
DESIGN AND MODELING OF HIGH SPEED

MODULO MULTIPLIERS FOR

CRYPTOSYSTEMS

BY

Muhammad Yahya Imam Mahmoud

A THESIS PRESENTED TO THE

DEANSHIP OF GRADUATE STUDIES

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE

MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

KING FAHD UNIVERSITY

OF PETROLEUM & MINERALS

May 2004

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN 31261, SAUDI ARABIA

DEANSHIP OF GRADUATE STUDIES

This thesis, written by Muhammad Yahya Imam Mahmoud

under the direction of his thesis advisor and approved by his thesis

committee, has been presented to and accepted by Dean of Graduate

Studies, in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER ENGINEERING.

Thesis Committee

Dr. Alaaeldin Amin (Advisor)

Prof. Mostafa Abd-El-Barr (Member)

Dr. Muhammad F. Khan (Member)

 Prof. Sadiq M. Sait
 (Department Chairman)

 Dr. Mohammad Al-Ohali
 (Dean of Graduate Studies)

 May 2004

 iii

ACKNOWLEDGMENT

Praise be to ALLAH the Lord of the universe who has created mankind and

made them into tribes and nations, that they may know each other. Peace be

upon the Prophet Muhammad, his family, his companions, and all those who

followed him until the day of judgment.

 ALLAH said (9-105):

“And say: Work (righteousness): Surly will ALLAH observe

your work, so will his messenger, and the believers.”

 I would like to express my sincere and deepest gratitude to my advisor

Dr. Alaaeldin Amin for his constant help, personal attention, inspiring

guidance, suggestions, and encouragement throughout the period of this

research. I also would like to express my sincere appreciation to Dr. Mostafa

Abd-El-Barr and Dr. Muhammad F. Khan who have given me invaluable

help and support. I also wish to thank my colleagues at KFUPM for their

encouragement and good will wishes.

 iv

TABLE OF CONTENTS

 Page

List of Tables... vii

List of Figures ... viii

List of Algorithms... x

Thesis Abstract ... xi

Thesis Abstract (Arabic) ملخص الرسالة .. xii

CHAPTER 1 Introduction... 1

1.1. Background .. 3

1.1.1. Cryptographic Systems... 3

1.1.2. Arithmetic Operations .. 9

CHAPTER 2 Design and Modeling of Asynchronous Modulo Multiplier.............. 32

2.1. Description of the Asynchronous Algorithm .. 33

2.1.1. Initialization Step ... 35

2.1.2. The Recoding And Adding Step .. 35

2.1.3. Scaling Step.. 37

2.1.4. Correction Step... 39

2.1.5. Illustrative Example ... 40

2.2. Design issues... 41

2.2.1. Design Data Flow... 43

2.2.2. Controller Design ... 45

2.3. Algorithm Complexity... 55

 v

2.3.1. Hardware Complexity .. 55

2.3.2. Time Complexity.. 55

CHAPTER 3 Montgomery Multiplier (A Complete Solution)................................ 57

3.1. MONTGOMERY’S MODULAR MULTIPLICATION 59

3.1.1. Algorithm Parameters and Notations ... 59

3.1.2. Algorithm Features... 62

3.2. Description of the Algorithm.. 65

3.2.1. Approach .. 66

3.2.2. Illustrative Example ... 66

3.3. Design Issues .. 69

3.3.1. An Optimal Radix-4 Right-To-Left Recoding Algorithm 69

3.3.2. N-Multiple Selection For Shift Right Loop ... 70

3.3.3. Data Path Design .. 72

3.4. A Complete Hardware Implementation for Montgomery
Multiplication .. 75

3.4.1. Modulus Selection for Shift Left Loop .. 76

3.4.2. Illustrative Example ... 77

3.5. Algorithm Complexity... 81

3.5.1. Hardware Complexity .. 81

3.5.2. Time Complexity.. 81

CHAPTER 4 Testing of the Four-to-Two Compressor Array................................. 83

C-Testability for Iterative Logic Array.. 84

4.1.1. Preliminaries... 84

4.1.2. Circuit Hazards... 85

 vi

4.1.3. Test Invalidation... 86

4.1.4. Robustness.. 86

4.1.5. Fault Models For ILA... 87

4.2. A BIST Methodology for ILA. ... 89

4.3. Testability of the 4-2 Compressor .. 90

CHAPTER 5 Results and Conclusion... 97

Appendices .. 102

APPENDIX A : Analysis on Vitit’s Multiplication Algorithm................................. 102

A.1. Assumptions .. 102

A.2. Algorithm’s Proof ... 102

APPENDIX B : Binary Numbers Recoding Analysis ... 105

APPENDIX C : Compressor’s Worst-Cass Delay... 108

APPENDIX D : Applying Genetic Evolution Algorithm to Obtain a Good
Test Set. .. 109

References ... 111

 vii

LIST OF TABLES

TABLE Page

TABLE 1.1: Two's Complement Signed Numbers Multiplication Example. 11

TABLE 1.2: Booth Recoding. .. 13

TABLE 1.3: Radix-4 Booth Recoding Algorithm. .. 14

TABLE 1.4: SRT Division Example.. 16

TABLE 1.5: Multiplier Recoding Rule. ... 26

TABLE 2.1: Left-to-Right Recoding. .. 36

TABLE 2.2: Extreme Cases with the Proper Multiple on N.. 38

TABLE 3.1: Mapping Integers to 13-Residue Class.. 61

TABLE 3.2: Radix 4 Optimal Recoding Algorithm. ... 69

TABLE 3.3: Modulus Selection for Shift Right Loop. .. 71

TABLE 3.4: Modulus Selection for Shift Left Loop. .. 76

TABLE 4.1: Genetic Algorithm’s Output Test Set. ... 94

TABLE 4.2: Modified Test Set. ... 95

TABLE 5.1: AT Cost Comparison for the Multiplier Designs. 99

 viii

LIST OF FIGURES

Figure Page

Figure 1.1: Symmetric Cryptosystem... 3

Figure 1.2: Public-Key Encryption... 5

Figure 1.3: Dot Notation for Two 4-word Numbers Multiplication. 10

Figure 1.4: Multiplier recoding example.. 26

Figure 1.5: Illustration of the compared bits. ... 27

Figure 2.1: Modular Multiplication Data Flowchart. ... 39

Figure 2.2: Loop Implementation... 41

Figure 2.3: Clock Pulse Generation for Registers/Counter. ... 42

Figure 2.4: Asynchronous Modulo Multiplier Hardware Data Flow. 44

Figure 2.5: Asynchronous Modulo Multiplier State Diagram.. 46

Figure 2.6: State 0, Computing N-X. ... 47

Figure 2.7: State 1, Computing 3N... 48

Figure 2.8: State2, Computing 5N.. 49

Figure 2.9: State3, Clearing P... 50

Figure 2.10: State 4, Shifting P and Y.. 51

Figure 2.11: State 5, Computing Partial Products. ... 52

Figure 2.12: State 6, Scaling & Loop Condition Checking.. 53

Figure 2.13: State 7, Correction. .. 54

Figure 3.1: Four-to-Two Compressor Structure... 58

Figure 3.2: Simultaneous Use of Modulus and Multiplicand... 65

 ix

Figure 3.3: Compressor Multiplier Data Path. ... 72

Figure 3.4: Four-to-Two Compressor... 73

Figure 3.5: Montgomery Modulo Multiplier State Diagram.. 80

Figure 4.1: One Dimensional 4-2 Adder ILA. ... 90

Figure 4.2: 4-2 Adder's Carry-Out State Diagram. .. 91

Figure 4.3: Possible Partitioning of the State Diagram 4-2 Adder................................. 92

Figure 5.1: Area Delay Cost Comparison for α = ½. ... 99

Figure 5.2: Area Delay Cost Comparison for α = 1. .. 100

Figure 5.3: Area Delay Cost Comparison for α = 1½. ... 100

Figure 5.4: Area Delay Cost Comparison for α = 2. .. 101

Figure 5.5: Area Delay Cost Comparison for α = 2½. ... 101

Figure 5.6: Worst Case Rippling. ... 108

 x

LIST OF ALGORITHMS

Algorithm Page

Algorithm 1.1: Exponentiation... 20

Algorithm 1.2: Modular Exponentiation. ... 21

Algorithm 1.3: Triangle Addition Modular Multiplication.. 23

Algorithm 1.4: Interleaving Modular Multiplication. .. 24

Algorithm 1.5: Takagi's Radix-4Modular Multiplication. ... 27

Algorithm 1.6: Montgomery Modular Multiplication Algorithm. 29

Algorithm 2.1: Asynchronous Modulo Multiplication... 34

Algorithm 3.1: Montgomry's Multiplication. ... 62

Algorithm 3.2: Modified Montgomery Multiplication... 64

Algorithm 3.3: Montgory Modular Multiplication... 68

Algorithm 3.4: A Complete Montgory Modular Multiplication. 79

 xi

THESIS ABSTRACT

Name: Muhammad Yahya Imam Mahmoud

Title: Design and Modeling of High Speed Modulo Multipliers

 for Cryptosystems

Major Field: Computer Engineering

Date of Degree: May 2004

Advances in networking and data processing speeds have led to the need for high-speed

cryptosystems. The speed of a cryptosystem is function of its complexity and the

technology used to implement it. This work investigates the techniques of designing fast

modulo multipliers since modulo-multiplication is a basic essential operation in public-key

cryptography. Two types of modulo multipliers have been designed and modeled using

VHDL and MatLab. While the first multiplier is based on asynchronous adder design, the

other multiplier is based on four-to-two compressor design. In addition, a Built In Self

Test (BIST) methodology has been developed for the Compressor based multiplier

design. The two multiplier designs have been evaluated and compared based on their

area-delay cost.

 xii

THESIS ABSTRACT (ARABIC)

الرسالة ملخص

 محمد يحيى إمام محمود: ــــــمـالاســــــــ

 . تصميم ومحاكاة ضاربة باقي القسمة عالية السرعة لأ�ظمة التشفير:الرسالة عنوان

 هندسة الحاسب الآلي:ــصــالتخصــــ

 هـ1425ربيع ثا�ي :رجــالتخ تاريخ

لحاجة لتطوير أ�ظمة تشفير عالية السرعة، بينما أوجد التطور المتزايد في عالم الشبكات ومعالجة البيا�ات ا
تعتمد سرعة أي �ظام للتشفير على مدى صعوبة وتعقيد النظام المستخدم وعلى التقنية المستخدمة في

تستكشف . ترتكز تقنيات التشفير المعتمدة على المفتاح المعلن على عملية الضرب وباقي القسمة. تصنيعه
لمتبعة في تصميم ضاربة باقي القسمة عالية السرعة وتتضمن تصميم ومحاكاة بعض الأساليب اةهذه الأطروح

بينما . (MatLab) ولغة VHDL)(�وعين منها باستخدام اللغة الوصفية لبرمجة مكو�ات الحاسب الآلي
. تشـــاريعتمد تصميم الضاربة الأولى على امع غير المتزامن، يعتمد التصميم الآخر على امع الموفـر للا�

تضمنت هذه الأطروحة �ظام فحص ذاتي للضاربة الأخيرة كما تم تقييم التصميمين بناء على تكلفة الزمن في
 .المساحة

 1

CHAPTER 1

INTRODUCTION

In the information age, the age of public electronic connectivity, as computer systems and

their internetworking grow in complexity, the dependence on secure data storage and

exchange has become critical. Data security and integrity is threatened by the increased

activity of hackers, electronic fraud, and eavesdropping. This has led to a need for

protecting and authenticating access to data and their resources. There has been no age

where data security and integrity have received as much attention as this age. Military

applications, financial transactions, and multimedia communications, are examples that

require authentication and data protection algorithms [53].

 Public-key cryptosystems, which are based on one way mathematical functions, are

becoming very popular because they do not need complex key distribution mechanisms.

Based on modulo operations, the RSA [43] and Elgamal [48] encryption algorithms are

examples of public-key crypto-algorithms. The speed of a crypto-algorithm and its

hardware cost are important performance measures particularly for mobile systems. They

are direct function of the algorithm complexity, and the technology used to implement it.

Thus, efficient implementation of modular multipliers is essential for the design of

efficient high-speed crypto-processors [53].

 In this work, two types of modular multiplication algorithms are evaluated and the

corresponding hardware is designed and modeled. The first is a self-timed asynchronous

2

modular multiplier, while the other is a synchronous multiplier that is based on a new fast

architecture utilizing a four-to-two compressor. We have used area-delay cost as basis for

comparison between the two designs. Furthermore, we have devised a BIST structure for

the synchronous design based on a realistic sequential fault model for iterative logic

arrays.

 The rest of this thesis is organized as follows. In CHAPTER 1, a brief review of

essential arithmetic operations is provided, some modular multiplication algorithms are

outlined and a brief overview of clocked and event-driven systems is given. CHAPTER 2

describes the design of the proposed asynchronous modulo multiplier. CHAPTER 3

presents a complete design solution for Montgomery modular multiplication. It starts with

a review of the algorithm’s notation then a hardware implementation of the algorithm is

illustrated. In CHAPTER 4, a brief background of hardware testing is given then a

Built-In-Self-Test methodology for the compressor modulo multiplier is presented.

Finally, the thesis results and conclusion are given in CHAPTER 5.

3

1.1. BACKGROUND

1.1.1. Cryptographic Systems

1.1.1.1. Symmetric Cryptosystems (Secret Key)

Conventional cryptosystems, also referred to as symmetric or single-key cryptosystems,

are based on the use of a common single key and a common algorithm. For the same

plaintext message, the algorithm produces different ciphertexts for different keys, see

Figure 1.1.

Encryption
Algorithm

Decryption
AlgorithmCiphertextPlaintext PlaintextUser_A User_B

User_B’s
Public Key

User_B’s
Private Key

Figure 1.1: Symmetric Cryptosystem.

 In conventional cryptosystems, the algorithm should not depend on the input

message and should not to be kept secret. Only the key needs to be kept secret and it

should be computationally impractical to decrypt the ciphertext knowing only the

4

encryption/decryption algorithm together with samples of plaintext and their

corresponding ciphertext [53].

 Since, in this method, both the sender and the receiver have the same key, which

must be kept secret, There should be a secure key distribution mechanism. Good key

distribution mechanisms are not trivial and are not without disadvantages [53].

1.1.1.2. Public-key Cryptosystems

Unlike symmetric cryptosystems, public-key cryptosystems do not use the same key to

encrypt and decrypt messages. Instead, each of the two parties has two different but

related keys, a public key (KU) and a private key (KR) and they consider a message as

consisting of a number of blocks where every message block M has a binary value that is

less than some value N (known to both ends). Encryption and decryption algorithms used

for public-key cryptosystems are mainly based on modulo operations.

 For USER_A to send an encrypted message to USER_B, he must use USER_B’s

public-key. This message cannot be decrypted without USER_B’s private key that is

known only to USER_B. Figure 1.2 shows an illustration of the public-key cryptography

principle.

5

Encryption
Algorithm

Decryption
AlgorithmCiphertextPlaintext PlaintextUser_A User_B

User_B’s
Public Key

User_B’s
Private Key

Figure 1.2: Public-Key Encryption.

 For any public-key algorithm, the following equations must hold whenever User_A

needs to send an encrypted message to User_B:

Ciphered = EKU_B (Message)

Message = DKR_B (Ciphered)

 = DKR_B [EKU_B (Message)]

 = EKU_B [DKR_B (Message)]

 Where E and D are the encryption and decryption algorithms respectively.

 It should be computationally infeasible to infer the decryption key or the original

message given only the algorithm, the encryption key and samples of ciphertexts [29]

 [53].

6

 Encryption algorithms can be implemented using software or hardware. Whereas

software implementations are less expensive, easier to modify, and slow, hardware

implementations are more expensive, difficult to modify but are quite faster.

 Hardware implementations are evaluated based on their running time (speed), VLSI

area, and power dissipation. A practical complexity measure for fast mobile

cryptosystems is the area-delay product (AT) [49].

1.1.1.2.1. RSA Algorithm. One of the most commonly used public-key

cryptosystems is the RSA algorithm. The RSA algorithm was devised by Rivest, Shamir,

and Adleman [43]. If M is the message to be encrypted and C is the ciphered message, the

RSA algorithm is based on the following three requirements:

• Finding integers e, d, and N such that M = Med mod N.

