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  الخلاصة

  
  عبدالعزيز مصطفى نجاة الدين دوملو: الاسم 

  نتائج النقطة الثابتة لبعض الرواسم اللاخطية مع تطبيقات: العنوان 
  رياضيات : التخصص الرئيسي 
  م٢٠٠٦ مايو -هـ ١٤٢٧ربيع الثاني : تاريخ نيل الدرجة 

  
حادية الثابتة المشتركة للرواسم الأ في هذه الرسالة أثبتنا نظريات جديدة حول النقطة المتطابقة والنقطة

وذلك باستخدام شروط تقلص أو شروط من نوع ) والتي ليست بالضرورة متصلة(القيمة والمتعددة القيمة 

في الفضاءات المترية ومن ثم إعطاء تطبيقات على هذه النتائج في نظرية التقريب ومسائل القيمة " ليبشتز"

متمددة ائلة منتهية من الرواسم شبه اللاطط تكراري عام لأي عخط مكما قمنا باستنبا" . يجنآ"المميزة 

 المخطط التكراري إلى نقطة ثابتة مشتركة لهذه العائلة ، ثم درسنا تقارب هذا"باناخ"اءات التقاربية في فض

كما أثبتنا . شوائية أيضاً قدمنا نتائج مناظرة للنتائج التي حصلنا عليها وذلك في الحالة الع. من الرواسم 

 القابلة للفصل" باناخ"وجود نقطة ثابتة عشوائية للرواسم العشوائية الداخلية متعددة القيمة في فضاءات 

 . أقل من الواحدوالتي لها مميز عدم إندماج وتحدب

 درجة الدكتوراه
 جامعة الملك فهد للبترول والمعادن

المملكة العربية السعودية-نالظهرا  
  م٢٠٠٦ مايو - هـ ١٤٢٧ربيع الثاني 
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PREFACE

The abstract fixed point theory of single-valued mappings has evolved as

a natural extension of the corresponding classical theory on Euclidean spaces

considered by Brouwer. This theory has been a popular area of research and

has applications in various fields. The best known result in this theory is the

Banach contraction mapping principle: “Every contraction selfmapping of a

complete metric space has a unique fixed point”. It has become a vigorous

tool for studying nonlinear volterra integral equations and nonlinear func-

tional differential equations in Banach spaces. In the last several decades a

number of generalizations of Banach principle have appeared in the litera-

ture. Browder [22] and Göhde [46], in 1965, proved fixed point theorems for

nonexpansive mappings in a uniformly convex Banach space.

In 1969, the study of fixed points of multivalued nonexpansive mappings

was initiated by Nadler [85] and using the concept of Hausdorff metric, he

established the multivalued contraction principle containing the Banach prin-

ciple as a special case. Since then, the fixed point theory of such mappings
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has received attention of many researchers. For a survey of this subject and

more useful references, see, Singh et al. [114]. In recent past, more inter-

est has developed in finding coincidence and common fixed points for many

classes of single-valued and multivalued mappings (see, De Marr [31], Dotson

[35], Itoh [56], Khan [66], Khan and Hussain [67], Khan et al. [70], Petryshyn

[93], Tarafdar [128] and Xu [136-137]).

Approximation theory is an important subject, which has applications in

analysis, artificial neural networks, wavelets and engineering. The appli-

cation of fixed point theorems to approximation theory was initiated by

Meinardus [84] in 1968. Brosowski [21], in 1969, obtained the following gen-

eralization of a theorem of Meinradus [84]: “ Let T be a linear nonexpansive

selfmapping of a normed space X and M be a T -invariant subset of X. If

u is a fixed point of T and the set of best approximations to u from M is

nonempty compact convex, then there exists a best approximation y which is

also a fixed point of T”. Singh [113] observed that the linearity of the opera-

tor and the convexity of the set of best approximations can be relaxed. Since

then, many results have been obtained in this direction (see, Habinaik [48],

Hicks and Humphries [49], Sahab et al. [100], Smoluk [115]). All the above

mentioned results are summarized and extended by Al-Thagafi [3]. Recently,

various interesting papers have appeared in this area (see, e.g. Hussain and

Khan [50-51], Khan [65], Shahzad [106]).
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Approximating fixed points by successive iteration has been one of the

central problems of fixed point theory ever since the introduction of one-

step Mann iteration process and two-step Ishikawa iteration process (see,

Lions [80] Schu [103], Tan and Xu [125-126]). In recent years, the iteration

processes have been studied extensively by various authors for:

(a) approximating fixed points of nonlinear mappings,

(b) finding solutions of nonlinear operator equations,

(c) investigating variational inequalities,

(d) seeking convergence of the iterates to a common fixed points of map-

pings,

in Hilbert and Banach spaces (see, [25, 33, 37, 38, 72, 86, 124, 132, 138]).

The Prague School of probabilists, in 1950s, initiated systematic study

of random operator equations by employing methods of functional analysis.

The study of random fixed point theory is the core around which the theory

of random operators has been developed. It is also worth mentioning that as

applications of random fixed point theorems, a number of existence theorems

for random approximation theory, random nonlinear Hammerstein equations

and stochastic partial differential equations have been given by many authors.

Random fixed point theorems for random contraction mappings on separable

complete metric spaces were first proved by Spacek [116]; the survey article by
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Bharucha - Reid [19] attracted the attention of several mathematicians in this

area of investigations. Itoh [55] extended Spacek’s theorem to multivalued

random contraction mappings. Now a days, this theory has become full

fledged research area. Many authors have studied the existence of random

fixed points of various classes of random operators; see, Beg [8-10], Beg et al.

[12], Beg and Shahzad [13-14], Khan and Hussain [68-69], Khan et al. [71],

Liu [81], Papageorgiou [92], Ramirez [98], Xu [134-135], Yuan and Yu [139].

We divide this thesis into five chapters.

Chapter 1 summarizes some basic definitions and known results about fixed

points, coincidence points, best approximations, iterative procedures and

random operators.

In Chapter 2, we prove some coincidence and common fixed point theo-

rems for nonself mappings (not necessarily continuous) satisfying different

contractive conditions on an arbitrary nonempty subset of a metric space.

Applications of these results are given in the best approximation theory and

eigenvalue problems. Our work improves, unifies and sets analogues of the

earlier results by Aamri and El Moutawakil [1], Baskaran and Subrahmanyam

[7], Ćirić [28], Hussain and Khan [51] and Al-Thagafi [3].

Chapter 3 concerns general iteration schemes for a finite family of asymptot-

ically quasi-nonexpansive mappings; here we study weak and strong conver-
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gence of these schemes to a common fixed point of the family of mappings.

Our results are generalizations and refinement of the results of Ghosh and

Debnath [40], Kuhfitting [77], Petryshyn and Williamson [94], Qihou [96],

Rhoades [99], Shahzad and Udomene [110], Tan and Xu [126] and Xu and

Noor [133].

Chapter 4 deals with multivalued mappings. We obtain coincidence and com-

mon fixed point theorems in a metric space by using Lipschitz type conditions

for hybrid mappings which are not necessarily continuous. Some applications

to best approximation theory and eigenvalue problems are also included. Our

work extends the results of Kamran [64], Pant [90], Shastry and Murthy [101]

and Singh and Hashim [111].

In Chapter 5, rand om versions of some results obtained in chapters 2-4 are

established; in particular, we give random analogues of Theorems 2.2.1, 2.2.4,

3.2.2, 3.3.2, 3.3.3 and 4.2.1. We also study random fixed points of inward ran-

dom multivalued operators on a separable Banach space with characteristic

of noncompact convexity less than 1.
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CHAPTER 1

PRELIMINARIES

1.1 Introduction

The purpose of this chapter is to recall some relevant basic definitions and

some known fundamental results from the existing literature for the conve-

nience of later references. In addition, necessary notations and terminology

used in the sequal are also fixed (for more details, see [5, 6, 29, 43, 45, 47,

54, 122, 129, 130, 140]).

1.2 Single-Valued Mappings

Let C be a nonempty subset of a metric space (X, d) and f, g : C → X. A

point x ∈ C is called a fixed point of f if fx = x. A coincidence (respectively,

common fixed) point of f and g is an x ∈ C such that fx = gx (respectively,

x = fx = gx).

Definition 1.2.1 Let f and g be selfmappings of a metric space X. The

1



2

mappings f and g are

(1) commuting if

fgx = gfx, for all x ∈ X,

(2) weakly commuting if

d(fgx, gfx) ≤ d(fx, gx), for all x ∈ X,

(3) compatible if

lim
n→∞

d(fgxn, gfxn) = 0,

whenever {xn} is a sequence in X such that

lim
n→∞

fxn = lim
n→∞

gxn = t, for some t ∈ X,

(4) weakly compatible if they commute at their coincidence points; i.e., if

fu = gu for some u in X, then fgu = gfu,

(5) satisfying the property (E ·A) if there exists a sequence {xn} such that

lim
n→∞

fxn = lim
n→∞

gxn = t, for some t ∈ X.

Note that weakly commuting mappings are compatible and compatible

mappings are weakly compatible but the converse in each case does not hold

(for examples and counter-examples, see [1], [59] and [61]). It is easy to see
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that two noncompatible mappings satisfy the property (E · A) (see [1], Re-

mark 1). Some fixed point results for noncompatible mappings are obtained

in [89].

Definition 1.2.2 Let C be a subset of a metric space X and f, g : C → X.

Then f is:

(i) nonexpansive if

d(fx, fy) ≤ d(x, y), for all x, y ∈ X,

(ii) g-nonexpansive if

d(fx, fy) ≤ d(gx, gy), for all x, y ∈ X,

Definition 1.2.3 Let M be a subset of a metric space X and u ∈ X. We

denote by PM(u), the set of best approximations to u from M ; that is,

PM(u) = {y ∈ M : d(y, u) = d(u,M)},

where d(u,M) = inf{d(u,m) : m ∈ M}.

For f : M → X, we follow Al-Thagafi [3] to define:

Cf
M(u) = {x ∈ M : fx ∈ PM(u)}

and

Df
M(u) = PM(u)

⋂
Cf

M(u).

Remark 1.2.4 By [3, Proposition 3.1], we have
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(i) Df
M(u) = PM(u) = Cf

M(u) whenever f is the identity mapping on M ;

(ii) if f(PM(u)) ⊆ PM(u), then PM(u) ⊆ Cf
M(u) and hence Df

M(u) =

PM(u);

(iii) if f(Cf
M(u)) ⊆ Cf

M(u), then f(Df
M(u)) ⊆ f(Cf

M(u)) ⊆ Df
M(u).

The existence of common fixed points in PM(u) and Df
M(u) has been studied

by various authors; see Al-Thagafi [3], Hussain and Khan [51], Jungck and

Sessa [63], Kamran [64], O’Regan and Shahzad [87], Sahab et al. [100] and

Shahzad [106].

For solutions of eigenvalue problems of nonself mappings on closed balls,

we need the following result.

Theorem 1.2.5 ([30], p. 92). Let X be a reflexive Banach space, B = {x ∈
X : ‖x‖ ≤ r} and f : B → X be a weakly continuous mapping. Suppose

that for each x ∈ ∂B (boundary of B), one of the following conditions holds:

(i) ‖fx‖ ≤ max{‖fx− x‖, ‖x‖},

(ii) there exists p > 1 such that ‖fx‖p ≤ ‖fx− x‖p + ‖x‖p.

Then f has a fixed point in B.

Now, we recall definitions of some important classes of Banach spaces.

Definition 1.2.6 A Banach space X (or the norm ‖·‖) is said to be strictly



5

convex if the following implication holds for all x, y ∈ X :

‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x− y‖ > 0 imply that

∥∥∥∥
x + y

2

∥∥∥∥ < 1.

This is equivalent to the condition that the unit sphere (or any sphere)

contains no line segments. In such a space, any three points x, y, z satisfying

‖x− z‖+ ‖z − y‖ = ‖x− y‖ must lie on a line.

A strong form of the above definition was introduced by Clarkson, in 1936,

which turned out to be very useful in Banach space and operator theory.

Definition 1.2.7 A Banach space X is said to be uniformly convex if for

each ε ∈ (0, 2], there exists δ > 0 such that, for all x, y ∈ X, the following

holds:

‖x‖ ≤ 1, ‖y‖ ≤ 1 and ‖x− y‖ > ε imply that

∥∥∥∥
x + y

2

∥∥∥∥ ≤ δ.

Obviously, uniformly convex spaces are strictly convex. Moreover, the two

concepts are equivalent in finite dimensional spaces (since balls in such spaces

are compact).

The simplest example of uniformly convex space is a Hilbert space. It is

well-known that every uniformly convex Banach space is reflexive (see [43,

45].

Lemma 1.2.8 [23, Theorem 8.4]. Let C be a bounded closed convex subset
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of a uniformly convex Banach space X, and T : C → X a nonexpansive

mapping. Then

(i) If {xn} is a weakly convergent sequence in C with weak limit x0 and

if (I − T )xn converges strongly to ω in X (here I is the identity

mapping), then (I − T )x0 = ω.

(ii) (I − T )(C) is a closed subset of X.

1.3 Iterative Algorithms

Let C be a nonempty subset of a real Banach space X and T a selfmapping

of C. Denote by F (T ), the set of fixed points of T . Throughout this section,

we assume that F (T ) 6= φ.

Definition 1.3.1 The mapping T is said to be

(i) quasi-nonexpansive if

‖Tx− p‖ ≤ ‖x− p‖, for all x ∈ C and p ∈ F (T );

(ii) asymptotically nonexpansvie if there exists a sequence {un} in [0, +∞)

with lim
n→∞

un = 0 and

‖T nx− T ny‖ ≤ (1 + un)‖x− y‖,

for all x, y ∈ C and n = 1, 2, . . .;



7

(iii) asymptotically quasi-nonexpansive if there exists a sequence {un} in

[0, +∞) with lim
n→∞

un = 0 and

‖T nx− p‖ ≤ (1 + un)‖x− p‖,

for all x ∈ C, p ∈ F (T ) and n = 1, 2, . . .;

(iv) uniformly L-Lipschitzian if there exists a constant L > 0 such that

‖T nx− T ny‖ ≤ L‖x− y‖,

for all x, y ∈ C and n = 1, 2, 3, . . .;

(v) (L−γ) uniform Lipschitz if there exist constants L > 0 and γ > 0 such

that

‖T nx− T ny‖ ≤ L‖x− y‖γ,

for all x, y ∈ C and n = 1, 2, 3, . . . (cf. Qihou [97], p. 468);

(vi) semi-compact if for a sequence {xn} in C with lim
n→∞

‖xn − Txn‖ = 0,

there exists a subsequence {xni
} of {xn} such that xni

→ p ∈ C.

Remark 1.3.2 From the above definitions, it follows that:

(i) a nonexpansive mapping must be quasi-nonexpansive and asymptoti-

cally nonexpansive;

(ii) an asymptotically nonexpansive mapping is an asymptotically quasi-

nonexpansive;



8

(iii) a uniformly L-Lipschitzian mapping is (L− 1) uniform Lipschitz.

However, the converse of these statements are not true, in general (see

[96-97]).

Definition 1.3.3 The mapping T : C → X is said to be demiclosed at 0 if

for each sequence {xn} in C converging weakly to x and {Txn} converging

strongly to 0, we have Tx = 0.

Definition 1.3.4 A Banach space X is said to satisfy Opial’s property if

for each x ∈ X and each sequence {xn} weakly convergent to x, the following

condition holds for all x 6= y:

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖.

If lim
n→∞

inf ‖xn−x‖ ≤ lim
n→∞

inf ‖xn−y‖ holds, then X satisfies the nonstrict

Opial’s property

It is well known that all Hilbert spaces and `p(1 < p < ∞) spaces are Opial

spaces while Lp spaces (p 6= 2) are not (cf. [119], [126]).

Let C be a convex set and x1 ∈ C. Mann [83], in 1953, defined an iterative

procedure as:

xn+1 = (1− αn)xn + αnTxn, (1.3.1)

where αn ∈ [0, 1], n = 1, 2, 3, . . . .
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In 1973, Petryshyn and Williamson [94] proved a necessary and sufficient

condition for the Mann iteration to converge to a fixed point of a quasi-

nonexpansive mapping.

Ishikawa [52], in 1974, devised an iteration scheme:

xn+1 = (1− αn)xn + αnTyn,

yn = (1− βn)xn + βnTxn, (1.3.2)

where αn, βn ∈ [0, 1], n = 1, 2, 3, . . .; to establish convergence of a Lip-

schitzian pseudocontractive mapping in the context of a Hilbert space where

the Mann iteration process failed to converge.

If βn = 0 for all n, then (1.3.2) becomes (1.3.1).

In 1997, Ghosh and Debnath [40] extended the results of Petryshyn and

Williamson [94] to the Ishikawa iteration.

Let {Ti : i = 1, 2, . . . , k} be a family of selfmappings of C. Kuhfittig [77], in

1981, defined the following iteration: Let x1 ∈ C, U0 = I (identity mapping

on C), α ∈ (0, 1),

U1 = (1− α)I + αT1U0,

U2 = (1− α)I + αT2U1,

. . . · · · · · · · · · · · · · · · · · ·

Uk = (1− α)I + αTkUk−1,

xn+1 = (1− α)xn + αTkUk−1 xn, n = 1, 2, 3, . . .
(1.3.3)
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Let S and T be two selfmappings of a convex set C. In 1998, Atsushiba

and Takahashi [4] introduced the following Mann’s type iteration:

xn+1 =αnxn+(1−αn)
1

n2

n∑
i,j=0

SiT jxn, (1.3.4)

where x1 ∈ C and 0 ≤ αn ≤ a < 1, n = 1, 2, . . . .

The iteration scheme (1.3.4) has been studied by many authors to ap-

proximate common fixed points of S and T (see, for example, Atsushiba and

Takahashi [4], Suzuki [118-119] and Suzuki and Takahashi [120]).

Rhoades [99] noted that the iteration scheme (1.3.4) is much more compli-

cated than (1.3.3), and the results obtained on the basis of it generally need

commutativity of S and T and certain conditions on their domain such as

the Opial condition (see, for example, Theorem 1 in [4], and Theorem 4 of

Suzuki in [118] and [119]).

Schu [103], in 1991, considered the following modified Mann iteration process:

xn+1 = (1− αn)xn + αnT
nxn, n = 1, 2, 3, . . . (1.3.5)

where {αn} is a sequence in (0, 1) which is bounded away from 0 and 1, i.e.,

a ≤ αn ≤ b for all n and some 0 < a ≤ b < 1. In 1994, Tan and Xu [126]

studied the modified Ishikawa iteration process:

xn+1 = (1− αn)xn + αnT
n((1− βn)xn + βnT nxn), n = 1, 2, 3, . . . (1.3.6)
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where {αn} and {βn} are two sequences in (0, 1) such that {αn} is bounded

away from 0 and 1 and {βn} is bounded away from 1.

Xu and Noor [133], in 2002, introduced a three-step iteration as follows:

zn = (1− γn)xn + γnT nxn,

yn = (1− βn)xn + βnT
nzn,

xn+1 = (1− αn)xn + αnT
n yn, n = 1, 2, 3, . . . ,

(1.3.7)

where {αn}, {βn}, {γn} are real numbers in [0, 1].

We need the following useful known lemmas for the development of our

convergence results.

Lemma 1.3.5 (cf. [117, Lemma 2.2]). Let the sequences {an} and {un} of

real numbers satisfy:

an+1 ≤ (1 + un)an, where an ≥ 0, un ≥ 0, for all n = 1, 2, 3, . . .

and
∞∑

n=1

un < +∞. Then

(i) lim
n→∞

an exists;

(ii) if lim inf
n→∞

an = 0, then lim
n→∞

an = 0.

Lemma 1.3.6 [103, Lemma 1.3]. Let X be a uniformly convex Banach

space. Assume that 0 < b ≤ tn ≤ c < 1, n = 1, 2, 3, . . . Let the sequences

{xn} and {yn} in X be such that
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(i) lim sup
n→∞

‖xn‖ ≤ a,

(ii) lim sup
n→∞

‖yn‖ ≤ a,

(iii) lim
n→∞

‖tnxn + (1− tn)yn‖ = a,

where a ≥ 0. Then lim
n→∞

‖xn − yn‖ = 0.

We now state two useful conditions:

Condition A ([53]). A real sequence {αn} is said to satisfy Condition A if

0 ≤ αn ≤ b < 1, n = 0, 1, 2, . . ., and
∞∑

n=0

αn = ∞.

Condition B ([82], Condition A]). The mapping T : C → C with F (T ) 6= φ

is said to satisfy Condition B if there exists a nondecreasing function f :

[0,∞) → [0, ∞) with f(0) = 0 and f(r) > 0 for all r ∈ (0,∞) such that

‖x−Ty‖ ≥ f(d(x, F (T ))) for x ∈ C and all corresponding y = (1−t)x+tTx,

where 0 ≤ t ≤ β < 1.

Note that if t = 0, the Condition B reduces to the Condition I of Senter

and Dotson, Jr. [104] and the Condition A of Tan and Xu [125].

We need the following known results:

Theorem 1.3.7 [53, Theorem 1]. Let C be a closed subset of a Banach

space X, and T a nonexpansive mapping from C into a compact subset of

X. Suppose that there exists {αn} satisfying the Condition A. If {xn} is
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defined by (1.3.1) with xn ∈ C for all n, then T has a fixed point in C and

{xn} converges strongly to a fixed point of T .

Theorem 1.3.8 [96, Corollary 1]. Let C be a nonempty closed convex subset

of a Banach space X, and T a quasi-nonexpansive selfmapping of C. Assume

that F (T ) 6= φ. Then the Ishikawa iteration, defined by (1.3.2), converges

strongly to y ∈ F (T ) if and only if lim inf
n→∞

d(xn, F (T )) = 0.

Theorem 1.3.9 [82, Theorem 1]. Let C be a nonempty closed convex

subset of a uniformly convex Banach space X, and T a quasi-nonexpansive

selfmapping of C satisfying the Condition B. Then, the Ishikawa iteration

scheme (1.3.2), with 0 < a ≤ αn ≤ b < 1 and 0 ≤ βn ≤ β < 1, converges

strongly to a fixed point of T .

Lemma 1.3.10 (cf.[103, Lemma 1.6]). Let C be a nonempty closed convex

subset of a uniformly convex Banach space X satisfying Opial’s property,

and T : C → C be asymptotically nonexpansive. Then I − T is demiclosed

at 0.

Theorem 1.3.11 [34, Theorem 4]. If C is a weakly compact convex subset

of a strictly convex normed linear space, and {Tα} is a commutative family

of quasi-nonexpansive selfmappings of C, then
⋂
α

F (Tα) 6= φ.

Theorem 1.3.12 [44, Theorem 3.1] Let C be a nonempty compact convex
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subset of a Banach space X, and τ a commutative semigroup of asymptoti-

cally nonexpansive selfmappings of C. Then there exists a point x ∈ C such

that Tx = x for each T ∈ τ.

