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CHAPTER 1

INTRODUCTION

In this chapter, we give a bricf introduction to general fault testing

schemes for digital circuits which form the basis for the material discussed in

this thesis.



1.1 Digital Testing

The basic function of testing is to verify whether the circuit under test
(CUT) is functioning as specified or not. This is done by applying a sct of

input patterns and observing the output response of the CUT (sec Figure 1.1).
1.1.1 Test Pattern Generation

The ficld of testing developed into two differcnt approaches, the
exhaustive approach and thc deterministic approach. In the exhaustive
approach, every possible input combination is applied to the circuit under test.
This gurantess that all the possible fault arc detected. With the progress of
VLSI technology, the problem of testing logic circuits is becoming more and
more difficult. As a result, the exhaustive approach became infeasible and the

deterministic approach emerged.

The dcterministic approach naturally restricts the possible faults to a
manageable size and solve the problem of detecting this set of faults. The
main concern here is which inputs should be applied such that the effect of
the fault would occur at the output. The sct of faults may be anything from
the physical structure of the CUT, such as stuck-at faults and bridging faults,
or from the function of the CUT, such as next state-faults and output faults,

or from the timing of the CUT, such as dclay faults and transicnt faults.

In the deterministic approach, deriving tests for combinational circuits

differ from that for scquential circuits. Each kind of circuit, however, has two
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major approaches for deriving tests, the algebraic approach, which tests from
the knowledge of the truth table or state table, and the topological approach,

which requires the knowledge of the structure of the CUT.

For combinational circuits, the boolean difference method [13] represents
the algebraic method. This is usually manageable for small number of inputs
and outputs only. On the other hand, methods that rely on path sensitization
represent the topological approach. Topological oriented methods are classified
into two types: fault independent and fault oricnted test gencration methads.
Fault independent test generation methods are used to provide a set of tests for
a large percentage of the faults of the circuit under test. Example mecthods
include RANDOM [35], RAPS [36], SMART [12]). Fault oriented test
generation methods arc used to generate tests for specific faul_ts. Some efficient
mcethods have been developed such as PODEM [27], FAN [2R], FAST [12].
All these methods shall be presented in Chapter I1.

For scquential circuits, checking cxperiments represent the algebraic
approach, while methods such as the extended D-algorithm [46] represent the

other approach.
1.1.2 Output Response Analysis

All test pattern generation mecthods for combinational and sequential
circuits would require bit-by-bit comparisons of abserved output values with
the correct values. This requires a significant amount of memory for saving the

correct outputs associated with all test vectors which caused the compression



approach to emerge. In this approach the information is saved in a
compressed form for the expected test outcome, called a signature. The circuit
is then tested by comparing the expected signature with the computed
signature. The process of reducing the complete output response to a signature
is referred to as output response compression. This approach is simpler and

requires less memory storage. The concept is illustrated in Figure 1.2.

Some of the well known compression techniques include transition
counting [47], syndrome checking [48], Walsh coefficient [49] . and signature
analysis [50]. Unfortunately, all compression techniques have a probability that
an crroneous output pattern may have the same signature as the correct output

pattern. This is called aliasing.
1.1.3 Design for Testability (DFT)

Previous work [1] has established that the problem of test generation is
usually more difficult for scquential circuits than for combinational oncs.
Testing of sequential circuits can be made comparablc to those of testing
combinational oncs by using certain techniques known as design for testability
(DFT) such as LSSD (Level Sensitive Scan Design) and scan path architecture
[2,46]. In DFT techniques, additional hardwarc is added to the original design

of the circuit such that the resulting circuit is casily tested.
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1.2 Thesis Overview

In this thesis, a new efficient fault independent test generation algorithm
is developed for combinational logic circuits. In order to develop the new
algorithm, some efficient test generation fcatures (i.e, concepts, strategies and
procedures) given in the literature as well as our new features are introduced
and used. So the devcloped algorithm (called MAX) is proposed hased on all
these features. For proving that MAX is more cfficient than the other existing
fault independent test generation algorithms, both MAX and SMART [12], the
most efficient fault independent test generation algorithm in the literature upto
date are implemented and run for bench mark test circuits. Experimental
results of different runs show that MAX is more efficient than SMART, as it

provides test sets in a shorter time.
1.3 Thesis Organization

The rest of the thesis is organized as follows. Chapter I surveys test
pattern_generation algorithms for combinational logic circuits. Chapter 111
provides a detailed description of some of the cxisting test gencration features
given in the litcrature. Chapter IV provides a detailed description of our new
proposed test generation features. Chapter V outlines the new proposed fault
independent test generation algorithm (called MAX) and analyzes a complete
circuit example. Chapter VI provides some discussions about the performance
of MAX compared to the performance of SMART [12]. Finally, the

conclusions are given in Chapter VII.



CHAPTER 11

LITERATURE SURVEY

In this chapter, we give a literature survey on fault test genceration
algorithms for digital circuits. A short background on fault models is also

provided. The material presented in this chapter forms the basis for our

discussion in later chapters.



2.1 Fault Models

A fault model is a representation of the cffect of failures that praduce
changes in the signal values of the logic circuit. A large variety of models [3-7]

are used in digital circuit testing.

The most common fault model used in digital circuit testing is the single
stuck-at model [3]. Each circuit node is assumed to have two potential faults:
permanently stuck at either logic value "1 (s-a-1) or logic value "0” (s-a-0).
Furthermore, at most one fault is assumed to exist in a circuit at any given
time. More complex fault models have also been proposed, such as the multiple
stuck-at fault model (4] and the bridging fault model [3]. In thc multiple
stuck-at fault madel it is assumed that two or more stuck-at faults may exist at
the same time. The bridging fault modcl assumes that signal lines arc

connected together so that wired logic occurs.

Another variation of the stuck-at fault model is the unidircctional fault
model. It assumes that onc or more stuck-at faults may bc present, but all the
stuck lines have the same logical value. It is used in madeling faults in storage

media.

Another fault model, called the pattern-sensitive fault model [5] was
developed for RAMs and high density dynamic MOS chips. In this model, the

effect of the fault depends on the particular input applied to the chip.

Results [6,7] has shown that test patterns that can detect all single stuck-

at faults in a circuit, can also detect many muftiple stuck-at faults and bridging
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faults. All testing mcthods surveyed in this thesis assume only single stuck-at
faults. Based on that, the type of fault model used in the proposed work will

be the single stuck at fault model.
2.2 Combinational Logic Circuits Testing
2.2.1 Automatic Test Pattern Generation (ATPG) Systems

Many ATPG systems for combinational logic circuits have becn proposed
earlier such as LASAR [8], PODEM-X [9]. MAHJONG [t1], and LAMP2

[12]. These systems usually couple two distinct phases as follows:

Phase I

In the first phasc, a low-cost fault independent method is used to provide
a set of tests for a large percentage of the faults. Examples include RANDOM
[35], RAPS [36], and SMART [12].

Phase ITI:

In the sccond phase, a fault oriented method targets thc remaining
undetected faults. Suitable mcthods for this phasc include D-Algorithm [22],
PODEM [27], FAN [28], FAST [12], TOPS [29], and SLOPE [30].
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2.3.2  Test Pattern Generation Algorithms

Test pattern generation algerithms can be classified into three main

categories:

A) Exhaustive Testing.

B) Fault-Oriented Testing.

C) Fault-Independent Testing.
A. Exhaustive Testing

In the exhaustive testing technique, every possible input combination is
applied to the combinational circuit under test. It is feasible only for small

circuits, since a large number of test pattcrns may be required.

McCluskey [10] introduced an important obscrvation that if the
combinational circuit under test is first partitioned into subcircuits with a
sufficiently small number of inputs, then ecxhaustive testing will become

feasible.
B. Fault-Oriented Testing (FOT)

In this category, the testing mcthods [12-33] cnumerate a target list of
faults. For cach detectable fault in the list, a test pattern to detect the fault is

generated. Below is an account of the major approaches to FOT.
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B.1 Algebraic Algorithms

The major characteristic of algebraic methods is generating cquations for
the fault free circuit and manipulating these cquations to generate  tests.
Several algebraic test generation methods have been developed. These include
the boolean difference method of Sellers [13], the prepositional method of
Poage [14], the equivalent normal form of Armstrong [15], the cause-effect
equation of Bossen and Hong [16], the SPOOF procedure of Clegg [17], and
the structure description function of Kinoshita [18]. However, because these
methods generate all possible tests for the given fault, they have the
disadvantage of requiring a large quantity of computing time and mcmory,

which make them impractical for large circuits.

One disadvantage of the boolcan difference method is the difficulty of
manipulating algebraic equations. In [19] a tabular method, for generating the

boolean differcnce, suitable for programming has been introduced.
B.2 Topological Search Algorithms

In this sub-catcgory, all the testing methods involve fault activation, fault

effect propagation and line justification using a backtracing mechanism.

The single-path sensitization (SPS) method is an extension of Eldred’s
results [20} and was formulated by Armstrong [15] and Chang [21]. It consists
of three basic steps: activation, propagation, and justification. To detect the
fault linc L s-a-0 (s-a-1), a suitable input pattern that makes L take the

opposite value I (0) must be found. This process activates the fault. Then the
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cffect of the fault must be made observable at a circuit primary output (PO).
This can be done by sensitizing a path from L to a PO. The inputs to the gatcs
along the chosen path must be assigned to values that propagate the fault
effect to the output. This process is called the propagation phase of the
method. To complete the test, values on the gates inputs nceded to sensitize the
path are driven back to corresponding values on the circuit inputs. This
process is called the line justification phasc of the method. However, the
method is not complete, since therc can exist testable faults in a circuit for

which it is impossible to generate tests if only onec path is allowed to be

sensitized at a time.

The multiple-path sensitization approach, called the D-Algorithm. was
formulated by Roth [22,23]. The D-algorithm is formalized in terms of cubical
algebra cal_led the D-calculus. Basically, the D-algorithm proceeds in two
stages: first the D-drive operation whose objective is to propagate the effect of
the fault to a primary output. Then line justification (consistency) operation is
performed to justify each internal line that got an assignment in the D-drive
operation. Cha [24], Akers [25], and Takamatsu [26] worked on the same line
cxtending the algorithm to a larger D-calculus set. The D-algorithm and its
variations arc complete algorithms in that they will gencrate a test for the

given fault if a test exists.

A more attractive completc method called PODEM (Path Oriented
DEcision Making) was reported by Gocl [27]. PODEM has been shown to be

morc cfficient than the D-algorithm especially for crror correction and
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translation (ECAT) circuits. Goel formulated the test generation problem as a
search problem of the n-dimensional 0-1 state space of primary input patterns
of an n-input combinational logic circuit. Like the D-algorithm, PODEM
performs fault propagation operation that is similar to the D-Drive operation
of the D-algorithm. But unlike the D-algorithm, PODEM does not perform
line justification process. It avoids that by allowing linc assignment to primary

inputs only, rather than internal lines.

Fujiwara [28] developed a more accelerated complete method called FAN
(fan-out-oriented). In FAN, several strategics were introduced such as unique
implication, unique sensitization, and multiple backtrace. These strategics try
to decrease the number of backtracks. FAN also extended the backtracing
concept of PODEM. It allows the backtracing to stop at certain lines called
head lines, rather than primary inputs. The authors also introduced an
automatic test generation system composed of FAN and a concurrent fault
simulator [34]. The fault simulator is run after cach test pattern is generated to

find what other faults are detccted by that test pattern.

Abramovici et al [12] introduced a testing method, callcd FAST (Fault-
Oriented Algorithm for Sensitized-path Testing). It combines and extends
fecatures of PODEM [27] and FAN [28]. It also  uscs
controllability/observability cost functions. These funclio_ns guide FAST
toward decisions lc&; likely to cause conflicts. They used to identify lines whose

justification are conflict frec.
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TOPS (TOPological Search) algorithm was proposed by Kirkland et al
[29]. 1t uscs small size search space and improves the ordering of node
assignments bascd on a topological analysis of the circuit under test. Also, it

rapidly identifics many redundant faults without search.

