Optimal Design of
Reinforced Concrete Frames

by

Mostafa A. Hassanain

A Thesis Presented to the
FACULTY OF THE COLLEGE OF GRADUATE STUDIES
KING FAHD UNIVERSITY OF PETROLEUM & MINERALS

DHAHRAN, SAUDI ARABIA

In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE
In

CIVIL ENGINEERING

June, 1992



INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms international
A Bell & Howell Information Company

300 North Zeeb Road. Ann Arbor, Mi 48106-1346 USA
313:761-4700 800/521-0600






Order Number 1354047

Optimal design of reinforced concrete frames

Hassanain, Mostafa Ahmed Mostafa Ahmed, M.S.
King Fahd University of Petroleum and Minerals (Saudi Arabia), 1992

U-M1

300 N. Zeeb Rd.
Ann Arbor, MI 48106






S ST

féi r“\(‘
i u/

Y by
d OPTIMAL DESIGN OF o
. ool
<% o

% REINFORCED CONCRETE FRAMES N>
o BY 7%
:); MOSTAFA A. HASSANAIN %
% A Thesls Presented to the [%
- FACULTY OF THE COLLEGE OF GRADUATE STUDIES %
& KING FAHD UNIVERSITY OF PETROLEUM & MINERALS g;
& DHAHRAN, SAUDI ARABIA 2,

i
£

=
SEIESE

In Parfial Fulfiliment of the
Requirements for the Degree of

¢
-

P

MASTER OF SCIENCE =

4
.

in

e

¢
\

e
P

.\ig 8)‘;
# CIVIL ENGINEERING o
2 JUNE, 1992 L(?
ﬁﬁ’ﬁfﬁﬂﬁ*ﬁ’ﬁfﬁ A A A P R N AN f*‘



KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS
DHAHRAN, SAUDI ARABIA

COLLEGE OF GRADUATE STUDIES

This thesis, written by MOSTAFA AHMED MOSTAFA AHMED
HASSANAIN under the direction of his Thesis Advisor and approved by his
Thesis Committee, has been prescnted to and accepted by the Dean of the
Collcge of Graduate Studies, in partial fulfillment of the requirements for the

degree of MASTER OF SCIENCE in CIVIL ENGINEERING.

Thests Committee

XA

Dr. A.S. Wni (Chairman)

-

S. Al-Saadoun (Co-Chairman)

eeboo\

Dr. Rashecduzzalar ( Mc#\@r)

Dr

Dr. Ghazi J. Al-Sulaimani
Department Chairman

h 3

Dr. Ala I1. Al-Rabeh
Dcan, College of Graduate Studics

36b-9 2
Date







To my parents



ACKNOWLEDGEMENTS

First and foremost, praise and thanks be to Almighty Ailah, the Most

Gracious, the Most Merciful, and peace be upon His Prophet.

Acknowledgement is due to King Fahd University of Petroleum and

Mincrals for support of this study through its enormous computing facilities.

I would like to express my sincere gratitude and appreciation to Dr. Ahmad
S. Al-Gahtani, my thesis advisor, for his invaluable guidance, support and
cncouragement through all the stages of this study. Also, I greatly appreciate the
help and encouragement provided by Dr. Saadoun S. Al-Saadoun who served as
a co-advisor. Thanks are also due to Dr. Rasheeduzzafar who served as a

committee member for his valuable suggestions and kind attention.



TABLE OF CONTENTS

Chapter Page
ACKNOWLEDGEMENTS ......ooieeieeeeereeeeeereseeeetee e anens v
LIST OF TABLES ...ttt rec e eressaeessesennes xi
LIST OF FIGURES ........ e eeecerreeeceerrcrcrtecreerreseresreesasseesarees xiii
THESIS ABSTRACT (English) ........co.ocovieiieeeeeeeceeceeceeeene xvi
THESIS ABSTRACT (Arabic) .....cc.oeeeorevrcieeicieeceeee e, Xvii
INTRODUCTION .....oiciirrcrercrirrseessc e esceesesere e s eene e eeesvee s nnsessnnnes i
Fol GERETAL et ne e e ee e cmm e e e nanes |

1L Background .......eeoeenecieiiieeeeceeceeeceereeee e st omeeenaas |
1.1.2 Analysis of Reinforced Concrete Structures ......c....cceeeeen..e. 3
[.1.3 Optimization of Reinforced Concrete Structures ................... 5
1.2 Literature ReVIEW .....ccoiviviiiiiriiiiciiireeeecesteescaeese e nnaseensessananens 6
1.3 ODBJECHIVES ceeeerieerieiieeeaiitenteetercnteeecteaeeanaeeeseeeseaeee e e snssasensnnsanens 17
1.4 PrOCEAUTE ...eoiieieceiieeinecriirteetenceneresrereesnnnaneeesessaaasasssnssnnnessarensansas 18
ANALYSIS OF REINFORCED CONCRETE FRAMES ............... 20
2.1 GENETAL ..ttt st ene e s aans e e e a e 20
2.2 Structural Modeling .......ccociiiiiiiiiiciecreerecree e e ene s enens 21
2.2.1 INtrodUCHION .cccccvurrerenireereiirereiicersreretereeecrreeeseesassessseersnsranens 21
2.2.2 Geometry Parameters ....eeeveeeveeercerneeinenecrecnisrcnnreeeesisseeesens 21
2.2.3 Loading Parameters ....occoveverenereerrnrenrreseneesneeesseseeeeranens 25