1.4 Multivalued Mappings

Throughout this section, (X, d) denotes a metric space. Suppose that x ∈ X

and A ⊆ X. We denote by 2X(respectively, C(X), CB(X), K(X), KC(X))

the class of all nonempty subsets (respectively, nonempty closed, nonempty

closed bound, nonempty compact, nonempty compact convex subsets) of X.

Let H be the Hausdorff metric with respect to d; that is,

H(A,B) = max

{
sup
x∈A

d(x,B), sup
y∈B

d(y, A)

}
, for every A, B ∈ C(X).

Definition 1.4.1 Let f : X → X and S : X → C(X). A point u ∈
X is a coincidence (respectively, common fixed) point of f and S if fu ∈
Su (respectively, u = fu ∈ Su). The mappings f and S are:

(1) weakly commuting if fSx ∈ C(X) for all x ∈ X, and

H(Sfx, fSx) ≤ d(fx, Sx);

(2) compatible if

lim
n→∞

H(fSxn, Sfxn) = 0

whenever {xn} is a sequence in X such that

lim
n→∞

Sxn = A ∈ C(X) and lim
n→∞

fxn = t ∈ A;
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(3) weakly compatible if they commute at their coincidence points; i.e., if

fu ∈ Su for some u in X, then fSu = Sfu;

(4) R-weakly commuting if fSx ∈ C(X) for all x ∈ X, and there exists a

real number R > 0 such that

H(Sfx, fSx) ≤ Rd(fx, Sx);

(5) pointwise R-weakly commuting if fSx ∈ C(X) for all x ∈ X, and for

a given x in X, there exists a real number R > 0 such that

H(Sfx, fSx) ≤ Rd(fx, Sx);

(6) (IT )-commuting at x ∈ X if fSx ⊂ Sfx (cf. [111]);

(7) f is S-weakly commuting at x ∈ X if ffx ∈ Sfx (see [64]);

(8) satisfying the property (E.A) (called tangential mappings by Sastry

and Murthy [101])if there exists a sequence {xn} such that

lim
n→∞

Sxn = A ∈ C(X) and lim
n→∞

fxn = t ∈ A.

Remark 1.4.2 Note that

(i) weakly commuting mappings are R-weakly commuting and compatible;

(ii) compatible mappings are weakly compatible;
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(iii) weakly compatible mappings are R-weakly commuting;

(iv) R-weakly commuting mappings are pointwise R-weakly commuting;

(v) weakly compatible mappings are (IT )-commuting at their coincidence

points;

(vi) f and S are (IT )-commuting at the coincidence points implies that f

is S-weakly commuting;

but the converse in each case does not hold (for examples and counter exam-

ples, see [59-61], [64], [91], [111] and [112]). We remark that commutativity,

compatibility, R-weak commutativity and weak compatibility of f and S are

equivalent at their coincidence points (cf. [111]).

Definition 1.4.3 Let E be a normed space. A real number λ is said to be

an eigenvalue of a mapping S : E → 2E (respectively, S : E → E) if there

exists a point x 6= 0 in E such that λx ∈ Sx (respectively, λx = Sx).

Solutions of nonlinear eigenvalue problems for single-valued mappings on

a Banach space have been obtained by many authors (see Baskaran and

Subrahmanyam [7] and Kim [74]).

Definition 1.4.4 Let C be a nonempty closed subset of a Banach space X.

A multivalued mapping T : C → 2X is said to be :

(i) upper semicontinuous if {x ∈ C : Tx ⊂ V } is open whenever V ⊂ X is
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open;

(ii) lower semicontinuous if T−1(V ) = {x ∈ C : Tx
⋂

V 6= φ} is open

whenever V ⊂ X is open;

(iii) continuous if it is both upper and lower semicontinuous (see [16, 29]);

(iv) Lipschitz if there exists a constant k ≥ 0 such that

H(Tx, Ty) ≤ k‖x− y‖, for all x, y ∈ C;

If 0 ≤ k < 1 (respectively, k = 1), then T is called contractive (respec-

tively, nonexpansive);

(v) demiclosed at 0 if the following implication holds:

{xn} in C, {xn} converges weakly to x, yn ∈ Txn and yn → 0 imply

that 0 ∈ Tx.

There is another different kind of continuity for multivalued operators:

T : C → CB(X) is said to be continuous (with respect to the Hausdorff

metric H) if

H(Txn, Tx) → 0 whenever xn → x.

It is not hard to see that both definitions of continuity are equivalent if Tx

is compact for every x ∈ C (see[6, 16]).
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Let C be a convex subset of a linear space E. Then f : C → R is convex if

for any x, y ∈ C and t ∈ [0, 1],

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y).

Lemma 1.4.5 [122, Lemma 1.3.9] Let C be a closed convex subset of a

Banach space X and T be a convex function of C into (−∞, +∞). Then, T

is lower semicontinuous if and only if T is lower semicontinuous in the weak

topology.

Let X be a metric space. The diameter of a subset B of X is

diam B = sup{d(x, y) : x, y ∈ B},

with diam φ = 0. It is known that diam B = 0 if and only if B is an empty

set or consists of exactly one point. Some other important properties of the

diameter are the following:

(i) If B1 ⊂ B2 then diam B1 ≤ diam B2;

(ii) diamB = diam B; here – stands for the closure;

(iii) Contor’s intersection theorem: If {Bn} is a decreasing sequence of non-

empty closed bounded subsets of X and lim
n→∞

diam Bn = 0, then
∞⋂

n=1

Bn

is nonempty and consists of exactly one point (cf. [130]).
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The set B ⊂ X is said to be r-separated (or,r-separation of X) if

d(x, y) ≥ r, for all x 6= y in B and some r > 0.

In recent years measures of noncompactness have been utilized to define

new geometrical properties of Banach spaces which are interesting for fixed

point theory. The notion of a measure of noncompactness was originally

introduced in metric spaces as in the following:

Definition 1.4.6 The Kuratowski, Hausdorff and separation measures of

noncompactness of a nonempty bounded subset B of X are, respectively,

defined as the numbers

α(B) = inf{r > 0 : B can be covered by finitely many sets of diameter ≤ r},

χ(B) = inf{r > 0 : B can be covered by finitely many balls of radius ≤ r},

β(B) = sup{r > 0 : B has an infinite r − separation}.

Definition 1.4.7 The mapping T : C → 2X is called γ-condensing (respec-

tively, 1- γ-contractive) where γ = α(.) or χ(.) if, for each bounded subset B

of C with γ(B) > 0, the following holds:

γ(T (B)) < γ(B) (respectively, γ(T (B)) ≤ γ(B)),

where T (B) =
⋃

x∈B Tx.

Definition 1.4.8 Let X be a Banach space and φ = α, β or χ. Then:
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(i) the modulus of noncompact convexity associated to φ is defined by

∆X,φ(ε) = inf{1− d(0, A) : A ⊂ BX is convex, φ(A) ≥ ε},

where BX is the unit ball of X,

(ii) the characteristic of noncompact convexity of X associated to the mea-

sure of noncompactness φ is defined by

εφ(X) = sup{ε ≥ 0 : ∆X,φ(ε) = 0},

(iii) if εφ(X) = 0, then the space X is called nearly uniformly convex.

The following relationships among the different moduli are easy to obtain

(see[130])

∆X,α(ε) ≤ ∆X,β(ε) ≤ ∆X,χ(ε),

and consequently

εα(X) ≥ εβ(X) ≥ εχ(X).

When X is a reflexive Banach space we have some alternative expressions

for the moduli of noncompact convexity associated to β and χ :

∆X,β(ε) = inf{1− ‖x‖ : {xn} ⊂ BX , x = w − lim xn, sep({xn}) ≥ ε},

∆X,χ(ε) = inf{1− ‖x‖ : {xn} ⊂ BX , x = w − lim xn, χ({xn}) ≥ ε}.

Note that if εα(X) < 1, then X is reflexive (this is true also if εφ(X) < 1

where φ = χ or β) (see Theorem 5.1.7 and Remark 5.1.7 in [130]).
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In order to study the fixed point theory for nonself mappings, we must

introduce some terminology.

Definition 1.4.9 The inward set of C at x ∈ C is defined by

IC(x) = {x + λ(y − x) : λ ≥ 0, y ∈ C}.

Clearly, C ⊂ IC(x) and it is not hard to show that IC(x) is a convex set as

C is so. A multivalued mapping T : C → 2X is said to be inward if

Tx ⊂ IC(x), ∀x ∈ C.

Let ĪC(x) = x + {λ(z − x) : z ∈ C, λ ≥ 1}. Note that for a convex set C,

we have ĪC(x) = IC(x), and T is said to be weakly inward on C if

Tx ⊂ ĪC(x), ∀x ∈ C.

Lemma 1.4.10 (cf.[16]) Let X be a Banach space and φ 6= C ⊂ X be closed

bounded convex. Let T : C → 2X be upper semicontinuous γ-condensing

with closed convex values, where γ(.) = α(.) or χ(.). If Tx
⋂

IC(x) 6= φ for

all x ∈ C, then T has a fixed point.

Lemma 1.4.11 [79] Let C be a nonempty closed convex subset of a Banach

space X and T : C → K(X) a contraction. If T satisfies

Tx ⊂ IC(x), for all x ∈ C,

then T has a fixed point.
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Definition 1.4.12 Let C be a nonempty bounded closed subset of a Ba-

nach space X and {xn} a bounded sequence in X, we use r(C, {xn}) and

A(C, {xn}) to denote the asymptotic radius and the asymptotic center of

{xn} in C, respectively, i.e.

r(C, {xn}) = inf

{
lim sup

n→∞
‖xn − x‖ : x ∈ C

}
,

A(C, {xn}) =

{
x ∈ C : lim sup

n→∞
‖xn − x‖ = r(C, {xn})

}
.

If D is a bounded subset of X, the Chebyshev radius of D relative to C is

defined by

rC(D) = inf{sup{‖x− y‖ : y ∈ D} : x ∈ C}.

Remark 1.4.13 The convexity of C implies that A(C, {xn}) is convex. The

set A(C, {xn}) is nonempty weakly compact if C is weakly compact, or C is

a closed convex subset of a reflexive Banach space X (see [17]).

Definition 1.4.14 Let C be a nonempty bounded closed subset of a Banach

space X. Then a sequence {xn} in X is called regular with respect to C if

r(C, {xn}) = r(C, {xni
}) for all subsequences {xni

} of {xn}; while {xn} is

called asymptotically uniform with respect to C if A(C, {xn}) = A(C, {xni
})

for all subsequences {xni
} of {xn}.

Lemma 1.4.15 [41, 78] Let {xn} and C be as in Definition 1.4.14. Then:

(i) there always exists a subsequence of {xn} which is regular with respect



23

to C;

(ii) if C is separable, then {xn} contains a subsequence which is asymptot-

ically uniform with respect to C.

Theorem 1.4.16 [16, Theorem 3.4] Let C be a closed convex subset of a

reflexive Banach space X, and let {xn} be a bounded sequence in C which

is regular with respect to C. Then

rC(A(C, xn)) ≤ (1−∆X,β(1−))r(C, {xn}).

Moreover, if X satisfies the nonstrict Opial’s property then

rC(A(C, xn)) ≤ (1−∆X,χ(1−))r(C, {xn}).

Let A be a set and B ⊂ A. A net {xα : α ∈ D(directed set)} in A is

eventually in B if there exists α0 ∈ D such that xα ∈ B for all α ≥ α0. A

net {xα : α ∈ D} in a set A is called an ultranet if either {xα : α ∈ D} is

eventually in B or {xα : α ∈ D} is eventually in A\B, for each subset B of

A. It is well-known that every net in a set has a subnet which is an ultranet

(cf. [17]).

Theorem 1.4.17 [17, Theorem 3.2] Let C be a closed convex subset of a

reflexive Banach space X, and let {xβ : β ∈ D} be a bounded ultranet. Then

rC(A(C, xβ)) ≤ (1−∆X,α(1−))r(C, {xβ}).
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A sequence {xn} is called asymptotically T -regular if lim
n→∞

d(xn, Txn) = 0.

Definition 1.4.18 Let C be a nonempty weakly compact convex subset of a

Banach space X and T : C → KC(X). The mapping T is called subsequen-

tially limit-contractive (SL) if for every asymptotically T -regular sequence

{xn} in C, we have

lim sup
n→∞

H(Txn, Tx) ≤ lim sup
n→∞

‖xn − x‖,

for all x ∈ A(C, {xn}).

It is clear that every nonexpansive mapping is an SL mapping. The converse

does not hold (for example and counter example see Shahzad and Lone [109]).

1.5 Random Operators

Let (Ω,
∑

) be a measurable space (
∑

denotes σ-algebra of subsets of Ω) and

C be a nonempty subset of a Banach space X.

Definition 1.5.1 Let ξ : Ω → C and S, T : Ω× C → X. Then

(i) ξ is measurable if ξ−1(U) ∈ ∑
, for each open subset U of X,

(ii) T is a random operator if for each fixed x ∈ C, the mapping T (., x) :

Ω → X is measurable,

(iii) ξ is a deterministic fixed point of the random operator T if

T (ω, ξ(ω)) = ξ(ω), for each ω ∈ Ω,
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(iv) ξ is a random fixed point of the random operator T if ξ is measurable

and

T (ω, ξ(ω)) = ξ(ω), for each ω ∈ Ω,

(v) ξ is a random coincidence (respectively, common fixed) point of S and

T if ξ is measurable and for each ω ∈ Ω,

S(ω, ξ(ω)) = T (ω, ξ(ω))

(respectively, ξ(ω) = S(ω, ξ(ω)) = T (ω, ξ(ω))).

Definition 1.5.2 Let C be a subset of a separable metric space X and

S, T : Ω× C → X. Then S and T are:

(i) compatible if S(ω, .) and T (ω, .) are compatible for each ω ∈ Ω [14];

(ii) weakly compatible if

T (ω, S(ω, ξ(ω))) = S(ω, T (ω, ξ(ω))),

for every ω ∈ Ω whenever T (ω, ξ(ω)) = S(ω, ξ(ω)) where ξ : Ω → C is

a measurable mapping;

(iii) said to satisfy the random property (E.A) if there exists a sequence

{ξn} of measurable mappings from Ω to C such that for every ω ∈ Ω,

lim
n→∞

S(ω, ξn(ω)) = lim
n→∞

T (ω, ξn(ω)) = ξ(ω),

where ξ : Ω → X is a measurable mapping.
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The set of random fixed points of T will be denoted by RF (T ). For a

mapping T, the nth iterate T (ω, T (ω, T (ω, ..., T (ω, x)))) will be written as

T n(ω, x), and T ◦ stands for the random operator I : Ω× C → C defined by

I(ω, x) = x.

Definition 1.5.3 A random operator T : Ω× C → X is called:

(i) continuous (respectively, demiclosed, nonexpansive, contractive, SL,

uniformly L-Lipschitzian, (L − γ) uniform Lipschitz) if the mapping

T (ω, .) is continous (respectively, demiclosed, nonexpansive, contrac-

tive, SL, uniformly L-Lipschitzian, (L− γ) uniform Lipschitz);

(ii) quasi-nonexpansive random operator if

‖T (ω, η(ω))− ξ(ω)‖ ≤ ‖η(ω)− ξ(ω)‖,

for each ω ∈ Ω where ξ : Ω → C is a random fixed point of T and

η : Ω → C is any measurable mapping;

(iii) asymptotically nonexpansive random operator if there exists a sequence

of measurable mappings un : Ω → [0,∞) with lim
n→∞

un(ω) = 0, for each

ω ∈ Ω, such that for arbitrary x, y ∈ C, we have

‖T n(ω, x)− T n(ω, y)‖ ≤ (1 + un(ω))‖x− y‖, for each ω ∈ Ω;

(iv) asymptotically quasi-nonexpansive random operator if there exists a

sequence of measurable mappings un : Ω → [0,∞) with lim
n→∞

un(ω) = 0,
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for each ω ∈ Ω, such that

‖T n(ω, η(ω))− ξ(ω)‖ ≤ (1 + un(ω))‖η(ω)− ξ(ω)‖,

for each ω ∈ Ω, where ξ : Ω → C is a random fixed point of T and

η : Ω → C is any measurable mapping;

(v) semi-compact random operator if for a sequence of measurable map-

pings {ξn} from Ω to C with lim
n→∞

‖ξn(ω)− T (ω, ξn(ω))‖ = 0, for every

ω ∈ Ω, there exists a subsequence {ξni
} of {ξn} such that

ξni
(ω) → ξ(ω), for each ω ∈ Ω,

where ξ is a measurable mapping from Ω to C.

Definition 1.5.4 (Random Mann iteration). Let T : Ω × C → C be a

random operator, where C is a nonempty convex subset of a separable Banach

space X. The random Mann iteration is a sequence of mappings {ξn} defined

by

ξn+1(ω) = (1− αn)ξn(ω) + αnT (ω, ξn(ω)), (1.5.1)

for each ω ∈ Ω, n = 1, 2, 3, ..., where 0 ≤ αn ≤ 1 and ξ1 : Ω → C is an

arbitrary measurable mapping.

Note that the convexity of C implies that ξn is a mapping from Ω to C for

each n.
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Remark 1.5.5 Let C be a closed convex subset of a separable Banach space

X, and the sequence of mappings {ξn}, defined as in the above definition,

is pointwise convergent; that is, ξn(ω) → q = ξ(ω), for each ω ∈ Ω. Then

closedness of C implies that ξ is a mapping from Ω to C. Since C is a subset

of a separable Banach space X, so, if T is a continuous random operator then

by [6, Lemma 8.2.3], the mapping ω → T (ω, f(ω)) is a measurable mapping

for any measurable mapping f from Ω to C. Thus {ξn} is a sequence of

measurable mappings. Hence ξ : Ω → C, being the limit of the sequence of

measurable mappings, is also measurable (see [11]).

Definition 1.5.6 (Random Ishikawa iteration). Let T : Ω× C → C be a

random operator, where C is a nonempty closed convex subset of a separable

Banach space X. The random Ishikawa iteration scheme is defined by

ξn+1(ω) = (1− αn)ξn(ω) + αnT (ω, ηn(ω)),

ηn(ω) = (1− βn)ξn(ω) + βnT (ω, ξn(ω)), (1.5.2)

for each ω ∈ Ω, n = 1, 2, 3, . . . , where 0 ≤ αn, βn ≤ 1, ξ1 : Ω → C is an

arbitrary measurable mapping and {ξn} and {ηn} are sequences of mappings

from Ω → C.

It is remarked that if βn = 0, for all n in (1.5.2), then the random Ishikawa

iteration reduces to the random Mann iteration (1.5.1).

We shall need the following result:
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Proposition 1.5.7 [9, Proposition 3.4]. Let C be a nonempty bounded

closed convex subset of a separable Banach space X, and T : Ω × C → C a

nonexpansive random operator. Suppose that {ξn} is a sequence of mappings

from Ω to C defined by

ξn+1(ω) = (1− α)ξn(ω) + αT (ω, ξn(ω)), for each ω ∈ Ω, (1.5.3)

where 0 < α < 1, n = 1, 2, 3, . . . , and ξ1 : Ω → C is an arbitrary measurable

mapping. Then for each ω ∈ Ω,

lim
n→∞

‖ξn(ω)− T (ω, ξn(ω))‖ = 0.

Now we present some definitions and results for multivalued mappings.

Definition 1.5.8 Let C be a subset of a metric space X :

(i) a multivalued operator T : Ω → 2X is measurable if, for any open

subset B of X, then T−1(B) ∈ ∑
where

T−1(B) = (ω ∈ Ω : T (ω)
⋂

B 6= φ};

(ii) a mapping x : Ω → X is said to be a measurable selector of a mea-

surable multivalued operator T : Ω → 2X if x(.) is measurable and

x(ω) ∈ T (ω) for all ω ∈ Ω;

(iii) an operator T : Ω × C → 2X is called a random operator if, for each

fixed x ∈ C, the operator T (., x) : Ω → 2X is measurable;
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(iv) a mapping x : Ω → C is said to be a random fixed point of T : Ω×C →
2X if x is measurable and

x(ω) ∈ T (ω, x(ω)), for each ω ∈ Ω;

(v) a mapping x : Ω → C is a random coincidence (respectively, random

common fixed) point of random operators T : Ω × C → 2X and f :

Ω× C → X if x is measurable and

f(ω, x(ω)) ∈ T (ω, x(ω))

(respectively, x(ω) = f(ω, x(ω)) ∈ T (ω, x(ω)));

(vi) a random operator T : Ω × C → 2X is continuous (respectively, con-

tractive, nonexpansive etc.) if for each ω ∈ Ω, T (ω, .) is continuous

(respectively, contractive, nonexpansive etc.).

We will denote by F (ω), the fixed point set of T (ω, .), i.e.,

F (ω) = {x ∈ C : x ∈ T (ω, x)}.

Note that if we do not assume the existence of fixed point for the deterministic

mapping T (ω, .) : C → 2X , F (ω) may be empty.

For later convenience, we list the following results.

Lemma 1.5.9 [131] Let (X, d) be a complete separable metric space and

T : Ω → C(X) a measurable operator. Then T has a measurable selector.
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Lemma 1.5.10 [55] Suppose {Tn} is a sequence of measurable multivalued

operators from Ω to CB(X) and T : Ω → CB(X) is an operator. If, for each

ω ∈ Ω,

H(Tn(ω), T (ω)) → 0,

then T is measurable.

Lemma 1.5.11 [127] Let X be a separable metric space and Y a metric

space. If f : Ω ×X → Y is measurable in ω ∈ Ω and continuous in x ∈ X,

and if x : Ω → X is measurable, then f(., x(.)) : Ω → Y is measurable.

As an application of Proposition 3 of Itoh [55], we have the following result.

Lemma 1.5.12 (cf. [95]) Let C be a closed separable subset of a Banach

space X, T : Ω × C → C a random continuous operator and F : Ω → 2C

a measurable closed-valued operator. Then for any s > 0, the operator

G : Ω → 2C given by

G(ω) = {x ∈ F (ω) : ‖x− T (ω, x)‖ < s}, ω ∈ Ω

is measurable and so is the operator cl{G(ω)} (the closure of G(ω)).

Lemma 1.5.13 [18] Suppose that C is a weakly closed nonempty separable

subset of a Banach space X, F : Ω → 2X is measurable with weakly com-

pact values, f : Ω × C → R is a measurable, continuous and weakly lower
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semicontinuous function. Then the marginal function r : Ω → R defined by

r(ω) = inf
x∈F (x)

f(ω, x)

and the marginal mapping R : Ω → X defined by

R(ω) = {x ∈ F (x) : f(ω, x) = r(ω)}

are measurable.