Chuang et al [30] presented a test pattern generator called SLOPE (Stop
Line Oriented Path End). It combines the advantages of FAN [28] and FAST
[12] and utilize a controliability measure and an observability measure. The

two measures are uscd to assist in guiding the test generation process.

A further improvement to the test generation process has been proposed
by Lioy [31], where an adaptive backtrace technique is introduced. It avoids
unnecessary internal conflicts of previous methods and reduces the number of

backtracks while searching for a test.

A distributive D-Algorithm was proposed by Lo ct al [32]. Tt improves
the performance of the conventional D-Algorithm. The fault effect is
propagated from its location to the primary output through all possible paths.
The goal of this process is to reduce the number of backtracks during the test

generation process.

Recently, Patil and Banerjec [33] identificd the problems inherent in a
uniprocessor implementation of a test generation mcthnd.and proposed a
parallel test gcnerat-ion method. It trics to achicve a high fault coverage for
hard-to-detect faults in a reasonable amount of time. To do that, a dynamic

scarch space allocation strategy is used. It ensurcs that the search spaces
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allocated to diffcrent processors are disjoint.
C. Fault-Independent Testing (FIT)

Fault independent testing [12,35,36] is usually used in phase I of a test
pattern generation system. Unlike FOT, where the goal is to generate a test
pattern for a given fault, FIT objective is to generate an initial test set that
covers as many faults as possible of the list of all faults beforc passing the

CUT to phase II.

Fault-independent testing methods can be classified into the following
categories: Random Testing and Semi-Deterministic Testing. Since thesc are

the basis of our proposed algorithm a brief discussion of them follows.
C.1 Random Testing

A random test generation method called RANDOM was reported by
Schnurmann [35]. The basic idea of RANDOM is to gencrate a test pattern at
random and simulate it to find out which faults are tested. It keeps doing that
until a reasonable fault coverage is achicved or a specified time limit is

excceded.
C.2 Semi-Deterministic Testing

Geol [36] introduced a testing method called RAPS (Random Path
Scnsitization). It combines features of random and decterministic test

generation algorithms. Central to RAPS is the concept of objective, (m, v,),
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that is setting line m to a desired value v,- For the circuit under test, RAPS

selects a primary output (PO) at random and assigns it a random logic value

vyo- Procedure Justify, shown in Figurc 2.1, is used to justify the initial
objective (PO, v,, ) by repeatedly finding a primary input (PI) assignment that
is likely to contribute to setting PO to v,,. The mapping of an objective into a

PI assignment is recursively donc by procedure Backtrace shown in Figure 2.2.
Internal line values are generated only by simulating primary inputs
assignments. After a test pattern is generated, a fault simulator is invoked to
determine the detected faults. RAPS kecps generating test patterns until the
incremental number of the new detected faults become very small. For most of

logic circuits, RAPS has been shown to be more cfficient than RANDOM [36].
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Justify (m, v, )
[* Justify attempts to assign the logic value v, for line m */
{ Repeat
{ (i, v,) = Backtrace (m,v,)
I* (i, v,) represents a value v, of primary input i *|
Sinulate (i, v,)

[* True value simulation *|

}

Until m has binary value

[* At this point the assigned value of m is justified */

Figure 2.1 Justify Procedure
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Backtrace ( m,v,_ )
[* Backtarce returns an assignment to a PI line */
{Ir(misa PI) Return (m,v_)

If ( m is a fanout branch of j ) Return Backtrace ( j, v,)

i = inversion of gate Q that fed line m
Select arbitrarily an unassigned input j of [0

Return Backtrace ( j, v, @i )

Figure 2.2 RAPS Backtarce Procedure

g,
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Abramovici et al [I2] presented a testing methad called SMART
(Sensitizing Method for Algorithmic Random Testing). It combines features of
random and deterministic methods. In SMART many concepts are proposed
such as critical lines, stop lines, useful lines and restart gates. All these
concepts are explained below. Stop lines delimit areas of the circuit under test
where additional fault coverage cannot be obtained, while restart gates delimit
areas where additional fault coveragec is likely to be obtained with little

additional effort.

A line L with value v in a test t is critical if t detects the fauit L stuck at ¥

@i.e., L s-a-¥).

A line L is a p-stop line for a test set T, if T detects all the detectable faults

that cause L to take value 7.
In SMART, stop lines arc determined according to the following rules:
a) A primary input is a v-stop if it has had a critical value v.

b) The output of a gate with inversion i is a v-stop il it has had a critical

value v and all the gate inputs arc (i @ v)-stops.

c) afanout branch is a v-stop if it has had a critical valuc v and its stem

is a v-stop.

A line L that is not v-stop is said to be p-usefil.

A gate G in a test t is a restart gate if G satisfics the following conditions:
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a) Its output is critical (in t) but none of its inputs is critical.

b) Only one input has the controlling valuc ¢ (e.g., 0 for an AND gatc)

and this input is not a c-stop line.

Like RAPS, SMART (see Figure 2.3) starts by justifying a "randomly”
chosen value for a “randomly” chosen primary output (PO). But unlike RAPS,

whenever an objective (k, v, ) for a gate output is mapped into an objective @,
v; ) for a gatc input, SMART uses a Selective-backtrace procedure. It differs

from Backtrace of Figure 2.2 in giving prefcrence to the gate inputs that are
v-useful lines (ie., that are not vistop lines) rather than selecting inputs
arbitrarily. This way allows detection of new faults and avoids gencrating
repeated test patterns. In the justification process, SMART uscs a procedure,
called Sclective-justify, that is similar to Justify shown in Figure 2.1, cxcept
that it uses. Selective-backtrace instead of Backtrace. After the PO is driven to
a binary value, SMART invokes the Critical Path Tracing (CPT) [38] fault
simulator for the partially gencrated vector. CPT determines critical lines and
restart éatcs for the partially generated vector. Then SMART repeatedly picks
a restart gatc and trics to justify non-controlling values on its inputs with value
x and reruns CPT. This closc intcraction with CPT greatly contributes to the
efficiency of SMART. After a fully generated vector is obtained, CPT
determines stop lines based on the above rules. SMART: stops generating
tests, if the average number of new faults detected by the last n tests is less
than 2 (mostly n=30). Finally, results showed that SMART is more efficient

than RAPS [36]}, as it gencrates smaller test scts in shorter time.
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SMART( )

{While (Useful POs have X values)
{Randomly select a useful PO Z with X value
If (Z is both 0- and I- useful) randomly select a value v
Else v = the useful value of Z
Selective-justify (Z,v)
[* At this point a partial test vector p is generated */
CPT()
[* CPT( ) determines critical lines and restart gates for p */
While (The set of Restart-gates = @ )
{ Remove a gate G from Restart_gates
~ ¢ = controlling value of G
Jor every input j of G with X value
Justify (j, )
CPT()
}
}

Return vector of Pls value

}

Figure 2.3 SMART--A Fault Independent Test Generation A Igorithm



23

CHAPTER 11

RELEVANT CONCEPTS AND PROCEDURES

In this chapter, we shall provide a detailed description to a number of
relevent concepts and procedures of the existing test generation algorithms.
These concepts and procedures will be incoperated into the new proposed fault
independent test generation algorithm. Each one of these concepts and
procedures will be cxplained and illustrated by cxamples. This chapter is
orgnized as follows. Section 3.1 presents circuit leveling procedure of Breuer
(Circuit_leveling) [41]. Section 3.2 prescnts controllability mecasure of FAST
(Compute_controliability) [12]. Section 3.3 presents Multiple Backtrace of
FAN [28]. " Section 3.4 presents Critical Path Tracing Fault Simulator (CPT)
[38]. Scction 3.5 presents Test Generation Stopping Function of SMART
(TGS) [12].
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3.1 Circuit Leveling Procedure of Breuwer (Circuit_Leveling)
Aim:

Given a circuit to be tested. The aim of this procedure [41] is to assign a
certain level number, which will be explained later in this section, to each line
of the circuit under test (CUT) based on its position in the circuit. While a test
is generated, these level numbers will be used as a guidance measure for the

lines selection during the backtracing process.

Description:

The level of a line is recursively defined as follows:
1) The level of a primary input is 0.

2) The level of a gate output is 1+ i__ where I iS the highest level

among the levels of the gate inputs.
3). The level of fanout branches is identical to the level of its stem.

Example 3.1

Consider the circuit of Figure 3.1, the result of leveling is given below:

Level O: A,B,(_E,H,I,L
Level I: J,K

Level 2: M,N

Level 3: Z



G{>GJ

Hl: K

D

Figure 3.1 Circuit Leveling
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3.2 Controllability Measure of FAST (Compute_controllability)
Aim:

Given a circuit to be tested. The aim of using this mcasure [12] is to
providc a quantitative mcasure of the difficulty of controlling the logic values
of internal lines from the topology of the CUT. In other words, it is used to
help in making suitable choices in justifying the logic values to the lines of the

CUT, hence minimize the required time for the backtracing process.

Description:

For guiding the backtracing process, we nced cost functions that measure
the difficulty of justifying a logic value to a given line. Typically, the major
cost function is the controllability cost function. Controllability cost indicates

the relative difficulty of setting a line to a value.

The main problem is to define difficuity in a meaningful way for test
generation. If we analyze the cxecution of a test gencration algorithm, we
obscrve that its worst-case behavior is characterized by many wrong decisions
from which the algorithm recovers using backtracking. A decision is incorrect
if it leads to conflicts (inconsistencies). On the other hand, the best case accurs
when the cxecution completes without backtracking. Hence the obijective of
cost functions should be to minimize thc amount of time required for
backtracing by guiding the algorithm toward a decision which is less likely to
cause conflicts. The potential for conflicts is dircctly related to the fanout

structure of the circuit and not to its size. For cxample, no conflicts can occur
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in any fanout-free circuit or in any circuit without reconvergent fanout.

In FAST algorithm, two controllability cost functions arc used, CO(m)
and Cl(m), to reflect the relative potential for conflicts resulting from trying to
justify 0 and 1 value for line m, respectively. These costs functions are derived

from those used in [37] and are computed as follows:
1) If m is a primary input
CO(m) = Cl(m) = 0
2) If m is the output of an AND gatc
CO(m) = MIN {CO(i)}
Cl(m) =Y CI().
where .the minimization and summation are over all the gate inputs i.
3) If m is the output of a NAND gate
CO(m) =3 CI(i).
Cl{m) = MIN {C0(i)}
4) If m is the output of an OR gate
CO(m) =) C0~(i).

Cl(m) = MIN {CI(i)}
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5) If m is the output of a NOR gate
CO(m) = MIN {CI1(i)}
Ci(m) =) CO(i).
6) If mis a fanout branch of a stem s whosc fanout count is S
CO(m) = CO(s) + f,- 1
Ci(m) = CI(s) + f;- 1

Finally, the controllability cost functions are also used in FAST to stop
backtracing at certain lines, called v-backtrace stop lines (v = 0 or 1), which
can bc assigned without leading to any conflicts (inconsistencies). A
controllability cost of 0 should denotc an assignment that does not lead to
conflicts. This will allow us to identify 0- and I-backtracc-stop lines among the

lines with 0 controllability costs CO and CI, respectively.

Exampie 3.2

Consider the given circuit in Figurc 3.2, where the controllability values
of the line K for the logic “0” and "1~ are 0 and 2, respectively. If K is sct to
the logic value 0, then the backtrace path F will be selected instead of 12 since

it is easier to set F td be 0.
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2
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" Figure 3.2 A Circuit Example to Demonstrate the
Computation of Controllability Costs
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3.3 Multiple Backtrace of FAN
Aim:

Multiple backtrace of FAN [28] is used to concurrently backtrace more

than one path instead of backtracing a single path.

Description:

In the single backtrace procedure, which is used by many testing
algorithms, an objective is defined by a pair consisting of an objective logic
value and an objective line. An objective line is the line at which the objective

logic value is desired. An objective is defined by a triple:

(k, ny (K), ny (k))
where:
k is an objective linc,
n, (K) is the number of times the objective logic value 0 is required at k, and
ny (k) is the number of times the objective logic value 1 is required at k.
which is used in the multiple backtrace of FAN [28].