• It should be easy to compute Me and Cd.

• It should be almost impossible to find d knowing only e and N.

 Usually N is a large difficult to factor integer and the message block M is such that

0≤M<N. The ciphertext C is computed as follows:

C = Me mod N

 The plaintext message can be retrieved back using the decryption key d as follows:

M = Cd mod N = (Me)d mod N = Med mod N

7

 Both the sender and the receiver know N, and e, while only the receiver knows d

and the keys are represented as:

KU= {e, N}, KR= {d, N}

 To satisfy the algorithm requirements, the modulus N is defined as the product of

two prime numbers p, q (N=pq). Therefore Φ(pq) = (p-1)(q-1) where Φ(x) is the number

of positive integers which are smaller than x and are relatively prime to x. The decryption

key d is computed as: [43] [53].

gcd(Φ(N), d)=1 and 1<d< Φ(N), and e ≡ d-1 mod Φ(N)

1.1.1.2.2. The Elgamal Algorithm. In this algorithm [48], the system has two

public keys; N and g, where N is a large prime and N-1 has at least one large prime factor,

and g is a primitive element mod N. Each party has its own private key KR_x (1 < KR_x

< N-1) and its public key KU_x that can be computed from the private key as follows:

KU_x = g KR_x mod N

 For USER_A to send a message M (0 ≤ M < N) to USER_B, he should first choose

some random number U (0< U < N), then a transaction key K is computed using

USER_B’s Public key (KU_b).

K= KU_bU mod N

 The ciphered message is then computed as a pair C= (c1, c2) where

8

c1 = gU mod N & c2 = KM mod N

 Note that the size of the encrypted message is double the size of the original

message.

 USER_B can decrypt the ciphered message C by first retrieving the transaction key

K. This should be easy for USER_B since

K ≡ KU_bU ≡ (g KR_b)U ≡ (g U) KR_b ≡ c1
KR_b mod N

 Then the original message M will be easily retrieved by dividing c2 by K.

M = c2 /K

 For increased security the transaction key K should not be used for more than one

message block. Otherwise, the knowledge of one block allows attackers to know all other

blocks [15] [21] [29] [33] [48].

9

1.1.2. Arithmetic Operations

In this section, after reviewing several multiplication schemes, some division algorithms

are also discussed. In addition, the exponentiation operation is described. Finally several

modulo multiplication algorithms are outlined.

1.1.2.1. Multiplication Algorithms

Three types of multiplication algorithms are reviewed in this section. First, the sequential

multiplication for two’s complement singed numbers is described. Then, Booth

multiplication algorithm which is based on multiplier recoding is presented. The third

algorithm is a high-radix version of Booth multiplication algorithm.

1.1.2.1.1. Sequential Multiplication. If X and A are two k-digit numbers, their

product P will be 2k-digits long. Let the multiplier X and the multiplicand A be

represented as:

 X= xk-1 xk-2 … x1 x0

 A= ak-1 ak-2 … a1 a0

 Where xi and ai are digits in a number system of radix β.

 For unsigned numbers, the product P requires k steps to obtain. In step i, the product

Axi is shifted and cumulatively added to the partial product P.

10

 X = ∑
−

=

1

0

k

i
xiβi.

 P = X·A

 =A * ∑
−

=

1

0

k

i
xiβi.

 = Ax0β0 + Ax1β1 + Ax2β2 + … + Axk-1βk-1

 This multiplication is illustrated in Figure 1.3 using dot notation for two 4-digit

numbers [4].

 A
 X
 PP0 = Ax0β0.
 PP1 = Ax1β1.
 PP2 = Ax2β2.
 PP3 = Ax3β3.
 P = PP0 + PP1 + PP2 + PP3

Figure 1.3: Dot Notation for Two 4-word Numbers Multiplication.

 In the case of signed numbers, xk-1, ak-1 are the sign bits. The product P requires k

steps to obtain. In step i, the product Axi is shifted and added to the partial product P. The

multiplication algorithm can be expressed using the following recursion:

 X=-xk-1·βk-1+
2

0

k

i

−

=
∑ xi·βi.

 P = X·A

11

 P = -xk-1·βk-1·A +
2

0

k

i

−

=
∑ xiβi·A.

 The following example (see TABLE 1.1) illustrates the multiplication algorithm for

binary signed numbers in two’s complement representation.

TABLE 1.1: Two's Complement Signed Numbers Multiplication Example.

A

X

0 0 1 0 1

1 1 0 1 1

5

-5

P(0)=0

X0=1 add A

Shift P(1)=

+

0 0 0 0 0

0 0 1 0 1

0 0 1 0 1

0 0 0 1 0

1

X1=1 add A

Shift P(2)=

+

0 0 1 0 1

0 0 1 1 1

0 0 0 1 1

1

1 1

X2=0 Shift P(3)= 0 0 0 0 1 1 1 1

X3=1 add A

Shift P (4)=

+

0 0 1 0 1

0 0 1 1 0

0 0 0 1 1

1 1 1

0 1 1 1

Xsign=1 add -A

P=

+

1 1 0 1 1

1 1 1 1 0

0 1 1 1 -25

12

 To speed up the multiplication process we can do one of the following:

• Use faster adders using:

o Faster Architecture.

o Faster technology.

• Reduce the number of partial products

o Using high radix multipliers (scanning more than one multiplier bit at a time)

o Using Multiplier Recoding techniques.

1.1.2.1.2. Booth Multiplication. In Booth multiplication, the number of partial

products is reduced using multiplier recoding technique. The multiplication process

consists of add and shift operations with addition requiring much more time than the shift

operation. The objective is to recode the multiplier bits such that it has less number of

ones and more zeros, which reduces the required number of add operations. This can be

achieved by skipping chains of zeros and recoding chains of ones [4]. Booth multiplier

recoding is illustrated in TABLE 1.2.

Example

Both recoding of (1 1 0 0 1 1 1 0) is (1 0 1 0 1 0 0 1 0)

13

TABLE 1.2: Booth Recoding.

Current Bit

Xi

Previous Bit

Xi-1

Recoded Bit

Yi
Note

0 0 0 No string of ones in sight

0 1 1 End of string of ones

1 0 1 Beginning of string of ones

1 1 0 Middle of string of ones

1.1.2.1.3. High Radix Booth Multiplication. Booth algorithm has two

disadvantages. The first one is that the number of shifts is not constant. Therefore, the

algorithm can not be useful for synchronous systems. The second disadvantage is that the

algorithm will give worst results for multipliers that have many isolated ones. For

example, if we try to recode 001010101(0), which has four ones (add operations), we will

get 1 1 1 1 1 1 1 1 , which has eight ones. To overcome the latter problem, higher

radix Booth recoding can be used.

TABLE 1.3 illustrates radix-four Booth recoding in which two bits are recoded at a time.

14

TABLE 1.3: Radix-4 Booth Recoding Algorithm.

Current

Bits

Previous

Bit

Recoded

Bits

Xi+1 Xi Xi-1 Yi+1 Yi

Note

0 0 0 0 0 No string of ones in sight

0 0 1 0 1 End of string of ones

0 1 0 0 1 One between Zeros

0 1 1 1 0 End of string of ones

1 0 0 1 0 Beginning of string of ones

1 0 1 0 1 End of string of ones and starting of another.

1 1 0 0 1 Beginning of string of ones

1 1 1 0 0 Middle of string of ones

 For more on binary numbers recoding see APPENDIX B.

 Fast multiplication can also be achieved in a number of other ways, such as tree

multiplication and array multiplication [4].

15

1.1.2.2. Division Algorithms

Division is the most complex of the four basic arithmetic operations. Unlike the other

three arithmetic operations, the result of division consists of two components; a quotient

Q and a remainder R. Therefore, the result of dividing some dividend X by a divisor D

consists of a quotient Q and a remainder R such that X=Q·D+R where R D< .

1.1.2.2.1. SRT Division. In non-restoring binary division the divisor D is a

normalized fraction. The quotient is computed digit by digit starting with the most

significant digit. In is in a form of binary singed digits qi i.e., qi ∈ {-1, 0, 1}. the

remainder is computed using the following recurrence:

 ri = 2ri-1 - qiD

 Where:

 r0 = X

i-1

i-1

1 if 2r 0

1 if 2r 0iq
⎧ ≥⎪⎪⎪= ⎨⎪ <⎪⎪⎩

 The selection criteria can be modified to perform the comparison with D as:

i-1

i-1

i-1

1 if 2r D

0 if -D 2r D

1 if 2r -D

iq

⎧⎪ ≥⎪⎪⎪⎪= ≤ <⎨⎪⎪⎪ <⎪⎪⎩

16

 However, this selection criterion requires full precision comparison of ri-1 and D.

We can overcome this costly comparison by restricting D to be normalized fraction, and

the comparison needed will be with ±1/2 instead of ±D. Therefore, all numbers will be

presented as fractions and the new quotient selection mechanism is given by

i-1

i-1

i-1

1 if 2r 1/2

0 if -1/2 2r 1/2

1 if 2r -1/2

iq

⎧⎪ ≥⎪⎪⎪⎪= ≤ <⎨⎪⎪⎪ <⎪⎪⎩

 This is known as SRT algorithm after its three authors D. W. Sweeney, J. E.

Robertson, and K. D. Tocher [37].

Example: The example in TABLE 1.4 illustrates SRT division.

TABLE 1.4: SRT Division Example.

r0= X

2r0

Add -D

+

0 .0 1 0 1

0 .1 0 1 0

1 .0 1 0 0

>1/2 => q1=1

r1

2r1=r2

2r2= r3

2r3

Add D

+

1 .1 1 1 0

1 .1 1 0 0

1 .1 0 0 0

1 .0 0 0 0

0 .1 1 0 0

>-1/2 => q2=0

>-1/2 => q3=0

<-1/2 =>q4=-1

r4

Add D

+

1 .1 1 0 0

0 .1 1 0 0

-ve remainder & +ve

X

correction

r4 0 .1 0 0 0 Final remainder

17

1.1.2.2.2. High Radix SRT Division. One can reduce the number of shift/subtract

operations by using higher radices. Therefore, instead of using the radix-2 SRT, we use

higher radix β, where β =2m, the number of shift/subtract steps will reduce from n to

n
m

⎡ ⎤
⎢ ⎥ , and m quotient bits are produced per step. The remainder recurrence relation will

be:

 ri = 2mri-1 - qiD

 Where qi { 1, ..., 2, 1, 0, 1, 2, ..., -1}β β∈ − .

 This recurrence relation gives the maximum redundancy for radix-β, which might be

too costly. To find the lower bound, let us assume that q { , ..., 2, 1, 0, 1, 2, ..., }aD a a∈ =

meaning that it can be any of these 2a+1 digits. However, we need at least β digits to

represent a number in radix-β therefore the following must hold [4]:

 2a+1≥ β

 β > a ≥ (β-1)/2

18

1.1.2.2.3. Vitit’s Division Algorithm. This algorithm [51] is simpler than radix-4

SRT and is based on radix-2 SRT. It has simpler iteration hardware and the number of

iterations - at worst - is equal to those of radix-4 SRT [4] and it does not require the use of

a lookup table.

 Recall that, the SRT algorithm is based on the following recurrence:

ri = 2ri-1 - qiD

 Initially assume that both 2ri-1 and D are positive. Therefore, qi can be selected as

follows:

i-1

i-1

i-1 i+1 i-1

i-1

0 if 2r < 1/2

1 if 2r < D (3-bit comparison)

1 if 2r 1/2 and q = 0 if 2r = D (3-bit comparison)

1 if 2r > D (

iq = ≥

3-bit comparison)

⎧⎪⎪⎪⎪⎪ ⎧⎪⎪ ⎪⎪ ⎪⎨ ⎪⎪⎪ ⎨⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎩⎩

 The 3-bit comparison is done on the most significant fractional bits.

 The algorithm can be easily modified for signed numbers as follows:

i-1 i i-1

i-1

0 if 2r < 1/2 and r 2r

SS if 2r 1/2 if this is last q digit else

iq

=

≥

= i-1

1 i-1 i i-1 i+1 i

i-1

0 SS if 2r < D (3-bit comparison)

 = SS 0 if 2r = D (3-bit comparison) and r 2r , and r 2r

SS SS if 2r > D (3-bit comparison)
i iq q SSD SSD+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪ ⎧⎪⎨ ⎪⎪ ⎪⎪ ⎪⎪⎪ = − = −⎪ ⎨⎪⎪⎪⎪⎪⎩⎩

⎪⎪⎪⎪⎪⎪

 Where:

19

 SS is Sign(ri-1)*Sign(D).

 We can use only 2-bit comparison instead of 3-bit comparison if 2ri-1 and D are

positive as follows:

i-1 i i-1

i-1

0 if 2r < 1/2 and r 2r

1 if 2r 1/2 if this is last q digit else
iq

=

≥
=

i-1 i+1 i-1

1
i-1 i+1 i-1

10 if 2r D (2-bit comparison) and r 4r 2
 =

11 if 2r > D (2-bit comparison) and r 4r 3i i

D
q q

D+

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪ ⎧ ≤ = −⎪⎪ ⎪⎪⎪ ⎨⎪⎪ ⎪ = −⎪ ⎪⎪⎩⎪⎩

 Up to four dividend bits may be retired instead of 3 per iteration as follows:

i-1 i i-1

i-1

1 2

0 if 2r < 1/2 and r 2r

1 if 2r 1/2 if this is last q digit else

01
 =

i

i i i

q

qq q+ +

=

≥
=

i-1 i+2 i-1

i-1 i+2 i-1

1 if 2r D (2-bit comparison) and r 8r 3

100 if 2r > D (2-bit comparison) and r 8r 4

D

D

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪ ⎧ ≤ = −⎪⎪ ⎪⎪⎪ ⎨⎪⎪ ⎪ = −⎪ ⎪⎪⎩⎪⎩

 It is obvious that we need to compute 3D and -3D in order to run this algorithm

improvement [51].

 The proof of this algorithm is given in APPENDIX A.

20

1.1.2.3. Exponentiation

 Exponentiation is performed as a number of squaring and multiplication operations

depending on the length of the exponent. The algorithm is shown in Algorithm 1.1.

Algorithm 1.1: Exponentiation.

 Where:

 n: number of bits in the exponent E.

 E= en-1 en-2 … e2 e1 e0.

 ei: the i’th bit of E.

 The algorithm can be easily modified for modular exponentiation by replacing the

multiplication step in Algorithm 1.2 with a modular multiplication [16].

Objective:
Compute X=YE

Algorithm:
X=1.
For i=0 to n-1
 If ei = 1 Then X= X.Y
 Y=Y2
End

21

Algorithm 1.2: Modular Exponentiation.

Objective:
Compute X=YE Mod N

Algorithm:
X=1.
For i=0 to n-1
 If ei = 1 Then X= (X.Y) Mod N
 Y=(Y.Y) Mod N
End

22

1.1.2.4. Modular Multiplication

1.1.2.4.1. Triangle Addition Algorithm. Modular multiplication algorithms -for n-

word numbers- are mostly classified into the following two categories:

1. Division-after-multiplication: Here, an n-word by n-word multiplication is

performed first, then a 2n-word by n-word division is carried out. This method

requires 2n-word memory space to store intermediate results, but it does not

need many subtraction steps.

2. Division-during-multiplication: In this category, division residue subtraction

steps are interleaved with the multiplication addition steps and only (n+1)-word

memory space is needed. On the other hand, it requires n-word subtractions and

(n+1)-word by n-word division per residue calculation step.

 The modular multiplication with triangle addition algorithm is a new algorithm that

does not belong to any of the above categories [34]. It combines the advantages of the

other two approaches by having the same memory space requirement as division-during-

multiplication, and the same number of steps needed by the division-after-multiplication

category. It is a completely new algorithm in which the upper half triangle of the all

partial products is added up and its residue is calculated. Then the sum of the lower half

triangle of all partial products is added to the pre-calculated residue. Finally, the final

residue of the total result is calculated.

23

Assumptions and Notations

For (A × B mod N)

• A, B and N are n-word numbers satisfying 0 ≤ A, B < N.

• n ≤ β. Where β is the radix.

• 1

0
.n i

ii
δ δ β−

=
= ∑ Where δ can be A, B or N.

