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Preface
Approximation theory is the branch of mathematics which studies the process of

approximating general functions by simple functions such as polynomials and different

kinds of series [3, 4, 5, 26, 29, 39, 41]. It plays a central role in the numerical analysis

and its applications to partial differential equations representing real world systems.

Approximation theory can be treated as a link between modern mathematics and

classical mathematics, particularly analysis. Origin of approximation theory can be

traced back to Weierstrass approximation theorem proved by Weierstrass in 1885.

Since then several celebrated mathematicians notably Picard, Volterra, Lebesgue,

Mittag-Leffler, Fejér, Lerch, Landau, de LaVallee Poussin and Bernstein provided

alternative proofs of this theorem. The Weierstrass theorem was extended to func-

tions of n variables by M. H. Stone in 1937. In fact, he proved the Weierstrass theorem

in the setting of algebra. Theorems in which the rate of decrease of the best approx-

imation is established for a family of functions and different class as of polynomials

are generally called theorems of Jackson type in recognition of the pioneering research

work of Jackson between 1911 and 1930. The theorems in which the smoothness of f

is deduced from the best approximation are called theorems of Bernstein type. The

memoir of Bernstein dealing with these results fetched a very prestigious prize in 1913.

It may be remarked that a systematic study of approximation theory was initiated

by Natanson et al [29] in the fifties. Results concerning approximation by trigono-

metric polynomials of different classes of functions can be found in the famous book

of Zygmund [48]. For a detailed historical note one can refer to Cheney [4]. By

the seventies, the subject became very popular in view of its wide applications. The

celebrated finite element method developed by engineers in early fifties found close

xi



connection with the approximation theory. French mathematician Céa observed in

early sixties that an error estimation of finite element is an approximation problem

in Sobolev spaces. Approximation by Spline functions [23] attracted the attention of

several eminent mathematicians during the seventies and eighties. These functions are

not only convenient and suitable for computer calculations, but also provide optimal

theoretical solution to the estimation of functions from limited data.

Wavelet theory has been developed in the last two decades. This is a refinement

of Fourier analysis and is applied to different fields [5, 8, 9, 10, 11, 12, 13, 15, 18, 22,

24, 26, 27, 28, 38, 41, 42, 45, 47, 44]. From the viewpoint of approximation theory

and harmonic analysis, the wavelet theory is important on several counts. It provides

simple and elegant unconditional wavelet bases for function spaces (Lebesgue, Sobolev,

Besov, etc).

A recent development of approximation theory is approximation of an arbitrary

function by wavelet polynomials. There is a number of examples of wavelet such

as Haar wavelet, Mexican-hat wavelet, Shannon wavelet, Daubechies wavelet, Meyer

wavelet etc.

In this thesis, we focus on approximation by Haar wavelet and its variants. Haar

function is the simplest example of wavelet and reflects significant features of the

general wavelet. Well known Daubechies wavelet is a generalization of Haar wavelet.

In chapter 1 we introduce the basic concepts of approximation theory and wavelet

analysis. Chapter 2 is devoted to the Haar system and its properties. In chapter 3 we

discuss approximation of general functions by the Haar wavelet in different smooth-

ness space such as Lebesgue, Lipschitz, Sobolev and Besov spaces. This chapter also

contains some results concerning Daubechies and Coiffman’s wavelet. In chapter 4,

xii



we discuss Walsh function and wavelet packet which are the generalization of Haar

wavelet. Chapter 5 deals with the variants of the Haar wavelet. Finally, Chapter 6 is

devoted to open problems and further research scope in this area.
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Chapter 1

Basic Review

1.1 The Approximation Problem

Approximation of a given arbitrary function by a polynomial amounts to finding a

polynomial which is close to the function. The Approximation problem is concerned

with how one can choose a polynomial that approximates a given function more ac-

curately [3, 14]. Weierstrass proved the following theorem in 1885.

Theorem 1.1 [14] (Weierstrass theorem) Let f be a continuous function defined on

a closed and bounded interval I of R. Given ε > 0, we can find a polynomial Pn(x) (

of sufficiently high degree) for which |f(x)− Pn(x)| ≤ ε, ∀x ∈ I.

The approximating polynomial Pn(x) depends on three factors:

i) How well we want f approximated, i.e., how small ε is;

ii) The behavior of f ; strong oscillations in f usually force Pn(x) to be of a higher

degree and

1



iii) The length of the interval I; enlarging the interval in general forces us to choose

polynomials of higher degree if a certain accuracy has to be obtained.

1.2 The Best Approximation Problem

The minimal distance requirement is the criterion for the best approximation in a

normed space.

Definition 1.2 Let X be a normed space and A be a subspace of X. We say that

a1 ∈ A is a better approximation than a2 ∈ A of f ∈ X, if ka1 − fkX 5 ka2 − fkX. We

define a∗ ∈ A to be a best approximation to f(x) if the condition ka∗ − fkX 5

ka− fkX holds for all a ∈ A.

i.e. dist(f,A)X := inf
a�A
kf − akX .

We call dist(f,A)X or d(f,A)X or E(f)X the distance from f to A. The best

approximation indicates that the error norm of the given function will be minimum.

Best approximations does not always exist. Even if it exists, it may not be unique.

Theorem 1.3 [14] Let X be a normed space. For given f and n linearly indepen-

dent elements x1, x2, x3, ..., xn in X, the problem of finding min
ai

°°°°f − nP
i=1

aixi

°°°°
X

has a

solution, where a1, a2, ..., an are constants.

1.3 Uniqueness of best approximation

In order to approximate a point or a function f by an element of a set A, it is usual

to choose conditions that define a particular approximation. Best approximation with

2



respect to an appropriate distance function is often suitable, but sometimes there are

several best approximations. In fact, the best approximations form a convex set.

Definition 1.4 (Convex set) Let X be a linear space. A subset C ∈ X is called convex

set if x1, x2 ∈ C and tx1 + (1− t)x2 ∈ C, for all 0 6 t 6 1.

Theorem 1.5 [34] Let A be a convex set in a normed linear space X and f ∈ X such

that there exists a best approximation of f in A. Then the set of best approximation

is convex.

A fairly extensive sufficient condition can be given which assures the uniqueness

of the best approximation. If a normed linear space is strictly convex, then there is a

unique best approximation.

Definition 1.6 (Strictly convex set) A normed linear space X is called strictly convex

if for every x, y ∈ X and r > 0 , kxk 6 r and kyk 6 r, imply kx+ yk < 2r unless

x = y.

Theorem 1.7 [34] Let A be a compact and strictly convex set in a normed linear

space X. Then for all f ∈ X, there is a unique best approximation of f in A.

Theorem 1.8 [34] Let A be a strictly convex set in a normed linear space X. Then

for all f ∈ X, there is at most one best approximation of f in A.

1.4 Function Spaces

There are many different ways of measuring the smoothness of a function f . With par-

ticular measure of smoothness, one associates a class of function spaces: for Ω ⊂ Rn,

3



Cm(Ω) to be the spaces of continuous functions which have bounded and continuous

partial derivatives Dαf = ∂|α|f
∂x

α1
1 ....∂xαn1

, |α| ≤ m. This space equipped with the norm

kfkCm(Ω) = sup
x∈Ω

|f(x)|+
X
|α|=m

sup
x∈Ω

|Dαf(x)| (1.1)

is a Banach space.

Definition 1.9 The space of all functions f : [a, b] −→ R such that
bR
a

|f(x)|p dx <∞,

1 ≤ p <∞, is denoted by Lp[a, b]. If p = 1, the class is denoted by L1[a, b] or L[a, b].

Definition 1.10 The space of all functions f : Ω −→ R such that
R
Ω

|f(x)|p dx <∞,

1 ≤ p <∞, is denoted by Lp(Ω).

Definition 1.11 For each 0 ≤ α ≤ 1 and M > 0, the set of Lipschitz continuous

functions of order α denoted by LipM(α), is the set of all functions f on R such that

|f(x1)− f(x2)| 6M |x1 − x2|α .

Definition 1.12 The space LipM(α,Lp), 0 < α 6 1, 1 ≤ p < ∞, is the set of all

functions f ∈ Lp(Ω) for which kf(·+ h)− f(·)kLp(Ω) 6Mhα, 0 < h < 1, M > 0.

Definition 1.13 (p-modulus of continuity) Let f be a real-valued function defined

on R. For 1 ≤ p ≤ ∞ and δ > 0, let

ωp(f ; δ) = sup
0<|h|≤δ

kf(x)− f(x− h)kp . (1.2)

The function ωp(f ; δ) or ωp(δ) is called the p-modulus of continuity of f .

4



Definition 1.14 Sobolev space Hm(Ω)

The set Hm(Ω) = {f ∈ L2(Ω)/ Dαf ∈ L2(Ω), |α| 6 m} , m being any positive in-

teger is called the Sobolev space of order m.

Hm(Ω) is a Hilbert space with respect to the inner product

hf, giHm(Ω) =
X
|α|6m

hDαf, DαgiL2(Ω) . (1.3)

For m = 1 and Ω = (a, b), Dαf = df
dx
, and

hf, giH1(a,b) = hf, giL2(a,b) +
¿
df

dx
,
dg

dx

À
L2(a,b)

For m = 2,

hf, giH2(a,b) =
X
|α|62

hDαf, DαgiL2(Ω)

for α = (0, 0), (0, 1), (1, 0), (1, 1), (0, 2), (2, 0).

The equivalent norm is

kfkHm(Ω) =
q
hf, giHm(Ω) =

³X
kDαfkL2(Ω)

´ 1
2
.

Besov space Bα,r
q (Ω):

We introduce here the notion of Besov space and equivalence of the Besov norm

with a norm defined by wavelet coefficients. For any h ∈ R2, we define

5



40
hf(x) = f(x)

41
hf(x) = 4(40

h)f(x) = f(x+ h)− f(x)

42
hf(x) = 4(41

h)f(x) = f(x+ 2h)− 2f(x+ h) + f(x)

...........................................

...........................................

4r+1
h f(x) = 4r

hf(x+ h)−4r
hf(x), r = 0, 1, 2, ...

Now, we define the r−th modulus of continuity in Lp as

ωr(f, t)p = sup
|h|≤t

⎛⎝Z
Irh

|4r
hf(x)|

p dx

⎞⎠ 1
p

,

where Irh =
©
x ∈ I

x
+ rh ∈ I, I = [0, 1]× [0, 1]

ª
, 0 < p ≤ ∞; with usual change to

an essential supremum when p =∞.

Given α > 0, 0 < p 6 ∞, 0 < q 6 ∞, choose q > α. The space Bα,r
q (Lp(Ω)) is

called Besov space, which consists of those functions f for which

kfkBα,r
q (Lp(Ω))

= kfkLp(Ω) +

⎛⎝ ∞Z
0

[t−αωr(f, t)p]
q dt

t

⎞⎠1
q

<∞, when q <∞ (1.4)

and

kfkBα,r
∞ (Lp(Ω))

= kfkLp(Ω) + sup
t>0
[t−αωr(f, t)p] <∞, when q =∞. (1.5)

where ωr(f, t)p is the r−modulus of continuity in Lp.

