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THESIS ABSTRACT 

Name: Muhammad Yahya Imam Mahmoud 

Title: Design and Modeling of High Speed Modulo Multipliers 

  for Cryptosystems 

Major Field: Computer Engineering 

Date of Degree: May 2004 

Advances in networking and data processing speeds have led to the need for high-speed 

cryptosystems. The speed of a cryptosystem is function of its complexity and the 

technology used to implement it. This work investigates the techniques of designing fast 

modulo multipliers since modulo-multiplication is a basic essential operation in public-key 

cryptography. Two types of modulo multipliers have been designed and modeled using 

VHDL and MatLab. While the first multiplier is based on asynchronous adder design, the 

other multiplier is based on four-to-two compressor design. In addition, a Built In Self 

Test (BIST) methodology has been developed for the Compressor based multiplier 

design. The two multiplier designs have been evaluated and compared based on their 

area-delay cost. 
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THESIS ABSTRACT (ARABIC)  

الرسالة ملخص  

  محمد يحيى إمام محمود: ــــــمـالاســــــــ

  . تصميم ومحاكاة ضاربة باقي القسمة عالية السرعة لأ�ظمة التشفير:الرسالة عنوان

   هندسة الحاسب الآلي:ــصــالتخصــــ

   هـ1425ربيع ثا�ي  :رجــالتخ تاريخ

لحاجة لتطوير أ�ظمة تشفير عالية السرعة، بينما أوجد التطور المتزايد في عالم الشبكات ومعالجة البيا�ات ا
تعتمد سرعة أي �ظام للتشفير على مدى صعوبة وتعقيد النظام المستخدم وعلى التقنية المستخدمة في 

تستكشف . ترتكز تقنيات التشفير المعتمدة على المفتاح المعلن على عملية الضرب وباقي القسمة. تصنيعه
لمتبعة في تصميم ضاربة باقي القسمة عالية السرعة وتتضمن تصميم ومحاكاة  بعض الأساليب اةهذه الأطروح

بينما . (MatLab) ولغة VHDL)(�وعين منها باستخدام اللغة الوصفية لبرمجة مكو�ات الحاسب الآلي 
. تشـــاريعتمد تصميم الضاربة الأولى على امع غير المتزامن، يعتمد التصميم الآخر على امع الموفـر للا�

تضمنت هذه الأطروحة �ظام فحص ذاتي للضاربة الأخيرة كما تم تقييم التصميمين بناء على تكلفة الزمن في 
  .المساحة
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CHAPTER 1  

INTRODUCTION 

In the information age, the age of public electronic connectivity, as computer systems and 

their internetworking grow in complexity, the dependence on secure data storage and 

exchange has become critical. Data security and integrity is threatened by the increased 

activity of hackers, electronic fraud, and eavesdropping. This has led to a need for 

protecting and authenticating access to data and their resources. There has been no age 

where data security and integrity have received as much attention as this age. Military 

applications, financial transactions, and multimedia communications, are examples that 

require authentication and data protection algorithms  [53]. 

 Public-key cryptosystems, which are based on one way mathematical functions, are 

becoming very popular because they do not need complex key distribution mechanisms. 

Based on modulo operations, the RSA  [43] and Elgamal  [48] encryption algorithms are 

examples of public-key crypto-algorithms. The speed of a crypto-algorithm and its 

hardware cost are important performance measures particularly for mobile systems. They 

are direct function of the algorithm complexity, and the technology used to implement it. 

Thus, efficient implementation of modular multipliers is essential for the design of 

efficient high-speed crypto-processors  [53]. 

 In this work, two types of modular multiplication algorithms are evaluated and the 

corresponding hardware is designed and modeled. The first is a self-timed asynchronous 
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modular multiplier, while the other is a synchronous multiplier that is based on a new fast 

architecture utilizing a four-to-two compressor. We have used area-delay cost as basis for 

comparison between the two designs. Furthermore, we have devised a BIST structure for 

the synchronous design based on a realistic sequential fault model for iterative logic 

arrays. 

 The rest of this thesis is organized as follows. In  CHAPTER 1, a brief review of 

essential arithmetic operations is provided, some modular multiplication algorithms are 

outlined and a brief overview of clocked and event-driven systems is given.  CHAPTER 2 

describes the design of the proposed asynchronous modulo multiplier.  CHAPTER 3 

presents a complete design solution for Montgomery modular multiplication. It starts with 

a review of the algorithm’s notation then a hardware implementation of the algorithm is 

illustrated. In  CHAPTER 4, a brief background of hardware testing is given then a 

Built-In-Self-Test methodology for the compressor modulo multiplier is presented. 

Finally, the thesis results and conclusion are given in  CHAPTER 5. 
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1.1. BACKGROUND 

1.1.1. Cryptographic Systems 

1.1.1.1. Symmetric Cryptosystems (Secret Key) 

Conventional cryptosystems, also referred to as symmetric or single-key cryptosystems, 

are based on the use of a common single key and a common algorithm. For the same 

plaintext message, the algorithm produces different ciphertexts for different keys, see 

Figure  1.1. 

Encryption 
Algorithm

Decryption 
AlgorithmCiphertextPlaintext PlaintextUser_A User_B

User_B’s 
Public Key

User_B’s
Private Key

 

Figure  1.1: Symmetric Cryptosystem. 

 In conventional cryptosystems, the algorithm should not depend on the input 

message and should not to be kept secret. Only the key needs to be kept secret and it 

should be computationally impractical to decrypt the ciphertext knowing only the 
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encryption/decryption algorithm together with samples of plaintext and their 

corresponding ciphertext  [53]. 

 Since, in this method, both the sender and the receiver have the same key, which 

must be kept secret, There should be a secure key distribution mechanism. Good key 

distribution mechanisms are not trivial and are not without disadvantages  [53]. 

1.1.1.2. Public-key Cryptosystems 

Unlike symmetric cryptosystems, public-key cryptosystems do not use the same key to 

encrypt and decrypt messages. Instead, each of the two parties has two different but 

related keys, a public key (KU) and a private key (KR) and they consider a message as 

consisting of a number of blocks where every message block M has a binary value that is 

less than some value N (known to both ends). Encryption and decryption algorithms used 

for public-key cryptosystems are mainly based on modulo operations. 

 For USER_A to send an encrypted message to USER_B, he must use USER_B’s 

public-key. This message cannot be decrypted without USER_B’s private key that is 

known only to USER_B. Figure  1.2 shows an illustration of the public-key cryptography 

principle. 
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Encryption 
Algorithm

Decryption 
AlgorithmCiphertextPlaintext PlaintextUser_A User_B

User_B’s 
Public Key

User_B’s
Private Key

 

Figure  1.2: Public-Key Encryption. 

 For any public-key algorithm, the following equations must hold whenever User_A 

needs to send an encrypted message to User_B: 

Ciphered = EKU_B (Message) 

Message = DKR_B (Ciphered) 

   = DKR_B [EKU_B (Message)] 

   = EKU_B [DKR_B (Message)] 

 Where E and D are the encryption and decryption algorithms respectively. 

 It should be computationally infeasible to infer the decryption key or the original 

message given only the algorithm, the encryption key and samples of ciphertexts  [29] 

 [53]. 
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 Encryption algorithms can be implemented using software or hardware. Whereas 

software implementations are less expensive, easier to modify, and slow, hardware 

implementations are more expensive, difficult to modify but are quite faster. 

 Hardware implementations are evaluated based on their running time (speed), VLSI 

area, and power dissipation. A practical complexity measure for fast mobile 

cryptosystems is the area-delay product (AT)  [49]. 

1.1.1.2.1. RSA Algorithm. One of the most commonly used public-key 

cryptosystems is the RSA algorithm. The RSA algorithm was devised by Rivest, Shamir, 

and Adleman  [43]. If M is the message to be encrypted and C is the ciphered message, the 

RSA algorithm is based on the following three requirements: 

• Finding integers e, d, and N such that M = Med mod N. 

• It should be easy to compute Me and Cd. 

• It should be almost impossible to find d knowing only e and N. 

 Usually N is a large difficult to factor integer and the message block M is such that 

0≤M<N. The ciphertext C is computed as follows: 

C = Me mod N 

 The plaintext message can be retrieved back using the decryption key d as follows: 

M = Cd mod N = (Me)d mod N = Med mod N 
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 Both the sender and the receiver know N, and e, while only the receiver knows d 

and the keys are represented as: 

KU= {e, N}, KR= {d, N} 

 To satisfy the algorithm requirements, the modulus N is defined as the product of 

two prime numbers p, q (N=pq). Therefore Φ(pq) = (p-1)(q-1) where Φ(x) is the number 

of positive integers which are smaller than x and are relatively prime to x. The decryption 

key d is computed as:  [43]  [53]. 

gcd(Φ(N), d)=1 and 1<d< Φ(N), and e ≡ d-1 mod Φ(N) 

1.1.1.2.2. The Elgamal Algorithm. In this algorithm  [48], the system has two 

public keys; N and g, where N is a large prime and N-1 has at least one large prime factor, 

and g is a primitive element mod N. Each party has its own private key KR_x (1 < KR_x 

< N-1) and its public key KU_x that can be computed from the private key as follows: 

KU_x = g KR_x mod N 

 For USER_A to send a message M (0 ≤ M < N) to USER_B, he should first choose 

some random number U (0< U < N), then a transaction key K is computed using 

USER_B’s Public key (KU_b). 

K= KU_bU mod N 

 The ciphered message is then computed as a pair C= (c1, c2) where 
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c1 = gU mod N  & c2 = KM mod N 

 Note that the size of the encrypted message is double the size of the original 

message. 

 USER_B can decrypt the ciphered message C by first retrieving the transaction key 

K. This should be easy for USER_B since 

K ≡ KU_bU ≡ (g KR_b)U ≡ ( g U) KR_b ≡ c1
KR_b mod N 

 Then the original message M will be easily retrieved by dividing c2 by K. 

M = c2 /K 

 For increased security the transaction key K should not be used for more than one 

message block. Otherwise, the knowledge of one block allows attackers to know all other 

blocks  [15]  [21]  [29]  [33]  [48]. 



 

 

9

1.1.2. Arithmetic Operations 

In this section, after reviewing several multiplication schemes, some division algorithms 

are also discussed. In addition, the exponentiation operation is described. Finally several 

modulo multiplication algorithms are outlined. 

1.1.2.1. Multiplication Algorithms 

Three types of multiplication algorithms are reviewed in this section. First, the sequential 

multiplication for two’s complement singed numbers is described. Then, Booth 

multiplication algorithm which is based on multiplier recoding is presented. The third 

algorithm is a high-radix version of Booth multiplication algorithm. 

1.1.2.1.1. Sequential Multiplication. If X and A are two k-digit numbers, their 

product P will be 2k-digits long. Let the multiplier X and the multiplicand A be 

represented as: 

 X= xk-1 xk-2 … x1 x0 

 A= ak-1 ak-2 … a1 a0 

 Where xi and ai are digits in a number system of radix β. 

 For unsigned numbers, the product P requires k steps to obtain. In step i, the product 

Axi is shifted and cumulatively added to the partial product P. 
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 X = ∑
−

=

1

0

k

i
xiβi. 

 P = X·A 

  =A * ∑
−

=

1

0

k

i
xiβi. 

  = Ax0β0 + Ax1β1 + Ax2β2 + … + Axk-1βk-1 

 This multiplication is illustrated in Figure  1.3 using dot notation for two 4-digit 

numbers  [4]. 

   . . . . A 
  . . . . X 
  . . . . PP0 = Ax0β0. 
       . . . .  PP1 = Ax1β1. 
            . . . .  PP2 = Ax2β2. 
         . . . .  PP3 = Ax3β3. 
         . . . . . . . P = PP0 + PP1 + PP2 + PP3  

 

Figure  1.3: Dot Notation for Two 4-word Numbers Multiplication. 

 In the case of signed numbers, xk-1, ak-1 are the sign bits. The product P requires k 

steps to obtain. In step i, the product Axi is shifted and added to the partial product P. The 

multiplication algorithm can be expressed using the following recursion: 

  X=-xk-1·βk-1+
2

0

k

i

−

=
∑ xi·βi. 

  P = X·A 
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 P = -xk-1·βk-1·A + 
2

0

k

i

−

=
∑  xiβi·A. 

 The following example (see TABLE  1.1) illustrates the multiplication algorithm for 

binary signed numbers in two’s complement representation. 

TABLE  1.1: Two's Complement Signed Numbers Multiplication Example. 

A 

X 
 

0 0 1 0 1 

1 1 0 1 1 

5 

-5 

P(0)=0 

X0=1  add A 

 

Shift  P(1)= 

 

+

 

 

0 0 0 0 0 

0 0 1 0 1 

0 0 1 0 1 

0 0 0 1 0 

 

 

 

1 

X1=1  add A 

 

Shift  P(2)= 

+

 

 

0 0 1 0 1 

0 0 1 1 1 

0 0 0 1 1 

 

1 

1 1 

X2=0  Shift  P(3)=  0 0 0 0 1 1 1 1 

X3=1  add A 

 

Shift  P (4)= 

+

 

 

0 0 1 0 1 

0 0 1 1 0 

0 0 0 1 1 

 

1 1 1 

0 1 1 1 

Xsign=1  add -A 

P= 

+

 

1 1 0 1 1 

1 1 1 1 0 

 

0 1 1 1 -25 
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 To speed up the multiplication process we can do one of the following: 

• Use faster adders using: 

o Faster Architecture. 

o Faster technology. 

• Reduce the number of partial products 

o Using high radix multipliers (scanning more than one multiplier bit at a time) 

o Using Multiplier Recoding techniques. 

1.1.2.1.2. Booth Multiplication. In Booth multiplication, the number of partial 

products is reduced using multiplier recoding technique. The multiplication process 

consists of add and shift operations with addition requiring much more time than the shift 

operation. The objective is to recode the multiplier bits such that it has less number of 

ones and more zeros, which reduces the required number of add operations. This can be 

achieved by skipping chains of zeros and recoding chains of ones  [4]. Booth multiplier 

recoding is illustrated in TABLE  1.2. 