Vi



2.3 First-Order Elastic ANalYSiS ...ccoeeeeevvreeerieeeeeeeeee e 26

2.3.1 INtrodUCHION ...cccoirennereeicerrencnteercreeeenreeeenreeeereesnsasesssnsases 26
2.3.2 Method of ANalySis ......ccoeeeooeeeeeeeeeeeee e ceeeeeeceneene 28
2.4 Sccond-Order Elastic ARALYSIS eeeeerimieeniiieeeeeceereeereee e 33
2.4.1 INtroducCtion ......coociiiimieeeceicccreeeeeeeeeereseres e eeee e reeenes 33
2.4.2 Method of ANalySis ...coceoeieenemeeeeteeeeeeeceeeeeeceneceeeeee 35

2.5 Inelastic ANalYSiS .ecovvrrvieiiiiiiciiicere e cretee et e e e e e nes 39
2.5.1 INtroduCtion ......ceooeeeieinciecieeecerreeeeerereee e eeeceanae e 39
2.5.2 Inelastic Analysis Under the ACI Code ..................c........... 40

2.6 Moments at the Face of SUPPOrtS ....ueieeeciiiiiiieeceiirrecctreeeeeeanees 41
3. FORMULATION OF THE OPTIMAL DESIGN PROBLEM ........ 43
KT €11 1<) ¢ ) OO SR 43
3.2 Design Variables ...ttt eeas 44
3.3 Objective FUNCLION ......oeiiireeeeeeetecceeeccree e ceeeeeeesnene e neees 45
3.4 Design Constraints .......ccccceeeeene meteeeetsesetraeeesessesnnasessnnsessesenanaeaas 55
3.4.1 IDNtrodUCION ..c.eeeerieveiiiiiiittecieeemreaeeeeennreeareessneeessaereans 55
3.4.2 Structural Constraints .....cccccccecverveerivrrerecrcenrcceesecseeesenseeenns 57
3.4.2.1 Column Constraints ........ccecceeeviececrnerrrseesesccesesneenne 57

3.4.2.2 Beam Constraints ..cccooecccrecveriercceereerenrrrereessreensesenans 62

3.4.2.3 Compatibility Constraint ..........ccocccemveerrverereeeesrenensennne 72

3.4.3 Size Limitation Constraints ......c.ccevveeeieecceneeecicnnrseennneenncens 72

4. RCFOPT SOFTWARE ......ciiiieeresstreecrteerreenes e assanenanes 73
4.1 GENETAL ..ttt as 73

vii



4.2 Analysis Phase (RCFRAME) ... 73

4.2.1 INtroduCtiON ..eceeeimenemeiiriineiiiectecniatienseetessaraacesssanenesens 73
4.2.2 Input Data oo 75
4.2.3 Program Operation .....cocccevveeivveeececinississenertissssnsenseriscessessaes 76
4.2.3.1 INtroduCtion ..ccccceceeemmeeeiiiiiceinneeeneincseneeeen e nsnnes 76

4.2.3.2 Rectangular Upper Half-Band Storage Scheme ........ 78

4.2.4 Output Data ..ccccveemreeeeeeeee e 81
4.3 Optimal Design Phase (IDESIGN) ....coooiemmeees 81
DESIGN EXAMPLES .....eeeeenecenteiitienseeesenenesesseensensnasas 86
I8 B €1 T | OO PPN 86
5.2 Problem DesCription ....cocociovimiinniiniireeeee e saee e e sanesees 86
5.3 Problem SOIULION ..cueeeeeinrcrenierieieeti ettt ere e 88
5.4 Convergence of the Problem .......eoeeiiieeimenieeeeee 97
5.5 DISCUSSION ..eeevireceererecctiseneriisrirssssttisssstesiesssneeesssseesssssaressessnnsnanas 100
APPLICATIONS OF RCFOPT SOFTWARE ..o, 102
30 T € T 1 T | YO TR 102
6.2 General Design Guidelines ..ooeovvevineimiinceeeeceeee 103
6.2.1 INtroducCtiOn ...cccccciecieiiiierineicienic et ennenas 103
6.2.2 Model DeSCription .....c.ccvvimieevuiicniiniciiiniintectesnnenenenne 103
6.2.3 Deveclopment of the Guidelines ........cooovovmeiininninnnnnnee. 105
6.2.3.1 INtroduction ......occccmeieviimircreciiieeiee b 105

6.2.3.2 Optimal Beam Depth EXpression ........coooeeeeeveeeene 106

6.2.3.3 Accuracy of Optimal Beam Dcpth Expression ........ 112

viii



7.

6.2.3.4 Optimal Beam reinforcement Ratio Expression ....... 112

6.2.3.5 Accuracy of Optimal Beam reinforcement Ratio

25 007 100311 EDUUUIUN OIS S 119

6.2.3.6 Determination of Beam Web width .....cccoecvrveviinenne. 121

6.2.3.7 Column Design Chart .......ccoeeeeemeeoimrmniineiennieeeees i21

6.2.4 Design EXAMPIC woemimmereeeeeecee e 124
6.3 Behavioral Study ...cccceevveeevirmrrreccencccnnnnn. vererersmssanoaseosreenens 125
6.3.1 INITOAUCHON eeeeeeeeceeceeciiiricieiierereennrrrrecsessenennnenaeaeneanessneees 125
6.3.2 Model DeSCriplion ....ccoeereeereeeeeniecceciiinncnieretnensenseecnae 125
6.3.3 Optimal Frame Configuration ..........cooeoeinecccncnencnen. 125
6.3.4 Effect of Number of Storics on Columns .......cccevemenenneens 133
6.3.5 Effect of Lateral (Wind) load on Beams .......ccccevmreceernneee 141