The Algorithm

The algorithm (shown in Algorithm 1.3) is based on the following formula [34]:

()()
,

1 1

mod . . mod

 . . mod . . mod

i j
i ji j

i j i j
i j i ji j n i j n

A B N A B N

A B N A B N

β

β β

+

+ +
+ ≥ − + < −

× =

= +

∑
∑ ∑

Algorithm 1.3: Triangle Addition Modular Multiplication.

1.1.2.4.2. Holger and Peter’s Interleaving Algorithm. In [16], modular

multiplication is done by interleaving the multiplication with the division. In

Algorithm 1.4, P plays the role of partial remainder in SRT division and partial product in

1
1

. . i j n
i ji j n

P A B β + − +
+ ≥ −

⇐∑

()1. modnP P Nβ −⇐

1
. . i j

i ji j n
P P A B β +

+ < −
⇐ +∑

modP P N⇐

24

multiplication where the algorithm adds partial product, subtract divisor multiple, and

shift left the result P.

Algorithm 1.4: Interleaving Modular Multiplication.

 The P correction step is required because an estimated value of q is used. The

estimate of q should be good enough to keep P from diverging during the calculations.

 In order to save time, carry save redundant representation of P is used – in which the

value of P is represented in two registers usually called SUM and CARRY.

 To estimate q, a parallel exhaustive search is used, in which the following

expression is performed in parallel for all values of q:

P -q 2k N

 Only few bits of P and -q 2k N are used in this estimation, twelve bits for radix 32 as

an example. According to [16], this method generally is very expensive in terms of

hardware, but may be acceptable for operands longer than 500 bits.

Objective:
Compute P=(A.B)mod N

Algorithm:
P=0
For i=n-1 downto 0
 q = estimate(P/N)
 P=2k P + ai B – 2k qN
End
P correction

Where:
 n: number of radix 2k words.
 ai: the i’th digit of the multiplier

25

1.1.2.4.3. Takagi’s Radix-4 Algorithm. Takagi [35] has presented a fast Radix-4,

division-during-multiplication, modular multiplication algorithm. In this algorithm,

operands and partial products are represented in redundant formats and the intermediate

results are stored in more redundant format to reduce the number of additions/subtractions

required. There is only one time-consuming, carry propagation step at the end of the

algorithm. The algorithm calculates P=A.B (mod N), and uses the following recurrence:

1: 4. . 4. .j j j jP P b A c N+= + −
)

 Where:

• N: n-bit binary number, 2n-1 ≤ N <2n.

• A: (n+1)-digit redundant binary number, -N < A < N.

• B: (n+1)- digit redundant binary number, -N < B < N.

• P: (n+1)- digit redundant binary number, -N < P < N.

• $ jb : The i’th digit of the recoded B (multiplier). It depends only on five digits of

B (b2j+1 down to b2j-3).

• jc : used for residual calculation, {2, 1,0,1, 2}jc ∈ .

 The recoded multiplier B
)

 is a n(+1)
2
⎢ ⎥
⎢ ⎥⎣ ⎦

– digit radix-4 signed digit number that can

be obtained using TABLE 1.5 where uj, tj are intermediate temporary values. A recoding

example is shown in Figure 1.4.

26

TABLE 1.5: Multiplier Recoding Rule.

jb
)

 uj-1
tj

1 0 1

uj, tj 2 × 2 1

 b2j
b2j+1

1 0 1 1 2 1 0

1 1 ,1 10, 2 / 1 ,2 0, 1 0 1 0 1

0 0, 1 0,0 0,1 1 0 1 2

1 0,1 11, 2 /0,2 1, 1 2 1 2 ×

Stage 1 Stage 2

0 1 0 1 1 0 B 0 0 1 B
0 1 0 0 0 (0) u
1 1 2 0 1 t
1 2 2 0 1 B

)

Figure 1.4: Multiplier recoding example.

1 b2j-1 is nonnegative/otherwise

27

 Choice of jc based on the following:

j

j

j

j

2 if top(R) < -top(6.N)
1 if -top(6.N) top(R) < -top(2.N)
0 if -top(2.N) top(R) < top(2.N):
1 if top(2.N) top(R) < top(6.N)
2 if

jc
≤
≤=
≤

j top(R) top(6.N)

⎧
⎪
⎪⎪
⎨
⎪
⎪

≥⎪⎩

 Top means the most significant 4 digits of N, top 5 digits of (2.N), the top 6 digits of

(6.N), or 8 digits of R [32] [35] [36]. In other words, left pad N, 2N, and 6N with zeros to

make them (n+4)-digits numbers. Then the comparison is carried out on the most

significant eight bits of them as illustrated in Figure 1.5. The algorithm steps are shown in

Algorithm 1.5.

n+4 n+3 n+2 n+1 N n-1 n-2 n-3 … 2 1
 N
 2N
 6N

 Rj

Figure 1.5: Illustration of the compared bits.

Algorithm 1.5: Takagi's Radix-4Modular Multiplication.

$

n/2 +1

jj j+1

j j j

-1

Step 1: P := 0

Step 2: for j= n/2 down to -1

 R = 4.P +b .A

 P = R -4.c .N

Step 3: P=P /4

⎢ ⎥⎣ ⎦

⎢ ⎥⎣ ⎦

28

 Where:

 Rj is (n+4)-digit RBN (Residue Binary Number) and $
1: 4. .jj jR P b A+= +

1.1.2.4.4. Montgomery’s Algorithm. Montgomery [39] came up with an elegant

way to calculate the modular multiplication. The idea is to transfer the problem to another

domain which will be referred to as the Montgomery domain. The modulo multiplication

in the Montgomery domain is made easier and faster.

 It is required to compute A·B mod N, where A, B, and N are n-bit numbers with

0< A, B < N, and N being an odd number. First the operands A and B are mapped into the

Montgomery domain where A is mapped into modA AR N= and B is mapped into

modB BR N= where R=2n. The two mapped numbers A and B are presented to the

Montgomery product procedure _ Pr (,)Mon o A B . The algorithm requires the calculation

of R-1 and Ń where R·R-1 mod N =1 and R·R-1-N·Ń =1. The calculation of Ń and the

transformation to and form the Montgomery domain are time consuming steps. However,

this cost is tolerable for modulo exponentiation (XE mod N) where modulo multiplication

is performed repeatedly. Hence, transformation to Montgomery domain is performed once

at the beginning, and then the result of the modulo exponentiation operation is

transformed back form the Montgomery domain at the end [6].

 Modifications to Montgomery algorithm were made by V.Bunimov et al [49], where

the original operands are fed directly to the algorithm as _ Pr (,)Mon o A B P= while the

29

second pass will be for _ Pr (,)Mon o P Pℜ = where 2 modR Nℜ = . The steps are

shown in Algorithm 1.6.

Algorithm 1.6: Montgomery Modular Multiplication Algorithm.

 Keeping in mind that adding multiple of the modulus (N) does not affect the final

result and since N is an odd number, the result of the first line of the for loop is always

even. Therefore, the division in the second line of the for loop will have no remainder. By

going through the first pass, the algorithm would have performed division by R = 2n, i.e.,

T= (A×B/R) mod N. This is why we need to run the algorithm for a second time with T

and R2 as operands. The output of the second pass will be

P= (R2×T/R) mod N = [R (A×B/R)] mod N = (A×B) mod N.

 The only time consuming step in this version is the computation of 2 modR Nℜ =

 [6] [39] [49]. A more detailed description on versions of Montgomery algorithm is given

in page 57.

Objective:
Compute Mon_Pro(A,B)

Algorithm:
T=0
For i=0 to n-1
 T= T + ai × B + t0 × N
 T = T / 2
If T ≥N then T = T –N

Where:
 ai is the i'th bit of A and t0 is the LSB of T.

30

1.1.2.5. Synchronous and Asynchronous Circuits

1.1.2.5.1. Clocked synchronous circuits. Synchronous circuits generally use a

common global clock. It is quite simple to design circuits using synchronous logic,

because it is commonly understood and used. Moreover, clocked-logic parts are widely

available in the market and there is no timing hazards associated with it.

 Synchronous systems performance follows the worst-case behavior and suffers from

clock skew problems that limit the clock speed. Replacing any system module will require

complex and costly timing analysis. While asynchronous circuit module are activated and

consume power only upon request, synchronous circuit module, however, dissipate power

even if not active since they are regularly clocked (charged and discharged) [8] [23] [48].

1.1.2.5.2. Event-driven asynchronous circuits. These circuits use a request-

Acknowledge handshaking protocol rather than a global clock signal. For such systems,

various modulus act in an independent manner based on local events and the system

overall speed performance follows the average-case behavior. Overall system speed is

improved by replacing any module with a faster one without any need for timing analysis

since they do not use a global clock. Using CMOS technology for implementation, power

dissipation of asynchronous systems is less since only active modules will consume

power.

31

 On the other hand, it is more difficult to design asynchronous modules since they

are subject to timing hazards and signal races. Asynchronous circuit modules generally

require more silicon area than their synchronous components [8] [23] [48].

 For controllers, event-driven transition signaling is based on signal transitions

(events). All signal transitions have the same meaning and there is no distinguishing

between rising or falling transactions, which might double the speed over clocked logic.

The following components are typically employed in event-driven based controllers:

1. C-Element: C-Element performs ANDING of events where an event is

generated at the output only if events are detected on all of the input ports. It is

assumed that no simultaneous events may occur at the inputs of a C-Element

 [29] [30].

2. Merge Element: Merge element performs ORING of events in which an event

on the output is generated if an event occurs on any of its two input ports. It is

assumed that no simultaneous events may occur at the inputs of a

Merge-Element [29] [30].

 □

 32

CHAPTER 2

DESIGN AND MODELING OF ASYNCHRONOUS

MODULO MULTIPLIER

This work investigates the use of asynchronous techniques for the design of efficient

modulo multipliers. With the large size operands commonly used in cryptosystems, using

array or parallel multipliers would require prohibitively large areas. Instead, sequential

multipliers are employed in this work. Since sequential multipliers use repeated add and

shift operations, an asynchronous implementation can significantly improve the speed at a

modest increase in area. For k-bit adders, the speed of an asynchronous adder is O (Log k)

on the average [14] compared to the O (k) speed of carry-propagate adders. Asynchronous

event logic based on transition signaling is used, where signal transitions are used as

control events [21].

 The multiplication process consists of a number of add and shift operations with

addition requiring much more time than the shift operation. In addition to using an

asynchronous adder with O (Log k) average speed [1], a number of other measures were

adopted to further improve the overall speed of the system. For one, the developed

algorithm uses radix-4 system, which retires two bits per iteration instead of one. For

another, multiplier recoding as a signed-digit number [4] is used to allow skipping over

chains of zeros as well as chains of ones which results in a considerable reduction in the

number of required add operations, and hence a significant speed improvement.

33

2.1. DESCRIPTION OF THE ASYNCHRONOUS ALGORITHM

It is required to compute P =X×Y mod N, where the modulus N, the multiplicand X and

the multiplier Y are k-bit numbers. Typically, N is a very large odd number, i.e., generally

Nk-1 = N0 = 1. The developed algorithm uses radix-4 system, but may be extended to

higher radixes as well. In addition, a Booth-like recoding of the multiplier (Y) into an

equivalent signed digit representation is used. Such recoding increases the number of 0s

and reduces the number of 1s and -1s. This reduces the number of required add/subtract

operations thus improving the overall speed. The overall procedure is given in

Algorithm 2.1 and consists of four major steps:

a. Initialization

b. Recoding and adding

c. Scaling

d. Correction

34

Algorithm 2.1: Asynchronous Modulo Multiplication.

a. Initialization:
 P(k+4 bits) 0 where k is the number of bits in N.
 Left pad Y by two bits, i.e., Yk+1= Yk=0.
 Compute (N-X), 3N and 5N. i=k+1

b. Recoding and Adding:
 WHILE i >0
 { P 4P;
 CASE Pk+2 Yi Yi-1 Yi-2 IS
 { X000, X111 : skip
 0001, 0010 : P P-(N-X)
 0011 : P P-2(N-X)
 0100 : P P-2X
 0110, 0101 : P P-X

 1110, 1101 : P P+(N-X)
 1100 : P P+2(N-X)
 1011 : P P+2X
 1001, 1010 : P P+X
 }

c. Scaling:
 CASE Pk+2 Pk+1 Pk Pk-1 Nk-2 IS
 { 000XX, 111XX : skip
 001XX : P P-2N
 010X1 : P P-3N
 010X0, 011X1 : P P-4N
 01100 : P P-5N
 01110 : P P-6N

 110XX : P P+2N
 101X1 : P P+3N
 101X0, 100X1 : P P+4N
 10010 : P P+5N
 10000 : P P+6N
 }
 i=i-2
 }

d. Correction:
 WHILE P>0
 { P P-N
 }
 P P+N

35

2.1.1. Initialization Step

In this step, the partial product register is cleared and the values required throughout the

algorithm are computed. These values are (N-X) which is used in the recoding step, 3N

and 5N that are used in the scaling step. Then the partial product accumulator -register P-

is cleared again.

2.1.2. The Recoding And Adding Step

The algorithm scans one multiplier digit (2bits) plus one look-ahead bit from left-to-right-

every iteration. Digit recoding is based on TABLE 2.1.

 To compute P = X×Y mod N, the product register P is initially left padded with a

total of four bits. Three bits to accommodate the sign and the left shift operation by one

digit (2bits) and the fourth is needed because the multiple 6N is needed in the scaling step.

For proper recoding, the multiplier is also left padded with two Zeros. After the

initialization step, the proper multiple of X is added or subtracted from P based on the

value of the recoded multiplier digit and the sign of P, i.e., Pk+4. It should be noted that

instead of subtracting/adding X, (N-X) may be equivalently added/subtracted. To reduce

the chance of overflow, the performed operation, i.e., adding X or equivalently subtracting

(N-X), is chosen to oppose the current sign of P. For example, according to TABLE 2.1, if

yi yi-1 yi-2=001 then X should be added to P. In this case, if P is negative, we add X to P,

but if P is positive we subtract (N-X) from P. This requires pre-computation and storage

of (N-X).

36

TABLE 2.1: Left-to-Right Recoding.

Scanned Multiplier Digit

yi yi-1

Look Ahead Bit

yi-2
Action

00 0 Shift 2-bits

00 1 +1 X; Shift 2-bits

01 0 +1 X; Shift 2-bits

01 1 +2 X; Shift 2-bits

10 0 -2 X; Shift 2-bits

10 1 -1 X; Shift 2-bits

11 0 -1 X; Shift 2-bits

11 1 Shift 2-bits

37

2.1.3. Scaling Step

The scaling step subtracts/adds a proper multiple of N such that the three most significant

bits of P are guaranteed to have the same value either all 0s for positive values or all 1s

for negative ones. This step is necessary to prevent overflow after the left shift operation

(i.e., P = 4P). The selected multiple (jN) should satisfy the following inequality for all

possible values of P and N.

-2k ≤ P-jN < 2k

 Extreme values of j are determined by the two corner points:

1. Maximum (P)-j Minimum (N).

2. Minimum (P)-j Maximum (N).

 To determine the proper multiple (j) of N that should be subtracted/added from/to P,

the four most significant bits of P (Pk+2 Pk+1 Pk Pk-1) and the two most significant bits of N

(Nk-1 Nk-2) are considered. Since Nk-1 is assumed to be always 1, only Nk-2 need to be

considered. Based on the values of these bits, the algorithm determines the proper N

multiple to be subtracted/added from/to P such that P can be expressed in only k bits.

 TABLE 2.2 shows the detailed analysis of this problem for positive values of P. For

example, in the fifth row where Pk+2 Pk+1 Pk Pk-1 = 1100 and Nk-2 =0, five is the only

multiple of N that keeps P in k bits after performing P-5N for all possible values of P and

N. Similar analysis is applied for negative values of P.

38

TABLE 2.2: Extreme Cases with the Proper Multiple on N.

