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Today’s manufacturing processes present many challenging control problems; among 

these are nonlinear dynamic behavior, uncertain and time varying parameters, and 

unmeasured disturbances. In the past decade, the control of these systems has received 

considerable attention in both academia and industry. Surveys and studies indicate that 

MPC and fuzzy control are the most widely used of the modern control techniques in 

industries. These tendencies indicate that there is a huge demand in the industry for new 

fuzzy and MPC solutions. However, most of the available algorithms to control nonlinear 

systems lead to the use of computationally intensive nonlinear techniques that make 

industrial application almost impossible. To avoid this problem, this work presents the 

use of Takagi-Sugeno Fuzzy (TSF) Models and Least Mean Square (LMS) for the design 

and implementation of new control techniques that incorporate Internal Model Control 

(IMC) structure and Adaptive Inverse Control (AIC)  for the control of nonlinear systems. 

The proposed control techniques are applied to control nonlinear temperature process 

module and a robotic arm manipulator in a laboratory scale. 
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،  تعرض العدید من التحدیات في مجال أنظمة التحكم ومنھا السلوك الغیر خط ي ال دینامیكي        ألحدیثھ الصناعیةالعملیات  

 في العق د الأخی ر عل ى    الأنظمةحصل التحكم بھذه .  الغیر مقاسھوالاضطرابات،  وقتیا والغیر أكیده    المتغیرةالمعاملات  

 أن التحكم التنبؤي المنمذج والتحكم الھلامي تعتبر إلى تشیر  الحدیثھالدراسات  . اعياھتمام من المجال الأكادیمي والصن    

س  خدام ف  ي ال  تحكم المت  وفرة للا الراض  یةلك  ن معظ  م المع  ادلات .  ف  ي الم  صانعالم  ستخدمھ الحدیث  ھ تقنی  ات ال  تحكم أكث ر 

 ال  صناعیةا ف  ي التطبیق  ات   اس  تخدام ح  سابات غی  ر خطی  ھ مكثف  ھ وتجع  ل اس  تخدامھ    إل  ى الغی  ر خطی  ھ ت  ؤدي  بالأنظم  ة

س  اجینو الھلامی  ھ وخوارزمی  ة متوس  طات  - تع  رض اس  تخدام نمذج  ة تاك  اجي الرس  الة ، الم  شكلةلتجن  ب ھ  ذه . م  ستحیلة

 تتضمن نموذج التحكم الداخلي والتحكم العكسي التكیفي لل تحكم  جدیدة وتطبیق تقنیات تحكم     لتصمیم المربعات الصغرى 

 الغی ر خطی ھ وذراع   الح رارة  ت م تطبیقھ ا بنج اح عل ى نظ ام عملی ات       المعروضةالتحكم تقنیات .  خطیھر الغی الأنظمةفي  
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Chapter 1 

Introduction 

1.1 Fuzzy Modeling 

Fuzzy if-then rules, sets and reasoning are the concepts of a computational framework for 

a fuzzy model. The fuzzy set theory allows elements to have a degree of membership to a 

particular set in additional to the restriction given by the conventional set theory that 

allows either belongs to or does not belong to a particular set. This makes fuzzy sets a 

more natural approach to mathematically represent elements belonging to given sets. 

Considering, as an example, the case of describing the room temperature as being “hot”. 

Using the conventional set theory, a distinct range of temperatures greater than 25°C will 

be used to designate the set hot. That is:  

   ],25[ ∞=hot °C                                                                           (1.1) 

In this case any temperature which falls just slightly outside this range would not be a 

member of the set, even though a human being may not be able to distinguish between it 

and the one which is just inside the set. In fuzzy set theory, strict limits of a set are not 

required to be defined; instead a membership function is defined. It describes the 

relationship between a variable and the degree of membership that corresponds to a 

particular value of that variable. Usually, this degree of membership is defined in terms of 

a number between 0 and 1, inclusive, where 0 implies total absence of membership, 1.1 
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implies complete membership, and any value in-between implies partial membership of 

the fuzzy set. This may be written as: 

 

   ]1,0[)( ∈xA   for   Ux∈                                                              (1.2) 

(.)A is the membership function and U  is the universe of discourse which defines the 

total range of interest over which the variable x should be defined.  

For example, to define membership of the hot fuzzy set a function which rises from 0 to 1 

over the range between 15°C and 25°C can be used , i.e., 

 

                                










>

≥≥
−

<

=

,251

,2515
10

15
,150

)(

Cx

Cxx
Cx

xmf
o

o

o

                                             (1.3) 

This means that 14°C in not hot; 19°C is a bit hot; 23.5°C is quite hot; and 31°C is truly 

hot. Specific measurable values, such as 14 and 19 are often referred to as crisp values or 

fuzzy singletons, to distinguish them from fuzzy values, such as hot, which are defined by 

a fuzzy set. Sometimes fuzzy values are called linguistic values. Figure 1.1 illustrates the 

human or linguistic interpretations of temperatures and hence better approximates such 

concepts. 
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Figure 1.1: High temperature representation 

 

Fuzzy sets are mathematically precise, in that they can be fully represented by exact 

numbers and at the same time comply with human interpretations. Therefore, they can be 

seen as a method of tying together human and machine knowledge representations. With 

the existing capabilities of using computers to represent information, fuzzy models can be 

applied to information processing methods. 

 Basics of a fuzzy model are shown in Figure 1.2. As shown in the figure, the fuzzy 

model includes the following components or stages: 

• Data preprocessing stage: It is the scaling process for the given physical values of 

the input to the fuzzy system. It is done by mapping it to proper normalized (but 

interpretable) domains via scaling. One can instead, work with signals roughly of 

the same magnitude, which is desirable from an estimation point of view. 

• Fuzzification stage: It is the mapping of the crisp values of the preprocessed input 

of the model into a suitable fuzzy sets represented by membership functions (MF). 

  

0 

1 

0.5 

30 25 20 15 10 

Fuzzy 

Crisp 

Temperature [deg C] 
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Figure 1.2: Fuzzy system components 

 

• Rule bas stage: It houses the if-then rules for the fuzzy system. The relationships 

between variables are represented by the following general form: 

If there is an antecedent proposition then there is a consequent proposition                  

(1.4) 

There are three distinct classes used for the consequent proposition in fuzzy 

models and they are: 

- Fuzzy linguistic models (Mamdani models) [37,38] where both the 

antecedent and consequent are fuzzy propositions.  

- Fuzzy relational models are based on fuzzy relations and relational 

equations.  

- Takagi-Sugeno (TS) fuzzy models where the consequent is a crisp 

function of the input variables  )(xf j  as follows: 

           :jR  If 1x  is jA ,1  and ….. and nx  is  jnA ,  then )(xfy j=        (1.6) 
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• Inference engine stage:  It is the computational method which calculates the 

degree to which each rule fires for a given fuzzified input pattern by considering 

the rule and label sets.  

• Defuzzification stage: It takes care of compiling the information provided by each 

of the rules and makes a decision from this basis. 

• Postprocessing stage: It gives the output of the fuzzy system based on the crisp 

signal obtained after defuzzification. This often means the scaling of the output. 

 
 
1.2 Takagi-Sugeno Fuzzy Models (TS) 

 

As described by Abonyi [1], Takagi-Sugeno (TS) fuzzy model is a combination of a 

logical and a mathematical model. This model is also formed by logical rules consisting 

of a fuzzy antecedent and a mathematical function as a consequent part. The antecedents 

of fuzzy rules partition the input space into a number of fuzzy regions, while the 

consequent function describe the system behavior within a given region: 

       jR : If 1z  is jA,1  and ….. and nz  is jnA ,  then ),....,( 1 mj qqfy =                           (1.7) 

where T
nzzz ],.....,[ 1= is the n-dimensional vector of the antecedent variables, and xz ∈ , 

T
mqqq ],....,[ 1= is the m-dimensional vector of the )(xfy =  model. )(, iji zA denotes the 

antecedent fuzzy set for the ith input. The antecedents of fuzzy rules partition the input 

space into a number of fuzzy regions, while the )(qf j consequent functions describe the 

system behavior within a given region. 
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The spirit of fuzzy inference system resembles that of the “divide and conquer” concept – 

the antecedent of fuzzy rules partition the input-space into a number of local fuzzy 

regions, while the consequents describe the behavior within a given region via various 

constituents. Usually, the jf  consequent function is a polynomial in the input variables, 

but it can be any arbitrarily chosen function that can appropriately describe the output of 

the system within the region specified by the antecedent of the rule. Where )(qf j is a 

first-order polynomial, 

                          )(qf j = 0
jp + 1

1qp j + …. + m
m
j qp = ∑

−

m

l
l

l
jqp

0
, where  ,10 =q              (1.8) 

The resulting fuzzy inference system is called first-order Takagi-Sugeno or simply a 

Takagi-Sugeno fuzzy model. If )(qf j is a constant (fuzzy singleton), ,0
jj pf =  we have a 

zero-order Takagi-Sugeno or singleton fuzzy model, which is a special case of the 

linguistic fuzzy inference system and the TS fuzzy model. Using fuzzy inference based on 

product-sum-gravity at a given input the final output of the fuzzy model, 

),....,( 1 mj qqfy = , is inferred by taking the weighted average of the consequent functions 

as depicted in Figure 1.4: 

                      

∑

∑

=

==
r

r

N

j
j

N

j
jj

mj

zB

qfzB
qqf

1

1
1

)(

)()(
),....,(                                                                 (1.9) 

where the weight, 1)(0 ≤≤ zB j , represents the overall truth value (degree of fulfillment) 

of the ith rule calculated based on the degrees of membership  

                                        
n

i
ijij zAzB

1
, )()(

=

=                                                              (1.10) 

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com


  7 

  

Figure 1.3 shows the fuzzy reasoning procedure for a TS fuzzy model. 

Figure 1.3: Inference method of the Takagi-Sugeno fuzzy model 

The membership functions arranged by Ruspini type partition while keeping the sum of 

the membership degree equal to 1 is shown in Figure 1.4, 

                                      ∑
=

=
l

l

l

M

i
lil zA

1
, 1)( , ,,...,1 nl =                                                        (1.11) 

where lM  represents the number of the fuzzy sets on the lth input domain. Hence, the 

triangular membership functions are defined by: 

                                     ,)(
1,,

1,
,

−

−

−

−
=

ll

l

l
ilil

ill
lil aa

az
zA     

ll illil aza ,1, <≤− , 

                                     
ll

j

l
ilil

lil
lil aa

za
zA

,1,

1,
, )(

−

−
=

+

+
,     1,, +<≤

ll illil aza ,                             (1.12) 

2,1A  

2B  

1B  

2z  

2z  

2z  

1z  

1z  

1z  

1 1 

0 0 

1 1 

0 0 

2,2A  

1,1A  

1,2A  

)(11 qfy =  

)(22 qfy =  

Min or product 

Defuzzification = 
Weighted average 

21

2211

BB
yByB

y
+
+

=  
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where 
lila , cores of the adjacent fuzzy sets determine the support )(sup

1,1,, −
−= + lll ililil aa of 

a set. 