CHAPTER 2

COINCIDENCE AND FIXED

POINTS OF NONSELF

CONTRACTIVE MAPPINGS

2.1 Introduction

Common fixed point theorems for families of commuting contraction map-

pings have been a popular area of research (see, e.g. Al-Thagafi [3], Belluce

and Kirk [15] and Jungck and Sessa [63]). In 1982, Sessa [105] introduced

the concept of weakly commuting mappings to generalize commutativity.

Jungck [59], in 1986, generalized weak commutativity to the notion of com-

patible mappings. In 1996, Jungck [61] further weakened compatibility to

33
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the concept of weak compatibility. Since then, many interesting fixed point

theorems of compatible and weakly compatible mappings under various con-

tractive conditions have been obtained by a number of authors (see, for

example, Aamri and El Moutawakil [1], Djoudi and Khemis [32], Jachymski

[57], Jungck [58-62], and Pant [89]).

In [58], Jungck generalized the Banach contraction principle to the case

of two commuting selfmappings on a metric space. Baskaran and Subrah-

manyam [7] noted that the commutativity of the mappings in Jungck’s the-

orem can be replaced by weak commutativity and then they obtained some

common fixed point theorems for two mappings on the closed ball of a Banach

space. They also provided a solution to a nonlinear eigenvalue problem for

operators on the closed ball of a Banach space. The existence of fixed points

of mappings defined on closed balls has been studied by several authors; for

example, see Delbosco [30] and Liu [81].

Aamri and El Moutawakil [1], in 2002, defined the property (E.A) for self-

mappings (need not be continuous) on a metric space, and extended the

theorem of Jungck [58] to the case of weakly compatible mappings satisfy-

ing the property (E.A) and certain contractive conditions. Very recently,

Ćirić [28] has established fixed point theorems for continuous nonself map-

pings satisfying certain contractive conditions on a nonempty closed subset
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of a metric space of hyperbolic type (Takahashi [121] uses the term “convex

metric space”).

In this chapter, we establish new results related to coincidence and common

fixed points of weakly compatible nonself mappings satisfying the property

(E · A) and strict contractive conditions on an arbitrary nonempty subset

of a metric space. Applications of our results to best approximation and

eigenvalue problems will also be given.

2.2 Coincidence and Fixed Point Results

Throughout this section, B denotes an arbitrary nonempty subset of a metric

space X. We obtain some coincidence and common fixed point theorems for

weakly compatible nonself mappings (which need not be continuous) satisfy-

ing the property (E ·A) and strict contractive conditions. We begin with an

extension of Theorem 1 of Aamri and El Moutawakil [1] for nonself mappings

on B ⊆ X; our result is also an improvement of Theorem 2.2 of Ćirić [28] in

the sense that continuity of the mapping and compactness of the domain are

removed.

Theorem 2.2.1 Let f, g : B → X be such that:

(i) f and g satisfy the property (E · A),

(ii) gB is complete or fB is complete with fB ⊆ gB,
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(iii) for all x 6= y in B, the following contractive condition holds:

d(fx, fy) < max
{

d(gx, gy), rd(fx, gx) + αd(fy, gy),

1

2
[d(fx, gy) + d(fy, gx)]

} (2.2.1)

where r ∈ [0, +∞) and α ∈ [0, 1).

Then f and g have a coincidence point in B. Further, if a is a coincidence

point of f and g such that fa ∈ B and f and g are weakly compatible, then

f and g have a unique common fixed point in B.

Proof. By (i), there exists a sequence {xn} in B such that

lim
n→∞

fxn = lim
n→∞

gxn = t, for some t ∈ X.

If gB is complete, then

lim
n→∞

gxn = t = ga, for some a ∈ B.

Now, we show that fa = ga. By (iii), we have

d(fxn, fa) < max {d(gxn, ga), rd(fxn, gxn) + αd(fa, ga) ,

1

2
[d(fxn, ga) + d(fa, gxn)]

}
.

Taking the limit as n →∞, we obtain

d(ga, fa) ≤ max
{

d(ga, ga), rd(ga, ga) + αd(fa, ga),

1

2
[d(ga, ga) + d(fa, ga)]

}

= max

{
αd(fa, ga),

1

2
d(fa, ga)

}
.
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This is possible only if d(ga, fa) = 0; that is, fa = ga.

Now, if fa ∈ B and f and g are weakly compatible, then ffa = fga =

gfa = gga. We prove that fa is a common fixed point. Suppose not; then

d(fa, ffa) < max {d(ga, gfa), rd(fa, ga) + αd(ffa, gfa),

1

2
[d(fa, gfa) + d(ffa, ga)]

}

= d(fa, ffa)

a contradiction. Thus

ffa = gfa = fa.

Similarly, we can prove the case fB is complete and fB ⊆ gB. Finally,

assume that a 6= b are two common fixed points of f and g. Then by (iii),

we get

d(a, b) = d(fa, fb) < max {d(ga, gb), rd(fa, ga) + αd(fb, gb),

1

2
[d(fa, gb) + d(fb, ga)]

}

= d(a, b)

a contradiction. Hence a = b. ¥

The following example shows that our theorem works where Theorem 1 of

Aamri and El Moutawakil [1] is not applicable.
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Example 2.2.2 Let X be the usual space of reals. Define

f(x) = x2 and g(x) = x4.

It is easy to verify that f and g satisfy the property (E ·A) for the sequence{
1 +

1

n

}
, n = 1, 2, 3, . . . Note that the contractive condition of Theorem 1

in [1] is not satisfied (take x = 1 and y = 0). Now, if f, g : B → X where

B = [1, 2], then for all x 6= y in B, (2.2.1) holds because

|f(x)− f(y)| = |x2 − y2| < |x2 − y2| |x2 + y2| = |x4 − y4| = |g(x)− g(y)|.

Thus all the conditions of Theorem 2.2.1 are satisfied and 1 is the common

fixed point of f and g in [1, 2].

In the following result, we replace the property (E ·A) in Theorem 2.2.1 by

a mapping φ satisfying a contractive condition. The proof is similar to that

of Corollary 2 in [1] and hence is omitted.

Corollary 2.2.3 Let f, g : B → X be such that:

(i) there exists a mapping φ : B → R+ (the set of all nonnegative reals)

such that

d(fx, gx) < φ(gx)− φ(fx), for all x in B,

(ii) gB is complete or fB is complete with fB ⊆ gB,

(iii) for all x 6= y in B, (2.2.1) holds.
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Then f and g have a coincidence point in B. Further, if a is a coincidence

point of f and g such that fa ∈ B and f and g are weakly compatible, then

f and g have a unique common fixed point.

Suppose that F : R+ → R+ satisfies the following conditions:

(i) F is nondecreasing,

(ii) 0 < F (t) < t, for all t ∈ (0,∞).

The next theorem deals with four nonself mappings under a contractive con-

dition in terms of the function F ; this theorem is a considerable improvement

of Theorem 2 of Aamri and El Moutawakil [1] for nonself mappings on an

arbitrary subset of a metric space (compare our result also with Theorem 2.3

in [28]).

Theorem 2.2.4 Let f, g, p, q : B → X be such that:

(i) the pair (f, p) or (g, q) satisfies the property (E · A),

(ii) the range of one of the mappings f, g, p or q is complete, fB ⊆ qB and

gB ⊆ pB,

(iii) for all x, y in B, the following condition holds:

d(fx, gy) ≤ F (max{d(px, qy), d(px, gy), d(qy, gy)}). (2.2.2)
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Then:

(a) f and p have a coincidence point, and g and q have a coincidence point,

(b) if a is a coincidence point of f and p such that fa ∈ B and f and p are

weakly compatible, then they have a common fixed point,

(c) if b is a coincidence point of g and q such that gb ∈ B and g and q are

weakly compatible, then they have a common fixed point,

(d) f, g, p and q have a unique common fixed point provided (b) and (c)

hold.

Proof. (a) Assume that g and q satisfy the property (E ·A); that is, there

exists a sequence {xn} in B such that lim
n→∞

gxn = lim
n→∞

qxn = t, for some

t ∈ X. Since gB ⊆ pB, there exists a sequence {yn} in B with gxn = pyn,

for all n. So, lim
n→∞

pyn = t. By (iii), we have

d(fyn, gxn) ≤ F (max{d(pyn, qxn), d(pyn, gxn), d(qxn, gxn)})

≤ F (d(gxn, qxn))

< d(gxn, qxn).

Thus lim
n→∞

d(fyn, t) = 0 and so, lim
n→∞

fyn = t. Let pB be complete. Then

t = pa, for some a ∈ B. By (iii), we get

d(fa, gxn) ≤ F (max{d(pa, qxn), d(pa, gxn), d(qxn, gxn)}).
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Taking the limit as n → ∞, it follows that fa = pa. Also fB ⊆ qB implies

that fa = qb, for some b ∈ B. We show that fa = gb. Suppose not; then

d(fa, gb) ≤ F (max{d(pa, qb), d(pa, gb), d(qb, gb)})

≤ F (d(fa, gb))

< d(fa, gb)

a contradiction. Thus fa = pa = gb = qb.

(b) If fa ∈ B and f and p are weakly compatible, then

ffa = fpa = pfa = ppa.

We show that fa is a common fixed point of f and p. If not; then

d(ffa, fa) = d(ffa, gb)

≤ F (max{d(pfa, qb), d(pfa, gb), d(qb, gb)})

≤ F (d(ffa, fa))

< d(ffa, fa)

sets a contradiction. Thus

fa = ffa = pfa.

(c) As in (b), we can prove that gb is a common fixed point of g and q.

(d) Since fa = gb, therefore fa is a common fixed point of f, g, p and q.

The proof is similar if qB, fB or gB is complete. Finally, if u 6= v are two
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common fixed points of f, g, p and q, then

d(u, v) = d(fu, gv)

≤ F (max{d(pu, qv), d(pu, gv), d(qv, gv)})

≤ F (d(u, v))

< d(u, v)

gives a contradiction. Thus u = v proves the uniqueness of the common fixed

point. ¥

2.3 Invariant Approximation

In this section, we obtain common fixed points of best approximation on the

basis of results obtained in the previous article. Our work provides analogues

of most of the well-known results for the class of weakly compatible mappings

on a metric space.

Recently, Hussain and Khan [51] have obtained in Theorem 3.1, a gener-

alization of Theorem 3 by Sahab et al. [100] for a class of noncommuting

selfmappings on a Hausdorff locally convex space. An analogue of Theorem

3.1 in [51] is given below in the setup of an arbitrary metric space.

Theorem 2.3.1 Let M be a subset of a metric space X and f and g be

selfmappings of X. Assume that u is a common fixed point of f and g, and
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D = PM(u) is nonempty. Suppose that:

(i) f and g are weakly compatible and satisfy the property (E · A) on D,

(ii) gD = D, f(∂M) ⊆ M (∂M denotes the boundary of M), and fD or

D is complete,

(iii) f is g-nonexpansive on D ∪ {u},

(iv) for all x 6= y in D, (2.2.1) holds.

Then f and g have a unique common fixed point in PM(u).

Proof. Let y ∈ D. Then gy ∈ D. By the definition of PM(u), y ∈ ∂M

and since f(∂M) ⊆ M , it follows that fy ∈ M . As f is g-nonexpansive on

D ∪ {u}, so

d(fy, u) = d(fy, fu) ≤ d(gy, gu) = d(gy, u).

Now, fy ∈ M and gy ∈ D imply that fy ∈ D; consequently, f and g are

selfmappings of D. By Theorem 2.2.1, there exists a unique b ∈ D such that

b = fb = gb. ¥

The following example illustrates our theorem.

Example 2.3.2 Let X = R and M = [1, 4]. Define

f(x) =
1

3
(x + 2) and g(x) =

1

2
(x + 1).
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The mappings f and g being commuting are weakly compatible and satisfy

the property (E · A) for the sequence

{
1 +

1

n

}
, n = 1, 2, . . . . Also,

|fx− fy| < |gx− gy|, for all x 6= y in M.

All the conditions of Theorem 2.3.1 are satisfied. Clearly, PM(0) = {1} and

1 is the common fixed point of f and g.

The existence of a unique common fixed point from the set of best ap-

proximations for four weakly compatible mappings is established in the next

result. It is remarked that the study of best approximations in the context

of four mappings is a new one in the literature.

Theorem 2.3.3 Let f, g, p and q be selfmappings of a metric space X and

M be a subset of X. Assume that u is a common fixed point of f, g, p and

q, and D = PM(u) is nonempty. Suppose that:

(i) the pairs (f, p) and (g, q) are weakly compatible, and the pair (f, p) or

(g, q) satisfies the property (E · A) on D,

(ii) pD = D, qD = D, f(∂M) ⊆ M, g(∂M) ⊆ M , and D, fD, or gD is

complete,

(iii) f is p-nonexpansive and g is q-nonexpansive on D ∪ {u},

(iv) for all x, y ∈ D, (2.2.2) holds.
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Then f, g, p and q have a unique common fixed point in PM(u).

Proof. As in the proof of Theorem 2.3.1, we can prove that fy ∈ D and

gy ∈ D. Thus f, g, p and q are selfmappings of D. Therefore, by Theorem

2.2.4, there exists a unique b ∈ D such that b is a common fixed point of

f, g, p and q. ¥

We establish the analogues of Theorem 3.2 by Al-Thagafi [3] and Theorem

3.3 due to Hussain and Khan [51] in the following result.

Theorem 2.3.4 Let f and g be selfmappings of a metric space X and M

be a subset of X. Assume that u is a common fixed point of f and g, and

D∗ = Dg
M(u) is nonempty. Suppose that:

(i) f and g are weakly compatible and satisfy the property (E ·A) on D∗,

(ii) g is nonexpansive on PM(u)∪{u} and f is g-nonexpansive on D∗∪{u},

(iii) gD∗ = D∗, f(∂M) ⊆ M , and fD∗ or D∗ is complete,

(iv) for all x 6= y in D∗, (2.2.1) holds.

Then f and g have a unique common fixed point in D∗.

Proof. Let y ∈ D∗. Then gy ∈ D∗. By the definition of D∗, y ∈ ∂M and
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so fy ∈ M . As f is g-nonexpansive on D∗ ∪ {u},

d(fy, u) = d(fy, fu) ≤ d(gy, u).

Therefore, fy ∈ PM(u). Since g is nonexpansive on PM(u) ∪ {u}, therefore

d(gfy, u) = d(gfy, gu) ≤ d(fy, u) = d(fy, fu) ≤ d(gy, gu) = d(gy, u).

Thus, gfy ∈ PM(u) and so fy ∈ Cg
M(u). Therefore, fy ∈ D∗. Hence f and

g are selfmappings of D∗. Thus, by Theorem 2.2.1, there exists a unique

b ∈ D∗ ⊂ PM(u) such that b = fb = gb. ¥

2.4 Eigenvalue Problems

The aim of this section is to seek solutions of certain nonlinear eigenvalue

problems for operators defined on a normed space and closed balls of a re-

flexive Banach space.

We now apply Theorem 2.2.1 to solve an eigenvalue problem as follows:

Theorem 2.4.1 Let X be a normed space and f be a selfmapping of X

with f(0) 6= 0. Suppose that:

(i) there exists a sequence {xm} such that

lim
m→∞

fnxm = lim
m→∞

xm = t, for some t ∈ X,

where fn =

(
1− 1

n

)
f , n = 2, 3, 4, . . . ,
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(ii) X or fX is complete,

(iii) for all x 6= y in X, the following condition holds:

‖fx− fy‖ ≤ max {‖x− y‖, r‖fnx− x‖+ α‖fny − y‖,
1

2
(‖fny − x‖+ ‖fnx− y‖)

}
(2.4.1)

where r ∈ [0, +∞) and α ∈ [0, 1).

Then Mn = 1/
(
1− 1

n

)
is an eigenvalue of f.

Proof. Clearly, fn and I (the identity mapping on X) are commuting and

satisfy the property (E · A). Note that

‖fnx− fny‖ < ‖fx− fy‖, for each n > 1.

By this and (iii), for all x 6= y in X and each n > 1, (2.2.1) is satisfied for

the mappings fn and I. By Theorem 2.2.1, there exists xn ∈ X such that

xn = fnxn for each n > 1; that is, fxn = Mnxn for each n > 1. This and

f(0) 6= 0 imply that xn 6= 0 for each n > 1. Thus, for each n > 1, xn is an

eigenvector and Mn is an eigenvalue for f . ¥

Example 2.4.2 Let X = R2 and f be defined by

f(x, y) = (x− 1, y + 1).

Clearly, f(0, 0) 6= (0, 0) and (2.4.1) holds in view of

|f(x1, y1)− f(x2, y2)| = |(x1, y1)− (x2, y2)|.
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Now, for the sequence (xn, yn) =
(

1
n
− 1, 1

n
+ 1

)
, n = 1, 2, . . .,

lim
n→∞

f2(xn, yn) = lim
n→∞

1

2
f(xn, yn) = (−1, 1) = lim

n→∞
(xn, yn).

Thus, by Theorem 2.4.1, M2 = 2 is an eigenvalue of f . The corresponding

eigenvector is (−1, 1).

In the sequel, B denotes the closed ball B = {x ∈ X : ‖x‖ ≤ r}.

Theorem 2.4.3 Let X be a reflexive Banach space and f : B → X be

weakly continuous with f(0) 6= 0. Suppose that for each x ∈ ∂B and for

k ∈ (0, 1], one of the following conditions holds:

(i) ‖fx‖ ≤ max{‖kfx− x‖, ‖x‖},

(ii) there exists p > 1 such that ‖fx‖p ≤ ‖kfx− x‖p + ‖x‖p.

Then M =
1

k
is an eigenvalue for f .

Proof. Let M =
1

k
, k ∈ (0, 1]. Define, fk = kf . Assume that (i) or (ii)

is satisfied; then we get one of the following:

(a) ‖fkx‖ ≤ ‖fx‖ ≤ max{‖fkx− x‖, ‖x‖},

(b) ‖fkx‖p ≤ ‖fx‖p ≤ {‖fkx− x‖p, ‖x‖p}.

By Theorem 1.2.5, there exists u ∈ B such that fku = u. So fu = Mu. This

and f(0) 6= 0 imply that u 6= 0. Thus u is an eigenvector for f and so M is

an eigenvalue for f as desired. ¥
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As an application of Theorem 2.4.3, we obtain the following analogue of

Theorem 3.2 in [7].

Theorem 2.4.4 Let C be a closed and bounded subset of Rn and T :

Lp(C) → Lp(C). Suppose that:

(i) H = H(t, s) : C × R → R is weakly continuous with respect to s

uniformly in t,

(ii) x(t) ∈ Lp(C) implies H(t, Tx(t)) ∈ Lp(C),

(iii) for x(t) ∈ Lp(C) with ‖x(t)‖p = 1,

‖H(t, Tx(t))‖p ≤ max{1, ‖kH(t, Tx(t))− x(t)‖p},

where k ∈ (0, 1],

(iv) H(t, T (0)) 6= 0.

Then the operator equation

H(t, Tx(t)) = ux(t) (2.4.2)

has a solution in B1, the closed unit ball of Lp(C), for each u =
1

k
, k ∈ (0, 1].

Proof. We know that Lp (1 < p < ∞) is a reflexive Banach space. The

operator S defined by

Sx(t) = H(t, Tx(t))
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maps Lp(C) into itself by (ii). In view of (iii), for the operator S : B1 →

Lp(C),

‖Sx(t)‖p ≤ max{‖x(t)‖p, ‖kSx(t)− x(t)‖p}

for each x(t) ∈ ∂B1 and k ∈ (0, 1]. By (iv), we have S(0) 6= 0. Now, let

{xn(t)} converges weakly to x(t). This implies, by (i), that {H(t, xn(t)} con-

verges weakly to Sx(t). Thus S is weakly continuous. Now all the conditions

of Theorem 2.4.3 are satisfied and hence for each u = 1
k
, k ∈ (0, 1], we get,

Sx(t) = ux(t); that is, the operator equation (2.4.2) has a solution in B1 for

each u = 1
k
, k ∈ (0, 1]. ¥

The following example supports the above theorem.

Example 2.4.5 The eigenvalue problem

et − ‖x(t)‖ = ux(t)

has a nontrivial solution in the closed unit ball B1 of L2([0, 1]).

Solution Set H(t, s) = et − s, Tx(t) = ‖x(t)‖, C = [0, 1] and p = 2 in

Theorem 2.4.4.

(i) Assume that {sn} converges weakly to s. Then, for any continuous

linear functional f , we have

|f(H(t, sn))− f(H(t, s))| = |f(sn − s)| = |f(s)− f(sn)|.
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Thus H(t, sn) converges weakly to H(t, s) and so H is weakly continu-

ous with respect to s uniformly on t.

(ii) If x(t) ∈ L2, then clearly

H(t, Tx(t)) = et − ‖x(t)‖ ∈ L2([0, 1]).

(iii) For x(t) ∈ L2([0, 1]) with ‖x(t)‖2 = 1, we get H(t, Tx(t)) = et − 1.

So,

‖H(t, Tx(t))‖2 =

(∫ 1

0

|et − 1|2dt

)1/2

< 1.

(iv) Since

‖H(t, T (0))‖2 = ‖et‖2 =

(∫ 1

0

e2tdt

)1/2

> 1.

So, H does not map B1 into itself and H(t, T (0)) 6= 0.

Now, the conclusion follows from Theorem 2.4.4.



CHAPTER 3

ITERATIVE ALGORITHMS

FOR A FINITE FAMILY OF

MAPPINGS

3.1 Introduction

Finding common fixed points of a finite family {Ti : i = 1, 2, . . . , k} of map-

pings acting on a Hilbert space is a problem that often arises in applied

mathematics. In fact, many algorithms have been introduced for different

classes of mappings with a nonempty set of common fixed points. Unfortu-

nately, the existence results of common fixed points of a family of mappings

are not known in many situations. Therefore, it is natural to consider ap-

proximation results for these classes of mappings. Approximating common

52
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fixed points of a finite family of nonexpansive mappings by iteration has been

studied by many authors (see, for example, Kuhfittig [77], Rhoades [99] and

Takahashi and Shimoji [123]). Ghosh and Debnath [39] proved some conver-

gence results for common fixed points of finite families of quasi-nonexpansive

mappings in a uniformly convex Banach space (see also, Ahmed and Zeyada

[2], Dotson, Jr. [34], Ghosh and Debnath [38, 40], Maiti and Ghosh [82] and

Petryshyn and Williamson, Jr. [94]).

Goebel and Kirk [42], in 1972, introduced the notion of an asymptotically

nonexpansive mapping and established that if C is a nonempty closed convex

bounded subset of a uniformly convex Banach space X and T is an asymp-

totically nonexpansive selfmapping of C, then T has a fixed point. Bose [20]

initiated in 1978, the study of iterative construction for fixed points of as-

ymptotically nonexpansive mappings. Xu and Ori [138], in 2001, introduced

an implicit iteration process for a finite family of nonexpansive mappings.