Pk+2 Pk+1 Pk Pk-1 Nk-2
Maximum P-

j Minimum N

Minimum P-

j Maximum N
j

0 0 1 × ×
2k+1-1-2×(2k-1+1)

=2k-3

2k-2×(2k-1)

=-2k+2
2

0 1 0 × 0
2k+2-2k-1-4×(2k-1+1)

=2k-5

2k+1-4×(2k-2k-2-1)

=-2k+4
4

0 1 0 × 1
2k+2-2k-1-3×(2k-1+2k-2+1)

=3×2k-2-4

2k+1-3×(2k-1)

=-2k+3
3

0 1 1 × 1
2k+2-1-4×(2k-1+2k-2+1)

=2k-5

2k+12k -4×(2k-1)

=-2k+4
4

0 1 1 0 0
2k+2-2k-1-1-5×(2k-1+1)

=2k-6

2k+12k -5×(2k-2k-2-1)

=-3×2k-2+5
5

0 1 1 1 0
2k+2-1-6×(2k-1+1)

=2k-7

2k+1+2k+2k-1-6×(2k-2k-2-1)

=-2k+6
6

39

2.1.4. Correction Step

After all k/2 iterations are performed, the resulting value of P may need correction. The

correction step is guaranteed to require no more than one addition or two subtractions,

since the final P value coming out of the scaling step is a k-bit number and N is a k-bit

number. The general data flow of the algorithm is as illustrated in Figure 2.1.

Initialization

Shift, Recode & Select

Add & Scale

Correction

Next Y digit

Figure 2.1: Modular Multiplication Data Flowchart.

40

2.1.5. Illustrative Example

Compute (9×11) Mod 13.

initialization X=1001, Y=001011, N=1101, i=5,(N-X)=0100,

 3N=100111, 5N=10000001, and P= 0000 0000.

Recoding P=P-(N-X)

 P=1111 1100

Scaling Skip

 i=3

Shifting P=1111 0000

Recoding P=P+(N-X)

 P=1111 0100

Scaling Skip

 i=1

Shifting P=1101 0000

Recoding P=P+(N-X)

 P=1101 0100

Scaling P=P+3N

 P=1111 1011

 False

Correct P=P+N

 P=0000 1000 =8

41

2.2. DESIGN ISSUES

The adopted asynchronous system implementation of the above algorithm is based on

event control logic [19]. This implementation was modeled using VHDL where the select

module was used to implement decisions (IF statements) and Loops were implemented

using a merge element with the loop condition checked through a select module [19] as

shown in Figure 2.2.

Merge

Processing

Select
T .

F

Loop Condition

Start Loop

Figure 2.2: Loop Implementation.

42

 For area efficiency, counters and registers were implemented as clocked

synchronous elements, i.e., it is a globally asynchronous locally synchronous design. The

local clock input of a register (counter) receives a single clock pulse whenever a signal

event is received at the input request line. This is achieved using an edge detector and a

one shot circuitry as shown in Figure 2.3.

 Although all intermediate results are (k+3) bits or less including the sign, 6N and 5N

might need (k+4) bits. Therefore, the width of registers and adder is chosen to be

(k+4) bits, but input interfaces need only to be k-bit wide.

Edge Detector & One
Shot Register/Counter

Matching Delay

Due to request falling
event

Due to request rising
event

Two requests

Acknowledge

Figure 2.3: Clock Pulse Generation for Registers/Counter.

43

 The design assumes that the most significant (kth) bit of N is one. Therefore, in case

of smaller values of N, N should be shifted left to be a k-bit number and the multiplicand

X should also be shifted left by the same number of bits. In this case, the final result

should to be corrected by shifting it right by the same number of bits. This can be seen

from the following equation:

P = (X×Y) mod N P×2m = (X×Y×2m) mod (N×2m)

 For example, (3×5) mod 7 =1 implies that (3×5×8) mod (7×8) =8 and visa versa.

2.2.1. Design Data Flow

The data path in Figure 2.4 consists of seven (k+4)-bit registers, one (Log k)-bit counter

and one (k+4)-bit adder. The adder is capable of performing (A+B), (B-A) and (A-B)

operations. The operations to be performed are P±X, P±2X, P±(N-X), P±2(N-X), P+N,

P±2N, P±3N, P±4N, P±5N, P±6N and N+2N. With these, we need multiplexers at both

inputs of the adder where one of the multiplexers needs only to select between P and N.

For symmetry and delay reasons, the values are distributed between the two multiplexers.

 The registers 3N, 5N and N-X (later designated as NmX) are loaded only once during

the initialization phase, therefore they are not connected directly to the adder’s output.

This is to speed up loading register P, which occurs in all states of the design.

 Since we are using synchronous modules, all control signals (Load/shift, Clear,

Add/Sub) are level, not event, signals.

44

Figure 2.4: Asynchronous Modulo Multiplier Hardware Data Flow.

45

2.2.2. Controller Design

The design contains eight states, the first four states are initialization states, then the

algorithm loops through three states; namely the shift, add and scale. The eighth state is

for correction. Figure 2.5 shows the state diagram of the design.

 The controller states are implemented using three synchronous D-Flip-Flops with

local clock generation. These three Flip-Flops will be referred to as the “state register”.

The start signal causes state register to be cleared while the signals S1, S2, S3, S4, S5, S6,

S7 and Loop activate state transitions between various states. Data stored in the state

register represents the state variable designating the current state.

 Load/shift control inputs of the registers and load/decrement input of the counter are

controlled based on the value of current state variables. Request events, which initiate a

particular operation, are generated when certain conditions or events are satisfied in a

given state. A description of what is performed in each state is detailed below.

46

State 0
(N-X)

State 1
3N

State 2
5N

State 3
CLR P

State 4
Shift

State 5
Recode &

Add

State 6
Scale

S1

S2

S3

S4
S5

S6

State 7
Correct

i=0
S7

i>0
Loop

Start

Done

Figure 2.5: Asynchronous Modulo Multiplier State Diagram.

47

2.2.2.1. Computing N-X (State 0)

A start signal clears the state register to 0 which generates requests to load initial values in

registers X, Y, N and the counter i (referred to later as Cntr). Then;

• Acknowledgments from registers X and N generate a request for the adder to

compute (N-X)

• The adder’s acknowledgment signal is used as a request for P to load the

computed result (N-X).

• Acknowledgment from register P requests the register NmX to load the value of

register P.

• The acknowledgments from registers Y, NmX and Cntr cause the state register

value to change to 1.

 Figure 2.6 shows the data flow in State 0.

Req

A

IA

IB

Cin Sum

Reg

L

A
IO

R
X

(N-X)

Req_Adder

C_NX

AckXAckN

MuxA(X)
MuxB(N)

Sub

Reg

L

A
IO

R
NmX

Reg

L

A
IO

R
N

Reg

L

A
IO

R
Y

Cntr

R

A
IO

L
C

Reg

L

A
IO

R
P

C

C_S0o

AckY
AckC

S1

1111

0 1

1
C_YC

L: Load
R: Reset
A: Acknowledge
I: Input
O: Output

Figure 2.6: State 0, Computing N-X.

48

2.2.2.2. Computing 3N (State 1)

Figure 2.7 shows the date flow of State 1 as follows:

• If the present State is 1, a request is generated for the adder to compute N+2N.

• Adder’s acknowledgment requests register P to load the result (3N).

• Acknowledgment from register P requests register 3N to copy register P’s value.

• Acknowledgment from register 3N causes a transaction to State 2.

L: Load
R: Reset
A: Acknowledge
I: Input
O: Output

Reg

L

A
IO

R
P

C

Reg

L

A
IO

R
N3

3N

MuxA(2N)
MuxB(N)

Add

S2

Req

A

IA

IB

Cin S

0 1

1

Figure 2.7: State 1, Computing 3N.

49

2.2.2.3. Computing 5N (State 2)

The data flow of this state is shown in Figure 2.8 and can be described as follows:

• Once the state register value changes to two, the adder is requested to compute

P+2N –where register P contains the previous value, which is 3N.

• Acknowledgment from the adder requests the register P to load the result (5N).

• Acknowledgment from register P’s requests register 5N to copy register P’s

value.

• Acknowledgment from register 5N changes the state register value to three.

L: Load
R: Reset
A: Acknowledge
I: Input
O: Output

Reg

L

A
IO

R
P

C

Reg

L

A
IO

R
N5

5N

MuxA(2N)
MuxB(p)

Add

S3

Req

A

IA

IB

Cin S

0

1

1

Figure 2.8: State2, Computing 5N.

50

2.2.2.4. Clear Register P (State 3)

This is the last state in the initialization phase. As Figure 2.9 shows, In State 3, register P

is cleared. The acknowledgment from register P changes the state register value to four.

CLR P

S4

Reg

L

A
IO

R
P

C

1 x

L: Load
R: Reset
A: Acknowledge
I: Input
O: Output

Figure 2.9: State3, Clearing P.

2.2.2.5. Shift Left P and Y (State 4)

The loop starts with state four. A change on state register value to four, requests the

registers P and Y to be shifted left by two bits. Acknowledgments from register P and Y

changes the state register value to five. Figure 2.10 shows the data flow digram of State 4.

51

Reg

L

A
IO

R
Y

Shift

C_PY

S5

Reg

L

A
IO

R
P

C

0 0
0

L: Load
R: Reset
A: Acknowledge
I: Input
O: Output

Figure 2.10: State 4, Shifting P and Y.

2.2.2.6. Computing Partial Product (State 5)

In State 5, a select module is requested to check if the three most significant bits of Y are

identical. If they are, State 5 is exit, otherwise the adder is requested to perform any of

P±X, P±2X, P±(N-X) or P±2(N-X) operations and its acknowledgment requests the

register P to load the result. After register P’s acknowledgment, State 6 is triggered. This

is outlined in Figure 2.11.

52

T
F

Y2=Y1=Y0

SelS5

Reg

L

A
IO

R
P

C

0 1

Recode

M2

S6

Req

A

IA

IB

Cin S

L: Load
R: Reset
A: Acknowledge
I: Input
O: Output

Figure 2.11: State 5, Computing Partial Products.

2.2.2.7. Scaling Partial Product (State 6)

In State 6, a select module is requested to check if the three most significant bits of P are

identical. If they are, the loop select module is requested, otherwise the adder is requested

to perform any of P±2N, P±3N, P±4N, P±5N or P±6N operations and its acknowledgment

requests the register P to load the result. After that, register P’s acknowledgment requests

the loop select module. The loop select module requests Cntr to decrement if Cntr’s value

53

is greater than zero and then Cntr’s acknowledgment triggers State 4. Otherwise, if Cntr’s

value is zero, State 7 is triggered. The date flow of this state is shown in Figure 2.12.

Scale

M3

T F i>0SelLP

S7

Reg

L

A
IO

R
P

C
0 1

Req

A

IA

IB

Cin S

Cntr

R

A
IO

L
C

T F Ps=Pk+1=Pk
SelS6

0

L: Load
R: Reset
A: Acknowledge
I: Input
O: Output

Figure 2.12: State 6, Scaling & Loop Condition Checking.

2.2.2.8. Correction (State 7)

In State 7, the adder is requested to perform P±N. Then, and its acknowledgment requests

a select module to check if the sign of the result is negative and the sign of register P is

positive. If true, the done signal is brought high. Otherwise, register P is requested to load

the result and its acknowledgment requests the adder again as far as the done signal is

54

low. If the sign bit of register P is zero at the time of register P’s acknowledgment the

done signal is brought high. The maximum number of adder requests in this state is two as

mentioned in section 2.1.4. The data flow of this state is shown in Figure 2.13.

Req

A

IA

IB

Cin S

Reg

L

A
IO

R
P

C

0 1

Correct

M5

T F
AdderSign=1

& Ps=0

SelS7

M4

And

Done=0

Ps=0

MuxA(N)
MuxB(P)

PsB

And

L: Load
R: Reset
A: Acknowledge
I: Input
O: Output

Figure 2.13: State 7, Correction.

55

2.3. ALGORITHM COMPLEXITY

2.3.1. Hardware Complexity

To reduce the hardware area, clocked asynchronous elements are used. The scaling step

reduces the register width by a factor of two at the expense of an extra addition step per

iteration. A one bit register is used as a hardware complexity reference and its hardware

cost is assumed to be λ. Accordingly, the overall hardware (area) complexity consists of:

• Area cost of eight k-bit registers is 8k λ

• Area cost of a k-bit asynchronous adder is 3 k λ

2.3.2. Time Complexity

Reducing the overall time and area complexity of modulo multiplication operation is one

of the main purposes of the algorithm. The use of radix-4 reduces the number of iteration

by factor of two, but we have two additions per iteration each is performed 3/4 of the time

on average.

 On the other hand, the use of an asynchronous adder reduces the average rippling to

O(log2(k)). The cost of O(log k) can be expressed [12] [40]as α log k, where ½ < α <2.

 Assuming v to be the delay of a two input gate, the average case delay is given by:

56

¾× α k log2(k) v

 Accordingly, the total area-delay Cost will approximately be:

33/4 α v λ k2 log2(k) ≈ 8×α v λ k2 log2(k)

 □

 57

CHAPTER 3

MONTGOMERY MULTIPLIER

(A COMPLETE SOLUTION)

This work investigates the use of a four-to-two compressor for the design of efficient

modulo multipliers. With the large size operands commonly used in cryptosystems, using

array or parallel multipliers would require prohibitively large area. Instead, sequential

multipliers are employed in this work. Since sequential multipliers use repeated add and

shift operations, a Compressor implementation can significantly improve the speed at a

modest increase in area. For compressors, the speed of the addition is fixed regardless of

the length of the operands. This comes at the cost of having the result in a redundant

format.

 The four-to-two compressor used in this design is different from the conventional

four-to-two compressor. It is constructed from two full-adders and one half-adder as

shown in Figure 3.1. It has a total of four inputs and two outputs with two carry-ins and

two carry-outs. This particular design of the four-to-two compressor allows us to control

the output of the least two bits and make them zero after every addition step as detailed in

section 3.3.2.

58

FA

FA

SC

HA

Ci1

Co2

SC

Ci2

Co1

jN± iX±

FA

FA

Ci1

SC

Co1

Conventional 4-2 Compressor Modified 4-2 Compressor

Figure 3.1: Four-to-Two Compressor Structure.

 Some measures were adopted to further improve the overall system speed. For one,

the developed algorithm uses radix-4 -which retires two bits per iteration instead of one

and multiplier recoding into singed-digit format [4] is used to avoid computing multiple

of operands that are not multiple of two.

59

3.1. MONTGOMERY’S MODULAR MULTIPLICATION

P. L. Montgomery introduces a new method of computing modular multiplication without

the need for quotient determination [39]. In comparison to conventional SRT division

method, Montgomery’s method needs considerable pre and post processing. However,

this added processing can be neglected in case of repeated modular multiplication as the

case of modular exponentiation.

3.1.1. Algorithm Parameters and Notations

For better understanding of the algorithm, we start by reviewing the notations used in the

algorithm [6] [45].

• Modulus N is a k-bit difficult to factor odd integer.

• R=2k.

• R-1 is the multiplicative inverse of R mod N (i.e., (R-1×R)mod N =1).

• (N’ = (R×R-1-1)/N) ≡ (R× R-1- N×N’=1) ≡ (N’=-N-1 mod R)

• The N-residue of A is defined as A =(A×R)mod N

• The N-residue of B is defined as B =(B×R)mod N

• The Montgomery product of A and B is defined as follows:

C = (A × B × R-1) mod N.

 = (A×R×B×R× R-1) mod N.

60

 = (C×R) mod N

 = the N-residue of C.

 Where: C=(A×B)

 The new N-residue domain {(A×R) mod N | 0≤A<N} (referred to later as

Montgomery’s domain) contains all the values between 0 and (N-1) [6]. Therefore, it is

one-to-one mapping between its elements and integers between 0 and (N-1). TABLE 3.1

shows the mapping between integers from zero to 12 and the 13-residue system where:

• N=13.

• R=24=16.

61

TABLE 3.1: Mapping Integers to 13-Residue Class.

A A =(A×16)mod13

0 0

1 3

2 6

3 9

4 12

5 2

6 5

7 8

8 11

9 1

10 4

11 7

12 10

62

3.1.2. Algorithm Features.

Montgomery algorithm (Algorithm 3.1) requires the computation of N’ and R-1. These are

time consuming operations and can be completed using Euclidean algorithm [3]. The

other two time consuming tasks are the conversion to and from the Montgomery

domain [6].

 On the other hand, computations in the Montgomery domain are much faster since

division is by R and the multiplication is modulo R, where R is a power of two number.

 The result of Montgomery’s multiplication is represented in Montgomery’s domain.

To convert it back to the ordinary domain, the result is fed back to the algorithm with one

as the second operand.