Example 

Both recoding of (1 1 0 0 1 1 1 0) is (1 0 1  0 1 0 0 1  0) 
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TABLE  1.2: Booth Recoding. 

Current Bit 

Xi 

Previous Bit 

Xi-1 

Recoded Bit 

Yi 
Note 

0 0 0 No string of ones in sight 

0 1 1 End of string of ones 

1 0 1  Beginning of string of ones 

1 1 0 Middle of string of ones 

 

1.1.2.1.3. High Radix Booth Multiplication. Booth algorithm has two 

disadvantages. The first one is that the number of shifts is not constant. Therefore, the 

algorithm can not be useful for synchronous systems. The second disadvantage is that the 

algorithm will give worst results for multipliers that have many isolated ones. For 

example, if we try to recode 001010101(0), which has four ones (add operations), we will 

get 1 1  1 1  1 1  1 1 , which has eight ones. To overcome the latter problem, higher 

radix Booth recoding can be used. 

TABLE  1.3 illustrates radix-four Booth recoding in which two bits are recoded at a time. 
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TABLE  1.3: Radix-4 Booth Recoding Algorithm. 

Current 

Bits 

Previous 

Bit 

Recoded 

Bits 

Xi+1 Xi Xi-1 Yi+1 Yi 

Note 

0 0 0 0 0 No string of ones in sight 

0 0 1 0 1 End of string of ones 

0 1 0 0 1 One between Zeros 

0 1 1 1 0 End of string of ones 

1 0 0 1  0 Beginning of string of ones 

1 0 1 0 1  End of string of ones and starting of another. 

1 1 0 0 1  Beginning of string of ones 

1 1 1 0 0 Middle of string of ones 

 For more on binary numbers recoding see  APPENDIX B. 

 Fast multiplication can also be achieved in a number of other ways, such as tree 

multiplication and array multiplication  [4]. 
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1.1.2.2. Division Algorithms 

Division is the most complex of the four basic arithmetic operations. Unlike the other 

three arithmetic operations, the result of division consists of two components; a quotient 

Q and a remainder R. Therefore, the result of dividing some dividend X by a divisor D 

consists of a quotient Q and a remainder R such that X=Q·D+R where R D< . 

1.1.2.2.1. SRT Division. In non-restoring binary division the divisor D is a 

normalized fraction. The quotient is computed digit by digit starting with the most 

significant digit. In is in a form of binary singed digits qi i.e., qi ∈  {-1, 0, 1}. the 

remainder is computed using the following recurrence: 

  ri = 2ri-1 - qiD 

 Where: 

  r0 = X 

  
i-1

i-1

1         if 2r   0

1         if 2r   0iq
⎧ ≥⎪⎪⎪= ⎨⎪ <⎪⎪⎩

 

 The selection criteria can be modified to perform the comparison with D as: 

  
i-1

i-1

i-1

1          if 2r   D

0          if -D   2r   D

1          if 2r   -D

iq

⎧⎪ ≥⎪⎪⎪⎪= ≤ <⎨⎪⎪⎪ <⎪⎪⎩
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 However, this selection criterion requires full precision comparison of ri-1 and D. 

We can overcome this costly comparison by restricting D to be normalized fraction, and 

the comparison needed will be with ±1/2 instead of ±D. Therefore, all numbers will be 

presented as fractions and the new quotient selection mechanism is given by 

  
i-1

i-1

i-1

1          if   2r   1/2

0          if   -1/2  2r   1/2

1          if   2r   -1/2

iq

⎧⎪ ≥⎪⎪⎪⎪= ≤ <⎨⎪⎪⎪ <⎪⎪⎩

 

 This is known as SRT algorithm after its three authors D. W. Sweeney, J. E. 

Robertson, and K. D. Tocher  [37]. 

Example: The example in TABLE  1.4 illustrates SRT division. 

TABLE  1.4: SRT Division Example. 

r0= X 

2r0 

Add -D 

 

 

+

0 .0 1 0 1 

0 .1 0 1 0 

1 .0 1 0 0 

 

>1/2 => q1=1 

r1 

2r1=r2 

2r2= r3 

2r3 

Add D 

 

 

 

 

+

1 .1 1 1 0 

1 .1 1 0 0 

1 .1 0 0 0 

1 .0 0 0 0 

0 .1 1 0 0 

 

>-1/2 => q2=0 

>-1/2 => q3=0 

<-1/2 =>q4=-1 

r4 

Add D 

 

+

1 .1 1 0 0 

0 .1 1 0 0 

-ve remainder & +ve 

X 

correction 

r4  0 .1 0 0 0 Final remainder 
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1.1.2.2.2. High Radix SRT Division. One can reduce the number of shift/subtract 

operations by using higher radices. Therefore, instead of using the radix-2 SRT, we use 

higher radix β, where β =2m, the number of shift/subtract steps will reduce from n to 

n
m

⎡ ⎤
⎢ ⎥ , and m quotient bits are produced per step. The remainder recurrence relation will 

be: 

  ri = 2mri-1 - qiD 

 Where qi { 1,  ..., 2, 1, 0, 1, 2, ..., -1}β β∈ − . 

 This recurrence relation gives the maximum redundancy for radix-β, which might be 

too costly. To find the lower bound, let us assume that q { ,  ..., 2, 1, 0, 1, 2, ..., }aD a a∈ =  

meaning that it can be any of these 2a+1 digits. However, we need at least β digits to 

represent a number in radix-β therefore the following must hold  [4]: 

  2a+1≥ β 

  β > a ≥ (β-1)/2 
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1.1.2.2.3. Vitit’s Division Algorithm. This algorithm  [51] is simpler than radix-4 

SRT and is based on radix-2 SRT. It has simpler iteration hardware and the number of 

iterations - at worst - is equal to those of radix-4 SRT  [4] and it does not require the use of 

a lookup table.  

 Recall that, the SRT algorithm is based on the following recurrence:  

ri = 2ri-1 - qiD 

 Initially assume that both 2ri-1 and D are positive. Therefore, qi can be selected as 

follows: 

i-1

i-1

i-1 i+1 i-1

i-1

0    if    2r  < 1/2                                                             

1 if 2r  < D (3-bit comparison)

1    if    2r   1/2 and q = 0 if 2r  = D (3-bit comparison)

1 if 2r  > D (

iq = ≥

3-bit comparison)

⎧⎪⎪⎪⎪⎪ ⎧⎪⎪ ⎪⎪ ⎪⎨ ⎪⎪⎪ ⎨⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎩⎩

 

 The 3-bit comparison is done on the most significant fractional bits. 

 The algorithm can be easily modified for signed numbers as follows: 

i-1 i i-1

i-1

0       if 2r  < 1/2                                                       and r 2r                                      

SS      if 2r   1/2                  if this is last q digit else 

  
iq

=

≥

= i-1

1 i-1 i i-1 i+1 i

i-1

0  SS  if 2r  < D  (3-bit comparison)

          = SS  0  if 2r  = D  (3-bit comparison)       and r 2r ,  and r 2r

SS SS if 2r  > D  (3-bit comparison)
i iq q SSD SSD+

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪ ⎧⎪⎨ ⎪⎪ ⎪⎪ ⎪⎪⎪ = − = −⎪ ⎨⎪⎪⎪⎪⎪⎩⎩

⎪⎪⎪⎪⎪⎪

 

 Where: 
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 SS is Sign(ri-1)*Sign(D). 

 We can use only 2-bit comparison instead of 3-bit comparison if 2ri-1 and D are 

positive as follows: 

i-1 i i-1

i-1

0    if    2r  < 1/2                                             and r 2r                

1    if    2r   1/2                  if this is last q digit else                                   
iq

=

≥
=

i-1 i+1 i-1

1
i-1 i+1 i-1

          

10 if 2r   D (2-bit comparison)      and r 4r 2
         =

11 if 2r   > D (2-bit comparison)       and r 4r 3i i

D
q q

D+

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪ ⎧ ≤ = −⎪⎪ ⎪⎪⎪ ⎨⎪⎪ ⎪ = −⎪ ⎪⎪⎩⎪⎩

 

 Up to four dividend bits may be retired instead of 3 per iteration as follows: 

i-1 i i-1

i-1

1 2

0    if    2r  < 1/2                                                        and r 2r          

1    if    2r   1/2                  if this is last q digit else

01
                 =

i

i i i

q

qq q+ +

=

≥
=

i-1 i+2 i-1

i-1 i+2 i-1

1 if 2r   D (2-bit comparison)   and r 8r 3

100 if 2r   > D (2-bit comparison)    and r 8r 4

D

D

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪ ⎧ ≤ = −⎪⎪ ⎪⎪⎪ ⎨⎪⎪ ⎪ = −⎪ ⎪⎪⎩⎪⎩

 

 It is obvious that we need to compute 3D and -3D in order to run this algorithm 

improvement [51]. 

 The proof of this algorithm is given in  APPENDIX A. 
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1.1.2.3. Exponentiation 

 Exponentiation is performed as a number of squaring and multiplication operations 

depending on the length of the exponent. The algorithm is shown in Algorithm  1.1. 

Algorithm  1.1: Exponentiation. 

 

 Where: 

  n: number of bits in the exponent E. 

  E= en-1 en-2 … e2 e1 e0. 

  ei: the i’th bit of E. 

 The algorithm can be easily modified for modular exponentiation by replacing the 

multiplication step in Algorithm  1.2 with a modular multiplication  [16]. 

Objective: 
Compute X=YE 
 
Algorithm: 
X=1. 
For i=0 to n-1 
 If ei = 1 Then X= X.Y 
 Y=Y2 
End 
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Algorithm  1.2: Modular Exponentiation. 

 

Objective: 
Compute X=YE Mod N 
 
Algorithm: 
X=1. 
For i=0 to n-1 
 If ei = 1 Then X= (X.Y) Mod N 
 Y=(Y.Y) Mod N 
End 
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1.1.2.4. Modular Multiplication 

1.1.2.4.1. Triangle Addition Algorithm. Modular multiplication algorithms -for n-

word numbers- are mostly classified into the following two categories: 

1. Division-after-multiplication: Here, an n-word by n-word multiplication is 

performed first, then a 2n-word by n-word division is carried out. This method 

requires 2n-word memory space to store intermediate results, but it does not 

need many subtraction steps. 

2. Division-during-multiplication: In this category, division residue subtraction 

steps are interleaved with the multiplication addition steps and only (n+1)-word 

memory space is needed. On the other hand, it requires n-word subtractions and 

(n+1)-word by n-word division per residue calculation step. 

 The modular multiplication with triangle addition algorithm is a new algorithm that 

does not belong to any of the above categories  [34]. It combines the advantages of the 

other two approaches by having the same memory space requirement as division-during-

multiplication, and the same number of steps needed by the division-after-multiplication 

category. It is a completely new algorithm in which the upper half triangle of the all 

partial products is added up and its residue is calculated. Then the sum of the lower half 

triangle of all partial products is added to the pre-calculated residue. Finally, the final 

residue of the total result is calculated. 
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Assumptions and Notations 

For (A × B mod N) 

• A, B and N are n-word numbers satisfying 0 ≤ A, B < N. 

• n ≤ β. Where β is the radix. 

• 1

0
.n i

ii
δ δ β−

=
= ∑  Where δ  can be A, B or N. 

The Algorithm 

The algorithm (shown in Algorithm  1.3) is based on the following formula  [34]: 

( )( )
,

1 1

mod . . mod

                     . . mod . . mod

i j
i ji j

i j i j
i j i ji j n i j n

A B N A B N

A B N A B N

β

β β

+

+ +
+ ≥ − + < −

× =

= +

∑
∑ ∑

 

Algorithm  1.3: Triangle Addition Modular Multiplication. 

 

 

1.1.2.4.2. Holger and Peter’s Interleaving Algorithm. In  [16], modular 

multiplication is done by interleaving the multiplication with the division. In  

Algorithm  1.4, P plays the role of partial remainder in SRT division and partial product in 

1
1

. . i j n
i ji j n

P A B β + − +
+ ≥ −

⇐∑  

( )1. modnP P Nβ −⇐  

1
. . i j

i ji j n
P P A B β +

+ < −
⇐ +∑  

modP P N⇐  
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multiplication where the algorithm adds partial product, subtract divisor multiple, and 

shift left the result P. 

Algorithm  1.4: Interleaving Modular Multiplication. 

 

 The P correction step is required because an estimated value of q is used. The 

estimate of q should be good enough to keep P from diverging during the calculations. 

 In order to save time, carry save redundant representation of P is used – in which the 

value of P is represented in two registers usually called SUM and CARRY. 

 To estimate q, a parallel exhaustive search is used, in which the following 

expression is performed in parallel for all values of q: 

P -q 2k N 

 Only few bits of P and -q 2k N are used in this estimation, twelve bits for radix 32 as 

an example. According to  [16], this method generally is very expensive in terms of 

hardware, but may be acceptable for operands longer than 500 bits. 

Objective: 
Compute P=(A.B)mod N 
 
Algorithm: 
P=0 
For i=n-1 downto 0 
 q = estimate(P/N) 
 P=2k P + ai B – 2k qN 
End 
P correction 
 
Where: 
 n: number of radix 2k words. 
 ai: the i’th digit of the multiplier 
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1.1.2.4.3. Takagi’s Radix-4 Algorithm. Takagi  [35] has presented a fast Radix-4, 

division-during-multiplication, modular multiplication algorithm. In this algorithm, 

operands and partial products are represented in redundant formats and the intermediate 

results are stored in more redundant format to reduce the number of additions/subtractions 

required. There is only one time-consuming, carry propagation step at the end of the 

algorithm. The algorithm calculates P=A.B (mod N), and uses the following recurrence: 

1: 4. . 4. .j j j jP P b A c N+= + −
)

 

 Where: 

• N: n-bit binary number, 2n-1 ≤ N <2n. 

• A: (n+1)-digit redundant binary number, -N < A < N. 

• B: (n+1)- digit redundant binary number, -N < B < N. 

• P: (n+1)- digit redundant binary number, -N < P < N. 

• $ jb : The i’th digit of the recoded B (multiplier). It depends only on five digits of 

B (b2j+1 down to b2j-3). 

• jc : used for residual calculation, {2, 1,0,1, 2}jc ∈ . 

