

KIN G F AHD UNIVERSITY OF PETROLEUM AND MINERALS

DHAHRAN 31261, SAUDI ARABIA

DEANSHIP OF GRADUATE STUDIES

This thesis, written by SYED MOHAMMED SHAMSUL ISLAM under the

direction of his Thesis Advisor and approved by his Thesis Committee, has been

presented to and accepted by the Dean of Graduate Studies, in partial fulfillment of

the requirements for the degree of MASTER OF SCIENCE IN COMPUTER

ENGINEERING.

Thesis Committee

lILaC;
Dr. MAYEZ !

~~.I'-~~
Dr. MUHAMMAD SARFRAZ- (Member)

Dr. (Member)

/

Dr.-~~~~

jiftV!' \ I 'v

Date
6' -'2 2 '.>"..) 6'

Heartily dedicated to my parents

Syed Nazrul Islam and Mosammat Jebunnesa

and also to my elder brother Syed Rafiqul Islam

whose prayers, guidance and encouragement led me to the

accomplishment of this work.

Acknowledgements

All praise is due to Allah (SWT), the Most Gracious, the Most Merciful. May peace

and blessings be upon Prophet Muhammed (SAW), his family and his companions.

I pay a heartily tribute to all of my family members and especially to my parents,

who guided me during all my life endeavors. Their love and support motivated me

to continue my education and achieve higher academic goals. Without their moral

support and sincere prayers, I would have been unable to accomplish this work.

I would like to express my deepest gratitude and appreciation to my advisor

Dr. Mayez Al-Mouhamed, Professor of Computer Engineering for his consistent

help, fatherly guidance and cautious attention throughout the course of this work.

His valuable suggestions and useful discussions made this work interesting for me.

My than ks also go to my thesis committee members - Dr. Muhammad Sarfraz,

Professor of Information and Computer Science and Dr. Talal Al-Kharobi, Assistant

Professor of Computer Engineering. Both of them provided me with invaluable and

prompt feedback and guidelines to improve the quality of the work. I would also like

to thank Dr. Muhammad Farrukh Khan, former Assistant Professor of Computer

Engineering, who served as a committee member for a good amount of time and

extended his kind co-operation and gave many important suggestions.

It would like to express my cordial thanks and profound gratitude to Dr. Onur

Toker, former Associate Professor, Department of System Engineering, KFUPM. I

i

will be always indebted to him for his scholarly suggestions and patient co-operation

by spending lots of hours in day and night during his visit to KFUPM and also in

communicating with emails. I am also indebted to Dr. Syed Mohamed Buhari,

Lecturer of Information and Computer Science for his kind co-operation, specially

in the implementation phase of the work.

I would like to acknowledge the support and facilities provided by College of

Computer Science and Engineering and particularly, the Department of Computer

Engineering, King Fahd University of Petroleum and Minerals (KFUPM) for the

completion of this work.

Finally, I appreciate the friendly support and encouragement from all my col-

leagues at KFUPM. In particular, I want to thank Mr. Mahedi, Asif, Nazeerud-

din, Sumon, Sanaullah, Abid, Shazli, Fahimuddin, Shareef, A. Kafi, Shibly, Tareq,

Kaosar and Shahed.

ii

1.5 Thesis Objectives . 9

1.6 Technical Platform . 10

1.6.1 Hardware used . 10

1.6.2 Software used . 10

1.7 Organization of the Thesis . 11

2 Literature Review 12

2.1 Stereo Vision . 12

2.1.1 Output Devices for 3D visualization 13

2.1.2 3D Visualization Techniques 14

2.1.3 3D Visualization systems . 16

2.2 Augmented Reality Technologies . 17

2.3 Camera Calibration . 18

2.3.1 Classification of Camera Models 18

2.3.2 Description of a Pin-hole Camera Model with Perspective Pro-

jection . 20

2.3.3 Classification of Camera Calibration Methods 24

2.4 Generation of 3D Computer Graphics 27

2.4.1 Modeling . 27

2.4.2 Scene layout setup . 29

2.4.3 Rendering . 30

iv

2.5 Registration Techniques . 30

2.6 Stereovision and AR Approaches in Telerobotics 33

2.6.1 SMART Approach . 34

2.6.2 The MDTF Approach . 35

2.6.3 ARTEMIS Proposal . 39

2.6.4 The UJI Online Robot Project 42

2.6.5 Discussion and Comparison of the Systems 44

2.7 Summary of the Findings . 44

3 Design 48

3.1 System Architecture . 49

3.2 Methodology . 50

3.3 Mathematical Model of the Robot Manipulator 52

3.3.1 The PUMA-560 Manipulator Arm 54

3.3.2 Motion Coordination and Selection of Cartesian Frames 56

3.3.3 Direct Geometric Model of the PUMA-560 59

3.3.4 Inverse Geometric Model of the PUMA-560 67

3.4 Building Body Shapes Around the Skeleton of the Graphical Arm . . 72

3.5 Data Structure Design . 73

3.6 Displaying the Graphical Arm . 75

3.6.1 Scene Layout Setup . 75

v

3.6.2 Rendering . 76

3.7 Algorithms for Moving the Graphical Robot Arm 77

3.7.1 Movement in the Joint Space 78

3.7.2 Movement in the Cartesian Space 80

3.8 Acquisition of Real Video Image and 3D Stereo-Visualization 81

3.9 Superimposition of Virtual Object on Real Video 83

3.10 3D Visualization with Superimposed Virtual Objects 86

3.11 GUI Design . 88

3.12 Input Devices . 88

3.13 Graphical Tele-Manipulation . 88

4 Implementation 93

4.1 Motivation for using Direct3D API 94

4.2 Description of DirectX Features Used 94

4.3 Transformations involved in DirectX Vertex Processing 98

4.4 Virtual Object Modeling Module . 101

4.5 Display Module . 104

4.6 Integration to the Stereo-Vision System 107

4.7 GUI Implementation . 108

5 Performance Evaluation and Comparative Studies 111

5.1 Speed of Rendering Graphics . 112

vi

5.1.1 Refresh Rate . 113

5.1.2 Time Required for Rendering the Robot 113

5.1.3 Time Required for Video Image Acquisition and Transfer . . . 113

5.2 Complexity of the Movement Algorithm 116

5.3 Accuracy of the System . 117

5.3.1 Re-projection Errors . 117

5.3.2 Accuracy of the Movement . 118

5.4 Comparative Studies . 119

5.4.1 Comparison of .NET Framework to Other Client-Server Com-

munication Platforms . 119

5.4.2 Comparing Direct3D with Other Graphics API 121

5.4.3 Comparing Our Approach to Others 125

6 Conclusion 128

6.1 Summary of the Work . 128

6.2 Contributions . 129

6.3 Future Research Directions . 130

Bibliography 133

Vita 142

vii

List of Tables

2.1 Comparison of the cited AR telerobotic system. 45

3.1 Function of the keys used for user interaction. 89

5.1 Refresh rate of the output screen. 112

5.2 Time required to render the graphical robot. 114

5.3 Image acquisition and transfer time. 114

5.4 Number of vertices to be drawn for movement in the joint space. . . . 117

5.5 Comparison between important 3D graphics APIs. 125

viii

List of Figures

1.1 A typical telerobotic stereo-vision system. 2

1.2 Requirement of AR. 7

2.1 Pinhole camera model [1]. 21

2.2 Model-based registration and tracking system [2]. 32

2.3 Software architecture of the complete AR system on client side [1]. . 36

2.4 Camera identification GUI [1]. 38

2.5 Schematic diagram of ARTEMIS [3]. 40

2.6 System architecture of the web-based telerobotic system. 42

3.1 Telerobotic stereo-vision system to be augmented [1]. 49

3.2 Overall AR system design. 50

3.3 Hierarchy of design abstraction. 51

3.4 Joint types and frame of reference. 53

3.5 Schematic diagram of PUMA 560 robot manipulator. 55

3.6 The kinematic model of the PUMA 560 robot arm. 57

ix

3.7 Finite element representation of a cylinder used as body shape of

graphical arm. 73

3.8 Data structure to represent the links. 75

3.9 3D PUMA 560 robot structure using cylindrical body shape. Solid

model (left) and wire-frame model (right). 77

3.10 Movement of graphical arm in the joint space. 79

3.11 Movement of the graphical arm in the Cartesian Space. 82

3.12 A sample of the left and right image to be displayed for 3D stereo view. 83

3.13 Viewing frustum. 86

3.14 Overall client system flow-chart for graphical tele-manipulation. . . . 92

4.1 Transformation involved in vertex processing [4]. 99

4.2 Overall software architecture. 108

4.3 Main User Interface Form at Client Side 109

4.4 User interface form in stereo view at client side 110

5.1 Re-projection error in pixel. 118

5.2 Dirct3D interaction to hardware. 122

x

THESIS ABSTRACT

Name: Syed Mohammed Shamsul Islam

Title: Design of a Graphical User Interface
to Augment a Telerobotic Stereo-Vision System

Degree: Master of Science

Major Field: Computer Engineering

Date of Degree: December 2005

Telerobotics as a multidisciplinary area that aims at extending eye-hand motion
co-ordination through a distance using real-time wired or wireless computer net-
works. It consists of a master arm to describe hand motion, slave arm (the robot
arm) to reproduce hand motion, and stereo vision, haptic and force feedback to ex-
tend human depth perception and senses. Some of the telerobotic applications are
operating in deep space, underwater, nano and micro scales, carrying out surgery
inside the patient body, etc. One of the most critical problems of such system is
the communication delay that often causes teleoperation instability. In this work, an
Augmented Reality (AR)-based telerobotic system is proposed that allows developing
and validating a teleoperation plan by superimposing some virtual objects onto the
real video image of the workspace. The plan substitutes frequent low-level interac-
tions between the user and the remote site by sending only the finalized data and
thus, reduces real-time network interactions. It also increases the task safety. To
develop the system, a serial six DOF 3D graphical arm is designed based on its geo-
metric model. Then, accurate camera calibration and registration methods are used
to superimpose the graphical arm onto the video image. Motion activation algo-
rithms are developed and a Graphical User Interface (GUI) is designed to facilitate
the task simulation. Direct 3D of Microsoft DirectX is used as graphics API that
exploits hardware acceleration for graphics rendition through Hardware Abstraction
layer (HAL). The overall system is designed using Microsoft .NET framework with
Visual C#.NET programming and tested on a stereovision system operating over a
LAN with a PUMA-560 robot. The system performed well with significant accuracy

xi

and refresh rate of graphics on the output screen.

Master of Science Degree

King Fahd University of Petroleum and Minerals, Dhahran.

December, 2005

xii

� � � � � � � � � � 	

 � �

�� � � � � � � � � �
� �
 � �

 � �

� � � � �

� �

!�
! " # � $ � � � % &' (') * � ! � � �
 + � � , * - �� � . /! � 0 � � 1 � � ! (2 � �

�) 3 4 � ! 5 � �) � � ! � � 6 � 7 + 8 9 � ! � . / : ; <

 � �

*

% ,

=�
!
 � � >; � 6 � ?
 � � � �

 &
(+ �
� � @
*

,

A �

$ 8B �) C � �
����
 >

 D � " &E C / F � G �) 3 4 � ! 5 � �) � � ! � � 6 � 7 + 8 9 � ! � . / :?
 � � � � H � I J � J � ! (2 � � K � ! � 0 � � * � � � ! L � � �

M! � I 5
 � � � $: ! � I 5 - � �N O4 � ! � . / 9 � P Q > � � I * & � R 7 � + 8Q ST � � 7 � + 8 $ � � , * - � � � U L � (E � 1 � & B V � � � 3 � � C (
� ��! L N� F � G E) T � � B V + E C � � ; - I � ! (Q W & � � . / $! � 0 � � X ! (2 3 � � . � � � Y ') (� � , * - � �N7 + 8 9 � ! � . / : � � , * - &H � � � C * � � $ Z � � � � [� & $; # + � , � � Z � \ T � � ; < E �) � � E 1 � H � C � J] * � � 4 � � (�) � � ; < �) 3 4 � ! 5 � �) � � ! � � 6 �

! � ^ � _ � � H � � 5 �) � � ; < ` � Q L $! a � � � ! � > � � * � � � $! C � a � � �Nb� J 5
 X c & ; * � � H � a �) � � � � > : � ^ :! � . / : Z � V : F 5 �
� > �) 3 4 � ! 5 � �) � � ! � � 6 � 7 + 8 9 �� � . � � � ; < d 4 � 3 H � � � 5) � � � e V � J & ; < � f g * � �H � J 1 � � � � � C < ? J - (� � �N; <

h] / ! � �
 � � P Q >! � � 5] � � � ! � " � � � ! 3 _ & $ i �] , * � � 4 � � � , * - � � � 4 SI � (�) 3 4 � E �) (! � � R 7 + 8 : � � . /
; 5) T � � � > Q � T � & E J aN! � " � � � !] , � ! � 5 � , & B + � j + � " k l 3 � � . � � � � � C (E �) � � K a � � � ! � C � C � � � � (� T � � B + � j F 5 �N � � 3 ! � 5 �) � � ! � �
 ! # + V 4 � � (' (; 5) T � � � > Q � T � & E J a ! � " � � � ! 3 _ &! � V � J * � � � H � � � 5) � � � ! � � L E � 5 C & F � � ! < � m

! � " � 5 � ! � 0 � " � � � !] , � � Q � T � * 3 ` � 8 $N9 � ; X � X ;
 � � > A 8 � � / E �) 3 � � � a � � . � � � � Q > (�] * �$ 8 ; � R 7 � + Q � V �) 3
�

 ^ H � # + VBNB + � j ! < � m G � � � I � : � � � � I 5 � ! C � a V B (�) � 3� ! � 5 � , &; � 6 � 7 � + Q 5� (� T � � B + � j F 5 �
! � C � C � � �N! L � � � E �) T * � H � � � Y + � � f $! � � �
 + � � , * - � ! " # � $ (�] * 3 � � � a B � L � � � � � ! � 5 � � ' (') * � $N� &

n � � 3 $ [< �
 $ I � � ! o � 3 � � � , *
 � 3 h * C � � � � � . � � � � � � % &C#, .NET, DirectX9N� � � + � J * f � � &� � .
� � � 3 7 � + 8 � � � , *
 � 3

���
! � 5 � � ?
 � ^ ! I J � J � H � � � 5) � � � e V � J & � & $; 0 � � X ! (2 + � � . / $N� � . � � � F] � :

� (� T � � F 5 � � �
 � � p � ; < E \ < : ! a � 3 B � � # n 0 � * /N

 � � 5) � � ; < * - # � � � � ! # + V
 � V �) � � � $ e $ * J 5 � � " < ` 5 � � � !) � � #

 � � " . � �
-

! (V �) - � � ! � 3) � � ! I 5 � � � �
 8$B �) C � �

����
 >

xiii

Chapter 1

Introduction

In this chapter, the preliminary concepts required to understand the thesis problem

is first described. Then, the problems involved in the conventional approach and

probable solutions are mentioned. The thesis objectives and the technical platform

used to meet the objectives are also described.

1.1 Preliminary Concepts

In this section, some of the basic concepts will be made clear which will let us

understand the underlying problem of our work and the thesis objectives to be

discussed later in this chapter.

1

2

1.1.1 Telerobotics

Telerobotics is a modern technology of robotics that extends an operator’s sensing

and manipulative capabilities to a remote environment. A telerobotic system con-

sists of a master arm (workstation) and a slave arm (workstation) that are connected

through a computer network and a stereo-vision system to provide 3D views of slave

scene; see Fig. 1.1. Tele-operator is also provided with force feedback to have a

better sense of his task manipulation.

�����

�

�

�

������

	�
�����

��������

	���
��

�

���������������

��������
��
�

��
�����������

���������������

��
�����������

Figure 1.1: A typical telerobotic stereo-vision system.

Telerobotics is now becoming very useful to be applied in many situations spe-

cially in scaled down and scaled up situations, hazardous and hostile situations and

environment where human presence adversely affect the task operation. Telerobotics

has enhanced the surgery through improved precision, stability and dexterity. Stereo

image guided telerobots allow surgeons to work inside the patient’s body precisely

and without making large incision. Telerobots are now routinely used for biopsy

3

brain lesions with minimal damage to adjacent tissue, for closed-chest heart bypass,

for shaping the femur to precisely fit prosthetic hip joint in orthopedic surgery, for

microsurgical procedures in ophthalmology and for surgical training.

1.1.2 Stereo Vision

Stereo-vision is a technique to get 3D perception of a remote scene. In a stereo-vision

system, visualization of a remote scene is made in such a way that the viewer has

clear idea about the relative distances, depths and dimensions of the objects present

in the stereo image [1]. These advantages of stereo vision over monoscopic vision are

well-described in [5]. Stereovision has a wide range of potential application areas

including 3D map building, data visualization and robot pick and place.

1.1.3 Augmented Reality

Augmented Reality (AR) is a process of superimposing one or more registered com-

puter graphics objects, or 3D virtual objects (3DVOs) over the stereo views of a real

scene to augment the stereo space and thus enhancing visual information (video in

general). Thus, AR is a variation of Virtual Reality (VR) in a sense that it supple-

ments reality, rather than completely replacing the reality. According to [6], AR is

a system that has the following three characteristics:

1. combines real and virtual,

4

2. interactive in real time, and

3. registered in 3D Area-based stereo

Therefore, only overlaying two-dimensional (2D) virtual objects on the real world

as done in films like “Jurassic Park” could not be considered AR since they are not

interactive media.

In robotics, AR lies between telepresence (completely real) & Virtual reality

(completely synthetic) and between manual teleportation & autonomous robotics

[7].

A comprehensive survey on AR is made in [6] and [8] which explored number

of applications of AR including medical visualization, maintenance & repair, an-

notation, robot path planning, entertainment and military aircraft navigation &

targeting, interior design and many more. It increases reliability and correctness in

tele-surgery and give assistance to the surgeons.

1.2 Problem of the Conventional Tele-Operation

The conventional teleoperation suffers from number of problems. As discussed in

[5], this method requires the operator continually engaged in dynamic control of

the robot whenever any actions are to be executed. This may lead to the operator

himself retarding the system due to relatively slow sensory and motor capabilities.

5

Also in most cases, operational environment is unstructured and unpredictable where

repetitive programmed procedures may not work. Another, the most important

problem is the time-delay in communication between local and remote site. Due

to time delay operator has to go often for a move-n-strategy. Maintaining large

bandwidth may reduce this delay but it is expensive and sometimes cumbersome. All

these issues should be handled properly in order to apply telerobotics for successful

tele-surgery.

1.3 Application of AR for Solving the Problem of

Telerobotics

Various techniques such as predictive feedbacks, supervisory control and most re-

cently AR have been proposed to solve the problems [1]of conventional telerobotics.

Information from various medical imaging sensors, such as Computer Aided To-

mography (CAT), Positron Emission Tomography (PET), and Nuclear Magnetic

Resonance (NMR) scanners can be used to generate graphic images of the interior

of the human body. These images can be super-imposed onto a live video image

of the body using AR tools, and seen in three dimensions (3Ds), providing a clear

advantage over the systems that use flat 2D displays.