6



Properties of Besov spaces:

i) If 0 < p < 1, or 0 < q < 1, then kfkBα,r
q (Lp(Ω))

does not satisfy the triangular

inequality. However, there exist a constant C such that for all f, g ∈ Bα,r
q (Lp(Ω)),

kf + gkBα,r
q (Lp(Ω))

≤ C(kfkBα,r
q (Lp(Ω))

+ kgkBα,r
q (Lp(Ω))

) (1.6)

ii) Since, for any r > α, r1 > r, kfkBα,r
q (Lp(Ω))

and kfkBα,r1
q (Lp(Ω))

are equivalent

norms, we defined in the Besov space Bα
q (Lp(Ω)) to be Bα,r

q (Lp(Ω)) for r > α.

iii) For p = q = 2, Bα
2 (L2(Ω)), is the Sobolev space H

α(Ω).

iv) For α < 1, 1 6 p <∞ and q =∞, then Bα
p (Lp(Ω)) is

Lip(α, Lp(Ω)) =
n
f ∈ Lp(Ω)/ kf(x+ h)− f(x)kLp 6 khα, k > 0 cons tan t

o
.

v) kfkBα
q (L2(Ω))

is equivalent to the norm

ÃP
k

P
j

2αk |dj,k|q
! 1

q

,where dj,k are wavelet

coefficients of f .

vi) kfkBα
q (Lq(Ω))

is equivalent to the norm

ÃP
k

P
j

2αk |dj,k|q
! 1

q

, where 1
q
= α

2
+ 1

2
.

1.5 Relation Between Smoothness and Approxi-

mation order

The following theorems provide the relationship between smoothness and order of

approximation of the given function f .

Let En(f) denote the error in the best uniform approximation of f ∈ C[a, b] by a

polynomial of degree ≤ n, either algebraic or trigonometric, depending on the context.
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Theorem 1.15 ( [14] Jackson theorem I) Let f ∈ Cp[−π, π] and suppose that f (p)(x)

satisfies Lipschitz condition of order α, 0 < α ≤ 1. If

En(f) = min
ck,dk

max
−π≤x≤π

¯̄̄̄
¯f(x)−

nX
k=0

(ck cos kx+ dk sin kx)

¯̄̄̄
¯ (1.7)

then En(f) ≤ const
np−1+α .

The estimate in (1.7) is obtained by using the partial sum of the Fourier series

of f . There is no reason to suppose that these are the most efficient trigonometric

polynomials of order n to use. In this context D. Jackson has found that the following

polynomials lead to a better estimate.

Theorem 1.16 ( [14] Jackson theorem II) Let f ∈ C[a, b] and x0, x1, x2, ..., xn are

linearly independent elements in C[a, b] and if

En(f) = min
ai

max
−1≤x≤1

¯̄̄̄
¯f(x)−

nX
i=0

aixi

¯̄̄̄
¯ ,

then En(f) ≤
³
1 + π2

2

´
ω
¡
1
n

¢
.

Theorem 1.17 ( [4] Bernstein’s theorem I) If f ∈ C[−π, π] and En(f) ≤ An−α with

α ∈ (0, 1) and n is the degree of approximating polynomial of f , then f ∈ LipM(α).

Theorem 1.18 ( [4] Bernstein’s theorem II) If f ∈ C[−π, π] and En(f) ≤ A
n
, then

the modulus of continuity of f satisfies ω (δ) ≤ λδ |log δ| , for small δ.

Theorem 1.19 ( [4] Bernstein’s theorem III) If f ∈ C[−π, π] and En(f) < An−p−α,

where p is a natural number and α ∈ (0, 1), then f possesses continuous derivatives

of order 1, 2, 3, ...p, and the last one belongs to LipM(α).

8



1.6 Wavelet Theory

Definition 1.20 (Wavelet) A wavelet means a small wave (the sinusoids used in

Fourier analysis are big waves). In brief, a wavelet is an oscillation that decays quickly.

Sufficient mathematical conditions are :

Z
R

|ψ(t)|2 dt <∞, (1.8)

Z
R

ψ(t)dt = 0, (1.9)

Z
R

¯̄̄bψ(ω)¯̄̄2
|ω| dω <∞, (1.10)

where bψ(ω) is the Fourier Transform of ψ(t). (1.10) is called the admissibility condi-

tion.

1.6.1 Wavelet Transforms

Jean Morlet in 1982, introduced the idea of the wavelet transform and provided a

new mathematical tool for seismic wave analysis. Morlet first considered wavelets as

a family of functions constructed from translations and dilations of a single function

called the "mother wavelet", ψ(t). They are defined by

ψa,b(t) =
1p
|a|

ψ

µ
t− b

a

¶
, a, b ∈ R, a 6= 0 (1.11)

The parameter a is the scaling parameter or scale, and it measures the degree of

compression. The parameter b is the translation parameter which determines the

9



time location of the wavelet. If |a| < 1, then the wavelet in (1.11) is the compressed

version (smaller support in time- domain) of the mother wavelet and corresponds

mainly to higher frequencies. On the other hand, when |a| > 1, then ψa,b(t) has a

larger time-width than ψ(t) and corresponds to lower frequencies. Thus, wavelets have

time-widths adapted to their frequencies. This is the main reason for the success of

the Morlet wavelets in signal processing and time-frequency analysis.

1.6.2 Continuous wavelet transform

The wavelet transform of f ∈ L2(R) can be defined as

Tψf(a, b) = |a|−
1
2

∞Z
−∞

f(t)ψ

µ
t− b

a

¶
dt (1.12)

=
­
f, ψa,b

®
where ψa,b(t) = |a|−

1
2 ψ( t−b

a
). Let ψ denotes the complex conjugate of ψ. Tψf(a, b)

is called the wavelet transform of f in L2(R).

ψa,b(t) plays the same role as the kernel e
iωt in the Fourier transform. Like the

Fourier transform, the continuous wavelet transform Tψ is linear. However, unlike the

Fourier transform, the continuous wavelet transform is not a single transform, but any

transform obtained in this way.

The inverse wavelet transform can be defined [15] by the formula

f(t) = C−1ψ

∞Z
−∞

∞Z
−∞

Tψf(a, b)ψa,b(t)(a
−2da)db, (1.13)

10



provided that Cψ satisfies the admissibility condition, where Cψ = 2π

∞Z
−∞

|bψ(ω)|2
|ω| dω <

∞ and bψ(ω) is the Fourier Transform of ψ(t)[41].

1.6.3 Discrete wavelet transform

The continuous wavelet transform can be computed at discrete grid points (am, bn),

m,n ∈ Z . To do this, a general wavelet system can be defined as

ψm,n(t) = a
m
2
0 ψ(a

m
0 t− b0n), m, n ∈ Z, (1.14)

where a0 > 1 and b0 > 1 are fixed parameters. For such a family, two vital questions

arise:

i) Does the sequence
©­
f, ψm,n

®ª
m,n∈Z completely characterize the function f?

ii) Is it possible to recover f from this sequence in a stable manner?

These are closely related to the concept of frames.

Definition 1.21 (Frames) A sequence {ϕn} in a Hilbert space H is called a frame if

there exist positive constants A and B such that

A kfk2 5
∞X
n=1

|hf, ϕni|2 5 B kfk2 , for all f ∈ H. (1.15)

The constants A and B are called frame bounds. The sequence {ϕn}∞n=1 is called a

tight frame if (1.15) holds with A = B.

Definition 1.22 (Orthogonal basis and Orthonormal basis) A basis {ψn}∞n=1 of a

11



Hilbert space H is called orthogonal if

hψn, ψmi = 0 for n 6= m. (1.16)

An orthogonal basis is orthonormal if hψn, ψmi = 1 for n = m.

(1.17)

Theorem 1.23 An orthogonal basis {ψn}∞n=1 is complete if and only if hψn, ψi = 0,

for all n ∈ N implies ψ = 0.

Definition 1.24 (Approximation operator): For each j ∈ Z, the approximation op-

erator Pj on f(t) ∈ L2(R) is

Pjf(t) =
X
k∈Z

­
f, ϕj,k

®
ϕj,k(t) (1.18)

Definition 1.25 (Detail operator): For each j ∈ Z, the detail operator Qj is defined

by Pj+1 − Pj .

Definition 1.26 Let f and g be two functions defined on R. Then the convolution

of f and g denoted by h = f ∗ g is defined by

f ∗ g(x) =
Z
R

f(t)g(x− t)dt, (1.19)

whenever the integral makes sense.

Definition 1.27 Dilation operator Daf(t) = a
1
2f(at).

Definition 1.28 Translation of operator Tkf(t) = f(t− k).

12



For each j, k ∈ Z, define fj,k(t) = D2jTkf(t) = 2
j
2f(2jt− k).

The following theorem provides a method for constructing a new wavelet from a

given one.

Theorem 1.29 [41] If ψ is a wavelet and ϕ is a bounded integrable function, then

the convolution function ψ ∗ ϕ is also a wavelet.

Definition 1.30 (Wavelet series and wavelet coefficients) If a function f ∈ L2(R),

the series X
j∈Z

X
k∈Z

­
f, ψj,k

®
ψj,k(t)

is called the wavelet series of f , and
­
f, ψj,k

®
= dj,k =

R
R
f(t)ψj,k(t)dt are called the

wavelet coefficients of f .

1.6.4 Multiresolution Analysis (MRA)

A multiresolution analysis (as defined by S. Mallat in 1989) is a sequence {Vj}j∈Z of

closed linear subspaces of L2(R), such that the following properties are satisfied:

i) The sequence is nested. i.e. ∀ j, Vj ⊂ Vj+1

ii) The spaces are related to each other by dyadic scaling.

i.e. f ∈ Vj ⇔ f(2x) ∈ Vj+1 ⇔ f(2−jx) ∈ V0

iii) The union of the spaces is dense in L2(R), i.e.
S
j∈Z

Vj = L2(R) .

i.e. ∀ f ∈ L2(R), lim
j→ +∞

kf − PjfkL2 = 0

where Pj is the orthonormal projection onto Vj.

iv) The intersection of spaces is reduced to the null function. i.e.
T
j∈Z

Vj = {0}

i.e. lim
j→ −∞

kPjfkL2 = 0

13



v) There exist a function ϕ ∈ V0 such that the family {ϕ(x− k)} k∈Z , is a Riesz

basis of V0.

The function ϕ is called the scaling function for {Vj} . If {Vj} is an MRA of

L2(R) and if V0 is the closed subspace generated by the integer translations of a single

function ϕ, then we say that ϕ generates the MRA.