                                 { }1)()(( ,,, === lilllilil zAzzAcorea
lll

                                       (1.13) 

 

Figure 1.4: Ruspini parameterization of triangular membership functions 

 
 
 
 
1.3 Least Mean Square 
 

The least-squares method can be applied to a large variety of problems. Gauss formulated 

its principle at the end of the eighteenth century and used it to determine the orbits of 

planets and asteroids. He stated that the unknown parameters of a mathematical model 

should be chosen is such a way that the sum of the squares of the differences between the 

actually observed and the computed values, multiplied by numbers that measure the 

degree of precision, is a minimum. As explained by Astrom and Wittenmark [3], it is 

particularly simple for a mathematical model that can be written in (1.14). 

jz  1, +jija  
jija ,  1, −lija  

0 

1 

1, −jijA  
jijA ,  1, +jijA  
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                         000
22

0
11 )()(.....)()()( θϕθϕθϕθϕ iiiiiy T

nn =+++=                          (1.14)

   

Where y  is the observed variable, 00
2

0
1 ,....,, nθθθ  are parameters of the model to be 

determined, and nϕϕϕ ,...,, 21 are known functions that may depend on other known 

variables. The vectors shown in (1.15) and (1.16) have also been introduced. 

                                       [ ])(....)()()( 21 iiii n
T ϕϕϕϕ =                                     (1.15) 

                                       [ ]Tn
00

2
0

1
0 ... θθθθ =                                                    (1.16) 

The model is indexed by the variable i , which often denotes time. It will be assumed 

initially that the index set is a discrete set. The variables iϕ  are called the regression 

variable or the regressors, and the model in equation (1.14) is also called a regression 

model. Pairs of observations and regressors },....2,1)),(),({( tiiiy =ϕ are obtained from an 

experiment. The problem is to determine the parameters in such a way that the outputs 

computed from the model are as closely as possible with the measured variables )(iy  in 

the sense of least squares. That is, the parameter θ should be chosen to minimize the least-

square loss function in (1.17).  

  ∑
=

−=
t

i

T iiytV
1

2))()((
2
1),( θϕθ                                                 (1.17) 

 

Since the measured variable y is linear in parameters 0θ  and the least-squares criterion is 

quadratic, the problem admits an analytical solution. Introducing the notations: 

  [ ]TtyyytY )(...)2()1()( =  
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  [ ]Ttt )(...)2()1()( εεεε =  

  



















=

)(
.
.

)1(

)(

t

t

T

T

ϕ

ϕ

ϕ

 

  ∑
=

−− ==
t

i

TT iitttP
1

11 ))()(())()(()( ϕϕϕϕ                                                  (1.18) 

Where the residuals )(iε are defined by:    

 
^

)()()()()( θϕε iiyiyiyi T−=−=  

With these notations the loss function (1.17) can be written as: 

  
∑

=

===
t

i

TitV
1

22

2
1

2
1

)(
2
1

),( εεεεθ
 

Where ε can be written as:      

               ϕθε −=−= YYY
^

                                                                 (1.19) 

Now the solution of the least-squares problem can be obtained by minimizing for the 

parameter 
^
θ   such that: 

   YTT ϕθϕϕ =
^

                                                                                     (1.20) 

If the matrix ϕϕ T
is nonsingular, the minimum is unique and given by: 

   YTT ϕϕϕθ 1
^

)( −=                                                                                 (1.21) 

In on-line identification the observations are obtained sequentially in real-time. It is then 

desirable to make the computation recursively to save computation time. Computation of 

the least-squares estimate can be arranged in such a way that the results obtained at time 

1−t  can be used to get the estimates at time t . The solution in to the least-squares 
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problem in (1.21) will be written in a recursive form. Let )1(
^

−tθ denote the least-squares 

estimate based on 1−t  measurements. Assuming that the matrix ϕϕT  is nonsingular for 

all t . It follows from the definition of )(tP  in equation (1.18) that: 

   
∑

=

− ==
t

i

TT iitttP
1

1 )()()()()( ϕϕϕϕ
 

   
∑

−

=

+=
1

1
)()()()(

t

i

TT ttii ϕϕϕϕ
 

   )()()1(1 tttP Tϕϕ+−= −                                            (1.22) 

It follows that: 

 
∑

−

=

−− −−−=−−=
1

1

^^
1

^
1 )1()()()1()()1()1()()(

t

i

T tttttPttPiyi θϕϕθθϕ
 

The estimate at time t  can now be written as: 

 )()()()1()()()()1()(
^^^

tyttPttttPtt T ϕθϕϕθθ +−−−=  

        ))1()()()(()()1(
^^

−−+−= tttyttPt T θϕϕθ  

         )()()1(
^

ttKt εθ +−=  

Where      )()()( ttPtK ϕ=  

         )1()()()(
^

−−= tttyt T θϕε  

The residual )(tε can be interpreted as the error in predicting the signal )(ty  at one step 

ahead based on the estimate )1(ˆ −tθ . To proceed it is necessary to derive a recursive 

equation for )(tP rather than for 1)( −tP as in equation (1.22). Applying the matrix 

inversion lemma we get; 
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11 ))()()1()1(())()(()( −− +−−== tttttttP TTT ϕϕϕϕϕϕ  

           
11 ))()()1(( −− +−= tttP Tϕϕ  

           )1()())()1()()(()1()1( 1 −−+−−−= − tPtttPtIttPtP TT ϕϕϕϕ  

This implies that; 

  
1))()1()()(()1()()()( −−+−== ttPtIttPttPtK T ϕϕϕϕ  

Now if we assume that the matrix )(tϕ has full rank, that is, )()( ttT ϕϕ is nonsingular, for 

all 0tt ≥ . Given )(ˆ 0tθ and 1
000 ))()(()( −= tttP T ϕϕ , the least-squares estimate )(ˆ tθ then 

satisfies the recursive equations; 

                       ))1(ˆ)()()(()1(ˆ)(ˆ −−+−= tttytKtt T θϕθθ          (1.23) 

              1))()()()(()1()()()( −+−== ttPtIttPttPtK T ϕϕϕϕ                  (1.24) 

          )1()())()1()()(()1()1()( 1 −−+−−−= − tPtttPtIttPtPtP TT ϕϕϕϕ  

                       )1())()(( −−= tPttKI Tϕ                                               (1.25) 

The recursive least-squares algorithm has two sets of state variables, θ̂  and P , which 

must be updated at each step. For large n  the updating of the matrix P dominates the 

computing effort. There are several simplified algorithms that avoid updating the 

P matrix at the cost of slower convergence. Kaczmarz’s projection algorithm is one 

simple solution which states that: 

               )1(ˆ)()((
)()(

)()1(ˆ)(ˆ −−
+

+−= ttty
tt

ttt T
T θϕ

ϕϕα
γϕ

θθ                  (1.26) 

Where 0≥α  and 20 << γ . 

A further simplification is the least mean square (LMS) algorithm in which the parameter 

updating is done by using; 
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          ))1(ˆ)()()(()1(ˆ)(ˆ −−+−= tttyttt T θϕγϕθθ           (1.27) 

Where γ is a constant. 

 
 
 
 
1.4 Adaptive Inverse Control 

 
Adaptive inverse control is a novel approach to the design of control systems and 

regulators. Widrow and Walach [73] stats that if the controller shown in Figure 1.5 were 

to be ideal for adaptive inverse control system, its transfer function would be 

                                           
)(
)()(

zP
zMzC =                                                                      (1.28)                      

The adaptive controller will generally not be ideal; its transfer function can therefore be 

designated as 

                                       )()()(ˆ zCzCzC ∆+=                                                              (1.29) 

Adaptive filters such as LMS are fundamental building blocks to adaptive inverse control 

and they require an error referred to the plant input not to the plant output. Hence, the 

plant and its inverse model are commuted and the error is directly available for the 

adaptation of )(ˆ zC . Once )(ˆ zC is obtained, an exact digital copy can be used as a controller 

for the plant.  
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Figure 1.5 Adaptive Inverse Control System 

 

The controller can be thought of as an adaptive filter having the plant output ky  as filter 

input and the estimated plant input kû  as filter output. By comparing the filter output with 

the desired plant input ku , the filter adjusts its parameters that control its impulse 

response. The filter would be finite impulse response (FIR) and the estimated plant input 

is given by 

                    )()()()()(ˆ
1

0
kykwikykwku T

M

i
i =−= ∑

−

=

                                                      (1.30)   

where w(k) is the weight and y(k) is the plant output. The error which is the difference 

between the estimated and desired plant input needs to be minimized by choosing the best 

filter coefficients. Using least mean square (LMS) algorithm, we minimize the cost 

function squared error at each sample time k is given by 

                        22 )]()()(ˆ[)( kykwkuke T−=                                                                  (1.31)                                                   
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The adaptive rule for the filter coefficient is given by 

                     )()(2)()1( kykekwkw µ+=+                                                                   (1.32)                      

where 2 > µ > 0 is the adaptation parameter and )(ke is the error. 

 

 

1.5 Internal Model Control (IMC) 

 

The Internal Model Control (IMC) structure is introduced as an alternative to the classic 

feedback structure. As per Morari and Zafiriou [4], its main advantage is that closed-loop 

stability is assured simply by choosing a stable IMC controller. Also, closed-loop 

performance characteristics (like settling time) are related directly to the controller 

parameters, which make on-line tuning of the IMC controller very convenient.   