AR also provides the tele-operator e.g. surgeon with the facility of making simu-

6

lation plan with probable rehearsal and corrections before going for exact operation

with patient’s body. That means, AR allows task specification (requiring human

intelligence) to be separated from task execution (that can be done by autonomous

modules) [2]. Operator (for example surgeon) can preview the effect of the move

(action) on the local display overlaid on the remote world image (i.e. patient’s

body image) and once he is satisfied with the move, he can issue the actual com-

mand. Thus, it will give additional safety in task space which is crucial specially in

tele-surgery.

The graphical overlaying also helps to overcome the adverse effect of communi-

cation delay and saving bandwidth by sending (less frequently) only the finalized

planned trajectory points. In [9], it is reported that the researchers conducted hu-

man factors experiments using a PUMA robot to perform a simple tapping task

with time delays up to four sec. Results showed about 50% reduction in task com-

pletion time when using a phantom robot (a virtual robot properly registered with

the position of its real counter part) instead of simple teleoperation.

7

1.4 Challenges of AR to be Applied in Telerobot-

ics

To apply AR on a telerobotic stereovision system, it requires proper overlay of real

world i.e. robot workspace scene data (e.g. patient’s anatomy in case of surgery)

onto the graphics image data. Proper overlaying, on the other hand, requires estab-

lishing a bidirectional one-to-one mapping of coordinate spaces between the virtual

world and the remote world viewed through the video; see Fig. 1.2. In stereo vision

system, this requires respective mappings of both right and left video frames. This

can be done by proper camera calibration and image registration processes.

Graphic
Co-ordinate

Space

Remote
Co-ordinate

Space
(Video)

Bi-directional one-to-one mapping between
graphic and real co-ordinate spaces

Graphic
Co-ordinate

Space

Remote
Co-ordinate

Space
(Video)

Bi-directional one-to-one mapping between
graphic and real co-ordinate spaces

Figure 1.2: Requirement of AR.

Camera calibration is the establishment of the projection from the 3D world co-

ordinates to the 2D image co-ordinates by finding the intrinsic and extrinsic camera

8

parameters [10]. Intrinsic parameters include optical and electronic properties of a

camera, such as focal length, lens distortion coefficients, image center, scaling factors

of the pixel array in both directions. While the extrinsic parameters are the pose

estimation (rotation and translation) of the camera system relative to a user-defined

3D world coordinate frame [2]. In multi-camera systems, the extrinsic parameters

also describe the relationship between the cameras [11].

Registration refers to the proper alignment of the virtual object with the real

world. The accuracy of registration is mostly dependant on the accuracy of cal-

ibration [10]. Two kinds of registrations are: static and dynamic [12, 2]. In the

static registration, user and the objects in environment remain still. It is done at

initialization with the help of Human Operator. The dynamic registration is done

while the viewpoint starts moving to automatically update the registration data.

The main sources of static errors are optical distortion, errors in the tracking

system, mechanical misalignments and incorrect viewing parameters (e.g., field of

view, tracker-to-eye position and orientation, interpupillary distance). A detail on

static errors and algorithms to rectify them can be found in [13, 12, 14, 6].

The main cause of dynamic error is the system delay or lag [12]. The end-to-end

system delay is defined as the time difference between the moment that the tracking

system measures the position and orientation of the viewpoint to the moment when

the generated images corresponding to that position and orientation appear in the

9

displays [6]. However, dynamic errors can be reduced by reducing system lag and

apparent lag, matching temporal streams (with video-based systems) and predicting

future locations [1, 15].

1.5 Thesis Objectives

1. To review camera models and techniques used to provide mapping between

3D space and camera reference as well as associated calibration methods and

adopting an existing method or developing a new one.

2. To study various graphics rendering systems and to choose one for drawing

and displaying virtual objects.

3. To incorporate the concept of augmented reality into the user’s operating

environment i.e. to display virtual objects on the real stereo image.

4. To create a graphical user interface by incorporating additional display and

control features for simple graphical manipulation in the telerobotic AR sys-

tem.

5. To carry out performance evaluation of the proposed augmented stereo-vision

system.

10

1.6 Technical Platform

The programming language and the operational equipment used in work will be

described in this section. We have chosen the Microsoft .NET framework for our core

application framework and Microsoft DirectX 9.0 for the graphics implementation

purposes. All the software and hardware used in this thesis work are enlisted as

below.

1.6.1 Hardware used

We have used PUMA-560, an industrial robot arm. The client and server are run

on two PCs having 2-GHz Intel P4 processors with 1GB DRAM and 512 KB cache

memory. Control of master and slave arms is done using Eagle PCI 30FG data

acquisition cards. Each of client and server PCs is attached to a campus network by

using a 100 Mbps NIC card (3com EtherLink XL PCI). The server PC is interfaced

to two Sony Handycam digital cameras using a 400 Mbps FireWire PCI (IEEE-

1394) card. The client PC uses an NVIDIA GetForce4 Ti4600 as display adaptor to

interface with an SVGA resolution Cy-visor DH-4400VP 3D Head-Mounted Display.

1.6.2 Software used

Both client and server PCs run under MS Window 2000. The vision server soft-

ware uses MS Visual C++ with .NET framework 1.1 under Microsoft development

11

environment 2003. The imaging device driver used is Microsoft DV camera and

VCR. The PUMA server and the client is implemented using MS Visual C# with

the above .NET framework.

Graphics design is implemented using Microsoft DirectX9. MATLAB calibration

tool is used for camera calibration purposes. MATLAB is also used for analyzing

performance data.

1.7 Organization of the Thesis

A brief literature review of the works pertinent to the thesis objectives is provided

in chapter 2. The design methodology and implementation aspects are described in

chapter 3 and 4 respectively. Then, in chapter 5 the performance evaluation and

some comparative studies are described. We conclude in chapter 6.

Chapter 2

Literature Review

This chapter presents a review of existing tools, techniques and methods proposed

for augmentation of a telerobotic stereovision system. At first, ways and means of

3D stereo-visualization are described. Then, some camera calibration and registra-

tion methods are discussed. Some complete telerobotic systems with AR are also

presented followed by a comparative study. Our findings are summarized at the end

of the chapter.

2.1 Stereo Vision

A stereovision does not produce true 3D images, but it provides a 3D effect by

presenting a different view to each eye of an observer so that scenes do appear to

have depth [16]. In stereo vision system, two cameras are used to take two 2D pho-

12

13

tographs of the same scene at slightly different angles. Then, these two photographs

are presented for stereoscopic view using various stereoscopic devices/techniques.

Stereovision system enhances operator’s efficiency during telemanipulation [17]. In

this section, we will discuss various types of stereo systems and stereoscopic devices

found in the literatures.

2.1.1 Output Devices for 3D visualization

There are mainly two types of 3D visualization output devices in stereo vision system

which are described as follows.

1. Shuttering glasses [1]: The glasses alternately shut or block the viewer’s left,

then right eyes from seeing an image and thus a stereoscopic image is al-

ternatively shown in sequence left-image, right-image in sympathy with the

shuttering of the glasses. Problem with device is that the user can experience

the annoying phenomena of flickering which can effect his or her ability to

control the robotic arm at low refresh frequencies. But as most of the avail-

able monitors and display adapters can support refresh frequencies equal or

above 120 Hz at resolutions of 1024x768 or above, 3D visualization with very

high detail is possible with most shuttering glasses [18, 19]. For example, the

Eye3D Premium shuttering glasses can support resolutions (in pixels) up to

2048 x 1538 at 120 Hz, and 1856 x 1392 at 140 Hz.

14

2. Head mounted displays (HMD) [1, 20, 21]: HMDs provide a much larger

virtual monitor size for the user, usually in the range of 2 meters large. They

are more comfortable to work with, forces to use to see the 3D object and

nothing else, and there is no problem of flickering. Most of them support

the INTERLACED 3D video format, but not the so called ABOVE/BELOW

format which is robust under video compression and resizing. Most HMDs

also support page flipping, but this requires special drivers for each display

adapter/chipset. Some HMDs are also equipped with ear-phones and head

trackers. However, their main disadvantage is that their resolutions are either

VGA or SVGA (at least the ones which are commercially available during this

period of time). But compared to shuttering glasses, they are a factor of 10-20

or more times expensive, yet they are limited to SVGA resolutions.

2.1.2 3D Visualization Techniques

There can be different methods to produce 3D effects on the client side. Among

them two mostly used methods summarized in [1] are described below:

1. Sync-Doubling: This is the most effective 3D presentation method. It does

not require any special device inside the computer. We only need to arrange

the left and right eye images up and down on the computer screen. A sync-

doubler sits or hooks between the display (VGA) output from the PC and the

15

monitor to insert an additional frame v-sync between the left and right frames

(i.e. the top and bottom frames). This allows the left and right eye images

to appear in an interlaced pattern on screen. Using the frame v-sync as the

shutter alternating sync allows us to synchronically transmit the right and

left frames to respective left and right eyes, thus creating a 3D image. This

method is not limited by the computer hardware specs or by the capabilities of

the monitor. But it is limited in a way that we get only half of the resolution

of the screen for the 3D image.

2. Page Flipping: Page-flipping means alternately showing the left and right eye

images on the screen. Combining the 3D shuttering glasses with this type of

3D presentation only requires the application of frame v-sync as the shutter

alternating sync to create a 3D image. Page-flipping requires higher hardware

specifications. Since synchronized registration of left and right eye frames is

necessary, the minimum capacity of its frame buffer is twice as usually required.

In order to overcome the flashing problem of 3D imaging, frames provided

should be at least 60 frames per second; hence v-scan frequency should be

120Hz or higher. As it involves hardware frame buffer and page-flipping syn-

chronization, it often requires specially designed hardware for double-buffering

the stereo image.

Page-flipping provides full resolution picture quality, hence it has the best

16

visual effect among all available 3D display modes. But being highly dependent

on software and hardware is the biggest drawback of this technique [1].

2.1.3 3D Visualization systems

There are variety of different ways to generate 3D video content as mentioned in

the online document, Eye3D Manual [22]. Some of the visualization systems chosen

and described in [1] are discussed below:

1. Parallel camera configuration [23]: This is a very commonly used technique

for 3D video generation. In this system, a 3D object can be observed with

high accuracy under magnification and dept and requires simpler computation

than the tilted case. However, in case of the near stereoscopic viewing, it shows

some problems. Most of the time, some sort of video mixer may be required

to convert two video streams into a single synchronized stream.

2. Tilted camera configuration [24, 25, 26]: this configuration provides a larger

area of stereoscopic vision, such that the total area for 3D display is more, the

depth resolution is enhanced, and near stereoscopic viewing is better than the

parallel configuration. But, the computational aspects are more complicated

and demanding. Again, it produces more accuracy in the horizontal direction

than in the vertical direction. However, this problem can be overcome by using

different horizontal and vertical scaling factors. In this case, also some sort of

17

video mixer may be required to convert two video streams into a synchronized

single stream.

3. NuView 3D adapter: It is a simple and practical solution to 3D video gen-

eration consisting of two LCD-shutters, a prismatic beam splitter and an ad-

justable mirror. Two images are seen by watching through the Nu-View, while

it is switched off. The mirror/prism system puts the camera lens into the cen-

ter of the light rays of a left and a right eye view. The shutters allow the

camera lens to get only one of the views at a time. The adaptor is connected

to the video-out port of the camcorder. This way the shutter can synchronize

to the recording (50 or 60 Hz). But while zooming to the widest angle, parts

of the NuView adapter may appear in the frame, producing a dark border and

it produces some ghosting in hi-contrast scenes. Further details can be found

at the online documentation at [21].

2.2 Augmented Reality Technologies

In literatures, two different types of technologies: optical and video have been pro-

posed for combining the real and the virtual worlds in computer vision-based AR

system [1]. In the optical AR equipments, the operator gets a direct view of the real

world while the virtual objects are super-imposed on optical see through mirrors in

front of his eyes. In video-based equipment, the operator does not have any direct

18

view of the real world. Instead, he has to use the video input from the camera

altered by the local scene generator in order to add virtual objects to the scene.

The advantages and disadvantages and other details of both the techniques can be

found in [6].

2.3 Camera Calibration

Camera calibration is a necessary step in AR system in order to extract metric infor-

mation from 2D images. Much work has been done, starting in the photogrammetry

community and more recently in computer vision. In this section, the proposed

methods will be classified and described after a short discussion on various camera

models.

2.3.1 Classification of Camera Models

In computer vision and other related subjects, there are numerous different camera

models which model the imaging process by mapping points in the world to positions

on the image plane. These models can be categorized into two groups:

1. The ‘tow−plane′ Model: This model is proposed by [27]. It takes into account

all geometric and optical camera features. It establishes the correspondence

between a point in the image and the same point in the scene. But since

19

obtained rays do not cut each other, this model is not suited for stereo vision

where scenes are captured by video cameras involving perspective projection.

2. The Pin-hole Model: The ideal camera model commonly used in computer

graphics and computer vision to capture the imaging geometry is a simple

pinhole camera model. It defines the basic projective imaging geometry with

which the 3D objects are projected onto the 2D image surface. This model can

further be classified into linear or non-linear models based on whether optical

characteristics of camera is taken into consideration or not.

The simple pin-hole camera model assumes that the imaging process is a perfect

perspective projection from world to image coordinate frames. However, real cam-

eras are not perfect perspective projections (especially, when used with a short focal

length lens) and non-linear distortions are introduced into the imaging process.

There are several different forms of non-linear distortion, but usually only radial

distortion is modeled [28]. In radial distortion, the error is a radial displacement

proportional to an even power of the distance from the center of the image. Sev-

eral methods have been suggested which estimate and correct for radial distortion.

Where accuracy that really matters like for 3D motion estimation and reconstruc-

tion problems perspective projection model with a lens distortion model is the best

solution. But in [29], it is reported that for CCD camera non-linear distortion is

very negligible (less than 0.01 pixels).

20

Another concern with the pin-hole model is if pinhole is too big, many directions

are averaged leading to the blurring of the image. On the other hand, if pinhole

is too small, diffraction effects blurring the image. Generally, pinhole cameras are

dark, because a very small set of rays from a particular point hits the screen.

Another classification of camera model is given by [30] dividing camera models

with either orthographic or perspective projection (e.g. pinhole). The first model

assumes the objects in 3D space to be orthogonally projected on the image plane.

Here the projectors are parallel to the co-ordinate axes of the object. Since it is

a linear form of mapping, it is simpler and computationally less expensive. It is

suitable for vision applications where the geometric accuracy are somewhat low.

2.3.2 Description of a Pin-hole Camera Model with Per-

spective Projection

A pinhole camera model developed in [1] is shown in Fig. 2.1. A right-handed co-

ordinate system having the center of projection at the origin is used and the image

plane is considered to be at a distance of (focal length) away from it.

Let a camera is placed at the center of the world reference point. Then, a point

P(X, Y, Z) in 3D space maps to the 2D camera plane as,

xcam =
f

Z
X (2.1)

ycam =
f

Z
Y (2.2)

21

Figure 2.1: Pinhole camera model [1].

where, Z is the depth of the point.

In matrix form, this can be written as:




xcam

ycam


 =




f X
Z

f Y
Z


 (2.3)

Using homogeneous co-ordinates, the pinhole projection in Equation 2.3, can be

expressed as:

22




x′cam

y′cam

z′cam




=




f 0 0 0

0 f 0 0

0 0 1 0







X

Y

Z

1




(2.4)

where,

xcam =
x′cam

z′cam

ycam =
y′cam

z′cam

Simplifying Equation 2.4, we get:




xcam

ycam

f




= f/Z




1 0 0 0

0 1 0 0

0 0 1 0







X

Y

Z

1




(2.5)

where, the term f/Z is is the scale factor.

Now, the relationship between world co-ordinate frame and camera reference

frame can be expressed as:




xcam

ycam

1




=




f/Z 0 0 0

0 f/Z 0 0

0 0 0 1




∗




r11 r12 r13 tx

r21 r22 r23 ty

r31 r32 r33 tz

0 0 0 1




∗




X

Y

Z

1




(2.6)

23

Or,

pcam = K ∗ S ∗ P (2.7)

where, K is the matrix that projects the points from camera coordinates to image

plane using a scale factor of f/Z. And, S is a transformation matrix from world to

camera coordinates with tx, ty and tz forming the translation vector and rxx as the

elements of a rotation matrix.

Equation 2.6 can be further compacted as




xcam

ycam


 = f/Z ∗




r11 r12 r13 tx

r21 r22 r23 ty


 ∗




X

Y

Z

1




(2.8)

Now, applying weak perspective projection; see [1, 16] for details, we can express

the above equation as:




xcam

ycam


 = f/Z0 ∗




r11 r12 r13 tx

r21 r22 r23 ty


 ∗




X

Y

Z

1




(2.9)

where, Z0 is average distance of camera from the objects and if δZ is the depth of

scene, δZ << Z0.

24

Finally, the relationship between image plane coordinates (xcam, ycam) and their

pixel addresses (u, v) can be expressed using affine transformation [31] and homo-

geneous form:




u

v


 =




m11 m12 m13 m14

m21 m22 m23 m24







X

Y

Z

1




(2.10)

where, mij are the elements of projection matrix, M.

Describing origin offset separately the projection can be expressed as:




u

v


 =




m11 m12 m13

m21 m22 m23







X

Y

Z




+




u0

v0


 (2.11)

where, (u0, v0) is the origin of the pixel array.

For a stereo-vision system, two projection matrices, one for each left and right

images are to be computed.

2.3.3 Classification of Camera Calibration Methods

According to [32], we can classify camera calibration methods as below:

• 3D reference object-based calibration: Calibration is performed by observing

a calibration object whose geometry in 3D space is known with very good

25

precision. Calibration can be done very efficiently. The calibration object

usually consists of two or three planes orthogonal to each other. Sometimes, a

plane undergoing a precisely known translation is also used. These approaches

require an expensive calibration apparatus, and an elaborate setup.

A frame of reference with four fiducial points is used in [1, 33] as calibration

object. But most classical camera calibration methods typically use a precise

grid of points to solve for the intrinsic and extrinsic camera parameters [2,

34]. Multiple marker points (3-8) can be used on the grid. But results are

not unique for less than 6 points [2]. Since in most cases a calibration grid

cannot be inserted into the scene and one must rely on existing objects for the

calibration. [2, 35, 29] directly uses a robot arm as calibration fixture.

• Self-calibration: Instead of using any calibration object, in this technique a

camera is moved in a static scene, the rigidity of the scene provides in general

two constraints on the cameras’ internal parameters from one camera dis-

placement by using image information alone. Therefore, if images are taken

by the same camera with fixed internal parameters, correspondences between

three images are sufficient to recover both the internal and external parame-

ters which allow us to reconstruct 3D structure up to a similarity. While

this approach is very flexible, it is not yet mature. Because there are many

parameters to estimate, we cannot always obtain reliable results.

