using the proposed PSS2-TCSC coordinated 

design. These Figs. should be compared with Figs. 7.3-7.5, for individual PSS2 design, 

and 7.6-7.8, for individual TCSC design. For better result appearance Figs. 7.20-7.22 

show the speed, angle, and TCSC responses with coordinated and individual design of 

PSS and TCSC. 

 The improvement on the system responses when using the coordinated design, 

especially for individual TCSC design, is quite evident.  This is in agreement with 

eigenvalue analysis results.   
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Fig. 7.16: Speed response for 6-cycle fault with PSS2 & TCSC, coordinated design 

 

 
Fig. 7.17: Rotor angle response for 6-cycle fault with PSS2 & TCSC, coordinated design 
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Fig. 7.18: TCSC response for 6-cycle fault, PSS2 & TCSC, coordinated design 

 

 
Fig. 7.19: PSS response for 6-cycle fault, with PSS2 & TCSC, coordinated design 
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Fig. 7.20: Speed response for 6-cycle fault with PSS2 & TCSC, coordinated and 

individual design 

 
Fig. 7.21: Rotor angle response for 6-cycle fault with PSS2 & TCSC, coordinated and 

individual design 
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Fig. 7.22: TCSC response for 6-cycle fault with PSS & TCSC, coordinated and individual 

design 
 

7.1.4 Coordinated Design [SVC & PSS]  

Both stabilizers PSS2 & SVC5 are simultaneously tuned by PSO searching for the 

optimum controllers parameter settings that maximize the minimum damping ratio of all 

the system complex eigenvalues.  

 

7.1.4.1 Stabilizer Design 

The convergence rate of the objective function when PSS2 and SVC5-based controllers 

are designed individually and in a coordinated manner is shown in Fig. 7.23. It is clear 

that the coordinated design of PSS and SVC5-based stabilizer improves greatly the 

system damping compared to their individual application. The final settings of the 

optimized parameters for the proposed stabilizers are given in Table 7.7. 
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Table 7.7: Optimal parameter settings of PSS and SVC, coordinated design for 3-machine 
system 

Coordinated Design  
PSS(2) SVC 

K 7.4649 1.025 
T1 0.2333 0.901 
T2 0.01 0.2276 
T3 ------- 5.0 
T4 ------- 4.9539 
   

 
 
 
 

 
Fig. 7.23: Variation of the objective function of PSS & SVC5-based stabilizer, Individual 

& Coordinated design 
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7.1.4.2 Eigenvalue Analysis 

The system eigenvalues with the proposed PSS2 and SVC5-based stabilizers when 

applied individually and by means of coordinated design is given in Table 7.8. The bold 

rows of this table represent the EM modes eigenvalues and their damping ratios. It is 

evident that, using the proposed coordinated stabilizers design, the damping ratio of the 

EM mode eigenvalue is greatly enhanced. Hence, it can be concluded that this improves 

the system stability. 

 

Table 7.8: System eigenvalues with coordinated design of PSS2 & SVC in 3-machine 
system 

PSS(2) SVC PSS & SVC 
-2.6197±8.8188i   

0.2848*, 1.4036** 
-0.8749 ± 9.0971i 
0.0957*, 1.4478** 

-3.349 ± 9.2542i 
0.3403*, 1.473** 

-3.9378±13.3213i 
0.2835*, 2.1202**  

-1.4034 ± 13.9371i 
0.1002*, 2.218** 

-4.5033 ± 13.7782i 
0.3106*, 2.1928** 

-4.6439±15.7356i -1.683 ± 0.7352i -5.1682 ± 14.3245i 
-9.3227±8.5425i -2.7872 ± 0.4616i -8.8307 ± 7.76811i 
-10.9059±4.7682i -9.6214 ± 11.6995i -10.4648 ± 4.14817i 
-33.5124 ,-10.0730 -10.027 ±6.8689i -101.73, -100, -199 
-3.7845, -2.2644 
-0.3867, -0.0460 

-11.3463 ± 3.102i 
-0.8842, -0.0193 

-4.4736, -3.738 
2.2545, -0.452 

-2.00 -2.0 -0.04, -0.2018 
  -0.2, -2 

* damping ratio, ** frequency (Hz) 

 

7.1.4.3 Nonlinear Time domain Simulation 

Figs. 7.24-7.27 show the rotor angles, speed deviations, PSS2 stabilizing signal and SVC5 

responses, respectively, for a 6-cycle three-phase fault at bus 7 at the end of line 5-7 at the 

base case while using the proposed PSS2- SVC5 coordinated design. These Figs. should  
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be compared with Figs. 7.3-7.5, for individual PSS2 design, and 7.9-7.11, for individual 

SVC5 design. Figs. 7.28-7.30 show the speed deviation, rotor angle, and SVC responses 

for PSS and SVC for individual and coordinated design.  