 The recoded multiplier B
)

 is a n( +1)
2
⎢ ⎥
⎢ ⎥⎣ ⎦

– digit radix-4 signed digit number that can 

be obtained using TABLE  1.5 where uj, tj are intermediate temporary values. A recoding 

example is shown in Figure  1.4. 
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TABLE  1.5: Multiplier Recoding Rule. 

jb
)

 

 uj-1
tj  

1  0 1 

uj, tj 2  × 2  1  

 b2j 
b2j+1  

1  0 1 1  2  1  0 

1  1 ,1 10, 2 / 1 ,2 0, 1 0 1  0 1 

0 0, 1 0,0 0,1 1 0 1 2 

1 0,1 11, 2 /0,2 1, 1 2 1 2 × 

Stage 1 Stage 2 

 

0 1  0 1 1 0 B 0 0 1  B 
0 1 0 0 0 (0) u 
1  1 2  0 1  t 
1  2 2  0 1  B

)
 

Figure  1.4: Multiplier recoding example. 

 

                                                 
1 b2j-1 is nonnegative/otherwise 
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 Choice of jc  based on the following: 

   

j

j

j

j

2       if                      top(R ) < -top(6.N)
1       if   -top(6.N) top(R ) < -top(2.N)
0       if    -top(2.N) top(R ) < top(2.N):
1       if     top(2.N) top(R ) < top(6.N)
2       if         

jc
≤
≤=
≤

j            top(R ) top(6.N)

⎧
⎪
⎪⎪
⎨
⎪
⎪

≥⎪⎩

 

 Top means the most significant 4 digits of N, top 5 digits of (2.N), the top 6 digits of 

(6.N), or 8 digits of R  [32]  [35]  [36]. In other words, left pad N, 2N, and 6N with zeros to 

make them (n+4)-digits numbers. Then the comparison is carried out on the most 

significant eight bits of them as illustrated in Figure  1.5. The algorithm steps are shown in 

Algorithm  1.5. 

n+4 n+3 n+2 n+1 N n-1 n-2 n-3 … 2 1   
          N 
          2N 
          6N 
        

 

  Rj 

Figure  1.5: Illustration of the compared bits. 

 

Algorithm  1.5: Takagi's Radix-4Modular Multiplication. 

$

n/2 +1

jj j+1

j j j

-1

Step 1: P  := 0

Step 2: for j= n/2  down to -1

    R  = 4.P +b .A

    P  = R  -4.c .N

Step 3: P=P /4

⎢ ⎥⎣ ⎦

⎢ ⎥⎣ ⎦
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 Where: 

 Rj is (n+4)-digit RBN (Residue Binary Number) and $
1: 4. .jj jR P b A+= +  

1.1.2.4.4. Montgomery’s Algorithm. Montgomery  [39] came up with an elegant 

way to calculate the modular multiplication. The idea is to transfer the problem to another 

domain which will be referred to as the Montgomery domain. The modulo multiplication 

in the Montgomery domain is made easier and faster. 

 It is required to compute A·B mod N, where A, B, and N are n-bit numbers with 

0< A, B < N, and N being an odd number. First the operands A and B are mapped into the 

Montgomery domain where A is mapped into modA AR N=  and B is mapped into 

modB BR N=  where R=2n. The two mapped numbers A  and B  are presented to the 

Montgomery product procedure _ Pr ( , )Mon o A B . The algorithm requires the calculation 

of R-1 and Ń where R·R-1 mod N =1 and R·R-1-N·Ń =1. The calculation of Ń and the 

transformation to and form the Montgomery domain are time consuming steps. However, 

this cost is tolerable for modulo exponentiation (XE mod N) where modulo multiplication 

is performed repeatedly. Hence, transformation to Montgomery domain is performed once 

at the beginning, and then the result of the modulo exponentiation operation is 

transformed back form the Montgomery domain at the end  [6]. 

 Modifications to Montgomery algorithm were made by V.Bunimov et al  [49], where 

the original operands are fed directly to the algorithm as _ Pr ( , )Mon o A B P=  while the 
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second pass will be for _ Pr ( , )Mon o P Pℜ =  where 2 modR Nℜ = . The steps are 

shown in Algorithm  1.6. 

Algorithm  1.6: Montgomery Modular Multiplication Algorithm. 

 

 Keeping in mind that adding multiple of the modulus (N) does not affect the final 

result and since N is an odd number, the result of the first line of the for loop is always 

even. Therefore, the division in the second line of the for loop will have no remainder. By 

going through the first pass, the algorithm would have performed division by R = 2n, i.e., 

T= (A×B/R) mod N. This is why we need to run the algorithm for a second time with T 

and R2 as operands. The output of the second pass will be 

P= (R2×T/R) mod N = [R (A×B/R)] mod N = (A×B) mod N. 

 The only time consuming step in this version is the computation of 2 modR Nℜ =  

 [6]  [39]  [49]. A more detailed description on versions of Montgomery algorithm is given 

in page 57. 

Objective: 
Compute Mon_Pro(A,B) 
 
Algorithm: 
T=0 
For i=0 to n-1 
 T= T + ai × B + t0 × N 
 T = T / 2 
If T ≥N then T = T –N 
 
Where: 
  ai is the i'th bit of A and t0 is the LSB of T. 
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1.1.2.5. Synchronous and Asynchronous Circuits 

1.1.2.5.1. Clocked synchronous circuits. Synchronous circuits generally use a 

common global clock. It is quite simple to design circuits using synchronous logic, 

because it is commonly understood and used. Moreover, clocked-logic parts are widely 

available in the market and there is no timing hazards associated with it. 

 Synchronous systems performance follows the worst-case behavior and suffers from 

clock skew problems that limit the clock speed. Replacing any system module will require 

complex and costly timing analysis. While asynchronous circuit module are activated and 

consume power only upon request, synchronous circuit module, however, dissipate power 

even if not active since they are regularly clocked (charged and discharged)  [8]  [23]  [48]. 

1.1.2.5.2. Event-driven asynchronous circuits. These circuits use a request-

Acknowledge handshaking protocol rather than a global clock signal. For such systems, 

various modulus act in an independent manner based on local events and the system 

overall speed performance follows the average-case behavior. Overall system speed is 

improved by replacing any module with a faster one without any need for timing analysis 

since they do not use a global clock. Using CMOS technology for implementation, power 

dissipation of asynchronous systems is less since only active modules will consume 

power. 



 

 

31

 On the other hand, it is more difficult to design asynchronous modules since they 

are subject to timing hazards and signal races. Asynchronous circuit modules generally 

require more silicon area than their synchronous components  [8]  [23]  [48]. 

 For controllers, event-driven transition signaling is based on signal transitions 

(events). All signal transitions have the same meaning and there is no distinguishing 

between rising or falling transactions, which might double the speed over clocked logic. 

The following components are typically employed in event-driven based controllers: 

1. C-Element: C-Element performs ANDING of events where an event is 

generated at the output only if events are detected on all of the input ports. It is 

assumed that no simultaneous events may occur at the inputs of a C-Element 

 [29]  [30]. 

2. Merge Element: Merge element performs ORING of events in which an event 

on the output is generated if an event occurs on any of its two input ports. It is 

assumed that no simultaneous events may occur at the inputs of a 

Merge-Element  [29]  [30]. 

 

 □ 
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CHAPTER 2  

DESIGN AND MODELING OF ASYNCHRONOUS 

MODULO MULTIPLIER 

This work investigates the use of asynchronous techniques for the design of efficient 

modulo multipliers. With the large size operands commonly used in cryptosystems, using 

array or parallel multipliers would require prohibitively large areas. Instead, sequential 

multipliers are employed in this work. Since sequential multipliers use repeated add and 

shift operations, an asynchronous implementation can significantly improve the speed at a 

modest increase in area. For k-bit adders, the speed of an asynchronous adder is O (Log k) 

on the average  [14] compared to the O (k) speed of carry-propagate adders. Asynchronous 

event logic based on transition signaling is used, where signal transitions are used as 

control events  [21]. 

 The multiplication process consists of a number of add and shift operations with 

addition requiring much more time than the shift operation. In addition to using an 

asynchronous adder with O (Log k) average speed  [1], a number of other measures were 

adopted to further improve the overall speed of the system. For one, the developed 

algorithm uses radix-4 system, which retires two bits per iteration instead of one. For 

another, multiplier recoding as a signed-digit number  [4] is used to allow skipping over 

chains of zeros as well as chains of ones which results in a considerable reduction in the 

number of required add operations, and hence a significant speed improvement. 
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2.1. DESCRIPTION OF THE ASYNCHRONOUS ALGORITHM 

It is required to compute P =X×Y mod N, where the modulus N, the multiplicand X and 

the multiplier Y are k-bit numbers. Typically, N is a very large odd number, i.e., generally 

Nk-1 = N0 = 1. The developed algorithm uses radix-4 system, but may be extended to 

higher radixes as well. In addition, a Booth-like recoding of the multiplier (Y) into an 

equivalent signed digit representation is used. Such recoding increases the number of 0s 

and reduces the number of 1s and -1s. This reduces the number of required add/subtract 

operations thus improving the overall speed. The overall procedure is given in  

Algorithm  2.1 and consists of four major steps: 

a. Initialization 

b. Recoding and adding 

c. Scaling 

d. Correction 
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Algorithm  2.1: Asynchronous Modulo Multiplication. 

 

a. Initialization: 
 P(k+4 bits)  0 where k is the number of bits in N. 
 Left pad Y by two bits, i.e., Yk+1= Yk=0. 
 Compute (N-X), 3N and 5N. i=k+1 
 
b. Recoding and Adding: 
 WHILE i >0 
 { P 4P; 
  CASE Pk+2 Yi Yi-1 Yi-2 IS 
  { X000, X111 : skip 
   0001, 0010 : P  P-(N-X) 
   0011 : P  P-2(N-X) 
   0100 : P  P-2X 
   0110, 0101 : P  P-X 
 
   1110, 1101 : P  P+(N-X) 
   1100 : P  P+2(N-X) 
   1011 : P  P+2X 
   1001, 1010 : P  P+X 
  } 
 
c. Scaling: 
  CASE Pk+2 Pk+1 Pk Pk-1 Nk-2 IS 
  { 000XX, 111XX : skip 
   001XX : P  P-2N 
   010X1 : P  P-3N 
   010X0, 011X1 : P  P-4N 
   01100 : P  P-5N 
   01110 : P  P-6N 
 
   110XX : P  P+2N 
   101X1 : P  P+3N 
   101X0, 100X1 : P  P+4N 
   10010 : P  P+5N 
   10000 : P  P+6N 
  } 
  i=i-2 
 }  
 
d. Correction: 
 WHILE P>0  
 { P  P-N 
 } 
 P  P+N 
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2.1.1. Initialization Step 

In this step, the partial product register is cleared and the values required throughout the 

algorithm are computed. These values are (N-X) which is used in the recoding step, 3N 

and 5N that are used in the scaling step. Then the partial product accumulator -register P- 

is cleared again. 

2.1.2. The Recoding And Adding Step 

The algorithm scans one multiplier digit (2bits) plus one look-ahead bit from left-to-right- 

every iteration. Digit recoding is based on TABLE  2.1. 

 To compute P = X×Y mod N, the product register P is initially left padded with a 

total of four bits. Three bits to accommodate the sign and the left shift operation by one 

digit (2bits) and the fourth is needed because the multiple 6N is needed in the scaling step. 

For proper recoding, the multiplier is also left padded with two Zeros. After the 

initialization step, the proper multiple of X is added or subtracted from P based on the 

value of the recoded multiplier digit and the sign of P, i.e., Pk+4. It should be noted that 

instead of subtracting/adding X, (N-X) may be equivalently added/subtracted. To reduce 

the chance of overflow, the performed operation, i.e., adding X or equivalently subtracting 

(N-X), is chosen to oppose the current sign of P. For example, according to TABLE  2.1, if 

yi yi-1 yi-2=001 then X should be added to P. In this case, if P is negative, we add X to P, 

but if P is positive we subtract (N-X) from P. This requires pre-computation and storage 

of (N-X). 
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TABLE  2.1: Left-to-Right Recoding. 

Scanned Multiplier Digit 

yi yi-1 

Look Ahead Bit 

yi-2 
Action 

00 0 Shift 2-bits 

00 1 +1 X; Shift 2-bits 

01 0 +1 X; Shift 2-bits 

01 1 +2 X; Shift 2-bits 

10 0 -2 X; Shift 2-bits 

10 1 -1 X; Shift 2-bits 

11 0 -1 X; Shift 2-bits 

11 1 Shift 2-bits 
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2.1.3. Scaling Step 

The scaling step subtracts/adds a proper multiple of N such that the three most significant 

bits of P are guaranteed to have the same value either all 0s for positive values or all 1s 

for negative ones. This step is necessary to prevent overflow after the left shift operation 

(i.e., P = 4P). The selected multiple (jN) should satisfy the following inequality for all 

possible values of P and N. 

-2k ≤ P-jN < 2k 

 Extreme values of j are determined by the two corner points: 

1. Maximum (P)-j Minimum (N). 

2. Minimum (P)-j Maximum (N). 

 To determine the proper multiple (j) of N that should be subtracted/added from/to P, 

the four most significant bits of P (Pk+2 Pk+1 Pk Pk-1) and the two most significant bits of N 

(Nk-1 Nk-2) are considered. Since Nk-1 is assumed to be always 1, only Nk-2 need to be 

considered. Based on the values of these bits, the algorithm determines the proper N 

multiple to be subtracted/added from/to P such that P can be expressed in only k bits. 

 TABLE  2.2 shows the detailed analysis of this problem for positive values of P. For 

example, in the fifth row where Pk+2 Pk+1 Pk Pk-1 = 1100 and Nk-2 =0, five is the only 

multiple of N that keeps P in k bits after performing P-5N for all possible values of P and 

N. Similar analysis is applied for negative values of P. 
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TABLE  2.2: Extreme Cases with the Proper Multiple on N. 