26

In [10], a self-calibration technique for camera in a monitor-based AR display

used in ARToolKit (a software used for AR application) is proposed. It over-

comes the need for human intervention in the existing ARToolKit. But it is

not as robust as the existing one and its accuracy can be improved.

Camera parameters are found in a 3×3 calibration matrix and used to calculate

the transformation matrix to make sure that the virtual object is overlaid

accurately.

Pinhole model is chosen for camera model with assumption that image axes

are orthogonal. Weak perspective projection is used for transform from 3D

camera co-ordinates to image co-ordinates and affine transformation is used

for image co-ordinates to pixel surface co-ordinates. Correction for radial dis-

tortion of lens is also made. A publicly available software image matching [36]

is used to get the accurate determination of point correspondence and to esti-

mate the fundamental matrix (epipolar geometry). The algebraic Dornaika’s

method [10, 37] is used for self-calibration that is derived from this fundamen-

tal matrix. By experiment, it is shown that the principal point estimation

for self-calibration without distortion correction is quite reliable and taking

distortion into account improves the accuracy of the camera parameters.

• Other techniques: Vanishing points for orthogonal directions and calibration

from pure rotation.

27

In [10, 38], camera calibration techniques are categorized into situations with

known scene (using a planar pattern) and unknown scene (using camera motion)

and self-calibration is defined for the situation where neither the scene nor the

camera motion is known.

In [11], calibration methods are divided into implicit and explicit types.The

methods where the camera model is based on physical parameters, like focal length

and principal point, are called explicit methods. In most cases, the values for these

parameters are in themselves useless, because only the relationship between 3D

reference coordinates and 2D image coordinates is required. In implicit camera

calibration, the physical parameters are replaced by a set of non-physical implicit

parameters that are used to interpolate between some known tie-points.

2.4 Generation of 3D Computer Graphics

The process of generating 3D computer graphics can be sequentially divided into

three basic phases: Modeling, Scene layout setup and Rendering. These are dis-

cussed in detail in [39] and summarized in the following sections.

2.4.1 Modeling

The modeling stage could be described as shaping individual objects that are later

used in the scene. Modeling processes may include editing object surface or material

28

properties (e.g., color, luminosity, diffuse and specular shading components-more

commonly called roughness and shininess, reflection characteristics, transparency or

opacity, or index of refraction), adding textures, bump-maps and other features.

Objects may be fitted with a skeleton, a central framework of an object with

the capability of affecting the shape or movements of that object. This aids in the

process of animation, in that the movement of the skeleton will automatically affect

the corresponding portions of the model. Sometimes, objects are broken down from

abstract representations called primitives such as spheres, cones etc, to so-called

meshes, which are nets of interconnected triangles. Meshes of triangles (instead of

e.g. squares) are popular as they have proven to be easy to render using scanline

rendering.

Some of the vastly used modeling techniques are:

1. Constructive Solid Geometry: It allows a modeler to create a complex surface

or object by using Boolean operators to combine objects.

2. Non uniform rational B-spline (NURBS): It is a mathematical model com-

monly used in computer graphics for generating and representing curves and

surfaces.

3. Polygonal modeling: A polygon is a closed planar path composed of a finite

number of sequential line segments. The straight line segments that make up

the polygon are called its sides or edges and the points where the sides meet

29

are the polygon’s vertices. If a polygon is simple, then its sides (and vertices)

constitute the boundary of a polygonal region.

4. Subdivision Surfaces: In computer graphics, subdivision surfaces are used to

create smooth surfaces out of arbitrary meshes. Subdivision surfaces are de-

fined as the limit of an infinite refinement process.

Modeling can be performed by means of a dedicated program (e.g., Lightwave

Modeler, Rhinoceros 3D, Moray), an application component (Shaper, Lofter in 3D

Studio) or some scene description language (as in POV-Ray).

2.4.2 Scene layout setup

Scene setup involves arranging virtual objects, lights, cameras and other entities on

a scene which will later be used to produce a still image or an animation.

For animation of complex object keyframing technique is sometimes used where

instead of having to fix an object’s position, rotation, or scaling for each frame in an

animation, one needs only to set up some key frames between which states in every

frame are interpolated.

Lighting is an important aspect of scene setup to give the aesthetic and visual

quality of the output. However, these effects can contribute greatly to the mood

and emotional response effected by a scene in case of photography but not much

important in telerobotics.

30

2.4.3 Rendering

Rendering is the final process of creating the actual 2D image or animation from

the prepared scene with mathematical models.

Rendering for interactive media, such as games and simulations, is calculated

and displayed in real time, at rates of approximately 20 to 120 frames per second.

Animations for non-interactive media, such as video and film, are rendered much

more slowly. Non-real time rendering enables the leveraging of limited processing

power in order to obtain higher image quality. Rendering times for individual frames

may vary from a few seconds to an hour or more for complex scenes.

Rendering software may simulate such visual effects as lens flares, depth of field

or motion blur to lend an element of realism to a scene. Techniques have been

also developed for the purpose of simulating other naturally-occurring effects, such

as rain, smoke, fire, fog, dust etc. Simulation of light focusing by uneven light-

refracting surfaces, such as the light ripples seen on the bottom of a swimming

pool) and the light reflecting inside the volumes of solid objects such as human skin.

But such effects are not important in our telerobotic application.

2.5 Registration Techniques

The mostly used approach for AR registration is model-based approach. In this

approach, shape of the target is modeled in the form of a computer-aided design

31

(CAD) model and superimposed on the real scene. This is closely related to classical

camera calibration problem.

The slave robot arm picture is drawn on a real or computer generated background

image at the master stations display unit. For this a complete and accurate model

of the slave robot arm is used at the master station. The slave station is supposed

to send position and orientation parameters of the slave robot arm to the master

station in a continuous manner. Based on these received parameters, the master

station can draw an artificial image (graphically computed) of the master robot arm

based on the available model.

In [2], a model-based registration and a model-based prediction oriented tracking

system using Extended Kalman Filter (EKF) are approached for AR in telerobotic

application.

As shown in Fig. 2.2, taking a gross estimate of the camera focal length, a

geometric model of the robot, its configuration and one image of the scene initial

registration or static registration is performed. It improves the evaluation of the

focal length, estimates the pose of robot’s base frame relative to the camera and

estimates the first order radial distortion coefficient.

For feature detection and matching, a semi-automatic approach is adopted. The

HO aligns the virtual model with the real one on screen using an AR-based interface.

The robot or manipulator is marked with round colored stickers. The visible virtual

32

Point & click
matching

Rough manual
superimposition

Feature proj.,
detection and

matching

Kim's linear
and

nonlinear
algorithms

Next 3D pose
prediction

Feature proj.,
detection and

matching

Filter state
correction

Initial
overlay of
real and
virtual
robots

Continuous
overlay of
real and
virtual
robots

Camera
focal length

Robot 3D
model

Initial static
image

Robot current
configuration

Camera control
(optional)

Video
sequence

Figure 2.2: Model-based registration and tracking system [2].

features are determined and projected onto the image plane. Then, the real features

around the image projections of the virtual ones are searched and matched by using

color segmentation. Following this matching process, the camera’s intrinsic and

extrinsic parameters are determined. At first, Kim’s linear algorithm is used to

compute the approximate pose parameters using only nominal values of the camera’s

focal length. Then, taking this as the initial state an iterative non-linear algorithm

is used to compute directly the roll, pitch & yaw angles and a more accurate value

of the focal length and the radial distortion co-efficient.

An algorithm is proposed to update the computation of camera parameters

through filter-based tracking whenever the real camera and/or the real robot move.

For this, two processes are operated continuously: (1) feature tracking and detection

process and (2) computation of new values for the camera’s extrinsic parameters us-

ing the image locations of the detected marks. EKF prediction phase is used to

33

predict the location in the image of visible markers and the image co-ordinates of

the markers are then directly used in the correction phase, where a pose is computed

for each frame. The Kalman filer is used only to smooth the values computed over

time.

Simulation result obtained in [2] shows that the manipulator and the camera

both follow trajectories generated using an arbitrary control law where the correct

pose is very closely followed to the point where it is difficult to distinguish the

estimator from the real state on the graphs.

Although the EKF’s correction phase performs very well, it can do very little if

the prediction is so poor that the markers cannot be located in the image. Thus,

most visible markers remain detectable based on the position predicted by the EKF.

The ARGOS (Augmented Reality through Graphic Overlays on Stereo-video)

[40] project also uses model-based approach. Detail of this project will be given in

Section 2.6.3.

2.6 Stereovision and AR Approaches in Telero-

botics

In this section, we will discuss some of the important approaches made so far towards

the integration of stereovision and augmented reality with telerobotic applications.

34

2.6.1 SMART Approach

In [41], an augmented reality interface for Telerobotic application in remote unstruc-

tured environment is proposed. It allows on-demand generation of virtual workspace

views, 3D embedding of virtual replica of the equipment into workspace views and

haptic feedback to the operator.

The system architecture consists of data acquisition, interactive perception and

enhanced task representation modules. Camera calibration and image acquisition

is performed in the first module using 3 fixed cameras. The interactive perception

module finds sparse correspondences among the three input views, determines cur-

rent viewpoint relative to the three fixed cameras using head-tracker device and

generates the virtual view for the requested viewpoint using the set of matched fea-

ture points among the three views. The third module performs 3D interposition of

graphical replica of the equipment into synthesized workspace views and provides

haptic feedback using 6 DOF haptic manipulator.

The matching algorithms used here treats all images identically and does not

assume any a priori knowledge of the scene while most of the conventional matching

algorithms use two of the input images to search for matches and the third to validate

potential matches. The proposed algorithm first detects the features, matches them

and then removes the inconsistency. The Head Mounted Tracker (HMT) device

tracks the movement of the operator’s viewpoint. Whenever the operator moves

35

his/her head, a new viewpoint is computed and passed to view synthesis module.

In view synthesis module, parameter expressing the relationship between the

original viewpoint and the requested viewpoint are calculated. Then, the triangula-

tion of visible regions is computed based on the matches obtained from the matching

stage and a validity check is made to detect and remove possible mismatches and

invalid triangle pairs. New views are generated by projecting the matched feature

points onto the new image plane, computing the new local texture and then deter-

mining the rendering order.

The interposition sub-module of the Enhanced task representation is based on

the Point-based interposition algorithm described in [42] using sparse matching.

The interface is tested in a drill operation to specify a number of drilling loca-

tions. A drill bit like a cylindrical cone with 24 vertices is used as a graphical object

in the scene of rocks. The visibility changes are shown when the tool penetrates

into the scene surface.

2.6.2 The MDTF Approach

In the work of [1], a Multi-threaded Distributed Telerobotic Framework with AR

functionality is developed. It can enable the operator to insert a small ball into the

most recent video scene at the gripper position of PUMA-590 robot in the absence

of fresh video data. The gripper position is calculated locally from the command

36

�����������	��

�������

���

�
���������

����

�������

����
������

�������

���

��
������

�
����
�����

rl MM ,

����
���
�����

�������

���
� ����

������

�����������	��
��
������

���
�����

�������

),(MX ∆∆���
��
���

�� �
�����

�������

�!����
��
����������� ���	��

),(newnew MX

),(MX ∆∆
θ∆

Figure 2.3: Software architecture of the complete AR system on client side [1].

data coming from the master arm of the robot using a direct geometric model of

the robot. To perform the task, a stereo video client-server framework is developed

over a LAN where robot arm is connected to the server and master arm is connected

to client machine so that the operator can control the robot from a distant place.

The server interface is developed using MS Visual C++ and MS Visual C#.NET

programming languages while the client GUI is developed using MS Visual C#.NET

and MS DirectX. The architectural view of the complete AR system proposed in [1]

is shown in the Fig. 2.3.

The server continuously captures stereo images from two cameras using FireWire,

PCI card and Sample Grabber component of DirectShow interface of Microsoft Di-

rectX and sends the stereo frame through window socket upon client’s request. On

the client side after receiving the video data from network using synchronous win-

37

dows sockets, Graphics Device Interface (GDI) functions are used to show the pic-

tures on the monitor. The software architecture of the AR system on the client side

for connecting with server and displaying 3D stereo image using HMD is shown in

the Fig. 2.3. Input from the user is taken through the Master Arm component that

provides the incremental position vector and orientation matrix to DecisionServer

interface and RobotModel component. DecisionServer interface executes the incre-

mental move command on remote DecisionServer and RobotModel provides the new

3D position of gripper to DXInterface component. In the mean time, DXInterface

also acquires a stereo frame of remote scene through StereoSocketClient component

as well as left and right projection matrices from the IdentifyCamera component.

Then, DXInterface projects a virtual ball at the gripper position in 2D stereo image

and sends the stereo image to HMD controller in order to display it to user. The

local model is updated as IDecisionServer sends the current angular position of the

robot upon reception of the ONMove event from the remote side.

The projection matrices are calculated in this system assuming a pinhole camera

model with weak perspective projection. The relationship between image plane co-

ordinates and their pixel addresses is modeled by affine transformation. Using the

graphical interface shown in Fig. 2.4 user can select the four non-coplanar points of

affine reference on both left and right images. An analytical solution of the system

is developed using Faugeras’s linear method [43] and evaluated by just substituting

38

Figure 2.4: Camera identification GUI [1].

the values recorded by the user. This approach requires a physical reference frame

to be setup at the server side during the identification phase and any point in 3D

scene is described with respect to that frame [44]. Page flipping is used for stereo

visualization.

It is a true multi-stream distributed framework. As the identification of cameras

and other projection related data across different runs are preserved in the perma-

nent memory, this approach requires the identification only when the cameras or the

objects have been moved from their previous locations. In this system, stereo video

is updated in a page-by-page format instead of pixel-by-pixel and thus time delays

are reduced. It also implements a single buffer with serialized transfer and double

buffer with de-Serialized transfer approaches. It is shown that the later approach

39

enables to send higher number of stereo frames over the same LAN and hardware.

The only overhead is the allocation of extra buffer in the server DRAM which is not

a real problem with available systems containing large memory.

The system does not deal with complex geometrical shapes, only a small ball

is inserted in the real video at the Robot gripper position. But in most other

works, like [5, 45] whole robot is modeled and superimposed on the real image of

the environment objects. Again, in this work only the position matrix is considered

while computing the gripper location ignoring the orientation matrix representing

the orientation of the gripper. The accuracy of the augmented ball at the gripper

position is also dependant on the position of cameras from the robot gripper and the

distance between the reference frame and robot itself. Accuracy is increased with

increase distance between cameras and robot. Moreover, no experiment is done to

evaluate the performance of the AR system.

2.6.3 ARTEMIS Proposal

In [5, 3], an AR-based telerobotic interface named ARTEMIS (Augmented Reality

TEleManipulation Interface System) is proposed. It is based on ARGOS (Aug-

mented Reality through Graphic Overlays on Stereovideo) [40] that works on local

machine only. The schematic diagram of ARTEMIS system is shown in Fig. 2.5.

In this approach, a graphical model of robot is overlaid on real stereo image for

40

Figure 2.5: Schematic diagram of ARTEMIS [3].

local teleoperation task simulation. The graphical interface allows the operator to

take the end effector of the graphical model of the robot to a succession of new

locations within the task space and mark each of these as a trajectory endpoint.

The final sequence of trajectory endpoint commands defines a complete path which

is then used for execution of the robot at remote site.

In their calibration and registration process, first the graphic software is cali-

brated with the video cameras at the remote site. It ensures the graphic images

are drawn with the identical perspective projection parameters as those which de-

termine the video camera images. Since the graphical models are rendered in a

separate graphical coordinate system, they have also matched these with the world

41

coordinate system of the remote site. Thus, all six degrees of freedom of the origins

and the axes of both coordinate systems overlap on the resulting mixed display of

video and graphics. It is ensured that the base link of the graphical robot model

coincided exactly with the base link of the actual telerobot observed in the stereo

image. By setting the joint angles of the graphical model equal to those of the real

robot, the entire model of the robot was overlapped on the stereo image of the real

robot. Then, by changing the joint angles of the kinematically modeled robot, its

stereo graphic image was manipulated relative to the under laid stereo image, while

the base links of both robot images remained fixed with respect to each other. An

example of a pick-and-place task simulation was also illustrated. The graphic model

of the robot was rendered with transparent wire-frame polygons.

It is assumed that the remote task space remains relatively unchanged within

the duration of a particular trajectory sequence. This system provides benefits of

reducing programming errors by making simulation locally with higher levels of

control and thus become invariant to time-delay and requiring less communication

bandwidth. The display implemented in this system showed only an exocentric view

of the manipulator, because the video cameras were placed external to the robot.

The camera calibration of the system do not account for nonlinear distortions in

the video images, such as radial distortions. It also assumes a constant coordinate

transformation matrix between the stereocameras and the base link of the robot

42

during the task. Hence, the system will not work if any movement of the telerobot

base occurs during task execution. A 5 dof telerobot is used in this implementa-

tion limiting some gripper orientations in the task space. The effective frame rate

reported is also low: about 6.5 to 7 frames/second on the average.

2.6.4 The UJI Online Robot Project

In [45], a high level web-based AR as well as VR user interface is developed using

Java, Java3D and CORBA. It allows the manipulation of objects over a board

by means of mouse interactions on the 3D virtual reality environment. The AR

environment is provided by showing for example the position of gripper over the

board or by adding object recognition information to the stereo camera input. It

can specify the voice commands to the robot in a natural way for example, pick up

the scissors.

Figure 2.6: System architecture of the web-based telerobotic system.

As shown in Fig. 2.6, the main component of the client side is the telerobotic

controller which is divided into four sub-modules. The image processing sub-module

43

takes care of capturing and segmentation of images. The second one, of which we are

interested in, implements the 3D virtual environment. It allows the VR interaction

with the robot as well as the AR feature. It shows graphical representation of the

position of the gripper over the board as well as the superimposition of objects

information to the camera images. The third sub-module interprets and simplifies

natural language command from the user to the robot. The object recognition sub-

module processes the camera images and returns every objects name. On the other

end, the server side consists of several concurrent processes running on the server

machine and interacting through the CORBA and HTTP standards. The robot

server module of the server side accepts CORBA request to move the real robot

to a given world position (x, y, z) managing directly the values for the joints and

controlling the opening of the gripper. The grasping server module calculates the

set of grasping points for every object present into the scene that can be used in

order to manipulate an object according to the stability requirements. The camera

server module consists of commercial WebCam32 and offers HTTP interface to the

server cameras. There is also a database server module that stores a mathematical

description of every object already learned by the system.

The human-robot interaction using mouse and natural language commands made

the system very user-friendly. It is also suitable for web-based teleoperation as

it consumes very little bandwidth. The performance results show that program

44

launching and object recognition are the most time consuming operations in this

system. Its VR facility can engage users in some interesting work while another

user is having control over the real robot.

2.6.5 Discussion and Comparison of the Systems

The basic features used in the cited approaches are tabulated and compared as

shown in the Table 2.1.