From condition (v) for every f ∈ V0, there exists a unique sequence {ck}∞k=−∞ ∈

l2(Z)
µ
l2(Z) := {xi}∞i=1 /

∞P
i=1

|xi|2 <∞
¶
such that f(x) =

P
k∈Z

ckϕ(x−k) with conver-

gence in L2(R) and there exist two positive constants A and B independent of f ∈ V0

such that A
P
k∈Z
|ck|2 5 kfk2 5 B

P
k∈Z
|ck|2, where 0 < A < B < ∞. In this case, we

have an MRA with a Riesz basis.

Theorem 1.31 Suppose {Vj} is an MRA with scaling function ϕ. Then for any

j ∈ Z, the set of functions
©
ϕj,k(x)

ª
k∈Z is an orthonormal basis for Vj.

Lemma 1.32 For all continuous functions f on R with compact support

(a) lim
j−→∞

kPjf − fkL2 = 0, and

(b) lim
j−→−∞

kPjfkL2 = 0.

Lemma 1.33 Let {Vj} be an MRA with scaling function ϕ. There exists a sequence

{hk} in l2(Z) such that

ϕ(x) =
X
k

hk2
1
2ϕ(2x− k) (1.20)

is in L2(R). Furthermore, bϕ(α) = m0(
α

2
)bϕ(α

2
), (1.21)

where m0(α) =
1√
2

P
k

hke
−2πikα and bϕ(α) is the Fourier Transform of ϕ(x).
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Definition 1.34 Let ϕ be a scaling function of an MRA {Vj} . The sequence {hk} in

l2(Z) is called the scaling filter associated with ϕ. The function m0(α) defined in the

above lemma, is called the auxiliary function associated with ϕ.

Theorem 1.35 Let {Vj} be an MRA with scaling function ϕ and scaling filter {hk}

which satisfies
P
k∈Z
|hk| <∞. Let gk = (−1)kh1−k be the wavelet filter, then the wavelet

ψ(x) can be written as

ψ(x) =
X
k∈Z

gk2
1
2ϕ(2x− k). (1.22)
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Chapter 2

The Haar System

2.1 Haar Wavelet

The Hungarian mathematician Alfred Haar first introduced the Haar function in 1909

in his Ph.D. thesis.

Definition 2.1 (Haar function) A function defined on the real line R as

ψ(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 for t ∈

£
0, 1

2

¢
−1 for t ∈

£
1
2
, 1
¢

0 otherwise

(2.1)

is known as the Haar function.

The Haar function ψ(t) is the simplest example of a Haar wavelet. The Haar

function ψ(t) is a wavelet because it satisfies all the conditions of wavelet. This

fundamental example has all the major features of the general wavelet theory. Haar

wavelet is discontinuous at t = 0, 1
2
, 1 and it is very well-localized in the time domain.
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Figure 2.1: The Haar function

2.2 The Dyadic Intervals

Definition 2.2 (Dyadic interval) For each j, k ∈ Z, the intervals Ij,k = [k2
−j, (k +

1)2−j) is known as a dyadic interval. The collection of all such intervals is called

dyadic subintervals of R.

Note that when ( j, k) 6= (j1, k1), then either

i) Ij,k ∩ Ij1,k1 = φ, or (2.2)

ii) Ij,k ⊆ Ij1,k1 or Ij1,k1 ⊆ Ij,k (2.3)

Definition 2.3 Given a dyadic interval at scale j, Ij,k = I lj,k ∪ Irj,k, where I lj,k and Irj,k
are dyadic intervals at scale j +1, to denote the left half and right half of the interval

Ij,k. In fact, I lj,k = Ij+1,2k and Irj,k = Ij+1,2k+1.
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,j kϕ  

k2-j (k+1)2-j
 

'2 jk −
( 1)2 jk ′−+  

',j kϕ

Figure 2.2: (a) Haar scaling function for j (b) Haar scaling function for j = j0, where
j0 > j.

2.3 The Haar System

2.3.1 The Haar Scaling Function

The Haar scaling function can be defined as

ϕ(t) = χ[0,1)(t) =

⎧⎪⎨⎪⎩ 1 if 0 5 t < 1

0, otherwise.

Definition 2.4 The collection {ϕj,k(t)}j,k∈Z is referred to as the system of Haar

scaling functions. The collection {ϕj,k(t)}k∈Z is referred to as the system of scale j

Haar scaling functions.

The system of Haar scaling functions satisfies the following properties:

i) ϕj,k(t) is supported on the interval Ij,k.

ii) For each j, k ∈ Z,
R
R
ϕj,k(t)dt = 2

− j
2 .

iii) For each j, k ∈ Z,
R
R

¯̄
ϕj,k(t)

¯̄2
dt = 1.
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,j kψ  

k2-j
 (k+1)2-j '2 jk −

'( 1)2 jk −+  

',j kψ

Figure 2.3: (a) Haar wavelet function for j (b) Haar wavelet function for j = j0, where
j0 > j.

2.3.2 The Haar Wavelet Function

Haar wavelet function (Haar wavelet) ψ can be written as ψ(t) = χ[0, 12)
(t)−χ[ 12 , 1)(t).

Definition 2.5 The collection {ψj,k(t)}j,k∈Z is referred to as the Haar wavelet system

on R. For each j ∈ Z, the collection {ψj,k(t)}k∈Z is referred to as the system of Haar

wavelet functions at scale j.

The Haar wavelet system satisfies the following properties:

i) ψj,k(t) is supported on Ij,k.

ii) ψj,k(t) = 2
j
2

³
χIj+1,2k(t)− χIj+1,2k+1(t)

´
iii)

R
R
ψj,k(t)dt =

R
Ij,k

ψj,k(t)dt = 0

iii)
R
R

¯̄
ψj,k(t)

¯̄2
dt =

R
Ij,k

¯̄
ψj,k(t)

¯̄2
dt = 1

19



2.4 Orthogonality of the Haar System

Theorem 2.6 The Haar system {ψj,k}j,k∈Z is an orthonormal system on R.

Proof. We have the inner product

­
ψj,k , ψj1,k1

®
=

∞Z
−∞

ψj,k(t)ψj1,k1(t)dt. (2.4)

We first show orthonormality within a given scale j. By the properties of dyadic

intervals, if k 6= k1 then ψj,k ψj,k1 ≡ 0, and thus

­
ψj,k , ψj,k1

®
= 0 (2.5)

If k = k1, then

­
ψj,k , ψj, k1

®
=

∞Z
−∞

ψj,k(t)ψj,k(t)dt =

Z
Ij,k

¯̄
ψj,k(t)

¯̄2
dt = 1 (2.6)

Next we show orthonormality between different scales. Let j 6= j1 and j < j1,then

­
ψj,k , ψj1,k1

®
=

∞Z
−∞

2
j
2ψ(2jt− k)2

j1
2 ψ(2j1t− k1)dt (2.7)

Let 2jt− k = u, so that t = (k+ u)2−j, then
­
ψj,k , ψj1,k1

®
=

∞Z
−∞

2
j1−j
2 ψ(u)ψ(2j1−ju+

2j1−jk − k1)du.

20



Let j1 − j = s and k1 − k2s = r, then

­
ψj,k , ψj1,k1

®
=

∞Z
−∞

2
s
2ψ(u)ψ(2su− r)du =

∞Z
−∞

2
s
2ψ(t)ψ(2st− r)dt (2.8)

According to properties (2.2) and (2.3), there are three possibilities:

(i) Ij,k ∩ Ij1,k1 = φ, so that
­
ψj,k , ψj1,k1

®
=

∞Z
−∞

ψj,k(t)ψj1,k1(t)dt = 0.

(ii) Ij,k ⊆ I lj1,k1 .In this case ψj1,k1 is the constant 1 on I lj1,k1 . Since Ij,k ⊂ Ij1,k1

it is also identically 1 on Ij,k . Since ψj,k(t) is supported on Ij,k, hence

­
ψj,k , ψj1,k1

®
=

∞Z
−∞

ψj,k(t)ψj1,k1(t)dt =

Z
Ij,k

ψj,k(t)dt = 0. (2.9)

(iii) Ij,k ⊆ Irj1,k1 ,in this case ψj1,k1(t) is the constant −1 on Irj1,k1 and on Ij,k. Thus

­
ψj,k , ψj1,k1

®
=

∞Z
−∞

ψj,k(t)ψj1,k1(t)dt =

Z
Ij,k

ψj,k(t)dt = 0 (2.10)

If j > j1,the above three possibilities will come again. So the Haar system is an

orthonormal system on R.

Theorem 2.7 [44] The Haar system on R is a complete orthonormal system on R.

Lemma 2.8 [44] Given j ∈ Z, and a function f continuous with compact support on

R,

Qjf(t) =
X
k∈Z

­
f, ψj,k

®
ψj,k(t), (2.11)

where the sum is finite and Qj is the detail operator defined in sec. (1.5.3).
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Definition 2.9 (Haar Wavelet series and wavelet coefficient) If f is defined on

[0, 1], then it has an expansion in terms of Haar functions as follows. Given any

integer J ≥ 0,

f(t) =
2J−1X
k=0

­
f, ϕJ,k

®
ϕJ,k(t) +

∞X
j=J

2j−1X
k=0

­
f, ψj,k

®
ψj,k(t)

=
2J−1X
k=0

cJ,kϕJ,k(t) +
∞X
j=J

2j−1X
k=0

dj,kψj,k(t), (2.12)

the series (2.12) is known as the Haar wavelet series for f . dj,k and cJ,k are known

as the Haar wavelet coefficients and the Haar scaling coefficients respectively.

Example 2.10 ( Haar wavelet series)

Consider a simple function

f(t) =

⎧⎪⎨⎪⎩ t2, 0 ≤ t < 1

0, otherwise
.

Let the starting scale be J = 0 . So the scaling coefficient c0,0 =
1R
0

t2ϕ0,0(t)dt =

1R
0

t2dt = 1
3
and the wavelet coefficients

d0,0 =

1Z
0

t2ψ0,0(t)dt =

0.5Z
0

t2dt−
1Z

0.5

t2dt = −1
4

d1,0 =

1Z
0

t2ψ1,0(t)dt =

0.25Z
0

t2
√
2dt−

0.5Z
0.25

t2
√
2dt = −

√
2

32
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Figure 2.4: A wavelet series expansion of f(t) = t2 using Haar wavelets.

d1,1 =

1Z
0

t2ψ1,1(t)dt =

0.75Z
0.5

t2
√
2dt−

1Z
0.75

t2
√
2dt = −3

√
2

32

and so on.