Pk+2 Pk+1 Pk Pk-1 Nk-2 
Maximum P- 

j Minimum N 

Minimum P- 

j Maximum N 
j

0 0 1 × × 
2k+1-1-2×(2k-1+1) 

=2k-3 

2k-2×(2k-1) 

=-2k+2 
2

0 1 0 × 0 
2k+2-2k-1-4×(2k-1+1) 

=2k-5 

2k+1-4×(2k-2k-2-1) 

=-2k+4 
4

0 1 0 × 1 
2k+2-2k-1-3×(2k-1+2k-2+1) 

=3×2k-2-4 

2k+1-3×(2k-1) 

=-2k+3 
3

0 1 1 × 1 
2k+2-1-4×(2k-1+2k-2+1) 

=2k-5 

2k+12k -4×(2k-1) 

=-2k+4 
4

0 1 1 0 0 
2k+2-2k-1-1-5×(2k-1+1) 

=2k-6 

2k+12k -5×(2k-2k-2-1) 

=-3×2k-2+5 
5

0 1 1 1 0 
2k+2-1-6×(2k-1+1) 

=2k-7 

2k+1+2k+2k-1-6×(2k-2k-2-1) 

=-2k+6 
6
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2.1.4. Correction Step 

After all k/2 iterations are performed, the resulting value of P may need correction. The 

correction step is guaranteed to require no more than one addition or two subtractions, 

since the final P value coming out of the scaling step is a k-bit number and N is a k-bit 

number. The general data flow of the algorithm is as illustrated in Figure  2.1. 

 

Initialization

Shift, Recode & Select

Add & Scale

Correction

Next Y digit

 

Figure  2.1: Modular Multiplication Data Flowchart. 
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2.1.5. Illustrative Example 

Compute (9×11) Mod 13. 

initialization X=1001, Y=001011, N=1101, i=5,(N-X)=0100, 

  3N=100111, 5N=10000001, and P= 0000 0000. 

Recoding P=P-(N-X) 

  P=1111 1100 

Scaling  Skip 

  i=3 

Shifting  P=1111 0000 

Recoding P=P+(N-X) 

  P=1111 0100 

Scaling  Skip 

  i=1 

Shifting  P=1101 0000 

Recoding P=P+(N-X) 

  P=1101 0100 

Scaling  P=P+3N 

  P=1111 1011 

  False 

Correct  P=P+N 

  P=0000 1000 =8  
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2.2. DESIGN ISSUES 

The adopted asynchronous system implementation of the above algorithm is based on 

event control logic  [19]. This implementation was modeled using VHDL where the select 

module was used to implement decisions (IF statements) and Loops were implemented 

using a merge element with the loop condition checked through a select module  [19] as 

shown in Figure  2.2. 

 

Merge

Processing

Select
T                                            .

F

Loop Condition

Start Loop

 

Figure  2.2: Loop Implementation. 
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 For area efficiency, counters and registers were implemented as clocked 

synchronous elements, i.e., it is a globally asynchronous locally synchronous design. The 

local clock input of a register (counter) receives a single clock pulse whenever a signal 

event is received at the input request line. This is achieved using an edge detector and a 

one shot circuitry as shown in Figure  2.3. 

 Although all intermediate results are (k+3) bits or less including the sign, 6N and 5N 

might need (k+4) bits. Therefore, the width of registers and adder is chosen to be 

(k+4) bits, but input interfaces need only to be k-bit wide. 

 

Edge Detector & One 
Shot Register/Counter

Matching Delay

Due to request falling 
event

Due to request rising 
event

Two requests

Acknowledge  

Figure  2.3: Clock Pulse Generation for Registers/Counter. 
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 The design assumes that the most significant (kth) bit of N is one. Therefore, in case 

of smaller values of N, N should be shifted left to be a k-bit number and the multiplicand 

X should also be shifted left by the same number of bits. In this case, the final result 

should to be corrected by shifting it right by the same number of bits. This can be seen 

from the following equation: 

P = (X×Y) mod N  P×2m = (X×Y×2m) mod (N×2m) 

 For example, (3×5) mod 7 =1 implies that (3×5×8) mod (7×8) =8 and visa versa. 

2.2.1. Design Data Flow 

The data path in Figure  2.4 consists of seven (k+4)-bit registers, one (Log k)-bit counter 

and one (k+4)-bit adder. The adder is capable of performing (A+B), (B-A) and (A-B) 

operations. The operations to be performed are P±X, P±2X, P±(N-X), P±2(N-X), P+N, 

P±2N, P±3N, P±4N, P±5N, P±6N and N+2N. With these, we need multiplexers at both 

inputs of the adder where one of the multiplexers needs only to select between P and N. 

For symmetry and delay reasons, the values are distributed between the two multiplexers. 

 The registers 3N, 5N and N-X (later designated as NmX) are loaded only once during 

the initialization phase, therefore they are not connected directly to the adder’s output. 

This is to speed up loading register P, which occurs in all states of the design. 

 Since we are using synchronous modules, all control signals (Load/shift, Clear, 

Add/Sub) are level, not event, signals. 
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Figure  2.4: Asynchronous Modulo Multiplier Hardware Data Flow. 
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2.2.2. Controller Design 

The design contains eight states, the first four states are initialization states, then the 

algorithm loops through three states; namely the shift, add and scale. The eighth state is 

for correction. Figure  2.5 shows the state diagram of the design. 

 The controller states are implemented using three synchronous D-Flip-Flops with 

local clock generation. These three Flip-Flops will be referred to as the “state register”. 

The start signal causes state register to be cleared while the signals S1, S2, S3, S4, S5, S6, 

S7 and Loop activate state transitions between various states. Data stored in the state 

register represents the state variable designating the current state. 

 Load/shift control inputs of the registers and load/decrement input of the counter are 

controlled based on the value of current state variables. Request events, which initiate a 

particular operation, are generated when certain conditions or events are satisfied in a 

given state. A description of what is performed in each state is detailed below. 

 



 

 

46

 

State 0
(N-X)

State 1
3N

State 2
5N

State 3
CLR P

State 4
Shift

State 5
Recode & 

Add

State 6
Scale

S1

S2

S3

S4
S5

S6

State 7
Correct

i=0
S7

i>0
Loop

Start

Done
 

Figure  2.5: Asynchronous Modulo Multiplier State Diagram. 
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2.2.2.1. Computing N-X (State 0) 

A start signal clears the state register to 0 which generates requests to load initial values in 

registers X, Y, N and the counter i (referred to later as Cntr). Then; 

• Acknowledgments from registers X and N generate a request for the adder to 

compute (N-X)  

• The adder’s acknowledgment signal is used as a request for P to load the 

computed result (N-X). 

• Acknowledgment from register P requests the register NmX to load the value of 

register P. 

• The acknowledgments from registers Y, NmX and Cntr cause the state register 

value to change to 1. 

 Figure  2.6 shows the data flow in State 0. 

Req

A

IA

IB

Cin Sum

Reg

L

A
IO

R
X

(N-X)

Req_Adder

C_NX

AckXAckN

MuxA(X)
MuxB(N)

Sub

Reg

L

A
IO

R
NmX

Reg

L

A
IO

R
N

Reg

L

A
IO

R
Y

Cntr

R

A
IO

L
C

Reg

L

A
IO

R
P

C

C_S0o

AckY
AckC

S1

1111

0 1

1
C_YC

L: Load
R: Reset
A: Acknowledge
I: Input
O: Output  

Figure  2.6: State 0, Computing N-X. 
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2.2.2.2. Computing 3N (State 1) 

Figure  2.7 shows the date flow of State 1 as follows: 

• If the present State is 1, a request is generated for the adder to compute N+2N. 

• Adder’s acknowledgment requests register P to load the result (3N). 

• Acknowledgment from register P requests register 3N to copy register P’s value. 

• Acknowledgment from register 3N causes a transaction to State 2. 

L: Load
R: Reset
A: Acknowledge
I: Input
O: Output

Reg

L

A
IO

R
P

C

Reg

L

A
IO

R
N3

3N

MuxA(2N)
MuxB(N)

Add

S2

Req

A

IA

IB

Cin S

0 1

1

 

Figure  2.7: State 1, Computing 3N. 
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2.2.2.3. Computing 5N (State 2) 

The data flow of this state is shown in Figure  2.8 and can be described as follows: 

• Once the state register value changes to two, the adder is requested to compute 

P+2N –where register P contains the previous value, which is 3N. 

• Acknowledgment from the adder requests the register P to load the result (5N). 

• Acknowledgment from register P’s requests register 5N to copy register P’s 

value. 

• Acknowledgment from register 5N changes the state register value to three. 

L: Load
R: Reset
A: Acknowledge
I: Input
O: Output

Reg

L

A
IO

R
P

C

Reg

L

A
IO

R
N5

5N

MuxA(2N)
MuxB(p)

Add

S3

Req

A

IA

IB

Cin S

0

1

1

 

Figure  2.8: State2, Computing 5N. 
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2.2.2.4. Clear Register P (State 3) 

This is the last state in the initialization phase. As Figure  2.9 shows, In State 3, register P 

is cleared. The acknowledgment from register P changes the state register value to four. 

CLR P

S4

Reg

L

A
IO

R
P

C

1 x

L: Load
R: Reset
A: Acknowledge
I: Input
O: Output  

Figure  2.9: State3, Clearing P. 

2.2.2.5. Shift Left P and Y (State 4) 

The loop starts with state four. A change on state register value to four, requests the 

registers P and Y to be shifted left by two bits. Acknowledgments from register P and Y 

changes the state register value to five. Figure  2.10 shows the data flow digram of State 4. 
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Reg

L

A
IO

R
Y

Shift

C_PY

S5

Reg

L

A
IO

R
P

C

0 0
0

L: Load
R: Reset
A: Acknowledge
I: Input
O: Output

 

Figure  2.10: State 4, Shifting P and Y. 

2.2.2.6. Computing Partial Product (State 5) 

In State 5, a select module is requested to check if the three most significant bits of Y are 

identical. If they are, State 5 is exit, otherwise the adder is requested to perform any of 

P±X, P±2X, P±(N-X) or P±2(N-X) operations and its acknowledgment requests the 

register P to load the result. After register P’s acknowledgment, State 6 is triggered. This 

is outlined in Figure  2.11. 
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Y2=Y1=Y0

SelS5

Reg

L

A
IO
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P

C

0 1

Recode
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S6

Req

A

IA

IB

Cin S

L: Load
R: Reset
A: Acknowledge
I: Input
O: Output

 

Figure  2.11: State 5, Computing Partial Products. 

2.2.2.7. Scaling Partial Product (State 6) 

In State 6, a select module is requested to check if the three most significant bits of P are 

identical. If they are, the loop select module is requested, otherwise the adder is requested 

to perform any of P±2N, P±3N, P±4N, P±5N or P±6N operations and its acknowledgment 

requests the register P to load the result. After that, register P’s acknowledgment requests 

the loop select module. The loop select module requests Cntr to decrement if Cntr’s value 
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is greater than zero and then Cntr’s acknowledgment triggers State 4. Otherwise, if Cntr’s 

value is zero, State 7 is triggered. The date flow of this state is shown in Figure  2.12. 

Scale

M3

T F i>0SelLP

S7

Reg

L
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IO

R
P

C
0 1

Req

A

IA

IB
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R

A
IO

L
C

T F Ps=Pk+1=Pk
SelS6

0

L: Load
R: Reset
A: Acknowledge
I: Input
O: Output

 

Figure  2.12: State 6, Scaling & Loop Condition Checking. 

2.2.2.8. Correction (State 7) 

In State 7, the adder is requested to perform P±N. Then, and its acknowledgment requests 

a select module to check if the sign of the result is negative and the sign of register P is 

positive. If true, the done signal is brought high. Otherwise, register P is requested to load 

the result and its acknowledgment requests the adder again as far as the done signal is 
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low. If the sign bit of register P is zero at the time of register P’s acknowledgment the 

done signal is brought high. The maximum number of adder requests in this state is two as 

mentioned in section  2.1.4. The data flow of this state is shown in Figure  2.13. 
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IB

Cin S
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0 1

Correct
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AdderSign=1
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Done=0
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MuxA(N)
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PsB

And

L: Load
R: Reset
A: Acknowledge
I: Input
O: Output

 

Figure  2.13: State 7, Correction. 
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2.3. ALGORITHM COMPLEXITY 

2.3.1. Hardware Complexity 

To reduce the hardware area, clocked asynchronous elements are used. The scaling step 

reduces the register width by a factor of two at the expense of an extra addition step per 

iteration. A one bit register is used as a hardware complexity reference and its hardware 

cost is assumed to be λ. Accordingly, the overall hardware (area) complexity consists of: 

• Area cost of eight k-bit registers is 8k λ 

• Area cost of a k-bit asynchronous adder is 3 k λ 

 

2.3.2. Time Complexity 

Reducing the overall time and area complexity of modulo multiplication operation is one 

of the main purposes of the algorithm. The use of radix-4 reduces the number of iteration 

by factor of two, but we have two additions per iteration each is performed 3/4 of the time 

on average. 

 On the other hand, the use of an asynchronous adder reduces the average rippling to 

O(log2(k)). The cost of O(log k) can be expressed  [12]  [40]as α log k, where ½ < α <2. 

 Assuming v to be the delay of a two input gate, the average case delay is given by: 



 

 

56

¾× α k log2(k) v  

 Accordingly, the total area-delay Cost will approximately be: 

33/4 α v λ k2 log2(k) ≈ 8×α v λ k2 log2(k) 

 □ 
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CHAPTER 3  

MONTGOMERY MULTIPLIER  

(A COMPLETE SOLUTION) 

This work investigates the use of a four-to-two compressor for the design of efficient 

modulo multipliers. With the large size operands commonly used in cryptosystems, using 

array or parallel multipliers would require prohibitively large area. Instead, sequential 

multipliers are employed in this work. Since sequential multipliers use repeated add and 

shift operations, a Compressor implementation can significantly improve the speed at a 

modest increase in area. For compressors, the speed of the addition is fixed regardless of 

the length of the operands. This comes at the cost of having the result in a redundant 

format. 

 The four-to-two compressor used in this design is different from the conventional 

four-to-two compressor. It is constructed from two full-adders and one half-adder as 

shown in Figure  3.1. It has a total of four inputs and two outputs with two carry-ins and 

two carry-outs. This particular design of the four-to-two compressor allows us to control 

the output of the least two bits and make them zero after every addition step as detailed in 

section  3.3.2. 
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Conventional 4-2 Compressor Modified 4-2 Compressor  

Figure  3.1: Four-to-Two Compressor Structure. 