 The improvement on the system responses when using the coordinated design, 

especially for individual SVC5 design, is quite evident.  This is in agreement with 

eigenvalue analysis results.   

 

 
Fig. 7.24: Speed response for 6-cycle fault with PSS2 & SVC5, coordinated design 
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Fig. 7.25: Rotor angle response for 6-cycle fault with PSS2 & SVC5, coordinated design 

 
Fig. 7.26: SVC5 response for 6-cycle fault, PSS2 & SVC5, coordinated design 
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Fig. 7.27: PSS response for 6-cycle fault, with PSS2 & SVC5, coordinated design 

 
Fig. 7.28: Speed response for 6-cycle fault with PSS2 & SVC5, coordinated and 

individual design 
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Fig. 7.29: Rotor angle response for 6-cycle fault with PSS2 & SVC5, coordinated and 

individual design 

 
Fig. 7.30: SVC5 response for 6-cycle fault, PSS2 & SVC5, coordinated and individual 

design 
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7.2 Example 2 (4-machines, 10-bus system)  

The system considered in this section is the two-area power system. The system 

one-line diagram is shown in Fig. 7.31. The details system data including the dynamic 

generators model and exciter data used along with load flow result are given in the 

Appendix C.  

 The system consists of two identical areas. Each includes two 900 MVA 

generating units equipped with fast static exciters. All four generating units are 

represented by the same dynamic model. The power transfer from Area 2 to Area 1 over a 

single tie line is considered.  

 

 

Fig. 7.31: Single line diagram of the two-area system 
 

 

4 

3 8 9 

2 

10 6 5 1 

Load B 
9.67MW 
2.5MVar 

Load A 
17.67MW 
2.5MVar 

G1 G3

7 

AREA 1 AREA 2 

G2 G4 



   

 

 
147 

 

7.2.1 System Analysis  

From the open loop system eigenvalue and participation factor analysis shown in Table 

7.9, the system exhibits three electromechanical modes: 

• An inter-area mode, with a frequency of 0.5098 Hz, in which the generating units 

in one area oscillate against those in the other area. 

• Local mode, in area 1, with a frequency of 1.1125 Hz. In this mode the machines 

in Area 1 oscillate against each other. 

• Local mode, in area 2, with a frequency of 1.0941 Hz. In this mode the machines 

in Area 2 oscillate against each other. 

The frequencies, damping ratios, and participation factors (PF) for these three 

electromechanical modes are given in the Table below. 

 The table shows that the two generating units in each area have close participation 

factor in the inter-area mode. The same is also true for the two local modes. This is to be 

expected, since all units are identical, and units in each area are electrically close. The 

table also shows that the units in Area 1 (the receiving end) have higher participation 

factor than the units in Area 2 (sending end) to the inter-area mode. It can also be seen 

that, the inter-area mode has negative damping ratio at this operating condition.  

Table 7.9: Two-area system eigenvalues analysis 
 

Machines Participation Factor Eigenvalues Freq. Mode Damping 
Ratio G1 G2 G3 G4 

-0.660 ±6.9904i 1.1125 Local 0.094 0.7544 1 0.0015 0.0088
-0.7375 ±6.8742i 1.0941 Local 0.1067 0.0133 0.0016 0.8438 1 

0.0279 ± 3.2030i 0.5098 Inter-
Area -0.0087 1 0.7869 0.3891 0.2432
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 The first electromechanical mode has a very low damping ratio equal to (0.094) in 

which Generator no. 1 & 2 have the significant participation factors of that mode. 

Therefore, PSSs are located at machine number 1 and 2 in addition to machine 4 since it 

has the significant PF of the inter-area mode. 

 The TCSC is to be installed at the tie-line while the SVC will be located at the 

receiving end bus of the tie-line (bus#7) as concluded from the modal analysis result 

shown in Table 7.10. These locations are satisfied the primary function of TCSC & SVC 

as will as the practical experience.  

 

Table 7.10: Modal analysis result for two-area system 
Eigenvalues of the reduced Jacobian PQ 

Buses 248.1208 261.48 19.939 32.43 95.17 98.978 
B-5 0.046475 0.001237 0.047643 0.041265 0.74773 0.11565 
B-6 0.68811 0.021776 0.17868 0.1098 0.0012762 0.00036109
B-7 0.23078 0.011604 0.41921 0.20346 0.10914 0.025813 
B-8 0.0019677 0.04161 0.025678 0.073802 0.12715 0.7298 
B-9 0.026866 0.67628 0.09756 0.19832 0.00090486 0.000065 
B-10 0.0058034 0.24749 0.23123 0.37336 0.013803 0.12832 
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7.2.2 Individual Design  

Based on the linearized multimachine power system model shown in Fig.3.6, PSO has 

been applied to the optimization problem to search for optimal settings of the proposed 

stabilizers for individual design. 