The block diagram of the IMC loop is shown in Figure 1.6. Here p denotes the plant and 

mp  the measurement device transfer functions. In general neither p  nor mp  are known 

exactly but only there nominal models p̂ and mp̂ are available. The transfer function 

dp describes the effect of the disturbance ,d  on the process output y . The measurement of 

y  is corrupted by measurement noise n . The controller q determines the value of the 

input (manipulated variable) u . The control objective is to keep y  close to the reference 

(set point) r . Commonly we use the simplified block diagram in Figure 3.2. Here d  

denotes the effect of the disturbance of the output. Exact knowledge of the output y  is 

assumed )0,1( == npm ). The complete control system is implemented through computer 

software or analog hardware. Because in addition to the controller q it includes the plant 
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model p̂ explicitly we refer to this feedback configuration as Internal Model Control 

(IMC). The feedback signal is:  

duppd +−= )ˆ(ˆ                                                              (1.33) 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.6: General block diagram of Internal Model Control System 

If the model is exact )ˆ( pp = and there are no disturbances )0( =d , then the model output 

ŷ and the process output y  are the same and the feedback signal d̂ is zero. Thus, the 

control system is an open-loop when there is no uncertainty –i.e., no model uncertainty 

and no unknown input d . This demonstrates very instructively that for open-loop stable 

process feedback is only needed because of uncertainty. If a process and all its inputs are 

known perfectly, there is no need for feedback control. The feedback signal d̂ expresses 

the uncertainty about the process. 
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In order to test for internal stability we examine the transfer function between all possible 

system input and outputs. From the block diagram of Figure 1.8 we find that there are 

three independent system inputs and three independent outputs. As shown in Figure 1.6 

and 1.7 we choose the independent inputs to be 1,ur  and 2u  and the independent outputs 

uy,  and ŷ . If there is no model error )ˆ( pp = , then the inputs and outputs are related 

through the following transfer matrix. 
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                     (3.2) 

Theorem 1.1 Assume the model is perfect ).(
^
pp =  Then the IMC system in Figure 1.7  is 

internally stable if and only if both the plant p and the controller q are stable.  

This result is not unexpected as the IMC system is effectively an open-loop when there is 

no uncertainty. Since the stabilization of open-loop unstable systems requires feedback, 

the IMC structure cannot be applied in this case. It can be argued that the lack of model 

      Figure 1.7: A simplified block diagram of Internal Model Control system 

p
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uncertainty is an artificial assumption. Uncertainty gives rise to feedback and thus it could 

be possible to stabilize an unstable system with IMC. However in any practical situation it 

is unacceptable to rely on model uncertainty for stability. 

 

 

1.6 Objective of the Thesis 

 

The objectives of this thesis work are the following: 

1. Identifying fuzzy Takagi-Sugeno (TS) models of nonlinear plants at different 

operating points to be further used in the proposed control techniques. 

2. Use the normalized nLMS algorithm to select the membership function of the 

fuzzy Takagi-Sugeno models and to develop adaptive TS with IMC structure 

using nLMS tuning control technique. 

3. Implement the adaptive TS with IMC structure using nLMS tuning control 

technique in a nonlinear heating process. 

4. Develop an adaptive inverse control (AIC) with IMC structure control technique. 

5. Implement the AIC with IMC structure control technique in a single link robotic 

arm manipulator. 
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1.7 Organization of the Thesis 

 

The first chapter of the thesis introduces and defines the main methods that are used to 

support the proposed control techniques. In addition, the thesis objective and organization 

summary is stated. The second chapter covers the literature review for the fuzzy Takag-

Sugeno modeling and control as well as the adaptive inverse control (AIC). In the third 

chapter, the proposed control techniques are explained. It includes the adaptive inverse 

control (AIC) with internal model control (IMC) structure control technique and the 

adaptive Takagi-Sugeno (TS) with IMC using nLMS tuning control technique. The fourth 

chapter covers the experimental implementation results for both of the proposed control 

techniques. The AIC with IMC structure control technique is implemented on a single-

link robotic arm manipulator system. The adaptive TS with IMC using nLMS tuning 

control technique are implemented on a nonlinear heating process. The fifth chapter 

presents the summery, conclusion and recommendations for the possible future work. 
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Chapter 2 

Literature Review 

2.1 Takagi-Sugeno Fuzzy Modeling 

 
The mathematical modeling of fuzzy concepts was first presented by Proffessor Lotfi 

Zadeh in 1965 to describe, mathematically, class of objects that do not have precisely 

defined criteria of membership. His contention is that the meaning in a natural language is 

a matter of degree. Later on, Takagi-Sugeno (TS) fuzzy model [35, 36] was proposed by 

Takagi, Sugeno, and Kang in 1985-1986 to develop a systematic approach for generating 

fuzzy rules from a given input-output data set in the application of multilayer incinerator. 

Since then, researchers started implementing their model in wide range of applications. 

This work is motivated by the use of TS fuzzy models in adaptive control area. Hence, its 

implementation in such area is presented. Smith [10] designed a controller with run-time 
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adaptation based on TS format that was wrapped during each step response to a change in 

structure. His approach combined the quick response of bang-bang like control with the 

stable convergence properties of more conservative linear control to produce high 

performance controller. Spooner and Passino [11] introduced a stable direct and indirect 

adaptive controller that uses TS fuzzy systems to be used for a class of continuous-time 

nonlinear plant with poorly understood dynamics with a technique for direct adaptive 

scheme in which linguistic knowledge of the inverse dynamics of the plant may be used to 

accelerate adaptation. Also, Spooner, Ordonez and Passino [12] introduced an indirect 

adaptive control scheme for a class of discrete-time nonlinear system based on functional 

approximation approach which modifies TS fuzzy control system. Kosinski and Weigl 

[13] introduced an adaptive TS fuzzy expert system which combines the fuzzy inference 

module with neural network in order to realize a process of fuzzy reasoning and express 

their parameters by connection weights of a neural network.  This was constructed for the 

need of an opto-computer system for the diagnostic of surface imperfections of 

technological elements. Sousa, Babuska and Verbruggen [32] proposed a procedure based 

on product-space fuzzy clustering to find TS fuzzy model and invert it as part of an IMC 

structure to control highly nonlinear processes. Ordonez and Passino [14] implemented a 

discrete-time adaptive prediction and control techniques where they used TS fuzzy 

systems as function approximator and least-square was investigated for use in prediction 

and control. Kang, Son, Kwon and Park [15] proposed an approach to the indirect 

adaptive fuzzy algorithm that uses TS fuzzy model to identify the unknown nonlinear 

SISO system. Barada and Singh [16] published their approach to generate optimal 

adaptive fuzzye-neural models from I/O data which combine structure and parameter 

identification of TS fuzzy models. Xie and Rad [33] introduced a fuzzy adaptive IMC 
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with TS fuzzy process model and a fuzzy model-based controller that minimize and 2H -

performance objective based on the identified fuzzy model. Cho, Yee and Park [17] 

proposed an indirect model reference adaptive TS fuzzy control scheme to provide 

asymptotic tracking of a reference signal for systems having uncertain or slowly time-

varying parameters.  They compared the measured state with the state of the estimation 

model and implemented in Robot Manipulator. Song, Smith and Rizk [18] introduced cell 

state space based TS type fuzzy logic controller with automatic rule extraction and 

parameter optimization algorithm where the parameters of the rule base antecedents 

extracted from a discrete optimal control table generated under a predefined cost function 

and used LMS to train data sets of the rule output parameters, it was implemented in a 4-

D inverted pendulum. Boukezzoula, Galichet and Foully [34] proposed an IMC control 

structure based on TS fuzzy model of the plant and claiming perfect control when the 

controller is the inverse of the fuzzy model. Hwang [19] introduced two TS fuzzy base 

robust and adaptive sliding-mode controls that uses fuzzy sets from the system rule of the 

reference model. Gazi and Passino [20] presented a direct adaptive control scheme for a 

class of continuous time non-linear systems where strictly dynamic TS fuzzy systems 

used as on-line function approximator and gradient method for adaptation. Azeem, 

Hanmandlu and Ahmad [21] proposed a generalized fuzzy model GFM that encompasses 

both TS fuzzy model and the compositional rule of inference CRI model. Park, Hyun, 

Lee, Kim and Park [22] presented an adaptive fuzzy control scheme via parallel 

distributed compensation for MIMO plant of TS model type and implemented to track a 

flexible-link robot manipulator. Boukezzoula, Galichet and Foulloy [23] proposed an 

adaptive TS fuzzy controller for continuous nonlinear system where the plant was 
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approximated with TS fuzzy model and the control law used Lyapunov and passivity 

theories. Yoon and Park [24] presented a control method for general nonlinear systems 

using TS fuzzy models and developed an adaptation law to adjust the parameters of the 

fuzzy system. Golea, Boumehrez and Kadjoudj [25] proposed an adaptive scheme that 

uses TS fuzzy controller which allows the inclusion of a priori information in terms of 

qualitative knowledge about the plant. Lin [26] developed an adaptive fuzzy gain-

scheduled missile autopilot that uses TS fuzzy system to represent the fuzzy relationship 

between the scheduling variables and controller parameters with an adaptation law that 

uses scheduling parameter variation information. Boukezzoula, Galichet and Foulloy [27] 

combined fuzzy feedback linearizing controller with a simple linear controller using a TS 

fuzzy model for a discrete-time nonlinear system. Cupec, Peric and Petrovic [28] 

proposed an adaptive control method based on TS fuzzy process model that is applicable 

when the variables in the premises of fuzzy rules are not measurable. Diao and Passino 

[29] proposed an adaptive control methodology for a class of nonlinear systems with a 

time-varying structure composed of interpolations of nonlinear subsystems which are 

input-output feedback linearizable with TS fuzzy localized model as online approximator 

to learn the unknown dynamics of the system. Yang and Zhou [30] designed a fuzzy 

adaptive robust control algorithm FARC for a class of uncertain nonlinear system using 

small gain approach and dissipative system theory. Zheng, Wang and Lee [31] studied the 

issue of designing robust adaptive stabilizing controllers for nonlinear systems in TS 

fuzzy model with both parameter uncertainties and external disturbances. Boukezzoula, 

Galichet and Foulloy [40] investigated the possible application of dynamical fuzzy 

systems to control nonlinear plants with asymptotically stable zero dynamics using a 

fuzzy nonlinear internal model control strategy. The developed strategy consists of a 

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com


  24 

  

dynamic Takagi-Sugeno fuzzy model of the plant within the control structure. The control 

design results in a fuzzy model inversion. This framework presents the use of a dynamic 

fuzzy model and its inversion. The inversion of the global fuzzy system was tackled by 

inversion of some of the elementary subsystems that represent the fuzzy system. The 

fuzzy controller was connected in series with a robust filter. Chang and Sun [41] 

addressed the stability and controller design problem for a discrete Takagi-Sugeno type 

fuzzy model whose subsystems are made up of controllability canonical forms. Stability 

conditions and fuzzy controller design were derived by solving the inverse solution of 