Sun [117], in 2003, modified this implicit iteration process for a finite family

of asymptotically quasi-nonexpansvie mappings. Khan and Takahashi [73]

have approximated common fixed points of two asymptotically nonexpan-

sive mappings by the modified Ishikawa iteration. Recently, Shahzad and

Udomene [110] established convergence theorems for the modified Ishikawa

iteration of two asymptotically quasi-nonexpansive mappings to a common

fixed point of the mappings.
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For a finite family of mappings, it is desirable to devise a general itera-

tion scheme which extends the modified Mann iteration (1.3.5), the mod-

ified Ishikawa iteration (1.3.6), Khan and Takahashi scheme [73] and the

three-step iteration (1.3.7) by Xu and Noor [133], simultaneously. Thereby,

to achieve this goal,we introduce a new iteration process for a finite fam-

ily {Ti : i = 1, 2, . . . , k} of asymptotically quasi-nonexpansive mappings as

follows:

Let C be a convex subset of a Banach space X and x1 ∈ C. Suppose that

αin ∈ [0, 1], n = 1, 2, 3, . . . and i = 1, 2, . . . , k. Let {Ti : i = 1, 2, . . . , k} be a

family of selfmappings of C. The iteration scheme is defined as follows:

xn+1 = (1− αkn)xn + αknT
n
k y(k−1)n,

y(k−1)n = (1− α(k−1)n)xn + α(k−1)nT
n
k−1 y(k−2)n,

y(k−2)n = (1− α(k−2)n)xn + α(k−2)nT
n
k−2 y(k−3)n,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

y2n = (1− α2n)xn + α2nT n
2 y1n,

y1n = (1− α1n)xn + α1nT n
1 y0n, (3.1.1)

where y0n = xn for all n.

Clearly, the iteration process (3.1.1) generalizes the modified Mann iter-

ation (1.3.5), the modified Ishikawa iteration (1.3.6) and the three-step it-
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eration scheme (1.3.7) from one mapping to the finite family of mappings

{Ti : i = 1, 2, . . . , k}.

Throughout this chapter, we assume that F =
k⋂

i=1

F (Ti).

The main purpose of this chapter is to:

(i) establish a necessary and sufficient condition for convergence of the

iteration scheme (3.1.1) to a common fixed point of a finite family of

asymptotically quasi-nonexpansive mappings in a Banach space;

(ii) prove weak and strong convergence results of the iteration scheme

(3.1.1) to a common fixed point of a finite family of (L−γ) uniform Lip-

schitz and asymptotically quasi-nonexpansive mappings in a uniformly

convex Banach space;

(iii) obtain weak and strong convergence results about common fixed points

of a finite family of quasi-nonexpansive mappings in a Banach space by

a generalized Ishikawa iterative scheme.

Our work is a significant generalization of the corresponding results of Khan

and Takahashi [73], Kuhfittig [77], Petryshyn and Williamson [94], Qihou

[96], Schu [103], Shahzad and Udomene [110], Tan and Xu [126] and Xu and

Noor [133]. Moreover, our results provide analogue of the results of Sun [117],

for the iteration scheme (3.1.1) instead of the implicit iteration.
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3.2 Convergence of Iterative Algorithms

The aim of this section is to prove some results for the iterative process (3.1.1)

to converge to a common fixed point of a finite family of asymptotically quasi-

nonexpansive mappings in a Banach space. We begin with the following:

Lemma 3.2.1 Let C be a nonempty closed convex subset of a Banach space,

and {Ti : i = 1, 2, . . . , k} a family of asymptotically quasi-nonexpansive

selfmappings of C, i.e., ‖T n
i x− pi‖ ≤ (1+uin)‖x− pi‖ for all x ∈ C and pi ∈

F (Ti), i = 1, 2, . . . , k where {uin} are sequences in [0, +∞) with lim
n→∞

uin = 0

for each i. Assume that F 6= φ and
∞∑

n=1

uin < +∞ for each i. Define the

sequence {xn} as in (3.1.1). Then

(a) there exists a sequence {νn} in [0, +∞) such that
∞∑

n=1

νn < +∞ and

‖xn+1 − p‖ ≤ (1 + νn)k‖xn − p‖,

for all p ∈ F and all n;

(b) there exists a constant M > 0 such that

‖xn+m − p‖ ≤ M‖xn − p‖,

for all p ∈ F and n,m = 1, 2, 3, . . .

Proof. (a) Let p ∈ F and

νn = max
1≤i≤k

uin, for all n = 1, 2, 3, . . . .
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Since
∞∑

n=1

uin < +∞ for each i, therefore
∞∑

n=1

νn < +∞. Now we have

‖y1n − p‖ ≤ (1− α1n)‖xn − p‖+ α1n‖T n
1 xn − p‖

≤ (1− α1n)‖xn − p‖+ α1n(1 + u1n)‖xn − p‖

= (1 + α1nu1n)‖xn − p‖

≤ (1 + νn)‖xn − p‖.

Assume that

‖yjn − p‖ ≤ (1 + νn)j‖xn − p‖

holds for some 1 ≤ j ≤ k − 2. Then

‖y(j+1)n − p‖ ≤ (1− α(j+1)n)‖xn − p‖+ α(j+1)n‖T n
j+1 yjn − p‖

≤ (1− α(j+1)n)‖xn − p‖+ α(j+1)n(1 + u(j+1)n)‖yjn − p‖

≤ (1− α(j+1)n)‖xn − p‖+ α(j+1)n(1 + u(j+1)n)(1 + νn)j‖xn − p‖

≤ (1− α(j+1)n)‖xn − p‖+ α(j+1)n(1 + νn)j+1‖xn − p‖

= (1− α(j+1)n)‖xn − p‖

+α(j+1)n

(
1 +

j+1∑
r=1

(j + 1)j · · · (j + 2− r)

r!
νr

n

)
‖xn − p‖

=

[
1 + α(j+1)n

j+1∑
r=1

(j + 1)j · · · (j + 2− r)

r!
νr

n

]
‖xn − p‖

≤ (1 + νn)j+1‖xn − p‖.

Thus, by induction, we have

‖yin − p‖ ≤ (1 + νn)i‖xn − p‖, for all i = 1, 2, . . . , k − 1. (3.2.1)
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Now, by (3.2.1), we obtain

‖xn+1 − p‖ ≤ (1− αkn)‖xn − p‖+ αkn‖T n
k y(k−1)n − p‖

≤ (1− αkn)‖xn − p‖+ αkn(1 + ukn)‖y(k−1)n − p‖

≤ (1− αkn)‖xn − p‖+ αkn(1 + ukn)(1 + νn)k−1‖xn − p‖

≤ (1− αkn)‖xn − p‖+ αkn(1 + νn)k‖xn − p‖

=

[
1− αkn + αkn

(
1 +

k∑
r=1

k(k − 1) · · · (k − r + 1)

r!
νr

n

)]
‖xn − p‖

=

[
1 + αkn

k∑
r=1

k(k − 1) · · · (k − r + 1)

r!
νr

n

]
‖xn − p‖

≤ (1 + νn)k‖xn − p‖.

This completes the proof of (a).

(b) If t ≥ 0, then 1 + t ≤ et and so,

(1 + t)k ≤ ekt, k = 1, 2, . . . .

Thus, from part (a), we get

‖xn+m − p‖ ≤ (1 + νn+m−1)
k‖xn+m−1 − p‖

≤ exp{kνn+m−1}‖xn+m−1 − p‖ ≤ · · ·

≤ exp

{
k

n+m−1∑
i=1

νi

}
‖xn − p‖

≤ exp

{
k

∞∑
i=1

νi

}
‖xn − p‖.

Setting M = exp

{
k

∞∑
i=1

νi

}
, completes the proof. ¥
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The above lemma generalizes Theorem 3.1 for two asymptotically quasi-

nonexpansive mappings by Shahzad and Udomene [110] to the case of any

finite family of such mappings.

The next result deals with a necessary and sufficient condition for the con-

vergence of {xn} generated by the iteration process (3.1.1) to a point of F ;

for this we follow the arguments of Qihou ([96, Theorem 1).

Theorem 3.2.2 Let C be a nonempty closed convex subset of a Ba-

nach space X, and {Ti : i = 1, 2, . . . , k} a family of asymptotically quasi-

nonexpansive selfmappings of C, i.e., ‖T n
i x− pi‖ ≤ (1 + uin)‖x− pi‖, for all

x ∈ C and pi ∈ F (Ti), i = 1, 2, . . . , k. Suppose that F 6= φ, x1 ∈ C and
∞∑

n=1

uin < +∞ for all i. Then the iterative sequence {xn}, defined by (3.1.1),

converges strongly to a common fixed point of the family of mappings if and

only if lim inf
n→∞

d(xn, F ) = 0.

Proof. We will only prove the sufficiency; the necessity is obvious. ¿From

Lemma 3.2.1(a), we have

‖xn+1 − p‖ ≤ (1 + νn)k‖xn − p‖,

for all p ∈ F and all n. Therefore,

d(xn+1, F ) ≤ (1 + νn)kd(xn, F )

=

(
1 +

k∑
r=1

k(k − 1) · · · (k − r + 1)

r!
νr

n

)
d(xn, F ).
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As
∞∑

n=1

νn < +∞, so

∞∑
n=1

k∑
r=1

k(k − 1) · · · (k − r + 1)

r!
νr

n < +∞.

By Lemma 1.3.5 and lim inf
n→∞

d(xn, F ) = 0, we get that

lim
n→∞

d(xn, F ) = 0.

Next, we prove that {xn} is a Cauchy sequence. From Lemma 3.2.1(b), we

have

‖xn+m − p‖ ≤ M‖xn − p‖, for all p ∈ F and all n,m =, 1, 2, 3, . . . (3.2.2)

Since lim
n→∞

d(xn, F ) = 0, therefore for each ε > 0, there exists a natural

number n1 such that

d(xn, F ) ≤ ε

3M
, for all n ≥ n1.

Hence, there exists z1 ∈ F such that

‖xn1 − z1‖ ≤ ε

2M
. (3.2.3)

¿From (3.2.2) and (3.2.3), for all n ≥ n1, we have

‖xn+m − xn‖ ≤ ‖xn+m − z1‖+ ‖xn − z1‖

≤ M‖xn1 − z1‖+ M‖xn1 − z1‖

≤ M
( ε

2M

)
+ M

( ε

2M

)

= ε.
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Thus, {xn} is a Cauchy sequence and so converges to q ∈ X. Finally, we

show that q ∈ F . For any ε > 0, there exists a natural number n2 such that

‖xn − q‖ ≤ ε

2(2 + ν1)
, for all n ≥ n2. (3.2.4)

Again, lim
n→∞

d(xn, F ) = 0 implies that there exists a natural number n3 ≥ n2

such that

d(xn, F ) ≤ ε

3(4 + 3ν1)
, for all n ≥ n3.

Thus, there exists z2 ∈ F such that

‖xn3 − z2‖ ≤ ε

2(4 + 3ν1)
. (3.2.5)

From (3.2.4) and (3.2.5), for any Ti, i = 1, 2, . . . , k, we get

‖Tiq − q‖ = ‖Tiq − z2 + z2 − Tixn3 + Tixn3 − z2 + z2 − xn3 + xn3 − q‖

≤ ‖Tiq − z2‖+ 2‖Tixn3 − z2‖+ ‖xn3 − z2‖+ ‖xn3 − q‖

≤ (1 + ν1)‖q − z2‖+ 2(1 + ν1)‖xn3 − z2‖

+‖xn3 − z2‖+ ‖xn3 − q‖

≤ (1 + ν1)‖xn3 − q‖+ (1 + ν1)‖xn3 − z1‖+ 2(1 + ν1)‖xn3 − z2‖

+‖xn3 − z2‖+ ‖xn3 − q‖

= (2 + ν1)‖xn3 − q‖+ (4 + 3ν1)‖xn3 − z2‖

≤ (2 + ν1)
ε

2(2 + ν1)
+ (4 + 3ν1)

ε

2(4 + 3ν1)

= ε.
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Since ε is arbitrary, therefore

‖Tiq − q‖ = 0, for all i,

i.e., Tiq = q, i = 1, 2, . . . , k. Thus q ∈ F . ¥

Remark 3.2.3 Theorem 3.2.2 contains as special cases, Theorem 3.2 of

Shahzad and Udomene [110] and Theorem 1 by Qihou [96] together with its

Corollaries 1 and 2, which are themselves extensions of the results of Ghosh

and Debnath [40] and Petryshyn and Williamson [94].

An asymptotically nonexpansvie mapping is asymptotically quasi-nonexpansive,

so we have:

Corollary 3.2.4 Let C be a nonempty closed convex subset of a Banach

space X, and {Ti : i = 1, 2, . . . , k} a family of asymsptotically nonexpansive

selfmappings of C, i.e., ‖T n
i x−T n

i y‖ ≤ (1 + uin)‖x− y‖, for all x, y ∈ C and

i = 1, 2, . . . , k. Suppose that F 6= φ, x1 ∈ C and
∞∑

n=1

uin < +∞, for all i.

Then the iterative sequence {xn}, defined by (3.1.1), converges strongly to a

point p ∈ F if and only if lim inf
n→∞

d(xn, F ) = 0.

Corollary 3.2.5 Let C, {Ti : i = 1, 2, . . . , k}, F and uin be as in Theorem

3.2.2. Then the iterative sequence {xn}, defined by (3.1.1), converges strongly

to a point p ∈ F if and only if there exists a subsequence {xnj
} of {xn} which

converges to p.
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Corollary 3.2.6 Let C be a nonempty closed convex subset of a Banach

space X, and {Ti : i = 1, 2, . . . , k} a family of asymptotically nonexpansive

selfmappings of C. Suppose that F 6= φ, x1 ∈ C and
∞∑

n=1

uin < +∞ for

all i. Let {xn} be the sequence defined by (3.1.1). If lim
n→∞

‖xn − Tixn‖ = 0,

i = 1, 2, . . . , k and one of the mappings is semi-compact, then {xn} converges

strongly to p ∈ F .

Proof. Let T` be semi-compact for some 1 ≤ ` ≤ k. Then there exists a

subsequence {xnj
} of {xn} such that xnj

→ p ∈ C. Hence

‖p− Tip‖ = lim
nj→∞

‖xnj
− Tixnj

‖ = 0, for all i = 1, 2, . . . , k.

Thus, p ∈ F and by Corollary 3.2.5, {xn} converges strongly to a common

fixed point of the family of mappings. ¥

Theorem 3.2.7 Let C, {Ti : i = 1, 2, . . . , k}, F and uin be as in Theorem

3.2.2. Suppose that there exists a mapping Tj which satisfies the following

conditions:

(i) lim
n→∞

‖xn − Tjxn‖ = 0;

(ii) there exists a constant M such that

‖xn − Tjxn‖ ≥ Md(xn, F ), for all n.
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Then the sequence {xn}, defined by (3.1.1), converges strongly to a point

p ∈ F .

Proof. From (i) and (ii), it follows that lim
n→∞

d(xn, F ) = 0. By Theorem

3.2.2, {xn} converges strongly to a common fixed point of the family of

mappings. ¥

3.3 Results in Uniformly Convex Banach

Spaces

In this section, we establish some weak and strong convergence results for the

iterative scheme (3.1.1) by removing the condition lim inf
n→+∞

d(xn, F ) = 0 from

the results obtained in Section 3.2; for this we have to consider the class of

(L− γ) uniform Lipschitz and asymptotically quasi-nonexpansive mappings

on a uniformly convex Banach space.

Lemma 3.3.1 Let C be a nonempty closed convex subset of a uniformly

convex Banach space X, and {Ti : i = 1, 2, 3, . . . , k} a family of (L − γ)

uniform Lipschitz and asymptotically quasi-nonexpansive selfmappings of C,

i.e., ‖T n
i x − pi‖ ≤ (1 + uin)‖x − pi‖ for all x ∈ C and pi ∈ F (Ti), where

{uin} are sequences in [0,∞) with
∞∑

n=1

uin < ∞, for each i ∈ {1, 2, 3, . . . , k}.

Assume that F 6= φ and the sequence {xn} is as in (3.1.1) with αin ∈ [δ, 1−δ]

for some δ ∈ (
0, 1

2

)
. Then
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(i) lim
n→∞

‖xn − p‖ exists for all p ∈ F ;

(ii) lim
n→∞

‖xn − T n
j y(j−1)n‖ = 0, for each j = 1, 2, , . . . , k;

(iii) lim
n→∞

‖xn − Tjxn‖ = 0, for each j = 1, 2, . . . , k.

Proof. Let p ∈ F and νn = max
1≤i≤k

uin, for all n.

(i) By Lemma 1.3.5(i) and Lemma 3.2.1(a), it follows that

lim
n→∞

‖xn − p‖ exists for all p ∈ F.

Assume that

lim
n→∞

‖xn − p‖ = c. (3.3.1)

(ii) The inequality (3.2.1) and (3.3.1) give that

lim sup
n→∞

‖yjn − p‖ ≤ c, for 1 ≤ j ≤ k − 1. (3.3.2)

We also note that:

‖xn+1 − p‖ = ‖(1− αkn)(xn − p) + αkn(T n
k y(k−1)n − p)‖

≤ (1− αkn)‖xn − p‖+ αkn(1 + vn)‖y(k−1)n − p‖

· · · · · · · · · · · ·

≤ (1− αknα(k−1)n · · ·α(j+1)n)(1 + vn)k−j‖xn − p‖

+αknα(k−1)n · · ·α(j+1)n(1 + vn)k−j‖yjn − p‖.



66

Therefore,

‖xn − p‖ ≤ ‖xn − p‖
δk−j

− ‖xn+1 − p‖
δk−j(1 + vn)k−j

+ ‖yjn − p‖

and hence

c ≤ lim inf
n→∞

‖yin − p‖, for 1 ≤ j ≤ k − 1. (3.3.3)

¿From (3.3.2) and (3.3.3), we have

lim
n→∞

‖yjn − p‖ = c, for each j = 1, 2, 3, . . . , k − 1.

That is,

lim
n→∞

‖(1− αjn)(xn − p) + αjn(T n
j y(j−1)n − p)‖ = c,

for each j = 1, 2, 3, . . . , k − 1.

Also, from (3.3.2), we obtain

lim sup
n→∞

‖T n
j y(j−1)n − p‖ ≤ c, for each j = 1, 2, 3, . . . , k − 1.

By Lemma 1.3.6, we get

lim
n→∞

‖T n
j y(j−1)n − xn‖ = 0, for each j = 1, 2, 3, . . . , k − 1. (3.3.4)

For the case j = k, by (3.2.1), we have

‖T n
k y(k−1)n − p‖ ≤ (1 + ukn)‖y(k−1)n − p‖

≤ (1 + ukn)(1 + νn)k−1‖xn − p‖.
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But lim
n→∞

‖xn − p‖ = c, by part (i). So,

lim sup
n→∞

‖T n
k y(k−1)n − p‖ ≤ c.

Moreover,

lim
n→∞

‖(1− αkn)(xn − p) + αkn(T n
k y(k−1)n − p)‖ = lim

n→∞
‖xn+1 − p‖ = c.

Again by Lemma 1.3.6, we get

lim
n→∞

‖xn − T n
k y(k−1)n‖ = 0. (3.3.5)

Thus, (3.3.4) and (3.3.5) imply that

lim
n→∞

‖T n
j y(j−1)n − xn‖ = 0, for each j = 1, 2, 3, . . . , k. (3.3.6)

(iii) For j = 1, from part (ii), we have

lim
n→∞

‖T n
1 xn − xn‖ = 0.

If j = 2, 3, 4, . . . , k, then we have

‖T n
j xn − xn‖ = ‖(T n

j xn − T n
j y(j−1)n) + (T n

j y(j−1)n − xn)‖

≤ L‖xn − y(j−1)n‖γ + ‖T n
j y(j−1)n − xn‖

= L(α(j−1)n‖xn − T n
j−1y(j−2)n‖)γ + ‖T n

j y(j−1)n − xn‖ → 0.

Hence,

||T n
j xn − xn‖ → 0 as n →∞, for 1 ≤ j ≤ k. (3.3.7)
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Let us observe that:

‖xn − Tjxn‖ ≤ ‖xn − xn+1‖+ ‖xn+1 − T n+1
j xn+1‖

+‖T n+1
j xn+1 − T n+1

j xn‖+ ‖T n+1
j xn − Tjxn‖

≤ αkn‖xn − T n
k y(k−1)n‖+ ‖xn+1 − T n+1

j xn+1‖

+L(αkn‖xn − T n
k y(k−1)n‖)γ + L‖T n

j xn − xn‖γ.

Using (3.3.6) and (3.3.7), we get

lim
n→∞

‖xn − Tjxn‖ = 0, for 1 ≤ j ≤ k.

¥

Theorem 3.3.2 Let C be a nonempty closed convex subset of a uniformly

convex Banach space X satisfying the Opial property and let {Ti : i =

1, 2, 3, . . . , k} be a family of (L − γ) uniform Lipschitz and asymsptoticaly

quasi-nonexpansive selfmappings of C, i.e., ‖T n
i x − pi‖ ≤ (1 + uin)‖x − pi‖

for all x ∈ C and pi ∈ F (Ti), i = 1, 2, 3, . . . , k where {uin} are sequences

in [0,∞) with
∞∑

n=1

uin < ∞ for each i = 1, 2, 3 . . . , k. Let the sequence {xn}

be as in (3.1.1) with αin ∈ [δ, 1 − δ] for some δ ∈ (
0, 1

2

)
. If F 6= φ and each

I − Ti, i = 1, 2, 3, . . . , k, is demiclosed at 0, then {xn} converges weakly to a

common fixed point of the family {Ti : i = 1, 2, 3, . . . , k}.

Proof. Let p ∈ F . Then lim
n→∞

‖xn − p‖ exists as proved in Lemma 3.3.1(i)
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and hence {xn} is bounded. Since a uniformly convex Banach space is re-

flexive, there exists a subsequence {xnj
} of {xn} converging weakly to some

z1 ∈ C. By Lemma 3.3.1,

lim
n→∞

‖xn − Tixn‖ = 0, for i = 1, 2, . . . , k.

Since I − Ti is demiclosed at 0 for i = 1, 2, 3, . . . , k, so we obtain Tiz1 = z1.

That is, z1 ∈ F . In order to show that {xn} converges weakly to z1, take

another subsequence {xnk
} of {xn} converging weakly to some z2 ∈ C. Again,

as above, we can prove that z2 ∈ F . Next, we show that z1 = z2. Assume

z1 6= z2. Then by the Opial property

lim
n→∞

‖xn − z1‖ = lim
nj→∞

‖xnj
− z1‖

< lim
nj→∞

‖xnj
− z2‖

= lim
n→∞

‖xn − z2‖

= lim
nk→∞

‖xnk
− z2‖

< lim
nk→∞

‖xnk
− z1‖

= lim
n→∞

‖xn − z1‖.