Multiple backtrace starts with onc or more initial objective(s), that is, a
set of Initial_objectives. It keecps moving backward and stops at ccrtain

internal lines rather than going all the way to primary inputs (Pls). These



lines are called head lines. In FAN [28], a head linc is defined as a line that is
fed by a fanout frec subcircuit (a subcircuit that has no fanout lines). The
rcason for stopping the multiple backtrace at head lines is that any objective at
a head line can be backtraced until primary inputs and its value can be

justified without any conflicts.

Beginning with the set of Initial_objectives, a sct of objectives which
appears in the middle is called a set of Current_objectives. A set of objectives
which will be obtained at head lines is called a sct of Head_objectives. A set

of objectives at stems is called a set of Stem_objectives.
An initial objective required to set 0 to a line k is
(k, 1 (K), 7, (K)) = (k, 1, 0)
and an initial objective required to set 1 to a linc k is
(k, 5 (), 1, (K)) = (K, 0, ).

Multiple backtarce works depth-first from the initial objectives
backwards to head lines. The next objectives arc successively determined from

the current objectives by the following six rules:

Rule I: AND gate.

Let k bc an unassigned input that is the easicst to set to 0. Selecting the
casiest input is basically based on the controllability costs that arc computed

using the controllability measure of [43], this is a generalized selection rule for
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the rest of gate types. Let v be the output of the AND gate,
then

e (K) = ng (), n, (k) = n, (),

and for other unassigned inputs K,

ny(k;} = 0,nm (k) = n, (y).

Rule 2: OR gate.

Let k be an unassigned input that is the easiest to sct to 1. Let y be the output

of the OR gate,

then

ro (k) = 1, (), 7, (K) = m, (3),
and for other inputs K,
no(K,)- =n,(y),n (K,)=0.
Rule 3: NAND gate.

Let k be an unassigned input that is the casiest to set to 0. Let y be the output

of the NAND gate, -

then
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o (K) = n, (), ny (k) = n5 (¥)
and for other inputs KX,

no (K;) = 0,m (K;) = ny (9).
Rule 4: NOR gate.

Let k be an unassigned input that is the easiest to set to 0. Let v be the output

of the NOR gate,

then

o (K) = ny (¥), n, (k) = n, (v),

and for other inputs K,

n,(K,) = .n, (y).n (K;)=0.

Rule 5: NOT gate.

Letk a;ld y be the input and output of NOT gatc, respectively,
then

o (k) = n, (), n; (K) = n, (y).

Rule 6. Stem.

Lets be a stem. Let B, is the set of branches of stem s,
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then
ny(s) =Y ny(B),n (s) = Y n, ( B;).

Each objective arriving at a stem or a head linc stops its backtracing
while there exist other current objectives. After the set of Current_objectives
becomes empty, a stem p closest to a primary output is taken out, if one cxists.
Selecting the closest stem to a primary output guarantees that all the objectives
that could depend on this stem have been backtraced. If the stem objective
satisfies the following contradictory condition: that is, if n, (p) and n, (p) arc
nonzero, then stem p will be assigned the value {0 if n, (p) > = n, (p) or 1 if
ny (p) < n, (p)} and the implication of this assignment will be performed. The
reason of assigning a value to a stem is that there might cxist a possibility of
an inconsistency which the objective in backtiracing has an inconsisent
requircment such that n, (p) and n, (p) are nonzcro. So as to avoid the fruitless
computation, a binary value is assigned to the stem as soon as the objective

involves a coatradictory requirements.

When an objective at a stem s has no contradiction, that is, cither 1, (S)
or n, (s) is zero, the backtrace would be continucd from the stem. If all the
objectives arrive at headlines , that is, both scts of Current_objectives and
Stem_objcctives arc-cmpty, then multiple backtrace terminates and returns a
set of Head_objectives. After this, FAN takes out a head line one by onc from

the sct of Head_lincs objectives, the corresponding value is assigned to the
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head line based on its n; and n, valucs.

During the backtracing process, FAN crcates what is called a decision
trec. The decision trec is an ordered list of nodes with each node identifying a
current assignment of either 0 or [ to one head line or one stem that has a
condradictory requirements, and the ordering rcflects the relative sequence of
which the current assignment were made. A node is flagged if the initial
assignment has been rejected and the alternative is being tricd. When both
assignment choices at a node are rejected, then the associated node is removed
and the predecessor node’s current assignment is also rcjected. So the use of
the decision tree is to find an assignment for the tree nodes that meets the
initial objective(s). After a stem of the dccision tree is assigned a value v, an
initial objective required to sct v to this stem will be added to the sct of
Current_objectives. The backtrace would then be continued from this stem.
The backtracing would be continued till the sets of Current_objectives and
Stem_objectives are empty. Finally, an cxtracted version of multiple backtrace

of FAN {38} will be introduced in Chapter 4.
3.4 Critical Path Tracing Fault Simulator (CPT)
Aim:

Given a test pattern t. The aim of CPT [38] is to simulatc t and

determine all the detected single stuck faults by t.



36

Description:

CPT consists of simulating the fault-free circuit (true value simulation)
and using the computed signal values for tracing paths from primary outputs
(POs), towards primary inputs (PIs) to dctermine the detected faults.
Compared with conventional (parallel, deductive and concurrent) fault

simulation, the distinctive features of CPT arc as follows:

1) It dircctly identify the faults detected by a test, without simulating the sct
of all possible faults. Hence, it avoids all the work involved in

propagating the effects of faults that arc not detected by a test.

2) It deals with faults only implicitly. Therefore, therc is no need for fault

collapsing.

3) It is bascd on a path-tracing algorithm that does not require computing

values in the faulty circuits by gatc cvaluations of fault list processing.

The test cvaluation method consists of determining paths of critical lines
called critical paths, by a backtracing process starting at the POs. A line L
with valuc v in a test t is critical if t detects the fault L s-a- 7. By finding the

critical lines in a test t, we immediately know the faults detected by t.

Critical path tracing starts after the true-value simulation of the fault-free
circuit for a test t has been performed. To aid the backtracing , the sensitive

gatc inputs are marked during the truc-valuc simulation.



A gate input i is sensitive if complementing the value of i changes the
value of the gate output. The sensitive inputs of a gate with two or more
inputs are casily dctermined: If only onc input has the controlling valuc c of
the gate, then i is sensitive (AND and NAND gates have ¢ = 0; OR and
NOR have ¢ = 1). If all inputs have noncontrolling values (), then all inputs

are sensitive. Otherwisc no input is sensitive.

The following rules provides the basis of the critical path tracing

algorithm:

Rule I: If a gate output is critical, then its scnsitive inputs, if any, are also

critical. (Primary outputs arc always critical)
A) Fanout-firee circuits

For a’fanout-free circuit (which always has a tree st ructure), critical path
tracing is a simplc trce traversal procedurc that marks critical lines and

recursively follows in turn every sensitive input of a gate with critical output.

Example 3.3

Consider the fanout-frce circuit of Figurc 3.3(a). In this Figure, the
results of a truc-valuc simulation is shown with the sensitive inputs marked by

dots.

The critical lines are identified by recursive application of Rule I. Figure
3.3(b) shows the critical paths by heavy lines. Note how critical path tracing

completely ignores the part of the circuit boarded by the lines B and C, since
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Figure 3.3(a) Sensitive Input Lines
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Figure 3.3(b) Critical Lines and Paths
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working backward from the primary output, it first determines that B and C

are not critical.
B) Circuits with reconvergent fanout

Under the stuck fault model, for a line with fanout we distinguish
between its stem and its fanout branches (FOBs). In the presence of
reconvergent fanout, a stem may not be critical cven if one or more of its
FOBs are critical. This is because the effects of a stem fault may propagate

along two or more paths cancelling cach other when they reconverge. This is

called self-masking.

The main problem in circuits with reconvergent fanout is to determince
whether a stem is critical, given that some of its FOBs arc critical. This

problem is called the stem analysis problem.

The rest of this section presents the theorctical basis of the main features

of the stem analysis [38].
Example 3.4

Consider the circuit and the test given in Figure 3.4(a). Lincs F,D,A, and
Bl are identificd as critical. The effects of the fault B s-a-0 propagate on two
paths so that they cancel each other when they reconverge at gate F, therefore,
B is not critical. Tiﬂs does not occur for the test shown in Figure 3.4(b),
because the propagation of the effect of the stem fault along the path starting

at B2 stops at gate E. In this casc B is critical.
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Figure 3.4(a) Simnlation of Test Vector 111
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C) Stem analysis
The stem analysis approach of [38] has the following features:

- can determine the detection of a fault without propagating its effects all

the way to a PO.

- implicitly propagates fault effects without computing values in the faulty

circuit.

- uses a simple preprocessing technique that allows some stem faults to be

easily detected without any propagation of fault effects; and

- can propagatc fault effects in a global manner, by leaps and bounds

over potentially large areas of the circuit.
C1) Partial fault effect propagation

Let us consider some basic concepts in fault detection. If linc x has value
v in test t, we say that t activates the fault x s-a- 7. A linc y is sensitized by t to
this fault if the presence of the fault changes the value of y in t. If y is
sensitized to the fault on x, we say that the cffect of the fault propagates from
X to y. Then there cxists at Icast one path P between x and vy, so that every linc
on P is sensitized to the fault x s-a- v ; P is called a sensitized path. The value

of yis v + p, where p is the inversion parity of the path P. ~

Determining the detection of a fault without completely propagating its

effects to a PO is based on the concept of a capture linc.
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Definition I:

Let t be a test that activates fault f in a single-output circuit. If ¢
sensitizes line y to f, but does not sensitize any other line with the same level as
y (see Circuit_levcling procedure of Scction 3.1.1), then y is said to be a

capture line of f in test t.

A capture line, if one cxists, belongs to all the paths on which the effect
of f can propagate to the PO in test t. If t dctects f, then there exists at least
one capture line of f, namely the PO itsclf. If the cffect of propagates on a
single path, then every line on that path is a capture line of f. (sec Figure 3.5

which shows the capture lines for the fault b s-a-0).

We can casily show that a test t dciccts a fault f if and only if all the
capture lines of f in t are critical in t. Therefore, we may not neced to
propagate the effects of the stem fault "all the way” to a PO as done in explicit
fault simulation. Rather, it is sufficient to find a capture linc of x. say y, whose
status (critical or not critical) has alrcady been determined. Then x is critical if

y is critical.
C2) Implicit fault effect propagation

Propagating fault effects without explicit computation of faulty valucs is
based on the marking of the sensitive gate inputs done during the true value
simulation phase. A gate G propagates fault cffects if either (1) fault effects
arrive only on sensitive inputs of G or (2) G has no scnsitive inputs and fault

effects arrive on all inputs with controlling valuc and only on these inputs.
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Figure 3.6 shows the different possible cases of propagation and

nonpropagation of fault effects through an AND gate.

C3) Stem analysis without fault effect propagation

Definition 2:

In a single output circuit, a linc y that belongs to all the paths between
the line x and the PO is said to be a cover line of x. If all paths between x and
its cover line y have the same inversion parity, then y is said to be an cqual

parity cover line of x.

Unlike a capturc line, a cover linc is not defined on the basis of the

applicd test.

Rule II: A stem that has an equal parity cover line is critical in any test in

which one of its FOBs is critical.

This rule is bascd on the fact that sclf masking cannot occur in the region

between a stem and its equal parity cover linc.
C4) Global fault effect propagation

In this section, global propertics uscd to analyze the propagation of fault
effects through an entirc FFR (fanout-frec region) without processing its

internal gates are introduced.

Let { x; } be the sct of inputs of an FFR. Let v, be the value of x, in
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the test t. Let p, be the inversion parity of the path between x; and the FFR

output.
Property I:

If fault effects arrive on a subset { x, } of FFR inputs, so that ( 1) at least
one input in { x, } is critical and (2) all the inputs in { x, } have the same sum

P, T v, , then the FFR propagates fault effects.