  

7.2.2.1 Stabilizer Design 

All stabilizers PSSs, TCSC-based & SVC-based are tuned individually by PSO searching 

for the optimum controllers' parameter settings that maximize the minimum damping ratio 

of all the system complex eigenvalues. The final settings of the optimized parameters for 

the proposed stabilizers are given in Table 7.11. 

 The convergence rate of the objective function for all controllers is shown in Fig. 

7.32. It is clear that the PSSs improve greatly the system damping compared to TCSC and 

SVC. Also it can be seen that the SVC-based stabilizer has a negative damping ratio that 

will excite the system oscillation which confirm the conclusion given in [74, 75].  

 

Table 7.11: Optimal parameter settings for PSSs, SVC, & TCSC in two-area system 
PSSs Parameters 

PSS1 PSS2 PSS4 
SVC TCSC 

K 73.47 8.9714 17.5189 220.1907 8.4131 
T1 0.058 0.01 0.01 0.6275 0.0795 
T2 0.05 0.05 0.05 0.010     0.5859 
T3 0.0926 0.0444 0.2656 4.980 5.0 
T4 0.05 0.05 0.05 1.0 0.3456 
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Fig. 7.32: Variation of the objective function of PSS, TCSC, & SVC stabilizers in 

multimachine two-area power system 
 

7.2.2.2 Eigenvalue Analysis 

The system eigenvalues along with damping ratios with the proposed PSSs, SVC-based, 

and TCSC-based stabilizers when applied individually are given in Table 7.12. The 

bolded rows of the table represent the EM modes eigenvalue and their damping ratios and 

frequency. 

 It is clear that PSS's greatly enhance the system damping while the system 

damping is slightly improved in case of TCSC-based stabilizer, whereas the SVC has a 

negative damping effect to the system which is going to be proved by the nonlinear 

simulation. 
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Table 7.12: System eigenvalues in case of PSS, SVC & TCSC, two-area system 

PSSs SVC TCSC 
-3.9219±5.7975i 

0.5603*, 0.9227** 
0.2752+9.29463i    
-0.0296*, 1.479** 

-0.7497±6.8431i   
0.1089*, 1.089**  

-3.4337±5.4358i    
0.534*, 0.8651** 

-0.49126+6.9342i 
0.07067*, 1.103** 

-0.5099±4.3648i   
0.1158*, 0.694** 

-1.7682±1.6360i 
0.734*, 0.2604**    

0.08641+2.9049i 
-0.02973*, 0.462** -0.597±5.0238i    

-2.6113±3.0188i   -16.75 + 0.69i    -1.614±4.9672i    
-7.7989±11.9581i 
-12.3718±17.9649i 

-89.05,-89.41, 
-79.5,-76.7 

-89.0670,-89.4168 
-79.3902 

-17.3096±0.1076i 
-21.5036±1.8633i -100,-23.42,-188.2 -76.6922,-23.9691 

-21.0447,-16.7120 
-92.0013,-89.3647 
-81.0185,-76.8115 -13.86,-7.18 -13.8902,-13.6506 

-7.5208,-6.4332 
-11.8988, -7.4442, 
-6.2647, -4.9271, 

-6.67,-6.12 
-6.17,-1.65 -5.4079, -4.9082 

-0.2024, -0.2122 -0.2 -0.2000 
* damping ratio, ** frequency Hz 

 

7.2.2.3 Nonlinear Time domain Simulation 

Figs. 7.33-7.37 show the speed deviations, rotor angles, electrical power outputs, machine 

terminal voltages, and PSS's controllers responses, respectively, for a 6-cycle three-phase 

fault at bus 10 of the two-area system shown in Fig. 7.31 at the base case while using the 

proposed PSS's. Moreover, the proposed PSS's stabilizers have been compared with those 

proposed in reference [105] in Figs. 7.38-7.42.   Similarly, Figs. 7.43-7.46 show those 

simulation results while using the proposed TCSC and Figs. 7.47-7.49 demonstrate the 

use of SVC.  Figs. 7.50-7.53 combined the system response with each proposed 

stabilizers. It can be readily seen that PSS's and TCSC are the most effective stabilizers in 

damping the EM modes oscillations. However, the system oscillations are excited by 

SVC at this loading condition. This is in general consistency with eigenvalue analysis 

results. 
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Fig. 7.33: Speed response for 6-cycle fault with PSS's, individual design 

 
Fig. 7.34: Rotor angle response for 6-cycle fault with PSSs, individual design 
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Fig. 7.35: Electrical power response for 6-cycle fault with PSSs, individual design 