This contradiction proves that {xn} converges weakly to a common fixed

point of the family {Ti : i = 1, 2, 3, . . . , k}. ¥

Theorem 3.3.3 Under the hypotheses of Lemma 3.3.1, assume that, for
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some 1 ≤ i ≤ k, Tm
i is semi-compact for some positive integer m. Then

{xn} converges strongly to some common fixed point of the family {Tj : j =

1, 2, 3, . . . , k}.

Proof. By Lemma 3.3.1(iii), we have

lim
n→∞

‖xn − Tjxn‖ = 0, for 1 ≤ j ≤ k. (3.3.8)

Fix i ∈ {1, 2, 3, . . . , k} and suppose Tm
i to be semi-compact for some m ≥ 1.

¿From (3.3.8), we obtain

‖Tm
i xn − xn‖ ≤ ‖Tm

i xn − Tm−1
i xn‖+ ‖Tm−1

i xn − Tm−2
i xn‖

+ · · ·+ ‖T 2
i xn − Tixn‖+ ‖Tixn − xn‖

≤ ‖Tixn − xn‖+ (m− 1)L‖Tixn − xn‖γ → 0.

Since {xn} is bounded and Tm
i is semi-compact, {xn} has a convergent sub-

sequence {xnj
} such that xnj

→ q ∈ C. Hence, from (3.3.8), we have

‖q − Tiq‖ = lim
n→∞

‖xnj
− Tixnj

‖ = 0, for all i = 1, 2, 3, . . . , k.

Thus q ∈ F and by Corollary 3.2.5, {xn} converges strongly to a common

fixed point q of the family {Ti : i = 1, 2, 3, . . . , k}. ¥

Our results in Chapter 2 can be used to guarantee the existence of a unique

common fixed point of families of two or four mappings. We apply Theorem

2.2.1 and Theorem 2.2.4 to obtain the following two results, respectively.
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Theorem 3.3.4 Let C be a nonempty closed convex subset of a uniformly

convex Banach space X satisfying Opial’s property, and S and T be (L− γ)

uniform Lipschitz and asymptotically quasi-nonexpansive selfmappings of C

with
∞∑

n=1

un < +∞ and
∞∑

n=1

νn < +∞ ({un} and {νn} are the corresponding

sequences for S and T, respectively). Suppose that S and T are weakly

compatible, and I − S and I − T are demiclosed at 0. If the conditions (i)

- (iii) in Theorem 2.2.1 are satisfied (where f = S and g = T ), then the

modified Ishikawa iteration scheme (1.3.6), with αn, βn ∈ [δ, 1 − δ] for some

δ ∈ (0, 1
2
), converges weakly to a unique common fixed point of S and T.

Proof. By Theorem 2.2.1, there exists p ∈ C such that p is a unique common

fixed point of S and T. Now, by Theorem 3.3.2, {xn} converges weakly to p.

Theorem 3.3.5 Let C be a nonempty closed convex subset of a uniformly

convex Banach space X, and {Ti : i = 1, 2, 3, 4} be a family of (L − γ)

uniform Lipschitz and asymptotically quasi-nonexpansive selfmappings of C

with
∞∑

n=1

uin < +∞, i = 1, 2, 3, 4 ({uin} is the corresponding sequence for Ti).

Suppose that I − Ti, i = 1, 2, 3, 4, are demiclosed at 0, and the pairs (T1, T3)

and (T2, T4) are weakly compatible. If the conditions (i)-(iii) in Theorem

2.2.4 are satisfied (where f = T1, g = T2, p = T3, q = T4), then the seuence

{xn}, defined by (3.1.1) where k = 4 and αin ∈ [δ, 1− δ] for some δ ∈ (0, 1
2
),

converges weakly to a unique common fixed point of T1, T2, T3 and T4.
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Proof. By Theorem 2.2.4, the mappings T1, T2, T3 and T4 have a unique

common fixed point p ∈ C. Now, Theorem 3.3.2 implies that {xn} converges

weakly to p.

3.4 Asymptotically Nonexpansive Mappings

The family of (L−γ) uniform Lipschitz and asymptotically quasi-nonexpansive

mappings in Lemma 3.3.1 can be replaced by a family of asymptotically non-

expansive mappings. We state this result as follows; the proof is similar to

that of Lemma 3.3.1.

Lemma 3.4.1 Let C be a nonempty closed convex subset of a uniformly

convex Banach space X, and {Ti : i = 1, 2, . . . , k} a family of asymptotically

nonexpansive selfmappings of C. Assume that F 6= φ and
∞∑
i=1

uin < ∞ for

each i = 1, 2, . . . , k. Let {xn} be as in (3.1.1) with αin ∈ [δ, 1 − δ] for some

δ ∈ (
0, 1

2

)
. Then (i), (ii) and (iii) of Lemma 3.3.1 hold.

Remark 3.4.2 Note that

(a) Lemma 3.3.1(i) extends Lemma 2.1 of Tan and Xu [126]. Lemma

3.3.1(ii) extends Theorem 3.3 of Shahzad and Udomene [110] for two

uniformly continuous asymptotically quasi-nonexpansive mappings to

any finite family of (L−γ) uniform Lipschitz and asymptotically quasi-
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nonexpansive mappings.

(b) Lemma 3.4.1(ii) and Lemma 3.4.1(iii) contain as special cases, Lemma

2.2 of Xu and Noor [133] and Lemma 1.5 of Schu [103], respectively.

On the lines of the proof of Theorem 3.3.2 and using Lemma 1.3.10 and

Lemma 3.4.1, the following result can be easily proved.

Theorem 3.4.3 Under the hypotheses of Lemma 3.4.1, assume that the

space X satisfies the Opial property. Then the sequence {xn} converges

weakly to a common fixed point of the family of mappings.

The special cases of Theorem 3.4.3 are Theorems 3.1-3.2 of Tan and Xu

[126] and Theorem 2.1 due to Schu [103].

Following the arguments of the proof of Theorem 3.3.3, we can prove:

Theorem 3.4.4 Under the assumptions of Lemma 3.4.1, suppose that, for

some 1 ≤ i ≤ k, and a positive integer m, Tm
i is semi-compact. Then {xn}

converges strongly to some common fixed point of the family of mappings.

The above theorem contains as a special case, Theorem 2.2 of Schu [103].

Remark 3.4.5 To guarantee the existence of a common fixed point of a finite

family of asymptotically nonexpansive mappings, one can use, for example,

Theorem 1.3.12 for a commutative semigroup of such mappings.
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Remark 3.4.6 Theorem 3.2.2, Corollary 3.2.5, Theorem 3.3.3 and Theorem

3.4.4 about the iteration scheme (3.1.1) are analogues of Theorem 3.1, Corol-

lary 3.2, Theorem 3.3 and Theorem 3.4, in the context of implcit iteration

process, by Sun [117], respectively.

3.5 Quasi-Nonexpansive Mappings

We introduce a generalization of the Ishikawa iterative scheme by improving

the Kuhfittig iteration scheme (1.3.3) as follows:

Definition 3.5.1 Let C be a convex subset of a Banach space X, x1 ∈

C, U0 = I (the identity mapping on C), αn, βjn ∈ (0, 1], for all n =

1, 2, 3, . . . , and j = 1, 2, . . . , k, and {Ti : i = 1, 2, . . . , k} be a family of

selfmappings of C. We define a generalization of Ishikawa iterative scheme

as:

U1 = (1− β1n)I + β1nT1U0,

U2 = (1− β2n)I + β2nT2U1,

· · · · · · · · · · · · · · · · · · · · ·

Uk = (1− βkn)I + βknTkUk−1,

xn+1 = (1− αn)xn + αnTkUk−1 xn .
(3.5.1)

Indeed, if k = 2 and T1 = T2 = T in (3.5.1), then we get the Ishikawa

iteration (1.3.2).
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We present strong and weak convergence results of the generalized Ishikawa

successive approximations (3.5.1) to a common fixed point of a family of

quasi-nonexpansive mappings {Ti : i = 1, 2, . . . , k} in the context of a Banach

space.

Theorem 3.5.2 Let C be a nonempty closed convex subset of a strictly con-

vex Banach space X, and {Ti : i = 1, 2, . . . , k} a family of quasi-nonexpansive

selfmappings of C with F 6= φ. Then the sequence {xn}, defined by (3.5.1),

converges strongly to a common fixed point of the family if and only if

lim
n→∞

inf d(xn, F ) = 0.

Proof. The necessity is obvious. Thus we will only prove the sufficiency. It

is easy to see that the families {U1, . . . , Uk} and {T1, . . . , Tk} have the same

set of common fixed points. We prove that Uj and TjUj−1, j = 1, 2, . . . , k

are quasi-nonexpansive selfmappings of C. Let p ∈ F . Clearly, T1U0 is

quasi-nonexpansive. Now,

‖U1x− p‖ = ‖(1− β1n)x + β1nT1x− (1− β1n)p− β1n p‖

≤ (1− β1n)‖x− p‖+ β1n‖T1x− p‖

≤ (1− β1n)‖x− p‖+ β1n‖x− p‖

= ‖x− p‖.
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So, U1 is quasi-nonexpansive. Subsequently,

‖T2U1x− p‖ ≤ ‖U1x− p‖ ≤ ‖x− p‖,

and hence, T2U1 is quasi-nonexpansive.

Similarly, we can prove that U2 is quasi-nonexpansive.

Repeating this procedure, we prove that Uj and TjUj−1, j = 1, 2, . . . , k

are quasi-nonexpansive.

If p ∈ F , then in view of the fact that {T1, . . . , Tk} and {U1, . . . , Uk} have

the same common fixed points, p ∈
k⋂

i=1

F (Ui); therefore, p ∈ F (TkUk−1) and

so F ⊆ F (TkUk−1). Thus,

lim
n→∞

inf ‖xn − F (TkUk−1)‖ = 0

because lim inf
n→∞

‖xn − F‖ = 0.

By Theorem 1.3.8, the sequence {xn} defined by (3.5.1) converges strongly

to a fixed point y of TkUk−1.

Next we show that y is a common fixed point of Tk and Uk−1 (k ≥ 2). For

this, we first show that Tk−1Uk−2 y = y. Suppose not; then the closed line

segment [y, Tk−1Uk−2 y] has positive length. Let

z = Uk−1 y = (1− β(k−1)n) y + β(k−1)nTk−1Uk−2 y.

Since F 6= φ and {T1, . . . , Tk} and {U1, . . . , Uk} have the same common fixed

points, therefore

Tk−1Uk−2 p = p, for p ∈ F.
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By the quasi-nonexpansiveness of TkUk−2 and Tk, we get

‖Tk−1Uk−2 y − p‖ ≤ ‖y − p‖ (3.5.2)

and

‖Tkz − p‖ ≤ ‖z − p‖.

In view of Tkz = TkUk−1 y = y, it follows that

‖y − p‖ ≤ ‖z − p‖.

As X is strictly convex, for noncollinear vectors a and b in X, we have

‖a + b‖ < ‖a‖+ ‖b‖ (see [130, Definition 4.1.1]). This implies that

‖y − p‖ ≤ ‖z − p‖

= ‖(1− β(k−1)n) y + β(k−1)nTk−1Uk−2 y

−(1− β(k−1)n) p− β(k−1)n p‖

< (1− β(k−1)n)‖y − p‖+ β(k−1)n‖Tk−1Uk−2 y − p‖.

So, we get

‖y − p‖ < ‖Tk−1Uk−2 y − p‖

which contradicts (3.5.2). Hence,

Tk−1Uk−2 y = y.

Subsequently,

Uk−1 y = (1− β(k−1)n)y + β(k−1)nTk−1Uk−2 y = y
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and

y = TkUk−1 y = Tk y.

Thus, y is a common fixed point of Tk and Uk−1.

Since Tk−1Uk−2 y = y, we may repeat the above procedure to show that

Tk−2Uk−3 y = y

and thereby y must be a common fixed point of Tk−1 and Uk−2. Continuing

in this manner, we conclude that T1U0 y = y and y is a common fixed point of

T2 and U1. Consequently, y is a common fixed point of {Ti : i = 1, 2, . . . , k}.

¥

Corollary 3.5.3 Let C be a nonempty weakly compact convex subset of a

strictly convex Banach space, and {Ti : i = 1, 2, . . . , k} a commutative family

of quasi-nonexpansive selfmappings of C. Then the sequence {xn}, defined

by (3.5.1), converges strongly to a common fixed point of the family if and

only if lim inf
n→∞

d(xn, F ) = 0.

Proof. By Theorem 1.3.11, it follows that F 6= φ. Since C is weakly

compact, therefore it is closed strongly. The result follows from Theorem

3.5.2. ¥
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Theorem 3.5.4 Let C be a nonempty closed convex subset of a uniformly

convex Banach space X, and {Ti : i = 1, 2, . . . , k} a family of quasi-nonexpansive

selfmappings of C with F 6= φ. Let {xn} be defined by (3.5.1) with 0 < a ≤

αn ≤ b < 1 and 0 < βjn ≤ β < 1. If the map TkUk−1 satisfies the Condition

B (see Section 1.3), then {xn} converges strongly to a common fixed point

of the family.

proof. A uniformly convex space is strictly convex, so one can use the

arguments of the proof of Theorem 3.5.2 with the exception that we will

employ Theorem 1.3.9 in lieu of Theorem 1.3.8. ¥

Remark 3.5.5 Note that Theorem 3.5.4 is an extension of Theorem 1 of

Maiti and Ghosh [82], and Theorems 1 and 2 of Senter and Dotson, Jr. [104].

Theorem 3.5.6 Let C be a nonempty closed convex subset of a Banach

space X, and {Ti : i = 1, 2, . . . , k} a family of quasi-nonexpansive self-

mappings of C with F 6= φ. Then the sequence {xn}, defined by (3.5.1),

converges strongly to a common fixed point of the family if and only if

lim inf
n→∞

d(xn, F ) = 0.

Proof. Similar to that of Theorem 3.2.2 and hence is omitted. ¥
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In the sequel, we obtain some results for a family of nonexpansive mappings

{Ti : i = 1, 2, . . . , k} without the condition lim inf
n→∞

d(xn, F ) = 0.

Theorem 3.5.7 Let C be a compact convex subset of a strictly convex

Banach space X, and {Ti : i = 1, 2, . . . , k} a family of nonexpansive self-

mappings of C with F 6= φ. Then the sequence {xn}, defined by (3.5.1) with

{αn} satisfying Condition A (see Section 1.3) and βjn = βj for all n and

j = 1, 2, . . . , k, converges strongly to a common fixed point of the family.

Proof. It is easy to show that Uj and TjUj−1, j = 1, 2, . . . , k are nonexpan-

sive selfmappings of C, and the families {T1, . . . , Tk} and {U1, . . . , Uk} have

the same set of common fixed points.

By Theorem 1.3.7, the sequence {xn} defined by (3.5.1) converges strongly

to a fixed point y of TkUk−1. The rest of the proof is similar to that of

Theorem 3.5.2 and is omitted. ¥

Corollary 3.5.8 [77, Theorem 1]. Let C be a compact convex subset of

a strictly convex Banach space X, and {Ti : i = 1, 2, . . . , k} a family of

nonexpansive selfmappings of C with F 6= φ. Then the iterative sequence

{xn} in (1.3.3), converges strongly to a common fixed point of the family.

The following result is an improvement of the theorem of Rhoades [99] in
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the sense that we use (3.5.1) instead of (1.3.3); the same proof carries over

for the modified scheme.

Theorem 3.5.9 Let C be a closed convex subset of a uniformly convex

Banach space X, and {Ti : i = 1, 2, . . . , k} a family of nonexpansive selfmap-

pings of C with F 6= φ. Then the sequence {xn}, defined by (3.5.1) with {αn}

satisfying Condition A and βjn = βj for all n and j = 1, 2, . . . , k, converges

weakly to a common fixed point of the family.

Remark 3.5.10 (i) Theorem 3.5.6 is an extension of Corollary 1 of Qihou

[96] for a family of quasi-nonexpansive mappings; this corollary of Qihou

itself improves Theorem 1.1 and 1.1 ′ of Petryshyn and Williamson [94] and

Theorem 3.1 of Ghosh and Debnath [40].

(ii) Theorem 3.5.6 generalizes Theorem 3.5.9 to an arbitrary Banach space

setting where the iteration scheme (3.5.1) converges strongly to a common

fixed point of a finite family of quasi-nonexpansive mappings.



CHAPTER 4

COINCIDENCES OF

LIPSCHITZ TYPE HYBRID

MAPPINGS

4.1 Introduction

Pant [88] generalized weak commutativity of mappings to R-weak com-

mutativity and then, in [89], he introduced the notion of pointwise R-weak

commuting mappings which extends R-weak commutativity and compati-

bility, simultaneously. Pant and Pant [91], obtained a unique common fixed

point of two noncompatible pointwise R-weakly commuting selfmappings un-

der a strict contractive condition on a metric space.

82
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Singh and Mishra [112] considered the notion of (IT )-commutativity for a

hybrid pair of a single-valued and a multivalued mapping and proved that R-

weakly commuting hybrid pairs need not be weakly compatible (see [112, Ex-

ample 1]). Recently, Kamran [64] introduced that the concept “f is T -weakly

commuting” for hybrid mappings f and T to generalize (IT)-commuting map-

pings (see [64, Example 3.8]); then he extended Theorem 1 of Aamri and El

Moutawakil [1] to hybrid selfmappings f and T where f is T -weakly com-

muting. Singh and Hashim [111] generalized the results in [1] for a hybrid

pair of (IT)-commuting nonself mappings under strict contractive conditions

(see also, Chang [24] and Sastry et al. [102]).

In this chapter, we establish new coincidence and common fixed point re-

sults for hybrid mappings (not necessarily continuous) satisfying Lipschitz

type conditions on a metric space. Our results extend the results of Kam-

ran [64] and Singh and Hashim [111]. As applications, we demonstrate the

existence of common fixed points from the set of best approximations in

metric spaces. Further, we provide a solution of an eigenvalue problem for a

multivalued mapping on a normed space.
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4.2 Coincidences of Hybrid Mappings

We obtain some coincidence and common fixed point theorems for a hy-

brid pair of mappings (not necessarily continuous) satisfying the property

(E.A) and Lipschitz type conditions on a metric space X. We begin with a

generalization of Theorems 3.4 and 3.10 of Kamran [64] and Theorem 3.1

due to Singh and Hashim [111] (see also Theorem 2.1 of Pant and Pant [91]);

the Lipschitz type condition we use, on the one hand, is simpler than their

contractive conditions and on the other hand, contains as a special case the

condition due to Pant [90].

Theorem 4.2.1 Let Y ⊆ X, S : Y → C(X) and f : Y → X be such that:

(i) f and S satisfy the property (E.A); i.e., there exists a sequence {xn}

in Y such that lim
n→∞

Sxn = A ∈ C(X) and lim
n→∞

fxn = t ∈ A;

(ii) fY is a complete subspace or SY is a complete subspace with SY ⊆

fY ;

(iii) for all xn, n = 1, 2, 3, . . . and a ∈ Y with fa = t, the following Lipschitz

type condition holds:

H(Sxn, Sa) ≤ (1 + un) max {rnd(fxn, fa),

rnd(Sxn, fxn) + αnd(Sa, fa),

rnd(Sxn, fa) + αnd(Sa, fxn)} (4.2.1)
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where {un}, {rn} and {αn} are sequences in [0, +∞) with lim
n→∞

un =0,

lim
n→∞

rn =r and lim
n→∞

αn = α, for some r ∈ [0, +∞) and α ∈ [0, 1).

Then a is a coincidence point of S and f. Moreover, if fa ∈ Y , f is S-weakly

commuting at a and ffa = fa, then S and f have a common fixed point.

Proof. If fY is complete, then lim
n→∞

fxn = t = fa for some a ∈ Y. We

show that fa ∈ Sa Suppose not; taking the limit as n → ∞ in (4.2.1), we

get

H(A, Sa) ≤ max{rd(fa, fa), r d(A, fa) + αd(Sa, fa),

r d(A, fa) + αd(Sa, fa)}

= α d(Sa, fa).

Since fa = t ∈ A, it follows from the definition of the Hausdorff metric H

that

d(fa, Sa) ≤ H(A, Sa) ≤ αd(Sa, fa).

Since 0 ≤ α < 1, we get a contradiction. Thus fa ∈ Sa.

Now assume that fa ∈ Y , f is S-weakly commuting at a and ffa = fa.

Thus fa = ffa ∈ Sfa and so fa is a common fixed point of S and f.

Similarly the case SY is complete and SY ⊆ fY can be verified. ¥

The following example shows that our Theorem extends substantially The-
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orems 3.4 and 3.10 of Kamran [64] and Theorem 3.1 of Singh and Hashim

[111].

Example 4.2.2 Let X be the space of usual reals. Define fx = x2 and

Sx =

{
[0, x3] if x ≥ 0

[x3, 0] if x < 0

Note that the contractive condition of Theorem 3.1 in [111] is not satisfied;

in particular, the contractive condition of Theorems 3.4 and 3.10 in [64] does

not hold (take x = 2 and y = 0). Hence those theorems are not applicable

here. Now, f and S satisfy the property (E.A) for the sequences
{

1
n

}
and

{
1− 1

n

}
; in case of

{
1
n

}
; t = 0, a = 0 and (4.2.1) is satisfied because

H

(
S

(
1

n

)
, S(0)

)
=

1

n3
≤ 1

n2
= d

(
f

(
1

n

)
, f(0)

)
.

Same concerns the case of the sequence
{
1− 1

n

}
. All the conditions of The-

orem 4.2.1 are satisfied and S and f have common fixed points 0 and 1.

Corollary 4.2.3 Let Y ⊆ X and f, g : Y → X be such that:

(i) f and g satisfy the property (E.A); i.e., there exists a sequence {xn} in

Y such that lim
n→∞

fxn = lim
n→∞

gxn = t ∈ X;

(ii) fY is a complete subspace or gY is a complete subspace with gY ⊆ fY ;

(iii) for all xn, n = 1, 2, 3, . . . and a ∈ Y with fa = t, the following condition
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holds:

d(gxn, ga) ≤ (1 + un) max{rnd(fxn, fa),

rnd(gxn, fxn) + αnd(ga, fa),

rnd(gxn, fa) + αnd(ga, fxn)}

where {un}, {rn} and {αn} are as in the statement of Theorem 4.2.1.

Then a is a coincidence point of f and g. Further, if fa ∈ Y , f and g are

weakly compatible and ffa = fa, then f and g have a common fixed point.

Proof. By Theorem 4.2.1, a is a coincidence point of f and g. Since f and

g are weakly compatible, it follows that

ffa = fga = gfa = gga.