6.3.6 Effect of Aspect Ratio on Optimal Frame Configuration . 146

6.4 Effect of Number of Bays on Frame Cost ........ccooemimnreceiicncccenne 160
CONCLUSIONS AND RECOMMENDATIONS .....ocooveiiiiiennnne 165
Tl GEMETAL coeeirreneeriereerscensestesssnnnnasearnrasssestsetesssisnnnnnesassnsesstiossssnane 165
7.2 CONCIUSIONS ..vevrervrrerrererrensonsesnmmesssmessssessaseessorossssesssssssnsansasascsnss 165
7.3 Recommendations for Further Work ....oocoeeeiiniiniinciiennne 166
APPENDIX 1 : RCFRAME Input Data File .......cc.ccooiiiminnnniene. 168
APPENDIX 2 : IDESIGN Input Data File ........ccocoiininnnncnneees 172
APPENDIX 3: RCFRAME Output Data File ..........coccovvniiiiniennes 173
APPENDIX 4 : IDESIGN Output Data File ..........c.ocoeiinnnienns 181

ix






Table

5.1
52
53
6.1

6.2
6.3
6.4
6.5
6.6
6.7

6.8

6.9

6.10

6.11

6.12

6.13

6.14

LIST OF TABLES

- Page
Optimum column design variables for different cases .................... 89
Optimum beam design variables for different cases ......ccccovennene. 91
Convergence of different starting deSigns ....occocvvceerriiininicnnnens 98
Values of L,/d, as obtained from computer results ......cooeeevrecenes 107
Accuracy of beam depth eXpression ..c.c.eeeecevevviieinecneneenrinennne. 113
Values of p (%) as obtained from computer results ........cc.ceeeee... 114
Accuracy of beam reinforcement ratio eXpression ...oo.oveenenee. 120
Column design variable variations for the ten-story frame .......... 128
Beam design variable variations for the ten-story frame ............... 129

Column depth variations for frames of different number of stories
.......................................................................................................... 134

Column reinforcement variations for frames of different number of
SEOTIES cuneeesseesemssssmnssnsssnnnsssssssmseseessessnssnsnnssntnsasnsnssessesssssssnserassossasssss 135

Column reinforcement ratio (%) variations for frames of different
NUMDET Of SLOTIES veeiererrrrerarrrcarecreeessretesessssssssesssssensassenssassansesassass 136

Effect of lateral (wind) load on beam depth variations for the ten-
SEOTY fTAME coeeiieiirir ittt ettt e s 142

Effect of lateral (wind) load on beam reinforcement variations for
the ten-story frAmME ..c.coiviivrinirereee et 143

Effect of lateral (wind) load on beam reinforcement ratio (%)
variations for the ten-story frame .....eeieveenminneercceciees 144

Effect of aspect ratio on column width variations for the ten-story
TAIMIE weeeeeveerersereeiesssesessranesessnsesasameressransessssssrssnsassssnessansessansassssssssses 149

Effect of aspect ratio on column depth variations for the ten-story
FTAMIC oeveeerereeeissieeareessenesssessssessatesssnsssnsssstesrsssnsssastsnasanasssasasntssnsnese 150

Xi



6.15

6.16

6.17

6.18

Effect of aspect ratio on column reinforcement variations for the
113 TR0 0 R L1 1 L= R R 151

Effect of aspect ratio on beam width variations for the ten-story
FTAINIE oneeeeeeeeeeesoceeesssssrarasnsassnssesssnesessrmsssannnssasasssassstessssssnnsanansssasess 152

Effect of aspect ratio on beam depth variations for the ten-story
FTATIIC +ovveeeeeoveeeeecssseessessssssanassssensssesssssssnnsasesassntaseassesssssssrassssanmnaasosss 153

Effect of aspect ratic on beam reinforcement variations for the ten-
T 0 A L1111 LSRR SRR B SRR 154

Xii



2.1
2.2
23
24
2.5
2.6
3.1

3.2
33
34
3.5

3.6
4.1
4.2
4.3
5.1
5.2
6.1

6.2

LIST OF FIGURES

Page
Three-dimensional frame .........coooeiiiiiniicrrineeeece e 22
Two-dimensional (plane) frame ... 24
Loading parameters for a typical multibay, multistory frame ........ 27
Plane frame MemMDBer ......cooeecmrrvinrrirciriecesctteceercres e cenenes 29
Moments in slender members due to compression plus bending ..... 34
Reduction in beam moment at face of column ......cc..ooeeeeeeeeennnnnnn. 42
Design variables of reinforced concrete frame members: (a) Typical
column (b) Typical beam .......ccoovcicoireeciiniccienirccrerr e 46
Typical column details ...t 49
Typical beam detailS ......ooeueeeiinemenerieiiieereeree e 50
Design of shear reinforcement ..........coooveverievncneermncceccccreeceeeeeen. 56
Schematic of an interaction diagram typical for reinforced concrete
COUMMNS ciiiiccrceeererrree et s verressesssssrs s e e e s renesssrbrensesaenssenns 60
Dimensional notation for beam crack width constraint .................. 68
General structure of RCFOPT program ......c.eeeeeevecvrnvneneeensensenens 74
Rectangular upper half-band storage scheme ......ccocoeeveerennrnnnnn. 79
Structure of IDESIGN program .....ccccocvvvnicvneiinnninenienneennseesinnes 84
Geometry and loading of the three-bay, five-story frame .............. 87
Cost history of the three-bay, five-story frame .......cccceeeerennreennnns 99

Percentages of buildings constructed in 1983 in the United States
in terms of different building height categories ...coovvveereernrnnnnnennen. 104

Variations of optimal L,/d, ratio with the change of beam span
length for different live 10ads ..., 108