2.7 Summary of the Findings

In all the examples cited, regardless of whether the system uses a Telepresence, AR

or VR technique, the following conditions were observed:

• Time Delay: When the time delay grows much larger than the dynamic time

scale of the remote mechanism, the telepresence method is inefficient because

of the delay between the sensing and the actuation. This delay makes the

control system unstable.

• Communications Bandwidth: A related problem to that of time delay is the

communications bandwidth from the human controller to the remote mecha-

nism. When a close loop control is difficult or impossible, a move-and-wait

strategy or local decision making capability is incorporated into the system.

45

Table 2.1: Comparison of the cited AR telerobotic system.

Features SMART MDTF ARTEMIS UJI
Manipulation
environment

Unstructured Structured Unstructured Structured

Client-
Server
comm.

Not
provided

LAN RS 232C lines,
also Internet

Internet

Calibration
method

Self-
calibration

3D
ref. object-
based,
linear

3D ref. object-
based, linear

Self-
calibration

Calibration
object

N/A Ref. frame
with 4
points

Grid plane
with 14 points

N/A

No. of
camera

3 2 2 3

Comm.
framework

Not
specified

MS .NET Not specified JAVA and
CORBA

Graphics
software

Not
provided

DirectX
and
WindowsGDI

SGI In-
ventorTM 1.0,
the SGI glTM
graphics
library and X-
WindowsTM

JAVA3D

3D
visualization

Monitor,
HMT,3D
reconst.

Monitor,
HMD

Monitor, shut-
ter glasses

Monitor,
3D
reconst.

Input
Device

6-
DOF hap-
tic device

Master
arm,
keyboard,
mouse

Spaceball,
keyboard

Mouse,
Keyboard

46

The operator interface should be usable and efficient when operating over low

bandwidth communication channels.

• Efficient Command Cycles: A teleoperator should not require to send a dozen

of commands to the remote system in order to execute a single operation.

The operator’s access to high and low level commands may provide maximum

flexibility in sending efficient command sequences.

• Situational Awareness: The operator interface should lead to greater situa-

tional awareness than can be accomplished with a traditional control approach.

• Modular Components: Modern large software and hardware systems can only

be efficiently maintained and extended if the modular components are written

in a modular fashion. This allows the system to be designed more easily. It

also facilitates future modification, re-use and ease of support.

• Use of Commercial Products: Wherever possible, leveraging from commer-

cially available tools and products is a cost effective approach to design and

build the system.

• GUI with Suitable Control Features: GUI should provide some visible navi-

gation aids and attractive data presentation for the novice user to drive the

system better.

47

• Virtual-Reality Synchronization: To provide a meaningful interaction virtual

objects should be properly synchronized with the real world information. The

accuracy of matching and refresh rate of graphics rendering is required.

Chapter 3

Design

In this chapter, we will develop the conceptual model of our telerobotic stereo-vision

system with AR. At first, the overall system design is described with diagram to

show the additional components to be needed to augment the telerobotic stereo-

vision system chosen. Then, the design approach chosen will be described. Then,

we will describe the mathematical model of the robot in use. The description of all

the concepts and algorithms used for designing graphic robot simulator will follow.

Then, the design of the interface to the client-server communication module and

the technique of camera calibration and image registration will be discussed. The

design of GUI and its use for graphical tele-manipulation will be described at the

end of the chapter.

48

49

3.1 System Architecture

We have chosen the telerobotic stereo-vision system developed by Iqbal, A. [1] since

it provides higher video transfer rate (around 17 fps). The system is shown in Fig.

3.1. To augment this with graphical overlays, we need to add some more components

as shown in Fig. 3.2.

���

������	

����

��������	

������	

��
������

����
	

����	

��
������

���
��

���	

�����

���

���
��	

���

�
����	

�������

�������

�����	

 ������

!�"�

������	

������

���

��������	

������

������	��

#���	

�������

�����
���	

��
������

$����	
�������

����
��	

������ %���&��
��	'������
�	()	��

Figure 3.1: Telerobotic stereo-vision system to be augmented [1].

There should be a virtual object module to model the graphic object, a camera

calibration module to update the projection parameters and modification to gripper

and robot controller module to get position updates and on the top of all a GUI to

facilitate user’s interaction with the system. Details of the modules will be discussed

in subsequent sections.

50

�������

��	
�	

��

�����

��	
�	

��������

��	
���

����������
���������������	

�������

������

�����

��	�����

�������

����	��

�����	�����

�����

������

�
�������������
������������
�����

������	������

����
���������������

�����

����
��

��	

���	

����	�

����
�	�������

���� ����

 �������������
�

 ��!
�����������
�

Figure 3.2: Overall AR system design.

3.2 Methodology

The design methodology of our augmentation of the telerobotic stereo vision system

is discussed as follow and shown in Fig. 3.3.

• Developing the Mathematical Model of the Robot: A set of geometric equa-

tions are developed to build the mathematical model of the robot.

• Drawing Graphic Robot Arm and Other Graphical Objects: Having chosen

the graphics software that will allow exchange of data into and out of the

model, the next step is to build the graphic robot arm model and other graphic

objects.

• Animating the Graphical Objects for Simulating Task: Having constructed the

graphic model, codes are then inserted to enable manipulating the graphics

with the interface by handshaking and exchanging data to and from the model

51

���������	
��

��
����
�	
	
�

�����	��

	�	
��
�� �	������
������
��
�

����
����
��	��
� ���� ���������� �����

���	�����	
�

����	����	������
�����
�

���	�	��� �
�
�� �
���� �����	
�
� ����

����	������
������
����
����
�
����

�
�	��������	�	���
���	������
�����

 ��������

��	���	
�

!	������

"������

����	��

��������	����

�
���

#���
��������������	
��
������

����
���
$������	
�

�	
����	��������	������
�����

!	������

"������

������	��

 �������	��� �
� �����
�
�	��
����
�	
	
��

�
���

Figure 3.3: Hierarchy of design abstraction.

and interface. Algorithms are developed for the movements.

• Interfacing to the Telerobotic Stereovision System: Graphics sub-system is

interfaced with the stereo-vision system.

• Identification of Camera Calibration Technique and Superimposition of Graphic

Model into the Real Image: Appropriate camera calibration and image regis-

tration techniques are determined to perfectly superimpose the graphic model

into real video image captured in server PC and received in client PC through

network.

• Augmented Tele-manipulation: Once the methodology of data transfer is sta-

bilized, tapping of all necessary data is implemented to perform the AR tele-

52

robotic manipulation.

• Evaluating the Design: Lastly, the full integration is tested.

3.3 Mathematical Model of the Robot Manipula-

tor

An industrial robot is a multi-function manipulator that can be modeled as an open

chain of rigid bodies, called links, connected in series by kinematic joints. The

function of the joint is to control the motion between the links. The first link

is attached to the supporting base by the first joint, and the last link contains the

end effector or other type of manipulator device. Each joint-link pair constitutes one

degree of freedom. An n degree of freedom manipulator contains n joints, or in more

general terms, n link-attached coordinate system. The joints and links are numbered

starting from the base. The lowest joint is fixed to the reference coordinate system,

while the highest joint is fixed to the local coordinate system of the end effector.

Robotic joints can be categorized as either revolute or prismatic joints as shown in

Fig. 3.4-(a). A revolute joint allows link Li+1 to rotate with respect to the previous

link Li. A rotation angle θi+1 can be used to define the angular position of Li+1

relative to Li. This is shown on Fig. 3.4-(b) and (c). A prismatic joint allows a link

to translate with respect to the previous link. A translation variable θi+1 can also

53

be used to define the linear position of Li+1 relative to Li.

Figure 3.4: Joint types and frame of reference.

The relative position and movement of the individual links with respect to their

preceding links provide a description of an entire articulated structure in the oper-

ating space and formulate a mathematical model of a kinematic chain of the robotic

system. Since robotic manipulation can be achieved only by maneuvering the arm

linkages in the task’s environmental space, robot kinematics is an important tool in

work space design, trajectory planning and motion rate control. Kinematics is con-

cerned with the analytical description of spatial position, orientation, displacement,

velocity and acceleration. There are two fundamental problems in studying robotic

kinematics: the direct kinematic and the inverse kinematic problem. The direct

54

kinematic problem involves the determination of the position and orientation of the

end effector with respect to the reference coordinate system, given the joint variables

of the robot arm. The inverse kinematic problem, on the other hand, involves the

determination of the joint controlled variables, given the position and orientation of

the end effector.

As we have modeled and carried out experiments with the PUMA-560 robot arm

we will first give a short description of the it and then we will derive its kinematic

models.

3.3.1 The PUMA-560 Manipulator Arm

PUMA 560 robot is an industrial robot with six degree of freedom i.e. there are six

independent variables (or co-ordinates) to completely specify the configuration of its

mechanics. There are six links in this robot connected as a serial chain i.e. each of the

links, excepted the first and the last links, is connected to two other links. All the six

joints of PUMA-560 robot arm are rotational joints. The last three have concurrent

rotation axes, which simplify their geometric and kinematic models. All the joints

are driven and controlled by DC-Servomotors. The servomotors are equipped with

electromechanical brakes that can lock the arm in a fixed position. The brakes

are released by the controller when the arm power is on. The components of the

robot arm are the Trunk or Base, Shoulder, Upper Arm (the inner link), Fore-arm

55

(the outer link), Wrist and Gripper as shown in Fig. 3.5. Functionally this arm

can be divided into two parts which are the Transporter and the Effector parts.

The Transporter is responsible for transferring and positioning the effector which

include the grasping system and the work piece. On the other hand, the Effector

is responsible for the orientation of the arm. The Transporter includes three links:

the shoulder, elbow and forearm. The later part includes the pitch, yaw and roll.

Figure 3.5: Schematic diagram of PUMA 560 robot manipulator.

56

3.3.2 Motion Coordination and Selection of Cartesian Frames

The problem is to determine the position and orientation of objects in the 3-

dimensional space. The objects are the links of the manipulator, and the tools

with which it deals.

In geometry, objects (in our case links of the manipulator and the tools with

which it deals) are described by just two attributes: their position and their orien-

tation. In order to describe these two attributes, a frame of reference is attached to

each link. The frame of reference is defined using three orthogonal vectors {X,Y, Z}.

Fig. 3.4-(b) gives an example of frame R1 translation and rotation relative to frame

R0.

The position of the manipulator is generally described by giving a description

of the tool frame, which is attached to the end effector, relative to the base frame

which is attached to the fixed base of the manipulator as shown in Fig. 3.6.

In the 3D space, there are six DOF; three position parameters: X, Y, Z and

three angular orientation parameters specifying the orientation of the gripper in the

space. We specify both position and orientation using a 3×1 translation vector and

a 3× 3 rotation (orientation) matrix. These notations are opposed to the Denavit-

Hartenberg (DH) notations which are used in the majority of cases and represented

by a 4×4 homogeneous matrix that transforms a vector from one coordinate system

to another.

57

X0

Y0

Z0

X
6

Y
6

Z
6

O0

O6

O6

O5

O4

O3

O1

O2

L5

L23

D

L2

L1

L6O1

O2

O3

O4

Figure 3.6: The kinematic model of the PUMA 560 robot arm.

A Cartesian coordinate system is defined in the 3D space, by introducing three

orthogonal vectors X, Y, Z. A frame can be defined by the orthogonal vectors with

origin O. We say that the link Li+1 revolute with respect to link Li when frame Ri+1

rotates relative to either axes Xi, Yi or Zi as shown in Fig. 3.4-(c). The end point

Oi+1 of Li+1 can be associated with a vector OiOi+1 which will be denoted by OiOi+1,i

to indicate that the vector is observed in frame Ri. M i+1
i = [Xi+1,i, Yi+1,i, Zi+1,i] is

the transfer matrix from frame Ri+1 to Ri, which represents the rotation between

links Li and Li+1. Therefore, the link vector OiOi+1,i can be expressed as follows:

OiOi+1,i = M i+1
i .OiOi+1,i+1 (3.1)

58

where, OiOi+1,i+1 denote the vector OiOi+1 observed in frame Ri+1. Note that the

vector OiOi+1,i+1 has a simple expression because link Li+1 is parallel to axis Zi+1.

Therefore, the position vector O0On,0 can be decomposed as the sum of the link

vectors:

O0On,0 =
n∑

i=1

M i
0.Oi−1Oi,i (3.2)

vector Oi−1Oi,i has a simple expression because it is represented with respect to its

own frame of reference Ri. Both the vector O0Oi,0 and
∑n

i=1 M i
0 can be expressed

in a recursive form, leading to:

M i
0 = M i−1

0 .M i
i−1 (3.3)

O0Oi,0 = O0Oi−1,0 + M i
0.Oi−1Oi,i (3.4)

where M i−1
0 is the transfer matrix from R0 to Ri−1, and M i

i−1 is the transfer matrix

from Ri to Ri−1. The orientation matrix

Mn
0 = [Xn,o, Yn,o, Zn,o] =




Xx Yx Zx

Xy Yy Zy

Xz Yz Zz




(3.5)

is used to determine the orientation of the frame Rn with respect to the frame R0,

and the position vector O0On,0 is used to determine the position of the frame Rn

59

with respect to the frame R0

O0On,0 =




X

Y

Z




(3.6)

3.3.3 Direct Geometric Model of the PUMA-560

The fundamental direct kinematics problem for robotic manipulators is to formulate

kinematic equations or what we call geometric model that transform the joint space

to Cartesian space. The geometric model is denoted by E = G(θ), where the end

effector vector E is a function of the joint variables vector θ. Given the joint variables

θ1, θ2, ...θn we can compute the basic representation of the end effector with respect

to a reference Cartesian coordinate R0 by using the direct geometric model:

(θ1, θ2, ...θn)t → {O0On,0(θ),M
n
0 (θ)} (3.7)

The basic geometrical representation of the arm is reduced to the following expres-

sion:

G(θ) = {O0On,0(θ), M
n
0 (θ)} (3.8)

Since PUMA-560 has six links, the geometric model solution starts by assigning

a reference frame to each link and then, tabulating these link-parameters and estab-

lishing the transformation matrix M i−1
i for each link. The state of the end effector

60

link attached frame, with respect to the base reference frame, can be determined by

means of the following information:

• The robot hand orientation matrix Mn
0 = [X0

n, Y 0
n , Z0

n], determines the orien-

tation of frame Rn with respect to frame R0.

• The position vector O0On,0, references the origin of Rn with respect to R0.

The orientation matrix M i
0 is the products of the rotation matrices:

Mn
0 = M1

0 .M2
1 .M3

2 ...Mn
n−1 (3.9)

The position vector can be determined as follows:

O0On,0 = O0On−1,0 + Mn
0 .On−1On,n (3.10)

Now, assuming joint angles variable (θ1, θ2, ...θ6, θg) with joint angle of shoulder

as θg and the length of links as (l1, l2, ...l6, lg) with length of shoulder as lg,we can

describe the geometric structure of the arm in the following topological form:

Linkl(ROTZ(θ1), Z(L1))

Link2(ROTX(θ2), Z(L2))

Link3(ROTX(θ3), Z(L3))

Link4(ROTZ(θ4), Z(L4))

Link5(ROTX(θ5), Z(L5))

61

Link6(ROTZ(θ6), Z(L6))

where ROTZ(θi) is the rotation of Linki between frames Ri and Ri−1 about the

Zi−1 axis, and Z(Li) indicates that the link body Li with length li is along the Zi

vector.

Consider L1 which is revolute and defined as a rotation about the Zo axis, and

the link body L1 is along vector Z1 of frame R1. Then, using the above notations

we can express the position, O1 of the end point of the Base link as:

O0O1,0 = M1
0 .O0O1,1 (3.11)

where,

M1
o = ROTZ(θ1) (3.12)

M1
o =




C1 −S1 0

S1 C1 0

0 0 1




(3.13)

The short-hand notation C1 = cos(θ1) and S1 = sin(θ1).

Equation (3.11) can be solved as,

O0O1,0 =




dC1

dS1

`1




(3.14)

62

Since shoulder has the same orientation as the base link we can express the

position of the end point of the shoulder O‘
1 as,

O0, O
‘
1,0 = O0O1,0 + M1

0 .




`g

0

0




(3.15)

The link body L2 is along vector Z2 of frame R2 and is shifted by value d in the

X axis direction from the link body L1.

O0O2,0 = O0O1,0 + M2
0 .




0

0

`2




(3.16)

where,

M2
0 = M1

0 .M2
1 = ROTZ(θ1).ROTX(θ2) (3.17)

M2
0 =




C1 −S1 0

S1 C1 0

0 0 1




.




1 0 0

0 C2 −S2

0 S2 C2




(3.18)

63

Thus, the end point of the link2 can be solved as:

O0O2,0 =




C1.d + S1S2`2

S1.d− C1S2`2

`1 + C2`2




(3.19)

The link body L3 is along vector Z3 and rotates around X axis.

The orientation matrix M3
0 is given by:

M3
0 = M2

0 .M3
2 = M2

0 .ROTX(θ3) (3.20)

M3
0 =




C1 −S1C2 S1S2

S1 C1C2 −C1S2

0 S2 C2




.




1 0 0

0 C3 −S3

0 S3 C3




(3.21)

Given that :

C23 = C2C3 − S2S3

S23 = C2S3 + C3S2

Solving these equations and making similarity to that of end point of Link2 we

can derive position vector of end point of Link3 as:

O0O3,0 =




C1.d + S1S2`2 + S1S23`3

S1.d + C1S2`2 + C1S23`3

`1 + C2`2 + C23`3




(3.22)

64

Following similar procedure we can derive orientation and position of the Link4

as below:

M4
0 =




C1C4 − S1S4C23 −C1S4 − S1C4C23 S1S23

S1C4 + C1C4C23 −S1S4 + C1C4C23 −C1S23

S23C4 C4S23 C23




(3.23)

O0O4,0 =




C1.d + S1(S2`2 + S23`34)

S1.d− C1(S2`2 − S23`34)

`1 + C2`2 + C23`34




(3.24)

To simplify, let

M4
0 =




Xx4 Yx4 Zx4

Xy4 Yy4 Zy4

Xz4 Yz4 Zz4




(3.25)

And let

O0O4,0 =




X4

Y4

Z4




(3.26)

Now, using these notations and following previous method, we can derive orien-

tation and position vector for the link body L5 which is along vector Z5 and rotates

around X-axis as below:

65

M5
0 =




Xx4 C5(Yx4) + S5(Zx4) −S5(Yx4) + C5(Zx4)

Xy4 C5(Yy4) + S5(Zy4) −S5(Yy4) + C5(Zy4)

Xz4 C5(Yz4) + S5(Zz4) −S5(Yz4) + C5(Zz4)




(3.27)

O0O5,0 =




X4 − S5(−C1S4 − S1C4C23) + C5(S1S23).`5

Y4 − S5(−S1S4 + C1C4C23) + C5(−C1S23).`5

Z4 − S5(C4S23) + C5(C23).`5




(3.28)

Finally, the link body L6 is along vector Z6 and rotate around Z axis. The basic

orientation matrix M6
0 is computed as follows:

M6
0 = M5

0 .M6
5 = M5

0 .ROTZ(θ6) (3.29)

M6
0 =




Xx Yx Zx

Xy Yy Zy

Xz Yz Zz




(3.30)

The final components of the orientation matrix are:

Xx = C6(C1C4 − S1S4C23) + S6(−C1C5S4 − S1C4C5C23) + S1S5S23)

Xy = C6(S1C4 + C1C4C23) + S6(−S1S4C5 + C1C4C5C23)− C1S5S23)

Xz = C6(S23C4) + S6(C4C5S23 + S5C23)

Yx = −S6(C1C4 − S1S4C23) + C6(−C1C5S4 − S1C4C5C23) + S1S5S23)

Yy = −S6(S1C4 + C1C4C23) + C6(−S1S4C5 + C1C4C5C23)− C1S5S23)

66

Yz = −S6(S23C4) + C6(C4C5S23 + S5C23)

Zx = −S5(−C1S4 − S1C4C5C23) + S1C5S23)

Zy = −S5(−S1S4 + C1C4C5C23)− C1C5S23)

Zz = −S5(C4S23 + C5C23)

The end effector position vector is given by:

O0O6,0 = O0O5,0 + M6
0 O5O6,6 (3.31)

O0O6,0 = O0O5,0 + M6
0 .