Algorithm 3.1: Montgomry's Multiplication.

Objective:
Compute C =MonPro(A , B)

Algorithm:
tmp1= A × B
tmp2=(tmp1×N’ mod R)×N
tmp3=(tmp1+tmp2)/R
IF tmp3≥N THEN
 {tmp3=tmp3-N
 }
C =tmp3.

63

3.1.2.1. Illustrative Example

 Let: N=13, k=4, R=2k=16, A=5 and B=3.

 Then: R-1=9, N’=11, Abar=2, and Bbar=9.

MonPro(2,9)

1. tmp1=9×2=18

2. tmp2=(18×11 mod 16) ×13=6×13=78

3. tmp3=[18+78]/16=6

4. return(6)

 Notice that as shown in TABLE 3.1, 6 in Montgomery domain corresponds to 2 in

normal domain which is the correct result. Using the same algorithm again with the result

(6) and 1 as operands, the result is converted back from the Montgomery domain.

 One can notice that N’ is needed only to make tmp1+tmp2 divisible by R.

Therefore, in case of binary interleaved modulo multiplication algorithm, the algorithm

can be modified to function without the need for computing N’ as shown in

Algorithm 3.2.

 The algorithm simply performs every binary multiplication step (add operation)

then checks the result, if found to be odd the modulus is added/subtracted to make it even.

Hence, the result is divisible by two, which is simply a shift right operation.

64

Algorithm 3.2: Modified Montgomery Multiplication.

 Since the algorithm introduces factor of
1

2k −

 or in general
1nr
−

 where r is the radix

and n is number of digits in the radix-r number, we can avoid the conversion from the

ordinary domain to Montgomery’s domain. To obtain the correct result, however, the

result of the multiplication should be passed to the algorithm again with 22k (or r2n in

general) as the second operand [45].

 Although there are many hardware implementations for Montgomery modular

multiplication [6] [13] [38] [45] [51] [54], none of them have implemented the pre and

post processing steps. In the following, we are going to show a complete design of

Montgomery modular multiplier that implements the main algorithm together with the

pre/post processing steps hence.

Objective:
Compute C =MonPro2(A , B)

Algorithm:
tmp=0
FOR i=0 to k-1 DO
{ tmp=tmp+ai×Bbar
 tmp=tmp+tmp0×N
 tmp=tmp/2
}
IF tmp≥N THEN
 {tmp=tmp-N
 }

C =tmp.

Where:
ai is the ith bit of A and tmp0 is the LSB of tmp

65

 First, we will start by showing the design of radix-4 Montgomery multiplier. Then,

a modification of the design will be made to enable it to perform the pre/post full modular

multiplication operation.

3.2. DESCRIPTION OF THE ALGORITHM

In Montgomery modulo multiplication, a multiple of the multiplicand is added to the

accumulator, and then a multiple of the modulus is subtracted to make the least significant

bit(s) zero. In this chapter, the use of a four-to-two compressor allows simultaneous

execution of these two operations. This comes at the expense of representing the result in

a redundant format in two registers SUM and CARRY as shown in Figure 3.2.

Four-to-Two Compressor

Sum

Carry

jN± iX±

Figure 3.2: Simultaneous Use of Modulus and Multiplicand.

 The algorithm uses an optimal technique to recode the multiplier to radix-4

signed-digit format. The use of radix-4 reduces the number of iterations by a factor of two

and avoids the need to pre-compute multiples of the multiplicand since the recoded digits

are 1, 2, and 4 –which are obtained by simple shift operation.

66

3.2.1. Approach

 The design uses a right shift approach. Therefore, to keep the adder and register

sizes at k-bit limit, modulus multiple must be chosen to make the least two bits of the

accumulator – which is represented by the SAM and CARRY registers – zero. The

multiplier is scanned from right-to-left and optimally recoded on-the-fly to allow proper

selection of the multiplicand multiple and the modulus multiple using the recoding

algorithm shown in TABLE 3.2. The least two significant bits of the SUM and CARRY

outputs are guaranteed to be zero hence a right shift operation can be safely performed.

After k/2 iterations, the Montgomery modular multiplication is over. However, since the

result could be any number between -2N and 2N, the correction step is only one

subtraction if the result is positive or a maximum of two additions if it is negative. Since

the result is stored in a redundant format, a carry propagate adder is required to add the

SUM and CARRY and identify the sign of the result. If instead of using a carry propagate

adder, the carry save adder is used repeatedly till CARRY become zero, a maximum of k/3

cycles (see APPENDIX C), and an average of log2(k) cycles to complete. The

Montgomery modular multiplication algorithm is shown in Algorithm 3.3.

3.2.2. Illustrative Example

This example illustrate the algorithm behavior in Montgomery multiplication phase

Example: Compute (3×8) Mod 13.

Let A=3 and B=8, from TABLE 3.1, we find the 13-residues of A and B to be:

67

 A =9

 B =11

Compute (9×11) MonPro 13.

a. Initialization:

 X=0000 1001, Y=0000 1011, N=0000 1101, i=3

 C=0000 0000, S=0000 0000.

b. Right Shift Loop:

 Right-Shift [C(0000 0000),S(0000 0000)] [C(0000 0000),S(0000 0000)]

 Add [N(0000 1101),C(0000 0000),S(0000 0000),-X(1111 0111)] [C(0001 0100),S(1111 0000)]

 i=2

 Right-Shift [C(0001 0100),S(1111 0000)] [C(0000 0101),S(1111 1100)]

 Add [(0000 0000),C(0000 0101),S(1111 1100),-X(1111 0111)] [C(0000 0100),S(1111 0100)]

 i=1

 Right-Shift [C(0000 0100),S(1111 0100)] [C(0000 0001),S(1111 1101)]

 Add [N(0000 1101),C(0000 0001),S(1111 1101),X(0000 1001)] [C(0100 0100),S(1101 0000)]

 i=0

d. Correction:

 Add [N(0000 1101), C(0100 0100),S(1101 0000),(0000 0000)] [C(0010 0000),S(0000 0001)]

 Add [-2N(1110 0110),C(0010 0000),S(0000 0001),(0000 0000)] [C(0000 0000),S(0000 0111)]

68

Done

From TABLE 3.1, we find that the result 7 maps to 11 in the integer domain, which is the

correct answer.

Algorithm 3.3: Montgory Modular Multiplication.

a. Initialization:
 Counter = k/2+1
 Clear the Sum and Carry registers
 Multiplier= Multiplier*4
b. Right shift Loop:
 While Counter >0
 { Right Shift (Multiplier, Sum, Carry).
 Add (Multiple of N, Carry, Sum, Multiple of X)
 Decrement Counter
 }
c. Correction:
 If (estimated Accumulator sign is positive)
 { Add(Multiple of N, Carry, Sum, 0)
 While Carry ≠ 0
 { Add(0, Sum, Carry, 0)
 }
 If (Accumulator sign is positive)
 { Return(Sum)
 }
 }
 While (estimated Accumulator sign is negative)
 { Add(Multiple of N, Carry, Sum, 0)
 While Carry ≠ 0
 { Add(0, Sum, Carry, 0)
 }
 }
 Return(Sum)

69

3.3. DESIGN ISSUES

3.3.1. An Optimal Radix-4 Right-To-Left Recoding Algorithm

In this algorithm, we use a tag bit (Tg) which is set initially to 0. In addition, the number

to be recoded is left padded with one bit (0) if it has even number of bits or two bits if it

has an odd number of bits. The number is then scanned from LSB to MSB with one look

ahead (left) bit. TABLE 3.2 illustrates the recoding mechanism.

TABLE 3.2: Radix 4 Optimal Recoding Algorithm.

OUT IN Case
No. Yi+1 Yi Tg Xi+2 Xi+1 Xi Tg

Note

1 0 0 0 × 0 0 0 In the middle of 0 series.
2 0 1 0 × 0 0 1 End of 1 series and starting 0 series.
3 0 1 0 × 0 1 0 1 between 0's.
4 1 0 0 0 0 1 1 End of 1 series and starting 0 series.

5 1 0 1 1 0 1 1
0 between 1 series and a single 1, so we
can’t make it 1. Instead we make it -1 to be
a beginning of 1 series.

6 1 0 0 0 1 0 0 1 between 0's.
7 1 0 1 1 1 0 0 End of 0 series and beginning of 1 series.

8 0 1 1 × 1 0 1
0 between 1 series and a single 1, so we
can’t make it 1. Instead we make it -1 to be
a beginning of 1 series.

9 0 1 1 × 1 1 0 End of 0 series and s beginning of 1 series.
10 0 0 1 × 1 1 1 In the middle of 1 series.

70

3.3.2. N-Multiple Selection For Shift Right Loop

A proper selection of N multiple to be subtracted/added to ensure that the least significant

two significant bits of the result are zero. This is essential for the design to only use k-bit

processing, e.g. k-bit addition. Yet another condition is needed for the modulus selection

criterion, that is the result in the accumulator after adding the selected multiple of

modulus and multiplicand should be contained in k + 2 bits. As a result, the accumulator

will have a k-bit number after right shifting by two bits. TABLE 3.3 shows how the

modulus multiple is selected. Whenever we have the choice of positive or negative

multiple of the modulus, the opposite sign of accumulator is selected. As an example,

assume the following:

 N=1001, X=1100

 Let’s assume that at some stage we have SUM=00111001 and CARRY=01001001.

 This makes the summation of the least significant two bits of SUM and CARRY

equals two (10). Since the least significant two bits of X equals zero (00), from the third

entry of TABLE 3.3 we have the choice of selecting ±2N. Since the estimated sign of the

accumulator (SUM+CARRY) is positive -2N is selected.

71

TABLE 3.3: Modulus Selection for Shift Right Loop.

N1:0 No X1:0 C1:0+S1:0 01 11
1 0 0 0 0
2 0 1 -1 1
3 0 2 ±2 ±2
4 0 3 1 -1
5 0 4 0 0
6 0 5 -1 1
7 0 6 ±2 ±2
8 1 0 -1 1
9 1 1 ±2 ±2

10 1 2 1 -1
11 1 3 0 0
12 1 4 -1 1
13 1 5 ±2 ±2
14 1 6 1 -1
15 2 0 ±2 ±2
16 2 1 1 -1
17 2 2 0 0
18 2 3 -1 1
19 2 4 ±2 ±2
20 2 5 1 -1
21 2 6 0 0
22 3 0 1 -1
23 3 1 0 0
24 3 2 -1 1
25 3 3 ±2 ±2
26 3 4 1 -1
27 3 5 0 0
28 3 6 -1 1

72

3.3.3. Data Path Design

4N2NN0

Mux N

2XX2N0

Mux X

4-to-2 Compressor

SumCarry

X Reg.N Reg. Y Reg.

/4×4

Mux
Sum

/4×4
Mux
Carry

Figure 3.3: Compressor Multiplier Data Path.

The data path of this design is shown in Figure 3.3 and the main components of the data

path are described as follows:

• Adder: A specially designed four-to-two compressor shown in Figure 3.4 is used

in this design. Proper selection of the modulus multiple is guarantees that the two

least significant bits of the result (SUM + CARRY) will be zero. This allows

shifting the result to right without needing another register to keep the lower half

of the result.

73

FA

FA

SCN X

HA

Ci1

Co2

SC

Ci2

Co1

FA

FA

SCN X
Ci1

S

Ci2

FA

FA

SCN X

Co2

SC

Co1

FA 0

C

FA

FA

SCN X

HA

Ci1

Co2

SC

Ci2

Co1

Figure 3.4: Four-to-Two Compressor.

• Multiplexers: The design has four multiplexers, one to select a proper multiple

of the modulus N (Multiplexer-N), and another is to select the proper multiple of

the multiplicand X (Multiplexer-X). The other two multiplexers are used to

generate a shifted value for the SUM and CARRY registers. Possible multiples of

N are N, 2N, 4N or 6N where 6N multiple is needed only during the shift left

loop –in which no multiple of X is needed-. Therefore, it can be obtained by

selecting 4N from multiplexer-N and 2N form multiplexer-X to avoid computing

a multiple of N that is not power of two. This implies that multiplexer-X should

get N and X as inputs, and gives 2N, X, 2X or zeros as output. Multiplexer-N

gets N as an input and gives N, 2N, 4N or zeros as output. Both multiplexers

have the capability of providing these values or their one’s complement simply

by XORing them with one. To get the two’s complement value of either of them,

one is fed to the first Carry-in of the adder. In case that the two’s complement is

needed on both multiplexers; one is fed to the second Carry-in of the adder.

• Registers: This design needs only five registers; three for the inputs multiplicand

(X), multiplier (Y) and modulus (N) and two for the accumulator represented in a

redundant format CARRY and SUM. While registers X and N are simple

74

registers, register Y needs the shift right by two bits capability. Yet the

accumulator registers (CARRY and SUM) are more complicated since they need

the capability of shifting two bits to the right or to the left. Furthermore, the

Carry register should have the capability of detecting Zero value in it. This is

essential to know that the carry rippling phase is over.

• Counter: The counter is used to control the number of loop iterations.

75

3.4. A COMPLETE HARDWARE IMPLEMENTATION FOR

MONTGOMERY MULTIPLICATION

The mechanism of making the least two bits zero and shifting the result right introduces

the factor
1

2k −

 to the result which is required by Montgomery multiplication algorithm.

However, in the pre/post phase, it is required to eliminate this factor to compute the

regular modulo multiplication result. Therefore, another loop is needed to eliminate this

factor by shifting the accumulator to the left and subtracting a proper multiple of the

modulus N to prevent overflow.

 To have the capability of performing the Montgomery multiplication together with

its pre and post calculation on the same hardware, the controller need one bit variable to

know if the current phase is a Montgomery multiplication or pre/post phase. In case of

pre/post phase, the shift-left loop stage of the algorithm will be executed. On the other

hand, during the Montgomery multiplication the algorithm will skip the shift-left phase as

shown in Figure 3.5. A complete description is shown in Algorithm 3.4.

76

3.4.1. Modulus Selection for Shift Left Loop

The idea of this step is to keep the result in a k-bit boundary. The two most significant bits

of both the accumulator and the modulus are inspected to determine the proper multiple of

the modulus to be added and the selected modulus multiple is always the opposite sign of

the accumulator’s. As shown in TABLE 3.4, there are cases where 6×N is needed. This

value is obtained by selecting 4×N and 2×N to two inputs of the compressor.

TABLE 3.4: Modulus Selection for Shift Left Loop.