If we determine the parities p, by preprocessing, then the conditions of

property I can bc evaluated by checking the FFR inputs. whenever the
conditions are satisficd, we conclude that fault effects propagate to the FFR
output; then the fault effects can “jump the FFR,” regardless of the number of

gates it contains.
The following properties can be established in a similar manner.
Property 2.

All critical inputs { X; } of an FFR have the samc sum Py (3 v. This

result simplifics the evaluation of the conditions of property 1, since it shows

that we nced to compute the sum p; (&) v; only for one critical FFR input.
Property 3:

If fault effects arrive only on critical inputs of an FFR, then the FFR

propagates fault effects.
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Property 4:

Consider an FFR whosc output is critical. If a fault affects only one FFR

input and that input is noncritical, then the FFR does not propagate the fault

effect.
D) Algorithm for critical path tracing
DI) Preprocessing:

The multiple output circuit is processed to determine its cones. A cone
contains all the logic gates feeding one PO and is represented as
interconnection of FFRs. Constructing cones and FFRs is donc by a simple

backtrace procedure [38].
D2) Algorithm [38] :

Figure 3.7 outlines the algorithm for evaluating a given test. It assumes
that true-value simulation, including the marking of the sensitive gate inputs,
has been performed. The algorithm processes cach cone starting at its PO and
alternates between two main operations: critical path tracing inside an FFR,
represcnted by the procedure Extend, and checking a stem for criticality, donc
by procedure Critical. If a stem j is found to be critical, critical path tracing
continucs from j. Figure 3.8 shows thc recursive procedure Extend(i) that
backtraces all the c-ritical paths inside an FFR starting from a given critical
linc i by following lines marked as scnsitive. Extend stops at FFR inputs and

collect all the stems reached in the set Stems_to_check.
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Every stem in stems_to_check has at lcast one critical FOB. The
algorithm always sclects the highest level stem for analysis and hence
guarantees that the status (critical/noncritical) of al! its FOBs is known. The
key element is the routine Critical(j) that determines whether the stem j is

critical.



CPT ()

{

For every primary output z
{Stems_to_check = @
Extend(z)
While (Stems_to_check =® )
{ i = the highest level stem in Stems_to_check
Remove j from Stems_to_check
_ If Critical(j) Then Extend (j)

}

Figure 3.7 CPT--—-An Algorithm for evaluating one test.
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Extend(b)
{Mark b as critical
If b is a fanout branch of stem i Then
Add stem i to Stems_to_check
Eise
G = a gate that its outpui is b
For every input j of G

If  is sensitive Then Extend(j)

Figure 3.8 Backtracing inside an FFR
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E) Determining the criticality of a stem

In CPT [38] two differcnt procedures for stem analysis are presented. The
first one implements the concepts of capture lines and implicit fault effect
propagation. In addition to these, thc second procedure also uses the
identification of stems with equal parity covers and global fault cffect

propagation. In this thesis, we restrict our discussion to the first procedure.

Stem Analysis Procedure:

The stem analysis procedure [38] is given in Figure 3.9. It implicitly
propagates the effects of the fault on stem j in a breadth-first manner. Fronticr
is the set of all gates currently on the frontier of this propagation. A gatc in
Frontier has becn reached by ome or more fault effects from j- The
propagatioq of these cffects through the gate is represented by the procedure
Propagates. Procedure Propagates determines that by checking if one of the
two conditions stated in part C2 is satisfied or not. When the last gate has
been removed from Fronticr and it propagates fault effects, then its output is a

capture line of the stem fault and the stem is critical if its capture linc is so.
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Boolean Critical(j)
{Frontier = {set of front gates that are reachable from fault effects of i}
Repeat
{ g = lowest level gate in Frontier
Remove g from Frontier
If (Frontier 20 ) Then

If Propagates(g) Then add set of front gates that are reachable

from fault effects of the output line of g to Frontier

Else
" { If Propagates(g) Then
If (the output line of g is critical) Then Refurn TRUE

Return FALSE

Figure 3.9 Critical( j )



F) Summary of CPT fault simulator [38] :

CPT consists of the following steps:

1) Preprocessing the given circuit to dcterminc its cones and FFRs, and to

identify stems with equal parity covers.

- 2) True value simulation of a test and identification of the sensitive gate

inputs.

3) Critical path tracing, which is a backtracing that identifies the Critical

lines (and hence the detected faults) in the test simulated in step 1.

A variation from CPT has also been intraduced in [12]. This variation is
called Partial CPT. The Partial_CPT fault simulator has the capability to do
partial fault simulation beginning from assigned primary output(s) points and
from certain points called restart points. For determining critical lines,
Partial_CPT moves backward from thesc points towards primary inputs. It
docs not move from a gate output to its inputs unless all its inputs are
assigned. Otherwise, it stops at the gate output and it will be considered as a
restart point. So Partial_CPT restarts its backtracing from restart points (if
any) and from thc new primary outputs that hav;: binary values (if any).

Example 3.5 illustrates how the Partial_CPT fault simulator works.

Example 3.5:

Consider the circuit example of Figure 3.10, where POI is assigned and

lines d, ¢, f, g have X value. Partial_CPT starts its backtracing from the
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assigned POI for determining critical lines as well as restart points (if any).
Figure 3.10(a) shows all the determined critical lines by the first pass of
Partial CPT. Point b becomes a restart point. Assume that some of the
circuit lines that have X value are assigned. So Partial CPT restarts its
backtracing to determine the new critical lincs (if any). It restarts from the new
assigned PO2 and from restart point b. Figure 3.10(b) shows all the
determined critical lines by the first and sccond pass of Partial CPT. Since at
this point all POs are assigned and no more restart points, Partial CPT stops

its backtracing.
3.5 Test Generation Stopping Function of SMART (TGS)
Aim.

TGS [_12] is used to stop generating any morce tests.
Description:

This function tracks the effectiveness of SMART. It stops SMART bascd

on one of the following critcria:
a) A spccified time limit is exceeded.
b) A specificd fault coverage is achicved.

¢) The average number of new faults of the last n tests is less than 2,

results [12] has shown that n is mostly 30 for large circuits.
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CHAPTER IV

NEW STRATEGIES AND PROCEDURES

In this chapter, we give a detailed description of our new proposed
features (i.e., strategics and procedures). A new fault independent test
generation algorithm, called MAX, is devcloped and will be introduced in
Chapter V. It is based on some new features as well as all the procedures of
Chapter 1. MAX utilizes a new backtrace procedure, called CLM-Muttiple-
Backtrace, which is based on some of thesc strategies and procedures. The
detailed description of CLM-Multiple-Backtrace is discussed in this chapter.
Each one of the new features arc explained and illustrated by examples. In
addition, since results [12] has shown that SMART [12] is morc cfficient than
RAPS [36] and RANDOM [35], some differentiations are made between
SMART and MAX features. These differentiations show how our proposcd
stratcgics and procedures avoid some of the deffeciencies of SMART. They
also show how the performance of the test gencration process can be improved.
This chapter is orgnized as follows. Section 4.1 presents Critical Lines
Maximization Strategy (CLM). Scction 4.2 presents CLM-Multiple-Backtrace.
Section 4.3 presents Critical Primary Inputs Flipping Stratcgy (CPF).
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4.1 Critical Lines Maximization Strategy (CLM)
Aim:

Given a circuit to be tested. The aim of CLM is to assist MAX in
selecting the proper value v,, for a selected PO and to assist CLM-Multiple-
Backtrace in maximizing the number of critical lines while generating a test

pattern t. This will increase the number of target faults that can be detected by

t.
Description:

CLM is used to find the proper assignments of the lines (output and
input lines) of the gate under consideration (GUC), such that the number of
critical lines is maximized. All typical gate types (NOT. AND, NAND. OR,
NOR) are considered. In order to show how CLM works under different
conditions, four diffcrent cases are discussed below with some examples and
comparisons with SMART [12]. These cascs cover all the possible conditions
that could be satisfied by a GUC. In general for any GUC. there are two
major cases: the noncontrolling casc (i.c., a 1/0 is assigned to the ouput of an
ANDJ/OR gate) and the controlling case of GUC (ic., a 0/1 is assigned to the
ouput of an AND/OR gate). In the noncontrolling case, the output
assignment of GUC_ unigely implies the noncontrolling value to be assgined to
all inputs of the GUC (i.e., 1/0 for an AND/OR gate). So CLM case | handles
the noncontrolling casc. In the controlling case, at Icast one the GUC inputs

must be assigned to the controlling value of the GUC (ic., 0/1 for an
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AND/OR gate). CLM cases II, Il and IV handle the controlling casc that
works under three different conditions. CLM case Il handles the sclection of
an input of GUC to assigned to the controlling value bv giving preference to
useful inputs (sec details of CLM case IT). In case that non of the controlling
input lines of GUC is uscful, CLM case IV handles the selection of an input of
such GUC to be assigned to the controlling value by giving preference to the
most controllable stop input line (sce details of CLM case V). After the
controlling value is justified to the selected input of CLM case 1I, CLM case
III tries to assign the noncontrolling value to the unassigned inputs of GUC
that satisfy conditions of case II. The first and third cases of CLM are used

by MAX and the other two cases are used by CLM-Multiple-Backtrace.

Case I
GUC satisfies the following conditions:

1) GUC is a PO gate.

2) Its output is unassigned (X valuc).
3) Its output is v and ¥ -useful wherev = i + @

where i = gatc inversion, ¢ = controlling input value of the gatc and ©
= noncontrolling input value of the gate (e.g., for a AND/NAND gate
i =0/l,c =0, = 1| where as for an OR/NOR gatei = 0/l,¢c = |,
c=0).
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CLM objective:

In this case, all the lines of the GUC can potentially be made critical.
Therefore, the objective of CLM is to assign'a value v = i @ T to the output

of GUC. This implies that all the GUC inputs must be assigned to 7.

Example 4.1:

Consider the PO gate G1 of the circuit shown in Figurc 4.1(a) with the
assumption that A is O-uscful. Since G1 satisfies the conditions of case I, the
CLM objective is to assign O to its output A and | to its inputs B,C,D,E.
Therefore, all the gatc lines become critical as shown in Figure 4.1(b). (Critical
lines are shown by hecavy lines). Based on that assignment. the potential fault
domain of the circuit that may be detected by a test pattern t includes the
subcircuits S1, $2, $3 and S4. This gives a chance for many faults in S1, S2, S3
and S4 to be detected by t.

A comparison with SMART [12] :

Since SMART starts by justifying a randomly chosen valuc v to the PO,
it might (50% chance) start by a value v = [ for the PO A of the circuit
shown in Figure 4.1(a). This makes at most onc of the PO gatc inputs critical.
This SMART assignment shrinks the potential domain of detected faults of the

circuit to only onc of the subcircuits S1, S2, S3 or 84 as shown in Figure 4.1(c).
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Figure 4.1(h) CLM Objective at G1
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Case II:
GUC satisfies the following conditions:

1) [Its output is critical and has a value that requires at least one of its
inputs to be assigned to the controlling input value c.
2) Some of its inputs have X values.

3) None or some of the rest of its inputs have ¢ valucs.
CLM objective:

In this case, at most one of the GUC inputs can be made critical.
Therefore, the objective of CLM is to assign ¢ to at most onc of its inputs
having X value. While CLM scarches for an input to be assigned to c, it gives

preference to the following inputs (sorted by preference):
1) Inputs that are c-useful.