 
Fig. 7.36: Terminal voltage response for 6-cycle fault with PSSs, individual design 
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Fig. 7.37: PSSs response for 6-cycle fault, individual design 

 

 
Fig. 7.38: Comparison speed response machine # 1, Kundur [105] and proposed settings 
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Fig. 7.39: Comparison speed response machine # 2, Kundur [105] and proposed settings  

 
Fig. 7.40: Comparison speed response machine # 3, Kundur [105] and proposed settings  
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Fig. 7.41: Comparison speed response machine # 4, Kundur [105] and proposed settings  

 
Fig. 7.42: Comparison rotors' angle response, Kundur [105] and proposed settings 
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Fig. 7.43: Speed response for 6-cycle fault with TCSC-based stabilizer 

 
Fig. 7.44: Rotor angle response for 6-cycle fault with TCSC-based stabilizer 
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Fig. 7.45: Terminal voltage response for 6-cycle fault with TCSC-based stabilizer 

 
Fig. 7.46: TCSC response for 6-cycle fault with TCSC-based stabilizer 
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Fig. 7.47: Speed response for 6-cycle fault with SVC-based stabilizer 

 
Fig. 7.48: Rotor angle response for 6-cycle fault with SVC-based stabilizer 
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Fig. 7.49: SVC response for 6-cycle fault with SVC-based stabilizer 

 
Fig. 7.50: Speed response of machine-4 for 6-cycle fault with PSS, SVC, and TCSC, 

individual design 



   

 

 
161 

 
Fig. 7.51: Speed response of machine-3 for 6-cycle fault with PSS, SVC, and TCSC, 

individual design 

 
Fig. 7.52: Rotor angle response for 6-cycle fault with PSS, SVC, and TCSC, individual 

design 
 



   

 

 
162 

 

 
Fig. 7.53: Rotor angle response for 6-cycle fault with PSS, SVC, and TCSC, individual 

design 
 
 

7.2.3 Coordinated Design [TCSC & PSS] 

All stabilizers PSS's & TCSC are simultaneously tuned by PSO searching for the 

optimum controllers parameter settings that maximize the minimum damping ratio of all 

the system complex eigenvalues.  

 

7.2.3.1 Stabilizer Design 

The convergence rate of the objective function when PSS's and TCSC-based controllers 

are designed individually and in a coordinated manner is shown in Fig. 7.54. It is clear 

that the coordinated design of PSS's and TCSC-based stabilizer improves greatly the  
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system damping compared to their individual application. The final settings of the 

optimized parameters for the proposed stabilizers are given in Table 7.13. 

 

Table 7.13: Optimal parameters setting of coordinated PSS's & TCSC design 
Coordinated Design Parameters 

PSS1 PSS2 PSS4 TCSC 
K 100 100 49.2614 1.064 
T1 0.0783 0.0702 0.1354 5.0 
T2 0.01 0.01 0.01 0.021 
T3 ------ ------ ------ 0.01 
T4 ------ ------ ------ 5.0 

 
 

 
Fig. 7.54: Variation of the objective function of PSS's & TCSC stabilizers in 

multimachine two-area power system 
 
 

 



   

 

 
164 

  

7.2.3.2 Eigenvalue Analysis 

The system eigenvalues with the proposed PSS's and TCSC-based stabilizers when 

applied individually and by means of coordinated design is given in Table 7.14. The bold 

rows of this table represent the EM modes eigenvalues and their damping ratios and 

frequency. It is evident that, using the proposed coordinated stabilizers design, the 

damping ratio of the EM mode eigenvalue is greatly enhanced. Hence, it can be 

concluded that this improves the system stability. 

 

Table 7.14: System eigenvalues with coordinated design of PSS & TCSC in two-area 
system 

PSSs TCSC TCSC & PSSs  
-3.9219±5.7975i 

0.5603*, 0.9227** 
-0.7497±6.8431i   
0.1089*, 1.089**  

-4.4235±6.07504i  
0.59*, 0.97** 

-3.4337±5.4358i    
0.534*, 0.8651** 

-0.5099±4.3648i   
0.1158*, 0.694** 

-6.16589±5.0236i 
0.783*, 0.8** 

-1.7682±1.6360i 
0.734*, 0.2604**    -0.597±5.0238i    -2.390±3.2546i 

0.59*, 0.526** 
-2.6113±3.0188i -1.614±4.9672i    -1.9658±2.7841i 

-7.7989±11.9581i -89.0670,-89.4168 
-79.3902 

-6.4785±9.132i 
-13.00±15.812i 

-12.3718±17.9649i 
-17.3096±0.1076i 

-76.6922,-23.9691 
-21.0447,-16.7120 -22.269±4.7965i 

-21.5036±1.8633i -13.8902,-13.6506 
-7.5208,-6.4332 -100,-100,-0.2,-100 

-92.0013,-89.3647 
-81.0185,-76.8115 -5.4079, -4.9082 -128.36,-82.485,-100 

-11.8988, -7.4442,  -0.2000 -20.009,-17.72,-15.80 
-12.841,-9.4599 

-6.2647, -4.9271, 
-0.2024, -0.2122  -6.023,-5.3289,-2.619 

-1.216 
* damping ratio, ** frequency (Hz) 
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7.2.3.3 Nonlinear Time domain Simulation 