Thus ga is a common fixed point of f and g. ¥

Remark 4.2.4 If the condition (iii) in Corollary 4.2.3 is replaced by the

following condition: for all x, y ∈ Y with x 6= y,

d(gx, gy) < max{d(fx, fy), r d(gx, fx) + α d(gy, fy),

1

2
[d(gx, fy) + d(gy, fx)]}

where r ∈ [0, +∞) and α ∈ [0, 1), then f and g have a unique common

fixed point. Moreover, if r = α = 1
2
, then we obtain Corollary 3.6 of Singh
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and Hashim [111] which itself is an extension of Theorem 1 of Aamri and El

Moutawakil [1].

The following result extends Theorem 4 of Sastry and Murthy [101] which

itself is a generalization of the Theorem of Pant [90].

Theorem 4.2.5 Let Y ⊆ X and f, g : Y → X be such that:

(i) f and g satisfy the property (E.A);

(ii) fY is complete or gY is complete with gY ⊆ fY ;

(iii) g is f -continuous; i.e., if fxn → fx, then gxn → gx whenever {xn} is

a sequence in Y and x ∈ Y.

Then f and g have a coincidence point. Further, if a is a coincidence point

of f and g such that fa ∈ Y , f and g are weakly compatible, and

d(fa, ffa) 6= max{d(fa, gfa), d(ffa, gfa)}

whenever the right hand side is nonzero, then f and g have a common fixed

point.

Proof. By (i), there exists a sequence {xn} in Y such that

lim
n→∞

fxn = lim
n→∞

gxn = t, for some t ∈ X.
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If fY is complete, then

lim
n→∞

fxn = fa, for some a ∈ Y.

By (iii), lim
n→∞

gxn = ga. Thus fa = ga. Weak compatibility of f and g implies

that fga = gfa and so

ffa = fga = gfa = gga.

Suppose ffa 6= fa, then

d(fa, ffa) 6= max{d(fa, gfa), d(gfa, ffa)} = d(fa, ffa)

a contradiction. Thus fa = ffa = gfa; i.e., fa is a common fixed point of

f and g. ¥

The following theorem concerning four mappings improves upon Theorem

3.2 in [111] (compare the result with [1, Theorem 2] and [91, Theorem 2.3]).

Theorem 4.2.6 Let Y ⊆ X, S, T : Y → C(X) and f, g : Y → X be such

that:

(i) there exists a sequence {xn} in Y such that

lim
n→∞

Txn = A ∈ C(X) and lim
n→∞

gxn = t ∈ A;
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(ii) fY or TY is a complete subspace, gY or SY is a complete subspace,

SY ⊆ gY and TY ⊆ fY ;

(iii) for any sequence {yn} in Y with lim
n→∞

gyn = t and each x ∈ Y with

yn 6= x, the following condition holds:

H(Sx, Tyn) ≤ (1 + un) max{rnd(fx, gyn),

αn[d(gyn, T yn) + d(fx, Sx)],

αn[d(fx, Tyn) + d(gyn, Sx)]} (4.2.2)

where {un}, {rn} and {αn} are sequences in [0, +∞) with lim
n→∞

un =0,

lim
n→∞

rn =r, lim
n→∞

αn = α, for some r ∈ [0, +∞) and α ∈ [0, 1).

Then:

(a) f and S have a coincidence point, and g and T have a coincidence

point;

(b) if a is a coincidence point of f and S with fa ∈ Y , f is S-weakly

commuting at a and ffa = fa, then f and S have a common fixed

point;

(c) if b is a coincidence point of g and T with gb ∈ Y , g is T -weakly

commuting at b and ggb = gb, then g and T have a common fixed

point;
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(d) S, T, f and g have a common fixed point provided that (b) and (c) hold.

Proof. (a) By (i) and TY ⊆ fY, there exists a sequence {yn} in Y such

that fyn ∈ Txn, for each n, and

lim
n→∞

fyn = t ∈ A = lim
n→∞

Txn.

We show that lim
n→∞

Syn = A. If not,then there exists a subsequence {Syk} of

{Syn}, a positive integer n and a real number ε > 0 such that for k ≥ n,

we have H(Syk, A) ≥ ε. From (iii), we get

H(Syk, Txk) ≤ (1 + uk) max{rkd(fyk, gxk),

αk [d(gxk, Txk) + d(fyk, Syk)] ,

αk [d(fyk, Txk) + d(gxk, Syk)]}

≤ (1 + uk) max{rkd(fyk, gxk),

αk[d(gxk, Txk) + d(fyk, A) + H(A, Syk)],

αk[d(fyk, Txk) + d(gxk, A) + H(A, Syk)]}.

Taking the limit as k →∞, we obtain

lim
k→∞

H(Syk, A) ≤ α lim
k→∞

H(A, Syk).

Since 0 ≤ α < 1, we get a contradiction. Thus

lim
n→∞

Syn = A.
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Consequently, f and S satisfy the property (E.A) for the sequence {yn}. If

fY or TY is complete, then there exists a point a ∈ Y such that lim
n→∞

fyn =

t = fa. We show that fa ∈ Sa. If not, then

H(Sa, Txn) ≤ (1 + un) max{rnd(fa, gxn), αn[d(gxn, Txn) + d(fa, Sa)],

αn[d(fa, Txn) + d(gxn, Sa)]}.

Taking the limit as n →∞, we have

H(Sa,A) ≤ α d(fa, Sa).

Thus,

d(Sa, fa) ≤ H(Sa,A) ≤ α d(fa, Sa)

a contradiction by virtue of fa = t ∈ A. Thus fa ∈ Sa; i.e., a is a coincidence

point of f and S. Since SY ⊆ gY, therefore there exists a sequence {zn} in

Y such that gzn ∈ Syn, for each n, and

lim
n→∞

gzn = t ∈ A = lim
n→∞

Syn.

As above, we can show that lim
n→∞

Tzn = A. If gY or SY is complete, then

there exists a point b ∈ Y such that lim
n→∞

gzn = t = gb. Take the sequence

bn = b, for all n, so, lim
n→∞

gbn = t. Suppose gb /∈ Tb. Using (iii) and taking

the limit as n →∞, we obtain

H(Sa, Tb) ≤ α d(gb, T b).
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Hence

d(gb, T b) = d(fa, T b) ≤ H(Sa, Tb) ≤ α d(gb, T b);

a contradiction. Thus gb ∈ Tb; i.e., b is a coincidence point of g and T .

(b) Now, if fa ∈ Y , f is S-weakly commuting at a and ffa = fa, then

fa = ffa ∈ Sfa

and so fa is a common fixed point of f and S.

(c) Similar to case (b).

(d) Immediate, in view of fa = gb = t. ¥

4.3 Approximation Results

As an application of Theorems 4.2.1, we obtain common fixed points from

the set of best approximations in a metric space in the following theorem

which extends Theorem 3.14 of Kamran [64].

Theorem 4.3.1 Let M ⊂ X, u ∈ X and D = PM(u) be nonempty. Suppose

that f : X → X and S : X → C(X) satisfy:

(i) there exists a sequence {xn} in D such that

lim
n→∞

Sxn = A ∈ C(D) and lim
n→∞

fxn = t ∈ A;
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(ii) fD is complete or SD is complete with SD ⊆ fD;

(iii) for all xn, n = 1, 2, 3, . . . and a ∈ D with fa = t, (4.2.1) holds.

If D is S-invariant and fD = D, then a is a coincidence point of f and S.

Further, if f is S-weakly commuting at a and ffa = fa, then f and S have

a common fixed point in PM(u).

Proof. Since SD ⊆ D, it follows that S maps D into C(D). The result

follows from Theorem 4.2.1. ¥

The existence of common fixed points from the set of best approximations

for four mappings is established in the next result which can be easily verified

on the basis of Theorem 4.2.6.

Theorem 4.3.2 Let M ⊂ X, u ∈ X and D = PM(u) be nonempty and

complete. Assume that f, g : X → X and S, T : X → C(X) satisfy:

(i) there exists a sequence {xn} in D such that

lim
n→∞

Txn = A ∈ C(D) and lim
n→∞

gxn = t ∈ A;

(ii) for any sequence {yn} in D with lim
n→∞

gyn = t and each x ∈ D, (4.2.2)

holds.

(iii) D is S and T -invariant, fD = D and gD = D.
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Then:

(a) f and S have a coincidence point a ∈ D, and g and T have a coincidence

point b ∈ D;

(b) if f is S-weakly commuting at a and ffa = fa, then f and S have a

common fixed point from D;

(c) if g is T -weakly commuting at b and ggb = gb, then g and T have a

common fixed point from D;

(d) S, T, f and g have a common fixed point from D provided that (b) and

(c) hold.

Recently, Hussain and Khan [51] obtained in Theorem 3.1, a generalization

of Theorem 3 by Sahab et al. [100] for a class of noncommuting single-

valued selfmappings of a Hausdorff locally convex space. An improvement

of Theorem 3.1 in [51] is given below for hybrid mappings in the setup of a

metric space.

Theorem 4.3.3 Let M ⊂ X and D = PM(u) be nonempty where u is a

common fixed point of the mappings f, g : X → X. Suppose that:

(i) f and g satisfy the property (E.A) on D;

(ii) fD is complete or gD is complete with gD ⊆ fD;



96

(iii) fD = D and g(∂M) ⊆ M (here ∂M denotes the boundary of M);

(iv) g is f -nonexpansive on D
⋃{u}; i.e., d(gx, gy) ≤ d(fx, fy), for all

x, y ∈ D
⋃{u} with x 6= y.

Then f and g have a coincidence point a in D. Further, if f and g are weakly

compatible and ffa = fa, then f and g have a unique common fixed point

in D.

Proof. Let y ∈ D. Then fy ∈ D. By the definition of PM(u), y ∈ ∂M and

so gy ∈ M. By (iv), we have

d(gy, u) = d(gy, gu) ≤ d(fy, fu) = d(fy, u).

Now, gy ∈ M and fy ∈ D imply that gy ∈ D; consequently, f and g are

selfmappings of D. Now, the result follows from Corollary 4.2.3 and Remark

4.2.4. ¥

We establish an analogue of Theorem 3.2 in [3] and Theorem 3.3 [51] for

hybrid mappings (which need not be continuous) on a metric space.

Theorem 4.3.4 Let M ⊂ X and D∗ = Df
M(u) be nonempty where u is

a common fixed point of the mappings f : X → X and S : X → C(X).

Suppose that
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(i) there exists a sequence {xn} in D∗ such that

lim
n→∞

Sxn = A ∈ C(D∗) and lim
n→∞

fxn = t ∈ A;

(ii) fD∗ is complete or SD∗ is complete with SD∗ ⊆ fD∗;

(iii) for all xn, n = 1, 2, 3, . . . and a ∈ D∗ with fa = t, (4.2.1) holds.

If D∗ is S-invariant and fD∗ = D∗, then a is a coincidence point of f and S.

Further, if f is S-weakly commuting at a and ffa = fa, then f and S have

a common fixed point in D∗.

Proof. Since SD∗ ⊆ D∗, therefore S maps D∗ into C(D∗). The result

follows from Theorem 4.2.1. ¥

For yet another application of Theorem 4.2.1, we solve an eigenvalue prob-

lem.

Theorem 4.3.5 Let E be a normed space, Y ⊆ E and S : Y → C(E)

satisfy:

(i) there exists a sequence {xn} in Y such that

lim
n→∞

Sxn = A ∈ C(E) and lim
n→∞

λxn = t ∈ A

where λ is a real number;
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(ii) λY is a complete subspace or SY is a complete subspace with SY ⊆ λY ;

(iii) for all xn, n = 1, 2, 3, . . . and a ∈ Y where a = t/λ, the following

condition holds:

H(Sxn, Sa) ≤ (1 + un) max{rn||xn− a||, rn d(Sxn, λxn) + αn d(Sa, λa),

rn d(Sxn, λa) + αn d(Sa, λxn)}

where {un}, {rn} and {αn} are as in Theorem 4.2.1.

Then S has an eigenvalue.

Proof. Let f : Y → E be defined by fx = λx. Then, by Theorem

4.2.1, fa ∈ Sa; i.e., λa ∈ Sa. Thus λ is an eigenvalue of S and a is the

corresponding eigenvector. ¥



CHAPTER 5

RANDOM SOLUTIONS

5.1 Introduction

The main purpose of this chapter is to establish random fixed point theo-

rems. Here we provide random analogues of some results from Chapters 2-4.

In Section 5.2, we introduce random iteration algorithms which are random

versions of the iteration procedures (1.3.3), (3.1.1) and (3.5.1). We study the

convergence of these random iterations to a common fixed point of differ-

ent classes of random operators. Section 5.3 deals with random fixed points

of multivalued inward random operators on a separable Banach space with

εα(X) < 1. Finally, in Section 5.4, we obtain random common fixed points

theorems in Banach spaces and metric spaces; these results are stochastic

versions of Theorems 2.2.1, 2.2.4 and 4.2.1.
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5.2 Random Iterative Algorithms

Approximation of random fixed points by iterative processes has been

studied by several authors (see, Beg [9], Choudary [26-27], Duan and Li

[36]). In 2006, Beg and Abbas [11] studied convergence of different random

iterative algorithms for weakly contractive and asymptotically nonexpansive

random operators in the setting of a Banach space.

In this section, we extend the iterative procedures (1.3.3), (3.1.1) and (3.5.1)

to the random case. It is shown that the random schemes converge to a ran-

dom common fixed point of the families of quasi-nonexpansive (asymptoti-

cally quasi-nonexpansive) random operators in Banach spaces. It is remarked

that our random schemes contain as special cases the random Mann itera-

tion (1.5.1), the random Ishikawa iteration (1.5.2) and the three-step random

iteration from [11].

Let C be a nonempty closed convex subset of a separable Banach space X,

and {Ti : i = 1, 2, . . . , k} a family of random operators from Ω×C to C. Let

ξn : Ω → C be a sequence of mappings where ξ1 is assumed to be measurable.

We begin with the random version of Kuhfitting iterative scheme (1.3.3):
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Definition 5.2.1 Let 0 < α < 1. For each ω ∈ Ω, define

ξn+1(ω) = (1− α)ξn(ω) + αTk(ω, Uk−1(ω, ξn(ω))), (5.2.1)

where Ui : Ω× C → C, i = 1, 2, . . . , k, are random operators given by

U0(ω, ξn(ω)) = ξn(ω),

U1(ω, ξn(ω)) = (1− α)ξn(ω) + α T1(ω, U0(ω, ξn(ω))),

U2(ω, ξn(ω)) = (1− α)ξn(ω) + α T2(ω, U1(ω, ξn(ω))),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Uk(ω, ξn(ω)) = (1− α)ξn(ω) + α Tk(ω, Uk−1(ω, ξn(ω))),

for each ω ∈ Ω.

We introduce a generalization of the random Ishikawa iteration to the case

of a finite family of mappings as follows (note that this scheme is the random

case of the iteration scheme (3.5.1)):

Definition 5.2.2 Let 0 < αn, βjn ≤ 1, for all n = 1, 2, 3, . . . and j =

1, 2, . . . , k. Then for each ω ∈ Ω, define

ξn+1(ω) = (1− αn)ξn(ω) + αnTk(ω, Uk−1(ω, ξn(ω))), (5.2.2)
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where Ui : Ω× C → C, i = 1, 2, . . . , k, are random operators given by

U0(ω, ξn(ω)) = ξn(ω),

U1(ω, ξn(ω)) = (1− β1n)ξn(ω) + β1nT1(ω, U0(ω, ξn(ω))),

U2(ω, ξn(ω)) = (1− β2n)ξn(ω) + β2n T2(ω, U1(ω, ξn(ω))),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Uk(ω, ξn(ω)) = (1− βkn)ξn(ω) + βkn Tk(ω, Uk−1(ω, ξn(ω))),

for each ω ∈ Ω.

Remark 5.2.3 If we take k = 2 and T1 = T2 = T in (5.2.2), then we get

the random Ishikawa iterative scheme (1.5.2).

The random version of the iterative scheme (3.1.1) is given in the following:

Definition 5.2.4 Let 0 ≤ αin ≤ 1, for all n = 1, 2, 3, . . . and i = 1, 2, . . . , k.

Then, for each ω ∈ Ω, define

ξn+1(ω) = (1− αkn)ξn(ω) + αknT
n
k (ω, Uk−1(ω, ξn(ω))), (5.2.3)
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where Ui : Ω× C → C, i = 1, 2, . . . , k, are random operators given by

U0(ω, ξn(ω)) = ξn(ω),

U1(ω, ξn(ω)) = (1− α1n)ξn(ω) + α1nT
n
1 (ω, U0(ω, ξn(ω))),

U2(ω, ξn(ω)) = (1− α2n)ξn(ω) + α2nT
n
2 (ω, U1, (ω, ξn(ω))),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Uk(ω, ξn(ω)) = (1− αkn)ξn(ω) + αknT n
k (ω, Uk−1(ω, ξn(ω))),

for each ω ∈ Ω.

First we present an analogue of Theorem 1 in [53] for random operators in

the following:

Lemma 5.2.5 Let C be a nonempty compact convex subset of a separable

Banach space X, and T : Ω×C → C a nonexpansive random operator. Then

T has a random fixed point and {ξn}, defined by (1.5.3), converges strongly

to a fixed point of T.

Proof. The compactness of C implies that {ξn} has a convergent subse-

quence {ξnk
}. Assume that

ξnk
(ω) → ζ(ω), for each ω ∈ Ω. (5.2.4)

By Proposition 1.5.7, we have

lim
k→∞

‖ξnk
(ω)− T (ω, ξnk

(ω))‖ = 0, for each ω ∈ Ω.
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We utilize nonexpansiveness of T to obtain, for each ω ∈ Ω,

‖T (ω, ζ(ω))− ζ(ω)‖ ≤ ‖T (ω, ζ(ω))− T (ω, ξnk
(ω))‖

+‖T (ω, ξnk
(ω))− ξnk

(ω)‖+ ‖ξnk
(ω)− ζ(ω)‖

≤ ‖ζ(ω)− ξnk
(ω)‖+ ‖T (ω, ξnk

(ω))− ξnk
(ω)‖

+‖ξnk
(ω)− ζ(ω)‖

= 2‖ζ(ω)− ξnk
(ω)‖+ ‖T (ω, ξnk

(ω))− ξnk
(ω)‖.

Taking the limit as k →∞, we get

T (ω, ζ(ω)) = ζ(ω), for each ω ∈ Ω.

Moreover,

‖ξn+1(ω)− ζ(ω)‖ = ‖(1− αn)ξn(ω) + αnT (ω, ξn(ω))− ζ(ω)‖

≤ (1− αn)‖ξn(ω)− ζ(ω)‖

+αn‖T (ω, ξn(ω))− T (ω, ζ(ω))‖

≤ (1− αn)‖ξn(ω)− ζ(ω)‖+ αn‖ξn(ω)− ζ(ω)‖

= ‖ξn(ω)− ζ(ω)‖, (5.2.5)

for each ω ∈ Ω and any positive integer n. From (5.2.4), it follows that for

any ε > 0, there exists an integer n0 such that

‖ξn0(ω)− ζ(ω)‖ < ε,
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for each ω ∈ Ω. Therefore, by (5.2.5), we get

‖ξn(ω)− ζ(ω)‖ < ε,

for any integer n ≥ n0 and each ω ∈ Ω. Since ε is arbitrary, therefore

ξn(ω) → ζ(ω),

for each ω ∈ Ω. The mapping ζ : Ω → C, being the limit of a sequence of

measurable mappings, is also measurable. Thus ζ is a random fixed point of

T. ¥

The following result generalizes Theorem 1 of Khufittig [77] for random

operators.

Theorem 5.2.6 Let C be a nonempty compact convex subset of a sepa-

rable strictly convex Banach space X, and {Ti : i = 1, 2, . . . , k} a family of

nonexpansive random operators from Ω×C to C with D =
k⋂

i=1

RF (Ti) 6= φ.

Then {ξn}, defined by (5.2.1), converges strongly to a random common fixed

point of the family.

Proof. It is easy to see that ξ : Ω → C is a random common fixed point

of {Ti : i = 1, 2, . . . , k} if and only if ξ is a random common fixed point of

{Ui : i = 1, 2, . . . , k}, for each ω ∈ Ω.
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Define Si : Ω× C → C by

Si(ω, x) = Ti(ω, Ui−1(ω, x)), i = 1, 2, 3, . . . , k.

Obviously, Ui and Si, i = 1, 2, . . . , k, are nonexpansive.

By Lemma 5.2.5, {ξn} defined by (5.2.1), converges strongly to a random

fixed point ζ : Ω → C of Sk. Next we show that ζ is a random common fixed

point of Tk and Uk−1(k ≥ 2). For this, we first show that ζ is a random fixed

point of Sk−1. Suppose not; then the closed line segment [ζ(ω), Sk−1(ω, ζ(ω))]

has positive length for some ω ∈ Ω. Assume that

ψ(ω1) = Uk−1(ω1, ζ(ω1))

= (1− α)ζ(ω1) + αTk−1(ω1, Uk−2(ω1, ζ(ω1))),

for some ω1 ∈ Ω. Since {Ti : i = 1, 2, . . . , k} and {Ui : i = 1, 2, . . . , k} have

the same random common fixed points and D 6= φ, therefore

Sk−1(ω1, θ(ω1)) = Tk−1(ω1, Uk−2(ω1, θ(ω1))) = θ(ω1),

where θ ∈ D. By the nonexpansiveness of Sk−1 and Tk, we have

‖Sk−1(ω1, ζ(ω1))− θ(ω1)‖ = ‖Sk−1(ω1, ζ(ω1))− Sk−1(ω1, θ(ω1))‖

≤ ‖ζ(ω1)− θ(ω1)‖ (5.2.6)

and

‖Tk(ω, ψ(ω1))− θ(ω1)‖ = ‖Tk(ω1, ψ(ω1))− Tk(ω1, θ(ω1))‖

≤ ‖ψ(ω1)− θ(ω1)‖
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(5.2.7)

In view of

Tk(ω1, ψ(ω1)) = Tk(ω1, Uk−1(ω1, ζ(ω1))) = Sk(ω1, ζ(ω1)) = ζ(ω1),

it follows, by (5.2.7), that

‖ζ(ω1)− θ(ω1)‖ ≤ ‖ψ(ω1)− θ(ω1)‖.

As X is strictly convex, we obtain

‖ζ(ω1)− θ(ω1)‖ ≤ ‖ψ(ω1)− θ(ω1)‖

= ‖(1− α)ζ(ω1) + αTk−1(ω1, Uk−2(ω1, ζ(ω1)))

−(1− α)θ(ω1)− αθ(ω1)‖

< (1− α)‖ζ(ω1)− θ(ω1)‖

+α‖Tk−1(ω1, Uk−2(ω1, ζ(ω1)))− θ(ω1)‖.

Thus

‖ζ(ω1)− θ(ω1)‖ < ‖Tk−1(ω1, Uk−2(ω1, ζ(ω1)))− θ(ω1)‖

= ‖Sk−1(ω1, ζ(ω1))− θ(ω1)‖

which contradicts (5.2.6).