Therefore

f(t) = t2 =
1

3
ϕ0,0(t)| {z }
V0

+ [−1
4
ψ0,0(t)]| {z }
W0| {z }

V1=V0⊕W0

+ [−
√
2

32
ψ1,0(t)−

3
√
2

32
ψ1,1(t)]| {z }

W1

| {z }
V2=V1⊕W1=V0⊕W0⊕W1

+ ...

where Vj and Wj, j > 0 are the orthogonal subspaces of L2[0, 1] and ⊕ is the direct

sum.
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2.5 Comparison of Haar series with Fourier series

Let Ij,k = [k2−j, (k+1)2−j) be the dyadic interval. The function ψj,k vanishes outside

the interval Ij,k. The length of the interval Ij,k is 2−j. For large j , the length of Ij,k

is small. This implies that the function ψj,k is well localized in time (or, depending

on the context, well localized in space). This property is to be contrasted with the

trigonometric basis {e2πint}n∈Z . Each element of the trigonometric basis has absolute

value 1 for every t ∈ [0, 1) and so it never vanishes for any t.

For good time localization of the Haar basis, the function f vanishes outside a small

subinterval (a, b) of [0, 1). So most of its Haar coefficients
­
f, ψj,k

®
are identically 0

out side the subinterval (a, b). But in the case of Fourier series, even if a function f

is supported inside a small subinterval (a, b) of [0, 1), most of its Fourier coefficients

would be nonzero. Of course, in both cases, we are dealing with infinite series with

infinitely many coefficients.

In the case of the Haar series, let us fix an integer j ≥ 0 and note that there are

2j functions ψj,k in the Haar system on [0, 1). For a given function f supported in an

interval (a, b), then for this j, the Haar coefficients
­
f, ψj,k

®
= 0 if t /∈ (a, b),

that is, either (k + 1)2−j ≤ a or k2−j ≥ b,

that is, either k ≤ 2ja− 1 or k ≥ 2jb

and
­
f, ψj,k

®
6= 0 if t ∈ (a, b) i.e. 2ja− 1 < k < 2jb.

The number of integers k satisfying the above inequality, which we will denote by

Nj, is

2j(b− a) < Nj < 2
j(b− a) + 1.

Hence,
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b− a <
Nj

2j
< (b− a) + 2−j.

therefore lim
j→∞

Nj

2j
= b− a.

Thus, we conclude that the fraction of possibly nonzero Haar coefficients for a

function vanishing outside an interval is approximately proportional to the length of

that interval.

2.5.1 Behavior of Haar Coefficients Near Jump Discontinu-

ities

Suppose that f(t) is a function defined on [0, 1], with a jump discontinuity at t0 ∈ (0, 1)

and continuous at all other points in [0, 1]. Here we analyze the behavior of Haar

coefficients when t0 is inside or outside the dyadic interval Ij,k. In particular, we can

find the location of a jump discontinuity just by examining the absolute value of the

Haar coefficients.

For simplicity, let us assume that f(t) is C2 on [0, t0] and [t0, 1]. This means that

both f 0 and f 00 exist, are continuous functions, and hence are bounded on each of

these intervals. For fixed j ≥ 0 and 0 ≤ k ≤ 2j − 1, and let tj,k be the mid point

of the interval Ij,k; that is, tj,k = (k +
1
2
)2−j. There are now two possibilities, either

t0 ∈ Ij,k or t0 /∈ Ij,k.

Case 1: If t0 /∈ Ij,k, then expanding f(t) about tj,k by Taylor’s formula

f(t) = f(tj,k) + f 0(tj,k)(t− tj,k) +
1

2
f 00(ξj,k)(t− tj,k)

2,
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where ξj,k ∈ Ij,k. Now using the fact that
R
ψj,k(t)dt = 0,

­
f, ψj,k

®
=

Z
Ij,k

f(t)ψj,k(t)dt

= f(tj,k)

Z
Ij,k

ψj,k(t)dt+ f 0(tj,k)

Z
Ij,k

ψj,k(t)(t− tj,k)dt

+
1

2

Z
Ij,k

f 00(ξj,k)(t− tj,k)
2ψj,k(t)dt

= f 0(tj,k)

Z
Ij,k

tψj,k(t)dt+ rj,k(t), (2.13)

where |rj,k(t)| = 1
2

¯̄̄̄
¯ RIj,k f 00(ξj,k)(t− tj,k)

2ψj,k(t)dt

¯̄̄̄
¯ .

Now

Z
Ij,k

tψj,k(t)dt =

(k+ 1
2
)2−jZ

k2−j

2
j
2 tdt−

(k+1)2−jZ
(k+ 1

2
)2−j

2
j
2 tdt

= 2
j
2

(∙
t2

2

¸(k+ 1
2
)2−j

k2−j
−
∙
t2

2

¸(k+1)2−j
(k+ 1

2
)2−j

)

= 2
j
2 .2−2j.

1

2

½
(k +

1

2
)2 − k2 − (k + 1)2 + (k + 1

2
)2
¾

= −1
4
2−

3j
2 . (2.14)

From (2.13) and (2.14)

­
f, ψj,k

®
= −1

4
2−

3j
2 f 0(tj,k) + rj,k(t).
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Now

|rj,k(t)| ≤
1

2
max
t∈Ij,k

|f 00(t)|
Z
Ij,k

(t− tj,k)
2
¯̄
ψj,k(t)

¯̄
dt,

≤ 2
j
2

2
max
t∈Ij,k

|f 00(t)|
(k+1)2−jZ
k2−j

(t− tj,k)
2dt,

=
2
j
2

2
.
2−3j

3.4
.max
t∈Ij,k

|f 00(t)|

=
1

24
2−

5j
2 .max

t∈Ij,k
|f 00(t)| .

For large j, 2−
5j
2 is very small compared with 2−

3j
2 . So

¯̄­
f, ψj,k

®¯̄
≈ 1
4
2−

3j
2 |f 0(tj,k)| = O(2−

3j
2 ). (2.15)

Case 2: If t0 ∈ Ij, k, then either it is in I lj, k or in Irj, k. We assume that t0 ∈ I lj, k,

and the other case is similar. Now expanding f(t) about t0 by Taylor’s formula, we

have

f(t) = f(t−0 ) + f 0(ξ−)(t− t0), t ∈ [0, t0), ξ− ∈ [t, t0]

f(t) = f(t+0 ) + f 0(ξ+)(t− t0), t ∈ [t0, 1), ξ+ ∈ [t0, t].
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Therefore

­
f, ψj,k

®
=

Z
Ij,k

f(t)ψj,k(t)dt

= 2
j
2

t0Z
k2−j

f(t−0 )dt+ 2
j
2

(k+ 1
2
)2−jZ

t0

f(t+0 )dt− 2
j
2

(k+1)2−jZ
(k+ 1

2
)2−j

f(t+0 )dt+ εj,k

= 2
j
2 (t0 − k2−j){f(t−0 )− f(t+0 )}+ εj,k, (2.16)

where

εj,k =

t0Z
k2−j

f 0(ξ−)(t− t0)ψj,kdt+

(k+1)2−jZ
t0

f 0(ξ+)(t− t0)ψj,kdt.

Thus

|εj,k| ≤ max
t∈Ij,k\{t0}

|f 0(t)|
Z
Ij,k

|t− t0|
¯̄
ψj,k(t)

¯̄
dt

≤ 2
j
2 max
t∈Ij,k\{t0}

|f 0(t)|
Z
Ij,k

|t− t0| dt

≤ 2
j
2 max
t∈Ij,k\{t0}

|f 0(t)| 1
4
2−2j

=
1

4
max

t∈Ij,k\{t0}
|f 0(t)| .2− 3j

2 .

For large j, 2−
3j
2 is very small compared with 2−

j
2 . So

­
f, ψj,k

®
≈ 2 j2

¯̄
t0 − k2−j

¯̄ ¯̄
f(t−0 )− f(t+0 )

¯̄
.

The quantity |t0 − k2−j| is very small if t0 is close to the left end point of I lj,k and can

even be zero. However, we can expect that in most cases, t0 will be in the middle of
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I lj,k so that |t0 − k2−j| ≈ 1
4
· 2−j. Thus, for large j,

¯̄­
f, ψj,k

®¯̄
≈ 1
4
2−

j
2

¯̄
f(t−0 )− f(t+0 )

¯̄
= O(2−

j
2 ). (2.17)

Comparing (2.15) with (2.17), we see that the decay of
¯̄­
f, ψj,k

®¯̄
for large j is con-

siderably slower if t0 ∈ Ij,k than if t0 /∈ Ij,k. That is, large coefficients in the Haar

expansion of a function f that persist for all scales suggest the presence of a jump

discontinuity in the interval Ij,k corresponding to the large coefficients.

2.5.2 Haar Coefficients and Global Smoothness

We know that the global smoothness of a function f defined on [0,1] is reflected in the

decay of its Fourier coefficients. Specifically, if f is periodic and Ck on R, then there

exists a constant M depending on f such that for all n ∈ Z, |cn| ≤ M |n|−k, where

cn are the Fourier coefficients of f. This can be regarded as a statement about the

frequency content of smooth functions, namely that smoother functions tend to have

smaller high frequency components than do functions that are not smooth.

However, no such estimate holds for the Haar series. To see this, simply note that

the function f(t) = eit has period 1 and is C∞ on R with all of its derivatives bounded

by 1. But have ¯̄­
f, ψj,k

®¯̄
= 2−

j
2
sin2((1

4
)2−j)

((1
4
)2−j)

,

and since sin2((1
4
)2−j) ≈ (1

4
)2−j for large j, this means that

¯̄­
f, ψj,k

®¯̄
≈ (1

4
)2−

3j
2 for

large j. But this is the same rate of decay observed for functions continuous but with

a discontinuous first derivative. Hence, global smoothness of a function does not affect

the rate of decay of its Haar coefficients.
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Chapter 3

Approximation by Wavelets in

Different Spaces

3.1 Approximation space

If A(u) and B(u) are functions of a set u of parameters, we shall often use the notation

A(u) . B(u), to express that there exists a constant c > 0 such that A(u) ≤ cB(u)

independent of the parameters. We use A(u) ∼ B(u) to express that A(u) . B(u)

and B(u) . A(u). Important problems of approximation theory have in common the

following general setting: Let (Sn)n>0 be a family of sub-spaces of a normed space X,

and for f ∈ X, we consider the best approximation error:

En(f)X = dist(f, Sn)X = inf
g∈Sn

kf − gkX . (3.1)

Typically, n represents the number of parameters which are needed to describe an

element in Sn and in most cases of interest, En(f) goes to zero as this number tends
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to infinity. If in addition En(f) . n−α for some α > 0, we say that f is approximated

at rate α.

Given such a setting, the central problem of approximation theory is to charac-

terize by some analytic (typically smoothness) condition those functions f which are

approximated at some prescribed rate α > 0.

3.2 Approximation by Haar wavelets in Different

Spaces

3.2.1 L2(R) Spaces

Theorem 3.1 [3] Assume that f : [0, 1] −→ R is continuous. Then the Haar wavelet

series of f is

f(t) =
­
f, χ[0,1)

®
χ[0,1)(t) +

∞X
j=0

2j−1X
k=0

dj,kψj,k(t) (3.2)

where dj,k =
­
f, ψj,k

®
are the wavelet coefficients.