Figs. 7.55-7.60 show the rotor angles, speed deviations, electrical power outputs, and 

machine terminal voltages responses, as well as PSS2 stabilizing signal and TCSC 

response, respectively, for a 6-cycle three-phase fault at bus 10 at the end of line 10-7 at 

the base case while using the proposed PSS's-TCSC coordinated design. These Figs. 

should be compared with Figs. 7.33-7.37, for individual PSS's design, and 7.43-7.46, for 

individual TCSC design. Figs. 7.61-7.65 combined the system responses for coordinated 

and individual desing of TCSC & PSS.  

 The improvement on the system responses when using the coordinated design is 

quite evident.  This is in agreement with eigenvalue analysis results  

 
Fig. 7.55: Speed response for 6-cycle fault with PSS's & TCSC, coordinated design in the 

two-area system 
 



   

 

 
166 

 

 
Fig. 7.56: Rotor angle response for 6-cycle fault with PSS's & TCSC, coordinated design 

in the two-area system 

 
Fig. 7.57: Electrical power response for 6-cycle fault PSS's & TCSC, coordinated design 

in the two-area system 
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Fig. 7.58: Terminal voltage response for 6-cycle fault with PSS's & TCSC, coordinated 

design in the two-area system 

 
Fig. 7.59: TCSC response for 6-cycle fault, coordinated design with PSS's in the two-area 

system 
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Fig. 7.60: PSS's response for 6-cycle fault, coordinated design with TCSC in the two-area 

system 

 
Fig. 7.61: Speed response for 6-cycle fault with PSS's & TCSC, coordinated and 

individual design in the two-area system 
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Fig. 7.62: Speed response for 6-cycle fault with PSS's & TCSC, coordinated and 

individual design in the two-area system 

 
Fig. 7.63: Rotor angle response for 6-cycle fault with PSS's & TCSC, coordinated and 

individual design in the two-area system 
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Fig. 7.64: Rotor angle response for 6-cycle fault with PSS's & TCSC, coordinated and 

individual design in the two-area system 

 
Fig. 7.65: TCSC response for 6-cycle fault, coordinated and individual design in the two-

area system 
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7.2.4 Coordinated Design [SVC & PSS] 

All stabilizers PSS's & SVC are simultaneously tuned by PSO searching for the optimum 

controllers parameter settings that maximize the minimum damping ratio of all the system 

complex eigenvalues.  

 

7.2.4.1 Stabilizer Design 

The convergence rate of the objective function when PSS's and SVC-based controllers are 

designed individually and in a coordinated manner is shown in Fig. 7.66. It is clear that 

the coordinated design of PSS's and SVC-based stabilizer improves greatly the system 

damping compared to their individual application. The final settings of the optimized 

parameters for the proposed stabilizers are given in Table 7.15. 

 

Table 7.15: Optimal parameters setting of coordinated PSS's & SVC design 
Coordinated Design Parameters 

PSS1 PSS2 PSS4 SVC 
K 26.173 100 51.9935 20.25 
T1 0.025 0.0548 0.1085 0.9441 
T2 0.01 0.01 0.01 0.7922 
T3 ------- ------- ------- 5 
T4 ------- ------- ------- 0.01 
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Fig. 7.66: Variation of the objective function of PSS's & SVC-based stabilizers in 

multimachine two-area power system 
 
  

7.2.4.2 Eigenvalue Analysis 

The system eigenvalues with the proposed PSS's and SVC-based stabilizers when applied 

individually and by means of coordinated design is given in Table 7.16. The bold rows of 

this table represent the EM modes eigenvalues and their damping ratios and frequency. It 

is evident that, using the proposed coordinated stabilizers design, the damping ratio of the 

EM mode eigenvalue is greatly enhanced. Hence, it can be concluded that this improves 

the system stability. 
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Table 7.16: System eigenvalues with coordinated design of PSS & SVC in two-area 
system 