2) Inputs that have high level number (i.c. farther to primary inputs).
3) Inputs fed by a gatc that satisfies the following: all its inputs can
potentially be made critical, if ¢ is assigned to its output.
The CLM objective is then to assign the rest of inputs having x values to 7.
The first condition ensurcs that new faults will be detected (i.c., new test
patterns will be generated) and cach of the sccond and third conditions will

increase the chance of making more lines to be critical.
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Example 4.2:

Consider G2 of the circuit shown in Figurc 4.2(a) with an assumption
that lines F,G,H arc 0-useful. Since G2 satisfics the conditions of case 11, the
CLM objective is to assign 0 to input F and 1 to the rest of inputs G,H having
X values. Therefore, input F becomes critical, while the rest of inputs are not
critical (see Figure 4.2(b) for new critical lines). CLM gave preference to the
0-useful input F because assigning F to 0 will make all the threc inputs of G4

critical.
A comparison with SMART [12] :

Since all inputs of G2 in Figure 4.2(a) arc 0-useful. SMART arbitrarily
selects an unassigned input of G2 and assigns the 0 value to it. Therefore, it
might assign 0 to H or G (say G). This makes at most onc of G5 inputs critical

(see Figure 4.2(c)).
Case HT (similar to the restart gate of SMART [12] )
GUC satisfies the following conditions:

1) [Its output is critical.
2) At most one of its inputs has c value, and that input is c-useful.
3) Some of the rest of inputs have X values.

4) None or some of the rest of inputs are assigned to 7.
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CLM objective:

In this casc, CLM objective is to assign the rest of inputs having X vatues

to . This makes the only input having c valuc critical.

Example 4.3:

Consider G2 of the circuit shown in Figure 4.3(a). Since G2 satisfies the
conditions of casc III, CLM assigns 1 to its inputs F,G.H having X values.
Therefore, input 12 becomes critical, while the rest of inputs F,G,H are not

critical (see Figure 4.3(b) for new critical lines).
Case IV (Stop-gate):
GUC satisfies the following conditions:

I) TIts output is critical and has a value that requires at least one of its
inputs to be assigned to the controlling input value c.

2) All its unassigned inputs are c-stop.
CLM objective:

Since assigning c to one of the stop gate inputs will not lead to new
detected faults in the subcircuit that feeds the selected input, the CLM
objective is then to hold the stop gate till CLM objectives for all other non-stop
gates arc satisfied. By satisfying CLM obijectives for non-stop gates, the
chance for detecting more faults will be increased. After all the non-stop gates

arc handled, the CLM objective at a stop gatc is then to assign ¢ to one of its
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inputs (if none of the inputs has already been assigned a value ¢). While CLM
searches for an input to be assigned to c, it gives preference to inputs that have
low controllability cost. This decreases the chance of causing any further

conflicts (inconsistencies).
Example 4.4:

Consider the circuit shown in Figure 4.4(a) with an assumption that lines
D,DI,D2,E are O-stop and F is not. Since all G2 inputs (D1 and E) are
0O-stop, thercfore G2 is a stop gate. So the CLM objective is to hold G2 and
handle the CLM objective at the other non-stop gates (if anv). CLM starts to
handle its objective at G3, since G3 is not a stop gate. Sinc_c F is the only
0-useful input line, then the CLM objective is to assign 0 to F and 1 to D (sce

Figure 4.4(b)). By handling G3 first, this gives chance to more faults to be

detected in subcircuit S3.
A comparison with SMART [12] :

Since all inputs of G2 in Figurc 4.4(a) arc 0-stop. SMART arbitrarily
selects an unassigned input of G2 and assigns the 0 value to it. Thercfore, it
might assign 0 to DI or E (say DI). Sincc D = D2 = DI = 0, then the
assignment of D = 0 prevents the only uscful input linc F of G3 to become

critical. Also, no more new faults will be detected in subcircuits S1 (see Figure

4.4(c)).
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4.2 CLM-Multiple-Backtrace
Aim:

While a test pattern is generated, CLM-Multiple-Backtrace is used to
concurrently backtrace more than one path instcad of backtracing along single
paths and to maximize the number of critical lines (i.c. detected faults) by

repeated usage of different cases of the CLM stratcgy.

Description:

CLM-Multiple-Backtrace is an integrated version of multiple backtrace of
FAN [28] and our new proposed strategy CLM. Li-kc multiple backtarce of
FAN [28], CLM-Multiple-Backtrace starts with one or morc initial objective(s),
that is, a set of Initial_objectives. It keeps moving backward and stops at head

lines. We introducc the following definition for a head line:
Definition: a head linc is a linc that is both 0- and I-backtarce stop line.

Unlike multiple backtrce of FAN [2R], CL.LM-Muiltiple-Backtarce is using
six different rules that are modified from six rules of multiple backtrace of

FAN [28] and intcgrated with CLM cases. The six rules are set as follows:

Rule I: AND gate.
Rule 1(a): Controlling case.

Let k be the unassigned input which is sclected to be set to the controlling

valuc ¢ = 0 of thc AND gate based on the three preferences listed in the
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objective part of CLM case II. Let y be the output of the AND gate (sce
Figure 4.5 casc (a)),

then

ny (k) = n, (¥), n, (K) = n, (¥).

If all unassigned gate inputs are O-stop then add it to the sct of Stop_gates.
Rule 1(b): Noncontrolling case.

Let y be the output of the AND gate which is selected to be set to . Let K, be

the set of all the unassigned inputs (see Figure 4.5 case (b)).
then

ny (K;) =0,n (K;) = n (y).

Rule 2: OR gate.

Rule 2(a): Controlling case.

Let k be the unassigned input which is sclected to be sct to the controlling
value ¢ = 1 of thc OR gatc based on the three preferences listed in the
objective part of CLM case 1. Let y be the output of the OR gate (sec Figure
4.5 casce (c)),

then

ny (k) = my (), ny (K) = n, (y).
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If all unassigned gate inputs arc I-stop then add it to the sct of Stop _gates.
Rule 2(b) Noncontrolling case.

Let y be the output of the OR gate which is sclected to be set to 0. Let K, be

the set of all the unassigned inputs (sec Figure 4.5 case (d)),
then

(K} =ny(y),n (K,)=0.

Rule 3: NAND gate. -
Rule 3(a): Controlling case.

Let k be the unassigned input which is sclected to be sct to the controlling
value ¢ = 0 of the NAND gate based on the three preferences listed in the

objective part of CLM case II. Let y be the output of the NAND gate (sec
Figure 4.5 casc (¢)).

then

ny (k) = n, (¥), n, (k) = n, (¥).

If all unassigncd gate inputs are 0-stop then add it to the set of Stop_gates.
Rule 3(b): Noncontrolling case.

Let y be the output of the NAND gate which is sclected to be set to I. Let K,
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be the set of all the unassigned inputs (sec Figure 4.5 case (f)),

then

n(K;) = 0,n (K;) = ny(y).
Rule 4: NOR gate.

Rule 4(a): Controlling case.

Let k be the unassigned input which is sclected to be sct to the controlling
value ¢ = | of the NOR gate based on the three preferences listed in the
objective part of CLM case II. Let y be the output of the NOR gate (sce
Figure 4.5 case (g)),

then

o (k) = n, (), n (K) = ny ().

If all unassigned gatc inputs are I-stop then add it to the set of Stop_gates.
Rule 4(b): Noncontrolling case.

Let y be the output of the NOR gate which is sclected to be sct to 0. Let K, be

the set of all the unassigned inputs (sec Figurc 4.5 case (h)).

then

ny (K;) =, (5, my (K;) = 0.
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Rule 5: NOT gate.

Let k and y be the input and output of NOT gate, respectively (see Figure 4.5
case (j)),

then

ny (k) = n, (¥), n, (k) = ng (y)-

Rule 6: Stem.

Let s be a stem. Let B, is the sct of branches of stem s (see Figure 4.5 casc (i),

then
n,(s) =3 ng(B)),n (s) = Y n, ( B).

The bscudo code of Figure 4.6 describes CLM-Multiple-Backtrace
procedurc. Each objective arriving at a stem or a head linc stops its
backtracing while there exist other current objectives. After the sct of
Current'_objcctivcs becomes empty, a stem s closest to a primary output is
taken out, if one exists. [If the stem has contradictory condition, i.c., n, (s) and
n, (s) are nonzero, then unlike multiple backtrace of FAN [28], n, (s) and n, (S)
will be reassigned the values [l and 0 if n, (s) > = n, (s) otherwisc 0 and 1 if
n, (s) < n, (s)]. CLM-Multiple-Backtrace would then be continued from this

stem with the new valucs of n, (s) and n, (s).
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When an objective at a stem s has no contradiction. that is, cither ny ()
or n, (s) is zero, the backtrace would be continued from the stem. If all the

objectives arrive at hcadlines , that is, both scts of Current_objectives and
Stem_objectives arc empty, then CLM-Multiple-Backtracc terminates and

returns a set of Head_objectives and Stop_gates.

A variation from CLM-Multiple-Backtrace, called CLM-Multiple-
Backtrace-1, is also introduced. This variation is different from the CLM-

Muitiple-Backtrace in the following:

1) At restart gates, CLM-Multiple-Backtrace-1 starts its backtracing from all
the unassigned noncontrolling inputs of thc restart gate. While CLM-
Multiple-Backtrace-I is moving backward, it gives prcference to the gate

inputs that have low controllability costs (i.e. casier ways to primary inputs).

2) At stop gates, CLM-Multiple-Backtrace-I starts its backtracing from the
sclected input of the stop gatc. While it is moving backward, it gives

preference to the gate inputs that have low controllability costs.

Two other variations, called CLM-Multiple-Backtrace-1l and CLM-
Muitiple-Backtrace-I11, are aiso introduced. The two variations are similar to
CLM-Multiple-Backtrace and CLM-Multiple-Backtrace-1, respectively. But

they start moving backward from head lines and stop at primary input lincs.
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CLM-Multiple-Backtrace ( Initial_objectives )

{Current_objectives = Initial_objectives

While (Current_objectives 2 )

{ Remove one entry (k, n, (k), n, (k) ) from Current_objectives

If (k is a head line)
Add (k, n, (k), n, (k) ) to Head_objectives

Else { If (k is a fanout branch)
{s = stemof k

Update n, (s) and n, (s) values
based on n, (k) and n, (k) values

If (s is not in Stem_objectives)
Add (s, n, (s), n, (s)) to Stem_objectives

}
Else { G = a gate that fed k
i = inversion of G
¢ = controlling value of G
I (r (k) > n(K)v, = 0 clse(v, = I)
If(v,®i=rc)

{ If (G is a stop gate)
Add G to Stop_gates

Else { select an input h of G with value X
based on the preferences of CLM case 11

Compute ny (h), n, (R) in terms of n, (k), n, (k)
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Add (h, n, (h), n, (k) ) to Current_objectives

}
Else { For every input h of G with value X

Compute n, (), n, (k)

Add (h, n, (B), n, (R))
to Current_objectives

}
} I* End of Current_objectives While loop *|
If (Stem_objectives 2d )
{ Remove the closest stem s to a primary ontput
If (s has contradictory requirements )
(I (n () >=n(s)
{ Assign I to n, (s5)

Assign 0 to n, (s)
}

Else { Assign 0 to n, (5)

Assign I to n, (s)
}

}
Add ( s, n, (s), n,(s) } to Current_objectives
Return CLM-Multiple-Backtrace (Current_objectives)

} I* End of checking a stem objective *|
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Return ( Head_objectives and Stop_gates )
} I* End of CLM-Multiple Backtrace *|

Figure 4.6 CLM-Multiple-Backtrace

&8
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Comparisons witk the Selective-backtrace of SMART[12] :

CLM-Mutltiple-Backtrace is different from the Sclective-backtrace of SMART

in the following:

1) It tries to maximize the number of critical lines by repeated usage of

cases IT and IV of the CLM strategy.

2) It concurrently traces more than one path rather than tracing single

paths as in Selective-backtrace of SMART.
4.3 Critical Primary Inputs Flipping Strategy (CPF)
Aim?

Given a generated test pattern t. The aim of CPF is to derive new test

pattern(s) from t, with little additional cffort.
Description:

A test ¢, is derived from t as follows: CPF flips the logic value v of a

critical primary input line L in t if the conditions of one of the following two

cases are satisfied:
Case I: (L does not fanout)

(i) L is critical in t.

(ii) L is not V-stop line.
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Case II: (L has fanout lines)

(i) L iscritical in t.