0

0

`6




(3.32)

O0O6,0 =




X4 + (l5 + l6).Zx

Y4 + (l5 + l6).Zy

Z4 + (l5 + l6).Zz




(3.33)

The final position of the end effector is given by :

X = X4 + (l5 + l6).Zx

Y = Y4 + (l5 + l6).Zy

Z = Z4 + (l5 + l6).Zz

The detail derivation of the above equations can be found in [46].

67

3.3.4 Inverse Geometric Model of the PUMA-560

Determination of inverse geometric model is a lengthy process. Here we have summa-

rized the solutions. The geometric system for the transporter part of the PUMA-560

can be defined by:

(θ1, θ2, θ3) →
{
O0O4(θ),M

4
0 (θ)

}

The inverse geometric model of the transporter consists of finding closed form solu-

tions for θ1, θ2, and θ3 as functions of the transporter end point coordinates X, Y ,

and Z.

Evaluation of the geometric model of the transporter allows writing the coordi-

nate of vector O0O4,0(θ) as follows:

O0O4,0 =




C1.D + S1(S2`2 + S23`34)

S1.D − C1(S2`2 + S23`34)

`1 + C2`2 + C23`34




=




X

Y

Z




(3.34)

Depending on the sign, we have two solutions for the angle θ1 .The solution θ+
1

can be evaluated as follows:

θ+
1 = Tan−1(S+

1 , C+
1)

where,

S1 =
XD ±X

√
X2 + Y 2 −D2

√
X2 + Y 2

and C1 =
XD ∓ Y

√
X2 + Y 2 −D2

√
X2 + Y 2

(3.35)

68

To determine a unique solution θ we may compare θ+
1 and θ−1 to the previous

value of θ which allows satisfying a continuity criteria on the cartesian trajectory.

Angle θ3 can then be evaluated as follows:

θ3 = Tan−1(S3, C3)

where,

C3 = (X2 + Y 2 + (Z − L1)
2 − L2

2 −−L2
34)/2L2L34

S3 = ±
√

1− C2
3 (3.36)

The solution for the angle θ2 depends on the selected values of θ1, θ3, and their

respective signs. It can be obtained as follows:

θ2 = Tan−1(S2, C2)

where,

S2 =
(XS1 − Y C1)(L2 + C3L34)− (Z − L1)S3L34

L2
2 + L2

34 + 2L2L34C3

C2 =
(XS1 − Y C1)S3L34 + (Z − L1)(L2 + C3L34)

L2
2 + L2

34 + 2L2L34C3

(3.37)

The problem of having multiple solutions and singularities is addressed in detail

in [46].

Let us now evaluate the inverse geometrical transform for the effector part. It

consists of finding the joint variables θ4, ..., θ6 given the hand position and orientation

69

matrix:

O0O6,0

Hand Center
and

M6
0 = {X6, Y6, Z6}

Hand Orientation Matrix
(3.38)

This system equations consists of twelve nonlinear, redundant equations with respect

to θ1, ..., θ6 .

As the first step, we have derived the following equations for the cartesian co-

ordinate and the orientation of the end effector as below (details can be found in

[46]).

O0O6,0 =




S1(S2L2 + S23(L3 + L4)) + L5.Zx6

−C1(S2L2 + S23(L3 + L4)) + L5.Zy6

L1 + C2L2 + C23(L3 + L4)) + L5.Zz6




(3.39)

M6
0 = M4

0 .M6
5 = {X6, Y6, Z6} =




Xx Xy Xz

Xy Yy Zy

Xz Yz Zz




(3.40)

where,

Xx = C1C4C6 − S1C23S4C6 − C1S4C5S6 − S1C23C4C5S6

+S1S23S5S6 (3.41)

Xy = S1C4C6 + C1C23S4C6 − S1S4C5S6 − C1C23C4C5S6

−C1S23S5S6 (3.42)

Xz = S23S4C6 + S23C4C5S6 + C23S5S6 (3.43)

70

Yx = C1C4S6 + S1C23S4S6 − C1S4C5C6 − S1C23C4C5C6

+S1S23S5C6 (3.44)

Yy = −S1C4S6 + C1C23S4S6 − S1S4C5C6 + S1C23C4C5C6

−C1S23S5C6 (3.45)

Yz = S23S4S6 + S23C4C5C6 + C23S5C6 (3.46)

Zx = C1S4S5 + S1C23S4C5 + S1S23C5 (3.47)

Zy = S1S4S5 − C1C23C4C5 − C1S23C5 (3.48)

Zz = −S23C4S5C23C5 (3.49)

Based on the above vectors O0O5 can be expressed as follows:

O0O4,0 = O0O6,0 − L5.Z6,0 (3.50)

Equations of X4, Y4 and Z4 are similar to the inverse geometric model of the trans-

porter part. The solutions for θ1, θ2 and θ3 have also the same form as of transporter.

The second step is to determine solutions for θ4, θ5 and θ6 . To identify C4, S4, C5

and S5, we may use the following equations:

M5
3 = (M3

0)−1.M6
0 .(M5

3)−1 = M0
3 .M6

0 .M5
6 (3.51)

Following equations are derived,

C5 = C23(S1Zx − C1Zy)− C23Zz

S5 = ±
√

1− C2
5 (3.52)

71

S4 =
ZxC1 + ZyS1

S5

C4 =
C23(S1Zx − C1Zy)− S23Zz

S5

(3.53)

Therefore, two symmetrical solutions are possible for angle θ5 and θ4 within

[−π, +π].

To determine θ6 when θ5 6= 0, expression of C6 and S6 are then computed from

the product M3
5 .(M0

3 .M6
0) as follows:

C6 = C4(C1Xx + S1Xy) + S4(−S1C23Xx + C1C23Xy + S23Xz)

S6 = C4(C1Yx + S1Yy) + S4(−S1C23Yx + C1C23Yy + S23Yz) (3.54)

Depending on the sign of S5, i.e. C4 and S4, we determine two solution for S6:

S+
5 = +

√
1− C2

5 → (C+
4 , S+

4) → (C+
6 , S+

6)

And S−5 = −S+
5 → (C−

4 , S−4) → (C−
6 , S−6) (3.55)

Since, two solutions are also expected for θ6:

θ+
6 (C+

6 , S+
6)

θ−6 = θ+
6 − Sign(θ+

6).π (3.56)

72

3.4 Building Body Shapes Around the Skeleton

of the Graphical Arm

The mathematical model developed so far gives us the skeleton of the Robot arm as

shown in Fig. 3.6. To develop a solid robot arm body we need to draw polygonal

shapes around the skeleton to look like real PUMA-560 robot.

The base, shoulder and the wrist part of the robot are almost cylindrical. The

upper arm and the forearm are somewhat trapezoidal. Since, for telerobotic ma-

nipulation our main focus is on the gripper or end-effector’s middle point (between

two openings), we will simplify the model by drawing the upper arm and forearm as

cylindrical. We will model the gripper with rectangular shapes that can be opened

or closed by changing the distance between the openings. We will also made simpli-

fication in making connection of Link2 and Link3. We have ignored the horizontal

shift in both cases and hence those two links have become aligned vertically. But we

were cautious about the end points of the polygons specially of the base cylinder.

So, we can match our graphic robot with the original robot’s image in the stereo

space.

Cylinders can be drawn as finite element representation; see Fig. 3.7. Increasing

the number of segments or elements will improve the quality of view but it will

increase the complexity of the computation. To draw a cylindrical shape, we need

73

to specify the number of segments. The more segments there are, the smoother and

rounder the cylinder will appear.

Figure 3.7: Finite element representation of a cylinder used as body shape of graph-
ical arm.

We have alternatives of primitives to be used for drawing the segments of the

graphical arm such as line list, line stripe, triangle list, triangle stripe or triangle

fan. We have chosen triangle stripe and triangle fan because among the alternatives

these are the most memory efficient requiring less number of vertices to be specified.

3.5 Data Structure Design

To design an efficient data structure, we must first consider types of data and nature

of manipulation. The robot structure developed in Section 3.3 reveals that PUMA

560 robot is an object of variable geometry where one portion of the object is con-

nected with other portion. Since each link of the robot are represented by position

and orientation matrices, movement to a new position or orientation involves mul-

74

tiplication of two 3 × 3 matrices and one 3 × 3 matrix with one 3 × 1 vector. We

have to perform these computations for each point/vertex of the graphical robot. In

Augmented Telerobotic systems, robot arm has to be dynamically updated quickly

and accurately.

Although modern computers’ CPU performance is very high, CPU execution

time is very crucial in the field of tele-manipulation as the CPU has to deal with

some networking aspect, data acquisition and display as well. To reduce the execu-

tion time, we must reduce the computations which eventually necessitate choosing

efficient data structure to store vertex data. If we store all the vertex data of the

whole robot arm in one array, then we need to perform all the computations even if

we change a small portion of the robot arm. An efficient approach would be to keep

geometry data of each link of the robot apart from the other link. In that case, to

make a change in any link, it will be sufficient to re-compute data of that link and

only of those following it.

We should also be careful about the flexibility and generality of the application

such that the data structure can be used for drawing different type of robots.

To meet the above objectives we have modeled each link as a different object

with properties required to represent the link; see Fig. 3.8. Thus, geometric data of

each link is kept apart from the other link but each one is linked with its upper and

lower links. The configuration data, such as number of links, number of segments

75

in cylinder etc. are kept in separate data file. Vertex data of each link is associated

with separate vertex buffer.

�����������	

�����

�����
�����

������

��������
����

��������

������

���
��

�����
��

�����������	

�����

�����
�����

������

��������
����

��������

������

���
��

�����
��

�����

�����

�����

Figure 3.8: Data structure to represent the links.

3.6 Displaying the Graphical Arm

Given the graphical arm structure in its model space, to display it on the screen we

need to setup the scene layout and specify the rendering parameters.

3.6.1 Scene Layout Setup

Appropriate transformation matrices are defined to setup the scene. World trans-

formation matrix is used to define the relative position of the objects. Camera

position, target position and viewing angle are defined to project the graphic object

76

accurately. A material with the diffuse and ambient color is defined. An ambi-

ent light that scatters and lights all objects evenly and a directional light and its

direction are also defined to setup lighting.

The drawing can be represented using wire-frame model or solid model. The

psychological studies [47] and the performance studies in telerobotic system of show

that there is no significant differences in using different viewing models [48]. But the

aircraft simulation studies of [49] suggest that there should be an effect of different

viewing models and [3] reports some advantages of using wire-frame model in real-

time animation system specially by reducing the occlusion of graphics with real

stereo image. We like to provide the user with a choice to select the most appropriate

alternative.

3.6.2 Rendering

Since we are not interested in photo-realistic image quality, we have chosen polygon-

based rendering for projecting the 3D models onto a 2D image plane. We have used

Direct3D’s scanline rendering technique as it is faster than ray tracing rendering.

It works on a point-by-point basis rather than polygon-by-polygon. To deal with

hidden surface determination, we have used Z-buffering algorithm. This technique

employs an extra buffer to store the depth of the rendered value at each pixel. If

the depth of the polygon that is currently being rendered at that pixel is less than

77

the z-buffer value at that pixel, the output pixel is overwritten, otherwise nothing

is drawn.

A sample view of the displayed graphical arm in solid and wire-frame model with

50 segments in each cylinder is shown in Figure 3.9.

Figure 3.9: 3D PUMA 560 robot structure using cylindrical body shape. Solid model
(left) and wire-frame model (right).

3.7 Algorithms for Moving the Graphical Robot

Arm

A robot is controlled in the joint space, whereas most of the tasks are done in

the Cartesian space. The robot end effector is represented by position vector and

orientation matrix in 3D space. Therefore, a point in the joint space can be converted

to a position and an orientation in the Cartesian space. Transformation functions

relate the position and orientation of the end effector coordinate system to the base

78

coordinate system. Therefore, we can either use the joint angles as our desired

position or we can issue a movement command in the Cartesian space coordinates.

More specifically, we can either give an increment in angular position of the robot

or we can issue an incremental command in Cartesian space to move the robot from

current position to the desired one. Algorithms for moving the real robot that we

have used is described in [1]. Here we will describe the algorithms that govern the

movement of graphical robot arm in the joint and Cartesian space.

3.7.1 Movement in the Joint Space

Let us assume the current joint position of the robot is kept in a vector, currAngles

consisting of 6 double values [θ1, θ2, ...θ6]. Whenever a command is received to move

a link of the graphical arm incrementally by ∆θ in the joint space, new value of the

angle (θ) is calculated by adding the increment to the current value (θ = θ + ∆θ).

Then, as shown in Figure 3.10, after checking whether the new value is within

specified bound, new position and orientation of the joint point of the selected link

and the links above that are calculated using the updated angle values sequentially.

The computations are performed according the direct geometric equations based on

BASE FRAME of reference.

Once the position and orientation of the end points or skeleton points are calcu-

lated, we need to re-calculate the top and bottom vertices of the body shape (i.e.

79

 Calculate new values of the joint
angle,

Start

Compute the Position vectors

Compute the Orientation matrices

Compute the vertices of the body shapes

Render the whole robot
with updated vertices
(thus moving to a new

location)

No

Yes

Receive the increment of
joint angle, θ∆

Angle within
bound?

).(1
1

00
i
i

ii MMM −
−=

θθθ ∆+=

).(,100,100,0 iii
i

ii OOMOOOO −− +=

Figure 3.10: Movement of graphical arm in the joint space.

80

cylinders) as discussed in Section 3.4. Then, the whole graphical robot arm is ren-

dered using the updated vertices. Thus, the arm is moved to a new location with

expected position and orientation.

If the absolute values of joint space variables i.e., θrequired (instead of incremental

values) are supplied to move to a specified position, then those angle values are

directly used for subsequent computation and re-draw the graphical arm as previous.

3.7.2 Movement in the Cartesian Space

To move the graphical robot arm in the Cartesian space we need to take two pa-

rameters as input: ∆X and ∆M , where ∆X holds the change in position vector

and ∆M is the change in the orientation matrix of the slave arm. At any time t,

we need to hold a copy of current position vector X(t), a 3 × 1 vector, and cur-

rent orientation matrix M(t), a 3× 3 matrix. The new position vector Xnew(t) and

orientation matrix Mnew(t) are to be calculated from {X(t),M(t)} and {∆X, ∆M}

taking into consideration the current frame of reference. Current frame of reference

can be BASE FRAME, WRIST FRAME or TOOL FRAME.

Once Xnew(t) and Mnew(t) are calculated, we can use the Inverse Kinematic

Model G−1(Xnew,Mnew) of the PUMA robot to find the joint space variables θnew.

This new angle is used to compute position and orientation matrices using Direct

Kinematic Model. We also need to re-compute the vertices of the body shapes (i.e.

81

cylinders) of each link. Then, the whole graphical robot arm is rendered with the

updated vertices. The algorithm for moving the graphical robot arm in the Cartesian

space is shown in Fig. 3.11.

To move the graphical robot arm to a specified position by supplying the absolute

values of a certain position vector and orientation matrix i.e., {Xrequired,Mrequired},

new angular position is calculated from the supplied values using the Inverse Kine-

matic Model and the same procedure is used to re-draw the graphical arm in the

specified position.

3.8 Acquisition of Real Video Image and 3D Stereo-

Visualization

We have adopted the same Client-Server framework for image acquisition and net-

work streaming as used in [1, 50]; see Fig. 3.1.

Real video image of the slave robot at the server side is captured simultaneously

by two video cameras. Then, a reliable client-server connection is established. Upon

a request from the client, a stereo frame comprising of two pictures is sent over LAN

through window sockets. A double buffer concurrent transfer approach is used to

maximize overlapped transfer activities between cameras, processor and the network.

On the client side, after detecting and making connection with the server, pictures

82

Receive the incremental position
and orientation matrices

Based on current frame of
reference calculate new position

and orientation matrices,

Compute the vertices of the body shapes

Render the whole robot
with updated vertices

Compute the position vector of all the
links,

Compute the orientation matrices,
).(1

1
00

i
i

ii MMM −
−=

).(,100,100,0 iii
i

ii OOMOOOO −− +=

End

Angle within
bound?

Start

No

Yes

Calculate corresponding angular
values using Inverse Geometric

Trnasformation,
),((1

newnewnew MXG−=θ

newnew MX ,

Figure 3.11: Movement of the graphical arm in the Cartesian Space.

83

Figure 3.12: A sample of the left and right image to be displayed for 3D stereo view.

are received.

Page flipping technique is used for 3D visualization and HMD is used as display

device that gives the effect of 3D depth perception. A sample of the left and right

image to be displayed for 3D stereo view is shown in Fig. 3.12. The detail of the

techniques and devices used is described in Section 2.1.1 and 2.1.2.

3.9 Superimposition of Virtual Object on Real

Video

For proper superimposition of graphics on the real video, we need to combine all local

coordinate systems centered on the devices and the objects in the scene in a global

coordinate system . For this, camera calibration and registration are performed.

Although manufacturers provide a partial set of intrinsic camera parameters, we

need to deal with them as they are not accurate enough. Besides, some of these

84

parameters may vary from time to time, while some of them may be calibrated once

for all, depending on the stability of the mechanical and optical construction of the

camera. Also, in many situations, the source of the images and therefore camera’s

internal parameters are not known. We also need to find the position and orientation

of the camera i.e. the extrinsic camera parameters.

We have used Heikkila’s calibration [30] method implemented in MATLAB Cam-

era Calibration tool box [51] to find out the intrinsic and extrinsic camera parame-

ters. It shows accuracy up to 1/50 of the pixel size. Pinhole camera model with

perspective projection and least-square error optimization is used. The intrinsic pa-

rameters that can be found by this tool are: focal length (fc), principal point (cc),

skew co-efficient (alpha c) and distortions co-efficient (kc).