Xiii



6.3

6.4

6.5

6.6

6.7

6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17

6.18

6.19

6.20

6.21

Linear fittings of optimal L,/d, ratio with respect to beam span
length for different five 10ads .....c.oooeeeeeinirinieeeeeee 109

Constant C, for optimal beam depth expression as a linear
function of the 1ive 10ad .....cccereercoomeiceiieee e, 111

Constant C, for optimal beam depth expression as a linear
function of the 1ive [0ad ......ccoeevereeieiieicereerere e It

Variations of optimal beam reinforcement ratio with the change of
beam span length for different live loads ........oooeiieeinineee. 116

Linear fittings of optimal beam reinforcement ratio with respect to
beam span length for different live 10ads ....coeeeeieeeeeiiriceenne 117

Constant C, for optimal beam reinforcement ratio cxpression as a
linear function of the live load .......ccccovvrrinvieirireeeeeeeeee 118

Constant C, for optimal beam reinforcement ratio expression as a

linear function of the live 10ad ........ccccovrmmimiiiae 118
Design chart for reinforced concrete columns .....oooooeeiiiiiicnicicnnae. 123
Layout of the four-bay, ten-story frame ........cccoooerevinniieicnnicnen. 126
Cost history of the ten-story frame problem ..........ccccoiiiieinnieee 127
Column dimension variation for ten-story frame .........cccceeeenenenee. 131
Column reinforcement variation for ten-story frame ........cccceueeeeee 131
Beam dimension variation for ten-story frame .........ccccovceerennene. 132
Beam reinforcement variation for ten-story frame .......cccceeeeeeenee 132

Column depth variations for frames of different number of stories
.......................................................................................................... 137

Column reinforcement variations for frames of different number of
SEOTIES tevenneemeeeeennescesnsssasssssnsosssrasmssnssssnsasssssesssssesnnsessnsssnssassononssassssars {38

Column reinforcement ratio variations for frames of different
NUMDBET OFf SLOTIES ievtirieruosseencseseesessearereosssssnsnsesnsessessssssansesssssrsassess 139

Active column constraints for frames of different number of stories
.......................................................................................................... 140

Effect of lateral (wind) load on beam depth variations for the ten-
SEOTY fTAME .eeiiiiiiiiieiinieci et 145



6.22

6.23

6.24

6.25

6.26

6.27

6.28

6.29

6.30

6.31

Effect of lateral (wind) load on beam reinforcement variations for
the ten-StOry fTAME ..cccocoecmcriiiiiiiriieieeeecnteeeeee e e e e ennaaceaes 147

Effect of lateral (wind) load on beam reinforcement ratio
variations for the ten-story frame ....c..ccoeevevvnmmnnereneeeinicnniceeneenes 148

Effect of aspect ratio on column width variations for the ten-story
111 1 1= TR SS 155

Effect of aspect ratio on column depth variations for the ten-story
FTAME oooeeeeeeeecreceerenceeersnansessesccssssssssssmnsssssssnssonssssensesessranaassorannns 156

Effect of aspect ratio on column reinforcement variations for the
ten-story frame ......ccecceveevveeeennnnn rectersneeennrernanerarens 157

Active column constraint variations for the ten-story frame under
different aspect ratios ....cc.cccoceeccrrmeemeimierereree e rer e neeaees 158

Effect of aspect ratio on beam width variations for the ten-story
frame .....cccccvecmererrercneaccnncs R . 159

Effect of aspect ratio on beam depth variations for the ten-story
FTAME eeeeeeierereeeceeeesecueeraressanceessnessesssssssnstessssssssnanessssaassassnnsnnssans 161

Effect of aspect ratio on beam reinforcement variations for the ten-
18] 281 €111 DU U ISR 162

Costs of columns and beams for a 60-ft-width frame for different
number of bays (Equal span lengths) .....ccooeiiiiiinnininiiieneee 163

Xyv



THESIS ABSTRACT

Student Name : MOSTAFA AHMED MOSTAFA AHMED HASSANAIN

Title of Study : OPTIMAL DESIGN OF REINFORCED CONCRETE FRAMES
Major Field : CIVIL ENGINEERING

Date of Degree : JUNE 1992

Analysis and design of reinforced concrete (RC) frames is formulated as a
nonlinear programming problem according to the ACI Code provisions.
Second-order analysis is employed in which second-order influences pertaining

to RC frames, are incorporated.

Concrete dimensions and steel areas for columns and beams are the design
variables. For each story, the design variables pertaining to the concrete
sections are linked, meaning that the column widths are assigned the same
design variable as well as each of the column depths, beam widths, and beam
depths. The design variables pertaining to the steel, however, are varied. The
objective function is the sum of all the costs for each column and beam.
Constraints consist of requirements of the ACI Code, and explicit bounds on

the design variables.

Modern optimization algorithms and software are utilized to develop an
optimization system that is capable of analyzing and designing economical RC
rectangular frames of moderate height. The capabilities of the system are
demonstrated. Design guidelines for RC frame members arc developed and

tested. Moreover, some behavioral studies arc performed.
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CHAPTER 1

INTRODUCTION

1.1 GENERAL
1.1.1 Background

Reinforced concrete is the most widely used material in construction. It has
been in use for more than a century for almost all structures, great or small-
buildings, bridges, dams, tunnels, tanks, and so on. In recent years, reinforced
concrete has been utilized with increasing sophistication in the construction of
multistory tall buildings, nuclear power plants, gravity-type offshore platforms,
defense installations, etc. Since the advent of reinforced concrete, many new
structural engineering concepts have emerged; one of these is the concept of

numerical structural optimization.