 Some measures were adopted to further improve the overall system speed. For one, 

the developed algorithm uses radix-4 -which retires two bits per iteration instead of one 

and multiplier recoding into singed-digit format  [4] is used to avoid computing multiple 

of operands that are not multiple of two. 
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3.1. MONTGOMERY’S MODULAR MULTIPLICATION 

P. L. Montgomery introduces a new method of computing modular multiplication without 

the need for quotient determination  [39]. In comparison to conventional SRT division 

method, Montgomery’s method needs considerable pre and post processing. However, 

this added processing can be neglected in case of repeated modular multiplication as the 

case of modular exponentiation. 

3.1.1. Algorithm Parameters and Notations 

For better understanding of the algorithm, we start by reviewing the notations used in the 

algorithm  [6]  [45]. 

• Modulus N is a k-bit difficult to factor odd integer. 

• R=2k. 

• R-1 is the multiplicative inverse of R mod N (i.e., (R-1×R)mod N =1). 

• (N’ = (R×R-1-1)/N) ≡ (R× R-1- N×N’=1) ≡ (N’=-N-1 mod R) 

• The N-residue of A is defined as A =(A×R)mod N 

• The N-residue of B is defined as B =(B×R)mod N 

• The Montgomery product of A  and B  is defined as follows: 

C  = ( A × B × R-1) mod N. 

 = (A×R×B×R× R-1) mod N. 
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 = (C×R) mod N 

 = the N-residue of C. 

 Where: C=(A×B)  

 The new N-residue domain {(A×R) mod N | 0≤A<N} (referred to later as 

Montgomery’s domain) contains all the values between 0 and (N-1)  [6]. Therefore, it is 

one-to-one mapping between its elements and integers between 0 and (N-1). TABLE  3.1 

shows the mapping between integers from zero to 12 and the 13-residue system where: 

• N=13. 

• R=24=16. 
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TABLE  3.1: Mapping Integers to 13-Residue Class. 

A A =(A×16)mod13

0 0 

1 3 

2 6 

3 9 

4 12 

5 2 

6 5 

7 8 

8 11 

9 1 

10 4 

11 7 

12 10 
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3.1.2. Algorithm Features. 

Montgomery algorithm (Algorithm  3.1) requires the computation of N’ and R-1. These are 

time consuming operations and can be completed using Euclidean algorithm  [3]. The 

other two time consuming tasks are the conversion to and from the Montgomery 

domain  [6]. 

 On the other hand, computations in the Montgomery domain are much faster since 

division is by R and the multiplication is modulo R, where R is a power of two number. 

 The result of Montgomery’s multiplication is represented in Montgomery’s domain. 

To convert it back to the ordinary domain, the result is fed back to the algorithm with one 

as the second operand. 

 

Algorithm  3.1: Montgomry's Multiplication. 

 

 

Objective: 
Compute C =MonPro( A , B ) 
 
Algorithm: 
tmp1= A × B  
tmp2=(tmp1×N’ mod R)×N 
tmp3=(tmp1+tmp2)/R 
IF tmp3≥N THEN 
 {tmp3=tmp3-N 
 } 
C =tmp3. 
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3.1.2.1. Illustrative Example 

 Let: N=13, k=4, R=2k=16, A=5 and B=3. 

 Then: R-1=9, N’=11, Abar=2, and Bbar=9. 

MonPro(2,9) 

1. tmp1=9×2=18 

2. tmp2=(18×11 mod 16) ×13=6×13=78 

3. tmp3=[18+78]/16=6 

4. return(6)  

 Notice that as shown in TABLE  3.1, 6 in Montgomery domain corresponds to 2 in 

normal domain which is the correct result. Using the same algorithm again with the result 

(6) and 1 as operands, the result is converted back from the Montgomery domain. 

 One can notice that N’ is needed only to make tmp1+tmp2 divisible by R. 

Therefore, in case of binary interleaved modulo multiplication algorithm, the algorithm 

can be modified to function without the need for computing N’ as shown in  

Algorithm  3.2. 

 The algorithm simply performs every binary multiplication step (add operation) 

then checks the result, if found to be odd the modulus is added/subtracted to make it even. 

Hence, the result is divisible by two, which is simply a shift right operation. 
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Algorithm  3.2: Modified Montgomery Multiplication. 

 

 Since the algorithm introduces factor of 
1

2k −

 or in general 
1nr
−

 where r is the radix 

and n is number of digits in the radix-r number, we can avoid the conversion from the 

ordinary domain to Montgomery’s domain. To obtain the correct result, however, the 

result of the multiplication should be passed to the algorithm again with 22k (or r2n in 

general) as the second operand  [45]. 

 Although there are many hardware implementations for Montgomery modular 

multiplication [6]  [13]  [38]  [45]  [51]  [54], none of them have implemented the pre and 

post processing steps. In the following, we are going to show a complete design of 

Montgomery modular multiplier that implements the main algorithm together with the 

pre/post processing steps hence. 

Objective: 
Compute C =MonPro2( A , B ) 
 
Algorithm: 
tmp=0 
FOR i=0 to k-1 DO 
{ tmp=tmp+ai×Bbar 
 tmp=tmp+tmp0×N 
 tmp=tmp/2 
} 
IF tmp≥N THEN 
 {tmp=tmp-N 
 } 
 
C =tmp. 
 
Where: 
ai is the ith bit of A  and tmp0 is the LSB of tmp 
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 First, we will start by showing the design of radix-4 Montgomery multiplier. Then, 

a modification of the design will be made to enable it to perform the pre/post full modular 

multiplication operation. 

3.2. DESCRIPTION OF THE ALGORITHM 

In Montgomery modulo multiplication, a multiple of the multiplicand is added to the 

accumulator, and then a multiple of the modulus is subtracted to make the least significant 

bit(s) zero. In this chapter, the use of a four-to-two compressor allows simultaneous 

execution of these two operations. This comes at the expense of representing the result in 

a redundant format in two registers SUM and CARRY as shown in Figure  3.2. 

Four-to-Two Compressor

Sum

Carry

jN± iX±

 

Figure  3.2: Simultaneous Use of Modulus and Multiplicand. 

 The algorithm uses an optimal technique to recode the multiplier to radix-4 

signed-digit format. The use of radix-4 reduces the number of iterations by a factor of two 

and avoids the need to pre-compute multiples of the multiplicand since the recoded digits 

are 1, 2, and 4 –which are obtained by simple shift operation. 
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3.2.1. Approach 

 The design uses a right shift approach. Therefore, to keep the adder and register 

sizes at k-bit limit, modulus multiple must be chosen to make the least two bits of the 

accumulator – which is represented by the SAM and CARRY registers – zero. The 

multiplier is scanned from right-to-left and optimally recoded on-the-fly to allow proper 

selection of the multiplicand multiple and the modulus multiple using the recoding 

algorithm shown in TABLE  3.2. The least two significant bits of the SUM and CARRY 

outputs are guaranteed to be zero hence a right shift operation can be safely performed. 

After k/2 iterations, the Montgomery modular multiplication is over. However, since the 

result could be any number between -2N and 2N, the correction step is only one 

subtraction if the result is positive or a maximum of two additions if it is negative. Since 

the result is stored in a redundant format, a carry propagate adder is required to add the 

SUM and CARRY and identify the sign of the result. If instead of using a carry propagate 

adder, the carry save adder is used repeatedly till CARRY become zero, a maximum of k/3 

cycles (see  APPENDIX C), and an average of log2(k) cycles to complete. The 

Montgomery modular multiplication algorithm is shown in Algorithm  3.3. 

3.2.2. Illustrative Example 

This example illustrate the algorithm behavior in Montgomery multiplication phase 

Example: Compute (3×8) Mod 13. 

Let A=3 and B=8, from TABLE  3.1, we find the 13-residues of A and B to be: 



 

 

67

 A =9 

 B =11 

Compute (9×11) MonPro 13. 

 

a. Initialization: 

  X=0000 1001, Y=0000 1011, N=0000 1101, i=3 

  C=0000 0000, S=0000 0000. 

b. Right Shift Loop: 

  Right-Shift [C(0000 0000),S(0000 0000)] [ C(0000 0000),S(0000 0000)] 

  Add [N(0000 1101),C(0000 0000),S(0000 0000),-X(1111 0111)] [C(0001 0100),S(1111 0000)] 

  i=2 

 

  Right-Shift [C(0001 0100),S(1111 0000)] [C(0000 0101),S(1111 1100)] 

  Add [(0000 0000),C(0000 0101),S(1111 1100),-X(1111 0111)] [C(0000 0100),S(1111 0100)] 

  i=1 

 

  Right-Shift [C(0000 0100),S(1111 0100)] [C(0000 0001),S(1111 1101)] 

  Add [N(0000 1101),C(0000 0001),S(1111 1101),X(0000 1001)] [C(0100 0100),S(1101 0000)] 

  i=0 

d. Correction: 

  Add [N(0000 1101), C(0100 0100),S(1101 0000),(0000 0000)] [C(0010 0000),S(0000 0001)] 

  Add [-2N(1110 0110),C(0010 0000),S(0000 0001),(0000 0000)] [C(0000 0000),S(0000 0111)] 
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Done 

From TABLE  3.1, we find that the result 7 maps to 11 in the integer domain, which is the 

correct answer. 

 

Algorithm  3.3: Montgory Modular Multiplication. 

 

 

a. Initialization: 
 Counter = k/2+1 
 Clear the Sum and Carry registers 
 Multiplier= Multiplier*4 
b. Right shift Loop: 
 While Counter >0 
 { Right Shift (Multiplier, Sum, Carry). 
  Add (Multiple of N, Carry, Sum, Multiple of X) 
  Decrement Counter 
 } 
c. Correction: 
 If (estimated Accumulator sign is positive) 
 { Add(Multiple of N, Carry, Sum, 0) 
  While Carry ≠ 0 
  { Add(0, Sum, Carry, 0) 
  } 
  If (Accumulator sign is positive) 
  { Return(Sum) 
  } 
 } 
 While (estimated Accumulator sign is negative) 
 { Add(Multiple of N, Carry, Sum, 0) 
  While Carry ≠ 0 
  { Add(0, Sum, Carry, 0) 
  } 
 } 
 Return(Sum) 
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3.3. DESIGN ISSUES 

3.3.1. An Optimal Radix-4 Right-To-Left Recoding Algorithm 

In this algorithm, we use a tag bit (Tg) which is set initially to 0. In addition, the number 

to be recoded is left padded with one bit (0) if it has even number of bits or two bits if it 

has an odd number of bits. The number is then scanned from LSB to MSB with one look 

ahead (left) bit. TABLE  3.2 illustrates the recoding mechanism. 

TABLE  3.2: Radix 4 Optimal Recoding Algorithm. 

OUT IN Case 
No. Yi+1 Yi Tg Xi+2 Xi+1 Xi Tg

Note 

1 0 0 0 × 0 0 0 In the middle of 0 series. 
2 0 1 0 × 0 0 1 End of 1 series and starting 0 series. 
3 0 1 0 × 0 1 0 1 between 0's. 
4 1 0 0 0 0 1 1 End of 1 series and starting 0 series. 

5 1  0 1 1 0 1 1 
0 between 1 series and a single 1, so we 
can’t make it 1. Instead we make it -1 to be 
a beginning of 1 series. 

6 1 0 0 0 1 0 0 1 between 0's. 
7 1  0 1 1 1 0 0 End of 0 series and beginning of 1 series. 

8 0 1 1 × 1 0 1 
0 between 1 series and a single 1, so we 
can’t make it 1. Instead we make it -1 to be 
a beginning of 1 series. 

9 0 1 1 × 1 1 0 End of 0 series and s beginning of 1 series. 
10 0 0 1 × 1 1 1 In the middle of 1 series. 
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3.3.2. N-Multiple Selection For Shift Right Loop 

A proper selection of N multiple to be subtracted/added to ensure that the least significant 

two significant bits of the result are zero. This is essential for the design to only use k-bit 

processing, e.g. k-bit addition. Yet another condition is needed for the modulus selection 

criterion, that is the result in the accumulator after adding the selected multiple of 

modulus and multiplicand should be contained in k + 2 bits. As a result, the accumulator 

will have a k-bit number after right shifting by two bits. TABLE  3.3 shows how the 

modulus multiple is selected. Whenever we have the choice of positive or negative 

multiple of the modulus, the opposite sign of accumulator is selected. As an example, 

assume the following: 

 N=1001, X=1100  

 Let’s assume that at some stage we have SUM=00111001 and CARRY=01001001. 

 This makes the summation of the least significant two bits of SUM and CARRY 

equals two (10). Since the least significant two bits of X equals zero (00), from the third 

entry of TABLE  3.3 we have the choice of selecting ±2N. Since the estimated sign of the 

accumulator (SUM+CARRY) is positive -2N is selected. 
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TABLE  3.3: Modulus Selection for Shift Right Loop. 

N1:0 No X1:0 C1:0+S1:0 01 11 
1 0 0 0 0 
2 0 1 -1 1 
3 0 2 ±2 ±2 
4 0 3 1 -1 
5 0 4 0 0 
6 0 5 -1 1 
7 0 6 ±2 ±2 
8 1 0 -1 1 
9 1 1 ±2 ±2 

10 1 2 1 -1 
11 1 3 0 0 
12 1 4 -1 1 
13 1 5 ±2 ±2 
14 1 6 1 -1 
15 2 0 ±2 ±2 
16 2 1 1 -1 
17 2 2 0 0 
18 2 3 -1 1 
19 2 4 ±2 ±2 
20 2 5 1 -1 
21 2 6 0 0 
22 3 0 1 -1 
23 3 1 0 0 
24 3 2 -1 1 
25 3 3 ±2 ±2 
26 3 4 1 -1 
27 3 5 0 0 
28 3 6 -1 1 
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3.3.3. Data Path Design 

4N2NN0

Mux N

2XX2N0

Mux X

4-to-2 Compressor

SumCarry

X Reg.N Reg. Y Reg.