Sign Pk+2:k+1 Nk-1:k-2 Selected N
+ 0 2 -1
+ 0 3 -1
+ 1 2 -2
+ 1 3 -2
+ 2 2 -4
+ 2 3 -2
+ 3 2 -6
+ 3 3 -4
- 0 2 1
- 0 3 1
- 1 2 2
- 1 3 2
- 2 2 4
- 2 3 2
- 3 2 6
- 3 3 4

77

3.4.2. Illustrative Example

This example illustrate the algorithm behavior in the pre/post phase

Compute (9×11) Mod 13.

a. Initialization:

 X=0000 1001, Y=0000 1011, N=0000 1101, i=3

 C=0000 0000, S=0000 0000.

b. Right Shift Loop:

 Right-Shift [C(0000 0000),S(0000 0000)] [C(0000 0000),S(0000 0000)]

 Add [N(0000 1101),C(0000 0000),S(0000 0000),-X(1111 0111)] [C(0001 0100),S(1111 0000)]

 i=2

 Right-Shift [C(0001 0100),S(1111 0000)] [C(0000 0101),S(1111 1100)]

 Add [(0000 0000),C(0000 0101),S(1111 1100),-X(1111 0111)] [C(0000 0100),S(1111 0100)]

 i=1

 Right-Shift [C(0000 0100),S(1111 0100)] [C(0000 0001),S(1111 1101)]

 Add [N(0000 1101),C(0000 0001),S(1111 1101),X(0000 1001)] [C(0100 0100),S(1101 0000)]

 i=0

c. Left-Shift Loop:

 Add [(0000 0000),C(0100 0100),S(1101 0000),(0000 0000)] [C(0000 0000),S(0001 0100)]

 i=3

78

 Add [-N(1111 0011), C(0000 0000),S(0001 0100),(0000 0000)] [C(1000 0000),S(1000 0111)]

 i=2

 Left-Shift [C(1000 0000),S(1000 0111)] [C(0000 0000),S(0001 1100)]

 Add [-N(1111 0011),C(0000 0000),S(0001 1100),(0000 0000)] [C(1000 0000),S(1000 1111)]

 i=1

 Left-Shift [C(1000 0000),S(1000 1111)] [C(0000 0000),S(0011 1100)]

 Add [-2N(1110 0110),C(0000 0000),S(0011 1100),(0000 0000)] [C(0010 0000),S(0000 0010)]

 i=0

d. Correction:

 Add [-N(1111 0011), C(0010 0000),S(0000 0010),(0000 0000)] [C(0000 0000),S(0000 1000)]

Done

79

Algorithm 3.4: A Complete Montgory Modular Multiplication.

a. Initialization:
 Counter = k/2+1
 Clear the Sum and Carry registers
 Multiplier= Multiplier*4
b. Right shift Loop:
 While Counter >0
 { Right Shift (Multiplier, Sum, Carry).
 Add (Multiple of N, Carry, Sum, Multiple of X)
 Decrement Counter
 }
c. Left Shift Loop:
 If MonPro=0 -- (i.e., Pre/Post processing phase)
 { Counter = K/2+1
 While Counter >0
 { Add (Multiple of N, Carry, Sum, Multiple of N)
 Decrement Counter
 If Counter >0
 { Left Shift (Sum, Carry)
 }
 }
 }
d. Correction:
 If (estimated Accumulator sign is positive)
 { Add(Multiple of N, Carry, Sum, 0)
 While Carry ≠ 0
 { Add(0, Sum, Carry, 0)
 }
 If (Accumulator sign is positive)
 { Return(Sum)
 }
 }
 While (estimated Accumulator sign is negative)
 { Add(Multiple of N, Carry, Sum, 0)
 While Carry ≠ 0
 { Add(0, Sum, Carry, 0)
 }
 }
 Return(Sum)

80

State0
Load(X,Y,N)

CLR(S,C)
Cntr=k

State1
Add(Ns,S,C,Xs)

Load(S,C)
Cntr--

State2
Add(0,S,C,0)

Load(S,C)
Cntr=k

State5
Add(-N,S,C,0)

Load(S,C)

State7
Add(N,S,C,0)

Load(S,C)

Done

State6
Add(0,S,C,0)

Load(S,C)

State8
Add(0,S,C,0)

Load(S,C) C/=0

C/=0

Cntr=0
Pre/Post Phase=1

Ps=0

C=0

C=0C=0

Cntr>0

Cntr=0
Ps=1 Ps=0

Ps=1

Ps=0Ps=0

Ps=1

State3
Add(Ns,S,C,Xs)

Load(S,C)
Cntr--

Cntr>0

Cntr=0

Cntr=0
Pre/Post Phase=1

Ps=1

Cntr=0
Pre/Post Phase=0

Ps= Estimated Sign of the result

Only during
Pre/Post Phase

Figure 3.5: Montgomery Modulo Multiplier State Diagram.

81

3.5. ALGORITHM COMPLEXITY

3.5.1. Hardware Complexity

The hardware complexity of the algorithm is as follows:

• Area cost for five registers is 5k λ

• Area cost for the capability of some registers to both shift right and left and

detecting zero is 2k λ

• Area cost of the k-bit compressor is 5 k λ

3.5.2. Time Complexity

In the case of repeated modulo multiplication the cost of states 2, and 3 (Figure 3.5)

becomes negligible. States zero and one need (k/2+1) clock cycles and after state one the

design branches. In this section, the best, average, and worst case number of clock cycles

is presented.

 The best case occurs when the result is positive and no rippling is required, one

clock cycle is needed for each of state five and state six. Therefore, the number of cycles

in the best case is:

((k/2+1)+2)

82

 In the worst case, we have negative result and it needs two correction steps.

Therefore, the negative branch is passed twice where state eight needs one clock cycle and

state nine needs maximum rippling time, which is k/3 cycles (see APPENDIX C). The

number of cycles in the worst case is:

((k/2+1)+2(k/3+1))

 On the average, we need 1½ correction steps, while rippling takes O(log2(k)) cycles.

As in [12], the maximum value of α for rippling is only one. Therefore, the number of

cycles on the average is:

((k/2+1)+ 1½ (log2(k)+1))

 The clock period is the worst case delay of the four-to-two compressor plus the

register loading time. For the four-to-two compressor used in this work, the worst

compressor delay is the delay of five XOR gates that is 10× v delay (see APPENDIX C),

where v is a 2-input gate delay.

 Thus the average area-delay cost will be:

(12k) λ ×10× v ((k/2+1)+ 1½ (log(k)+1))≅ (60k2+180 k log2(k)+300k) λ v

 □

 83

CHAPTER 4

TESTING OF THE FOUR-TO-TWO COMPRESSOR ARRAY

An Iterative Logic Array (ILA) is a logic array that is composed of combinational

modules (cells), connected in a regular manner (array). With large number of cells, ILAs

typically have large number of inputs. This makes the task of exhaustive testing of these

arrays quite prohibitive. The increased use of synthesis tools has caused internal

implementations of the ILAs to be quite abstract to the designer. Accordingly, test

methodologies for such synthesized hardware typically use functional fault models.

However, it is quite impractical to exhaustively test ILAs using conventional fault models

because of their huge number of inputs.

 Different fault models are used to test ILAs using C-testability [1] [10] [20] [28]

 [42]. Using the C-testability concept, the whole ILA can be tested with a fixed number of

test patterns regardless of size of the array.

 In this chapter, we will consider two fault models for ILAs. Then, a Built In Self

Test (BIST) methodology for the used four-to-two compressor ILA will be outlined. After

that, a practical example will be used to illustrate the used of C-testability on the

four-to-two compressor ILAs, and BIST for this ILA will be provided.

84

C-TESTABILITY FOR ITERATIVE LOGIC ARRAY

Iterative Logic Array (ILA) can be one or two dimensional. A one-dimensional ILA has

all of its cells connected in one row (or column). If the data flow in the ILA goes in one

direction, the system is known as unilateral ILA, otherwise, it is called bilateral ILA. In

two-dimensional ILAs, the cells are connected in rows and columns where cell Cij is the

cell in the ith row and jth column. ILAs are said to be testable if it is possible to detect any

faulty cell in the array [1].

4.1.1. Preliminaries

• Single Input Change (SIC): a given test sequence is called SIC if the Hamming

distance between consecutive test vectors is one. Any circuit can be designed to

be fully robustly testable with respect to stuck-open faults using SIC pairs

only [11].

• Variable Testability measure (VTM): “is the coefficient assigned to each bit of

the input and output variables of a given functional primitive, and is a separate

measure for each bit”. VTM for a bit is the minimum number of test vectors

needed to test this particular bit. It allows prediction of the number of test vectors

that are needed for a given primitive. Thus, VTM deals with the functional level

of abstraction, and can be considered in testing of data paths [28].

• An ILA is said to be C-testable if it can be tested with a constant number of test

vectors regardless of the array size [10] [20].

85

• An ILA is said to be O-testable (Optimal-testable) or M-testable

(Minimal-testable) if it can be tested with a minimum test set that is equivalent to

the minimum test set needed to test one cell. M-Testability can also be used for

ILA with non-identical cells and also for data paths (at the functional

level) [28] [42].

4.1.2. Circuit Hazards

Hazards can be classified into two categories; function and logic hazards.

• A circuit F is said to have a function hazard for input transition from A to C if

the following conditions are satisfied:

1. The circuit has to pass by the input state B in its transition from A to C.

2. F(A) = F(C) ≠ F(B).

• A circuit f is said to have a logic hazard for input transition from A to B if the

following conditions are satisfied:

1. F(A) = F(B).

2. There is no function hazard for the transition from A to B.

3. Due to timing skews and delays inside the circuit, glitch(es) appear at the

circuit output.

 Logic hazards are dynamic property of the circuit and they depend on the

propagation delays of various signals. Logic hazards can be avoided by using careful

design strategies. However, one can never avoid function hazards [11].

86

4.1.3. Test Invalidation

In sequential fault testing, a fault is detected by a sequence of two test vectors. An

initialization test vector and an excitation test vector. The initialization test vector

prepares the circuit nodes for fault excitation by the second test vector. Non-robust test

patterns, however, maybe invalidated due to time or delay skews. Test invalidation will

cause the target fault to escape detection. Therefore, robustness must be considered in

sequential fault test patterns [11] [41] [50].

4.1.4. Robustness

By reducing the Hamming distance between test-vectors, the probability of test

invalidation decreases. Therefore, if we use Single input Change (SIC), we will achieve

the highest robustness. SIC means that pairs for test pattern <Vi, Vj> are different only by

one bit [11] [41]. There are two levels of robustness:

1. Cell Level Robustness: The test pattern pair applied on a cell can not be

invalidated due to function hazards in the cell given that there are no glitches at

the cell inputs [11] [41].

2. Array Level Robustness: The inputs of a tested cell must not have any glitches

and the changes on the inputs of other fault free cells do not affect the

propagation of a fault to a primary output. Array level robustness can be

guaranteed if the following conditions are satisfied:

87

a) The inputs of the tested cell receive SIC without glitches through test

application cells (cells that affect the input of the tested cell).

b) The fault is propagated to primary output(s) through fault propagation cells

(cells that propagate the fault to primary output(s)) robustly [11] [41].

4.1.5. Fault Models For ILA

4.1.5.1. Cell Fault Model

 In cell fault model (CFM), we assume that at most one cell is at fault, and that the

fault does not convert the cell to a sequential one. The fault is also assumed to be

permanent and can affect the cell’s output in any manner [10] [27] [41].

 To test an ILA using CFM, all cells are exhaustively tested and the output of the

faulty cell is propagated to a primary output. The CFM does not require any knowledge of

the cell’s internal structure [10] [27].

 Using CFM, the lower limit of the number of test vectors to test an ILA is

(2m.(2n-1)) where m and n are the numbers of cell inputs and outputs, respectively.

 If sequential faults are considered, upon input change, every output might either

keep its previous value (due to the fault), or change its value. Therefore, the lower limit on

the number of test vectors to exhaustively test an ILA with sequential faults is

(2m.(2m-1).(2n-1)). This makes CFM unrealistic for testing sequential faults [11] [42].

88

4.1.5.2. Realistic Sequential Cell Fault Model

For CMOS technology, the assumption of only combinational faults of the CFM is

unrealistic, and sequential faults should be considered. These faults may be as transistor

stuck-open faults, gate delay faults, or path delay faults. Unlike combinational faults, each

sequential fault requires a pair of test vectors (an initialization vector, and a test vector) to

be detected. A fault model that considers these fault types is called a sequential Fault

Model (FM) [11] [42]. For a sequential fault model to be efficient it should satisfy the

following three conditions:

1. The FM should be comprehensive including CMOS stuck-open faults, but with

reasonable test set size.

2. Because of the increasing use of synthesis tools, the FM should be independent

of internal circuit implementation.

3. The FM should avoid test invalidation (robustness) [41].

 In realistic sequential cell fault model (RS-CFM) [11], it is assumed that at most one

cell is at fault, and that test application should contain all possible single input change

(SIC) pairs. In RS-CFM a fault is detected when the output of the faulty cell does not

change while it should in a fault-free cell. In addition, the faulty cell output(s) should be

propagated to primary output(s) [11].

 By using SIC in RS-CFM the first and third conditions are satisfied. The total

number of SIC pairs in m-input cell is (m.2m.(2n+1-2-n)/n) which is reasonably reduced

compared to the number of exhaustive test pattern pairs of (2m.(2m-1).(2n-1)). RS-CFM

89

requires no knowledge of the cell’s internal implementation. However, an important

assumption is that the cell design is free of logic hazards [11].

4.2. A BIST METHODOLOGY FOR ILA.

A Built-In Self-Test (BIST) structure allows a circuit to test itself. A BIST structure

consists of a Test Pattern Generator (TPG) and an Output Response Analyzer

(ORA) [25].

 In pseudo-exhaustive testing, the Circuit Under Test (CUT) is partitioned into

several modules, each is tested exhaustively. Thus, it is guaranteed to detect all detectable

faults in each module.

 In this work, a modification is done on the pseudo-exhaustive test method. Instead

of guaranteeing that all detectable faults in a module are detected, we guarantee that all

detectable faults that can occur in normal operation are detected.

 Each cell of the ILA has vertical inputs, vertical outputs, horizontal (lateral) inputs,

and horizontal outputs. The assumption is that all possible combinations of the cell’s

vertical inputs are of acceptable size, and some set (say SA) of all possible combinations

of the cell’s horizontal inputs are of acceptable size [23].

The algorithm runs as follows:

• Apply all possible input patterns (vertical and horizontal) to the leftmost module

so as to know all possible output patterns on the horizontal outputs.

90

• On the next module, apply only the output patterns of the first module as

horizontal inputs (and all possible vertical input patterns) and observe horizontal

output patterns.

• Repeat for all succeeding modules until the output horizontal patterns are equal

to the input patterns. This pattern is called SA [9].

4.3. TESTABILITY OF THE 4-2 COMPRESSOR

In this section, we show how to apply C-testability on a one dimensional ILA with a basic

cell composed of 4-2 compressor. The structure of the 4-2 compressor ILA is shown in

Figure 4.1.

C0C1C2Cn-1

I3 I2 I1 I0I3 I2 I1 I0I3 I2 I1 I0I3 I2 I1 I0

… ...

C SC SC SC S

Ci1
Ci2

Co1
Co2

Figure 4.1: One Dimensional 4-2 Adder ILA.

 Theorem: For a one dimensional ILA defined by a basic cell C in which all single

cell functional faults are propagated by all inputs, the ILA is O-testable if the state

diagram of C can be partitioned into disjoint subsets of branches where each subset

defines a closed cycle [1].

91

 Figure 4.2 shows the state diagram of the basic (4-2 compressor) cell where the

states 00, 01, 10, and 11 correspond to the value of the carry-out of the 4-2 compressor

(Cout2 Cout1). The carry-out of a compressor cell is applied as carry-in for its succeeding

cell. Figure 4.3 shows one possible partitioning of the state diagram to follow the

O-testability theorem. The labels on the arrows represent the value of the vertical inputs

while the source state shows the value of the carry-in and the target state shows the value

of the carry-out. For example, if the source state is 00 and the target state is 11 the arrow

label will be F, which means if the carry-in is 00 and we apply a value F on the vertical

inputs of the CUT, the carry-out will be 11.

0100

1110

0, 1, 2, 4, 8

6, 7, D, C, E, A, B

1, 2, 3, 4, 5, 8 ,9

7, B, D, E, F

6, A, C

3, 5, 9

F
F

0
0

Figure 4.2: 4-2 Adder's Carry-Out State Diagram.

92

00

6, 7, D, C, E, A, B 0, 1, 2, 4, 8

01

11

6, A, C F

011011

1, 2, 3, 4, 5, 8 ,97, B, D, E, F

00

10

3, 5, 90

0100

0, 1, 2, 4, 8

6, 7, D, C, E, A, B

1110

1, 2, 3, 4, 5, 8 ,9

7, B, D, E, F

00

11

0

01

10

3, 5, 9 F6, A, C

(d) Cycle 00-00(c) Cycle 01-01(b) Cycle 10-10(a) Cycle 11-11

(e) Cycle 01-10-01 (f) Cycle 11-00-11 (g) Cycle 10-00-10 (h) Cycle 11-01-11

(i) Cycle 10-11-10 (j) Cycle 00-01-00

Figure 4.3: Possible Partitioning of the State Diagram 4-2 Adder.

93

 In the following, the cost of a test set is chosen to be the summation of the

Hamming distance between all the consecutive test-vectors. The objective is to make the

circuit O-testable using the RS-CFM fault model as much as possible. Since the basic

compressor cell has six inputs, we need to test the system use only 64 (26) test vectors so

as to keep it O-testable. However, for the RS-CFM each test vector needs to have an

initialization vector and the Hamming distance between consecutive test-vectors must be

one. In other words, the best case scenario will be a test set of 64 test vectors with a total

cost of 64 only. Another essential condition is that the vertical outputs of every

consecutive pair of test vectors must be different to enable detection of faults.

 The task of ordering 64 vectors to satisfy the above conditions mentioned is non

trivial if at all possible. Therefore, a genetic evolutionary algorithm was developed to

conduct the ordering problem (see APPENDIX D). For more background on evolutionary

algorithms see [47].