Lyapunove equation. Kadmiry and Diankov [42] addressed the robust fuzzy control 

problem for discrete-time nonlinear systems in the presence of sampling time 

uncertainties. The ease of TS fuzzy system was considered and robust controller design 

was proposed. The sufficient conditions and the design procedure were formulated in the 

form of linear matrix inequalities (LMI). Angelov and Filer [43] proposed an approach to 

the online learning of Takagi-Sugeno (TS) type models. The rule-base and parameters of 

the TS model continually evolve by adding new rules with more summarization power 

and by modifying existing rules and parameters. It is inherited and updated when new 

data become available. A new type adaptive model called the Evolving Takagi-Sugeno 

model (ETS) was achieved by this learning concept. Wai and Chen [44] presented a 

Takagi-Sugeno-Kang type fuzzy-neural-network control (T-FNNC) scheme for an n-link 

robot manipulator to achieve high precision position tracking. Due to uncertainties in 

practical applications (such as friction forces, external disturbances and parameter 

variations) a T-FNNC system without the requirements of prior system information and 

auxiliary control design was investigated to the joint position control of an n-link robot 

manipulator of periodic motion. Boukezzoula, Galichet and Fonlloy [45] examined the 
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tracking control problem for a class of feedback linearizable nonlinear systems for which 

there is no available analytical model. The unknown nonlinear system was represented by 

a Takagi-Sugeno (TS) fuzzy system. The parameters were adjusted via adaptive laws 

according to the Lyapunove and passivity theories. A fuzzy adaptive feedback linearizing 

controller was designed under the constraint that only the output of the plant is available 

for measurement. Chiu [46] proposed a robust adaptive controller using a feedforward 

Takagi-Sugeno fuzzy approximator for a class of multi-input multi-output (MIMO) 

nonlinear plants that is highly unknown. The desired commands were taken as input 

variables of a TS fuzzy system. The unknown feedforward terms required during steady 

state were adaptively approximated and compensated. According to ∞H control 

technique, nonlinear damping design and sliding mode control, the controllers were 

synthesized to assure either only the minimization of disturbances and estimated fuzzy 

parameter errors, or globally asymptotic stable tracking. Baranyi, Annamaria, Yam and 

Patton [47] presented an adaptation of TS fuzzy models without complexity expansion 

(HOSVD-based approach). The proposed method minimizes the necessary modification 

of the new information. A focus was given to the Higher Order Singular Value 

Decomposition (HOSVD) method and Takagi-Sugeno (TS) inference operator based 

fuzzy rule-bases. The proceeding discussion motivate the use of Takagi-Sugeno fuzzy 

model as being a powerful tool to model nonlinear systems in addition to using LMS to 

achieve adaptation to plant output. In addition, the design of adaptive controllers in new 

control techniques is essential for robust control structure that is implementable.  
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2.2 Adaptive Inverse Control 

 

Adaptive control is used when the plant characteristics are time variable or non-stationary. 

Its first introduction was in the 1950s, but the interest diminished partly because it was too 

hard to deal with using the available techniques at that time. Further researches in the 

1960s, lead to its development. In adaptive control, it is necessary to design the controller 

to vary with the plant. An identification process could be used to estimate the plant 

characteristics over time, and these characteristics could be used to parameterize the 

controller and vary the parameters to directly minimize the mean square error. The 

difficulty with this approach is that, regardless of how the controller is parameterized, the 

mean square error versus parameter values would be a function not having a unique 

exteremum and one that could easily become infinite if the controller parameters were 

pushed beyond the brink of stability. In the 1970’s an alternative look at the subject of 

adaptive control was introduced by Widrow and Walach [73] known as adaptive inverse 

control. In simple format, it involves an open-loop control with the controller transfer 

function equals to the inverse of the plant to be controlled. Widrow and McCool [48] 

presented a comparison of the performance characteristics of three algorithms useful in 

adjusting the parameters of the adaptive systems, the differential (DSD) and least-mean-

square (LMS) algorithms; both are based on the method of steepest descent, and the linear 

random search (LRS) algorithm, based on a random search procedure derived from 

Darwinian concept of “natural selection.” Analytical expressions were developed to 

define the relationship between rate of adaptation and “misadjustment” demonstrating 

their application canceling of broadband interference in sidebars of receiving antenna 
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array and phase control of a transmitting antenna array. Widrow and Walach [49] 

presented an efficiency analysis of the LMS algorithm with nonstationary inputs where 

the quality of the exact least square solution was compared with the quality of the solution 

obtained by orthogonalized and conventional least mean square (LMS) algorithm with 

stationary and nonstationary inputs data. Widrow, Baudrenghien, Vetterli and Titchener 

[50] established a relationship between LMS algorithm and the DFT. It was shown that 

the LMS spectrum analyzer is a new mean from the calculation of the DFT. Widrow, 

Lehr, Beaufays, Wan and Bilello [51] presented a learning algorithms that were used in 

both linear and nonlinear adaptive filters, along with applications to signal processing and 

control problems such as prediction, modeling, inverse modeling, equalization, echo 

canceling, noise canceling, and inverse control. Hunt and Sbarbaro [52] showed that 

adaptive inverse control is a further member of the class of control design techniques with 

an internal model control structure. Artificial neural network architecture for the 

implementation of nonlinear internal model control (IMC) was presented. Two separate 

networks in the implementation of nonlinear IMC were used; one network models the 

plant and the second network models that plant inverse. Widrow and Bilello [53] 

presented a model-reference inverse control system that can learn to approximate a 

desired reference-model dynamics. Control of internal plant disturbance was 

accomplished with an optimal adaptive disturbance canceller. Tao [54] presented a 

modified parameterization for model reference adaptive control of linear plants with 

partial knowledge of the stable zero or pole dynamics. Such parameterization was applied 

to the adaptive inverse control of plants with unknown nonsmooth nonlinearities such as 

dead-zone, backlash, or hysteresis at the input or output of a linear part whose stable zero 

or pole dynamics were partially known. Widrow and Plett [55] presented adaptive 
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filtering to achieve feedforward control for both linear and nonlinear plants. Precision was 

attained by incorporating the adaptive filtering process. Disturbance was optimally 

controlled by filtering it and feeding it back into the plant input. Klippel [56] presented an 

adaptive inverse control of weakly nonlinear systems. By linearizing the plant, it was 

possible to track an input signal if the plant was preceded by a nonlinear controller which 

approximates the inverse of the plant’s transfer function. Novel filtered-A and filtered-E 

modifications of the stochastic gradient based methods which were applicable to update 

generic as well as special block-oriented nonlinear filter architecture were presented. 

Nobari, Chambers, Green, Goodfellow and Smith [57] presented a design and 

development of a controller through the teaching company scheme and impact of this 

development on Link Dynamic Systems (LDS), which is a leading manufacturer in the 

vibration test industry. Widrow and Plett [58] presented nonlinear adaptive inverse control 

which treats the control of plant dynamics and plant disturbance separately without 

compromise. The controller approximates the inverse of the plant transfer function. A 

model-reference version allows system dynamics to closely approximate desired 

reference-model dynamics. Cochofel, Woten and Principe [59] presented a 

neurocontroller development environment using the idea of adaptive inverse control. A 

real-time implementation was done on a motor speed control using the power supply as 

the control input. Kaelin and Grunigen [60] presented the use of priori knowledge in 

adaptive inverse control. The controller can be split into a long fixed and a short adaptive 

filter. The controller can be made more efficient by feed backing the error signal only in a 

desired frequency range. A modified objective function allows the minimization of the 

filtered square error plus the norm of the controller. Karshenas, Dunnigan and Williams 

[61] proposed an adaptive inverse control algorithm for shock testing an arbitrary 
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specimen using an electrodynamic actuator. It approximates an inverse model of the 

loaded shaker with a finite impulse response adaptive filter, such that the reference input 

is reproduced at the shaker output. The standard filtered-x least mean square control 

structure used in the adaptive inverse control algorithm was modified to a block-

processing structure, with the frequency-domain adaptive filter as the adaptation 

algorithm. Harnold and Lee [62] introduced a “free-model” based model reference 

adaptive inverse control design for a boiler-turbine plant by using functional mapping. In 

order to obtain smaller error in the initial phase of training, free-model based neural 

networks were applied as the neuro-identifier and neuro-controller in the control scheme. 

The functional mapping was applied for the drum pressure set point from the power 

demand in order to be more economical on the fuel burning at the throttle valve. Plett and 

Bottrich [63] proposed a modification to the standard nonlinear adaptive inverse control 

learning methods to be based on dynamic-decoupled-extended-kalman-filter (DDEKF) 

where training became significantly faster. Li and Jinshon [64] presented nonlinear hybrid 

adaptive inverse control using neural fuzzy system and its application to CSTR systems. It 

consists of two control loops, inverse control and PID control. The PID control was a 

complement for inverse control and was mainly used to eliminate static error existing in 

direct inverse control when the inverse model is uncertain. The neural fuzzy system was 

utilized to construct the inverse controller. Plett [65] presented the adaptive inverse 

control of linear and nonlinear systems dynamic neural networks. Adaptive control was 

looked at as a three-part adaptive-filtering problem. First, the dynamic system was 

modeled using adaptive system-identification technique. Second, the dynamic response of 

the system was controlled using an adaptive feedforward controller. Third, disturbance 

canceling was performed using an additionally adaptive filter. Jeng, Chuang and Lee [66] 
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presented annealing robust nonlinear adaptive inverse control with fuzzy neural network 

based support vector regression (FNNBSVR). It was used to overcome initial structure 

problem and long training time in the nonlinear adaptive inverse control. Besides, the 

annealing robust learning algorithm was proposed to overcome the outlier in the training 

procedure. Zhao and Zhan [67] presented a study on ship maneuvering control based on 

adaptive inverse control technology. Dynamic control and noise elimination of adaptive 

inverse control were introduced. X-LMS adaptive inverse control algorithm and RLS 

adaptive inverse control algorithms were used to identify the parameters and design of the 

controller. Shao-Kuiliu and Yan [68] proposed an adaptive inverse control method for 

space flexible truss structure vibration control. The purpose was to retain the displacement 

amplitude or the acceleration amplitude of the structure vibration, to use the artificial 

neural network to identify the dynamic space flexible truss structure as the control plant, 

and then obtain the inverse model of the plant utilizing the LMS algorithm. Xing, Zhang, 

Liu and Feng [69] proposed a neural network based adaptive inverse control structure fit 

for the decoupling control of the underwater vehicle. The process of decoupling does not 

depend on the dynamic model and coupling model of the plant. The coupling between 

different variables was suppressed through a disturbance canceller. Sun, Ru and Rong 

[70] presented hysteresis compensation for piezoelectric actuator based on adaptive 

inverse control. Hysteresis hinders the wider applicability of smart materials in actuators. 