For computation we need a finite sum. Let N = 2J , J ∈ N. This means that

we consider j = 0, 1, 2, 3, ..., J − 1. In the case of Haar wavelet we have seen in

sec. (2.5.1) for each j only one of the coefficients in (3.2) is non zero and its size is

dj,k =
­
f, ψj,k

®
∼ 2− j

2 .

Theorem 3.2 Let f be continuous in L2(R) and the partial sum of the Haar wavelet

series is

g =
­
f, χ[0,1)

®
χ[0,1)(t) +

J−1X
j=0

2j−1X
k=0

dj,kψj,k(t),

for fixed j = J ∈ N. Then the error of the approximation in L2(R) is O(2−
J
2 ).
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Proof. The error of the approximation in L2(R) is

kf − gkL2(R) =

°°°°°°f − ­f, χ[0,1)®χ[0,1)(t)−
J−1X
j=0

2j−1X
k=0

dj,kψj,k(t)

°°°°°°
L2

=

°°°°°°
∞X
j=J

2j−1X
k=0

dj,kψj,k(t)

°°°°°°
L2

=

⎛⎝ ∞X
j=J

2j−1X
k=0

|dj,k|2
⎞⎠ 1

2

∼

Ã ∞X
j=J

2−j

!1
2

∼ 2−
J
2 ∼

1√
N
= O(2−

J
2 ) (3.3)

3.2.2 Lp(R) Spaces

Theorem 3.3 If f ∈ Lp(R) and the partial sum of the Haar wavelet series is

g =
J−1X
j=0

2j−1X
k=0

­
f, ψj,k

®
ψj,k(t) =

J−1X
j=0

2j−1X
k=0

dj,kψj,k(t),

for fixed j = J ∈ N, then the error of the approximation in Lp(R) is O(2−
J
2 ).
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Proof. The error of the approximation in Lp(R) is

kf − gkLp(R) =

°°°°°°f −
J−1X
j=0

2j−1X
k=0

dj,kψj,k(t)

°°°°°°
Lp

=

°°°°°°
∞X
j=J

2j−1X
k=0

dj,kψj,k(t)

°°°°°°
Lp

=

⎛⎝ ∞X
j=J

2j−1X
k=0

|dj,k|p
⎞⎠ 1

p

∼

Ã ∞X
j=J

2−
jp
2

! 1
p

∼
³
2−

J
2

´
= O(2−

J
2 ) (3.4)

3.2.3 Lip(α,Lp) Spaces

Theorem 3.4 If f ∈ Lip(α,Lp), 0 < α 6 1, 1 < p 6∞, and

g(t) =
J−1X
j=0

2j−1X
k=0

dj,kψj,k(t)

is the Haar wavelet series of f for some J ∈ N, then the error of the approximation

in Lip(α,Lp) is O(2−Jα).

Proof. We have from [17] if f ∈ Lip(α,Lp), 0 < α 6 1 and 1 < p 6∞ then

dist(f, Sn)p ≤ inf
g∈Sn

kf − gkp

≤ Cp |f |Lip(α, Lp) δ
α, where δ = max

0≤k<N
|tk+1 − tk| (3.5)
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According to (3.5)here the error of the approximation in Lip(α,Lp) is

kf − gkLp =

°°°°°°f −
J−1X
j=0

2j−1X
k=0

dj,kψj,k(t)

°°°°°°
Lp

≤ Cp |f |Lip(α, Lp) (2
−J)α

6 M(2−J)α = O(2−Jα), (3.6)

where constant M > 0 and Cp depending at most on p.

3.2.4 Sobolev Spaces Hm(R)

Theorem 3.5 If f ∈ Hm(R) and g(t) =
J−1P
j=0

N−1P
k=0

dj,kψj,k(t) is the finite Haar wavelet

series of f for some J ∈ N, then the error of the approximation is O(2−mN
2 ), where

N = 2J .

Proof. The error of the approximation is

kf − gkL2(R) =

Ã ∞X
j=J

N−1X
k=0

|dj,k|2
! 1

2

6
Ã ∞X

j=J

N−1X
k=0

2mk

2mN
|dj,k|2

!1
2

6
Ã
2−mN

∞X
j=J

N−1X
k=0

2mk |dj,k|2
! 1

2

. (3.7)

From the properties of Besov space (in sec.1.4) we have,

kfkHm(L2(R)) '
Ã ∞X

j=J

N−1X
k=0

2mk |dj,k|2
! 1

2

.
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Therefore (3.7) implies that

kf − gkL2(R) 6 2
−mN

2 kfkHm(L2(R)) = O(2−
mN
2 ).

Hence the proof.

3.2.5 Besov spaces Bα,r
q (Lp(R))

Theorem 3.6 If f ∈ Bα
q (Lq(R)), α > 0, 0 < p 6 ∞, 0 < q 6 ∞ and g(t) =

J−1P
j=0

N−1P
k=0

dj,kψj,k(t) is the finite Haar wavelet series of f, then the error of the approxi-

mation is O(2−
αN
q ), where N = 2J .

Proof. The error of the approximation is

kf − gkLq(R) =

Ã ∞X
j=J

N−1X
k=0

|dj,k|q
! 1

q

6
Ã ∞X

j=J

N−1X
k=0

2αk

2αN
|dj,k|q

! 1
q

6 2−
αN
q

Ã ∞X
j=J

N−1X
k=0

2αk |dj,k|q
!1

q

. (3.8)

From the properties of Besov space (in sec.1.4) we have,

kfkBα
q (Lq(R))

'
Ã ∞X

j=J

N−1X
k=0

2αk |dj,k|q
!1

q

.

Therefore (3.8) implies that

kf − gkLq(R) 6 2
−αN

q kfkBα
q (Lq(R))

= O(2−
αN
q ),

where 1
q
= α

2
+ 1

2
. Hence the proof.
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Conclusion 3.7 The above theorems show that the approximation order will improve

if the smoothness of the approximation spaces is improved.

3.3 Approximation by Daubechies wavelets

I. Daubechies ([9, 12]) has constructed the family of orthonormal wavelets with com-

pact support. This family has many interesting properties and it can be constructed

to have a given number of derivatives and to have a given number of vanishing

moments. For an arbitrary integer N, an orthonormal basis for L2(R) of the form

2
j
2ψ(2jx− k), j, k ∈ Z has the following properties:

(i) The support of ψN is contained in [−N, N ].

(ii)
∞R
−∞

ψN(x)dx =
∞R
−∞

xψN(x)dx = ... =
∞R
−∞

xNψN(x)dx = 0.

In fact, we have the following theorem:

Theorem 3.8 [12] There exists a constant K such that for each N = 2, 3, 4,... , there

exists an MRA {Vj} with the scaling function ϕ and an associated wavelet ψ such that

(i) ϕ and ψ belong to CN [−KN, KN ].

(ii) ϕ and ψ are compactly supported and both supp ϕ and supp ψ are contained

in [−KN, KN ] .

(iii)
∞R
−∞

ψN(x)dx =
∞R
−∞

xψN(x)dx = ... =
∞R
−∞

xNψN(x)dx = 0.

Let Pj denote the orthogonal projection of L2(R) onto Vj and Qj denote the

orthogonal projection of L2(R) ontoWj, whereWj, j ∈ Z are the orthogonal subspace

of L2(R). We know that L2(R) =
L
j∈Z

Wj.

For every integer N ≥ 1, Daubechies constructed a pair of functions ϕ and ψ that

are, respectively, χ[0,1) and the Haar function for N = 1. She also generalize these
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functions for N > 1. The construction takes the following steps.

Step 1: Construct a finite sequence h0, h1, h2, ..., h2N−1 satisfying the conditions

2N−1X
k=0

hkhk+2m = δm for every integer m, (3.9)

2N−1X
k=0

hk =
√
2 (3.10)

2N−1X
k=0

gkk
m = 0, (3.11)

whenever 0 ≤ m ≤ N − 1, where gk = (−1)kh1−k.

It can be observed that (3.9) and (3.10) imply (3.11) for m = 0.

Step2: Construct the trigonometric polynomial m0(y) =
√
2
2N−1P
k=0

hke
iky

Step3: Construct the scaling function ϕ so that its Fourier transform bϕ satisfies
bϕ(y) = µ 1√

2π

¶ 2N−1Y
k≥1

m0(2
−ky).

Step4: Construct the wavelet ψ by ψ(x) =
2N−1P
k=0

gkϕ(2x− k)

For N > 1, we have the following:

1. ϕn,k =
P
j∈Z

hj−2kϕn+1,j and ψn,k =
P
j∈Z

gj−2kϕn+1,j ,

2. supp ϕn,k = [k2
−n, (k + 2N − 1)2−n],

supp ψn,k = [(k + 1−N)2−n, (k +N)2−n],

3.
R
ψj,k(x)x

mdx = 0 for all integer j and k and any integer 0 ≤ m ≤ N − 1 and

4. ϕn,k and ψn,k ∈ Cλ(n) = Lipλ(n) with exponent λ(n), where λ(2) = 2− log2(1+
√
3) ' 0.5500, λ(3) ' 1.087833, λ(4) ' 1.617926 and λ(N) ' 0.3485N for large N.

37



The following theorem is the Jackson type theorem for Daubechies wavelets:

Theorem 3.9 [41] If f ∈ C∞0 (R), ψ ∈ Hm(R), then there exists a constant K > 0

such that

kf − Pj(f)kHm 6 K2−j(N−m) = O
¡
2−j(N−m)

¢
where Pj(f) denotes the orthogonal projection of L2(R) on Vj and N is the order of

Daubechies wavelet ψ.

Proof. Let f ∈ CN(R) and ϕ and ψ ∈ Hm(R), 0 < m < N . Then the approxi-

mation error is kf − Pj(f)kHm 6
P
l>j
kPl+1f − PlfkHm

Now kPl+1f − PlfkHm 6 kf − PlfkHm + kf − Pl+1fkHm (3.12)

By using inverse estimate [5], kf − PjfkHm . 2jm kfkLp . So (3.12) becomes

kPl+1f − PlfkHm 6 2jm kfkLp + 2
jm kfkLp (3.13)

Again by using the direct estimate [5], kf − PjfkLp . 2
−jN |f |Hm . So (3.13) becomes

kPl+1f − PlfkHm 6 2jm kfkLp + 2
jm kfkLp

. 2−jN2jm |f |Hm + 2
−jN2jm |f |Hm

= 2−j(N−m) |f |Hm . K2−j(N−m) = O(2−j(N−m)).