PSSs SVC SVC & PSSs  
-3.9219±5.7975i 

0.5603*, 0.9227** 
0.2752+9.29463i    
-0.0296*, 1.479** 

-6.8548±6.4321i  
0.71*, 1.02** 

-3.4337±5.4358i    
0.534*, 0.8651** 

-0.49126+6.9342i 
0.07067*, 1.103** 

-2.08593±2.222i 
0.68*, 0.35** 

1.7682±1.6360i 
0.734*, 0.2604**    

0.08641+2.9049i 
-0.02973*, 0.462** 

-2.836±2.7489i 
-3.854±3.568i 

-2.6113±3.0188i   -16.75 + 0.69i    -16.09±0.836i 

-7.7989±11.9581i -89.05,-89.41, 
-79.5,-76.7 

-34.102±22.03i 
-125.81±0.9685i 

-12.3718±17.9649i 
-17.3096±0.1076i -100,-23.42,-188.2 -100,-100,-82.59 

-21.5036±1.8633i -13.86,-7.18 -84.441, -100, -100 
-92.0013,-89.3647 
-81.0185,-76.8115 

-6.67,-6.12 
-6.17,-1.65 

-21.47,-17.72,-15.80 
-12.841,-9.4599 

-11.8988, -7.4442,  -0.2 -6.023,-5.3289,-2.619 
-1.216 

-6.2647, -4.9271, 
-0.2024, -0.2122   

* damping ratio, ** frequency (Hz) 

 

 

7.2.4.3 Nonlinear Time domain Simulation 

Figs. 7.67-7.71 show the rotor angles, speed deviations, and electrical power outputs, as 

well as PSS2 stabilizing signal and SVC response, respectively, for a 6-cycle three-phase 

fault at bus 10 at the end of line 10-7 at the base case while using the proposed PSS's-

SVC coordinated design. These Figs. should be compared with Figs. 7.32-7.37, for 

individual PSS's design, and 7.47-7.49, for individual SVC design. The improvement on 

the system responses when using the coordinated design is quite evident.  This is in 

agreement with eigenvalue analysis results.   
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Fig. 7.67: Speed response for 6-cycle fault with PSS's & SVC, coordinated design in the 

two-area system 

 
Fig. 7.68: Rotor angle response for 6-cycle fault with PSS's & SVC, coordinated design in 

the two-area system 
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Fig. 7.69: Electrical power response for 6-cycle fault PSS's & SVC, coordinated design in 

the two-area system 

 
Fig. 7.70: SVC response for 6-cycle fault, coordinated design with PSS's in the two-area 

system 
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Fig. 7.71: PSS's response for 6-cycle fault, coordinated design with TCSC in the two-area 

system 
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CHAPTER 8 

 

 
CONCLUSION 

 

 
8.1 Conclusion 

In this thesis, the power system stability enhancement via PSS and FACTS-based 

stabilizers when applied independently and also through coordinated application was 

discussed and investigated for a SMIB and multimachine power systems. Singular value 

decomposition has been employed to measure quantitatively the capabilities of the 

various stabilizers control signals in controlling the system EM mode. For the proposed 

stabilizer design problem, an eigenvalue-based objective function to maximize the system 

damping ratio among all complex eigenvalues was developed. The tuning parameters of 

the proposed stabilizer were optimized using Particle Swarm Optimization (PSO). A 

supplementary lead-lag controller as an oscillation damping controller is proposed to be a 

part of FACTS control system in this thesis.  

 Supplementary damping controllers to the STATCOM AC & DC voltage control 

loop were proposed to improve STATCOM power oscillation damping. The coordination 

between STATCOM damping stabilizers and internal PI voltage controllers is taken into 

consideration in the design stage.  
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 In multimachine power system, the optimal locations of PSS's have been 

identified using participation factor technique, while the locations of TCSC and SVC 

have been selected based on their primary objectives such as voltage control and system 

power transmission capability, and then they utilized by adding the damping controller to 

their control system.  

 Individual design and coordinated design of the proposed stabilizers considering a 

single-operating-point as well as robust multiple-operating-point designs have been 

discussed. The effectiveness of the proposed control schemes in improving the power 

system dynamic stability has been verified through eigenvalue analysis, and nonlinear 

time-domain simulations under different loading conditions and severe fault disturbances.  

 The proposed tuning approach shows better performance compared with the 

existing controller parameters in the literatures. 

 This thesis demonstrates that TCSC, SVC, TCPS, and STATCOM-based 

controllers, appropriately tuned and located make them a viable alternative to traditional 

PSS controller or to enhance PSS controller for oscillation control.   

     

8.2 Contribution 

The main contributions of this thesis are summarized below: 

• Utilizing the STATCOM phase modulation index ψ for power oscillation 

damping. The additional control circuit has been design and verified by nonlinear 

time-domain simulation. It has been shown that the ψ-based controller outperform   
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 the STATCOM gain modulation index c-based controller in damping power 

 oscillations. 