An adaptive inverse control approach based on the so-called Prandtle-Ishlinkii hysteresis 

operator was presented for reducing hysteresis. The weights of the model were identified 

by using LMS algorithm. The realization of an inverse feedforward controller for the 

linearization of a piezoelectric actuator was formulated. Peng, Wang and Yang [71] 

proposed a strategy of adaptive inverse control based on parallel self-learning neural 
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networks. Aiming at the main steam temperature control system, which has large inertia, 

long time-delay and time varying in thermal power plant, the proposed method was 

designed. The plant model and its inverse were represented by neural networks. Liu, Yi, 

Zhao and Wang [72] presented a king of nonlinear adaptive inverse control systems based 

on fuzzy neural networks. Feedback compensation was used to counteract the system’s 

direct current zero-frequency drift. Nonlinear filters based on fuzzy neural networks were 

used in the nonlinear plant modeling the design of the controller and adaptive disturbance 

canceller. 
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Chapter 3 

Proposed Fuzzy TS and LMS based Control 

Techniques 

3.1 Adaptive AIC with IMC Structure 

An adaptive inverse control with internal model control (IMC) structure is proposed. The 

inverse of the plant is estimated using normalized least mean square (nLMS) algorithm. 

Radial base transfer function is used as an input mask to the adaptive algorithm. A 

delayed version of the reference signal is compared with the plant output to produce the 

error for the adaptive algorithm. The error signal is masked by a hyperbolic tangent 

sigmoid transfer function and the learning rate is adjusted automatically A rate limiter is 

used in the model identification part to eliminate oscillatory plant output behavior. 

Comparison between adaptive inverse control and IMC structure is going to be covered. 
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The control objective is to develop a link position tracking control strategy for the robotic 

arm manipulator system using AIC with IMC structure. The introduced integrator 

backstepping technique that is developed for a DC motor turning a robotic load [10] has 

an embedded current control input inside an overall control strategy which is designed at 

the voltage control input. Taking this into consideration, we designed the control input as 

the applied voltage to the same system of [10].  It is necessary to stabilize the DC motor 

angular position based on the input voltage before proceeding with the development of the 

AIC and IMC structure (Figure 3.1). Assuming that the plant has a transfer function P(s), 

a simple lead-lag controller LL(s) is used to stabilize the angular position (1).  

 

                                                                                                                                         (3.1) 

 

 

where the selection of the (b1, b0, a1, a0) parameters is to stabilize the plant angular 

position. 

 

 

 

 

 

 

Figure 3.1: Stabilization using Lead-Lag. 
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The next step is to implement the proposed AIC with IMC structure (Figure 3.2). 

 

 

 

 

 

 

 

 

 

 

Figure 3. 2: AIC with IMC structure. 

 

Consider the continuous-time unstable plant transfer function P(s) that is stabilized by the 

Lead-Lag controller LL(s). Let h0(s) denote the zero-order hold. The discrete-time version 

of the plant and the Lead-Lag controller will be P(z) and LL(z). u(k) is the control input to 

the plant and y(k) is the plant output. The control objective is to synthesize u(k) such that 

y(k) tracks some bounded piecewise continuous desired trajectory r(k). 
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3.1.1 Adaptive identification of the forward model 

As shown in Figure 3.2, the forward model M(z) of the IMC structure is adaptively 

identified using the nLMS algorithm. Let )(ˆ ky be the identified model output required to 

track u(k-L2), an L2-sample delayed u(k). Then 

                                                                   

                                                                                                                                         (3.2) 

 

where the regression variables               holds a masked version of the control input signal 

using neural networks radial bas transfer function given by 

                                                                                     

                                                                                                                                         (3.3) 

 

where the neural networks radial base transfer function is defined as 

 

                                                                                                                                         (3.4) 

 

The parameter estimation law to identify the forward model based on nLMS is given by 

 

                                                                                                                                         (3.5) 

 

where α > 0 is a small positive constant and the residual error is masked by a hyperbolic 

tangent sigmoid neural network transfer function  
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                                                                                                                                         (3.6) 

 

where                 is the residual error and given by 

 

 

                                                                                                                                         (3.7) 

 

              is a proposed automatic adjustment of the nLMS learning rate and is inversely 

proportional to the residual error and given by 

 

 

                                                                                                                                         (3.8) 

 

 

where                                , f < g and 0 <   f,g < 2  remains as the learning rate bound and b 

is the specified normalization bias parameter. 

 

3.2 Adaptive Inverse Design 

 

The inverse model Q(z) shown in Figure 3 uses the nLMS algorithm to adaptively satisfy 

the IMC structure. The control input u(k) that is required such that y(k) tracks the 

reference signal r(k) and is given by 
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            )(ˆ)()()( kykykuku inv +−=                                                                       (3.9) 

 

where uinv(k) is the output of the inverse model and is given by 

 

 

                                                                                                                                       (3.10) 

 

In a similar way to the forward model identification method, the regression variables 

)(kinvϕ  contains a masked version of the reference signal using neural networks radial 

base transfer function given by 

 

                                                                                                                                       (3.11) 

 

where 

 

                                                                                                                                       (3.12) 

 

The nLMS algorithm for the parameter estimation law define it by 

 

                                                                                                                                       (3.13) 
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where the neural network hyperbolic tangent sigmoid transfer function is masking the 

residual error )(kinvε and is given by 

 

                                                                                                                                       (3.14) 

 

where )(kinvβ is the residual error between a delayed version of the reference signal and 

the forward model estimated output and is given by 

 

         )(ˆ)1()( kyLkrkinv −−=β                                                                                     (3.15) 

where )(kinvγ is the same proposed automatic learning rate adjustment for the nLMS 

algorithm in (3.8) with the residual error of )(kinvβ and is given by 

 

 

                                                                                                                                       (3.16) 

 

 

3.2.1 Adaptive identification of the forward model 

In this section we discuss the design of adaptive inverse control system that uses the 

similar introduced algorithm to synthesize u(k) such that y(k) tracks some bounded 

piecewise continuous desired trajectory r(k) as given in [2]. We will assume using the 

same lead-lag controller design in (3.1) to stabilize the plant before anything. Figure 4 

shows a block diagram of the proposed structure. 
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Figure 3.3: Adaptive Inverse Control. 

 

The adaptive inverse controller Q(z) produce the system control input u(k) that is required 

to make the plant output y(k) tracks the reference input signal r(k) and is given by 

         )1(ˆ)()( −= kkku T θϕ                                                                                    (3.17) 

 

where the regression variables of )(kϕ are given by 

 

      )](),....,1(),([)( pkrkrkrk fff −−=ϕ                                                         (3.18) 

 

where )( kr f is the output of the neural network radial base transfer function layer of a 

given net reference input signals r(k) and is given by 

 

                                                                                                                                       (3.19) 
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The parameter estimation law uses nLMS algorithm and is given by 

 

                                                                                                                                       (3.20) 

 

A neural networks hyperbolic tangent sigmoid transfer function )(kε  produces output 

from the residual error of a delayed version of the reference input and the plant output 

given by 

 

                                                                                                                                       (3.21) 

 

The residual error )(kβ in this case is given by 

    

      )()()( kyLkrk −−=β                                                                                            (3.22) 

 

Also, the automatic learning rate adjustment given in (8) is implemented here and it is 

given by 

 

                                                                                                                                       (3.23) 
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3.3 Adaptive Fuzzy TS using IMC with nLMS Tuning 

 
The Takagi-Sugeno fuzzy model is used to identify a SISO nonlinear plant by 

incorporating a number of linear continuous-time models of the system taken at different 

operating range of the input signal. Linear models are found based on the system step 

response characteristics at different values of the input range. A method presented in [5] is 

used to find a second order transfer function of the system at a given step response value. 

First, the response steady state; )(lim
00 sGK

s→
= then we calculates the following: 

- )()( 00 tyKtf u−= , where )(tyu  denote the system output. 

- ∫
∞

=
0

01 )()( ττ dfty . 

- Apply step to )(1 ty  and find the new steady state 1K . 

- )()( 111 tyKtf −= . 

- ∫
∞

=
0

12 )()( ττ dfty . 

- Apply step to )(2 ty and find the new steady state 2K . 

- Find 
0

1
1 K

Ka =  and 
0

211
2 K

KKaa −
= . 

- The transfer function is 
221

2
0

/1)/(
)(

asaas
K

sG
++

=  

A number of different linear transfer functions at different values of the input range can 

be used to approximate the nonlinear system. The conventional TS fuzzy model will be 

modified to incorporate the normalized LMS adaptive algorithm to replace the 
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membership selection function. The well known fuzzy TS makes use of the membership 

function as follows: 

:jR  If 1u  is jA ,1  then jgy =                     (3.24) 

where; )(xfy = , is a continuous function that equal to the value of calculated transfer 

function jg , nj ,....,1=  and 1u  is the input to the system. Hence, instead, the input to the 

system is fed to all the different linear transfer functions, that are representations at 

different operating points and the collection of the outputs of each system are fed to the 

adaptive linear combiner subsystem of the normalized LMS adaptive filter. The adaptive 

linear combiner is shown in Figure 3.4. Its output is a linear combination of its inputs. 

 

 

                

Figure 3.4: Adaptive Linear Combiner for nLMS 
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This element receives at time k an input signal vector or input pattern vector Mk = [M1k, 

M2k, M3k, . . . , Mnk]T and a desired response dk, a special input used to effect learning. The 

components of the input vector are weighted by a set of coefficients, the weight vector Wk 

= [W1k, W2k, W3k, . . ., Wnk]T. The sum of the weighted inputs is then computed, producing 

a linear output, the inner product Sk = T
kM Wk. During the training process, input patterns 

and corresponding desired responses are presented to the linear combiner. The nLMS 

adaptation algorithm automatically adjusts the weights so that the output responses to the 

input pattern will be as close as possible to their respective desired responses. The nLMS 

algorithm minimizes the sum of square of the linear errors over the training set. The linear 

error ek is defined to be the difference between the desired response dk and the linear 

output Sk. 