/4×4

Mux
Sum

/4×4
Mux
Carry

 

Figure  3.3: Compressor Multiplier Data Path. 

The data path of this design is shown in Figure  3.3 and the main components of the data 

path are described as follows: 

• Adder: A specially designed four-to-two compressor shown in Figure  3.4 is used 

in this design. Proper selection of the modulus multiple is guarantees that the two 

least significant bits of the result (SUM + CARRY) will be zero. This allows 

shifting the result to right without needing another register to keep the lower half 

of the result. 
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Figure  3.4: Four-to-Two Compressor. 

• Multiplexers: The design has four multiplexers, one to select a proper multiple 

of the modulus N (Multiplexer-N), and another is to select the proper multiple of 

the multiplicand X (Multiplexer-X). The other two multiplexers are used to 

generate a shifted value for the SUM and CARRY registers. Possible multiples of 

N are N, 2N, 4N or 6N where 6N multiple is needed only during the shift left 

loop –in which no multiple of X is needed-. Therefore, it can be obtained by 

selecting 4N from multiplexer-N and 2N form multiplexer-X to avoid computing 

a multiple of N that is not power of two. This implies that multiplexer-X should 

get N and X as inputs, and gives 2N, X, 2X or zeros as output. Multiplexer-N 

gets N as an input and gives N, 2N, 4N or zeros as output. Both multiplexers 

have the capability of providing these values or their one’s complement simply 

by XORing them with one. To get the two’s complement value of either of them, 

one is fed to the first Carry-in of the adder. In case that the two’s complement is 

needed on both multiplexers; one is fed to the second Carry-in of the adder. 

• Registers: This design needs only five registers; three for the inputs multiplicand 

(X), multiplier (Y) and modulus (N) and two for the accumulator represented in a 

redundant format CARRY and SUM. While registers X and N are simple 
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registers, register Y needs the shift right by two bits capability. Yet the 

accumulator registers (CARRY and SUM) are more complicated since they need 

the capability of shifting two bits to the right or to the left. Furthermore, the 

Carry register should have the capability of detecting Zero value in it. This is 

essential to know that the carry rippling phase is over. 

• Counter: The counter is used to control the number of loop iterations. 
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3.4. A COMPLETE HARDWARE IMPLEMENTATION FOR 

MONTGOMERY MULTIPLICATION 

The mechanism of making the least two bits zero and shifting the result right introduces 

the factor 
1

2k −

 to the result which is required by Montgomery multiplication algorithm. 

However, in the pre/post phase, it is required to eliminate this factor to compute the 

regular modulo multiplication result. Therefore, another loop is needed to eliminate this 

factor by shifting the accumulator to the left and subtracting a proper multiple of the 

modulus N to prevent overflow. 

 To have the capability of performing the Montgomery multiplication together with 

its pre and post calculation on the same hardware, the controller need one bit variable to 

know if the current phase is a Montgomery multiplication or pre/post phase. In case of 

pre/post phase, the shift-left loop stage of the algorithm will be executed. On the other 

hand, during the Montgomery multiplication the algorithm will skip the shift-left phase as 

shown in Figure  3.5. A complete description is shown in Algorithm  3.4. 
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3.4.1. Modulus Selection for Shift Left Loop 

The idea of this step is to keep the result in a k-bit boundary. The two most significant bits 

of both the accumulator and the modulus are inspected to determine the proper multiple of 

the modulus to be added and the selected modulus multiple is always the opposite sign of 

the accumulator’s. As shown in TABLE  3.4, there are cases where 6×N is needed. This 

value is obtained by selecting 4×N and 2×N to two inputs of the compressor. 

TABLE  3.4: Modulus Selection for Shift Left Loop. 

Sign Pk+2:k+1 Nk-1:k-2 Selected N 
+ 0 2 -1 
+ 0 3 -1 
+ 1 2 -2 
+ 1 3 -2 
+ 2 2 -4 
+ 2 3 -2 
+ 3 2 -6 
+ 3 3 -4 
- 0 2 1 
- 0 3 1 
- 1 2 2 
- 1 3 2 
- 2 2 4 
- 2 3 2 
- 3 2 6 
- 3 3 4 
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3.4.2. Illustrative Example 

This example illustrate the algorithm behavior in the pre/post phase 

Compute (9×11) Mod 13. 

a. Initialization: 

  X=0000 1001, Y=0000 1011, N=0000 1101, i=3 

  C=0000 0000, S=0000 0000. 

b. Right Shift Loop: 

  Right-Shift [C(0000 0000),S(0000 0000)] [ C(0000 0000),S(0000 0000)] 

  Add [N(0000 1101),C(0000 0000),S(0000 0000),-X(1111 0111)] [C(0001 0100),S(1111 0000)] 

  i=2 

 

  Right-Shift [C(0001 0100),S(1111 0000)] [C(0000 0101),S(1111 1100)] 

  Add [(0000 0000),C(0000 0101),S(1111 1100),-X(1111 0111)] [C(0000 0100),S(1111 0100)] 

  i=1 

 

  Right-Shift [C(0000 0100),S(1111 0100)] [C(0000 0001),S(1111 1101)] 

  Add [N(0000 1101),C(0000 0001),S(1111 1101),X(0000 1001)] [C(0100 0100),S(1101 0000)] 

  i=0 

 

c. Left-Shift Loop: 

  Add [(0000 0000),C(0100 0100),S(1101 0000),(0000 0000)] [C(0000 0000),S(0001 0100)] 

  i=3 
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  Add [-N(1111 0011), C(0000 0000),S(0001 0100),(0000 0000)] [C(1000 0000),S(1000 0111)] 

  i=2 

  Left-Shift [C(1000 0000),S(1000 0111)] [C(0000 0000),S(0001 1100)] 

 

  Add [-N(1111 0011),C(0000 0000),S(0001 1100),(0000 0000)] [C(1000 0000),S(1000 1111)] 

  i=1 

  Left-Shift [C(1000 0000),S(1000 1111)] [C(0000 0000),S(0011 1100)] 

 

  Add [-2N(1110 0110),C(0000 0000),S(0011 1100),(0000 0000)] [C(0010 0000),S(0000 0010)] 

  i=0 

 

d. Correction: 

  Add [-N(1111 0011), C(0010 0000),S(0000 0010),(0000 0000)] [C(0000 0000),S(0000 1000)] 

Done 
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Algorithm  3.4: A Complete Montgory Modular Multiplication. 

 

a. Initialization: 
 Counter = k/2+1 
 Clear the Sum and Carry registers 
  Multiplier= Multiplier*4 
b. Right shift Loop: 
 While Counter >0 
 { Right Shift (Multiplier, Sum, Carry). 
  Add (Multiple of N, Carry, Sum, Multiple of X) 
  Decrement Counter 
 } 
c. Left Shift Loop: 
 If MonPro=0  -- (i.e., Pre/Post processing phase) 
 { Counter = K/2+1 
  While Counter >0 
  { Add (Multiple of N, Carry, Sum, Multiple of N) 
   Decrement Counter  
   If Counter >0 
   { Left Shift (Sum, Carry) 
   } 
  } 
 } 
d. Correction: 
 If (estimated Accumulator sign is positive) 
 { Add(Multiple of N, Carry, Sum, 0) 
  While Carry ≠ 0 
  { Add(0, Sum, Carry, 0) 
  } 
  If (Accumulator sign is positive) 
  { Return(Sum) 
  } 
 } 
 While (estimated Accumulator sign is negative) 
 { Add(Multiple of N, Carry, Sum, 0) 
  While Carry ≠ 0 
  { Add(0, Sum, Carry, 0) 
  } 
 } 
 Return(Sum) 
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Figure  3.5: Montgomery Modulo Multiplier State Diagram. 
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3.5. ALGORITHM COMPLEXITY 

3.5.1. Hardware Complexity 

The hardware complexity of the algorithm is as follows: 

• Area cost for five registers is 5k λ 

• Area cost for the capability of some registers to both shift right and left and 

detecting zero is 2k λ 

• Area cost of the k-bit compressor is 5 k λ 

3.5.2. Time Complexity 

In the case of repeated modulo multiplication the cost of states 2, and 3 (Figure  3.5) 

becomes negligible. States zero and one need (k/2+1) clock cycles and after state one the 

design branches. In this section, the best, average, and worst case number of clock cycles 

is presented. 

 The best case occurs when the result is positive and no rippling is required, one 

clock cycle is needed for each of state five and state six. Therefore, the number of cycles 

in the best case is: 

((k/2+1)+2) 
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 In the worst case, we have negative result and it needs two correction steps. 

Therefore, the negative branch is passed twice where state eight needs one clock cycle and 

state nine needs maximum rippling time, which is k/3 cycles (see  APPENDIX C). The 

number of cycles in the worst case is: 

((k/2+1)+2(k/3+1)) 

 On the average, we need 1½ correction steps, while rippling takes O(log2(k)) cycles. 

As in  [12], the maximum value of α for rippling is only one. Therefore, the number of 

cycles on the average is: 

((k/2+1)+ 1½ (log2(k)+1)) 

 The clock period is the worst case delay of the four-to-two compressor plus the 

register loading time. For the four-to-two compressor used in this work, the worst 

compressor delay is the delay of five XOR gates that is 10× v delay (see  APPENDIX C), 

where v is a 2-input gate delay.  

 Thus the average area-delay cost will be: 

(12k) λ ×10× v ((k/2+1)+ 1½ (log(k)+1))≅ (60k2+180 k log2(k)+300k) λ v 

 □ 

 



 

 83

CHAPTER 4  

TESTING OF THE FOUR-TO-TWO COMPRESSOR ARRAY 

An Iterative Logic Array (ILA) is a logic array that is composed of combinational 

modules (cells), connected in a regular manner (array). With large number of cells, ILAs 

typically have large number of inputs. This makes the task of exhaustive testing of these 

arrays quite prohibitive. The increased use of synthesis tools has caused internal 

implementations of the ILAs to be quite abstract to the designer. Accordingly, test 

methodologies for such synthesized hardware typically use functional fault models. 

However, it is quite impractical to exhaustively test ILAs using conventional fault models 

because of their huge number of inputs. 

 Different fault models are used to test ILAs using C-testability  [1]  [10]  [20]  [28] 

 [42]. Using the C-testability concept, the whole ILA can be tested with a fixed number of 

test patterns regardless of size of the array. 

 In this chapter, we will consider two fault models for ILAs. Then, a Built In Self 

Test (BIST) methodology for the used four-to-two compressor ILA will be outlined. After 

that, a practical example will be used to illustrate the used of C-testability on the 

four-to-two compressor ILAs, and BIST for this ILA will be provided. 
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C-TESTABILITY FOR ITERATIVE LOGIC ARRAY 

Iterative Logic Array (ILA) can be one or two dimensional. A one-dimensional ILA has 

all of its cells connected in one row (or column). If the data flow in the ILA goes in one 

direction, the system is known as unilateral ILA, otherwise, it is called bilateral ILA. In 

two-dimensional ILAs, the cells are connected in rows and columns where cell Cij is the 

cell in the ith row and jth column. ILAs are said to be testable if it is possible to detect any 

faulty cell in the array  [1]. 

4.1.1. Preliminaries 

• Single Input Change (SIC): a given test sequence is called SIC if the Hamming 

distance between consecutive test vectors is one. Any circuit can be designed to 

be fully robustly testable with respect to stuck-open faults using SIC pairs 

only  [11]. 

• Variable Testability measure (VTM): “is the coefficient assigned to each bit of 

the input and output variables of a given functional primitive, and is a separate 

measure for each bit”. VTM for a bit is the minimum number of test vectors 

needed to test this particular bit. It allows prediction of the number of test vectors 

that are needed for a given primitive. Thus, VTM deals with the functional level 

of abstraction, and can be considered in testing of data paths  [28]. 

• An ILA is said to be C-testable if it can be tested with a constant number of test 

vectors regardless of the array size  [10]  [20]. 
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• An ILA is said to be O-testable (Optimal-testable) or M-testable 

(Minimal-testable) if it can be tested with a minimum test set that is equivalent to 

the minimum test set needed to test one cell. M-Testability can also be used for 

ILA with non-identical cells and also for data paths (at the functional  

level)  [28]  [42]. 

4.1.2. Circuit Hazards 

Hazards can be classified into two categories; function and logic hazards. 

• A circuit F is said to have a function hazard for input transition from A to C if 

the following conditions are satisfied: 

1. The circuit has to pass by the input state B in its transition from A to C. 

2. F(A) = F(C) ≠ F(B). 

• A circuit f is said to have a logic hazard for input transition from A to B if the 

following conditions are satisfied: 

1. F(A) = F(B). 

2. There is no function hazard for the transition from A to B. 

3.  Due to timing skews and delays inside the circuit, glitch(es) appear at the 

circuit output. 

 Logic hazards are dynamic property of the circuit and they depend on the 

propagation delays of various signals. Logic hazards can be avoided by using careful 

design strategies. However, one can never avoid function hazards  [11]. 
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4.1.3. Test Invalidation 

In sequential fault testing, a fault is detected by a sequence of two test vectors. An 

initialization test vector and an excitation test vector. The initialization test vector 

prepares the circuit nodes for fault excitation by the second test vector. Non-robust test 

patterns, however, maybe invalidated due to time or delay skews. Test invalidation will 

cause the target fault to escape detection. Therefore, robustness must be considered in 

sequential fault test patterns  [11]  [41]  [50]. 

4.1.4. Robustness 

By reducing the Hamming distance between test-vectors, the probability of test 

invalidation decreases. Therefore, if we use Single input Change (SIC), we will achieve 

the highest robustness. SIC means that pairs for test pattern <Vi, Vj> are different only by 

one bit  [11]  [41]. There are two levels of robustness: 

1. Cell Level Robustness: The test pattern pair applied on a cell can not be 

invalidated due to function hazards in the cell given that there are no glitches at 

the cell inputs  [11]  [41]. 

2. Array Level Robustness: The inputs of a tested cell must not have any glitches 

and the changes on the inputs of other fault free cells do not affect the 

propagation of a fault to a primary output. Array level robustness can be 

guaranteed if the following conditions are satisfied: 
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a) The inputs of the tested cell receive SIC without glitches through test 

application cells (cells that affect the input of the tested cell). 

b) The fault is propagated to primary output(s) through fault propagation cells 

(cells that propagate the fault to primary output(s)) robustly  [11]  [41]. 