Hence, ζ is a random fixed point of Sk−1. Subsequently;

Uk−1(ω, ζ(ω)) = (1− α)ζ(ω) + αTk−1(ω, Uk−2(ω, ζ(ω))) = ζ(ω),
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for each ω ∈ Ω, and so

ζ(ω) = Sk(ω, ζ(ω)) = Tk(ω, Uk−1(ω, ζ(ω))) = Tk(ω, ζ(ω)),

for each ω ∈ Ω. Thus ζ is a random common fixed point of Tk and Uk−1.

Since Tk−1(ω, Uk−2(ω, ζ(ω))) = ζ(ω), for each ω ∈ Ω, we may repeat the

above procedure to show that Tk−2(ω, Uk−3(ω, ζ(ω))) = ζ(ω), for each ω ∈ Ω,

and thereby ζ must be a random common fixed point of Tk−1 and Uk−2.

Continuing in this manner, we conclude that T1(ω, U0(ω, ζ(ω))) = ζ(ω), for

each ω ∈ Ω and ζ is a random common fixed point of T2 and U1. Consequently,

ζ is a random common fixed point of {Ti : i = 1, 2, . . . , k}. ¥

The weak convergence result of the Theorem of Rhoades [99], is established

for random operators in the following result.

Theorem 5.2.7 Let C be a nonempty bounded closed convex subset of a

separable uniformly convex Banach space X, and {Ti : i = 1, 2, . . . , k} a fam-

ily of nonexpnsive random operators from Ω×C to C with D =
k⋂

i=1

RF (Ti) 6=

φ. Then {ξn}, defined by (5.2.1), converges weakly to a random common fixed

point of the family.

Proof. Suppose that the mappings Si, i = 1, 2, . . . , k, are defined as in the

proof of Theorem 5.2.6. Since X is uniformly convex, therefore it is reflexive
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and so, {ξn} has a subsequence {ξnj
} converging weakly to ζ : Ω → C.

Now by Proposition 1.5.7,

lim
j→∞

‖ξnj
(ω)− Sk(ω, ξnj

(ω))‖ = 0, for each ω ∈ Ω.

Hence by Lemma 1.2.8, we get

Sk(ω, ζ(ω)) = ζ(ω), for each ω ∈ Ω.

That is, ζ is a random fixed point of Sk.

A uniformly convex space is strictly convex, so one can use the correspond-

ing arguments of the proof of Theorem 5.2.6 to show that ζ is a random

common fixed point of {Ti : i = 1, 2, . . . , k}. ¥

In what follows, we provide a random form of Lemma 3.2.1.

Lemma 5.2.8 Let C be a nonempty closed convex subset of a separable

Banach space X, and {Ti : i = 1, 2, . . . , k} a family of asymptotically quasi-

nonexpansive continuous random operators from Ω× C to C, i.e.,

‖T n
i (ω, η(ω))− ξi(ω)‖ ≤ (1 + uin(ω))‖η(ω)− ξi(ω)‖,

for each ω ∈ Ω, where ξi : Ω → C is a random fixed point of Ti for each

i, η : Ω → C is any measurable mapping, and uin : Ω → [0,∞) a sequence
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of measurable mappings with lim
n→∞

uin(ω) = 0, for each ω ∈ Ω and i =

1, 2, . . . , k. Assume that D =
k⋂

i=1

RF (Ti) 6= φ and
∞∑

n=1

uin(ω) < +∞, for each

ω ∈ Ω and i = 1, 2, . . . , k. Let {ξn} be as in (5.2.3) and ζ ∈ D. Then

(i) there exists a sequence of measurable mappings νn : Ω → [0,∞) such

that
∞∑

n=1

νn(ω) < +∞, for each ω ∈ Ω, and

‖ξn+1(ω)− ζ(ω)‖ ≤ (1 + νn(ω))k‖ξn(ω)− ζ(ω)‖,

for each ω ∈ Ω and n = 1, 2, 3, . . . ;

(ii) there exists M > 0 (depending on ω) such that

‖ξn+m(ω)− ζ(ω)‖ ≤ M‖ξn(ω)− ζ(ω)‖,

for each ω ∈ Ω and n,m = 1, 2, 3, . . . .

Proof. (i) Let νn : Ω → [0,∞) be defined by

νn(ω) = max
1≤i≤k

uin(ω), for each ω ∈ Ω and n = 1, 2, 3, . . .

Clearly, {νn} is a sequence of measurable mappings. Since
∞∑

n=1

uin(ω) < +∞,

for each i and ω ∈ Ω, therefore

∞∑
n=1

νn(ω) < +∞, for each ω ∈ Ω.
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As in the proof of Lemma 3.2.1, we can prove, by induction, that

‖Uin(ω, ξn(ω))− ζ(ω)‖ ≤ (1 + νn(ω))i‖ξn(ω)− ζ(ω)‖,

for each ω ∈ Ω and 1 ≤ i ≤ k − 1. Thus

‖ξn+1(ω)− ζ(ω)‖ ≤ (1− αkn)‖ξn(ω)− ζ(ω)‖

+αkn‖T n
k (ω, Uk−1(ω, ξn(ω)))− ζ(ω)‖

≤ (1− αkn)‖ξn(ω)− ζ(ω)‖

+αkn(1 + ukn(ω))(1 + νn(ω))k−1‖ξn(ω)− ζ(ω)‖

≤ (1 + αkn)||ξn(ω)− ζ(ω)‖

+αkn(1 + νn(ω))k‖ξn(ω)− ζ(w)‖

≤ (1 + νn(ω))k‖ξn(ω)− ζ(ω)‖,

for each ω ∈ Ω and n = 1, 2, 3, . . . .

(ii) If t ≥ 0, then 1 + t ≤ et and so, (1 + t)k ≤ ekt, k = 1, 2, . . . . Thus from

part (i), for each ω ∈ Ω, we get

‖ξn+m(ω)− ζ(ω)‖ ≤ (1 + νn+m−1(ω))k‖ξn+m−1(ω)− ζ(ω)‖

≤ exp {kνn+m−1(ω)}‖ξn+m−1(ω)− ζ(ω)‖ ≤ . . . .

≤ exp

{
k

n+m−1∑
i=n

νi(ω)

}
‖ξn(ω)− ζ(ω)‖

≤ exp

{
k

∞∑
i=1

νi(ω)

}
‖ξn(ω)− ζ(ω)‖.
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Let exp

{
k

∞∑
i=1

νi(ω)

}
= M (depending on ω). Thus

‖ξn+m(ω)− ζ(ω)‖ ≤ M‖ξn(ω)− ζ(ω)‖,

for each ω ∈ Ω and n,m = 1, 2, 3, . . . . ¥

As an application of Lemma 5.2.8, we obtain a strong convergence result

for a family of random operators.

Theorem 5.2.9 Under the assumptions of Lemma 5.2.8, the random itera-

tion scheme {ξn}, defined by (5.2.3), converges strongly to a random common

fixed point of the family {Ti : i = 1, 2, . . . , k} if and only if lim
n→∞

inf d(ξn(ω), D) =

0.

Proof. We will only prove the sufficiency, the necessity is obvious. From

Lemma 5.2.8, we have

‖ξn+1(ω)− ζ(ω)‖ ≤ (1 + νn(ω))k‖ξn(ω)− ζ(ω)‖,

for each ω ∈ Ω and n = 1, 2, 3, . . . , where ζ : Ω → C is a random common

fixed point of the family {Ti : i = 1, 2, . . . , k}. Therefore

d(ξn+1(ω), D) ≤ (1 + νn(ω))kd(ξn(ω), D)

=

(
1 +

k∑
r=1

k(k − 1) . . . (k − r + 1)

r!
νr

n(ω)

)
d(ξn(ω), D).
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¿From
∞∑

n=1

νn < +∞, for each ω ∈ Ω, we have

∞∑
n=1

k∑
r=1

k(k − 1) . . . (k − t + 1)

r!
νr

n(ω) < +∞, for each ω ∈ Ω.

Thus, by Lemma 1.3.5, we have

lim
n→∞

d(ξn(ω), D) = 0.

As in the proof of Theorem 3.2.2, we can prove that {ξn} is a Cauchy sequence

and hence it is convergent. So there exists a measurable mapping ψ : Ω → C

such that lim
n→∞

ξn(ω) = ψ(ω), for each ω ∈ Ω. Now we can easily prove that

ψ ∈ D by using the arguments used in the proof of Theorem 3.2.2. ¥

An analogue of this theorem for a finite family of quasi-nonexpansive ran-

dom operators may similarly be verified. We include its statement for com-

pleteness sake.

Theorem 5.2.10. Let C be a nonempty closed convex subset of a separable

Banach space X, and {Ti : i = 1, 2, . . . , k} a family of quasi-nonexpansive

continuous random operators from Ω × C to C with D =
k⋂

i=1

RF (Ti) 6= φ.

Then the generalized random Ishikawa iteration (5.2.2), converges strongly to

a random common fixed point of the family if and only if lim
n→∞

inf d(ξn(ω), D) =

0.

Corollary 5.2.11 Under the assumptions of Lemma 5.2.8, {ξn} defined by
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(5.2.3), converges strongly to ζ ∈ D if and only if there exists a subsequence

{ξnj
} of {ξn} which converges to ζ.

A stochastic version of Lemma 3.3.1 is obtained in the result to follow.

Lemma 5.2.12 Let C be a nonempty closed convex subset of a separable

uniformly convex Banach space X, and {Ti : i = 1, 2, . . . , k} a family of

(L − γ) uniform Lipschitz and asymptotically quasi-nonexpansive random

operators from Ω× C → C with the sequence of measurable mappings uin :

Ω → [0,∞) satisfying
∞∑

n=0

uin(ω) < +∞, for each ω ∈ Ω, i = 1, 2, . . . , k.

Suppose that D =
k⋂

i=1

RF (Ti) 6= φ and the sequence {ξn} is as in (5.2.3),

where αin ∈ [δ, 1− δ] for some δ ∈ (0, 1
2
). Then for each ω ∈ Ω,

(i) lim
n→∞

‖ξn(ω)− ζ(ω)‖ exists for each ζ ∈ D;

(ii) lim
n→∞

‖ξn(ω)− T n
j (ω, Uj−1(ω, ξn(ω))) ‖ = 0, j = 1, 2, . . . , k;

(iii) lim
n→∞

‖ξn(ω)− Tj(ω, ξn(ω))‖ = 0, j = 1, 2, . . . , k.

Proof. Let ζ ∈ D and νn : Ω → [0,∞) be defined by

νn(ω) = max
i≤i≤k

uin(ω), for each ω ∈ Ω and n = 1, 2, 3, . . . .

(i) By Lemma 5.2.8 (i), we have

‖ξn+1(ω)− ζ(w)‖ ≤
(

1 +
k∑

r=1

k(k − 1) . . . (k − r + 1)

r!
νr

n(ω)

)
‖ξn(ω)− ζ(ω)‖,
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for each ω ∈ Ω and n = 1, 2, 3, . . . . Since
∞∑

n=1

νn(ω) < +∞, for each ω ∈ Ω,

therefore

∞∑
n=1

k∑
r=1

k(k − 1) . . . (k − r + 1)

r!
νr

n(ω) < +∞, for each ω ∈ Ω.

Thus, from Lemma 1.3.5, it follows that lim
n→∞

‖ξn(ω)− ζ(ω)‖ exists, for each

ω ∈ Ω and all ζ ∈ D.

The proofs of (ii) and (iii) are similar to their counter parts in Lemma 3.3.1

and so are omitted. ¥

We now establish weak and strong convergence of the random iteration

(5.2.3) to a common fixed point of the family.

Theorem 5.2.13 Under the hypotheses of Lemma 5.2.12, assume that X

satisfies Opial’s property and I−Ti is a demiclosed random operator at 0 for

each i = 1, 2, . . . , k. Then the sequence {ξn}, defined by (5.2.3), converges

weakly to a random common fixed point of the family.

Proof. Let ζ ∈ D. Then, by Lemma 5.2.12(i), lim
n→∞

‖ξn(ω)− ζ(ω)‖ exists for

each ω ∈ Ω, and hence {ξn} is bounded. Since X is reflexive, there exists

a subsequence {ξnj
} of {ξn} converging weakly to a measurable mapping

η1 : Ω → C, for each ω ∈ Ω. By Lemma 5.2.12(iii) and the demiclosedness of
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I − Ti, we obtain

Ti(ω, η1(ω)) = η1(ω), for each ω ∈ Ω.

Thus, η1 ∈ D. In order to show that {ξn} converges weakly to η1, take another

subsequence {ξnk
} of {ξn} converging weakly to a measurable mapping η2 :

Ω → C, for each ω ∈ Ω. Again, as above, η2 ∈ D. Assume that η1(ω) 6= η2(ω)

for some ω ∈ Ω. Then, by Opial’s property, we have

lim
n→∞

‖ξn(ω)− η1(ω)‖ = lim
nj→∞

‖ξnj
(ω)− η1(ω)‖

< lim
nj→∞

‖ξnj
(ω)− η2(ω)‖

= lim
n→∞

‖ξn(ω)− η2(ω)‖

= lim
nk→∞

‖ξnk
(ω)− η2(ω)‖

< lim
nk→∞

‖ξnk
(ω)− η1(ω)‖

= lim
n→∞

‖ξn(ω)− η1(ω)‖.

This contradiction proves that η1(ω) = η2(ω), for each ω ∈ Ω. Thus {ξn}

converges weakly to a random common fixed point of the family {Ti : i =

1, 2, . . . , k}. ¥

Theorem 5.2.14. Under the hypotheses of Lemma 5.2.12, assume that,

for some 1 ≤ j ≤ k and a positive integer m,Tm
j is semi-compact. Then

{ξn}, defined by (5.2.3), converges strongly to a random common fixed point

of the family {Ti : i = 1, 2, . . . , k}.
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Proof. By Lemma 5.2.12 (iii), we obtain

‖Tm
j (ω, ξn(ω))− ξn(ω)‖ ≤ ‖Tm

j (ω, ξn(ω))− Tm−1
j (ω, ξn(ω))‖

+‖Tm−1
j (ω, ξn(ω))− Tm−2

j (ω, ξn(ω))‖

+ . . . + ‖T 2
j (ω, ξn(ω))− Tj(ω, ξn(ω))‖

+‖Tj(ω, ξn(ω))− ξn(ω)‖

≤ (m− 1)L‖Tj(ω, ξn(ω))− ξn(ω)‖γ

+‖Tj(ω, ξn(ω))− ξn(ω)‖ → 0.

Since {ξn} is bounded and Tm
j is semi-compact, {ξn} has a convergent

subsequence {ξnk
} converging to a measurable mapping η : Ω → C. Hence,

again by Lemma 5.2.12 (iii), we have

‖η(ω)− Ti(ω, η(ω))‖ = lim
n→∞

‖ξnk
(ω)− Ti(ω, ξnk

(ω))‖ = 0,

for each ω ∈ Ω and i = 1, 2, . . . , k. Thus η ∈ D and so by Corollary 5.2.11,

{ξn} converges to η. ¥

Remark 5.2.15 On the lines of the proofs of Lemma 5.2.12, Theorem

5.2.13 and Theorem 5.2.14, we can easily prove analogues of these results for

a family of asymptotically nonexpansive random operators instead of (L−γ)

uniform Lipschitz and asymptotically quasi-nonexpansive random operators.
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5.3 Multivalued Inward Random Operators

One of the most general fixed point theorems for multivalued nonexpansive

selfmappings has been obtained by Kirk and Massa [75], in 1990, proving the

existence of fixed points in Banach spaces for which the asymptotic center

of a bounded sequence in a closed bounded convex subset is nonempty and

compact. This occurs, for instance, if X is a uniformly convex space, but it

is known that (see [76]) when X is nearly uniformly convex, the asymptotic

center of a bounded sequence can be a noncompact set. This fact forced

Benavides and Ramirez [16] to generalize Kirk-Massa theorem to a class of

Banach spaces where the asymptotic center of a sequence is not necessarily a

compact set. Specifically, they gave a fixed point theorem for a multivalued

nonexpansive and 1−χ-contractive compact convex valued selfmapping of a

Banach space whose characteristic of noncompact convexity associated to the

separation meausre of noncompactness is less than 1. In 2004, Benavides and

Ramirez [17] obtained results similar to those in [16] for nonself mappings

satisfying the inwardness condition. In particular, they proved the following

result.

Theorem 5.3.1 Let X be a Banach space such that εα(X) < 1 and C be a

closed bounded convex subset of X. If T : C → KC(X) is a nonexpansive

and 1− χ-contractive mapping such that T (C) is a bounded set, and which
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satisfies Tx ⊂ IC(x), for all x ∈ C, then T has a fixed point.

Shahzad and Lone [109] extended the above theorem for SL mappings (see

Definition 1.4.18), and Plubtieng and Kumam [95] have obtained a random

analogue of Theorem 5.3.1.

In this section, we randomize the results of Shahzad and Lone [109]; inci-

dently our results extend the work of Plubtieng and Kumam [95].

Lemma 5.3.2. Let C be a nonempty closed bounded convex subset of a

Banach space X. Suppose that T : C → KC(X) is an SL mapping such that

Tx ⊂ IC(x), for all x ∈ C.

If {xn} is a sequence in C with lim
n→∞

d(xn, Txn) = 0, then there exists an

ultranet {xnα} of {xn} such that

Tx
⋂

IA(x) 6= φ, for all x ∈ A,

where A = A (C, {xnα}) .

Proof. Let {nα} be an ultranet of the positive integers {n}. The com-

pactness of Txnα implies that for each nα, we can take ynα ∈ Txnα such

that

‖xnα − ynα‖ = d (xnα , Txnα) .
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By the compactness of Tx, for each x ∈ A, there exists a sequence {znα} in

Tx such that

lim
α→∞

znα = z ∈ Tx

and

‖ynα − znα‖ = d (ynα , Tx)

≤ H (Txnα , Tx) .

We show that z ∈ IA(x). As T is an SL mapping and {xnα} is asymptoti-

cally T -regular, so we have

lim
α→∞

sup H (Txnα , Tx) ≤ lim
α→∞

sup ‖xnα − x‖

for all x ∈ A. Thus, we obtain

lim
α→∞

‖xnα − z‖ = lim
α→∞

‖ynα − znα‖

≤ lim
α→∞

sup H (Txnα , Tx)

≤ lim
α→∞

sup ‖xnα − x‖

= r

where r = r (C, {xnα}) . As z ∈ Tx ⊆ IC(x), so there exist λ ≥ 0 and ν ∈ C

such that

z = x + λ(ν − x).
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If λ ≤ 1, then by the convexity of C, z ∈ C and hence, by the definition of

A, z ∈ A ⊆ IA(x). Now, assume that λ > 1, then we can write

ν =
1

λ
z +

(
1− 1

λ

)
x.

Thus

lim
α→∞

‖xnα − ν‖ ≤ 1

λ
lim

α→∞
‖xnα − z‖+

(
1− 1

λ

)
lim

α→∞
‖xnα − x‖ ≤ r.

This implies that ν ∈ A and so z ∈ IA(x). ¥

The following result, on the one hand, is a stochastic version of Theorem

3.3 of Shahzad and Lone [109] (which itself extends Theorem 3.4 of Benavides

and Ramirez [17]), and on the other hand, improves Theorem 3.3 of Plubtieng

and Kumam [95].

Theorem 5.3.3. Let C be a nonempty closed bounded convex separable

subset of a Banach space X with εα(X) < 1 and T : Ω × C → KC(X), a

continuous 1 − χ−contractive and SL random operator. If T satisfies the

inwardness condition

T (ω, x) ⊂ IC(x), for all x ∈ C and ω ∈ Ω,

then T has a random fixed point.

Proof. Let x0 ∈ C be fixed and consider the measurable mapping x0(ω) =
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x0, for all ω ∈ Ω. For each n ≥ 1, define Tn(ω, .) : C → KC(X) by

Tn(ω, x) =
1

n
x0(ω) +

(
1− 1

n

)
T (ω, x), for all x ∈ C.

Then Tn is contractive and Tn(ω, x) ⊂ IC(x), for all x ∈ C. Hence, by Lemma

1.4.11, each Tn has a deterministic fixed point zn(ω) ∈ C. So,

d (zn(ω), T (ω, zn(ω)) ≤ 1

n
diam C → 0 as n →∞.

Thus

Fn(ω) =

{
x ∈ C : d(x, T (ω, x)) ≤ 1

n
diam C

}

is nonempty closed and convex. By Lemma 1.5.12, each Fn is measurable.

Then, by Lemma 1.5.9, Fn admits a measurable selector xn(ω) such that

d(xn(ω), T (ω, xn(ω)) ≤ 1

n
diam C → 0 as n →∞.

Define f : Ω× C → [0,∞) by

f(ω, x) = lim
n→∞

sup ‖xn(ω)− x‖, x ∈ C.

It is easy to see that f(ω, .) is continuous and f(., x) is measurable, so by

Lemma 1.5.11, f(., x) is measurable. Obviously, f(ω, .) is convex. Therefore,

by Lemma 1.4.5, it is weakly lower semicontinuous. Note that, εα(X) < 1, so

X is reflexive. Therefore, C is weakly compact (see[129]). Hence, by Lemma

1.5.13, the marginal function

r(ω) = inf
x∈C

f(ω, x)
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and the marginal mapping

A(ω) = {x ∈ C : f(ω, x) = r(ω)}

are measurable. By Remark 1.4.13, A(ω) is a weakly compact convex subset

of C. For any ω ∈ Ω, we may assume that the sequence {xnα(ω)} is an ultranet

in C. Note that A(ω) = A (C, {xnα(ω)}) and r(ω) = r (C, {xnα(ω)}) . We can

apply Lemma 1.4.17 to obtain

rC(A(ω)) ≤ λr (C, {xnα(ω)}) ,

where λ = 1−4X,α(1−) < 1.

For each ω ∈ Ω and n ≥ 1, we define the multivalued contraction T 1
n(ω, .) :

A(ω) → KC(X) by

T 1
n(ω, x) =

1

n
x1(ω) +

(
1− 1

n

)
T (ω, x), for each x ∈ C. (5.3.1)

By Lemma 5.3.2, we have

T (ω, x)
⋂

IA(ω)(x) 6= φ, for all x ∈ A(ω). (5.3.2)

Since IA(ω)(x) is convex, it follows, from (5.3.1) and (5.3.2), that

T 1
n(ω, x)

⋂
IA(ω)(x) 6= φ, for all x ∈ A(ω).

Let B be a bounded subset of C. Since T is 1−χ-contractive and T 1
n(ω, β) =
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1
n
x1(ω) +

(
1− 1

n

)
T (ω, β), so

χ(T 1
n(ω, β)) = χ

(
1

n
x1(ω) + (1− 1

n
)T (ω,B)

)

= χ

(
(1− 1

n
)T (ω,B)

)

=

(
1− 1

n

)
χ(T (ω, B))

≤
(

1− 1

n

)
χ(B)

< χ(B).