MATLAB Calibration Toolbox stores the focal length in pixels in a 2×1 vector fc

whose elements fc(1) and fc(2) are the focal distance (a unique value in millimeter)

expressed in units of horizontal and vertical pixels. The aspect ratio (τ) is the ratio

of the pixel height and width and generally calculated according to Equation 3.57.

It can also be defined as the view space width divided by height. It is sometimes

different from unity if the pixel in the Charged-Coupled Device (CCD) array are

not square.

τ = fc(2)/fc(1) (3.57)

85

If Pg (X,Y,Z) is the co-ordinate of P in grid, then the co-ordinate of P in camera

reference frame can be expressed as

Pc = Rc × Pg + Tc (3.58)

where, translation vector Tc is the co-ordinate vector of the centre of grid reference

frame with respect to camera reference frame and the rotation matrix Rc is the

surface normal vector of the grid plane in the camera reference frame. External

camera parameters are expressed in terms of these two vectors.

We will use perspective projection. So we need to specify the amount of per-

spective, or zoom, that the resultant image will have. This is done by specifying the

viewing frustum, a rectangular cone in 3D that has the from-point as its tip, and

that encloses the projection rectangle, which is perpendicular to the cone axis. The

angle between opposite sides of the cone is called the viewing angle. The range of

its value is from 0 to π. In Fig. 3.13, 6 AOC is the horizontal viewing angle, and

6 BOD is the vertical viewing angle. The greater the viewing angle, the greater the

amount of perspective [52].

MATLAB does not provide the measurement of the angle of the field of view

angle which is one of the important parameters used in DirectX to define the virtual

camera setup. With reference to the Fig. 2.1 and Fig. 3.13 we can derive the

relationship for field of view, fov as below:

86

�

�

�

�

�

Figure 3.13: Viewing frustum.

fc(1) = (H/2).cot(fovx/2) (3.59)

fc(1) = (W/2).cot(fovy/2) (3.60)

where, H and W height and width of the viewing frustum.

3.10 3D Visualization with Superimposed Virtual

Objects

The 3D visualization of the graphical objects superimposed on the real stereo image

is done in the client side. The stereo video image of the workspace is acquired from

the network video stream. It is then copied to a surface, say, frontSurf while the

87

drawing of the current image on graphics screen is in progress in another surface, say

augSurf. Contents of the augSurf are copied to the backSurf, the primary surface

used to display. Left and right camera images are displayed on two different view-

ports on the monitors. The steps of the 3D visualization can be summarized as

below:

Step 1: Acquire video image and copy this memory stream to the frontSurf

surface.

Step 2: Copy the contents of the frontSurf surface to the temporary surface

augSurf.

Step 3: Draw graphical objects or change in graphical objects on augSurf.

Step 4: Copy the contents of augSurf to the backSurf surface that will be used

to display.

Step 5: Display the backSurf with left camera image to the left view port or

monitor.

Step 6: Display the backSurf with right image to the right view port or monitor.

Step 7: Observe 3D view with HMD.

Thus, during each flipping operation a complete stereo image is sent down to the

HMD. In other words, the stereo video is updated on local display in a page-by-page

format and not pixel-by-pixel. This provides a great benefit in terms of reducing

time delays.

88

3.11 GUI Design

GUI is designed for both the server and the client side appliations. The server side

GUI forms described in [1] provide user the facility of connection and initialization

of the real robot.

The client side GUI is designed to give the user options for connecting to the

server PC, master arm and HMD. It facilitates receiving and displaying the stereo

video. It also takes user’s input for movement of the real and graphical arm for task

simulation.

3.12 Input Devices

Flexible algorithms for movement of real and graphical robot arm in joint and Carte-

sian space by a fixed or incremental value, lead to allow us using any of the input

devices such as master arm, joystick, keypad, mouse etc. Keyboard keys and asso-

ciated functionality provided are listed in Table 3.1.

3.13 Graphical Tele-Manipulation

In teleoperation, if the base link of the real robot remains fixed relative to the video

cameras, the base link of the graphical arm will also remain fixed relative to the

graphical cameras. The end-effector of the graphical arm then can be manipulated

89

Table 3.1: Function of the keys used for user interaction.

Keys Functions
Function Keys (F1 to F6) Increase the value of current joint angles by ∆θ
Shift and Function Keys (F1 to
F6)

Decrease the value of current joint angles by ∆θ

Function Key (F7) Open the gripper
Shift and Function Key (F7) Close the gripper
Page Up and ‘X’ or ‘Y’ or ‘Z’ Increase the X, Y or Z component of base refer-

ence point respectively
Page Down and ‘X’ or ‘Y’ or ‘Z’ Decrease the X, Y or Z component of base ref-

erence point respectively
Left arrow and ‘X’ or ‘Y’ or ‘Z’ Rotate about X, Y or Z axis respectively in +ve

direction
Right arrow and ‘X’ or ‘Y’ or
‘Z’

Rotate about X, Y or Z axis respectively in –ve
direction

Home and ‘X’ or ‘Y’ or ‘Z’ Change camera position in +ve direction
End and ‘X’ or ‘Y’ or ‘Z’ Change camera position in -ve direction
Up arrow and ‘X’ or ‘Y’ or ‘Z’ Change camera target point in +ve direction
Down arrow and ‘X’ or ‘Y’ or
‘Z’

Change camera target point in -ve direction

90

in the graphical coordinate space, relative to objects in the task space (keeping base

link in same location of real robot base).

For graphical tele-manipulation, as shown in Fig. 3.14, we need first to connect

to the Real Robot Server (running on the server PC connected with PUMA-560

slave arm). Then, the Real Robot arm is initialized with specified or pre-defined

convenient position and orientation. The camera calibration parameters (intrinsic

and extrinsic) computed earlier using MATLAB Camera Calibration Toolbox are

then loaded to the program. Here we also need to specify the graphics parameters

such as viewing model (solid or wire-frame), display device (HMD or monitors) etc.

If Master Arm is chosen as a tool for user interaction then we need to start the

process of engaging it i.e. communicating with the server system. Then, we need

to be connected with the Vision Server running on the Server PC to capture video

images through camera. If HMD is selected as displaying device for 3D stereo view

we need to connect it with the client system. Otherwise, monitor can be used to

display the stereo using Sync-Doubling techniques (displaying left and right images

up and down on the monitor screen).

Once we have real and virtual image ready to be displayed, we need to perfectly

superimpose the graphics onto the real video image by adjusting the camera cal-

ibration parameters. Then, for task simulation e.g. pick and place operation, we

need to move the graphical arm using the algorithms described in Section 3.7. If

91

the movement is satisfactory, it will be saved to be used while issuing command to

the real robot. At the end of simulation, before exiting the program, we need to

disconnect the client system from the robot server and the vision server running on

the server PC.

92

�����

�����	�
���

�����
������

����������
����
�����

����
	�����
	����������
����������

���	���
����
�	�
����������

������
������
���

�����
�������
����
����
������
���

������
����
�	�

��
����
������
�����

����
����
�	
�����
��
���
��������
���
�����������

����
�����	����
��������

!���
	������
��
����
�����
���

�����
���"��

#��	����	�
�����
���
$�����
�������

���

%�

&��

%�

&��

%�

&��

���"�
���

������
���'

#���������
��

(�#'

������"�

�����"������'

)��

*�������

��"��

�����	�
���

$�����
������

$���
+#
��
�
�

��������

Figure 3.14: Overall client system flow-chart for graphical tele-manipulation.

Chapter 4

Implementation

In this chapter, we will describe how the design concepts described in the previous

chapter are implemented to fulfill our objectives . As noted in Section 1.6, Microsoft

.NET framework is used to develop the overall client-server framework. The Vision

Server running on the server PC (connected to the PUMA 560 robot) and developed

by [1] is used for capturing the real video image of the robot’s working site. Graphics

designs are implemented using DirectX 9.0 functionalities with the .NET Visual C#

programming. In the following sections, we will describe all implementation issues

in detail.

93

94

4.1 Motivation for using Direct3D API

Among the available alternatives of 3D graphics API (Application Programming

Interface) such as windows GDI, Direct3D, Java3D and OpenGL, we have chosen

Direct3D. A comparative study is made among various APIs in Section 5.4.2. The

main features that motivated us to choose DirectX are summarized below:

• Direct3D increase performance by using hardware acceleration and therefore is

used to render 3D graphics in many applications where performance is critical.

• Direct3D also allows applications to run full-screen instead of embedded in a

window, though they can still run in a window if programmed for that feature.

As we are using HMD this feature is very helpful in our case to have the 3D

effect.

• Direct3D perfectly match with Microsoft’s various Windows operating systems

(Windows 95 and above) and with Microsoft .NET framework which are used

in our telerobotic client-server framework.

4.2 Description of DirectX Features Used

Since we are using Microsoft DirectX 9.0 for our graphic design implementation, it is

worth describing some of the important features of it which will help in understand-

ing the detail implementation. MS DirectX is a set of low-level APIs for creating

95

high-performance multimedia applications including supports for 2D and 3D graph-

ics, sound effects, input devices, and networked applications [53, 54]. Some of the

features of DirectX 9.0 used in our application are described below:

Direct3D, an API of DirectX, delivers real-time full 3D rendering and transparent

access to hardware graphics acceleration boards. In other words, it allows Windows

to make use of the advanced graphics capabilities found in 3D hardware graphics

boards. However, in doing so it utilizes the HAL. HAL is an extremely thin layer that

wraps around the Device Driver Interface (DDI), abstracting it away. Details about

HAL and how it provides hardware acceleration will be discussed in Section 5.4.2.

Another piece of code that runs in Direct3D applications is Hardware Emulation

Layer (HEL). It is larger than HAL and performs works with the CPU. It emulates

what the hardware would do in the event that a desired effect in Direct3D is not

supported by the HAL. The HEL is considerably slower than the HAL because it is

not asynchronous and it needs to use the CPU, which is not specialized for graphics

operations [55].

A Microsoft Direct3D device is the rendering component of Direct3D. It encap-

sulates and stores the rendering state. In addition, a Direct3D device performs

transformations and lighting operations and rasterizes an image to a surface.

Microsoft DirectX currently supports two main types of Direct3D devices: a

hardware device with hardware-accelerated rasterization and shading with both

96

hardware and software vertex processing; and a reference device. Hardware-accelerated

devices give much better performance than software/reference devices [53].

Before creating a Direct3D device we need to specify the presentation parame-

ters. Some of the important presentation parameters are DepthFormat (format

of the depth stencil surface the device creates), BackBufferCount (the number of

back buffers), BackBufferFormat, BackBufferHeight, BackBufferWidth, DeviceWin-

dow (setting or retrieving the display window), EnableAutoDepthStencil (a Boolean

value that indicates whether Microsoft Direct3D manages depth buffers for an appli-

cation), FullScreenRefreshRateInHz (the rate at which the display adapter refreshes

the screen), SwapEffect, Windowed (a Boolean value that indicates whether an ap-

plication is running in a windowed mode).

We have used DirectX Surfaces for drawing and displaying purposes. Internally,

a DirectX Surface is just a structure that manages image data as a contiguous block

of memory. The structure keeps track of the vital statistics of the surface, such as

its height, width and format of the pixel. We must specify the dimensions, and color

pellet while creating a surface. By default, DirectX will try to create the surface in

accelerated video memory on video card but if there is not enough room to create

the surface in this memory, it creates the surface in system memory. The primary

surface is the pixel array that is visible on the output video device. This is always

on the video card if it has enough memory.

97

There is only one primary surface per DirectX device. However, we can create

off-screen surfaces for other purposes, like drawing and blitting, etc. Again, the

off-screen surfaces should ideally be created in the accelerated graphics memory for

minimum system delays. A pointer to the primary surface can be attained by asking

for a BackBuffer from the DirectX Device. It is typical to have a BackBuffer for the

image on primary surface. The BackBuffer can be switched easily with the current

displayed frame. The purpose of this framework is to allow maximum flexibility

while drawing 3D objects onto the screen. The frame data that is to be displayed

next on the screen in generally manipulated on the off-screen surfaces. Other than

the primary surface we have created two off-screen surfaces for our program.

Once every video frame, the back buffer is updated from one or more off-screen

surfaces and then the back buffer is presented to the display screen. This process

is called page flipping. During this process, the graphics microprocessor flips the

addresses of front and back buffers and the next image drawn on the screen comes

from the previous back buffer. While the previous front buffer is now back buffer

and is ready to be used for the coming video frame. Ideally this process takes place

in video hardware and is extremely fast not allowing any shearing or tearing of the

image while changing from one video frame to the next.

In DirectX, each vertex data is stored in Vertex buffer structure. There are

different types of vertex buffer available in custom vertex class of CustomVertex.

98

We have used CustomVertex.PositionNormal[] which can be used to store both

position and normal data of a vertex.

The SetStreamSource method binds a vertex buffer to a device data stream to

create an association between the vertex data and one of several data stream ports

that feed the primitive processing functions. The parameters for this method are

the number of the data stream, the name of the VertexBuffer object, and the stream

vertex stride.

BeginScene and EndScene pair methods are used to generate a scene to be ren-

dered by DirectX device. Every call to BeginScene should eventually be followed by

a call to EndScene. When EndScene succeeds, the scene is queued up for rendering

by the driver. Hidden Surface Removal (HSR) is also taken care of in this pair of

methods. Device.Present method is used to finally display the generated scene in

the screen. That is, this method is used to move the contents of the back buffer to

the primary surface.

4.3 Transformations involved in DirectX Vertex

Processing

Number of transformations takes place while vertex data gets converted from one

co-ordinate space to another on its way through the conversion from model space

99

to pixels on a screen. The transformations are explained below mostly according to

[4] and shown in Fig. 4.1.

1. Transformation into World Space: This conversion transforms all the objects

within a scene. The transform can scale, rotate, translate, or skew objects

relative to the origin in world space. The result is that each object is oriented,

scaled, and rotated relative to the other objects just as they are in a 3D scene.

Figure 4.1: Transformation involved in vertex processing [4].

2. Transformation into View Space: This conversion orients the camera with

respect to the objects. After conversion, objects are said to be in view space,

which is commonly called camera-space because the objects are located relative

to the camera. In other words, the camera is placed where a viewer looks at

the scene.

There’s more than one way to create a view matrix. In all cases, the camera

has some position and orientation that’s used as a reference point. The view

matrix translates and rotates the camera relative to the models. One way to

100

create a view matrix is to combine a translation matrix with rotation matrices

for each axis.

View space assumes that the camera is at the origin of view space looking in

the positive Z direction. With left-handed coordinates, positive Z-axis is into

the screen. To generate a view matrix, we must pick values for an eye point, an

up vector, and a look-at point. The eye point is the position of the camera (or

viewer). The up vector is a vector that points up. Usually, (0,1,0) is selected.

It is a convenient way to flip the scene upside down with a sign change. The

look-at point is the point in the scene that the viewer is looking at.

3. Camera Model and Projection Transformation: The projection transform con-

verts vertex data from view space to projection space. The transform performs

a linear scale and a nonlinear perspective projection. The effect is to expand

objects near the camera and shrink objects away from the camera, which gen-

erates the same kind of perspective we see in real life, where objects closer to

the camera appear larger than objects farther away. The projection transform

can be visualized as a viewing frustum as discussed in Section 3.9. The pur-

pose of the frustum is to identify which objects will be rendered in the view.

Objects between the near and far clipping planes (which define the distances

at which geometry should no longer be rendered) and inside the diagonal edges

of the viewing frustum will be seen by the camera.

101

For the projection matrix, we set up a perspective transform (which transforms

geometry from 3D view space to 2D view port space, with a perspective divide

making objects smaller in the distance). To build a perspective transform, we

need to specify the field of view, the aspect ratio, and the near and far clipping

planes.

4.4 Virtual Object Modeling Module

This module defines the structure of the virtual objects (robot, cubes etc.) and

handles functions like movement of virtual objects.

As mentioned earlier, we have used Microsoft DirectX’s Direct3D library func-

tionalities to draw the graphical robot arm in the client side. To implement the

equations involved in robot’s mathematical model described in Section 3.3, we have

defined the following data structures.

A class is defined for modeling each link as an object with properties mentioned

in Section 3.5. Instances of this object is created at the initialization taking data

from user’s robot configuration data file.

The currAnglesOfRob is a double array structure and is used to store the current

value of the joint angles. Microsoft’s Vector3 data structure array RobArm is used

to hold the vertex data of each of the links end point. We have also defined the

OrientationMat[] data structure to hold the nine elements of the orientation matrix.

102

The following two methods are used in calculation purposes:

• OrientationMat MultiplyOrMat (OrientationMat orientMatrix1, Orientation-

Mat orientMatrix2): It calculates the multiplication of two orientation matri-

ces.

• MultiplyOrMatTransVecOrientationMat (orientMatrix1, Vector3 transVec): It

is used to calculate multiplication of an orientation matrix with a Vectro3

position matrix.

Options are provided to draw the cylinders of the arm shapes with 8, 50 and 100

segments. The height and the radius of the cylinder are defined according to those

of the links of PUMA 560. The position of the vertices together with their normal

value are also defined .

The cylinders used for drawing body shapes are made up of two triangle fans,

one for the top and one for the bottom. The sides of the cylinders are made up of

a triangle strip; see Fig. 3.7. Although there are shared vertices (between the sides

and the top/bottom faces), to create our cylinder we have not used an index buffer.

Only a vertex buffer used as we want different normals so the edges around the top

and bottom appear sharp.

Separate methods of type public void have been used to draw different links of

the robot arm independently using the current values of the joint angles. Also to

store up the vertex data separate vertex buffers are used. Following are the methods

103

used for drawing different links of the robot arm structure.

• DrawBase (double [] currAnglesOfRob): This method is used to draw the

base or link1 of the robot arm. It uses vertex vb1 of type PositionNormal[]

to store the vertices. We have considered a co-ordinate system with positive

Z-axis as upward, positive X-axis as outward and positive Y-axis in the right.

The start point of the link is considered as (0, 0, 0) and end point as (0, 0, l1)

where l1 being the length of the base.

• DrawShoulder (double [] currAnglesOfRob): This method is used to draw

the shoulder of the robot.

• DrawLink2 (double [] currAnglesOfRob): This method is used to draw Link2

of the robot arm.

DrawLink3 (double [] currAnglesOfRob) and DrawLink4 (double [] currAn-

glesOfRob), DrawLink5 (double [] currAnglesOfRob) are similar methods for

drawing link3, link4 and link5 respectively.

• DrawLink6AndGripper (double [] currAnglesOfRob): This method is used

to draw the gripper of the robot. At first, the position and orientation of the

starting point of the gripper are calculated. Then, four cubes with user defined

height and width are drawn. Cube points are calculated using FindCubePoints

(Vector3 lowerLeftCorner, float hight, float width) and FindTiltedCubePoints

104

(Vector3 UpperLeftConrner, float height, float width) methods. Getting the

cube points with respect to starting point, corresponding orientation matrix

is calculated and final vertex positions are saved in vertex buffers specified for

each cube separately.

• DrawWholeRobot(): This method is used during initialization to draw the

whole robot by calling all the methods for drawing individual links.