Therefore kf − Pj(f)kHm 6 K2−j(N−m) = O
¡
2−j(N−m)

¢
. Hence the proof.
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3.4 Approximation by Coifman wavelets

Coifman wavelets are similar to Daubechies wavelets in that they have maximal num-

ber of vanishing moments; however in Coifman wavelets, the vanishing moments are

equally distributed between the scaling function and the wavelet. These are very

useful for numerical solutions of partial differential equations as they have very good

order of approximation ( see [38]).

Definition 3.10 (Coifman wavelets or Coiflets). An orthonormal wavelet system

with compact support is called a Coifman wavelet system of degree N if the moments

of the associated scaling function ϕ and wavelet ψ satisfy the conditions

Mom0(ϕ) =

Z
ϕ(x)dx = 1 if l = 0

Moml(ϕ) =

Z
xlϕ(x)dx = 0 if l = 1, 2, 3, ..., N

Moml(ψ) =

Z
xlψ(x)dx = 0 if l = 0, 1, 2, ..., N.

It may be observed that those conditions are equivalent to the following conditions:

X
k∈Z
(2k)lh2k =

X
k∈Z
(2k + 1)lh2k+1 = 0, for l = 1, 2, 3, ..., N

X
k∈Z

h2k =
X
k∈Z

h2k+1 = 1,

where hk is the scaling filter of ϕ.

Theorem 3.11 [41] (Tain and Wells Jr.,1997). For an orthogonal Coifman wavelet

system of degree N with scaling function ϕ, let {hk} be a finite scaling filter of ϕ in
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l2 (Z). For f ∈ CN(R) having compact support, define

Sjf(x) = 2−
j
2

X
k∈Z

f
¡
k2−j

¢
ϕJ,k(x), ∀ j ∈ Z

then kf − SjfkL2 ≤ C2−jN = O(2−jN),

where C depends only on f and ϕ.

3.5 Jackson and Bernstein Theorems for Wavelets

Jackson in 1911 has given some theorems relating En(f) to the smoothness properties

of given function f. From the Jackson theorem, if f ∈ LipM(α) with 0 < α ≤ 1

then En(f) must converge to zero with at least the rapidity of n−α. The converse of

Jackson theorem is Bernstein theorem. If 0 < α < 1 and {n−αEn(f)} is bounded,

then f ∈ LipM(α).

Suppose we have an MRA with a C1 scaling function ϕ such that

|ϕ(x)| ≤ c(1 + |x|)−A (3.14)

and

|ϕ0(x)| ≤ c(1 + |x|)−A for some A > 3. (3.15)

According to assumption (3.14) we see that the series
P
k∈Z

akϕ(x−k) is absolutely and

almost uniformly convergent for all sequence {ak}k∈Z satisfying |ak| ≤ c + |k|β with

β < A− 1.

Theorem 3.12 [47] (Jackson’s inequality) If f has a p-modulus of continuity and Pj
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(1.18) is the projection onto Vj,

Pjf(x) =

∞Z
−∞

f(t)2jϕ(2jt, 2jx)dt,

then

kf − PjfkLp ≤ c ωp(f ; 2
−j), (3.16)

for all j ∈ Z, where c is a constant.

Remark 3.13 In this theorem we do not assume that f ∈ Lp(R).

Theorem 3.14 [47] (Bernstein’s inequality) For each p, 1 ≤ p ≤ ∞, there exists a

constant c such that for f ∈ Vj we have

ωp(f ; t) ≤ cmin(2jt, 1) kfkp . (3.17)

Theorem 3.15 [47] Suppose we have an MRA with a scaling function ϕ satisfying

(3.14) and (3.15) and an associated wavelet ψ also satisfying

|ψ(x)| ≤ c(1 + |x|)−A. (3.18)

Let Qj be the projection defined by (2.11) . For 0 < α < 1 and 1 ≤ p, s ≤ ∞ and any
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function f ∈ Vj such that kfkBα,s
p

<∞ and all the following conditions hold:

ÃX
j∈Z
[2jαspj(f)]

s

! 1
s

<∞, (3.19)

ÃX
j∈Z
[2jα kf − Pjfkp]

s

! 1
s

<∞; (3.20)

ÃX
j∈Z
[2jα kQjfkp]

s

!1
s

<∞; (3.21)

⎛⎝X
j∈Z

⎡⎣2jαÃX
k∈Z

2j(
1
2
− 1
p
)p
¯̄­
f, ψj,k

®¯̄p! 1
p

⎤⎦s⎞⎠
1
s

<∞; (3.22)

where spj(f) = inf
n
kf − gkp : g ∈ Vj

o
.

Conversely, if f is a function such that

ωp(Pjf ; 1) −→ 0 as j −→ −∞, (3.23)

and any one of (3.19)− (3.22) holds, then kfkBα,s
p

<∞.
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Chapter 4

Walsh System, Wavelet Packets,

Walsh-type Wavelet Packets and

their Approximation

4.1 Walsh system

We present two equivalent definitions of the Walsh system [30, 40].

Definition 4.1 (Rademacher function) Let R0 be the 1-periodic function (i.e. R0(x+

1) = R0(x)) whose value on [0, 1) is

R0(x) = χ[0, 1
2
)(x)− χ

[ 12 , 1)
(x).

Define a sequence of functions R1, R2, ... Rk, ... by

Rk(x) = R0(2
kx), where k = 1, 2, 3, ... (4.1)
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The functions Rk, k = 1, 2, 3, ... are called the Rademacher’s functions. Rademacher

functions can be used to construct Walsh function.

Definition 4.2 (Walsh system) Let Walsh function Wn be the 1-periodic function.

The Walsh system {Wn}∞n=0 is defined in terms of the Rademacher functions as fol-

lows: For n = 0, W0(x) = χ[0, 1)(x) = 1, and other values of n,

n =

jnX
k=1

ak2
k−1 = a1 + a22

1 + a32
2 + ....+ ajn2

jn−1, (4.2)

where ak is 0 or 1, k = 1, 2, ..., jn , we define

Wn(x) =

jnY
k=1

(Rk (x))
ak

= (R1 (x))
a1 (R2 (x))

a2 ... (Rjn (x))
ajn , n = 1, 2, ... (4.3)

The set {Wn}∞n=0 is known as Walsh system.

Alternative definition of Walsh system:

The Walsh system {Wn}∞n=0 is defined recursively on R by letting

W0(x) = χ[0, 1)(x) = 1 and (4.4)

W2n(x) = Wn(2x) +Wn(2x+ 1), n = 1, 2, 3, ... (4.5)

W2n+1(x) = Wn(2x)−Wn(2x+ 1), n = 0, 1, 2, ... (4.6)

The family {Wn(x)}∞n=0 is an orthogonal system of L2(R) and is called the Walsh

system. The Walsh system is the basic wavelet packet associated with the Haar MRA.

Examples of some walsh functions:
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Figure 4.1: Walsh Functions

W1(x) =W0(2x)−W0(2x+ 1) = χ[0, 1)(2x)− χ[1, 2)(2x)

= χ[0, 1
2)
(x)− χ[ 12 , 1)

(x)

W2(x) =W1(2x) +W1(2x+ 1)

= χ[0, 1
4)
(x)− χ[ 14 ,

1
2)
(x) + χ[ 12 ,

3
4)
(x)− χ[ 34 , 1)

(x)

W3(x) =W1(2x)−W1(2x+ 1)

= χ[0, 1
2)
(2x)− χ[ 12 , 1)

(2x)− χ[1, 3
2)
(2x+ 1)− χ[ 32 , 2)

(2x+ 1)

= χ[0, 1
4)
(x)− χ[ 14 ,

1
2)
(x)− χ[ 12 ,

3
4)
(x) + χ[ 34 , 1)

(x)

W4(x) =W2(2x) +W2(2x+ 1)

= χ[0, 1
8)
(x)− χ[ 18 ,

1
4)
(x) + χ[ 14 ,

3
8)
(x)− χ[ 38 ,

1
2)
(x) + χ[ 12 ,

5
8)
(x)−

χ[ 58 ,
3
4)
(x) + χ[ 34 ,

7
8)
(x)− χ[ 78 , 1)

(x)

and so on.

Theorem 4.3 [30] The Walsh system {Wn}∞n=0 is a complete orthonormal system in

L2[R).

45



Let f ∈ L2[0, 1], then
∞P
n=0

hf,WniWn(x) =
∞P
n=0

cnWn(x) is called the Walsh series

for f. Where cn = hf,Wni , n = 1, 2, 3, ... are called the Walsh coefficients.

Theorem 4.4 [40] If f is continuous on [0, 1], then the Walsh series converges to f

a.e. in [0, 1].

4.2 Approximation by Walsh Polynomial

Definition 4.5 (Walsh Polynomials) A linear combination of Walsh functions is

known as Walsh polynomial.

Definition 4.6 [40] (Dyadic Group G) Let the dyadic group G be the set of all se-

quences {xn} , xn = 0, 1 for n = 1, 2, 3, ....

For each n ∈ N, let

Pn := {f ∈ C(G) : supp(f) ⊆ [0, n)} ,

where C(G) is the continuous function defined in G. Thus Pn is the collection of Walsh

polynomials of order less than n.

Let (X, k·kX) be a Banach space over the dyadic group G. Given an operator T

on X we shall denote its operator norm by

kTkX := sup
f∈X,kfkX≤1

kTfkX

For each Pn is an n-dimensional subspace of X and that the partial sum operator

Sn is a projection of X onto Pn, let Sng = P for all g ∈ Pn, and Snf ∈ Pn for all

f ∈ X.
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Theorem 4.7 [39] Let n ∈ N and Tn : X −→ Pn be a projection. Then the operator

norms of Sn and Tn are related by kSnkX ≤ kTnkX .

To measure of the rate of approximation of an f ∈ X by polynomials in Pn, define

by (3.1) .

Since each Pn is a finite dimensional subspace of X, it is clear that for every f ∈ X

there is at least one polynomial gn ∈ Pn such that

En(f,X) := kf − gnkX .

i.e., the infimum above is attained.

Such a polynomial gn will be called a best approximation of f in Pn. It need not

be unique.

If f ∈ L2(G), then En(f, L2(G)) := inf
g∈Pn

kf − gkL2(G)
For each n ∈ N and f ∈ X it is clear that

kf − SnfkX ≤ kf − gnkX + kSn(f − gn)kX ,

for any polynomial gn ∈ Pn. Therefore,

kf − SnfkX ≤ (1 + kSnkX)En(f,X). (4.7)

A sharp estimate can be obtained for X := Lp(G), 1 < p < ∞. Indeed for each

such p there exists a constant Cp (depending only on p) such that

kSnkp ≤ Cp, (n ∈ N).
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Consequently, (4.7) implies

kf − Snfkp ≤ (1 + Cp)En(f, Lp(G)), (4.8)

for f ∈ Lp(G), n ∈ N, and 1 < p <∞. Thus for a given f ∈ Lp(G), 1 < p <∞, the

rate of approximation by Walsh polynomial of order n is no better than that of the

Walsh -Fourier partial sum Snf.