For the last three decades, the trend in structural design has been towards
improving the final design to the maximum degree possible without impairing
the functional purposes the structure is supposed to serve. This trend in the
design process can be attributed to several reasons. Firstly, the advent of
relatively low-cost, high-power computers has made both the analysis and design
processes, regardless of complexity, manageable with relative ease. Secondly, the
developments in mathematical programming techniques and structural analysis
methods, and thirdly, the competitive market and the sheer desire to encompass
all the possibilities for the final design have contributed to design progress.

These three main factors have led to the ecmergence of the concept of numerical



structural optimization, or simply, structural optimization.

Considerable work was devoted at the beginning to the optimal design of
homogeneous (steel) structures for a variety of optimality and design criteria.
Research in the optimization of nonhomogencous (reinforced concrete)
structures progressed at a slower rate because of the difficulties posed by their

behavior.

When loaded for a few hours at a low stress, a reinforced concrete structure
behaves very nearly elastically. However, when the loading is sustained at high
stresses (greater than fifty percent of ultimate values), the behavior of concrete
can depart very considerably from a linear stress-strain relationship.
Microcracks spread, and result in internal displacements which are
nonrecoverable. Under sustained load at a high stress, concrete may weaken

and eventually fail by the extension of microcracks.

The inelastic (nonlinear) behavior of reinforced concrete structures has been
recognized for a long time. In 1924, G. P. Manning wrote

Our knowledge of reinforced concrete structures has been very
seriously hindered and obscured by the development of the theory
of the elastic structure. The absolute mathematical certainty of the
figured results when the material is assumed to be clastic (in the
full scientific meaning of the term) appears to have fascinated
many academical writers on the subject and has completely
blinded them to the fact that the resemblance between a concrete
structure and a perfect elastic structure is very slight. [1]

Four decades later, Winter [2] and Cohn [3] discussed the need for
developing inclastic analysis and design methods for reinforced concrete

structurcs. Cohn stated that "an analysis or design mcthod ... has to reflect as

closely as possible the actual behavior of the structure.”
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Recently, Vecchio and Balopoulou [4] studied the factors contributing to the
nonlinecar behavior of reinforced concrete frames under short-term loading
conditions through a detailed experimental investigation of a large-scale
reinforced concrete plane frame. The test results indicated that frame behavior
can be significantly affected by second-order influences such as material
nonlinearities, geometric nonlinearities, concrete shrinkage, shear deformations,

tension stiffening effects, and membrane action.

1.1.2 Analysis of Reinforced Concrete Structures

Since ft is known that reinforced concrete does not respond elastically to
loads of more than about half the ultimate, there is a certain inconsistency in
designing reinforced concrete cross sections based on inelastic (ultimate strength)
behavior when the moments, shears, and thrusts for which those sections are
being designed have  been found by linear elastic analysis. Although this
presently accepted procedure by which elastic analysis is coupled with inelastic

design is not consistent, it is practical, safe, and conservative [5].

To overcome this inconsistency, many rescarchers have proposed methods
for the inelastic analysis of reinforced concrete structures. One of the earlier
approaches was to usc the method of perfectly plastic limit analysis [6].
However, the limits of the reliability and usefulness of the plastic collapse
predictions to reinforced concrete have become clear, particularly in the light of

extensive experimental work [7,8].

Another approach was to use the imposed rotations method of Macchi [9]-

This method is based on the intcrpretation of inelastic phenomena as the
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cumulative effect of elastic responses due to the applied loads and inelastic
strains. The method was originally oriented to hand computations. Later, a
mathematical programming model based on this method was developed and
applications to reinforced concrete beams and frames were reported [7,10,11].
The model was reformulated by Kaneko [12] to improve computational
efficiency. Based on this refined formulation, computer programs were

developed [13,14] and their applicability to large frames was demonstrated [13].

Finite element analysis offers a powerful numerical tool for rigorous analysis
of concrete structures under various stages of loading up to failure considering
all the nonlinear effects. Much work has been done in this area since Ngo and
Scordelis [15] reported the first application of the finite element analysis to
reinforced concrete. However, due to the enormous computational effort
involved, most applications have beecn restricted to simple structures.
Krishnamoorthy and Panneerselvam [16,17], for instance, proposed a finite
element model for the nonlinear analysis of reinforced concrete framed
structures under various stages of loading. A computer program to perform the
analysis was presented. The authors analyzed two simply supported beams, a
two-span continuous beam, and a two-hinge portal frame. Nonlinear finite
clement analysis is still quite expensive and further research work is required to

refine the finite element models and to improve the solution algorithms.

The ACI Code [18] recognizes the aforementioned inconsistency by
permitting a certain amount of moment redistribution. In this process, the
bending moments of flexural members obtained from an elastic analysis are

adjusted to take into account the plastic behavior of reinforced concrete.



1.1.3 Optimization of Reinforced Concrete Structures

The objective in reinforced concrete optimization is usually to find the
concrete cross-sectional dimensions and the corresponding amounts of
reinforcing steel. The selection of an objective function whose least value is
sought can be one of the most important decisions in the whole optimal design

process.

In general, the objective function represents the most important single
property of a design. Weight is the most commonly used objective function due
to the fact that it is readily quantified. In reinforced concrete optimization,
however, minimum weight is not always the cheapest. Cost is of wider practical
importance than weight, although it is often difficult to obtain sufficient data for
the construction of a real cost function. A general cost function may include the
costs involved in the design and construction as well as maintenance costs,
repair costs, insurance, etc. However, it is not always desirable to consider a
function which is as general as possible. The result might be a ‘flat’ function
which is not sensitive to variations in the design variables and the optimization
process, practically, will not improve the design. Thus, from a practical
viewpoint, it is desired to introduce such an objective function that is both
sensitive to variations in the design variables and represcntative of the most

important cost components [19].