4.1.5. Fault Models For ILA 

4.1.5.1. Cell Fault Model 

 In cell fault model (CFM), we assume that at most one cell is at fault, and that the 

fault does not convert the cell to a sequential one. The fault is also assumed to be 

permanent and can affect the cell’s output in any manner  [10]  [27]  [41]. 

 To test an ILA using CFM, all cells are exhaustively tested and the output of the 

faulty cell is propagated to a primary output. The CFM does not require any knowledge of 

the cell’s internal structure  [10]  [27]. 

 Using CFM, the lower limit of the number of test vectors to test an ILA is 

(2m.(2n-1)) where m and n are the numbers of cell inputs and outputs, respectively. 

 If sequential faults are considered, upon input change, every output might either 

keep its previous value (due to the fault), or change its value. Therefore, the lower limit on 

the number of test vectors to exhaustively test an ILA with sequential faults is 

(2m.(2m-1).(2n-1)). This makes CFM unrealistic for testing sequential faults  [11]  [42]. 
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4.1.5.2. Realistic Sequential Cell Fault Model 

For CMOS technology, the assumption of only combinational faults of the CFM is 

unrealistic, and sequential faults should be considered. These faults may be as transistor 

stuck-open faults, gate delay faults, or path delay faults. Unlike combinational faults, each 

sequential fault requires a pair of test vectors (an initialization vector, and a test vector) to 

be detected. A fault model that considers these fault types is called a sequential Fault 

Model (FM)  [11]  [42]. For a sequential fault model to be efficient it should satisfy the 

following three conditions: 

1. The FM should be comprehensive including CMOS stuck-open faults, but with 

reasonable test set size. 

2. Because of the increasing use of synthesis tools, the FM should be independent 

of internal circuit implementation. 

3. The FM should avoid test invalidation (robustness)  [41]. 

 In realistic sequential cell fault model (RS-CFM)  [11], it is assumed that at most one 

cell is at fault, and that test application should contain all possible single input change 

(SIC) pairs. In RS-CFM a fault is detected when the output of the faulty cell does not 

change while it should in a fault-free cell. In addition, the faulty cell output(s) should be 

propagated to primary output(s)  [11]. 

 By using SIC in RS-CFM the first and third conditions are satisfied. The total 

number of SIC pairs in m-input cell is (m.2m.(2n+1-2-n)/n) which is reasonably reduced 

compared to the number of exhaustive test pattern pairs of (2m.(2m-1).(2n-1)). RS-CFM 
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requires no knowledge of the cell’s internal implementation. However, an important 

assumption is that the cell design is free of logic hazards  [11]. 

4.2. A BIST METHODOLOGY FOR ILA. 

A Built-In Self-Test (BIST) structure allows a circuit to test itself. A BIST structure 

consists of a Test Pattern Generator (TPG) and an Output Response Analyzer  

(ORA)  [25]. 

 In pseudo-exhaustive testing, the Circuit Under Test (CUT) is partitioned into 

several modules, each is tested exhaustively. Thus, it is guaranteed to detect all detectable 

faults in each module. 

 In this work, a modification is done on the pseudo-exhaustive test method. Instead 

of guaranteeing that all detectable faults in a module are detected, we guarantee that all 

detectable faults that can occur in normal operation are detected. 

 Each cell of the ILA has vertical inputs, vertical outputs, horizontal (lateral) inputs, 

and horizontal outputs. The assumption is that all possible combinations of the cell’s 

vertical inputs are of acceptable size, and some set (say SA) of all possible combinations 

of the cell’s horizontal inputs are of acceptable size  [23]. 

The algorithm runs as follows: 

• Apply all possible input patterns (vertical and horizontal) to the leftmost module 

so as to know all possible output patterns on the horizontal outputs. 
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• On the next module, apply only the output patterns of the first module as 

horizontal inputs (and all possible vertical input patterns) and observe horizontal 

output patterns. 

• Repeat for all succeeding modules until the output horizontal patterns are equal 

to the input patterns. This pattern is called SA  [9]. 

4.3. TESTABILITY OF THE 4-2 COMPRESSOR 

In this section, we show how to apply C-testability on a one dimensional ILA with a basic 

cell composed of 4-2 compressor. The structure of the 4-2 compressor ILA is shown in 

Figure  4.1. 

C0C1C2Cn-1

I3  I2  I1  I0I3  I2  I1  I0I3  I2  I1  I0I3  I2  I1  I0

… ...

C  SC  SC  SC  S

Ci1
Ci2

Co1
Co2

 

Figure  4.1: One Dimensional 4-2 Adder ILA. 

 Theorem: For a one dimensional ILA defined by a basic cell C in which all single 

cell functional faults are propagated by all inputs, the ILA is O-testable if the state 

diagram of C can be partitioned into disjoint subsets of branches where each subset 

defines a closed cycle  [1]. 
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 Figure  4.2 shows the state diagram of the basic (4-2 compressor) cell where the 

states 00, 01, 10, and 11 correspond to the value of the carry-out of the 4-2 compressor 

(Cout2 Cout1). The carry-out of a compressor cell is applied as carry-in for its succeeding 

cell. Figure  4.3 shows one possible partitioning of the state diagram to follow the 

O-testability theorem. The labels on the arrows represent the value of the vertical inputs 

while the source state shows the value of the carry-in and the target state shows the value 

of the carry-out. For example, if the source state is 00 and the target state is 11 the arrow 

label will be F, which means if the carry-in is 00 and we apply a value F on the vertical 

inputs of the CUT, the carry-out will be 11. 

0100
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0, 1, 2, 4, 8

6, 7, D, C, E, A, B

1, 2, 3, 4, 5, 8 ,9

7, B, D, E, F

6, A, C

3, 5, 9

F
F

0
0

 

Figure  4.2: 4-2 Adder's Carry-Out State Diagram. 
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(e) Cycle 01-10-01 (f) Cycle 11-00-11 (g) Cycle 10-00-10 (h) Cycle 11-01-11

(i) Cycle 10-11-10 (j) Cycle 00-01-00  

Figure  4.3: Possible Partitioning of the State Diagram 4-2 Adder. 
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 In the following, the cost of a test set is chosen to be the summation of the 

Hamming distance between all the consecutive test-vectors. The objective is to make the 

circuit O-testable using the RS-CFM fault model as much as possible. Since the basic 

compressor cell has six inputs, we need to test the system use only 64 (26) test vectors so 

as to keep it O-testable. However, for the RS-CFM each test vector needs to have an 

initialization vector and the Hamming distance between consecutive test-vectors must be 

one. In other words, the best case scenario will be a test set of 64 test vectors with a total 

cost of 64 only. Another essential condition is that the vertical outputs of every 

consecutive pair of test vectors must be different to enable detection of faults. 

 The task of ordering 64 vectors to satisfy the above conditions mentioned is non 

trivial if at all possible. Therefore, a genetic evolutionary algorithm was developed to 

conduct the ordering problem (see  APPENDIX D). For more background on evolutionary 

algorithms see  [47]. 

 TABLE  4.1 shows a test set with 64 test vectors and a total cost of 84. The carry in 

inputs of the test vectors 1, 37, 42, 47, 53, 56, and 59 are not the same as the carry out of 

their predecessors. Therefore, we have manually inserted some vectors in between to 

maintain the lateral output flow. For example, if we take vector 1 in TABLE  4.1, we find 

that its carry-out is 11, however the carry-in of vector 2 is 00. in order to maintain the 

lateral output-input flow, an extra test vector that has 11 as carry-in and 00 as carry-out is 

inserted as shown in TABLE  4.2. The new test set contains 74 test vectors and has total 

Hamming distance cost of 99. 



 

 

94

 

TABLE  4.1: Genetic Algorithm’s Output Test Set. 

No Co2 Co1 C S I3 I2 I1 I0 Ci2 Ci1 No Co2 Co1 C S I3 I2 I1 I0 Ci2 Ci1

0 1 0 0 1 1 0 0 0 1 1 32 1 1 0 1 1 0 1 1 1 1
1 0 0 1 0 0 0 0 0 1 1 33 1 0 1 0 0 0 1 1 1 1
2 0 0 0 1 1 0 0 0 0 0 34 0 1 0 1 1 0 1 0 1 0
3 1 0 0 0 1 0 0 1 0 0 35 1 1 0 0 1 0 1 1 0 1
4 1 0 0 1 1 0 0 1 1 0 36 1 0 1 0 1 0 0 1 1 1
5 0 1 1 0 1 0 1 1 1 0 37 0 1 0 1 1 0 1 1 0 0
6 0 1 0 1 1 0 1 0 0 1 38 1 0 0 0 0 0 0 1 0 1
7 1 0 0 0 0 0 1 0 0 1 39 1 0 0 1 0 1 0 1 1 0
8 1 0 0 1 0 0 1 1 1 0 40 0 0 1 0 0 1 0 0 1 0
9 0 0 1 0 0 0 1 0 1 0 41 0 1 0 1 1 1 1 0 0 0

10 0 0 0 1 0 0 1 0 0 0 42 0 1 0 0 1 1 0 0 0 0
11 0 1 0 0 1 0 1 0 0 0 43 0 0 0 1 0 0 0 0 0 1
12 1 0 0 1 1 0 0 1 0 1 44 1 0 0 0 0 0 1 1 0 0
13 0 0 1 0 1 0 0 0 1 0 45 1 1 0 1 1 1 1 1 1 0
14 0 0 0 1 0 0 0 1 0 0 46 1 0 1 0 0 1 0 1 1 1
15 1 0 0 0 0 1 0 1 0 0 47 1 0 0 1 0 0 0 1 1 1
16 0 1 0 1 1 1 0 0 1 0 48 0 0 1 0 0 0 0 1 1 0
17 1 0 0 0 1 0 0 0 0 1 49 0 1 0 1 1 1 0 1 0 0
18 0 0 0 1 0 0 0 0 1 0 50 1 1 0 0 1 1 0 1 0 1
19 1 1 0 0 1 1 1 1 0 0 51 1 1 0 1 0 1 1 1 1 1
20 1 1 0 1 1 1 1 0 1 1 52 0 1 1 0 0 1 1 0 1 1
21 0 1 1 0 1 0 1 0 1 1 53 0 1 0 1 0 1 1 1 0 0
22 1 0 0 1 0 0 1 1 0 1 54 1 1 0 0 0 1 1 1 0 1
23 0 1 1 0 0 1 1 1 1 0 55 1 0 0 1 0 1 0 0 1 1
24 1 1 0 1 1 1 1 1 0 1 56 0 0 0 0 0 0 0 0 0 0
25 1 1 1 0 1 1 1 1 1 1 57 0 0 0 1 0 1 0 0 0 0
26 1 1 0 1 1 1 0 1 1 1 58 0 1 0 0 0 1 1 0 0 0
27 0 1 1 0 1 1 0 0 1 1 59 1 0 0 1 0 0 1 0 1 1
28 1 0 0 1 0 1 0 1 0 1 60 0 1 1 0 1 1 1 0 1 0
29 0 1 1 0 1 1 0 1 1 0 61 0 1 0 1 0 1 1 0 0 1
30 0 1 0 1 1 1 0 0 0 1 62 1 0 0 0 0 1 0 0 0 1
31 1 1 0 0 1 1 1 0 0 1 63 0 1 0 1 0 1 1 0 1 0

Outputs Inputs Outputs Inputs
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TABLE  4.2: Modified Test Set. 

No Co2 Co1 C S I3 I2 I1 I0 Ci2 Ci1 No Co2 Co1 C S I3 I2 I1 I0 Ci2 Ci1

0 1 0 0 1 1 0 0 0 1 1 36 1 0 1 0 1 0 0 1 1 1
X 1 1 0 0 1 1 1 0 1 0 X 1 0 0 0 0 0 0 1 1 0
1 0 0 1 0 0 0 0 0 1 1 X 0 0 1 0 0 0 0 0 1 0
2 0 0 0 1 1 0 0 0 0 0 37 0 1 0 1 1 0 1 1 0 0
3 1 0 0 0 1 0 0 1 0 0 38 1 0 0 0 0 0 0 1 0 1
4 1 0 0 1 1 0 0 1 1 0 39 1 0 0 1 0 1 0 1 1 0
5 0 1 1 0 1 0 1 1 1 0 40 0 0 1 0 0 1 0 0 1 0
6 0 1 0 1 1 0 1 0 0 1 41 0 1 0 1 1 1 1 0 0 0
7 1 0 0 0 0 0 1 0 0 1 X 0 0 1 0 0 0 0 0 0 1
8 1 0 0 1 0 0 1 1 1 0 42 0 1 0 0 1 1 0 0 0 0
9 0 0 1 0 0 0 1 0 1 0 43 0 0 0 1 0 0 0 0 0 1

10 0 0 0 1 0 0 1 0 0 0 44 1 0 0 0 0 0 1 1 0 0
11 0 1 0 0 1 0 1 0 0 0 45 1 1 0 1 1 1 1 1 1 0
12 1 0 0 1 1 0 0 1 0 1 46 1 0 1 0 0 1 0 1 1 1
13 0 0 1 0 1 0 0 0 1 0 X 1 1 0 0 0 1 1 1 1 0
14 0 0 0 1 0 0 0 1 0 0 47 1 0 0 1 0 0 0 1 1 1
15 1 0 0 0 0 1 0 1 0 0 48 0 0 1 0 0 0 0 1 1 0
16 0 1 0 1 1 1 0 0 1 0 49 0 1 0 1 1 1 0 1 0 0
17 1 0 0 0 1 0 0 0 0 1 50 1 1 0 0 1 1 0 1 0 1
18 0 0 0 1 0 0 0 0 1 0 51 1 1 0 1 0 1 1 1 1 1
19 1 1 0 0 1 1 1 1 0 0 52 0 1 1 0 0 1 1 0 1 1
20 1 1 0 1 1 1 1 0 1 1 X 0 0 0 1 0 0 1 0 0 1
21 0 1 1 0 1 0 1 0 1 1 X 0 0 1 0 0 0 1 0 0 0
22 1 0 0 1 0 0 1 1 0 1 53 0 1 0 1 0 1 1 1 0 0
23 0 1 1 0 0 1 1 1 1 0 54 1 1 0 0 0 1 1 1 0 1
24 1 1 0 1 1 1 1 1 0 1 X 1 0 0 1 0 1 0 0 1 1
25 1 1 1 0 1 1 1 1 1 1 55 0 0 1 0 0 0 0 0 1 0
26 1 1 0 1 1 1 0 1 1 1 56 0 0 0 0 0 0 0 0 0 0
27 0 1 1 0 1 1 0 0 1 1 57 0 0 0 1 0 1 0 0 0 0
28 1 0 0 1 0 1 0 1 0 1 X 0 1 0 0 0 1 1 0 0 0
29 0 1 1 0 1 1 0 1 1 0 58 1 1 1 0 1 1 1 1 0 1
30 0 1 0 1 1 1 0 0 0 1 59 1 0 0 1 0 0 1 0 1 1
31 1 1 0 0 1 1 1 0 0 1 60 0 1 1 0 1 1 1 0 1 0
32 1 1 0 1 1 0 1 1 1 1 61 0 1 0 1 0 1 1 0 0 1
33 1 0 1 0 0 0 1 1 1 1 62 1 0 0 0 0 1 0 0 0 1
34 0 1 0 1 1 0 1 0 1 0 63 0 1 0 1 0 1 1 0 1 0
35 1 1 0 0 1 0 1 1 0 1 X 1 1 1 0 1 1 1 1 0 1

Outputs Inputs Outputs Inputs
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 The TPG consist of two sequence generators, one for the vertical inputs (I3-I0) and 

the other for the carry-in inputs of the first cell (Ci2 Ci1). The vertical input pattern is 

repeated every 74 cells while the needed lateral input for intermediate cells is the lateral 

output of their predecessors. 