Theorem 4.8 [39] Let f ∈ X, α > 0 and for given j ∈ Z, let N = 2j. Then the

following conditions are equivalent :

i) f ∈ LipM(α, X),

ii) kf − S2jkp = O(2−jα) as j −→∞,

iii) E2j(f,X) = O(2−αj) as j −→∞,

iii) EN(f,X) = O(N−α) as N −→∞,

iv) ω(f, 2−j)X = O(2−jα) as j −→∞.

Theorem 4.9 [39] Suppose f ∈ Lip(α, X) and α > 0. Then

kEnf − fkX =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
O(n−α), 0 < α < 1

O
¡
logn
n

¢
, α = 1

O
¡
1
n

¢
, α > 1.

as n −→∞.

4.3 Wavelet Packets

From the previous chapters we know that orthonormal wavelet bases have a frequency

localization which is proportional to 2j at the resolution level j. The wavelet bases

have poor frequency localization when j is large. For some applications, specially
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for speech signal processing, it is more convenient to have orthonormal bases with

better frequency localization. This will be provided by the wavelet packets, which are

obtained from wavelets associated with MRAs. Wavelet packets are the generalization

of wavelets. A family of Walsh functions is an example of wavelet packets.

Definition 4.10 (Wavelet packets) Let h = {hk : k ∈ Z} and g = {gk : k ∈ Z} be

two sequences in l2(Z). Fix the initial functions w0, w1 ∈ L2(R) and for each integer

n > 0, define

w2n(x) =
X
k�Z

hkwn(2x− k) = Hwn(x) (4.9)

w2n+1(x) =
X
k�Z

gkwn(2x− k) = Gwn(x). (4.10)

The collection of functions wn(x−k) form an orthogonal basis of L2(R) if ϕ = w0 and

ψ = w1 are the scaling function and mother wavelet, respectively, of an orthogonal

multiresolution analysis of L2(R). The operators H, G are defined by sequences h, g

satisfying the following conditions for all integers n and m:

X
k�Z

hkh(k+2n) = 2δ(n), (4.11)X
k�Z

gkg(k+2n) = 2δ(n), (4.12)X
k�Z

gkh(k+2n) = 0, (4.13)X
k�Z

[h(n+2k)h(m+2k) + g(n+2k)g(m+2k)] = 2δ(n−m), (4.14)

where δ(n) =

⎧⎪⎨⎪⎩ 1, for n = 0,

0, for n 6= 0.
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Figure 4.2: Example of a wavelet packet

The collection of functions {wn(x− k)}n≥0,k∈Z defined by (4.9) and (4.10) is called a

wavelet packet. Sequences h, g satisfying (4.11)-(4.13) are called orthogonal conjugate

quadrature filters (orthogonal CQF).

Theorem 4.11 [30] The family of wavelet packets {wn(x− k)}n≥0,k∈Z is an ortho-

normal basis of L2(R), ∀ n > 0.

For a scaling function ϕ with associated wavelet ψ we have constructed the corre-

sponding wavelet packets given by (4.9) and (4.10). The set

n
2
j
2wn(2

jx− k) : j ∈ Z, n = 0, 1, 2, ...
o

(4.15)

is overcomplete in L2(R). In fact, this system (4.15) contains the wavelet basis

n
2
j
2ψ(2jx− k) : j, k ∈ Z

o
(choose n = 1),
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and the wavelet packets {wn(x− k) : k ∈ Z, n = 0, 1, 2, ...}(choose j = 0).

Advantage of wavelet packets:

1. Wavelet interpreted two parameters scale and frequency, but wavelet packets

interpreted three parameters position, scale and frequency.

2. Wavelet packet bases offers a particular way of coding of a given signals.

3. Wavelet packet method gives the efficient decomposition selection of a given

signal.

4. Reconstruction by wavelet packet method gives more exact features than general

wavelet method.

5. Wavelet packet method improve the poor frequency localization of wavelet

bases.

4.4 Examples of Wavelet Packets

Walsh functions are special cases of wavelet packets, where h0 = h−1 = g0 = −g−1 = 1,

with hk = gk = 0 for k /∈ {0,−1} to define H and G, and functions ϕ = 1 and

ψ = Gω0 = G.1 = G.

4.4.1 Shannon Wavelet Packets

For each n ≥ 0, the Shannon function is defined by

Sn(x) =
sin
£
π(n+ 1)(x− 1

2
)
¤
− sin

£
πn(x− 1

2
)
¤

π(x− 1
2
)

. (4.16)

The Shannon functions are the elements of the doubly-indexed set {Snk}n∈N,k∈Z defined

by Snk = Sn(x− k). It is an orthonormal basis for L2(R)[45, 46].
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Shannon functions can also be obtained by the above recursion (4.9) and (4.10), if

the conditions (4.11)-(4.13) are removed. Take

hk =
sin
£
π
2
(k − 1

2
)
¤

π
2
(k − 1

2
)

; gk = (−1)k
sin
£
π
2
(k − 1

2
)
¤

π
2
(k − 1

2
)

, (4.17)

to define H and G, and

ϕ(x) =
sin
£
π(x− 1

2
)
¤

π(x− 1
2
)

; ψ(x) =
sin
£
2π(x− 1

2
)
¤
− sin

£
π(x− 1

2
)
¤

π(x− 1
2
)

, (4.18)

for the initial functions.

The operators H and G act as Fourier multipliers:

bω2n(ξ) = 1

2
m0

µ
ξ

2

¶ bωn

µ
ξ

2

¶
; bω2n+1(ξ) = 1

2
m1

µ
ξ

2

¶ bωn

µ
ξ

2

¶
, (4.19)

where m0 (ξ) =
P
k∈Z

hke
−2πikξ and m1 (ξ) =

P
k∈Z

gke
−2πikξ. Functions m0 and m1 are

1-periodic, and trigonometric polynomials whenever h and g are finitely supported.

In the Walsh case,

m0 = 1 + e2πiξ = 2eπiξ cosπξ,

and

m1 = 1− e2πiξ = −2eπiξ sinπξ.

In the Shannon case, one can take

m0 (ξ) =

⎧⎪⎨⎪⎩ 2, if k − 1
4
≤ ξ < k + 1

4
for some integer k

0, otherwise;
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m1 (ξ) =

⎧⎪⎨⎪⎩ 2, if k + 1
4
≤ ξ < k + 3

4
for some integer k

0, otherwise;
= 2−m0(ξ).

4.4.2 Daubechies Wavelet Packets

The filters h and g that define the compactly-supported orthonormal wavelets of

Daubechies [10] can be used here. For example, the Daubechies filters of length

4, which produce a scaling function supported in [0, 3] that satisfies ϕ = Hϕ, and a

mother wavelet also supported in [0, 3] that satisfies ψ = Gϕ, are

hk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1+
√
3

4
, if k = 0;

3+
√
3

4
, if k = −1;

3−
√
3

4
, if k = −2;

1−
√
3

4
, if k = −3;

0, otherwise;

, gk =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1−
√
3

4
, if k = 0;

−3−
√
3

4
, if k = −1;

3+
√
3

4
, if k = −2;

−1+
√
3

4
, if k = −3;

0, otherwise;

.

Note that gk = (−1)kh−3−k.

For every positive integer N > 1, there is a Daubechies wavelet supported in

[0, 2N ] which belongs to the smoothness class Cd for d ≈ N
5
[10]. Since Daubechies’

wavelets form an orthonormal MRA, the associated wavelet packets {wnk}n∈N,k∈Z form

an orthonormal basis for L2(R), and they are just as smooth as the mother wavelet

and the scaling function, because the filters are finitely supported. Unfortunately,

though they are smooth, these wavelet packets are not uniformly bounded.
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4.4.3 Walsh Type Wavelet Packets

We now define a class of wavelet packets that can be seen as a natural generalization

of Walsh functions. In particular, each wavelet packet system in the class turns out

to be equivalent to the Walsh functions in Lp(R), 1 < p <∞.

Definition 4.12 (Haar Filter): The pair of conjugate quadrature filters (CQF) given

by h0 = h1 =
1
2
, hk = 0 otherwise, and gk = (−1)kh1−k are called the Haar filters.

Definition 4.13 (Walsh Type Wavelet Packets): If the pair of CQFs (hJ , gJ) satisfy

the Haar filters for sufficiently large J ≥ J0. The resulting wavelet packets are called

Walsh-type wavelet packets.

Definition 4.14 (Shannon Type Wavelet Packets): If the pair of CQFs (hJ , gJ)

satisfy the Shannon filters for sufficiently large J ≥ J0. The resulting wavelet packets

are called Shannon-type wavelet packets.

Theorem 4.15 [31, 32] The Walsh and Shannon Type Wavelet Packet series con-

verge pointwise almost everywhere.

For f ∈ L2[0, 1], the Walsh-type wavelet packet series is

f =
X

n≥0,|k|≤N

hf,Wn,kiWn,k(x), (4.20)

where hf,Wn,ki are the Walsh-type wavelet packet coefficients.
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Chapter 5

Variants of Haar wavelet

In chapter 2 we have discussed the Haar wavelet and its properties. In this chapter we

will discuss two new variants of the Haar wavelet, called Rationalized Haar wavelet

and Non-uniform Haar wavelet [19, 33, 35].

5.1 Rationalized Haar wavelet

Lynch et al. [25, 37] have rationalized the Haar transform by deleting the irrational

numbers and introducing the integer powers of two. This modification results in what

is called the rationalized Haar (RH) wavelet. The rationalized Haar wavelet preserves

all the properties of the original Haar wavelet.

Definition 5.1 The rationalized Haar functions RH(r, t), r = 1, 2, 3, ... are composed
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of only three values +1,−1 and 0 and can be defined on the interval [0, T ) as [33].

RH(r, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1, 0 ≤ t < T and r = 0

1, J1 ≤ t < J1/2

−1, J1/2 ≤ t < J0

0, otherwise,

(5.1)

where Ju =
j−u
2i
T, u = 0, 1

2
, 1. The value of r is defined by two parameters i and j as

r = 2i + j − 1, i = 0, 1, 2, 3, ... , j = 1, 2, 3, ..., 2i.

For example,

i = 0, j = 1, then J1 = 0, J 1
2
=
1

2
T, J0 = T,

i = 1, j =

⎧⎪⎨⎪⎩ 1, then J1 = 0, J 1
2
= 1

4
T, J0 =

1
2
T,

2, then J1 =
1
2
T, J 1

2
= 3

4
T, J0 = T,

i = 2, j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1, then J1 = 0, J 1
2
= 1

8
T, J0 =

1
4
T,

2, then J1 =
1
4
T, J 1

2
= 3

8
T, J0 =

1
2
T,

3, then J1 =
1
2
T, J 1

2
= 5

8
T, J0 =

3
4
T,

4, then J1 =
3
4
T, J 1

2
= 7

8
T, J0 = T.

The first eight RH functions are shown in Fig.5.1 where r = 0, 1, 2, ..., 7.