4.5 Display Module

The DXInterface component is used as the main display module of our graphics

system. It handles with synchronization of real and virtual data Projection on

video surface, augmentation of real video and page flipping for stereo visualization.

In our implementation, Direct3D API functionalities of Microsoft DirectX9.0 are

used to display or rendering the real and virtual images on the monitor and HMD

in the client side application.

CamPos, TargetPos, ViewUpAxis and baseRef are four Microsoft Vector3 data

structures that are used to store the co-ordinate of the camera position, the target

point or the eye-point, the up axis and the reference of the base point respectively.

These variables are assigned from the result we obtain from MATLAB Camera

Calibration Toolbox during the initialization of the application.

105

• public bool InitializeGraphics(): This method is used to initialize the graph-

ics device and assign the graphics parameters. At first, the presentation pa-

rameters are defined. We chose to discard the SwapEffect, selected Immedi-

ate type of PresentationInterval, made the EnableAutoDepthStencil Boolean

as true, AutoDepthStencilFormat as DepthFormat.D16, back buffer width and

height as 1280 and 480 pixels. Display mode is also defined as system adapter’s

current display mode. Then, a Direct3D device of Hardware type is created

with SoftwareVertexProcessing option.

One primary surface (backSurf) and two off-screen plain surfaces (frontSurf

and augSurf) are created.

Two events are initiated to be fired on Device reset and lost. The difference be-

tween these two events is that DeviceLost gets called earlier, giving us a chance

to do the cleanup that needs to occur before we can call Reset() successfully.

The methods for setting up the Device and drawing the initial state of the

graphic robot are also called in this method.

• protected void SetupDevice(): In this method, all the necessary vertex

buffers are created to hold vertex data of joint points and body shape vertices

of different links. We have chosen CustomVertex of type PositionNormal so

that we can store both position and normal data of a vertex. Then, alpha

blending property of the device is enabled, the source and the destination

106

blend states are set, culling is turned off so that we can see the front and back

of the triangle (primitive used for drawing the robot arm). The Z-Buffer is

turned on and lighting option is made true. The filling mode of the drawing

is set according to the user’s choice (solid or wireframe).

A DirectInput device is also initialized (respective method is called) to get

user’s response through mouse or keyboard. Since word transformation matrix

is almost fixed, this Matrix is also assigned in this method.

• private void SetupMatrices(): View transformation and Projection transfor-

mation to setup the graphical camera are defined in this method. Associated

camera calibration parameters i.e. camera position, target point, field of view,

aspect ratio etc are bound to the respective transformation matrix as described

in Section 4.3. We chose to build a left-handed perspective projection matrix

based on a field of view.

• private void SetupLights(): Lighting parameters are defined in this method.

• private void Render(): This is the main and most important method of the

display module. Two Viewports, leftViewPort and rightViewPort are created

to display graphics on left and right camera image respectively.

All the drawing commands are kept within the device.BeginScene() and de-

vice.EndScene() method pair. At first, stereo image acquired by StereoClient

107

component is copied to frontSurf surface using the SurfaceLoader.FromStream

command. Then, using SurfaceLoader with FromSurface, frontSurf is copied

to augSurf. Then, StretchRectangle of device is used to copy the contents

of the source rectangle (with content of augSurf) to the destination rectangle

(with content of backSurf). Finally, Device.Present() is called to display the

content of the back surface to the screen of monitor or the HMD.

4.6 Integration to the Stereo-Vision System

The Multi-threaded Distributed Telerobotic Stereovision System chosen is imple-

mented using Microsoft Visual C++ (for Vision Server component), C# (for Robot

Server and Robot Client components) and Microsoft DirectShow of DirectX (for

image acquisition through digital camera). We have integrated this system with our

graphics system modules to develop a complete AR telerobotic stereovision system.

The client system of the chosen stereovision system consists of VisionClient, a

module for stereo image acquisition from the network, master arm module and robot

control module. As shown in Fig. 4.2, our camera calibration module takes left and

right images from VisionClient module. Our DirectX Interface module also gets the

stereo video data from the same module. Robot initialization and getting current

position and orientation of real robot are achieved through Robot Model and fed

to the Virtual object Modeling module. Master arm component is also used to use

108

���������	��

�����

����
�

���	��

�

�

�

�������
�

���	��

���	���

���

�����

�����

�
�

�
������
�

��
�������

������

�����
�
�

����
����
�

�����
�
�

���
��������

�����
�
�

������ �

�!�����

"#��$�

��
�����

���%

�������
�&��

�������

����������
�

�����
�
�

����$���'(�����'��

�������

���	���

���������

�����
�
�

),(MX ∆∆

������

��&��

�!'��
��&�

�&��

),(newnew MX

),(MX ∆∆

θ∆

����������
���

���!���

��)����

��&���
'

�����

�
�������

��'�����

�������

Figure 4.2: Overall software architecture.

master arm as the manipulation tool of graphics robot arm.

4.7 GUI Implementation

Two GUI forms are designed in the client side to provide users interacting with

the system. On the main GUI form shown in Fig. 4.3, buttons are attached for

connecting with vision and robot server running on the server PC connected with

the real robot. It also takes user’s option for various graphics parameters. The

stereo form GUI shown in Fig. 4.4, can be accessed by pressing the “View 3D

Augmented Reality Simulation” button. Stereo form shows the left and right image

to two separate monitors (or on the two eye sides of the HMD). It also displays the

control features to change the joint angles of real and graphic robot arm, changing

109

Figure 4.3: Main User Interface Form at Client Side

Cartesian position and opening or closing of gripper which may be used for task

simulation.

DirectInput functionality of Microsoft DirectX9 is used to implement interaction

with user’s input. The methods implemented related to DirectInput in the client GUI

are as follows:

• CreateDirectInputDevice(): It sets necessary parameters and then instantiate

a DirectX device.

• FreeDirectInput(): This method is used to un-acquire the device one last time

just in case the application tried to exit while the device is still acquired.

110

Figure 4.4: User interface form in stereo view at client side

• ReadImmediateData(): It read the input device’s state and make changes

in appropriate parameters. Then, it calls the graphics rendering method to

redraw the virtual robot reflecting users response as described in Section 3.2.

Chapter 5

Performance Evaluation and

Comparative Studies

Both quantitative and qualitative evaluations are done for analyzing the perfor-

mance of the system. In quantitative evaluation, we have measured the execution

time of various operations, refresh rate of the output screen, complexity of the al-

gorithms used and the accuracy of the registration of the real and virtual image.

Our qualitative evaluation includes comparative studies of our basic tools used with

probable alternatives. We have also compared the performance of our systems with

similar other approaches.

For quantitative analysis, data was taken by averaging over 1000 samples and

running both server and client systems on PCs having 2-GHz Intel P4 processors

111

112

with 1GB DRAM and 512 KB cache memory and connected to a campus network

by using a 100 Mbps NIC card. The server PC is interfaced to two Sony Handycam

digital cameras using a 400 mbps FireWire PCI (IEEE-1394) card.

5.1 Speed of Rendering Graphics

In this section, we will describe the measurement of the refresh rate of the output

screen at different levels of graphics complexities and execution environments. We

will also describe the results for measuring the time for drawing the graphic robot

with different features.

Table 5.1: Refresh rate of the output screen.

Environment Graphics Complexities Avg.
Refresh
Rate
(fps)

Only graphics

No drawing 273.36
With an object in the scene 243.74
Only robot with 8 segments in
each cylinder

253.59

Only robot with 50 segments
in each cylinder (solid view)

239.78

Graphics on video

Without any drawing 11.498
With an object in the scene 11.384
Only robot with 8 segments in
each cylinder

11.347

Only robot with 50 segments
in each cylinder (solid view)

11.325

113

5.1.1 Refresh Rate

We have computed the refresh rate of the output screen displaying the graphics in

terms of frame per second. We have tested the system for different environments:

with or without overlaying graphics over the real video. For each of the environ-

ments, we have recorded the refresh rate with no drawing displayed, graphical arm

with a cuboidal object, graphical arm with 8 segments per cylinder and graphical

arm with 50 segments per cylinder. As shown in Table 5.1, refresh rate is propor-

tional to the complexity of the drawings and image acquisition time.

5.1.2 Time Required for Rendering the Robot

Time required to render the whole robot with different numbers of triangles in a

cylindrical shape and different views is shown in Table 5.2. It is observed that there

is no significant difference in performance for using solid or wire-frame model.

5.1.3 Time Required for Video Image Acquisition and Trans-

fer

Image acquisition at server and transfer over LAN using our stereovision system

with various schemes are reported in [1, 56]. The results are summarized in Table

5.3.

In the case of a single stereo thread, for the distribution of inter-arrival times of

114

Table 5.2: Time required to render the graphical robot.

Environment Graphics Complexity
Rendering
Time (ms)
Wire-
frame

Solid

Only
Only robot with 8 segments in
each cylinder

64.088 64.283

graphics Only robot with 50 segments
in each cylinder

65.034 65.151

Graphics on
Only robot with 8 segments in
each cylinder

105.02 108.362

video Only robot with 50 segments
in each cylinder

105.37 109.037

Table 5.3: Image acquisition and transfer time.

Operations Time in ms
Copying image from Sample grabber to
DRAM with single thread

24.025

Copying image from Sample grabber to
DRAM with one thread copying stereo
frame and another to read a force data
with a transfer

33.46

Copying image from Sample grabber to
DRAM with one thread copying stereo
frame and another to read a force data
without any transfer

60.48

Image transfer over a LAN with double
buffer, concurrent transfer

59

Reading image from cameras and display-
ing in HMD

83

115

300 video frames, the mean value of 24.025 ms is required.

In the case of a stereo copying thread with a force thread, the force is read as

fast as possible without data transfer over the network. This helps in studying the

effects on the copy times of video data from SampleGrabber to main memory which

allows assessing the performance of the multi-threaded stereovision system.

In the case of a stereo copying thread with a force thread, the force is read as

fast as possible without data transfer over the network. The addition of a new force

thread on the server causes the mean value to increase from 24.025 ms to 60.48 ms

and 90% of the data lies between 8 and 150 ms. Active force thread has significant

effect on stereo copying on the server due to PCI resource conflicts. This is a useful

feedback to the microprocessor and motherboard architectures.

In the case of stereo copying thread with force thread reading and transferring

over the network, a blocking socket is used to transfer force packets and the mean

stereo copying time decreases to 33.46 ms. The improvements is due to release of

the CPU resources to the video copying thread during blocking transfer of force

packets.

Image transfer over a LAN with double-buffer concurrent transfer requires 59

ms and time required from reading image from cameras and displaying in HMD is

recorded as 83 ms.

116

5.2 Complexity of the Movement Algorithm

In the algorithm for moving the graphic arm in the joint space, we need to re-

calculate the value of the start and end points of the links above it which may vary

according to the link angle chosen. The number of segments used to draw a cylinder

is fixed for a particular configuration and we are using only one loop with maximum

size equal to the number of segments. Therefore, we can express the number of

points to be re-calculated for moving the angle of link n, by an infinitesimal angle

∆θ by the following equation:

Tn(∆θ) = (2 ∗ s + 1) ∗ (p− n) + g (5.1)

where, s is the number of segments used for drawing a cylinder of body shape, p

is the number of links, n is link whose angle is to be changed with values 1 to p

(considering, n=1 is for the base link and n=p is for gripper) and g is the number

of gripper points to be drawn.

From the above expression, we can derive the time complexity of our algorithm

as O(n). In Table 5.4, an example is shown for s=50, p=6 and g=68.

117

Table 5.4: Number of vertices to be drawn for movement in the joint space.

Link whose angle to be
changed, n

Number of vertices to be
calculated, Tn(∆θ)

1(Base) 573
2 472
3 371
4 270
5 169
6(Gripper) 68

5.3 Accuracy of the System

In this section, we will evaluate the accuracy of our calibration method, graph-

ics parameter computation method and the accuracy of the movement algorithms.

The re-projection errors of the calibration system, accuracy of the movement and

matching error in real and graphic images will be discussed.

5.3.1 Re-projection Errors

To evaluate the accuracy of our calibration method, the projection of grid points

are re-computed using the calculated calibration parameters and projected onto the

original grid image. The errors are analyzed using MATLAB calibration Toolbox

and computed as the standard deviation of the re-projection error (in pixel) in both

x and y directions respectively. Fig. 5.1 shows re-projection error of one image.

Pixel errors are concentrated to the centre of the graph, mostly within range -0.2

118

−0.4 −0.2 0 0.2 0.4 0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

Reprojection error (in pixel)

x

y

Figure 5.1: Re-projection error in pixel.

to +0.2 in both x and y directions. The errors can be even minimized (up to 1/50

of a pixel size) by identifying the location of the pixels that create larger errors and

re-defining the window size used to identify the grid corners.

5.3.2 Accuracy of the Movement

The accuracy of the movements of the graphical object on the output screen mainly

depends on the accuracy of the calibration. But it also depends on the accuracy of

the computation of the graphics parameters. We have computed the position of the

graphic robot arm before and after the movement and compared the difference with

the real data provided by the user through user interface.

119

5.4 Comparative Studies

In this section, several comparative studies are made. The client-server communi-

cation platform chosen is compared with available other alternatives. Direct3D, the

chosen 3D graphics API is compared with other familiar APIs. Lastly, our overall

system is compared with other proposed systems.

5.4.1 Comparison of .NET Framework to Other Client-Server

Communication Platforms

The .NET architecture by Microsoft has replaced the DCOM, previously used for

distributed computing on, mainly, Windows-based machines. In .NET, the COM

(Component Object Model) is replaced by CLR (Common Language Runtime) that

supports and integrates components developed in any programming language con-

forming to CLR specifications. .NET is a loosely coupled architecture for distributed

applications. The remote access is based on XML and SOAP (Simple Object Access

Protocol) technologies.

The .NET provides two main strategies to use distributed objects: Web ser-

vices and .NET Remoting. Web services involve allowing applications to exchange

messages in a way that is platform, object model, and programming language in-

dependent. Web services use XML and SOAP to form the link between different

objects. Remoting, on the other side, relies on the existence of the common lan-

120

guage runtime assemblies that contain information about data types. For the closed

environments where faster connections are required, .NET Remoting is an ideal so-

lution cutting the overhead caused by object and data serialization through XML.

It is an automatic notification and data messaging mechanism between the robot

server where an event is occurring and a client where the notification is required.

It does not require client-side components to be registered on the server machine

thus breaking the interdependency in the development phase. Process variables like

real-time sensor data and robot-states are relayed to the client-side using implicit

inter-component communication. In our framework, we are using the .NET Remot-

ing for calling functions remotely, and hides the details of network transfers.

C# .NET is a very good object-oriented language that lets the programmer to

easily create programs for their functions. Programming languages of the form of

C and C++ can also be used in C#. C# solves many problems from C++, such

as a garbage collector (to solve memory problems). In addition to the Garbage

Collector and the use of references, in some cases, unsafe code can also be used

to directly access the memory. Also, variables in C# are automatically initialized

by the environment, and are type safe. Thus, C# is becoming a good choice for

creating components-from high-level business objects to system-level applications.

JAVA has also some high level language features like garbage collection. But

although very cool, it is an interpreted language. JAVA and CORBA are intended to

121

be cross-platform environments thus requiring lot of JIT (just-in-time) compilation

and virtual machines to interpret code on different operating systems. Although

JIT compilation gets faster and more grunt work is handed off to the APIs, JAVA

is still a very young language and still going through a lot of changes [55]. On

the other hand, in the .NET, IL (Intermediate Language) code is compiled by JIT

compiler to native machine code prior to execution. Compiled IL code executes on

top of a portable API that enables future platform independence. Besides, the .NET

has embedded type signatures which allows component debugging across different

languages which is a missing feature in JAVA and CORBA. In addition, they provide

no support for hardware-accelerated graphics APIs that are critical for live video

visualization on PCs.

5.4.2 Comparing Direct3D with Other Graphics API

The main distinct feature of Direct3D API of DirectX is its capability to provide the

developers more directly access the hardware features of a computer i.e. it allows to

utilize the hardware acceleration [57]. In computing, hardware acceleration is the

use of hardware (here video card or graphics card) to perform some functions faster

than is possible in software running on the normal CPU. Examples of hardware

acceleration include blitting (physically copying the contents of one image on top of

the another image) acceleration functionality in graphics processing units (GPUs)

122

and instructions for complex operations in CPUs. Using this hardware acceleration

is a wonderful thing for AR simulation, because we can go from dozens of frames

a second to hundreds of frames drawn per second. We can even go to almost a

thousand fps unoffending on hardware capabilities.

Windows Application

Direct3D API

GDI

Hardware Abstraction
Layer(HAL)

Device Driver Interface(DDI)

Graphics Device

Figure 5.2: Dirct3D interaction to hardware.

The hardware acceleration capability of Direct3D is achieved through its uti-

lization of the HAL. The HAL is a device-specific interface, provided by the device

manufacturer. As shown in Fig. 5.2, HAL layer wraps around the DDI (Device

Driver Interface), abstracting it away and directly communicating to the graphics

card (or graphics accelerator), more specifically to the GPU. A GPU is the mi-

croprocessor of a graphics card for a personal computer or game console. Modern

123

GPU’s are very efficient at manipulating and displaying computer graphics, and

their highly-parallel structure makes them more effective than typical CPUs for a

range of complex algorithms. A GPU implements a number of graphics primitive

operations in a way that makes running them much faster than drawing directly

to the screen with the host CPU. GPU accelerates the memory intensive work of

texture mapping and rendering polygons, and also accelerates geometry calculations

such as mapping vertex into different coordinate systems. HAL takes requests for

example, to blit surfaces and converts those into hardware instructions for the GPU

to perform. The use of HAL also guarantees increased stability and portability of

DirectX application.

Although it is not possible to use hardware feature that Direct3D does not sup-

port unlike OpenGL, it is updated once every two months allowing a standard inter-

face to new features sooner than they appear in core OpenGL. Whereas, OpenGL

has an extension mechanism allowing immediate access to new features as graphics

manufacturers create them, rather than having to wait for a new API version to

appear.

Direct3D is not an easy-to-code API. It is very difficult to use as it has large code

overhead in comparison to OpenGL. But it is good for doing lower level operations.

The vast majority of PC games are written using Direct3D. On the other hand,

OpenGL has smaller code size, but it is more difficult for doing lower level operations

124

than Direct3D. Java3D has similar code overhead as OpenGL.

In consideration to multi-Platform support, Direct3D is very poor as it used

only on only Windows, XBox, XBox 360 and foundation for XNA. But OpenGL

can be used on Windows, Linux, MacOS, Gamecube, Playstation 3 (OpenGL ES

subset), Silicon Graphics Workstations, BeOS and others. On the contrary, Java3D

is platform independent.

Difference between Direct3D and Windows GDI+ as graphics programming tool

is as follows. GDI+ is a technology to draw. It’s a native 2D graphics library for

working in windows. It is easy to work with as it has built in function for rounded rec-

tangles, ellipses, circles, lines, n-shaped polygons and so forth. We can use Windows

GDI+ to draw onto a Direct3D surface. But, it doesn’t use any extended graphics

or acceleration features, even when there is a hardware acceleration present; See

Fig. 5.2. Therefore, it is so slow that it is better to write own optimized rectangle,

line or circle functions oneself rather than resorting to the monstrous GDI+ [55].