Another approach is to consider both the initial cost of the structure as well
as the failure costs which depend upon the probabilitics of failure. Failure costs
include such items as additional replacement costs, damage to property,
casualtics, business intcrruption, and legal services. The assumption is that the

failure cost is given by the damage cost associated with a particular failure
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multiplied by its probability of occurrence. It is, however, recognized that
answering the moral question of what constitutes an appropriate failure damage
cost is likely to be as difficult as estimating the probability of failure of a

structure [19].

The objective function is minimized under a set of conditions called
constraints. The most important of them are the design constraints such as the
ACI Code requirements. Other constraints are given by the limits being placed
on the design variables. If the constraints are too restrictive, there may not be
any feasible solution for the problem. In such a case, the constraints must be

relaxed by allowing larger resource limits for them [20].

1.2 LITERATURE REVIEW

One of the earliest papers that dealt with cost optimization of reinforced
concrete buildings was that of Louis A. Hill, Jr. [21]. He showed that large,
nonrepetitive structures can be automatically designed by computers for less
cost, with less tendency toward error, and with readily checked output. As a
specific test case, the automated optimum design of a four-bay, four-story
reinforced concrete building was shown. Analysis was performed using moment
distribution. Ultimate strength design methods were used exclusively. Design
variables included the width and depth of all beams, girders and columns, as
well as the spacing of intermediate beams. Also, the amount, placing, bending,
and cutoff points of all steel reinforcing were design variables. The structure
was designed to be safc against collapse at ultimate loads, whether caused by
wind, earthquake, or live loadings. Also, it had to perform adequately under

elastic loading conditions; thus, precluding undue vibrations and excessive
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deflections. Successful completion of this work proved that old objections to the
use of computers in the area of large civil-type structures were not valid. A
problem with this study, however, was the enormous computational time
required to design a practical-sized building frame. The author reported that it

took 46 minutes of computer time to design the building frame he considered.

Cohn and Grierson [22] obtained the optimal design of reinforced concrete
beams and frames of given concrete sizes such that under any possible load
combination, certain specified minimum load factors could be guaranteed
against both the collapse of the structure and the first yield of its critical
sections. By linearizing the merit function and developing a method to generate
all limit equilibrium constraints, the problem was solved with the help of linear
programming and computer techniques. In this work, it was possible to produce
optimal designs which simultaneously satisfy limit equilibrium (plastic limit
stage), serviceability (elastic limit stage), and optimality (minimum material
consumption) criteria. The authors, however, stated that “an optimal solution
verifying the three conditions above would still have to be checked for
compatibility”, and this was left for a separate investigation. A five-span

continuous beam and a two-bay, one-story frame were investigated.

Cohn [23] presented a general formulation to the problem of concrete frame
optimal design on the basis of the serviceability (as opposed to compatibility)
approach. It was suggested that design solutions can be found in a way similar
to the limit design of steel structures if some modifications are applied to‘the
assumptions on which the limit design method is based. With given geometry
and loading, frames were designed for minimum longitudinal steel consumption

with adcquate safety against both the plastic collapsc of the structure and the



first yield of its critical sections. Two frame examples were solved.

A more general formulation of the optimal frame problem was presented
later by Grierson and Cohn [24] wherein design plastic moments, member
stiffnesses, and frame geometry were all treated as design variables and were
found for simultancous satisfaction of optimality, limit equilibrium,
serviceability, plastic compatibility, and elastic compatibility. This is a nonlinear
programming problem of considerable complexity and the authors illustrated the
expected trends for a simple two-span continuous beam example in which

various simplifying assumptions were made in order to linearize the problem.

Rozvany and Cohn [25] combined existing serviccability methods [22,23]
with the lower-bound approach to optimal design and applied the resulting
method to reinforced concrete frames and slabs which are subject to several
alternative loading conditions. The adopted design objective was the
minimization of the reinforcing steel volume. The effect of axial forces in the
members and the nonlincarity of the moment-steel area relation were

investigated.

.Cohn [26] cxplained the concept of multi-criteria optimal design of frames.
The optimal design problem consisted of finding member proportions for a
minimum-weight structure under any type of static loading, so that adequate
safety against plastic and/or incremental collapse, loss of stability, and/or
serviceability be provided. Some examples of applications to steel and reinforced
concrete structures were presented.  For reinforced concrete structures, the
optimality criterion (objective function) was taken to be the weighted cost of the
materials if both concretc and steel scctions were to be found. A simpler

optimality criterion was used if only the steel is allowed to vary, by assuming
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that the concrete sizes were assigned from conventional elastic design

considerations.

Munro et al. [27] presented a linear programming formulation of the
optimal design problem for reinforced concrete frames with compatibility,
limited ductility, equilibrium, and serviceability constraints. The simplex
algorithm was used to solve the linear programming problem and to determine
the values of the design bending moments at all the critical sections such that
the total volume of steel reinforcement is minimized. Four multibay, multistory
frames were investigated to illustrate the procedure and comparisons were made

with ultimate strength designs based on eclastic solutions for factored loads.

Gerlein and Beaufait [28] proposed a linear programming procedure for the
preliminary strength design of multibay, multistory, moment resisting reinforced
concrete frames. The design was based on a rigid plastic collapse theory. A
reduced set of collapse mechanisms were used to define the kinematic
constraints. Special constraints were defined in order to satisfy ACI Code
requirements and practical design considerations. The objective function to be
minimized was taken as the total volume of reinforcing steel required by the
members. Once the optimization process has been completed, the member sizes
and reinforcement at critical sections can be sclected to complete the
preliminary design. Thesc can be used to carry out an accurate analysis in order
to determine the internal actions that the members are to be designed to resist.
A computer program to perform the optimization process was given. A three-

bay, three-story frame was investigated.