 There are three ways of detecting a faulty cell. First, the fault-free output of the 74 

test vector sequence is stored and the ORA compares the output of every 74 with it to 

detect any fault. The second approach of detecting faults is by using a 74-word 

comparator to compare the outputs of every 74 cells with the outputs of the 74 

successor/predecessor cells and a fault is detected in any case of inequality. Finally, since 

the output of every to consecutive cells is different, only 2-word comparator can be used 

to compare the output of every two consecutive cells and a fault is detected in case of any 

equality. The last ORA option is used because of its lower hardware cost however it is not 

efficient as the other two approaches. 

 

 □ 
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CHAPTER 5  

RESULTS AND CONCLUSION 

In the age of public electronic connectivity, as computer systems and their 

inter-networking grow in complexity, the dependence on secure data storage and transfer 

is becoming increasingly critical. The danger of hackers, electronic fraud, and 

eavesdropping has become a serious threat to reliable data communication and storage. 

This has led to the need for protecting and authenticating access to data and other digital 

information. Military applications, business and financial transactions, and multimedia 

communications, are examples that use authentication and data protection algorithms  [53]. 

 Public-key cryptosystems are popular because they do not need complex key 

distribution mechanisms and are mainly based on mathematical functions. The RSA  [43] 

and Elgamal  [48] encryption algorithms are examples of public-key crypto-algorithms 

which are based on modulo operations. The speed of a cryptosystem is an important 

performance measure. It is a direct function of the algorithm complexity, and the 

technology used to implement it. Efficient modular multipliers are essential for the design 

of high-speed crypto-processors  [53]. 

 In this work, two types of modulo multipliers were modeled and evaluated. The first 

is an asynchronous modulo multiplier which is based on a self-timed adder design where 

the average delay for a k-bit adder is O(log2(k)). The second modulo multiplier is a 
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complete implementation of Montgomery modulo multiplier utilizing a four-to-two 

compressor architecture that has a fixed addition delay regardless of the size of operands. 

 Based on the developed VHDL models, the area delay cost of the two multiplier 

designs were compared and the results are shown in TABLE  5.1 ignoring the time cost of 

the pre/post operations of Montgomery modulo multiplier. 

 Figures 5.1, 5.2, 5.3, 5.4 and 5.5 show the area delay cost comparison for α values 

of ½, 1, 1½, 2, and 2½ respectively. The value of α has a great impact on the overall area 

delay cost. For example, where α equals ½ Figure  5.1 shows that the asynchronous 

multiplier has a lower cost compared to the Montgomery multiplier even for large values 

of k. On the other hand, as α increases, the Montgomery multiplier exhibits better cost as 

the size of operands increases. Figure  5.2 shows that for α =1, the asynchronous 

implementation has a lower cost for operand sizes less than 270-bits. For α value of1½, 

however, the asynchronous implementation has lower cost only for operand sizes less than 

85-bits, 50-bit as α increases to 2, and 32-bits as α increases to 2½, as illustrated in the 

figures 5.3, 5.4, and 5.5 respectively. 

 This shows that the asynchronous modulo multiplier design will be better suited for 

Residue Number Systems (RNS) even for large α values. However, for elliptic curve 

crypto-systems with key sizes less than 270 bits, an efficient asynchronous adder with 

α ≤ 1 must be used to give cost results better than the Montgomery multiplier. 

 Promising high-speed low-cost transistor level implementation of self timed adders 

 [40] need to be developed and further investigated. 
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TABLE  5.1: AT Cost Comparison for the Multiplier Designs. 

 Design 

Cost  
Asynchronous Montgomery 

Number of iterations  ¾ k k/2+1 

Average time per iteration (v)  (α log2k) 10 

Average number of correction iterations 1 1½ (log2(k)+1) 

Total time (v) (α log2k)( ¾k+1) 5 k+ 15 log2k+25 

Hardware cost (λ) 11 k 12 k 

AT cost (v λ) 
33/4 α k2 log2(k) 

+11 k Log2(k) 

60k2+180 k log2(k)

+300k 
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Figure  5.1: Area Delay Cost Comparison for α = ½. 
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Figure  5.2: Area Delay Cost Comparison for α = 1. 
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Figure  5.3: Area Delay Cost Comparison for α = 1½. 
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Figure  5.4: Area Delay Cost Comparison for α = 2. 
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Figure  5.5: Area Delay Cost Comparison for α = 2½. 

 □ 
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APPENDICES 

APPENDIX A : ANALYSIS ON VITIT’S MULTIPLICATION 

ALGORITHM 

A.1. Assumptions 

• Dividend X, and divisor D, are fractions such that |X|≤|D| and D is a nonzero 

normalized number. 

• qi: is chosen based on the SRT algorithm, so it satisfies the convergence 

condition. 

A.2. Algorithm’s Proof 

For qi+1 we have three cases when qi =1:  

I. 2ri-1 < D: 

Since D < 1 => 2ri-1 < 1 

ri = 2ri-1 – D <0 

=> -1/2 <ri <0 (Because 2ri-1 < D, and both D and 2ri-1 are in [1/2,1[ ) 

For convergence condition, we need 1ir D+ ≤  so pick qi+1 = -1. To show that the 

condition is satisfied: 
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1 2 ] 1, 0] [1/2,1[i ir r D+ = ∈ − + ∈  

=> 1  >-1/2ir +  

1 ir D+∴ ≤  

II. 2ri-1 = D: 

Since qi =1 

=> ri = 2ri-1 – D ≈0 

Or 0.000111111... 0.001ir ≤ <  

=> 2 0.01ir <  

So pick qi+1 = 0 

=> 1 2 { 0.01, 0.01}ri ri D+ = ∈ − + <<  

1 ir D+∴ ≤  

III. 2ri-1 > D: 

Since qi =1 

=> ri = 2ri-1 – D >0 

So pick qi+1 = 1 
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=> ri+1 = 2ri - D 

Given that 2ri >0 and D > 0 and ir D≤ (Because qi was chosen using STR). 

1 ir D+∴ ≤  

 □ 
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APPENDIX B : BINARY NUMBERS RECODING ANALYSIS 

To find out the reduction we gain by recoding, the total number of 1s and -1s for all 

possible combinations needs to be computed. A k-bit binary number needs k+1 bit after it 

gets recoded. We will look at the number bit by bit from bit 1 to bit k+1. 

Bit # 

Ci 
Number of 1s and -1s 

C1 2k-1 =2k-1 

C2 C1+2k-2 =C1+2k (2-2) 

C3 C2+2k-3 (2+1)  =C2+2k(2-2+2-3) 

C4 C3+2k-4 (22+2-1)  =C3+2k(2-2+2-3-2-4) 

C5 C4+2k-5 (23+22-2+1)  =C4+2k(2-2+2-3-2-4+2-5) 

C6 C5+2k-6 (24+23-22+2-1)  =C5+2k(2-2+2-3-2-4+2-5-2-6) 

…
 

…
 

Ci Ci-1+2k-i (2i-2+2i-3-2i-4+2i-5-… ±2i-i)  =Ci-1+2k(2-2+2-3-2-4+2-5-2-6+…±2-i ) 

…
 

…
 

Ck+1 Ck+2k+1-2 (2k+1-2+2k+1-3-2k+1-4+2k+1-5…2k+1-k-1) =Ck+2k(2-2+2-3-2-4+2-5-2-6+…±2-(k+1) ) 

 The total summation will be: 

( ) ( )
1

11 2

3
2 2 2 1 2 ) 2

k
ik k k ik k i

+
−− − −⎛ ⎞

+ × + − × + − ×⎜ ⎟
⎝ ⎠
∑  
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 To find out the total number of add operations in radix-4 system for all possible 

combinations the following analysis was carried out. 

Bit #Ci Number of Additions 

C1 1 

C2 C1+2 

C3 C2+22+(22+20) 

C4 C3+23+(23+21) 

C5 C4+24+(24+22) +(24+22) 

C6 C5+25+(25+23) +(25+23) 

…
 

…
 

Ci Ci-1+┌i/2┐×2i-1-(┌i/2┐-1) ×2i-3 

…
 

…
 

Ck Ck-1+┌k/2┐×2i-1-(┌k/2┐-1) ×2k-3 

 The total summation will be: 

1 3

1
2 ( 1) 2

2 2

k
i ii i− −⎛ ⎞⎡ ⎤ ⎡ ⎤× − − ×⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎝ ⎠

∑  
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 Here is a comparison of the total number of adder operations for all possible 

combinations. It shows that the gain (reduction of add operations) of using recoded 

radix-4 over radix-2 is about 0.66 for k=9. However, it is as low as 0.89 for recoded 

radix-4 over readix-4. 

Total number of adder operations in case of 
K 

Radix-2 Radix-4 Readix-4 Recoded 

2 4 3 4 

4 32 24 28 

8 1024 768 796 

16 524288 393216 378652 

32 6.8719×1010 5.154×1010 4.7722×1010 

64 5.903×1020 4.4272×1020 4.0173×1020 

128 2.1778×1040 1.6334×1040 1.467×1040 

256 1.4821×1079 1.1116×1079 0.9932×1079 

512 3.4324×10156 2.5743×10156 2.2942×10156 

 

 □ 
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APPENDIX C : COMPRESSOR’S WORST-CASS DELAY 

The worst case carry rippling is when one is added to a value that is all ones  

(i.e., 1+111111). This is similar to adding one to a number that has all nines in decimal  

(i.e., 1+999999). 

 As Figure  5.6 shows, every adder bit is made of two full-adders and one half-adder. 

Therefore, S and C can never both be one. Also, due to the fact that each adder bit has two 

carry-ins and two carry-outs, the carry is rippled through three bits at a time and this 

rippling delay is equivalent to one adder bit delay (i.e., two full-adders and one half-adder 

delays). Therefore, the worst case rippling for a k-bit number is k/3. On the other hand, 

for the average case delay, it is equivalent to the average delay for the asynchronous adder 

(see  [14] for more details). This is because of the capability of the CARRY register to 

detect zero value (i.e., rippling is over). 

FA
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HA

FA

FA

HA

 

Figure  5.6: Worst Case Rippling. 

 □ 
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APPENDIX D : APPLYING GENETIC EVOLUTION ALGORITHM 

TO OBTAIN A GOOD TEST SET. 

The algorithm starts by generating an initial population of 64 different test sets. After that, 

a new 128 generation of test sets are obtained by crossover of the test sets of the initial 

population with a mutation probability of 5%. Finally, a new population of 64 sets is 

collected by selecting the best 32 sets and randomly picking another 32 sets of the current 

generation. The algorithm ran for more than 100,000 generations. The goodness of a test 

set is based on its Hamming distance cost where the least cost set has the best goodness. 

 Two versions of the algorithm were built. One to find the least costly test set 

maintaining some vertical output pattern, whereas the second algorithm finds the least 

costly test set regardless of the pattern of the vertical output. 

 The cost function for both algorithms is based mainly on the Hamming distance 

between the inputs of consecutive test vectors with a high added high penalty cost if the 

carry in of a test vector is not the same as the carry out of its predecessor. For the second 

algorithm, another high penalty is added if the outputs of two consecutive vectors are the 

same. 

 To crossover to test sets (Set1 and Set2), both sets are split at a random location, 

the upper half of Set1 and the lower half of Set2 are combined to produce the new set 

then, the lower half of the new set is scanned and compared to the upper half to find 
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repeated vectors. The repeated vectors in the lower half are replaced with other vectors to 

make all vectors of a test set different. 

 The advantage of the first algorithm is the simplicity of its fault detection hardware 

since it has output pattern that is repeated every four vectors, but unfortunately there are 

seven vectors with carry in is different that the carry out of their predecessors. To resolve 

this problem, we can either enforce external inputs during the testing phase – which is 

very expensive-, or add intermediate vectors to maintain the carry out - carry in flow. 

Insertion of test vectors to overcome this problem disturbs the output sequence therefore 

groups of at least four vectors should be inserted instead, which means that at least 28 

vectors will be inserted. This is about 30% increase of the number of test vectors. 

 The test set cost is the summation of the Hamming distance between the inputs of 

every two consecutive test vectors. If the carry-in of a test vector is different than the 

carry-out of its predecessor, the cost is increased by 10 to penalize this undesirable vector. 

The same action is taken in the output of a test vector is identical to the output of its 

predecessor. 

 

 □ 
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