Thus T 1
n(ω, .) is χ-condensing. Hence, by Lemma 1.4.10, T 1

n(ω, .) has a

fixed point z1
n(ω) ∈ A(ω); i.e., F (ω)

⋂
A(ω) 6= φ.

Clearly,

d
(
z1

n(ω), T (ω, z1
n(ω))

) ≤ 1

n
diam C → 0 as n →∞.

Thus

F 1
n(ω) = {x ∈ A(ω) : d(x, T (ω, x)) ≤ 1

n
diam C}

is nonempty closed and convex for each n ≥ 1. By Lemma 1.5.12, each F 1
n is

measurable. So, by Lemma 1.5.9 we can choose x1
n a measurable selector of

F 1
n . Thus we have x1

n ∈ A(ω) and d (x1
n(ω), T (ω, x1

n(ω))) → 0 as n →∞. Let

f2 : Ω× C → [0,∞) be defined by

f2(ω, x) = lim
n→∞

sup ‖x1
n(ω)− x‖, for all ω ∈ Ω.
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As above, f2 is measurable and weakly lower semicontinuous. Also, the

marginal function

r2(ω) = inf
x∈A(ω)

f2(ω, x)

and the marginal mapping

A1(ω) = {x ∈ A(ω) : f2(ω, x) = r2(ω)}

are measurable. Since A1(ω) = A (A(ω), {x1
n(ω)}) , it follows that A1(ω) is

weakly compact and convex. We also note that r2(ω) = r (A(ω), {x1
n(ω)}) .

Again, for any ω ∈ Ω, we can assume that the sequence
{
x1

nα
(ω)

}
α

is an

ultranet in A1(ω). As above, by Lemma 5.3.2 and Lemma 1.4.17, we obtain

T (ω, x(ω))
⋂

IA1(ω)(x(ω)) 6= φ, for all x(ω) ∈ A1(ω)

where A1(ω) = A
(
A(ω),

{
x1

nα
(ω)

})
and

rC(A1(ω)) ≤ λr
(
A(ω),

{
x1

n(ω)
}) ≤ λrC(A(ω)) (5.3.3)

By induction, for each m ≥ 1, we take a sequence {xm
n (ω)}n ⊂ Am−1 such

that

lim
n→∞

d (xm
n (ω), T (ω, xm

n (ω))) = 0, (5.3.4)

for each ω ∈ Ω. By means of the ultranet
{
xm

nα
(ω)

}
α
, we construct the set

Am = A
(
C,

{
xm

nα
(ω)

})
such that

rC(Am) ≤ λmrC(A).
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Since diamAm(ω) ≤ 2rC(Am) and λ < 1, it follows that lim
m→∞

diam Am(ω) =

0. Note that {Am(ω)} is a descending sequence of weakly compact subsets

of C for each ω ∈ Ω. Thus, by Cantor’s intersection theorem, we have
⋂
m

Am(ω) = {z(ω)} for some z(ω) ∈ C. Furthermore, we see that

H (Am(ω), {z(ω)}) ≤ diam Am(ω) → 0 as m →∞.

Therefore, by Lemma 1.5.10, z(ω) is measurable.

Finally, we show that z(ω) is a random fixed point of T. For each m ≥ 1,

we have

d(z(ω), T (ω, z(ω))) ≤ ‖z(ω)− xm
n (ω)‖+ d (xm

n (ω), T (ω, xm
n (ω)))

+ H (T (ω, xm
n (ω)) , T (ω, z(ω))) (5.3.5)

Since T is an SL mapping, for m ≥ 1 and {xm
n (ω)} asymptotically T -regular,

so we have

lim
n→∞

sup H (T (ω, xm
n (ω), T (ω, z(ω))) ≤ lim

n→∞
sup ‖xm

n (ω)− z(ω)‖ (5.3.6)

Thus, by (5.3.4) - (5.3.6), we obtain

d(z(ω), T (ω, z(ω)) ≤ 2 lim
n→∞

sup ‖z(ω)− xm
n (ω)‖

≤ 2 diamAm(ω).

Taking the limit as m →∞, we have z(ω) ∈ T (ω, z(ω)). ¥
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We remark that if C is a weakly compact subset of a reflexive Banach space

satisfying the nonstrict Opial’s property, then we can follow the proof of

Theorem 4.5 in [16] to deduce that a nonexpansive mapping T : C → K(X),

with bounded range is 1 − χ-contractive. Then, in view of Theorem 5.3.3,

we can state the following corollary.

Corollary 5.3.4. Let X be a Banach space satisfying the nonstrict Opial’s

property and εα(X) < 1. Suppose that C is a nonempty closed bounded

convex separable subset of X and T : Ω × C → KC(X) is a nonexpansive

random operator such that T (C) is a bounded set and

T (ω, x) ⊂ IC(x), for all x ∈ C and ω ∈ Ω.

Then T has a random fixed point.

Remark 5.3.5. The ultranet in Lemma 5.3.2 can be replaced by a sequence

which is asymptotically uniform with respect to C (see [41,78]). This allows

us to rewrite the proof of Theorem 5.3.3 to β and χ moduli of noncompact

convexity.

The following two theorems follow from the above remark and Lemma

1.4.16.

Theorem 5.3.6. Let C be a nonempty closed bounded convex separable

subset of a Banach space X with εβ(X) < 1 and T : Ω × C → KC(X),
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continuous 1 − χ-contrctive and SL random operator. If T satisfies the

inwardness condition, then T has a random fixed point.

Theorem 5.3.7. Let X be a Banach space satisfying the nonstrict Opial’s

property and εχ(X) < 1. Suppose that C is a nonempty closed bounded

convex separable subset of X and T : Ω × C → KC(X) is a nonexpan-

sive random operator such that T (C) is a bounded set and T satisfies the

inwardness condition. Then T has a random fixed point.

5.4 Random Common Fixed Points

In this section we establish results about random coincidence and random

common fixed points of nonself mappings in separable metric and Banach

spaces; in particular, we provide random versions of Theorems 2.2.1 and

2.2.4. Further, we apply Theorem 4.2.1 to obtain random common fixed

points of hybrid random operators.

We shall need the following result.

Theorem 5.4.1 [107, Theorem 3.1] Let X and Y be separable Banach spaces.

Let C be a nonempty weakly compact subset of X, and f, T : Ω×C → Y be

continuous random operators such that, for each ω ∈ Ω, T (ω,C) is bounded

and (f−T )(ω, .) is demiclosed at 0. If the set {x ∈ C : f(ω, x)−T (ω, x) = 0}

is nonempty for each ω ∈ Ω, then there exists a measurable mapping ξ : Ω →
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C such that f(ω, ξ(ω))− T (ω, ξ(ω)) = 0, for each ω ∈ Ω.

We begin with a random version of Theorem 2.2.1

Theorem 5.4.2 Let C be a subset of a separable metric space X, and S, T :

Ω× C → X be random operators such that

(i) S and T satisfy the random property (E.A);

(ii) T (ω, C) is a complete subspace of X, or S(ω, C) is a complete subspace

with S(ω, C) ⊆ T (ω,C), for every ω ∈ Ω;

(iii) for all x 6= y in C and every ω ∈ Ω, the following condition holds:

d(S(ω, x), S(ω, y)) < max{d(T (ω, x), T (ω, y)),

rd(S(ω, x), T (ω, x)) + αd(S(ω, y), T (ω, y)),

1
2
[d(S(ω, x), T (ω, y))+d(S(ω, y), T (ω, x))]} (5.4.1)

where r ∈ [0, +∞) and α ∈ [0, 1).

Then S and T have a random coincidence point. Further, if ζ : Ω → C is

a random coincidence point of S and T such that S(ω, ζ(ω)) ∈ C for each

ω ∈ Ω, and S and T are weakly compatible, then S and T have a unique

random common fixed point.

Proof. By (i) there exists a sequence of measurable mappings ξn : Ω → C
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such that

lim
n→∞

S(ω, ξn(ω)) = lim
n→∞

T (ω, ξn(ω)) = ξ(ω),

for each ω ∈ Ω, where ξ : Ω → X is a measurable mapping. Suppose that

T (ω, C) is complete for every ω ∈ Ω, then there exists a measurable mapping

ζ : Ω → C such that

T (ω, ζ(ω)) = ξ(ω), for each ω ∈ Ω.

We show that S(ω, ζ(ω)) = T (ω, ζ(ω)), for every ω ∈ Ω. By (iii), we have

d(S(ω, ξn(ω)), S(ω, ζ(ω))) < max{d(T (ω, ξn(ω), T (ω, ζ(ω))),

rd(S(ω, ξn(ω)), T (ω, ξn(ω)))

+αd(S(ω, ζ(ω)), T (ω, ζ(ω))),

1

2
[d(S(ω, ξn(ω)), T (ω, ζ(ω)))

+d(S(ω, ζ(ω)), T (ω, ξn(ω)))]},

for every ω ∈ Ω. Taking the limit as n →∞, we get

d(T (ω, ζ(ω)), S(ω, ζ(ω))) ≤ max{αd(S(ω, ζ(ω)), T (ω, ζ(ω))),

1

2
d(S(ω, ζ(ω)), T (ω, ζ(ω)))},

for every ω ∈ Ω. This is possible only if

d(T (ω, ζ(ω)), S(ω, ζ(ω))) = 0, for every ω ∈ Ω,
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that is,

T (ω, ζ(ω)) = S(ω, ζ(ω)), for every ω ∈ Ω.

If S(ω, ζ(ω)) ∈ C for each ω ∈ Ω, and S and T are weakly compatible, then

T (ω, T (ω, ζ(ω))) = T (ω, S(ω, ζ(ω)))

= S(ω, T (ω, ζ(ω)))

= S(ω, S(ω, ζ(ω))),

for every ω ∈ Ω. We show that

S(ω, S(ω, ζ(ω))) = S(ω, ζ(ω)), for every ω ∈ Ω.

Suppose not, then for some ω ∈ Ω, we get

d(S(ω, S(ω, ζ(ω))), S(ω, ζ(ω))) < max{d(T (ω, S(ω, ζ(ω))), T (ω, ζ(ω))),

rd(S(ω, S(ω, ζ(ω))), T (ω, S(ω, ζ))),

+αd(S(ω, ζ(ω)), T (ω, ζ(ω))),

1

2
[d(S(ω, S(ω, ζ(ω))), T (ω, ζ(ω)))

+d(S(ω, ζ(ω)), T (ω, S(ω, ζ(ω))))}

= d(S(ω, S(ω, ζ(ω))), S(ω, ζ(ω)))

a contradiction. Thus

T (ω, S(ω, ζ(ω))) = S(ω, S(ω, ζ(ω)) = S(ω, ζ(ω)),
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for every ω ∈ Ω. Similarly, we can prove the case, S(ω, C) is complete with

S(ω, C) ⊆ T (ω, C), for every ω ∈ Ω. The uniqueness can be easily verified

by using (iii).

In the context of Banach spaces we can replace the random property (E.A)

by the deterministic one as follows:

Theorem 5.4.3 Let C be a nonempty weakly compact subset of separable

Banach space X and S, T : Ω × C → X be continuous random operators

such that

(i) the mappings S(ω, .) and T (ω, .) satisfy the property (E.A), for each

ω ∈ Ω;

(ii) T (ω, C) is complete or S(ω,C) is complete with S(ω, C) ⊆ T (ω, C),

for every ω ∈ Ω;

(iii) for all x 6= y in C and every ω ∈ Ω, (5.4.1) holds;

(iv) (S−T )(ω, .) is demiclosed at 0 and T (ω,C) is bounded, for each ω ∈ Ω.

Then S and T have a random coincidence point. Further, if ζ : Ω → C is

a random coincidence point of S and T such that S(ω, ζ(ω)) ∈ C for each

ω ∈ Ω, and S and T are weakly compatible, then S and T have a unique

random common fixed point.
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Proof. By Theorem 2.2.1, the mappings S(ω, .) and T (ω, .) have a deter-

ministic coincidence point; that is, the set {x ∈ C : S(ω, x) = T (ω, x)} is

nonempty, for each ω ∈ Ω. Thus, by Theorem 5.4.1, there exists a measurable

mapping ζ : Ω → C such that

S(ω, ζ(ω)) = T (ω, ζ(ω)), for each ω ∈ Ω;

that is, ζ is a random coincidence point of S and T. The rest of the proof is

similar to that of Theorem 5.4.2 and is omitted.

The next result is about four mappings which can be proved on the lines

of the proof of Theorem 2.2.4.

Theorem 5.4.4 Let C be a subset of a separable metric space X, and

F, G, S, T : Ω× C → X be random operators such that:

(i) the pair (F, S) or (G, T ) satisfies the random property (E.A);

(ii) F (ω,C), G(ω, C), S(ω, C) or T (ω, C) is complete, for every ω ∈ Ω;

(iii) F (ω,C) ⊆ T (ω,C) and G(ω,C) ⊆ S(ω,C), for every ω ∈ Ω;

(iv) for all x, y in C and every ω ∈ Ω, the following condition holds:

d(F (ω, x), G(ω, y)) ≤ φ(max{d(S(ω, x), T (ω, y)),

d(S(ω, x), G(ω, y)), d(T (ω, y), G(ω, y))}),
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where φ : R+ → R+ is nondecreasing and 0 < φ(t) < t, for all

t ∈ (0, +∞).

(v) (F − S)(ω, .) and (G − T )(ω, .) are demiclosed at 0, and S(ω,C) and

T (ω, C) are bounded, for each ω ∈ Ω.

Then:

(a) F and S have a random coincidence point, and G and T have a random

coincidence point,

(b) If ζ : Ω → C is a random coincidence point of F and S such that

S(ω, ζ(ω)) ∈ C for each ω ∈ Ω, and S and F are weakly compatible,

then F and S have a random common fixed point,

(c) If η : Ω → C is a random coincidence point of G and T such that

T (ω, η(ω)) ∈ C for each ω ∈ Ω, and G and T are weakly compatible,

then G and T have a random common fixed point,

(d) F,G, S and T have a unique random common fixed point provided (b)

and (c) hold.

Theorem 5.4.5 Let C be a nonempty weakly compact subset of a separable

Banach space X, and F,G, S, T : Ω×C → X be continuous random operators

satisfying conditions (ii) - (iv) in Theorem 5.4.4. If the pair (F (ω, .), S(ω, .))
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or (G(ω, .), T (ω, .)) satisfies the property (E.A), for each ω ∈ Ω, then (a) -

(d) in Theorem 5.4.4 hold.

Proof. By Theorem 2.2.4, F and S have a deterministic coincidence point,

and G and T have a deterministic coincidence point. Now, Theorem 5.4.1

implies that F and S have a random coincidence point, and G and T have a

random coincidence point; this completes the proof of (a). Using the argu-

ments of the proof of Theorem 5.4.4, we can easily prove (b) - (d).

For random common fixed points of hybrid mappings, we need the following

useful results.

Theorem 5.4.6 [108, Theorem 3.1]. Let M be a nonempty separable weakly

compact subset of a Banach space X, and f : Ω × M → M a random

operator which is both continuous and weakly continuous. Assume that

T : Ω×M → CB(M) is a continuous random operator such that (f−T )(ω, .)

is demiclosed at 0 for each ω ∈ Ω. If f and T have a deterministic coincidence

point, then f and T have a random coincidence point.

Theorem 5.4.7 [108, Theorem 3.12]. Let M be a nonempty separable

complete subset of a metric space X, and let T : Ω × M → C(X) and

f : Ω ×M → X be continuous random operators satisfying condition (A◦);

that is, for any sequence {xn} in X,D ∈ C(X) such that d(xn, D) → 0
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and d(fxn, Txn) → 0 as n → ∞, there exists y ∈ D with fy ∈ Ty. If f

and T have a deterministic coincidence point, then f and T have a random

coincidence point.

We apply Theorem 4.2.1 to prove the following:

Theorem 5.4.8 Let Y be a nonempty separable weakly compact subset of

a Banach space X, and f : Ω × Y → Y a random operator. Assume that

S : Ω× Y → CB(Y ) is continuous and f(ω, .) and S(ω, .) satisfy conditions

(i) - (iii) in Theorem 4.2.1, for all ω ∈ Ω. Suppose that f is both continuous

and weakly continuous and (f − S)(ω, .) is demiclosed at 0 for each ω ∈ Ω.

Then f and S have a random coincidence point. Moreover, if for each ω ∈ Ω

and any x ∈ M, f(ω, x) ∈ S(ω, x) implies f(ω, f(ω, x)) = f(ω, x), and f is

S-weakly commuting random operator, then f and S have a random common

fixed point.

Proof. By Theorem 4.2.1 f and S have a deterministic coincidence point.

By Theorem 5.4.6, f and S have a random coincidence point ψ : Ω → Y ;

i.e. f(ω, ψ(ω)) ∈ S(ω, ψ(ω)) for each ω ∈ Ω. Let ξ(ω) = f(ω, ψ(ω)) for each

ω ∈ Ω. Then ξ : Ω → Y is measurable. Thus, for each ω ∈ Ω, we have

ξ(ω) = f(ω, ψ(ω)) = f(ω, f(ω, ψ(ω))) = f(ω, ξ(ω)).
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Since f is S-weakly commuting, we get

ξ(ω) = f(ω, ξ(ω)) ∈ S(ω, f(ω, ψ(ω))) = S(ω, ξ(ω))

for each ω ∈ Ω. Hence ξ is a random common fixed point of f and S.

Similarly, a combination of Theorem 4.2.1 and Theorem 5.4.7, gives the

following result.

Theorem 5.4.9 Let Y be a nonempty separable complete subset of a metric

space X, and f : Ω × Y → X be a continuous random operator. Assume

that the random operator T : Ω× Y → C(X) is continuous and f(ω, .) and

S(ω, .) satisfy the conditions (i) - (iii) in Theorem 4.2.1, for all ω ∈ Ω. If

f(ω, .) and S(ω, .) satisfy the condition (A◦) for each ω ∈ Ω, then f and

T have a random coincidence point. Moreover, if for each ω ∈ Ω and any

x ∈ M, f(ω, x) ∈ S(ω, x) implies f(ω, f(ω, x)) = f(ω, x), and f is S-weakly

commuting random operator, then f and S have a random common fixed

point.

We apply Theorem 5.4.3 to prove weak and strong convergence of the ran-

dom modified Ishikawa iteration ((5.2.3) with k = 2, T1 = S and T2 = T ) to

a unique random common fixed point of two random operators S and T.

Theorem 5.4.10 Let C be a nonempty weakly compact convex subset of a

separable uniformly convex Banach space X, and S and T be two (L − γ)
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uniform Lipschitz and asymptotically quasi-nonexpansive continuous random

operators from Ω × C → C. Suppose that S and T are weakly compatible.

If the conditions (i) – (iv) of Theorem 5.4.3 are satisfied, and (I − S)(ω, ·)

and (I − T )(ω, ·) are demiclosed at 0, then the random modified Ishikawa

iteration converges weakly to a unique random common fixed point of S and

T .

Proof. By Theorem 5.4.3, S and T have a unique random common fixed

point (say ζ). Then, by Lemma 5.2.12 (i), lim
n→∞

‖ξn(ω) − ζ(ω))‖ exists for

each ω ∈ Ω, and hence {ξn} is bounded. Since X is reflexive, there exists a

subsequence {ξnj
} of {ξn} converging weakly to a measurable map η : Ω → C,

for each ω ∈ Ω. By Lemma 5.2.12 (iii) and the demiclosedness of I − S and

I − T , S(ω, η(ω)) = T (ω, η(ω)) = η(ω), for each ω ∈ Ω. Thus, η(ω) = ζ(ω),

for each ω ∈ Ω. In order to show that {ξn} converges weakly to ζ, take

another subsequence {ξnk
} of {ξn} converging weakly to a measurable map

ψ : Ω → C, for each ω ∈ Ω. Again, as above, ψ(ω) = ζ(ω), for each ω ∈ Ω,

so {ξn} converges weakly to ζ. ¥

On the lines of the proof of the above theorem, we can prove the following:

Corollary 5.4.11 Let C and X be as in Theorem 5.4.10, and S and T be two

asymptotically nonexpansive random operators from Ω × C → C. Suppose

that S and T are weakly compatible and the conditions (i)-(iv) of Theorem
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5.4.3 are satisfied. Then the random modified Ishikawa iteration converges

weakly to a unique random common fixed point of S and T .

Theorem 5.4.12 Let C be a nonempty weakly compact convex subset of a

separable uniformly convex Banach space X, and S and T be as in Lemma

5.2.12. Suppose that S and T are weakly compatible, the conditions (i)-(iv)

of Theorem 5.4.3 hold and for some integer m, Tm or Sm is semi-compact.

Then the random modified Ishikawa iteration converges strongly to a unique

random common fixed point of S and T .

Proof. By Theorem 5.4.3, S and T have a unique random common fixed

point. Let Tm be semi-compact (the proof is similar if Sm is semi-compact).

By Lemma 5.2.12, we obtain

‖Tm(ω, ξn(ω))− ξn(ω)‖ ≤ ‖Tm(ω, ξn(ω))− Tm−1(ω, ξn(ω))‖

+‖Tm−1(ω, ξn(ω))− Tm−2(ω, ξn(ω))‖

+ . . . + ‖T 2(ω, ξn(ω))− T (ω, ξn(ω))‖

+‖T (ω, ξn(ω))− ξn(ω)‖

≤ (m− 1)L‖T (ω, ξn(ω))− ξn(ω)‖γ

+‖T (ω, ξn(ω))− ξn(ω)‖ → 0, as n →∞.

Since {ξn} is bounded and Tm is semi-compact, {ξn} has a convergent

subsequence {ξnk
} converging to a measurable map η : Ω → C. Hence, again
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by Lemma 5.2.12 (iii), we have

‖ζ(ω)−S(ω, ζ(ω))‖ = ‖ζ(ω)−T (ω, ζ(ω))‖ = lim
n→∞

‖ξnk
(ω)−T (ω, ξnk

(ω))‖ = 0,

for each ω ∈ Ω. Thus RF (S, T ) = {ζ}. As lim
n→∞

‖ξn(ω) − ζ(ω)‖ exists, so

{ξn} converges strongly to ζ. ¥

Remark 5.4.13 (i) Following the arguments of the proof Theorem 5.4.12,

we can prove analogue of this result for two asymptotically nonexpansive

random operators instead of (L − γ) uniform Lipschitz and asymptotically

quasi-nonexpansive random operators.

(ii) Corollary 5.4.11 extends Theorems 3.1-3.2 of Tan and Xu [126] to the

case of two asymptotically nonexpansive random operators.

(iii) Theorem 2.1 [27] and Theorems 3.1-3.3 [36] deal with one continuous

random operator whereas Theorem 5.4.12 gets hold of two continuous random

operators.

(iv) Theorem 5.4.12 is a random version of Theorem 3.4 of Shahzad and

Udomene [110] without the assumption that the set of common fixed point

is nonempty.
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