(i) At least one of the critical branches of L is not v-stop line.

The first condition of both cases ensurcs that the output is sensitive to
changes in L. While the second condition ensures that new faults are detected

by 4. CPF repeats the above for each primary input (one at a time) that
satisfies the two conditions of one of the above two cases. Each new derived
test pattern ¢, is different from t in one bit (flipped bit) only. After a new test

pattern is derived, CPT [38] fault simulator is invoked to determine the new

detected faults and thc new stop lines
Example 4.5:

Consider the circuit and test shown in Figurc 4.7(a). The test t = 010
detects the faults (A/1,B/0,B2/0,C/1,C1/1,D/1,D2/1,F/0,G/1,H/0). where L/i
represents the fault “line L stuck at i”. Since the critical Pls A. C are not
I-stop l.ines and the critical PI B is not 0-stop linc, CPF flips A to |, B to 0

and Cto | one at a time. In this process, three new test patterns (tl

110, t2
= 000, t3 = OtI) arc derived. Then CPT is invoked to simulate these patterns
(scc Figures 4.7(b), (c), (d)). Critical paths arc shown in thesc Figures and the
sets of the new faults dectected by ti, t2 and (3 are (A/O,H/1),
(B/1,B2/1,C2/1,D/0,D1/0,D2/0,E/1,F/1,G/0) and (B1/0,C/0,C1/0) respectively.
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A comparison with SMART [12] :

Suppose that SMART worked on the same circuit of Figure 4.7(a).
SMART would be required to gencrate the three new test patterns (t1,t2,t3),
while CPF quickly derives '(tl,t2,t3) without having to run a test patterns
generation algorithm. Therefore, using CPF has the potential advantage of
saving on computing time, since the time rcquired for CPF is very small

compared with a test patterns generation algorithm.
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CHAPTER V

NEW PROPOSED ALGORITHM

In this chapter, we discuss the detailed description of our new proposed

fault independent test generation algorithm MAX and illustrate it through an

example.
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3.1 Preliminary

In the proposed fault independent test gencration algarithm MAX, many
features (i.e. concepts, strategies and procedures) given in the literaturc have
been extended and many other f;eaturcs have been introduced by us. These
features are used in MAX to improve the performance of fault independent
test generation process. Before MAX starts generating test patterns, two
preprocessing  steps should be performed: the circuit leveling step and
controllability computing step. For generating a test pattern that maximizes
the number of detected faults, MAX mainly uses CLM-Multiple-Backtrace.
After a test pattern is generated, MAX uses CPF to derive new test patterns
from the gencrated one with a little additional cffort. For determining all
single stuck faults detected by a test pattern, MAX uses CPT {38} fauit
simulator that shows better performance than the conventional fault simulators

(i.c. parallel and concurrent). The dctailed steps of MAX are provided below.

5.2 MAX Algorithm
Figure 5.1 outlines the MAX algorithm which proceeds as follows:
Preprocessing steps:

1) Invoke circuit_leveling for leveling the circuit under test (CUT).

2) Invoke Compute_controllability for determining the controllability

costs for all lines of the CUT.
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Test Generation steps:

)

2)

PO sclection (Figure 5.2): Select a primary output (PO} Z from the sct of

POs having X value. While selecting a PO, give preference to the following
POs:

a) POs that are both 0- and 1-useful, are not in the sct of Blocked PO,

and having higher level numbers.

b) POs that are a-useful (a = i @ &), arc not in the set of Blocked_PO,

and having higher level numbers

Where i = PO gate inversion; ¢ = noncontrolling input value of the

PO gate.

¢) POs that are b-useful where b = @, arc not in the sct of Blocked_PO,

and having higher level numbers.

The concept of Blocked_POs is used to eliminate the initial selection of the
same PO in two consecutive trials for gencrating test vectors. if therc are

other candidate POs. So this leads to new faults to be detected.

Sclection of a PO value (Figure 5.2): Based on the type of the selected PO

gate, deterministically sclect a value v, to the PO Z of step 1 as follows: if

Z is a-useful then select value a to be the initial value of Z. Otherwise,

select the other useful value b.

The selection of higher level number POs (i.e. farther from primary
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4

3)

6)
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inputs) gives chance to morc lines to be critical (i.e. longer critical paths).
The selection of step I(a) gives chance to more lines to be critical (see
CLM case ), since in this case all lincs of the selected PO gate will become
critical (i.e., assigned to ¢ ). It also gives chance for CPF to derive new test
patterns, since the implication of the value of the flipped PI will causes the
selected PO to take the opposite value (i.c., b value). The selection of step

1(b) has same advantages of part (a) except the advantage of using CPF.

Tustification process: CLM-Justify, shown in Figure 5.3 , is used to justify

the above sclected value v, by repeatedly finding a head line assignment
that is likely to contribute to setting Z to v.. The mapping of an objective
into a head linc assignment is recursively done by CLM-Multiple-
Backtrace procedure shown in Figure 4.5. Internal line values are

generated only by performing implication of the assigned headlines.

Handling Stop gates: CLM-Justify of step 3 might mark some gates as stop
gates. So each onc of these gates (if any) will bc handled as shown in
Figure 5.4. Only onc of the selected stop gate inputs will be selected to be
set to the controlling value ¢ of the gate. C1.M-lustify-1, shown in Figure

5.7, is then used to justify valuc ¢ to the sclected input.

Checking the sclected PO value: If the sclected PO Z of step 3 is still

having X value then repeat steps 3 and 4.

Determination of detected faults, critical lines, and restart gates: partial-

CPT fault simulator will be invoked to determine detected faults, critical
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lines, and restart gates up to this point.

Restart gates (Figure 5.6): Pick a restart gate R, if any, such that its
output has the highest level number (i.c., the farthest from primary
inputs). Then invoke CLM-Justify-I to justify the noncontrolling value ¢

of R to all the unassigned inputs of R.

Checking of useful POs: If any unassigned POs are still 0- or 1-useful, keep

repeating steps 1-7.

Justification of headlines assignment (Figure 5.8): For all the assigned
headlines, CLM-Justify is used to-justify the headlines values by repeatedly

finding a primary inputs assignment to set the corresponding values to the

headlines.

10) Handling Stop gates: Similar to step 4.

11) Determination of detected faults, critical lines, and restart gates: Similar to

step 6.

12) Restart gates (Figure 5.6): Similar to step 7.

13) Determination of unassigned primary inputs value (Figure 5.10): For all

the unassigned primary inputs, if any, a random logic valuc will be
assigned to each onc of them. At this point all the Pls arc assigned. So, a

test vector t is gencrated and all detected faults by t are determined.

14) Monitoring the cffectivencss of MAX: If a certain specified criteria is
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achieved then stop MAX.

15) Determination of stop lines: Determine all stop lines by using the rules

shown in chapter I1.
16) Derivation of new tests: Invoke CPF to derive new tests, if any, from t.

17) Fault simulation: For each onc of the new derived tests of step 16, perform

the following:
17.1) Invoke CPT fauit simulator to determine all the detected faults.
17.2) Determine all stop lines by using the rules shown in Chapter I1.
17.3) If a specificd criteria is satisfied, stop MAX.

18) Keep repeating steps 1-17.
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MAX ()
{circuit_leveling( )
Compute_controllability( )
Blocked_POs = &
While (Useful POs)

{Headlines_flag = FALSE
Primary_inputs_flag = FALSE
Add_PO = TRUE
Initialize all the lines value to X value
While (Useful POs have X values)

{(Z , v, ) = Deterministically_select_a_primary_output_and_a_value( )
Headlines_flag = TRUE
CLM-Justify (Z, v, )
Partial CPT()
Restart_gates()
}
Justify_headlines_assignment( )
Assign_unassigned_primary_inputs( )

[* At this point a test vector t is generated * |

TGS()
CPFK(r)
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For each new derived test t, by CPF
{ CPT( 1)
TGS()

Figure 5.1 MAX-A Fault Independent Test generation Algorithm
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Deterministically_select_a_primary_output_and_a_value( )
{ For all POs that have X value
{ i = inversion of gate G of a PO Z
¢ = controlling input value of G
a=i®c
b=i®¢
If ( Z is both 0- and I-useful )
Add Z to the set of Both_Useful
Else { If ( Z is a-useful )
Add Z to the set of A_Useful
Else { If ( Z is b-useful )
Add Z to the set of B_Useful

}
If ( Both_Useful )
{ If ( All Both_Useful POs are BLocked ) Blocked POs = ®

Pick a PO Z from Both_Uscful that has the highest level
number and Z is not in Blocked_POs

If (Add_PO)
{ Add Z to Blocked_POs
Add_PO = FALSE

}
Return (Z ,a)
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If ( A_Useful)
{ If ( All A_Useful POs are BLocked ) Blocked_POs = ®

Pick a PO Z from A_Useful that has the highest level
number and Z is not in Blocked_POs

If (A4dd_PO)
{ Add Z to Blocked_POs
Add_PO = FALSE
}
Return( Z ,a)
}
If (-B_Useful )
{ If ( All B_Useful POs are BLocked ) Blocked POs = ®

Pick a PO Z from B_Useful that has the highest level
number and Z is not in Blocked_POs

If (Add_PO)
{ Add Z to Blocked_POs
Add_PO = FALSE

}
Return( Z , b))

Figure 5.2 Selection of a primary output
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CLM-Justify (m , v, )

{ While ( line m has X vaiue)
{Letny(m) =%, and n, (m) = v,_
If (Headlines_flag)
{CLM-Multiple-Backtrace (m, n, (m) , n, (m) )

Stop_gates( )
Assign_head_lines_and_simulate( )

}
Else { If (Primary_inputs_flag)
{ CLM-Multiple-Backtrace-II (m, n, (m) , n, (m))
Stop_gates()

Assign_primary_inputs_and_simulate( )

}
}

Headlines_flag = FALSE
Primary_inputs_flag = FALSE

Figure 5.3 CLM-Justify



Stop_gates( )

{ While (Stop_gates)
{ Remove a stop gate G

h = the selected unassigned input of G that has the lowest
controllabiliy cost

¢ = controlling value of G
CLM-Justify-I ( h)

Figure 5.4 Stop gates

107
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Assign_head_lines_and_simulate( )

{ While (Head_objectives)
{ Remove a head line objective (h, n, (k), n, (k)

If (h is a primary input) Add objective (h, n, (h), n, (h)) to the
set of Primary_input_objectives

Else {If (ny (k) > n, (h) ) Assign 0 to h
Else Assign 1 to h
Add k to the set of Assigned_headlines

}

Perform implication of all the assigned headlines

Figure 5.5 Determination of headlines assignment
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Restart_gates( )

{ While (Restart_gates)
{ Remove a restart gate G that its output has the highest level number
¢ = controlling value of G
For the set of inputs J of G that have X values
CLM-Justify-1 ( J,T)
Partial CPT()

Figure 5.6 Restart gates



110

CLM-Justify-1 (J , v,)

{ While ( all or some lines J have X value)

{ S = a subset of lines J that still have X value

For every line sin S
Uf (v, ==0)ny(s) =V, and n (s) = v,
Else ny(s) = v and n, (s) = ¥,
If (Headlines_flag)
{ CLM-Multiple-Backtrace-1 (S, n, (S) , a, (8))

Assign_head_lines_and_simulate( )

}
Else { If (Primary_inputs_flag)
{CLM-Multiple-Backtrace-III (S, n, (S) , n, (S) )

Assign_primary_inputs_and_simulate( )

}
Headlines flag = FALSE

Primary_inputs_flag = FALSE

Figure 5.7 CLM-Justify-1



Justify_headlines_assignment( )

{ While ( Assigned_headlines)
{ Primary_inputs_flag = TRUE
Remove a headline h which has a ralue v,
CLM-Justify (h, v, )
Assign_primary_inputs_and_simulate( )
Partial_ CPT()
Restart _gates( )

Figure 5.8 Justifying assigned headlines

11
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Assign_primary_inputs_and_simulate( )

{ While (Primary_inputs_objectives)
{ Remove a primary input objective (i, n, (i), n, (7))
If (ny () > n, ())) Assign 0 to i
Else { If (ny({) < n, ({)) Assign I to i }
}

Perform true value simulation for all the assigned primary inputs

Figure 5.9 Determination of primary inputs assignment



Assign_unassigned_primary_inputs( )

{ While ( unassigned primary inputs )
{ Remove an unassigned primary input i
Assign i a random logic value

}

Perform true value simulation for the assigned primary inputs

Figure 5.10 Determination of unassigned primary inputs value

113
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5.3 Hlustrated Example:

Consider the circuit example shown in Figure 5.11. The stopping criteria
for this example is to achieve 95% fault coverage. Figures 5.11(a) and (b)
show the computed controllability costs and level number for all the circuit
lines of Figure 5.1l respectively. Since all the circuit lines are initially
unassigned and both of PO lines K and L are 0- and 1-useful , PO line K that
has the highest levcl number among circuit POs is selected. K is added to set
of Blocked_POs (see Figure 5.2). Since gate G7 of PO linc K is a NAND gate,
thevaluea = i@ ¢ =1 @ 1 = 0is deterministically sclected to PO linc K
(see CLM case I). The selected value a = 0 of PO line K is mapped to the
initial objective (K,1,0) which implies the following ordered sct of current
objectives: (E2,0,1) and (J,0,1) , scc CLM-Muiltiple-Backtrace (CMB) rule
I(b).