 TABLE 4.1 shows a test set with 64 test vectors and a total cost of 84. The carry in

inputs of the test vectors 1, 37, 42, 47, 53, 56, and 59 are not the same as the carry out of

their predecessors. Therefore, we have manually inserted some vectors in between to

maintain the lateral output flow. For example, if we take vector 1 in TABLE 4.1, we find

that its carry-out is 11, however the carry-in of vector 2 is 00. in order to maintain the

lateral output-input flow, an extra test vector that has 11 as carry-in and 00 as carry-out is

inserted as shown in TABLE 4.2. The new test set contains 74 test vectors and has total

Hamming distance cost of 99.

94

TABLE 4.1: Genetic Algorithm’s Output Test Set.

No Co2 Co1 C S I3 I2 I1 I0 Ci2 Ci1 No Co2 Co1 C S I3 I2 I1 I0 Ci2 Ci1

0 1 0 0 1 1 0 0 0 1 1 32 1 1 0 1 1 0 1 1 1 1
1 0 0 1 0 0 0 0 0 1 1 33 1 0 1 0 0 0 1 1 1 1
2 0 0 0 1 1 0 0 0 0 0 34 0 1 0 1 1 0 1 0 1 0
3 1 0 0 0 1 0 0 1 0 0 35 1 1 0 0 1 0 1 1 0 1
4 1 0 0 1 1 0 0 1 1 0 36 1 0 1 0 1 0 0 1 1 1
5 0 1 1 0 1 0 1 1 1 0 37 0 1 0 1 1 0 1 1 0 0
6 0 1 0 1 1 0 1 0 0 1 38 1 0 0 0 0 0 0 1 0 1
7 1 0 0 0 0 0 1 0 0 1 39 1 0 0 1 0 1 0 1 1 0
8 1 0 0 1 0 0 1 1 1 0 40 0 0 1 0 0 1 0 0 1 0
9 0 0 1 0 0 0 1 0 1 0 41 0 1 0 1 1 1 1 0 0 0

10 0 0 0 1 0 0 1 0 0 0 42 0 1 0 0 1 1 0 0 0 0
11 0 1 0 0 1 0 1 0 0 0 43 0 0 0 1 0 0 0 0 0 1
12 1 0 0 1 1 0 0 1 0 1 44 1 0 0 0 0 0 1 1 0 0
13 0 0 1 0 1 0 0 0 1 0 45 1 1 0 1 1 1 1 1 1 0
14 0 0 0 1 0 0 0 1 0 0 46 1 0 1 0 0 1 0 1 1 1
15 1 0 0 0 0 1 0 1 0 0 47 1 0 0 1 0 0 0 1 1 1
16 0 1 0 1 1 1 0 0 1 0 48 0 0 1 0 0 0 0 1 1 0
17 1 0 0 0 1 0 0 0 0 1 49 0 1 0 1 1 1 0 1 0 0
18 0 0 0 1 0 0 0 0 1 0 50 1 1 0 0 1 1 0 1 0 1
19 1 1 0 0 1 1 1 1 0 0 51 1 1 0 1 0 1 1 1 1 1
20 1 1 0 1 1 1 1 0 1 1 52 0 1 1 0 0 1 1 0 1 1
21 0 1 1 0 1 0 1 0 1 1 53 0 1 0 1 0 1 1 1 0 0
22 1 0 0 1 0 0 1 1 0 1 54 1 1 0 0 0 1 1 1 0 1
23 0 1 1 0 0 1 1 1 1 0 55 1 0 0 1 0 1 0 0 1 1
24 1 1 0 1 1 1 1 1 0 1 56 0 0 0 0 0 0 0 0 0 0
25 1 1 1 0 1 1 1 1 1 1 57 0 0 0 1 0 1 0 0 0 0
26 1 1 0 1 1 1 0 1 1 1 58 0 1 0 0 0 1 1 0 0 0
27 0 1 1 0 1 1 0 0 1 1 59 1 0 0 1 0 0 1 0 1 1
28 1 0 0 1 0 1 0 1 0 1 60 0 1 1 0 1 1 1 0 1 0
29 0 1 1 0 1 1 0 1 1 0 61 0 1 0 1 0 1 1 0 0 1
30 0 1 0 1 1 1 0 0 0 1 62 1 0 0 0 0 1 0 0 0 1
31 1 1 0 0 1 1 1 0 0 1 63 0 1 0 1 0 1 1 0 1 0

Outputs Inputs Outputs Inputs

95

TABLE 4.2: Modified Test Set.

No Co2 Co1 C S I3 I2 I1 I0 Ci2 Ci1 No Co2 Co1 C S I3 I2 I1 I0 Ci2 Ci1

0 1 0 0 1 1 0 0 0 1 1 36 1 0 1 0 1 0 0 1 1 1
X 1 1 0 0 1 1 1 0 1 0 X 1 0 0 0 0 0 0 1 1 0
1 0 0 1 0 0 0 0 0 1 1 X 0 0 1 0 0 0 0 0 1 0
2 0 0 0 1 1 0 0 0 0 0 37 0 1 0 1 1 0 1 1 0 0
3 1 0 0 0 1 0 0 1 0 0 38 1 0 0 0 0 0 0 1 0 1
4 1 0 0 1 1 0 0 1 1 0 39 1 0 0 1 0 1 0 1 1 0
5 0 1 1 0 1 0 1 1 1 0 40 0 0 1 0 0 1 0 0 1 0
6 0 1 0 1 1 0 1 0 0 1 41 0 1 0 1 1 1 1 0 0 0
7 1 0 0 0 0 0 1 0 0 1 X 0 0 1 0 0 0 0 0 0 1
8 1 0 0 1 0 0 1 1 1 0 42 0 1 0 0 1 1 0 0 0 0
9 0 0 1 0 0 0 1 0 1 0 43 0 0 0 1 0 0 0 0 0 1

10 0 0 0 1 0 0 1 0 0 0 44 1 0 0 0 0 0 1 1 0 0
11 0 1 0 0 1 0 1 0 0 0 45 1 1 0 1 1 1 1 1 1 0
12 1 0 0 1 1 0 0 1 0 1 46 1 0 1 0 0 1 0 1 1 1
13 0 0 1 0 1 0 0 0 1 0 X 1 1 0 0 0 1 1 1 1 0
14 0 0 0 1 0 0 0 1 0 0 47 1 0 0 1 0 0 0 1 1 1
15 1 0 0 0 0 1 0 1 0 0 48 0 0 1 0 0 0 0 1 1 0
16 0 1 0 1 1 1 0 0 1 0 49 0 1 0 1 1 1 0 1 0 0
17 1 0 0 0 1 0 0 0 0 1 50 1 1 0 0 1 1 0 1 0 1
18 0 0 0 1 0 0 0 0 1 0 51 1 1 0 1 0 1 1 1 1 1
19 1 1 0 0 1 1 1 1 0 0 52 0 1 1 0 0 1 1 0 1 1
20 1 1 0 1 1 1 1 0 1 1 X 0 0 0 1 0 0 1 0 0 1
21 0 1 1 0 1 0 1 0 1 1 X 0 0 1 0 0 0 1 0 0 0
22 1 0 0 1 0 0 1 1 0 1 53 0 1 0 1 0 1 1 1 0 0
23 0 1 1 0 0 1 1 1 1 0 54 1 1 0 0 0 1 1 1 0 1
24 1 1 0 1 1 1 1 1 0 1 X 1 0 0 1 0 1 0 0 1 1
25 1 1 1 0 1 1 1 1 1 1 55 0 0 1 0 0 0 0 0 1 0
26 1 1 0 1 1 1 0 1 1 1 56 0 0 0 0 0 0 0 0 0 0
27 0 1 1 0 1 1 0 0 1 1 57 0 0 0 1 0 1 0 0 0 0
28 1 0 0 1 0 1 0 1 0 1 X 0 1 0 0 0 1 1 0 0 0
29 0 1 1 0 1 1 0 1 1 0 58 1 1 1 0 1 1 1 1 0 1
30 0 1 0 1 1 1 0 0 0 1 59 1 0 0 1 0 0 1 0 1 1
31 1 1 0 0 1 1 1 0 0 1 60 0 1 1 0 1 1 1 0 1 0
32 1 1 0 1 1 0 1 1 1 1 61 0 1 0 1 0 1 1 0 0 1
33 1 0 1 0 0 0 1 1 1 1 62 1 0 0 0 0 1 0 0 0 1
34 0 1 0 1 1 0 1 0 1 0 63 0 1 0 1 0 1 1 0 1 0
35 1 1 0 0 1 0 1 1 0 1 X 1 1 1 0 1 1 1 1 0 1

Outputs Inputs Outputs Inputs

96

 The TPG consist of two sequence generators, one for the vertical inputs (I3-I0) and

the other for the carry-in inputs of the first cell (Ci2 Ci1). The vertical input pattern is

repeated every 74 cells while the needed lateral input for intermediate cells is the lateral

output of their predecessors.

 There are three ways of detecting a faulty cell. First, the fault-free output of the 74

test vector sequence is stored and the ORA compares the output of every 74 with it to

detect any fault. The second approach of detecting faults is by using a 74-word

comparator to compare the outputs of every 74 cells with the outputs of the 74

successor/predecessor cells and a fault is detected in any case of inequality. Finally, since

the output of every to consecutive cells is different, only 2-word comparator can be used

to compare the output of every two consecutive cells and a fault is detected in case of any

equality. The last ORA option is used because of its lower hardware cost however it is not

efficient as the other two approaches.

 □

 97

CHAPTER 5

RESULTS AND CONCLUSION

In the age of public electronic connectivity, as computer systems and their

inter-networking grow in complexity, the dependence on secure data storage and transfer

is becoming increasingly critical. The danger of hackers, electronic fraud, and

eavesdropping has become a serious threat to reliable data communication and storage.

This has led to the need for protecting and authenticating access to data and other digital

information. Military applications, business and financial transactions, and multimedia

communications, are examples that use authentication and data protection algorithms [53].

 Public-key cryptosystems are popular because they do not need complex key

distribution mechanisms and are mainly based on mathematical functions. The RSA [43]

and Elgamal [48] encryption algorithms are examples of public-key crypto-algorithms

which are based on modulo operations. The speed of a cryptosystem is an important

performance measure. It is a direct function of the algorithm complexity, and the

technology used to implement it. Efficient modular multipliers are essential for the design

of high-speed crypto-processors [53].

 In this work, two types of modulo multipliers were modeled and evaluated. The first

is an asynchronous modulo multiplier which is based on a self-timed adder design where

the average delay for a k-bit adder is O(log2(k)). The second modulo multiplier is a

98

complete implementation of Montgomery modulo multiplier utilizing a four-to-two

compressor architecture that has a fixed addition delay regardless of the size of operands.

 Based on the developed VHDL models, the area delay cost of the two multiplier

designs were compared and the results are shown in TABLE 5.1 ignoring the time cost of

the pre/post operations of Montgomery modulo multiplier.

 Figures 5.1, 5.2, 5.3, 5.4 and 5.5 show the area delay cost comparison for α values

of ½, 1, 1½, 2, and 2½ respectively. The value of α has a great impact on the overall area

delay cost. For example, where α equals ½ Figure 5.1 shows that the asynchronous

multiplier has a lower cost compared to the Montgomery multiplier even for large values

of k. On the other hand, as α increases, the Montgomery multiplier exhibits better cost as

the size of operands increases. Figure 5.2 shows that for α =1, the asynchronous

implementation has a lower cost for operand sizes less than 270-bits. For α value of1½,

however, the asynchronous implementation has lower cost only for operand sizes less than

85-bits, 50-bit as α increases to 2, and 32-bits as α increases to 2½, as illustrated in the

figures 5.3, 5.4, and 5.5 respectively.

 This shows that the asynchronous modulo multiplier design will be better suited for

Residue Number Systems (RNS) even for large α values. However, for elliptic curve

crypto-systems with key sizes less than 270 bits, an efficient asynchronous adder with

α ≤ 1 must be used to give cost results better than the Montgomery multiplier.

 Promising high-speed low-cost transistor level implementation of self timed adders

 [40] need to be developed and further investigated.

99

TABLE 5.1: AT Cost Comparison for the Multiplier Designs.

 Design

Cost
Asynchronous Montgomery

Number of iterations ¾ k k/2+1

Average time per iteration (v) (α log2k) 10

Average number of correction iterations 1 1½ (log2(k)+1)

Total time (v) (α log2k)(¾k+1) 5 k+ 15 log2k+25

Hardware cost (λ) 11 k 12 k

AT cost (v λ)
33/4 α k2 log2(k)

+11 k Log2(k)

60k2+180 k log2(k)

+300k

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

8

9

10
x 106 Area Time Cost

Number of bits k / 10

C
os

t

Asynchronous
Montgomery α=0.5

Figure 5.1: Area Delay Cost Comparison for α = ½.

100

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

8

9

10
x 10

6 Area Time Cost

Number of bits k / 10

C
os

t

Asynchronous
Montgomery α=1

Figure 5.2: Area Delay Cost Comparison for α = 1.

0 2 4 6 8 10 12 14 16 18
0

0.5

1

1.5

2

2.5

x 106 Area Time Cost

Number of bits k / 10

C
os

t

Asynchronous
Montgomery α=1.5

Figure 5.3: Area Delay Cost Comparison for α = 1½.

101

1 2 3 4 5 6 7 8 9 10 11

2

4

6

8

10

12

14

x 105 Area Time Cost

Number of bits k / 10

C
os

t

Asynchronous
Montgomery α=2

Figure 5.4: Area Delay Cost Comparison for α = 2.

0 5 10 15 20 25 30 35
0

1

2

3

4

5

6

7

8

9

10
x 106 Area Time Cost

Number of bits k / 10

C
os

t

Asynchronous
Montgomery α=2.5

Figure 5.5: Area Delay Cost Comparison for α = 2½.

 □

 102

APPENDICES

APPENDIX A : ANALYSIS ON VITIT’S MULTIPLICATION

ALGORITHM

A.1. Assumptions

• Dividend X, and divisor D, are fractions such that |X|≤|D| and D is a nonzero

normalized number.

• qi: is chosen based on the SRT algorithm, so it satisfies the convergence

condition.

A.2. Algorithm’s Proof

For qi+1 we have three cases when qi =1:

I. 2ri-1 < D:

Since D < 1 => 2ri-1 < 1

ri = 2ri-1 – D <0

=> -1/2 <ri <0 (Because 2ri-1 < D, and both D and 2ri-1 are in [1/2,1[)

For convergence condition, we need 1ir D+ ≤ so pick qi+1 = -1. To show that the

condition is satisfied:

103

1 2] 1, 0] [1/2,1[i ir r D+ = ∈ − + ∈

=> 1 >-1/2ir +

1 ir D+∴ ≤

II. 2ri-1 = D:

Since qi =1

=> ri = 2ri-1 – D ≈0

Or 0.000111111... 0.001ir ≤ <

=> 2 0.01ir <

So pick qi+1 = 0

=> 1 2 { 0.01, 0.01}ri ri D+ = ∈ − + <<

1 ir D+∴ ≤

III. 2ri-1 > D:

Since qi =1

=> ri = 2ri-1 – D >0

So pick qi+1 = 1

104

=> ri+1 = 2ri - D

Given that 2ri >0 and D > 0 and ir D≤ (Because qi was chosen using STR).

1 ir D+∴ ≤

 □

105

APPENDIX B : BINARY NUMBERS RECODING ANALYSIS

To find out the reduction we gain by recoding, the total number of 1s and -1s for all

possible combinations needs to be computed. A k-bit binary number needs k+1 bit after it

gets recoded. We will look at the number bit by bit from bit 1 to bit k+1.