• Both STATCOM stabilizer signals; c-based and ψ-based controllers, are 

simultaneously tuned by PSO search for the optimum controllers parameter 

settings that maximize the minimum damping ratio of all system complex 

eigenvalues at givin loading condition(s). 

• PSS has been successfully coordinated with each of STATCOM controller signals 

to provide composite enhanced performance. 

• An eigenvalue based on objective function has been successfully implemented for 

STATCOM-based stabilizer design in SMIB and for TCSC-based stabilizer in 

multimachine power system. 

 

8.3 Future Work 

There are a number of issues that are still to be addressed in the area of FACTS device 

and their effect on damping the power system oscillations: 

• The thesis approach can be extended to other types of the VSC-based FACTS 

controllers, such as UPFC, SSSC etc.  

• Throughout this thesis the machine speed deviation signal is assumed to be 

available at the controllers' location. Utilizing the local measurements such as 

power flow and bus voltage as a controller's input is another area for potential 

investigation. 

 



   

 

 
180 

 

• More objective functions, eigenvalue-based or time-domain-based, as well as 

multi-objective functions need to be considered in the design stage in order to 

improve the proposed stabilizers performace. 

• There is a need for more research in coordinating the control of multiple FACTS 

devices, not only to avoid undesirable interactions, but also to provide composite 

enhanced performance. 

• Conventional lead-lag controller is proposed in this thesis. However, it will be 

worth to study the intelligent controllers, such as Fuzzy Logic, Neural Network, 

and Variable Structure Controller etc. 

• Symmetrical transient three phase fault is applied as a disturbance in this study; 

other types of disturbances such as unsymmetrical faults, switching, permanent 

faults etc, might be applied to study the system performance. 

• The study can be extended by using larger power system that contains a number 

of FACTS-based stabilizers.   

• The effect of dynamic load model on the oscillation damping needs more 

investigation. 
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APPENDICES 

 

Appendix A 

SMIB system data: 

M = 9.26;   T’do=7.76;   D=0;  xd=0.973;  x’d=0.3;  

xq=0.6;    R = 0.034;  X=0.997; g = 0.249; b=0.262; 

KA=50;   TA=0.05;   Ks=1;   Ts=0.05; v=1.05 pu.  

|upss| ≤ 0.2 pu;  |Bsvc| ≤ 0.4 pu;  |XTCSC| ≤ 0.5 X; |ΦTCPS| ≤ 150  

|Efd| ≤ 7.3 pu    

 

Appendix B 

Three-machine power system data: 

1. Bus Data 

Table 8.1: 3-machine System bus data in per unit value. 

Load Generation 
Bus no. Type Voltage Angle 

P Q P Q 
1 1 1.04 0 0 0 0 0 
2 2 1.025 0 0 0 1.63 0 
3 2 1.025 0 0 0 0.85 0 
4 3 1 0 0 0 0 0 
5 3 1 0 1.25 0.5 0 0 
6 3 1 0 0.9 0.3 0 0 
7 3 1 0 0 0 0 0 
8 3 1 0 1 0.35 0 0 
9 3 1 0 0 0 0 0 
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2. Line Data 

Table 8.2: 3-machine System line data in per unit value. 

Line no. From To R X B 
1 1 4 0 0.0576 0 
2 2 7 0 0.0625 0 
3 3 9 0 0.0586 0 
4 4 5 0.01 0.085 0.088 
5 4 6 0.017 0.092 0.079 
6 5 7 0.032 0.161 0.153 
7 6 9 0.039 0.17 0.179 
8 7 8 0.0085 0.072 0.0745 

 

3. Machine Data 

Table 8.3: Machines Data, for 3-machine system 

Machine  H Xd Xd' Xq Xq' Td' Tq' KA TA D 
1 23.64 0.146 0.0608 0.0969 0.0969 8.96 0.5 100 0.05 2 
2 6.4 0.8958 0.1198 0.8645 0.1969 6 0.535 100 0.05 2 
3 3.01 1.3125 0.1813 1.2578 0.25 5.89 0.6 100 0.05 2 

 

 

4. Power Flow Result 

Table 8.4: Load flow result of the 3-machine system 
Load Generation Bus no. Voltage Angle 

(degree) P Q P Q 
1 1.04 0.0 0.0 0.0 71.641 27.046 
2 1.025 9.28 0.0 0.0 163.0 6.654 
3 1.025 4.66 0.0 0.0 85.0 -10.86 
4 1.026 -2.217 0.0 0.0 0.0 0.0 
5 0.996 -3.989 125 50.0 0.0 0.0 
6 1.013 -3.687 90 30.0 0.0 0.0 
7 1.026 3.72 0 0 0.0 0.0 
8 1.016 0.728 100 35.0 0.0 0.0 
9 1.032 1.967 0 0.0 0.0 0.0 
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Appendix C 

Two-area, 4-machine power system data: 

1. Bus Data 

Table 8.5: 3-machine System bus data in per unit value. 