Figure 5.11(c) shows all differcnt objectives that appeared during the
justification process of the initial objective (K,1,0). On the left side of an
objective, therc is a number that indicates the sequence of deriving such
objective. On the other side, there is a letter that indicates the type of such
objective (i.e., (C) current, (S) stem, (H) hecad and (PI) primary input
objcctive). A stack data structurc is used to store and handle cach type of

objectives. So the general policy of handling stack objectives is in the order of

Last In First Out (LIFO).

Based on the LIFO policy, the current objective (1.0,1) is handled first

which implies current objective (1,1,0), see CMB rule 5. Current objective
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(1,1,0) implies ordered current objectives (G,0,1) and (H.0,1). sce CMB rule
1(b). The current objective (H,0,1) is handled next. The unassigned input F2
of G4 is selected, since it is 0-useful and has the highest level number among
G4 inputs (Bl and F2), see CMB rue 1(a). So the new gencrated current
objective is (F2,1,0). The objective (F2,1,0) is mapped to stem objective (F,1,0)
which is added to the set of stem objectives. The current objective (G,0,1) is
handled next. The unassigned input FI of G3 is selected, since it is O-useful
and has the highest level number among G3 inputs (A1 and F1), see CMB rule
I(a). So the new current objective is (F1,1,0). The obective (F1,1,0) updates
the stem objective (F,1,0) to (F,2,0). The remaining current objective (E2,0,1)

is handled and mapped to stem objective (E,0,1).

At this point, the set of current objectives is empty and the set of stem
objectives has two stem objectives (F,2,0) and (E,0.1). Since F has higher level
number than E, (F,2,0) is handled first. Stem objective (F.2,0) is updated and
mapped to current objective (F,1,0). Current objective (F.l,b) implics ordered
current objectives (A2,0,1), (B2,0,1) and (E1,0,1). see CMB case I(b). The
objective (E1,0,1) is handled first and (E1,0,1) updates stem objective (E,0,1)
to (E,0,2). The objective (B2,0,1) is handied and mapped to stem objective
(B,0,1). Then (A2,0,1) is handled and mapped to stem objective (A0,1).

At this point, the set of current objectives is empty and the sct of stem
objectives has threc stcm objectives (A,0,1), (B.0.1) and (E,0,2). Since E has
highest level number among A, B and E, (E,0,2) is handled first. Since E is a

headline (i.c., both 0- and I-backtrace stop line), stem objective (E,0,2) is



120

updated and mapped to headline objective (E,0,1). Similarly, stem objcctive
(B,0,1) is mapped to headline objective (B,0,1) and stem objective (A,0,1) is
mapped to headline objective (A,0,1).

At this point, the sets of current and stem objectives are empty and the
set of head objectives has three headline objectives: (A,0,1), (B.0,1) and (E,0,1).
The thrce headlines A,B and C are assigned based on their corresponding

objective values. Since n, (A) = 1 > n, (A) = 0, a value | is assigned to A.

Similarly, a value 1 is assigned to B, and a value 1 is assigned to E.

Figure 5.11(d) shows the implication of the assigned hcadlines A,B and
E. As shown in this figure, all the circuit POs (k and L) are assigned. Partial-
CPT fault simulator is run to determine all the critical lines (i.e., detected
faults) up to this point. (critical lines are shown by heavy lines in Figure
5.11(d)). For justifying the headlines assignment (A =1 ,B =1, E = 1),
CLM-Multiple-Backtrce starts its backtracing process from each headline till
PI lines (see Figure 5.11(e)). Since headlines A and B arc Pls. A = 1 and B
= 1 are automatically justified by mapping the head objectives (A,0,1) and
(B,0,1) to primary input objectives (A,0,1) and (B,0,1). For justifying the
assignment E = 1, this assignment is mapped to the current objective (E,0,1).
At this point, the unassigned input C of G2 will bc selected arbitrarily, since
both of G2 inputs (C and D) are 0-useful and have same level numbers. So
the new current objective is (C,1,0). Current objective (C,1,0) is mapped to
primary input objective (C,1,0). At this point a value 0 is assigned to C (see

Figure 5.11(f)), since n, (C) = | > n, (C) = 0. Partial-CPT fault simulator is
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rerun. As a result of this run, gate G2 becomes a restart gate. So the CLM
objective at G2 is to justify the noncontrolling value of G2 (i.e., 1) to D. The
selected value is mapped to current objective (D,0,1) which is mapped to
primary input objective (D,0,1), see Figure 5.11(g). At this point D is assigned
a value 1. Figure 5.11(h) shows the implication of the assigned primary inputs
A,B,C and D. Partial-CPT fault simulator is rerun to determine new critical
lines (if any). So, as a result of D assignment and Partial-CPT run, PI C

becomes critical, sec Figure 5.11(h).

Since at this point non of the circuit Pls is unassigned, then the resulting
test pattern r = 1101 is generated. Its simulation by CPT is shown in Figure
5.11(h). The fauits detected by r are (A/0,A2/0,B/0,B2/0.C/1,E/0,EI/0,E2/0,
F/1,F1/1,F2/1,F3/1,G/0,H/0,I/1,J/0,K/1,L/0). At this point 41% fault

coverage is achieved.

Since PIs A, B are critical and are not 0-stop and PI C is critical and is
not I-stop, CPF flips the logic values of A, B, C onc at a time. The new
derived tests are (r1 = 0101, r2 = 1001 ,r3 = t111) and their simulation by
CPT is shown in Figures 5.11(i), 5.11(j) and 5.11(k) respectively. The new
detected faults by rl, r2 and r3 are (A/1, A2/, B1/0, E3/0, F/0, F2/0, F3/0,
H/1, 1/0, J/t, K/0, L/1) , (A1/0,B/1,B2/1,F1/0,G/1) and (C/0,D/0,E/1,E3/1)
respectively. Lines (A,A2,B,B2,C,E,E3) bcecome 0-stop . lines and lines
(A,Al,AZ,B,BI,BZ,é,D) become [-stop lines. At this point R7.6 % fault

coverage is achieved.
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For generating additional test patterns, all the circuit lines arc re-
initialized to X valuc and the process is repeated, except that the assignments
of stop lines will be avoided. Since circuit POs (K and L) are still both 0- and
l-useful and K is in the set of Blocked_POs, L is the only candidate for
selection, see Figure 5.2. L is added to set of Blocked POs. Since gate G8 of
PO line L is a NAND gate, the value 2 = i @ ¢ = 1 @ 1| = 0 is
deterministically sclected to PO line L. The selected valuc a = 0 of PO linc L
is mapped to the initial objective (L,1,0) which implies the following ordered

set of current objectives: (E3,0,1) and (F3,0,1), see CMB rule 1(b).

Figure 5.11(l) shows all different objectives that appeared during the
justification process of the initial objective (L,1,0). Based on LIFO stack
policy, the current objective (F3,0,1) is handled first. (F3,0,1) is mapped to
stem objective (F,0,1), see CMB rule 6. At this point the remaining current

objective (E3,0,1) is handled. (E3,0,1) is mapped to stem objective (E,0,1).

At this point, the sct of current objectives is empty and the set of stem
objectives has two stem objectives (F,0,1) and (E,0.1). Since F has higher level
number than E, (F,0,1) is handled next. Stem objective (F,0,1) is mapped to
current objective (F,0,1). At this point, the unassigned input El of GI is
selected, since it is the only 0-uscful input linc among G1 input lincs (A2, B2
and El), see CMB rulc 1(a). So the new gencrated current objective is

(E1,1,0). (EL,1,0) updates stem objective (E,1,0) to (E,1,1), scc CMB rule 6.

At this point, the sct of current objectives is empty and the set of
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stem objectives has one stem objective (E.1,1). Since n, (E) and n, (E) arc
nonzero, a conflict has occurred. Since n, (E) = 1 > = n,  (E) = I, the conflict

is resolved by updating (E,I,1) to (E,1,0), (scc Figurc 4.6). Since E is a
headline (i.e., 0- and I-backtrace stop linc), (E,1,0) is mapped to headlinc
objective (E,1,0).

At this point, the sets of current and stem objectives are empty and the
set of head objectives has one headline objective (E,1,0). The headline E is

assigned a 0 value based on its corresponding objective values.

Figure 5.11(m) shows the implication of the assigned headline E. As
shown in this figure, all the circuit POs (k and L) are assigned. Partial-CPT is
run to determine all the critical lines (i.c., detected faults) and restart gates up
to this point. (critical lines are shown in Figurc 5.11(m)). As a result of
Partial-CPT run, gate G7 becomes a restart gate. So the CLM objective at G7
is to justify the noncontrolling value of G7 (i.c., 1) to I, secc Figure 5.11(n).
The selected value of J is mapped to current objective (1,0.1) which is mapped
to current objective (1,1,0), sce CMB rule 5. Current objective (I.1,0) implies
ordcred current objectives (G,0,1) and (H,0,1). sce CMB rule I(b). The
current objective (H,0,1) is handled next. So the unassigned input Bl of G4 is
selected, since it is the only unassigned input of G4, see CMB rule 1(a). So the
new gencrated current objective is (B1,1,0). Current objective (B1,1,0) is
mapped to the stem objective (B,1,0). The remaining current objective (G,0,1)
is handled next. The objective (G,0,1) is mapped to thc current objective

(A1,1,0), since Al is the only unassigned input of G3. The objective (A1,1.0)
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is mapped to the stem objective (A,1,0).

At this point, the sct of current objectives is empty and the set of stem
objectives has two stem ijectives: (A,1,0) and (B,1,0). Sincc A and B have
same level number, any one of them can be handled first (sayv A). Since A is a
headline, then stem objective (A,1,0) is mapped to headlinc objective (A,1,0).

Similarly, stem objective (B,1,0) is mapped to headline objective (B,1,0).

At this point, the sets of current and stem objectives are empty and the
set of head objectives has two headline objectives (A,1,0) and (B,1,0). Two
headlines A and B are assigned based on their corresponding objective values.
Since n, (A) = 1 > n, (A) = 0, a value 0 is assigned to A. Similarly, a value
0 is assigned to B. Figure 5.11(0) shows the implication of the new assigned
headlines A and B. Partial-CPT fault simulator is rerun to determine new

critical lines (if any). So as a result of A and B assignment and Partial-CPT

run, E2 of G7 becomes critical. see Figure 5.11(0).

For justifying the headlines assignment (A = 0,B =0, E = 0), CLM-
Multiple-Backtrce starts its backfracing process from each headline till PI lincs,
see Figure 5.11(p). Since headlines A and B arc Pls, A = 1 and B = | are
automatically justified by mapping the head objectives (A,1,0) and (B,1,0) to
primary input objectives (A,1,0) and (B,1,0). For justifying the assignment E
= 0, this assignment is mapped to the current objective (E,1.0). Current
objective (E,1,0) implies ordered current objectives (C,0,1) and (D,0,1).