 

Figure 3.5: Adaptive TS with IMC using nLMS tuning 
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Considering the continues-time staple plant transfer function )(sP , let )(0 sh denote the 

zero-order hold, )(ku is the control input to the plant and )(ky is the plant output. The 

control objective is to synthesize )(ku such that )(ky tracks some bounded piecewise 

continuous desired trajectory )(kr . As shown in Figure 3.5, the forward model )(zM of 

the IMC structure is identified using TS linear models and the nLMS adaptive algorithm. 

Let )(ˆ ky be the identified model output required to track )(ku . Then 

           )1()()(ˆ −= kWkMky T                                                                                (3.25) 

where M is a vector of n input signal or pattern that is represented by the different TS 

models of the plant. Let the local linear transfer functions be a second order given by 

             
nn

n
n asas

bsM
01

2
0)(

++
=                                                                                   (3.26) 

where n is the number of TS models used. The parameter estimation law to adjust the 

weights and identify the forward model using the nLMS is given by 

      ))(ˆ)()(()1()( kykykMkWkW −+−= γ                                               (3.27) 

where γ is a constant or the learning rate 20 ≤≤ γ . The inverse of the plant model is 

incorporated in the feed-forward path to achieve asymptotic tracking in the IMC structure. 

It is estimated using an adaptive FIR filter using nLMS. This approximate inverse system 

is the local inverse of the system and its parameters may change with variation in system 

excitation signal.  
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The nLMS given by 

     )1()()(ˆ −= kkku T θϕ                                                                                                 (3.28) 

where  

   )](ˆ),...,1(ˆ),(ˆ[)( pkykykykT −−=ϕ                                                                            (3.29) 

and 

   ],....,,,[)( 321 p
T wwwwk =θ                                                                                           (3.30) 

The parameter estimation law to adjust the weights and identify the inverse model using 

the nLMS is given by 

   ))(ˆ)1(()1()( kuLkukk T −−+−= γϕθθ                                                                      (3.31) 

The control input is defined by 

     ))(ˆ)(ˆ)(()( kukQkeku −= δ                                                                                        (3.32) 

where δ is a small gain in the loop and 

     )2()()( 1 Lkekrke −−=                                                                                            (3.33) 

and 

     )(ˆ)()(1 kykyke −=                                                                                                   (3.34) 
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Chapter 4 

Experimental Implementations and Results 

4.1 Adaptive AIC with IMC Structure  

An implementation on a robotic arm manipulator (single link) system is shown in Figure 

4.1 and discussed here. The lead-lag controller design to stabilize the system reveals the 

parameter selection given in (3.1) for b1=50, b0=50, a1=1 and a0=200. Due to the nature of 

the system, the reference signal has a rate limiter to smoothen the adaptive tracking 

behavior of the system with a rising slew rate equal 1 and a falling slew rate equal -1. For 

the same purpose, another rate limiter is introduced in the adaptive algorithm. In this 

section, the two cases of AIC with IMC structure and AIC will be shown. 
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Figure 4.1: Robotic Arm Manipulator 

4.1.1 AIC with IMC Structure 

The sample time used is 5 milliseconds and the implementation was done with delay L1= 

5 milliseconds and L2= 500 milliseconds. Also, the bounds of (8) for the automatic 

learning rate adjustment of the forward model are f=0.001 and g=0.5, while the selection 

for the inverse model are f=0.01 and g=0.1.  

Figure 5 shows that the output (position) of the plant converges quickly to the desired 

reference input signal. 
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Figure 4.2: Desired output tracking reference input for the AIC with IMC structure. 

 

Figure 4.3 shows the error between the forward model estimated output and the plant 

output )(ˆ)( kyky − and Figure 7 shows the control input u(t) 
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Figure 4.3: Error between the estimated output of forward model and the plant output for 

the AIC with IMC structure. 

 

 

AIC with IMC With high rate limiter 

 

 

 

 

 

 

 

 

Figure 4.4: Control input for the AIC with IMC structure. 
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Now, we will show the effect of varying some parameters on the overall system 

performance. First, it was found that by reducing the time delay (L2) will negatively 

impact the performance of the overall system. Reducing the time delay to L2 =50 

milliseconds results in the tracking between the desired plant output and the reference 

input is shown in Figure 8. The error and the control input are shown in Figure 9 and 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: Desired output for the AIC with IMC structure with reduction of L2. 

 

 

 

 

 

0 20 40 60 80 100 120 140 160 180 200
-3

-2

-1

0

1

2

3

Time (Seconds)

Po
sit

io
n

Plant Output
Reference Input

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com


  51 

  

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Error between the estimated output of forward model and the plant output for 

the AIC with IMC structure with reduction of L2. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Control input for the AIC with IMC structure L2= 50 ms. 
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Next, we will show the impact on changing/eliminating the rate limiter imposed at the 

forward model adaptive identification algorithm. Figure 4.8 shows the tracking behavior 

becoming oscillatory and the same impact is observed in the error and control input of 

Figure 4.9 and 4.10. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: Desired output tracking reference input for the AIC with IMC structure with 

change in rate limiter at the forward model. 
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Figure 4.9: Error for the AIC with IMC structure with change in the rate limiter at the 

forward model. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.10: Control input with change in the rate limiter at the forward model. 
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The impact of removing the presented automatic adjustment of the learning rate is shown 

here. Figure 4.11 shows the difficulty of the tracking process. The error as well as the 

plant input is shown in Figure 4.12 and 4.13 respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11: Desired output tracking reference input for the AIC with IMC structure 

without automatic adjustment of the learning rate. 
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Figure 4.12: Error for the AIC with IMC structure without automatic adjustment of the 

learning rate. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.13: Control input for the AIC with IMC structure without automatic adjustment 

of the learning rate. 
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4.1.2 Adaptive Inverse Control 

The structure shown in Figure 3.3 is implemented in the same robotic arm manipulator 

system of Figure 4.14 and the results shows that the automatic adjustment of the learning 

rate has its benefit more when used in AIC with IMC structure. Figure 17 shows the 

tracking behavior and Figure 18 shows the control input.  

 

 

 

Figure 4.14: Robotic arm manipulator complete system 
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Figure 4.15: Desired output tracking reference input for the AIC system. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16: Control input for the AIC structure. 
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4.2 Adaptive Fuzzy TS using IMC with nLMS Tuning 

Implementation on Thermal Heating Process 

 

The proposed technique was implemented in a real-time system. The real-time system 

was a thermal heating process (temperature control system) that is a Single Input Single 

Output (SISO) system. The result shows that technique is successful in terms of achieving 

the expected results. The temperature control system consists of a heater installed on a 

pipeline that is open to atmosphere and with a fan installed adjacent to the heater to 

transfer the heat produced by the heater to the other end of the pipe where a temperature 

sensor is installed as shown in Figure 4.17. So, the measuring device or sensor of the 

system is a temperature sensor which is a thermostat. The output of the thermostat is 

conditioned using signal conditioning module that is installed in the process control 

trainer to give an output that equal to 0V at ambient temperature (25ºC) and equal to 10V 

at 80ºC which is the maximum temperature range that the system operate at. The heater, 

which is the actuator of the control system, is capable of receiving analogue signal 

between 0V to 10V and will act accordingly to vary the temperature of the airflow inside 

the pipeline. The fan, the heat transfer mean, of the system can act as a disturbance to the 

system. The process is a second order system with dead-time or time delay. This kind of 

system is nonlinear in its behavior and non-minimum-phase. 

 

Linear models of the thermal heating process were first found to be later incorporated in 

the Takagi-Sugeno fuzzy model.  
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Figure 4.17: Thermal Heating Process 

Ten models of the system were taken at different operating points of the input range (0-10 

V). These models were taken after getting information about the step responses and 

finding second order linear models. The results are shown below: 
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Figure 4.18: Step responses at different step sizes (a), .., (f) 
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Figure 4.19: Step responses at different step sizes (g), …, (j) 

 

The results shown in Figure 4.18 & 4.19 shows the identified model compared with the 

measured step response. The first model in Figure 4.18 (a) was taken at step size equal to 

one while (b) was taken at step size equal to two. The rest of the other eight models were 

taken with the respective step size (i.e. at –e- the step size was three and so on). The 

method described in section 3.2 was used and the models are as follows: 
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(a) 
3344.0054.1

05051.0)( 21 ++
=

ss
sG  

(b) 
1738.07129.0

05085.0)( 22 ++
=

ss
sG  

(c) 
2148.08666.0

1048.0)( 23 ++
=

ss
sG  

(d) 
2083.08631.0

1384.0)( 24 ++
=

ss
sG  

(e) 
2256.0034.1

1853.0)( 25 ++
=

ss
sG  

(f) 
267.0188.1

2469.0)( 26 ++
=

ss
sG  

(g) 
3118.0319.1

3114.0)( 27 ++
=

ss
sG  

(h) 
3118.0197.1

2977.0)( 28 ++
=

ss
sG  

(i) 
3636.0584.1

3461.0)( 29 ++
=

ss
sG  

(j) 
3611.0355.1

3454.0)( 210 ++
=

ss
sG  

 

The implementation of using the adaptive nLMS algorithm to select the membership 

function of the conventional fuzzy TS model is done here. Figure 4.20 shows the 

complete system implementation. 

 

 

Figure 4.20: System implementation for the Thermal Heating Process 
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The sample time used is 10 milliseconds and the implementation was done with delay L1= 

1 seconds, L2= 10 milliseconds and 1.0=δ . Figure 4.21 shows the plant output response 

to the given reference input signal. This result was taken for 200 seconds. It was found 

that the nLMS weight at the forward model identification that is used to select the TS 

membership functions in the IMC structure doesn’t get enough time to converge. Hence, 

the experiment was repeated for a longer time in Figure 4.22 that allows the convergence 

of the parameters as in Figure 4.23.  
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Figure 4.21: Desired output temperature tracking the reference input 

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com


  64 

  

0 200 400 600 800 1000 1200
25

30

35

40

45

50

55

Time (Seconds)

Te
m

pe
ra

tu
re

 (d
eg

re
e 

C
)

 

Figure 4.22: Desired output temperature tracking the reference input for a longer time 
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Figure 4.23: TS nLMS parameter convergence for the membership function selection 

The error )(1 ke  between the TS model in the IMC structure and the plant output is shown 

in figure 4.24.  
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Figure 4.24: Error between the TS model and the plant output 

 

The control input )(ku to the plant is shown in Figure 4.25. 
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Figure 4.25: Control Input 
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Chapter 5 

Conclusion and Recommendations for Future 

Work 

This chapter concludes the thesis by summarizing the important contributions and 

highlights some recommendations for the future work. 