It was actually designed to work on a myriad of different configurations, different

resolutions, different bit depths, but not designed to be fast. Another benefit of

GDI+ is that it is more easily ported to other devices (like Pocket PC). But this is

not important in our telerobotic implementation.

The differences among the 3D graphics API’s discussed so far can be summarized

as illustrated in Table 5.5.

125

Table 5.5: Comparison between important 3D graphics APIs.

Features Direct3D OpenGL Java3D
Speed Excellent speed

through Graphics
acceleration

Debatable (little difference
with Direct3D)

Slow

Ease of coding large code overhead,
but good for lower
level operations

Small Code size,worse in
lower level operations

Similar to
OpenGL

Multi-platform
support

Used on Windows,
XBox, foundation for
XNA

Used on Windows, Linux,
MacOS etc

Platform
independent

Ease of drawing
text

Good Poor in base standard - one
has to use bitmaps. Good
with GLUT

Fair

Ease of running
in a window

Excellent Poor Not really
applicable

Immediate
mode

No Yes

Ease of learning Hard to learn easier to learn Fair
Helper library Extensive Smaller Fair

5.4.3 Comparing Our Approach to Others

Iqbal, A. [1] augmented his stereo-vision system by overlaying only a small red ball

at the current position of the gripper in comparison to our whole graphical arm

overlayed on the real video image. He used Faugeras [58] calibration method with

affine frame of reference proposed by Kuno et. al. [44] which led him to noticeable

error in the superimposition. Whereas, use of our computer vision-based calibration

reduces error up to 1/50 of pixel size.

126

In [45], a high level web-based AR as well as VR user interface is developed

using Java and CORBA. Hu et. al. [59] also proposed JAVA for network interfacing

and video as well as the use of C++ for the robot controller for Internet-based

telerobotic System. But in our system, .NET framework is directly used for all GUI

development as well as the core system components making it a unified solution.

This frees us from using middleware services like MS VM within the framework.

JAVA and CORBA are intended to be cross-platform environments thus requiring

lot of JIT compilation and virtual machines to interpret code on different operating

systems.

In [1], GDI functionalities are used for drawing purposes. In [45], JAVA3D and in

[60] OpenGL is used as 3D graphics API. These APIs are easy to work with but they

provide no or little support for hardware-accelerated graphics APIs that are critical

for live video visualization on PCs. Therefore, graphics rendering of our system is

faster than these system for our use of Direct3D which uses hardware acceleration

through HAL.

In [45], operation time reported for program launching, image acquisition, graphic

robot initialization and robot movement as 5.06, 0.20, 3.32 and 2.29 seconds respec-

tively. In our case, image acquisition time over a LAN is 59 ms (83 ms required

from reading image from cameras to the display on HMD).

J. Vallino [61] reports in his PhD dissertation, refresh rate of 10 fps to be required

127

for AR. We have got above 11-17 fps after overlaying graphical arm with live stereo

video and around 250 fps with local simulation.

Our system is comparatively cost effective due to the use of commodity hardware

(PC) and software.

Chapter 6

Conclusion

In this chapter, a summary of the proposed work is depicted with outlines of the

major contributions made. A number of recommendations and research directions

are also mentioned.

6.1 Summary of the Work

A hierarchical design strategy and its implementation for augmenting a telerobotic

stereo vision system comprising of a PUMA-560 industrial robot operating over a

campus LAN is described in this work. At first, the geometric model of a six degree

of freedom (DOF) robot arm is developed and based on that a three-dimensional

(3D) graphical arm is modeled. Then, a computer vision based calibrations method

and a registration method are used to superimpose graphics on real image creating

128

129

a simulation plan. Hardware accelerated graphics rendition is used through MS

Direct3D API. A flexible and generalized data structure suitable for telerobotic

visualization is used. Motion activation algorithms are developed and user-friendly

graphical user interfaces are designed for facilitating telerobotic task simulation prior

to give the real command to the telerobot.

6.2 Contributions

A brief account of the contributions made through this thesis work is given below:

1. Providing a simulation plan by overlaying graphic robot on real video for

making rehearsal and correction before going for actual teleoperation and thus

providing task safety.

2. Saving bandwidth by sending (less frequently) only the finalized or planned

data.

3. Using hardware accelerated graphics rendition that provides us with excellent

refresh rate of the output screen.

4. Improvement in accuracy of execution by using better calibration method giv-

ing accuracy up to 1/50 of pixel size.

5. Flexible and generalized data structure suitable for telerobotic visualization.

130

6. User-friendly graphical user interface for simple manipulation in the telerobotic

AR system.

7. Use of low cost and commercially available hardware and software

8. Can be used as a cost effective and flexible visual tool for showing robot

manipulation in the classrooms.

9. Can be used as a base framework for further research on virtual and augmented

telerobotic manipulations.

6.3 Future Research Directions

Our future research work based on this thesis can be directed to the following areas:

1. Providing an intelligent system to switch between VR and AR modes of oper-

ation based on network delays to ensure QoS.

2. Using multi-processor system for processing video and graphics data more

efficiently.

3. Developing a full fledged educational graphical tool by extending the VR ma-

nipulation sub-system to support all robot manipulations needed to be demon-

strated in the classroom.

131

4. We will attach force feedback information to the graphical robot and use a

multiplexer to provide options for using master arm in graphical arm manipu-

lation as well as real robot manipulation. Thus, we will be able to reduce the

effect of time delay even in force feedback.

5. Using a task-aware video compression techniques for compressing background

data and transfer of uncompressed, small volume, higher resolution, region-

focused, video data that is essential for the current task. The operator may

specify a relevant tool region to be dynamically tracked and transmitted with

higher resolution and refreshing rate. A tracking algorithm detects motion in

the relevant region and guides a selective compression algorithm. Thus, by

controlling the size of the uncompressed region and its resolution the user may

set up a variety of scenarios between the above two extremes.

6. Using a resilient telerobotic flow control to ensure smooth performance degra-

dation under severe load conditions. One approach is a flow-control that ac-

tivates remote emergency agents, at the slave site, to ensure task safety and

continuity under excessive delays. At the client station, the virtual environ-

ment may supply the operator station with kinesthetic and visual feedback to

provide interaction continuity based on task locality, environment model, and

history information.

7. Using commercial software available to extract exact 3D model of the workspace

132

objects which will facilitate more accurate task manipulation.

Bibliography

[1] A. Iqbal. Multistream Realtime control of a Distributed Telerobotic System.

M.Sc. Thesis, King Fahd University of Petroeum and Minerals, June 2003.

[2] J.-Y. Herve, C. Duchesne, and V. Pradines. Dynamic registration for augmented

reality in telerobotics applications. IEEE International Conference on Systems,

Man, and Cyberneticsn, Vol.2:1348 – 1353, October 2000.

[3] A. Rastogi. Design of an Interface for Teleoperation in Unstructured Environ-

ments Using Augmented Reality. M.A.Sc. Thesis, Department of Industrial

Engineering, University of Toronto, Toronto, 1996.

[4] Kris Gray. Microsoft DirectX9 Programmable Graphics Pipeline. Microsoft

Press, 2003.

[5] A. Rastogi, P. Milgram, and D. Drascic. Telerobotic Control with Stereoscopic

Augmented Reality. SPIE, Vol.2653: Stereoscopic Displays and Virtual Reality

Systems III:135–146, Feb. 1996.

133

134

[6] Ronald T. Azuma. A Survey of Augmented Reality. Presence: Teleopertaors

and Virtual Environments, Vol. 6(4):355–385, 1997.

[7] P. Milgram, A. Rastogi, and J. Grodski. Telerobotic Control Using Augmented

Reality. IEEE Inter. Workshop on Robot and Human Communication, pages

21–29, 1995.

[8] R. Azuma, Y. Baillot, S. Behringer, R.and Feiner, S. Julier, and B. MacIntyre.

A Survey of Augmented Reality. Computer Graphics and Applications, IEEE,

21(6):34–47, Nov.-Dec. 2001.

[9] Grigore Burdea. Invited Review: The Synergy between Virtual Reality and

Robotics. IEEE Transactions on obotics and Automation, Vol.15, No. 3:400

410, June 1999.

[10] J. Abdullah and K. Martinez. Camera Self-calibration for the ARToolKit. The

First IEEE International Workshop on Augmented Reality Toolkit, page 5, Sept.

2002.

[11] Z. Zhang. A Flexible New Technique for Camera Calibration. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, Vol.22, No. 11:1330 –

1334, Nov. 2000.

[12] Richard L. Holloway. Registeration Errors in Augmented Reality. Ph.D. Dis-

sertation, University of North Carolina at Chapel Hill, 1995.

135

[13] Michael Deering. High resolution virtual reality. Proc. of the 19th annual

conference on Computer graphics and interactive techniques, Vol.26(2):195–202,

1992.

[14] A. Janin, D. Mizell, and T. Caudell. Calibration of Head-Mounted Displays for

Augmented Reality. Proc. of IEE VRAIS ’93, pages 246–255, 1993.

[15] M. M. Wloka and B. G. Anderson. Resolving Occlusion in Augmented Reality.

Proc. of 1995 Symposium on Interactive 3D Graphics, pages 5–12, 1995.

[16] D. Hearn and M. P. Baker. Computer Graphics C Version. Prentice Hall, 2nd

edition, 1997.

[17] Xi Ning and T.J. Tarn. Action synchronization and control of internet based

telerobotic systems. Proc. of IEEE Inter. Conf. on Robotics and Automation,

Vol. 1:219–224, 1999.

[18] L. M. Strunk and T. Iwamoto. A linearly-mapping stereoscopic visual inter-

face for teleoperation. IEEE International Workshop on Intelligent Robots and

Systems, IROS’ 90, pages 429–436, 1990.

[19] http://www.3dgw.com/Articles/articlepage.php3.

136

[20] G. Lee, S. Bekey and A. Bejczy. Computer control of space teleoperators with

sensory feedback. Proc IEEE Int. Conf. on Robotics and Automation, pages

205–214, 1985.

[21] www.stereo3d.com/nuview.htm.

[22] www.demensional.com/manuals/eye3d 3-in-1 user’s manula (e).pdf.

[23] S. Lee, S. Lakshmanan, S. Ro, J. Park, and C. Lee. Optimal 3D Viewing

with Adaptive Stereo Displays for Advanced Telemanipulation. International

Conference on Intelligent Robots and Systems, pages 1007–1014, 1996.

[24] S. Lee, S. Ro, J. Park, and C. Lee. Optimal 3D Viewing with Adaptive Stereo

Displays: A Case of Tilted Camera Configuration. ICAR ’97, pages 839–844,

1997.

[25] D. B. Diner and D. H. Fender. Human engineering in stereoscopic viewing

devices. Jet Propulsion Laboratory report (JPL D-8186), 1991.

[26] R. L. Pepper, R.E. Cole, and E. H. Spain. The influence of camera separation

and head movement on perceptual performance under direct and tv displayed

conditions. Proceedings of the Society for Information Display, pages 73–80,

1996.

137

[27] H. Loaiza, J. Triboulet, S. Lelandais, F. Chavand, and F. Artigue. A multi-

configuration stereoscopic vision system for domestic mobile robot localization.

Proc. of the First Workshop on Robot Motion and Control, 1999. RoMoCo ’99,

Vol. 5, No. 3:207 – 212, June 28-29 1999.

[28] M.N. Armstrong. Self-Calibration from Image Sequences. PhD Dissertation,

Department of Engineering Science, University of Oxford, 1996.

[29] M. Malik, S. Mudar, and C. Florent. Automatic camera calibration based on

robot calibration. Proc. of IEEE Instrumentation and Measurement Technology

Conference, 1999, Vol. 2:1278 – 1282, 1999.

[30] J. Heikkila. Geometric camera calibration using circular control points. IEEE

Transactions on Pattern Analysis and Machine Intelligence, Vol.22, No. 10:1066

– 1077, Oct. 2000.

[31] N. Hollinghurst; R. Cipolla. Human-robot interface by pointing with uncali-

brated stereo vision. Image and Vision Computing, 14(3):171–178, 1996.

[32] Zhengyou Zhang. Flexible Camera Calibration by Viewing a Plane from Un-

known Orientations. Proc. of ICCV99, 1999.

[33] Y. Kuno, M. Sakamoto, K. Sakata, and Y. Shirai. Vision-based human interface

with user-centered frame. Proceedings of the IROS’94, 3:2023–2029, 1994.

138

[34] R. Willson. Modeling and Calibration of Zoom Lenses. PhD Dessertation,

Carnegie Mellon University, Pittsburg, PA, January 1994.

[35] W. Kim. Computer vision assisted virtual reality calibration. IEEE T-RA,

pages 450–464, June 1999.

[36] http://www.sop.inria.fr/robotvis/personnel/zzhang/sof twares.html.

[37] F. Dornaika and R. Chung. An Algebraic Approach to Camera Self-Calibration.

Computer Vision and Image Understanding, Vol. 83, No. 3:195–215, Sept. 2001.

[38] M. Sonka, V. Hlavac, and R. Boyle. Image Processing, Analaysis and Machine

Vision. PWS Publishing, 2nd edition, 1999.

[39] The free encyclopedia, Wikipedia. 3D computer graphics.

http://en.wikipedia.org/wiki/3D computer graphics.

[40] P. Milgram, S. Zhai, and D. Drascic. Applications of Augmented Reality for

Human-robot Communication. Proc. of the 1993 IEEE/RSJ International Con-

ference on Intelligent Robots and Systems, Yokohama, Japan, July 26-30, 1993.

[41] J. Gu, E. Augirre, and P. Cohen. An augmented-reality interface for telerobotic

applications. Proc. of Sixth IEEE Workshop on Applications of Computer Vi-

sion,2002(WACV 2002), pages 220–224, Dec. 2002.

139

[42] C. Dushesne and J-H. Herv. A point-based approach to the interposition prob-

lem in augmented reality. Proc. International Conference on Pattern Recogni-

tion,Barcelona, Spain, pages 220–224, Sept. 2000.

[43] O.D. Faugeras and G. Toscani. The Calibration Problem for Stereo. Proceedings

of Conference on Computer Vision and Pattern Recognition, Miami Beach, FL,

Vol. 5, No. 3, June, 15-20 1986.

[44] Y. Kuno, K. Hayashi, K.H. Jo, and Y. Shirai. Human-robot interface using

uncalibrated stereo vision. International Conference on Intelligent Robots and

Systems 95, 1:525–530, 1995.

[45] R. Marin, P.J. Sanz, and J.S. Sanchez. A very high level interface to teleop-

erate a robot via Web including augmented reality. Proc. IEEE International

Conference on Robotics and Automation, 2002 ICRA ’02, Vol.3:2725 – 2730,

May 2002.

[46] Mayez Al-Mouhamed, Onur Toker, and Nesar Merah. Design of an Intelli-

gent Telerobotic System. Technical Report AT-20-80, King Abdulaziz City For

Science and Technology, Kingdom of Saudi Arabia, 2004.

[47] I Beiderman. Human image understanding: Recent research and theory. Com-

puter Vision, Graphics and Image Processing, Vol. 32:27–73, 1985.

140

[48] R.A. Browse and S. Little. The effectiveness of real-time graphic simulation

in telerobotics. Proc. of IEEE International Conference of Systems, Man, and

Cybernetics, Charlottesville, Virginia, pages 895–898, Oct 1991.

[49] G. Litern, K. E. Thomley-Yates, B.E. Nelson, and S.N. Roscoe. Content, va-

riety, and augmentation of simulated visual scenes for teaching air-to-ground

attach. Human Factors, Vol. 29(1):45–59, 1987.

[50] M. Al-Mouhamed, Onur Toker, and Asif Iqbal. A Multi-Threaded Distrib-

uted Telerobotic Framework. the IEEE/ASME Transactions on Mechatron-

ics(accepted).

[51] Jean-Yvesw Bouguet. Camera Calibration Toolbox for Matlab. August 10,

2005.

[52] S. R. Hollasch. Four-Space Visualization of 4D Objects. MS Thesis, Arizona

State University, August 1991.

[53] Microsoft. MSDN Library. http://msdn.microsoft.com/default.asp.

[54] F. Wolfgang and A. Geva. Beginning Direct3D Game Programming. Prima

Tech, ed. Andre LaMother, 2001.

[55] Peter Walsh. Advanced 3D Game Programming with DirectX 9.0. Wordware

Publishing, Inc., 2003.

141

[56] M. Al-Mouhamed, O. Toker, A. Iqbal, and Syed M.S. Islam. Evaluation of real-

time delays for networked telerobotics. Proc. of the 3rd International IEEE

Conference on Industrial Informatics INDIN05, Perth, Western Australia, Au-

gust 10-12 2005.

[57] David Weller, Alexandre Santos Lobao, and Ellen hatton. Microsoft DirectX9

Programmable Graphics Pipeline. Apress, 2004.

[58] O.D. Faugeras. What can be seen in three dimensions with an uncalibrated

stereo rig? In Proc. 2nd European Conference on Computer Vision, LNCS

588, Springer-Verlag, pages 563–578, 1992.

[59] Huosheng Hu, Lixiang Yu, Pui Wo Tsui, and Quan Zhou. Internet-based ro-

botic systems for teleoperation. International Journal of Assembly Automation,

21(2), 2001.

[60] S.R. Gomez, J. Carro, E. Moreda, J.J. Escribano, and C. Cerrada. A Design

Srategy for Low Cost Experimental Telerobotics Platforms. Proc. IEEE Inter-

national Workshop on Robot and Human Interaction, Pisa, Italy, pages 273 –

278, Sept. 1999.

[61] J. Vallino. Interactive Augmented Reality. PhD Dissertation, Department of

Computer Science, University of Rochester, Rochester, NY, April 1998.

142

Vita

Syed Mohammed Shamsul Islam was born in Gazipur, Bangladesh on February 28,

1979. He received his Bachelors Degree in Electrical and Electronic Engineering

with Honors in November, 2000 from Islamic Institute of Technology, IIT (which

is now renamed as Islamic University of Technology, IUT), Board-bazar, Gazipur,

a subsidiary organ of the Organization of Islamic Conference (OIC). He also com-

pleted Post Graduate Diploma in Technical Education from the same university in

2002. He joined Integrated Control Equipment Ltd., Dhaka in 2000 as a Project

Engineer. He also worked as a Lecturer in Computer Science in Manarat Dhaka In-

ternational College. He joined Asian University of Bangladesh, Dhaka as a Lecturer-

cum-Programmer in the Department of Computer Science and Engineering in July,

2001. With study-leave from there, he joined the Department of Computer Engi-

neering, King Fahd University of Petroleum and Minerals (KFUPM), as a Research

Assistant in March 1, 2003. He received the Master of Science degree in Computer

Engineering from KFUPM in December, 2005.