Krishnamoorthy and Mosi [29], and Krishnamoorthy [30] presented a

formulation for the optimal design of reinforced concrete frames as a nonlincar



10
programming problem incorporating the method of imposed rotations to
perform the inelastic analysis. A trilinear moment-rotation law for the critical
sections was assumed. Cross-sectional dimensions and reinforcement areas for
beams and columns were taken as design variables. The authors used a design
member linking strategy to group identical members with a restriction that beam
members and column members cannot be mixed. The design variables, including
the reinforcement areas, were kept uniform for all the members in a group. The
objective function consisted of the sum of all the material costs for beam and
column groups; this included costs of concrete, steel, and formwork. The
minimum cost of the whole structure was the sum of the minimized costs of the
groups. Strength constraints, reinforcement constraints, and size limitation
constraints were imposed on beam and column grdups separately. A computer

program was developed and applied to some multistory frame examples.

Gurujee and Agashe [31] presented a general nonlinear programming
method for the optimal design of reinforced concrete frames. A hexalinear
moment-rotation law for the critical sections was adopted. The obijective
function and the constraints were formulated in a manner similar to that of
references [29,30]. A computer program was prepared and applied to the same

examples investigated in those references.

The optimum design problem of reinforced concrete frames is highly
nonlinear. The problem size (number of design variables and constraints) is
relatively large even for simple structures. While it might be possible to optimize
simultaneously all design variables, the large size of the problem and the
different natures of variables and constraints favor a multilevel approach in

which the highly nonlincar problem is divided into subproblems. Such an



I
approach will be economical in the computational effort since, in many optimal

design procedures, this effort is an exponential function of the problem size.

Kirsch [32] proposed a multilevel-formulation approach to the optimal
design of reinforced concrete structures. Based on this approach, an integrated
problem can be decomposed by dividing it into three optimization levels. In the
third (system) level, the design moments are optimized considering the results of .
an clastic analysis. In the second (element) level, the concrete dimensions of each
element are optimized for the given design moments. In the first (cross section)
level, the amounts of reinforcing steel in each critical cross section are optimized
independently for the given concrete dimensions and design moments. The
author stated that this approach “is suitable for different tvpes of structures
such as beams, frames, plates, etc.” The discussion was limited, however, to

continuous beams.

Huanchun and Zheng [33] treated the highly nonlinear optimum design
problem of reinforced concrete frames in two levels corresponding to global
constraints and local constraints respectively, with iterations in each level. The
global constraints were those relevant to all design variables such as
displacément constraints, size constraints, etc., and the local constraints were
those related to the design variables of a single member only such as strength,
size, percentage of reinforcement, and all other Chinese Code requirements. In
the first level, the top horizontal displacement of the frame was taken as the
objective function, and was maximized to satisfy all global constraints. The
optimum solution of this level was used to obtain the lower bounds of the
sectional sizes of members. In the second level, using thesc values from the first

level, the original objective function (the cost of total frame material) was
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minimized satisfying all local constraints. In this study, heights and widths of
member sections were all specified to be integers to meet the requirements of a
modular system. A two-bay, five-story frame subjected to the action of dead
loads, live loads, wind loads, and a seven-degree earthquake load was

investigated using this approach.

Choi and Kwak [34] adopted the concept of optimum reinforced concrete
structure as an assembly of optimum individual reinforced concrete members.
Instead of using a sophisticated optimization model that requires many design
variables and complicated descriptive functions, they proposed an algorithm
that uses a more effective direct search method to find the optimum member
sections from a predetermined section data base. Thus, the optimization of the
entire structure is accomplished through the individual member optimization.
This approach can reduce design efforts and yield practical optimum designs. A
two-bay, ten-story office building was tested using this approach. However, the
authors did not answer the question of whether the assemblage of optimum
members is always the absolute optimum structural design and the question of

how close it is to the optimum.

Ali and Grierson [35] developed a nonlinear design method that
simultaneously and explicitly accounts for the basic strength and deformability
criteria for reinforced concrete frames. The method is based on a limit design
formulation that simultancously satisfies the basic conditions of equilibrium,
compatibility, and the constitutive law of reinforced concrete at both service and
ultimate load levels, with no need for subsequent check for any of these
conditions. The authors aimed for optimal solutions that satisfy all basic design

criteria. The design solution included the set of member cross-section dimensions
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and steel percentages for which the members had sufficient plastic moment and
rotation capacities at the specified ultimate load level while ensuring adequate
serviceability at the specified service load level, and for which the total cost of
concrete and steel was minimum. A two-bay, one-story frame cxample was
solved to demonstrate a practical application of the method. The method
developed in this work required the identification of the critical collapse
mechanisms and critical deformation states for the structure. This may lead to
considerable complexity for even moderately large frames and may be

numerically and computationally prohibitive as the problem size increases.

Later, Ali and Grierson [36] developed an alternate nonlinear design méthod
in which the explicit design conditions in reference [35], i.e., limit equilibrium,
limit compatibility, and material serviceability, were implicitly satisfied. An
optimal limit design formulation was obtained. Suitable algorithms and related
computer codes were used to solve the design problem having a nonlinear cost
function and explicit nonlinear constraints. The method was applied‘to a

continuous beam and a practical-sized building frame.