Load Generation 
Bus no. Type Voltage Angle 

P Q P Q 
1 1 1.03 0 0 0 0 0 
2 2 1.01 0 0 0 7 0 
3 2 1.03 0 0 0 7 0 
4 2 1.01 0 0 0 7 0 
5 3 1 0 0 0 0 0 
6 3 1 0 0 0 0 0 
7 3 1 0 17.67 2.5 0 0 
8 3 1 0 0 0 0 0 
9 3 1 0 0 0 0 0 
10 3 1 0 9.67 1 0 0 

 

2. Line Data 

Table 8.6: 3-machine System line data in per unit value. 

Line no. From To R X B 
1 1 5 0 0.0167 0 
2 2 6 0 0.0167 0 
3 3 8 0 0.0167 0 
4 4 9 0 0.0167 0 
5 5 6 0.0025 0.025 0.021875 
6 8 9 0.0025 0.025 0.021875 
7 6 7 0.001 0.01 0.00875 
8 9 10 0.001 0.01 0.00875 
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5. Machine Data 

Table 8.7: Machines Data, for two-area system 

Machine H Xd Xd' Xq Xq' Td' Tq' KA TA D 
1 55.575 0.2 0.033 0.19 0.016 8 0.4 200 0.01 0 
2 55.575 0.2 0.033 0.19 0.016 8 0.4 200 0.01 0 
3 58.5 0.2 0.033 0.19 0.016 8 0.4 200 0.01 0 
4 58.5 0.2 0.033 0.19 0.016 8 0.4 200 0.01 0 
 

3. Power Flow Result 

Table 8.8: Load flow result of the 3-machine system 
Load Generation Bus no. Voltage Angle 

(degree) P Q P Q 
1 1.03 0 0 0 7.2532 2.8008 
2 1.01 -10.65 0 0 7 4.4762 
3 1.03 27.292 0 0 7 1.7721 
4 1.01 17.548 0 0 7 2.155 
5 0.99159 -6.8112 0 0 0 0 
6 0.94312 -17.7 0 0 0 0 
7 0.89954 -27.012 17.67 2.5 0 0 
8 1.0077 20.825 0 0 0 0 
9 0.98122 10.774 0 0 0 0 
10 0.96662 2.4251 9.67 1 0 0 
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NOMENCLATURE 

Abbreviation 

SMIB Single-machine infinite bus 

PSS Power system stabilizer 

FACTS Flexible AC transmission systems 

SVC Static Var compensator 

TCSC Thyristor-controlled series capacitor 

TCPS Thyristor-controlled phase shifter 

STATCOM Shunt Synchronous Static Compensator 

STATCON Static Condenser 

ASVC Advance Static Var Compensator 

ASVG Advance Static Var Generation 

SSSC Series Synchronous Static Compensator 

UPFC Unified power flow controller 

GTO Gate turn off 

VSC Voltage source converter 

BESS Battery Energy Storage System 

SMES Superconducting Magnetic Energy Storage 

EM Electromechanical mode 

PSO Particle swarm optimizer 

PF Participation Factor 

Pf Power factor 
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SVD 

 

Singular value decomposition 

POD Power Oscillation Damping 

pu Per unit 

 

Symbols 

Pm, P (Pe) Mechanical input power and electrical output power of the generator 

M, H Machine inertia coefficient and inertia constant 

D Machine damping coefficient  

id, iq d- and q-axis armature current 

vd, vq d- and q-axis terminal voltage 

Tdo
’ Open-circuit field time constant 

xd, xd
’ d-axis reactance and d-axis transient reactances 

xq Generator q-axis reactance 

V or v Generator terminal voltage 

Eq
', Efd Generator internal and field voltages 

Vref Reference voltage 

vb Infinite bus voltage 

KA, TA Gain and time constant of the excitation system 

uPSS PSS control signal  

Ks, Ts FACTS gain and time constant 

Z, X, R Transmission line impedance, reactance, and resistance 

YL Load impedance 
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g, b Load Inductance and susceptance 

iSVC, iL SVC and load currents 

XCSC TCSC equivalent reactance  

BSVC SVC equivalent susceptance 

C STATCOM AC voltage controller output 

ψ STATCOM DC voltage controller output 

δ  Rotor angle 

ω  Rotor speed 

ωb  Synchronous speed  

Φ , ΦTCPS Phase shift in the voltage phase angle resulting from the TCPS 

α Thyristor firing angle 

ζ Damping ratio 
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