The RHF is a wavelet because it satisfies all the conditions of wavelet.

The RH functions satisfy the orthogonal relation

TZ
0

RH(r, t)RH(v, t)dt =

⎧⎪⎨⎪⎩ 2−iT for r = v

0 for r 6= v,
(5.2)
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Figure 5.1: A set of the RH functions (r=0 to 7)

where v = 2n +m− 1, n = 0, 1, 2, 3, ..., m = 1, 2, 3, ..., 2n.

Now we will approximate any general function by Rationalized Haar wavelet. Let

f(t) ∈ L2[0, T ] and the RH wavelet series of f(t) can be expanded as

f(t) =
∞X
r=0

crRH(r, t), (5.3)

where the RH wavelet coefficients are

cr =
2i

T

TZ
0

f(t)RH(r, t)dt, r = 2i + j − 1, i = 0, 1, 2, 3, ..., j = 1, 2, 3, ...2i.

For computation we need a finite sum. Consider the finite sum of the series (5.3),

for fixed integer α, i = 0, 1, 2, 3, ...α, then j = 2α and r = 2α+2α− 1 = 2α+1− 1 =
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N − 1, where N = 2α+1,

g(t) =
N−1X
r=0

crRH(r, t).

Then the error of the approximation is

kf − gk2L2 =

°°°°°f −
N−1X
r=0

crRH(r, t)

°°°°°
2

L2

=

°°°°°
∞X

r=N

crRH(r, t)

°°°°°
2

L2

≤
∞X

r=N

|cr|2 kRH(r, t)k2L2

=
∞X

r=N

|cr|2

∼
∞X

r=N

2−r ∼ 2−N = O(2−N). (5.4)

The RH coefficients in each r level is cr ∼ 2−r (for details one can see [33]). So it is

obvious that the approximation order is improved for the RH wavelet in comparison

to uniform Haar wavelet [35].

5.2 Non-uniform Haar wavelet

5.2.1 Haar scaling function and non-uniform Haar wavelet

Recall that the Haar scaling function is ϕ(x) = χ[0,1)(x). For any α1, α2 ∈ [0, 1], such

that α1 < α2, we have ϕ( x−α1
α2−α1 ) = χ[α1, α1)(x). Hence, for any α ∈ (0, 1), we obtain

ϕ(x) = χ[0,α)(x) + χ[α,1)(x) = ϕ( x
α
) + ϕ(x−α

1−α ).
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(1-α) 

α

10

1

0 1

-α

φ 
ψα 

Figure 5.2: (a) Haar scaling function, (b) Non-uniform Haar wavelet.

We define the non-uniform Haar wavelet ψα by

ψα(x) = (1− α)χ[0, α)(x)− αχ[α,1)(x)

= (1− α)ϕ(
x

α
)− αϕ(

x− α

1− α
). (5.5)

The graphs of ϕ and the wavelet ψα are in Fig. 5.2.

Note that for any n ∈ N
∞R
−∞

|ϕ(x)|n dx = 1 and
∞R
−∞

|ψα(x)|n dx = α(1− α) {(1− α)n−1 + αn−1} .

5.2.2 Non-uniform Haar wavelet from MRA

Let {∆m}m∈Z be a family of partitions of R such that the partition ∆m+1 is finer than

∆m for any m ∈ Z. Let ∆m = {xmk }m,k∈Z such that

xmk = xm+12k < xm+12k+1 < xm+12k+2 = xmk+1, (5.6)
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and lim
k−→−∞

xmk = −∞, lim
k−→∞

xmk =∞

For each m, k ∈ Z, we get

ϕm
k (x) = ϕ

µ
x− xmk

xmk+1 − xmk

¶
= χ[xmk , xmk+1 )

(x) =

⎧⎪⎨⎪⎩ 1, x ∈ [xmk , xmk+1 ),

0, otherwise,
(5.7)

and for αm
k = α ∈ (0, 1) define

αm
k =

xm+12k+1 − xm+12k

xm2k+2 − xm2k
=

xm+12k+1 − xmk
xmk+1 − xmk

, (5.8)

we get

ψm
k (x) = ψm

αmk

µ
x− xmk

xmk+1 − xmk

¶
=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(1− αm

k ), x ∈ [xm+12k , xm+12k+1 ),

−αm
k , x ∈ [xm+12k+1, x

m+1
2k+2 ) ,

0, otherwise.

(5.9)

Properties for the functions ϕm
k and ψm

k :

i)
+∞R
−∞

ϕm
k (x)dx = xmk+1 − xmk ,

ii)
+∞R
−∞

ψm
k (x)dx = 0.

and for n ∈ Z

iii)
+∞R
−∞

|ϕm
k (x)|

n dx = xmk+1 − xmk ,

iv)
+∞R
−∞

|ψm
k (x)|

n dx = αm
k (1− αm

k )
©
(1− αm

k )
n−1 + (αm

k )
n−1ª ¡xmk+1 − xmk

¢
.

For any m, n ∈ Z and k, l ∈ Z we have

v)
+∞R
−∞

ϕm
k (x)ψ

n
l (x)dx = 0,

vi)
+∞R
−∞

ϕm
k (x)ϕ

n
l (x)dx = δmn

kl

¡
xmk+1 − xmk

¢
,
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vii)
+∞R
−∞

ψm
k (x)ψ

n
l (x)dx = δmn

kl α
m
k (1− αm

k )
¡
xmk+1 − xmk

¢
,

where δmn
kl =

⎧⎪⎨⎪⎩ 1, if m = n and k = l,

0, elswhere.

Theorem 5.2 [19] The functions ϕm−1
k , ψm−1

k , ϕm
2k , ϕm

2k+1 are related as follows

ϕm−1
k (x) = ϕm

2k(x) + ϕm
2k+1(x), (5.10)

ψm−1
k (x) = (1− αm−1

k )ϕm
2k(x)− αm−1

k ϕm
2k+1(x), (5.11)

and ϕm
2k(x) = αm−1

k ϕm−1
k + ψm−1

k , (5.12)

ϕm
2k+1(x) = (1− αm−1

k )ϕm−1
k (x)− ψm−1

k (x). (5.13)

Let us define the vector spaces Vm = span {ϕm
k (x) /k ∈ Z} and

Wm = span {ψm
k (x) /k ∈ Z} for any m ∈ Z. From the previous properties we

obtain, Vm = Vm−1 ⊕Wm−1.

5.2.3 Approximation by Non-uniform Haar wavelets

To obtain the Haar wavelet transform, let fm(x) ∈ Vm such that fm(x) =
P
k∈Z

amk ϕ
m
k (x)

by using theorem (5.2) we obtain,

fm(x) =
X
k∈Z

£
am2kϕ

m+1
2k (x) + am2k+1ϕ

m+1
2k+1(x)

¤
=

X
k∈Z
[am2k {αm

k ϕ
m
k (x) + ψm

k (x)}

+am2k+1 {(1− αm
k )ϕ

m
k (x)− ψm

k (x)}]

=
X
k∈Z

amk ϕ
m
k (x) +

X
k∈Z

cmk ψ
m
k (x) (5.14)
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where amk = αm
k a

m
2k + (1− αm

k )a
m
2k+1,

cmk = am2k − am2k+1,

ϕm
k ∈ Vm and ψm

k ∈Wm.

We know that compression means only reducing the number of coefficients needed

to represent a function. Let our given function be

fM(x) =
M−1X
m=0

2M−1X
k=0

aMk ϕM
k (x).

We obtain by decomposition, the representation with respect to an orthogonal basis

{ϕ00} ∪ {ψm
k /k = 0, 1, 2, ....2

m − 1; m = 0, 1, 2, .....M − 1 } of VM

fM(x) = a00ϕ
0
0(x) +

M−1X
m=0

2M−1X
k=0

cmk ψ
m
k (x). (5.15)

Then the error of the approximation in L2(R) is

°°f − fM(x)
°°2
L2

=

°°°°°°
∞X

m=2M

2M−1X
k=0

cmk ψ
m
k (x)

°°°°°°
2

L2

≤ c
∞X

m=2M

2M−1X
k=0

|cmk |
2 kψm

k (x)k
2
L2

≤ c
∞X

m=2M

2M−1X
k=0

2−k kψm
k (x)k

2
L2
,

where cmk ∼ 2−
k
2 (for details see sec. 2.5.1). Now by using properties (vii) for the
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functions ψm
k ,we get

kψm
k (x)k

2
L2

=
°°αm

k (1− αm
k )
¡
xmk+1 − xmk

¢°°2
L2

= |α(1− α)|2 · 1, by using (5.8)

= O((α(1− α))2), (5.16)

where αm
k = α ∈ (0, 1).

Therefore °°f − fM(x)
°°
L2
= O(2−

M
2 α(1− α)). (5.17)

If we consider α = 1
2
, we get the uniform Haar wavelet and in this case the

approximation order is O(2−
M
2 ).

If α 6= 1
2
, we get the non-uniform Haar wavelet, For example say α = 1

3
, 1
4
, then

the approximation order are O(3−2.2−
M
2 ) and O(4−2.2−

M
2 ) respectively. So it is clear

that in the case of non-uniform Haar wavelet, the approximation order is improved in

comparison to uniform Haar wavelet.

Example 5.3 Let f(x) = x2 and x ∈ [0, 1].

In the case of uniformHaar wavelet, we approximate f on [0, 1] by fj =
2j−1P
n=0

cnϕn,

where cn = 2
j
(n+1)2−jR
n2−j

f(x)dx and ϕn are the scaling functions of the Haar wavelet.

By using MATLAB with j = 2, we obtain kf − f2kL2 = 0.8545 and the graph shown

in Fig.5.3.

In the case of non-uniform Haar wavelet with j = 2, we obtain kf − f2kL2 = 0.7552

and the graph shown in Fig.5.4.

Conclusion 5.4 In this section we have seen that by using rationalized Haar wavelet

63



Figure 5.3: The function f and its uniform Haar approximation fj for j = 2.

Figure 5.4: The function f and its non-uniform Haar approximation fj for j = 2.
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and non-uniform Haar wavelet, the approximation order is improved compare with

simple uniform Haar wavelet.
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Chapter 6

Open Problems and Further

Research

Approximation by Walsh polynomials has been studied but their extensions to Walsh

type wavelet packets have not been studied till now. One may be tempted to extend

the Theorems 4.8 and 4.9 to Walsh type wavelet packets. M.V. Wickerhauser [45, 46]

observed that Daubechies wavelet packet series convergence almost everywhere. This

property also holds for Walsh and Shannon type wavelet packets.

One can also study the approximation by rationalized Haar and non-uniform Haar

wavelet in different function spaces.
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