Current objective (C,0,1) is mapped to primary input objective (C.0,1). Also,
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Figure 5.11(p) Justification of Headlines (A,B,E) Assignment
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(D,0,1) is mapped to primary input objective (D,0,1). At this point ali primary
inputs are handled. So a value 1 is assigned to D, since n (D) =1 > n, (D)
= 0. Similarly, a value 1 is assigned to C and a value 0 is assigned to both A
and B. Figure 5.11(q) shows the implication of the assigned Pls A,B,C and D.
Partial-CPT fault simulator is rerun to determine new critical lines (if any). So
as a result of C and D assignments and Partial-CPT run, C and D become
critical, see Figure 5.11(q). Since at this point non of the circuit Pls is
unassigned, then the resulting test pattern s = 0011 is generated. Its

simulation by CPT is shown in Figurc 5.11(q). The new faults detected by s is
(E2/1).

At this point, both of PIs C and D arc critical but PI D is the only
candidate for flipping. Since D is critical and is not O-stop . CPF flips the
logic value of D. The new derived test pattern is s1 = 0010 (see Figure 5.11(r)
for its simulation by CPT). The new faults detected by sl are
(D/1,A1/1,B1/1). (At this point 97.73 % fault coverage is achieved).

Since the achicved fault coverage (97.73 %) excceds the specified fault

coverage (95 %), MAX is stopped at this point.

In what follows is a summary of test generation statistics of this circuit

example:

1) Total number of single stuck at faults of this circuit cxample is 44.
2) Two test patterns are generated, r and s.

3) Three test patterns (r1,r2,r3) are derived from r.



f

A Al
e P
g8 F
: ]
8 BBl
8 B
c
, =
D
1

Figure 5.11(q) I”,If

lication and Simulation of Primary Inputs
yCyD) Assignment



(-]t

Figure 5.1I(r) Simulation of Derived Test Vector s1 = 0010

140



141

4) One test pattern (s1) is derived from s.

5) 18 new faults are detected by r.

6) 12 new faults are detected by rl.

T) 5 new faults arc detected by r2.

8) 4 new faults are detected by r3.

9) A total number of 39 faults are detected by r,ri,r2,r3, (i.c.,
88.6% fault Coverage is achieved).

10) I new fault is detected by s.

11} 3 ncw faults are detected by si.

12) A total number of 43 faults are detected by r,ri,r2,r3s,sl,

(i.e., 97.73 % fault Coverage is achieved).
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CHAPTER VI

PERFORMANCE COMPARISONS

We summarize in this chapter the major differences between MAX and
SMART ([12]. Both MAX and SMART are implemented in C and run for the
bench mark test circuits [11,39,40]. Discussions about the performance of both

MAX and SMART is also provided.
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6.1 Comparisons with SMART [12]

In this section, all the major differcnces between MAX and SMART {12]
is highlighted. we show how the MAX features improve the fault independent

test generation process. MAX is different from SMART in the foi]owing:

1) MAX starts by justifying a deterministically chosen value for a
deterministically selected primary output (PO) line based on the PO
gate type rather than justifying a randomly chosen value for a
randomly selected PO as in SMART. The deterministic sclection

increascs the chance of making morc lines to be critical (i.e. more

detected faults).

2) MAX uses CLM-Multiple-Backtrace instead of Selective-backtrace of
SMART. Using CLM-Multiple-Backtrace accelerates the line

justification process and gives chance to more faults to be detected.

3) MAX uscs the CPF strategy for deriving test patterns from a generated

one with a little additional effort.

6.2 Experimental Results

For purposes of comparison, we have implemented MAX and SMART
[12] in C under ULTRIX on a VAX station 3100. All comparisons refer to

thesc implementations.

We used the available ISCAS’R5 benchmark combinational circuits on

the VAX stations 3100 of our college (CCSE). These circuits were proposed by
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Breglz [39,40]. In addition, a 4-bit Arithmetic and Logical Unit (ALU4)
circuit proposed by Wei [I1] is also used. Table 6.1 summarizes the
characteristics of these circuits. All these circuits are used as test cases for

comparing the performance of MAX and SMART.

Table 6.2 compares SMART and MAX runs that were allowed to work
until generating more tests become no longer cffective based on the average
criteria of TGS function (i.e. the average number of new faults of the last 25
test pattern is less than 2). It is noted that all entrics are normalized to the

run time of MAX and all runs were done on VAX station 3100.

Tables 6.3 - 6.6 compare SMART and MAX runs that were allowed to
proceed only until a specific fault coverage (i.c. 60%, 65%, 70% and 80%) is

achieved.

Based on the tabulated results in Tablcs 6.2 - 6.6 the performance of
MAX algorithm is generally better than the performance of SMART [12] for
most of test circuits. For six out of eight bench mark test circuits, MAX shows
better results than SMART. But for the other two circuits. C2670 and C5315,
SMART shows better results than MAX. For similar fault coverages, the run
time for the MAX algorithm is lower than the SMART algorithm. So based
on the experimental results, MAX is morc cfficient than SMART, as it

gencerates test scts in a shorter time for most of test circuits.
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CIRCUIT{ TtotaL | TOTAL | INPUT | ouTPUT| TOTAL
NAME | GATES | LINES | LINES LINES | FAULTS
ALU4 | 88 241 14 8 482
cssep 383 880 68 26 1760
C1355 | 546 1355 41 32 2719
C19@8 | gsp 1998 33 25 3816
C2670 | 1193 2678 | 233 140 5340
C3450 | 1669 34502 50 22 7080
C5315 | 23@7 5315 178 123 196392
C7552 | 3512 7552 287 108 15184

Table 6.1 Characteristic of Test Circuits



CIRCUIT | ALGORITHM | TESTS TESTS FAULT | NORMALIZED
ESTS | cLasiFicaTion | COVERAGE | RUN TIME
MAX 24 92.32
ALUS 76 + 17D !
SMART 30 306 87.97 2.67
MAX 67 6G + 61D 74.49 | 1
cese MT
€3 636 75.51 1.93
MAX 79 13G + 66D 88.93 1
C1355
SMART 73 736 67.68 1.37
MAX 53 13G + 480 79.82 1
c1988
SMART 47 47G 88.53 6.1
MAX 184 | 4G + 190D 68.35 1
2678 ‘
SMART 67 676 BL26 | 394
MAX 131 | 166G + 115D 80.82 ! )
C3458
SMART 141 1416 | 81.38 r 1.2
MAX 186 | 66+ 1880 | 7639 | 1
5315 !
SMART 142 142G 93.74 | 3.72
MAX 235 6G + 229D 78.68 | 1
7552 : '
| sMaRT 298 290G . 7831 26
G: A Generated Test Vector by MAX/SMART
D: A Derived Test Vector by CPF of MAX

Table 6.2 Comparisons Between SMART and MAX
Based on the Average Criteria
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CIRCUIT | ALGORITHM | TESTS TESTS NORMALIZED FAULT
CLASIFICATION RUN TIME | COVERAGE
MAX 18 16 + 9D 1
ALUS
SMART 7 76 2.84
MAX 36 16 + 35D 1
c888
SMART 21 216 1.43
MAX 38 2G + 36D 1
C13s5
SMART 52 526G 3.84
MAX 16 iG + 15D 1
c1908 -
MAX s | 36 + 90 1.4 ol /s
¥4
2670 SMART 13 136 1
MAX 54 3G + 51D 1
4
Casse SMART 45 456 6.1
MAaX 125 2G + 123D 1.53
€S315 ;
SMART 11 116 1
MAX 149 1G + 139D 1
€7552
SMART 183 183G 3.85

Table 6.3 Comparisons Between SMART and MAX Based on

the 60 Percentage Fault Corerage Criteria
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+ TESTS NORMALIZED | FaAULT
CIRCUIT | ALGORITHM | TESTS | . \SiFicaTion | RUN TIME | COVERAGE
MAX 10 16 + 9D 1
ALU4
SMART 8 8G 3.84
MAX 44 3G + 41D 1
Cese SMART 309 386 1.7
MAX 39 2G + 37D !
€1355
SMART 66 666 4.33
Max 25 1G + 240 1
q
c19e8 SMART 14 146 217 6 5 © /
MAX 123 4G + 99D 1.21 /o
cz2e70 SMART 28 286 1
MAX 66 3G + 63D 1
3458
SMART 55 556 6.2
MAX 147 2G + 145D 1.56
CcsS315
SMART 16 166G 1
MAX 146 26 + 144D 1
€7552 SMART 213 2136 | 377

Table 6.4 Comparisons Between SMART and MAX Based on

the 65 Percentage Fault Coverage Criteria
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CLASIFICATION RUN TIME COVERAGE
MAX 14 2G + 120 1
ALU4
SMART 18 198G 3.4
MAX 53 4G + 49D 1
cssg
SMART 39 396 1.83
MAX 41 2G + 32D 1
€1355 1
SMART 73 736 > 4.7
Max 33 26 + 31D 1
" C1988
SMART 28 2BG 2.4 o
maxl 184 | 46 + 108D > .94 7 @ /n
2678 SMART 32 326 1
MAX 79 4G + 75D 1
C3458 SMART 73 736G 7
Max 167 4G + 163D 1.52
C5315
SMART 23 23G 1
MaX 214 2G + 212D 1
C7552
SMART 269 269G 3.96

t: It Docs not Reach 70% Fault Coverage

Table 6.5 Comparisons Between SMART and MAX Based on
the 70 Percentage Fauli Coverage Criteria




CIRCUIT | ALGORITHM | TESTS TESTS NORMALIZED FAULT
CLASIFICATION | RUN TIME | COVERAGE
MAX 19 3G + 16D 1
ALU4
SMART 21 216 5.1
maxl 67 6G + 610 1
€888 1
SMART 63 £35 1.93
MAX 59 7G + 52D 1
1355 1
SMART 73 736 > 2.6
MAX 53 13G + 48D 1
(1388 SMART 47 476G 6 o
max! 184 | 4G + 1820 > 8.33 8 @ /u
c2678 SMART s8 St .
MAX 126 14G + 1120 1
C3458
SMART 125 1256 18.6
max! 186 | 6G + 188D > 1.33
c5315
SMART 49 408G 1
mMax! -~ - -
€7552 SHAR14 _ _ _

I: 1t Docs not Reach 80% Fault Coverage

Table 6.6 Comparisons Between SMART and MAX Based on
the 80 Percentage Fault Coverage criteria
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CHAPTER VII

CONCLUSIONS

We summarize in this chapter thc resuits obtained in this thesis.

Suggestions for future work on this line of investigation is provided.
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7.1 Summary of Results

In this thesis, the following results have been obtained.

D)

2)

3)

4)

Two new strategies, CLM and CPF, arc proposed. These strategies

improve the performance of the fault independent test patterns generation

algorithms.

A new backtrace procedure is presented, called CLM-Multiple-Backtrace,
which is based on CLM strategy as well as the multiple backtrace of FAN
[28].

A new fault independent test generation algorithm, called MAX, is
proposed based on CLM-Multiple-Backtrace as well as many other
efficient featurcs (i.c. strategies, procedures and functions) of the existing

fault independent and fault orinted test generation algorithms.

Experimental results show that MAX is more efficient than the existing
fault independent test gencration algorithms given in the litcrature, as it

generates test sets in a shorter time for most of test circuits.
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7.2 Future Work

As a continuation of this line of investigation, the proposed algorithm
MAX can be integrated into an automatic test patterns generation (ATPG)
system with one of the most efficient fault oricntéd testing algorithms such as
D-Algorithm [22], PODEM [27], FAN [28] , FAST [12] , TOPS [29] and
SLOPE [30]. The performance of the new ATPG system can be compared
with the performance of other ATPG systems such as LASAR [8], PODEM-X
(91, MAHJONG [11] and LAMP2 [12].
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