 

 

5.1 Conclusions 

 

In this thesis, the fuzzy Takagi-Sugeno (TS) modeling have been explored and used in the 

design of adaptive control schemes that incorporates internal model control structure 

(IMC). Nonlinear plants were approximated by linear models that represent the system 

behavior at different operating points. The conventional TS modeling approach that uses 

membership functions to select the degree of relative contribution of each model on the 

fuzzy universe of discourse was tested by allowing the nLMS algorithm to adaptively 
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select among all the different models that represent the system. In addition, an adaptive 

inverse control (AIC) scheme was investigated with and without the IMC structure. An 

automatic adjustment of the learning rate for the nLMS algorithm was developed and 

showed that the learning rate improves in the IMC structure while the normal AIC 

structure doesn’t show much of improvement. The adaptive fuzzy TS using IMC structure 

with nLMS tuning is a better control option compared with the AIC with IMC structure 

when implemented on a laboratory scale systems. This preference is due to relative 

computational simplicity and less number of tuning parameters. The proposed algorithms 

have been implemented on real-time systems of nonlinear plants on laboratory scale of 

heating process and single link robotic arm manipulator. The proposed controller design 

implementation showed its effectiveness by the demonstrated results. 

 

 

5.2 Recommendations for Future Work 

 

Research work is ongoing and the potential for new developments is still possible. Some 

of the recommended extensions of this work are given as follows: 

• The use of multi-input-multi-output (MIMO) systems can be further investigated 

on its use by utilizing the proposed control techniques. 

• The use of Fuzzy TS inverse model can be investigated by integrating it with the 

proposed IMC structure. 
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• Real-time implementation on the robotic arm manipulator can be further 

investigated with smaller sample time than 5 milliseconds using the proposed 

control techniques. 

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com


 70 

 

Bibliography 

[1] Janos Abonyi. Fuzzy Identification for Control. Birkhauser. 2002. 

 

[2] Hung T. Nguyen; Nadipuram R. Prasad; Carol L. Walker; Elbert A. Walker. A First 

Course in Fuzzy and Neural Control. Chapman & Hall/crc. 2003. 

 

[3]  Astrom, K. J.; Wittenmark, B. Adaptive Control. Addison-Wesley Publishing 

Company. 1995. 

 

[4] Morari, M.; Zafiriou, E. Robust Process Control. Englewood Cliffs, New Jersey, 

Prentice Hall. 1989. 

 

[5] John Dorsey. Continuous and Discrete Control Systems Modeling, Identification, 

Design, and Implementation. McGrawHill. 2002. 

 

[6] James C. Hung. Practical Industrial Control Techniques. IECON International 

conference on Industrial Electronics, Control and Instrumentation, 1:7-14, 1994. 

 

[7] Haruo Takatsu. Advanced Control Technologies in DCS. IECON International 

conference on Industrial Electronics, Control and Instrumentation, 1:205-210, 1995. 

 

[8] B. Widrow and G. L. Plett. Nonlinear Adaptive Inverse Control. Proceedings of the 

IEEE Conference on Decision and Control, 2:1032-1037, 1997. 

 

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com


 

  
 

71 

  
 
 

 

[9] Bernard Widrow and Michel Bilello. Adaptive Inverse Control. Proceedings of the 

International Symposium on Intelligent Control, 1-6, 1993. 

 

[10] Samuel M. Smith. A Variable-Structure Fuzzy Logic Controller with Run-time 

Adaptation. IEEE World Congress on Computational Intelligence., Proceedings of 

the Third IEEE Conference on Fuzzy Systems, 2:983-988, 1994. 

 

 [11] Jeffrey T. Spooner and Kevin M. Passino. Stable Adaptive Control Using Fuzzy 

Systems and Neural Networks. IEEE Transactions on Fuzzy Systems, 4:339-359, 

1996. 

 

[12] Jeffery T. Spooner, Raul Ordonez and Kevin M. Passino. Indirect Adaptive Fuzzy 

Control for a Class of Discrete-Time Systems. Proceedings of the American Control 

Conference. 5:3311-3315, 1997. 

 

[13] Witold Kosinski and Martyna Weigl. Expert System with an Adaptive Fuzzy 

Inference Module. Proceedings of International Conference on Knowledge-Based 

Intellegent Electronic Systems, 2:525-532, 1997. 

 

[14] Raul Ordonez and Kevin M. Passino. Experimental Studies in Nonlinear Discrete-

Time Adaptive Prediction and Control. Proceedings of the 37th Conference on 

Decision and Control, 2:2289-2293, 1998. 

 

[15] Hyung-Jin Kang, Hongyoup Son, Cheol Kwon and Mignon Park. A New Approach 

to Adaptive Fuzzy Control. IEEE World Congress on Computational Intelligence., 

IEEE International Conference on Fuzzy Systems Proceedings, 1:264-267, 1998. 

 

[16] Suleiman Barada and Harpreet Singh. Generating Optimal Adaptive Fuzzy-Neural 

Models of Dynamical Systems with Application to Control. IEEE Transaction on 

Systems, Man and Cybernetics, 28:371-391, 1998. 

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com


 

  
 

72 

  
 
 

 

[17] Young-Wan Cho, Yang-Hee Yee, Mignon Park. An Indirect Model Reference 

Adaptive Control for SISO Takagi-Sugeno Model. FUZZ-IEEE International Fuzzy 

Systems Conference Proceedings, 1:474-479, 1999. 

 

[18] Feijun Song, Samuel M. Smith and Charbel G. Rizk. A General Cell State Space 

Based TS Type Fuzzy Logic Controller Automatic Rule Extraction and Parameter 

Optimization Algorithm. IECON Annual Conference of the IEEE Industrial 

Electronics Society, 3:1265-1270, 1999. 

 

[19] Chih-Lyang Hwang. Takagi-Sugeno-Based Robust and Adaptive fuzzy Sliding-Mode 

Control Systems. IECON Annual Conference of the IEEE Industrial Electronics 

Society, 1:530-535, 2000. 

 

[20] Veysel Gazi and Kevin M. Passino. Direct Adaptive Control Using Dynamic 

Structure Fuzzy Systems. Proceedings of the American Control Conference, 3:1954-

1958, 2000. 

 

[21] Mohammad Fazle Azeem, M. Hanmanldu and Nesar Ahmed. Generalization of 

Adaptive Neuro-Fuzzy Inference Systems. IEEE Transaction on Neural Networks, 

11:1332-1346, 2000. 

 

[22] Chang-Woo Park, Chang-Ho Hyun, Min-Sick Park, Chang-Hun Lee, Jaehun Kim 

and Mignon Park. Control of Uncertain Flexible Joint Manipulator Using Adaptive 

Takagi-Sugeno fuzzy Model Based Controller. Proceedings of ICRA International 

Conference on Robotics and Automation, 1:985-990, 2001. 

 

[23] Reda Boukezzoula, Sylvie Galichet and Laurent Foully. Fuzzy Adaptive Control for 

Nonlilnear Systems, Real-Time Implementation for a Robotic Wrist. Proceedings of 

the IEEE Conference on Decision and Control, 5:4364-4369, 2001. 

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com


 

  
 

73 

  
 
 

 

[24] Pil-Sang Yoon, Jang-Hyun Park and Gwi-Tae Park. Adaptive Fuzzy Control of 

Nonaffine Nonlinear Systems Using Takagi-Sugeno Fuzzy Models. IEEE 

International Conference on Fuzzy Systems, 3:642-645, 2001. 

 

[25] Noureddine Golea, Amar Golea, Mohamed Boumehrez and Mohammed Kadjoudj. 

Fuzzy Adaptive Approach to Nonlinear Systems Control. IECON Annual Conference 

of the IEEE Industrial Electronics Society, 1:782-786, 2001. 

 

[26] Chun-Liang Lin. On the Design of an Adaptive Fuzzy Gain-Scheduled Autopilot. 

Proceedings of the American Control Conference, 2:1567-1572, 2002. 

 

[27] Reda Boukezzoula, Sylvie Galichet, Laurent Foully. Fuzzy Linearizing Control 

Approach for a Class of Nonlinear Discrete-Time Systems and its Equivalence with 

Internal Model Control Structure. FUZZ-IEEE Proceedings of the IEEE Conference 

on Fuzzy Systems, 1:122-127, 2002. 

 

[28] Robert Cupec, Nedjeljko Peric and Ivan Petrovic. Adaptive Control Based on Fuzzy 

Process Model with Estimation of Premise Variables. Proceedings of the IEEE 

International Symposium on Industrial Electronics, 2:477-482, 2002. 

 

[29] Yixin Diao and Kevin M. Passino. Adaptive Neural/Fuzzy Control for Interpolated 

Nonlinear Systems. IEEE Transactions on Fuzzy Systems, 10:583-595, 2002. 

 

[30] Yansheng Yang and Changjin Zhou. Design of Fuzzy Adaptive Robust Control 

Algorithm Via Small Gain Approach. FUZZ-IEEE Proceedings of the IEEE 

International Conference on Fuzzy Systems, 1:650-655, 2002. 

 

[31] Feng Zheng, Qing-Guo Wang and Tong Heng Lee. Adaptive and Robust Controller 

Design for Uncertain Nonlinear Systems via Fuzzy Modeling Approach. IEEE 

Transactions on Systems, Man and Cybernetics, 1:1-13, 2003. 

 

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com


 

  
 

74 

  
 
 

 

[32] J. M. Sousa, R. Babuska and H. B. Verbruggen. Internal Model Control with a Fuzzy 

Model: Application to an Air-Conditioning System. Proceedings of the IEEE 

International Conference on Fuzzy Systems, 1:207-212, 1997. 

 

[33] W. F. Xie, A. B. Rad. Fuzzy Adaptive Internal Model Control. IEEE World Congress 

on Computational Intellegence., The IEEE International Conference on Fuzzy 

Systems Proceedings, 1:516-521, 1998. 

 

[34] Reda Boukezzoula, Sylvie Galichet and Laurent Foully. Fuzzy Control of Nonlinear 

Systems Using Two Standard Techniques. FUZZ-IEEE International Fuzzy Systems 

Conference Proceedings, 2:875-880, 1999. 

 

[35] T. Takagi and M. Sugeno. Fuzzy Identification of Systems and its Application to 

Modeling and Control. IEEE Transactions on Systems, Man and Cybernetics, 

15(1):116-132, 1985. 

 

[36] M. Sugeno and G. T. Kang. Fuzzy Modeling and Control of Multilayer Incinerator. 