Bit #

Ci
Number of 1s and -1s

C1 2k-1 =2k-1

C2 C1+2k-2 =C1+2k (2-2)

C3 C2+2k-3 (2+1) =C2+2k(2-2+2-3)

C4 C3+2k-4 (22+2-1) =C3+2k(2-2+2-3-2-4)

C5 C4+2k-5 (23+22-2+1) =C4+2k(2-2+2-3-2-4+2-5)

C6 C5+2k-6 (24+23-22+2-1) =C5+2k(2-2+2-3-2-4+2-5-2-6)

…

…

Ci Ci-1+2k-i (2i-2+2i-3-2i-4+2i-5-… ±2i-i) =Ci-1+2k(2-2+2-3-2-4+2-5-2-6+…±2-i)

…

…

Ck+1 Ck+2k+1-2 (2k+1-2+2k+1-3-2k+1-4+2k+1-5…2k+1-k-1) =Ck+2k(2-2+2-3-2-4+2-5-2-6+…±2-(k+1))

 The total summation will be:

() ()
1

11 2

3
2 2 2 1 2) 2

k
ik k k ik k i

+
−− − −⎛ ⎞

+ × + − × + − ×⎜ ⎟
⎝ ⎠
∑

106

 To find out the total number of add operations in radix-4 system for all possible

combinations the following analysis was carried out.

Bit #Ci Number of Additions

C1 1

C2 C1+2

C3 C2+22+(22+20)

C4 C3+23+(23+21)

C5 C4+24+(24+22) +(24+22)

C6 C5+25+(25+23) +(25+23)

…

…

Ci Ci-1+┌i/2┐×2i-1-(┌i/2┐-1) ×2i-3

…

…

Ck Ck-1+┌k/2┐×2i-1-(┌k/2┐-1) ×2k-3

 The total summation will be:

1 3

1
2 (1) 2

2 2

k
i ii i− −⎛ ⎞⎡ ⎤ ⎡ ⎤× − − ×⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎝ ⎠

∑

107

 Here is a comparison of the total number of adder operations for all possible

combinations. It shows that the gain (reduction of add operations) of using recoded

radix-4 over radix-2 is about 0.66 for k=9. However, it is as low as 0.89 for recoded

radix-4 over readix-4.

Total number of adder operations in case of
K

Radix-2 Radix-4 Readix-4 Recoded

2 4 3 4

4 32 24 28

8 1024 768 796

16 524288 393216 378652

32 6.8719×1010 5.154×1010 4.7722×1010

64 5.903×1020 4.4272×1020 4.0173×1020

128 2.1778×1040 1.6334×1040 1.467×1040

256 1.4821×1079 1.1116×1079 0.9932×1079

512 3.4324×10156 2.5743×10156 2.2942×10156

 □

108

APPENDIX C : COMPRESSOR’S WORST-CASS DELAY

The worst case carry rippling is when one is added to a value that is all ones

(i.e., 1+111111). This is similar to adding one to a number that has all nines in decimal

(i.e., 1+999999).

 As Figure 5.6 shows, every adder bit is made of two full-adders and one half-adder.

Therefore, S and C can never both be one. Also, due to the fact that each adder bit has two

carry-ins and two carry-outs, the carry is rippled through three bits at a time and this

rippling delay is equivalent to one adder bit delay (i.e., two full-adders and one half-adder

delays). Therefore, the worst case rippling for a k-bit number is k/3. On the other hand,

for the average case delay, it is equivalent to the average delay for the asynchronous adder

(see [14] for more details). This is because of the capability of the CARRY register to

detect zero value (i.e., rippling is over).

FA

FA

HA

FA

FA

HA

FA

FA

HA

Figure 5.6: Worst Case Rippling.

 □

109

APPENDIX D : APPLYING GENETIC EVOLUTION ALGORITHM

TO OBTAIN A GOOD TEST SET.

The algorithm starts by generating an initial population of 64 different test sets. After that,

a new 128 generation of test sets are obtained by crossover of the test sets of the initial

population with a mutation probability of 5%. Finally, a new population of 64 sets is

collected by selecting the best 32 sets and randomly picking another 32 sets of the current

generation. The algorithm ran for more than 100,000 generations. The goodness of a test

set is based on its Hamming distance cost where the least cost set has the best goodness.

 Two versions of the algorithm were built. One to find the least costly test set

maintaining some vertical output pattern, whereas the second algorithm finds the least

costly test set regardless of the pattern of the vertical output.

 The cost function for both algorithms is based mainly on the Hamming distance

between the inputs of consecutive test vectors with a high added high penalty cost if the

carry in of a test vector is not the same as the carry out of its predecessor. For the second

algorithm, another high penalty is added if the outputs of two consecutive vectors are the

same.

 To crossover to test sets (Set1 and Set2), both sets are split at a random location,

the upper half of Set1 and the lower half of Set2 are combined to produce the new set

then, the lower half of the new set is scanned and compared to the upper half to find

110

repeated vectors. The repeated vectors in the lower half are replaced with other vectors to

make all vectors of a test set different.

 The advantage of the first algorithm is the simplicity of its fault detection hardware

since it has output pattern that is repeated every four vectors, but unfortunately there are

seven vectors with carry in is different that the carry out of their predecessors. To resolve

this problem, we can either enforce external inputs during the testing phase – which is

very expensive-, or add intermediate vectors to maintain the carry out - carry in flow.

Insertion of test vectors to overcome this problem disturbs the output sequence therefore

groups of at least four vectors should be inserted instead, which means that at least 28

vectors will be inserted. This is about 30% increase of the number of test vectors.

 The test set cost is the summation of the Hamming distance between the inputs of

every two consecutive test vectors. If the carry-in of a test vector is different than the

carry-out of its predecessor, the cost is increased by 10 to penalize this undesirable vector.

The same action is taken in the output of a test vector is identical to the output of its

predecessor.

 □

 111

REFERENCES

[1] A. D. Friedman, “A functional approach to efficient fault detection in iterative logic

arrays”, Computers, IEEE Transactions on, Volume 43, Pages1365-1375,

December 1994.

[2] Alaaeldin Amin and Feras Maadi, “Double-rail encoded self-timed adder with

matched delays”, proceedings of the 10th IEEE International Conference on

Electronics, Circuits and Systems, December 2003, (ICECS-2003).

[3] Arjen K. Lenstra, “Computational Methods in Public Key Cryptology”, IMS Lecture

Notes Series, Coding Theory and Cryptology, Pages 175-238, 2002.

[4] Behrooz Parhami, “COMPUTER ARITHMETIC ALGORITHMS AND

HARDWARE DESIGN”, Oxford, Oxford University Press, 2000.

[5] C. D. Walter, “Still faster modular multiplication”, Electronic Letter, Volume 31,

Pages 263-264, February 1995.

[6] C. K. Koc, T. Acar and B. S. KaliskiJr, “Analyzing and comparing montgomery

multiplication algorithms”, IEEE Micro Chip, Systems, Software and Applications,

Pages 26-33, June 1996.

[7] C.-C. Yang, T.-S. Chang and C.-W. Jen, “A new RSA cryptosystem hardware

design based on montgomery's algorithm”, IEEE Transactions, Circuits Systems II,

Volume 45, Pages 908-913, July 1998.

112

[8] C.-W. Lu, et al, “Designing self-testable cellular arrays”, Proceedings, Computer

Design: VLSI in Computers and Processors, IEEE International Conference on,

Pages 110-113, 14-16 October 1991.

[9] Chauchin Su, et al, C.R. “A BIST methodology for iterative logic arrays”, Circuits

and Systems, ISCAS Proceedings, IEEE International Symposium on, Volume 1,

Pages 411-414, May 1992.

[10] D. Gizopoulos, D. Nikolos and A. Paschalis, “Testing combinational iterative logic

arrays for realistic faults”, Proceedings, VLSI Test Symposium, 13th IEEE, Pages

35-40, April-May 1995.

[11] D. Gizopoulos, M. Psarakis and A. Paschalis, “Robust sequential fault testing of

iterative logic arrays”, VLSI Test Symposium, 15th IEEE, Pages 238-244, April-May

1997.

[12] D. J. Kinnement, “An evaluation of asynchronous addition”, IEEE Transactions

VLSI Systems, Volume 4, Pages 137-140, March 1996.

[13] G. Hachez and J. Quisquater, “Montgomery exponentiation with no final

subtraction: Improved results”, In C. K. Koc and Paar [cKKP00], Pages 293-301.

[14] G. W. Reitwiesner, “The Determination of Carry Propagation Length of Binary

Addition”, IRE Transactions on Electronic Computers, Pages 35-38, 1960.

[15] H. J. Tiersma, “Enhancing the security of El Gamal's signature scheme”, IEE

Proceedings, Computers and Digital Techniques, Volume 144 No. 1, Pages 47-48,

January 1997.

113

[16] H. Orup and P. Kornerup, “A high-radix hardware algorithm for calculating the

exponential M/sup E/ modulo N”, Proceedings, IEEE 10th symposiums Computer

Arithmetic, Pages 51-56, June 1991.

[17] H. Orup, “Simplifying quotient determination in high-radix modular

multiplication”, Proceedings, 12th symposiums on Computer Arithmetic, Pages 193-

199, July 1995.

[18] H. M. Sun and T. Hwang, “An efficient probabilistic public-key block encryption

and signature scheme based on El-Gamal's scheme”, IEEE International Carnahan

Conference on Security Technology, 1991. Proceedings. 25th Annual, Pages 145 -

148, October 1991.

[19] I. E. Sutherland, “Micropipelines”, Communications of the ACM, Volume 32 No. 6,

Pages 720-738, June 1989.

[20] J. H. Kim and H. Sung, “An enhanced one-step C-testable design of two-

dimensional iterative logic arrays”, Proceedings, Wafer Scale Integration, [4th]

International Conference on, Pages 331-340, January 1992.

[21] J. He and T. Kiesler, “Enhancing the security of El Gamal's signature scheme”, IEE

Proceedings, Computers and Digital Techniques, Volume 141 No. 4, Pages 249-

252, July 1994.

[22] K. Eshraghian, “Efficient design of gallium arsenide Muller-C element”, IEEE

Electronics Letters, Volume 33 No 9, Pages 757-759, April 1997.

[23] K. Y. Yun, “Automatic synthesis of extended burst-mode circuits using generalized

C-elements”, IEEE Design Automation Conference, with EURO-VHDL and

114

Exhibition, Proceedings EURO-DAC '96, European, Pages 290-295, September

1996.

[24] M. A. Gharaybeh, M. L. Busnell and V. D. Agra-wal, “Classification and Test

Generation for Path Delay Faults Using Single Stuck-Fault Tests”, Proceedings,

IEEE ITC, Pages 139-148, 1995.

[25] M. Abramovici, M. A. Breuer, and A. D. Friedman, “DIGITAL SYSTEMS

TESTING AND TESTABLE DESIGN”, Computer Science Press, 1990.

[26] M. D. Ercegovac and T. Lang, “DIVISION AND SQUARE ROOT: DIGIT-

RECURRENCE ALGORITHMS AND IMPLEMENTATIONS”, Boston: Kluwer

Academic, 1994.

[27] M. Gala, et al, “Built-in self test for C-testable ILA's”, Computer-Aided Design of

Integrated Circuits and Systems, IEEE Transactions on, Volume 14, Pages 1388-

1398, November 1995.

[28] M. Jamoussi, B. Kaminska, “A functional-level testability evaluation using a new

M-testability approach”, Circuits and Systems, ISCAS, IEEE International

Symposium on, Volume 3, Pages 1611-1614, May 1993.

[29] M. Shams, et al, “A comparison of CMOS implementations of an asynchronous

circuits primitive: the C-element”, IEEE International Symposium on Low Power

Electronics and Design, Pages 93-96, August 1996.

[30] M. Shams, et al, “Modeling and comparing CMOS implementations of the C-

element”, IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

Volume 6 No. 4, Pages 563-567, December 1998.

115

[31] M. Shams, et al, “Optimizing CMOS implementations of the C-element”, IEEE

International Conference Proceedings on Computer Design: VLSI in Computers

and Processors, Pages 700-705, October 1997.

[32] M. Shand and J. Vuillemin, “Fast implementations of RSA cryptography”,

Proceedings, 11th Symposium on Computer Arithmetic, Pages 252-259, 1993.

[33] N. Takagi and S. Yajima, “Modular multiplication hardware algorithms with a

redundant representation and their application to RSA cryptosystem”, IEEE

Transactions on Computers, Volume 41 Issue 7, Pages 887 -891, July 1992.

[34] N. Takagi, “A modular multiplication algorithm with triangle additions”,

Proceedings, 11th Symposium on Computer Arithmetic, Pages 272-276, June-July

1993.

[35] N. Takagi, “A radix-4 modular multiplication hardware algorithm efficient for

iterative modular multiplications”, Proceedings, 10th IEEE Symposium on

Computer Arithmetic, Pages 35 -42, June 1991.

[36] N. Takagi, “A radix-4 modular multiplication hardware algorithm for modular

exponentiation”, IEEE Transactions on Computers, Volume 41 No. 8, Pages 949-

956, August 1992.

[37] Norman Scott, “COMPUTER NUMBER SYSTEM & ARITHMETIC”, New

Jersey, Prentice-Hall, 1985.

[38] O. Nibouche, A. Bouridane and M. Nibouche, “Architectures for Montgomery's

multiplication”, Computers and Digital Techniques, IEE Proceedings, Pages 361-

368, November 2003.

116

[39] P. L. Montgomery, “Modular Multiplication without Trial Division”, Mathematics

of Computation, Volume 44, No. 170, 1985, Pages 519-521.

[40] Private Communication- Dr. Amin.

[41] Psarakis, et al, “Robustly testable array multipliers under realistic sequential cell

fault model”, Proceedings, VLSI Test Symposium, 16th IEEE, 152-157, 26-30 April

1998

[42] Psarakis, et al, “Sequential fault modeling and test pattern generation for CMOS

iterative logic arrays”, Computers, IEEE Transactions on, Volume 49, Pages 1083-

1099, October 2000.

[43] R. L. Rivest, A. Shamir and L. Adleman, “A method for obtaining digital signatures

and public-key cryptosystems”, Communications of the ACM, Volume 21, No. 2,

Pages 120-126, February 1978.

[44] R. L. Rivest, A. Shamir and L. Adleman, “A method for obtaining digital signatures

and public-key cryptosystems”, Communications of the ACM, Volume 26, No. 1,

Pages 96-99, January 1983.

[45] R. M. Davies and J. V. Woods, “Timing verification for asynchronous design”,

IEEE Design Automation Conference, with EURO-VHDL and Exhibition,

Proceedings EURO-DAC '96, European, Pages 78 -83, September 1996.

[46] S. E.Eldridge and C. D.Walter, “Hardware implementation of Montgomery's

modular multiplication algorithm”, IEEE Trans. Computer, Volume 42, Pages 693-

699, June 1993.

[47] S. Sadiq and Y. Habib, “VLSI PHYSICAL DESIGN AUTOMATION: THEORY

AND PRACTICE”, McGraw-Hill Book Co., Europe, December 1994.

117

[48] T. Elgamal, “A public key cryptosystem and a signature scheme based on discrete

logarithms”, IEEE Transactions on Information Theory, Volume 31 No. 4, Pages

469-472, July 1985.

[49] V. Bunimov, et al, “A Complexity-Effective Version of Montgomery's Algorithm”,

Workshop on Complexity Effective Designs (WCED02), May 2002.

www.ece.rochester.edu/~albonesi/wced02/papers/bunimov.pdf

[50] V. Hert and A. J. van de Goor, “Test generation for C-testable one-dimensional

CMOS ILA's without observable vertical outputs”, Proceedings, Design

Automation, [3rd] European Conference on, Pages 421-427, March 1992

[51] V. Kantabutra, “A new algorithm for division in hardware”, IEEE International

Conference on Computer Design, Pages 551-556, October 1996.

[52] W. Diffie and M. Hellman, “New directions in cryptography”, IEEE Transactions

on Information Theory, Volume 22 No. 6, Pages 644-654, November 1976.

[53] W. Stallings, “NETWORK AND INTERNETWORK SECURITY”, Prentice-Hall,

NJ: IEEE Press, 1995

[54] Young Sae Kim; Woo Seok Kang and Jun Rim Choi, “Asynchronous

implementation of 1024-bit modular processor for RSA cryptosystem”, ASICs,

2000. AP-ASIC 2000. Proceedings of the Second IEEE Asia Pacific Conference on,

Pages 187-190, August 2000.

VITAE

• Muhammad Yahya Imam Mahmoud.

• Born in Jeddah, Saudi Arabia.

• Married and father of three daughters.

• Received the B.Sc. degree in Computer Engineering from KFUPM, Saudi Arabia

in May 2000.

• Completed the M.Sc. degree requirement at KFUPM, Saudi Arabia in May 2004