Fuzzy Sets and Systems, 18:329-346, 1986. 

 

[37] E. H. Mamdani. Advances in the Linguistic Synthesis of Fuzzy Contnrollers. 

International Journal of Man-Machine Studies, 8:669-678, 1976. 

 

[38] E. H. Mamdani, T. Teraqno, K. Asai, and M. Sugeno. Fuzzy-Systems Theory and its 

Applications. Nature, 359:788-788, 1992. 

 

[39] L. A. Zadeh. Fuzzy Sets. Information and Control, 8:338-353, 1965. 

 
[40] Reda Boukezzoula, Sylvie Galichet and Laurent Foulloy. Nonlinear Internal Model 

Control: Application of Inverse Model Based Fuzzy Control. IEEE Transaction on 

Fuzzy Systems, 11:814-829, 2003. 

 

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com


 

  
 

75 

  
 
 

 

[41] W. J. Chang, C. C. Sun and H. Y. Chung. Fuzzy Controller Design for Discrete 

Cntrollability Cnonical Takagi-Sugeno Fuzzy Systems. IEE Proceedings on Control 

Theory Application, 151:319-328, 2004. 

 

[42] Bourhane Kadmiry and Dimiter Driankov. Tkagi-Sugeno Gain Scheduling with 

Sampling-Time Uncertainties. IEEE International Conference on Fuzzy Systems, 

2:1087-1091, 2004. 

 

[43] Plamen P. Angelov and Dimitar P. Filev. An approach to Online Identification of 

Takagi-Sugeno Fuzzy Models. IEEE Transactions on Systems, Man and Cybernetics, 

Part B, 34:484-498, 2004. 

 

 [44] Rong-Jong Wai and Po-Chen Chen. Intelligent Tracking Control for Robot 

Manipulator Including Actuator Dynamics via TSK-Type Fuzzy Neural Network. 

IEEE Transactions on Fuzzy Systems, 12:552-560, 2004. 

 

[45] Reda Boukezzoula, Sylvie Galichet and Laurent Foulloy. Observer-Based Fuzzy 

Adaptive Control for a Class of Nonlinear Systems: Real-Time Implementation for a 

Robot Wrist. IEEE Transactions on Control Systems Technology, 12:340-351, 2004.  

 
[46] C. S. Chiu. Robust adaptive control of uncertain MIMO non-linear systems –

Feedforward Takagi-Sugano Fuzzy Approximation Based Approach. IEE 

Proceedings Control Theory and Applications, 152:157-164, 2005. 

 

[47] Peter Baranyi, Annamaria R., Yeung Yam and Ron J. Patton. Adaptation of TS 

Fuzzy Models without Complexity Expansion: HOSVD-Based Approach. IEEE 

Transactions on Instrumentation and Measurement, 54:52-60, 2005.  

 
[48] Bernard Widrow and John M. CcCool. A Comparison of Adaptive Algorithms Based 

on the Methods of Steepest Descent and Random Search. IEEE Transactions on 

Antennas and Propagation, 615-637, 1976. 

 

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com


 

  
 

76 

  
 
 

 

[49] Bernard Widrow and Eugene Walach. On the Statistical Efficiency of the LMS 

Algorithm with Nonstatiionary Inputs. IEEE Transactions on Information Theory, 

30:211-221, 1984. 

 
[50] Bernard Widrow, Philippe Baudrenghien, Martin Vetterli and Paul F. Titchener. 

Fundamental Relations between the LMS Algorithm and the DFT. IEEE 

Transactions on Circuits and Systems, 34:814820, 1987. 

 
[51] Bernard Widrow, Michael Lehr, Francoise Beaufays, Eric Wan and Michel Bilello. 

Learning Algorithms for Adaptive Signal Processing and Control.  IEEE, 1-8, 1993. 

 
[52] K. J. Hunt and D. Sbarbaro. Adaptive Filtering and Neural Networks for Realization 

of Internal Model Control. Intelligent Systems Engineering, 67-76, 1993. 

 
[53] Bernard Widrow and Michel Bilello. Adaptive Inverse Control. Proceedings of the 

1993 International Symposium on Intelligent Control, 1-6, 1993. 

 
[54] Gang Tao. Adaptive Control of Partially Known Systems. IEEE Transactions on 

Automatic Control, 40:18131818, 1995. 

 
[55] Bernard Widrow and Gergory L. Plett. Adaptive Inverse Control based on Linear and 

Nonlinear Adaptive Filtering. IEEE, 30-38, 1996. 

 
[56] Wolfgang J. Klippel. Adaptive Inverse Control of Weakly Nonlinear Systems. IEEE, 

355-358, 1997. 

 

[57] S. Salehzadeh-Nobari, J. A. Chambers, T.C. Green, J. K. Goodfellow and W. E. D. 

Smith. Implementation of Frequency Domain Adaptive Control in Vibration Test 

Products. 5th International Conference on FACTORY 2000, 435:263-268, 1997. 

 
[58] Bernard Widrow and Gregory L. Plett. Nonlinear Adaptive Inverse Control. 

Proceedings of the 36th Conference on Decision and Control, 1032-1037, 1997. 

 

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com


 

  
 

77 

  
 
 

 

[59] Helder J. Cochefel, Dan Wooten and Jose Principe. A Neural Network Development 

Environment for Adaptive Inverse Control. IEEE, 963-967, 1998. 

 

[60] August Kaelin and Daniel Grunigen. On the Use of a Priori Knowledge in Adaptive 

Inverse Control. IEEE Transaction on Circuits and Systems Part I: Fundamental 

Theory and Applications, 47:54-62, 2000. 

 

[61] A. M. Karshaenas, M. W. Dunnigan and B. W. Williams. Adaptive Inverse Control 

Algorithm for Shock Testing. IEE Proceedings in Control Theory Applications, 

147:267-276, 2000. 

 

[62] Chi-Li-Ma Harnold and Kwang Y. Lee. A Free-Model Based Model Reference 

Adaptive Inverse Controller Design for a Boiler-Turbine Plant by Using Functional 

Mapping. IEEE, 212-216, 2000. 

 

[63] Grgory L. Plett and Hans Bottrich. DDEKF Learning for Fast Nonlinear Adaptive 

Inverse Control. IEEE, 2092-2097, 2002. 

 

[64] Jia Li and Yu Jinshou. Nonlinear Hybrid Adaptive Inverse Control Using Neural 

Fuzzy System And Its Application to CSTR Systems. Proceedings of the 4th World 

Congress on Intelligent Control and Automation. 1896-1900, 2002. 

 

[65] Gregory L. Plett. Adaptive Inverse Control of Linear and Nonlinear Systems Using 

Dynamic Neural Networks. IEEE Transactions on Neural Networks, 14:360-376, 

2003. 

[66] Jin-Tsong Jeng, Chen-Chia Chuang and Y. C. Lee. Annealing Robust Nonlinear 

Adaptive Inverse Control with FNNBSVR for Magnetic Bearing Systems. 

Proceedings 2003 IEEE International Symposium on Computational Intelligence in 

Robotics and Automation, 1276-1281, 2003. 

 

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com


 

  
 

78 

  
 
 

 

[67] Jun Zhao and Xing-Qun Zhan. Study on Ship Manoeuvering Control Based on 

Adaptive Inverse Control Technology. IEEE, 1698-1703, 2003. 

 

[68] Shao-Kui Liu and Gui-Rong Yan. Adaptive Inverse Control Method for Space 

Flexible Truss Structure Vibration Control. Proceedings of the Second International 

Conference on Mahine Learning and Cybernetics, 923-927, 2003. 

 

[69] Z. W. Xing Y. Zhang, K. Z. Liu and X. S. Feng. Neural Based Adaptive Control of 

Underwater Vehicle. Proceedings of the 2003 IEEE International Conference on 

Robotics, Intelligent Systems and Signal Processing, 622-627, 2003. 

 

[70] Lining Sun, Changhai Ru and Weibin Rong. Hysteresis Compensation for 

Piezolectric Actuator Based on Adaptive Inverse Control. Proceedings of the 5th 

World Congress on Intelligent Control and Automation, 5036-5039, 2004. 

 

[71] Dao-Gang Peng, Ping Yang, Zhi-Ping Wang and Yan-Hua Yang. Adaptive Inverse 

Control Based on Parallel Self-Learning Neural Networks and its Applications. 

Proceedings of the Third International Conference on Machine Learning and 

Cybernetics, 392-396, 2004. 

 

[72] Xiao-Jing Liu, Jian-Qiang Yi, Dong-Bin Zhao and Wei Wang. A Kind of Nonlinear 

Adaptive Inverse Control Systems Based on Fuzzy Neural Networks. Proceedings of 

the Third International Conference on Machind Learning and Cybernetics, 964-950, 

2004.  

 

[73] Bernard Widrow; Eugene Walach. Adaptive Inverse Control. Printice-Hall. 1996.  

 

 

 

 

 

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com


 

  
 

79 

  
 
 

 

 

 

 

Appendix: Conference & Publication 
  

o Muhammad Shafiq and Khalid M. Al-Zahrani. Adaptive Inverse Control with IMC 

Structure Implementation on Robotic Arm Manipulator. 10th International 

Conference on Emerging Technology and Factory Automation Proceedings, 1: 537-

543, 2005. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com


 

  
 

80 

  
 
 

 

 

 

 

Vitae 
 

 

o Khalid Mousa Al-Zahrani 

o Borned in Al-Khubar, Saudi Arabia, 1971. 

o Earned an Associate Diploma in the field of Instrumentaion and Control Engineering 

Technology from Jubail Industrial College, Saudi Arabia, in October 1992. 

o Worked as an Instructor in the field of Instrumentation and Control Engineering 

Technology at Jubail Industrial College, Saudi Arabia, 1992-2000. 

o Earned another Associate Diploma in the field of Electrical Engineering Technology 

from Jubail Industrial College, Saudi Arabia, in June 1996. 

o Received Prince Mhammad Ibn Fahad's Prize for Scientific Excellence in 1997. 

o Earned Bachelor of Science in Electrical Engineering from Purdue University, 

Indiana, USA, in 1998. 

o Working as a Control Systems Engineer at Terminal Department, Saudi Aramco, 

from 2001 until present. 

o Earned Master of Science in Systems Engineering from KFUPM, Dhahran, Saudi 

Arabia, in June 2005. 

PDF created with FinePrint pdfFactory Pro trial version www.pdffactory.com

http://www.pdffactory.com