A nonlinear programming formulation for the optimal design of tall
reinforced concrete framed tube bui!dings was presented by Spires and Arora
[37,3R8]. Cross-sectional dimensions and reinforcement areas for beams and
columns were taken as design variables. However, they were kept uniform in
each story. The objective function to be minimized consisted of the sum of all
the costs for each beam and column. This included costs of concrete, reinforcing
steel, and formwork. Constraints on the design consisted of two type: structural
constraints (Building drift, and fundamental frequency), and member

constraints (ACI Code requircments, size limitations, and scrviceability criteria).
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In this formulation, the story height and column spacing were kept constant
throughout the structure. Thus, limiting the generality of the formulation. Two
frame examples were presented to test the validity of the formulation and to
ascertain the influence of various design variables on the overall cost of framed

tubes.

Structures are usually subjected to external loadings that are complex and
continuously changing with time. In design practice, the environment is usually
replaced by a finite number of distinct loading conditions which may be
evaluated based on deterministic or probabilistic design philosophies. If any of
the quantities involved in the design (loadings, material properties, etc) are
treated as random variables, the formulation is classified as probability or
reliability based. If all the quantities are treated as deterministic (in a
nonstatistical fashion), like the case in all of the above work, then the
formulation is so classified [19]. In reliability-based optimum design, the
optimization procedure involves the determination of the optimal level of safety
which best satisfies the design criteria and constraints. This is accomplished
through the minimization of an objective function, which takes into
consideration the probability of failure as well as the consequences of failure in

terms of cost.

Surahman and Rojiani [39] presented a reliability-based optimum design
formulation of reinforced concrete frames. The objective function to be
minimized was the total cost of failure, which included the initial structural cost
as well as the loss due to failure. Two failure modes were considered for each
member: for beams, failure due to bending and due to shear and, for columns,

failure due to combined axial load and bending and due to shear. The
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optimization procedure consisted of two steps. The first step was the
minimization of the initial structural cost for a given risk level expressed in
terms of the probability of failure. Designs were obtained for several values of
the probability of failure. The second step was the minimization of the sum of
the initial structural cost and the cost of failure. The probability of failure which
resulted from the minimization of this total cost was the optimal probability of
failure. Two -reinforced concrete multibay, multistory frames were designed

using this procedure.

Simoes [40] described a mathematical programming technique which
minimizes the total average volume of steel reinforcement of a reinforced
concrete frame for a specified failure probability. The structural material is
assumed to exhibit a perfectly-plastic behavior so that plastic collapse is the only
possible failure mode. The technique consists of solving, in an iterative process,
a reliability assessment problem, which incorporates recent devclopments in
large-scale constrained concave quadratic programming and an optimal sizing
problem (convex minimization) until the best reliability-based design against

collapse is found.

Hoit et al. [41] presented a formulation that combines reliability and
optimization techniques by adding the global displacements to the set of design
variables. The formulation addressed the possibility of using a universal
procedure for obtaining optimal reinforced concrete frame designs independently
of local code restrictions. Design variables were the section sizes and the areas
of longitudinal reinforcement. The objective function was the total cost of
concrete and steel. The adequacy of the frames was guaranteed by imposing

constraints rcpresenting the maximum probability of failurc of the members
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considering practices involving current structural design codes, and the global
displacements allowed, combined with a prescribed limited system probability
of failure. Two frames were chosen from the literature to evaluate and compare
the results obtained with this procedure. Both frames have been optimized using
the theory of optimal limit design. A comparison of current ACI Code safety

requirements and reliability constraints was presented.

It has been found that the majority of the investigators have analyzed their
frames based on methods that are not acknowledged by the ACI Code.
Moreover, almost all of them have ignored the inclusion of any provisions to
take care of geometric nonlinearity (P-A effect) in the analysis process. Some
investigators have included such provisions. However, they have utilized
approximate methods to accomplish that. And there is a certain inconsistency in

using approximate methods when one seeks an optimal design.

In regard to optimization, somé investigators have minimized the amount of
reinforcing steel used in beams and columns assuming given concrete
dimensions. This will not minimize the cost of the whole structure. The rest of
the investigators have minimized the cross-sectional dimensions and
reinforcement areas for beams and columns. However, they have linked the
design variables so that beam and column dimensions as well as reinforcement
areas were kept uniform in each story or in each group of similar members. This
will result in some members having more steel than the minimum required to
satisfy the constraints. Thus, increasing the overall cost of the structures. The
majority of the investigators have not included the cost of formwork into their
objective functions. For the average concrete structure, the cost of the formwork

is often more than the cost of both the concrete and the reinforcing steel.
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Neglecting it will greatly affect the optimization process. Almost all of the
investigators have limited the generality of their formulations in some way or
another. Some have assumed constant story height and constant column
spacing throughout the structure. Others have uscd solid rectangular sections for
beams at locations where T-sections may be required. Thus, there is a need for a

general optimization system that will overcome those limitations.

1.3 OBJECTIVES

The central problem in optimization for engineers is the formulation and
execution of problems, rather than the mathematical techniques themselves. This
is the central theme of this research. In this approach, optimization is considered
as a new perspective to the process of design, and one that gives considerable
insight into the engineering design process. Mathematical techniques are not

treated in detail.

The main objective of this research is to develop an optimization system that
can be used to optimize reinforced concrete frames according to the ACI 318-83
Code provisions. The system will be capable of analyzing and designing
economical reinforced concrete rectangular frames of moderate height taking
into account practical considerations such as uniform beam and column
dimensions in each story, use of straight reinforcing steel bars instead of bent
bars, etc [42,43,44]. A second-order analysis will be employed in which second-
order influences pertaining to reinforced concrete frames, namely geometric
nonlinearity and material nonlinearity, will be incorporated. Design will be
based on the ACI ultimate strength design method. Structured FORTRAN 77

programming will be used to develop the proposed system.
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1.4 PROCEDURE

The specific tasks involved in the development of the proposed optimization

system are as follows:

. Develop a FORTRAN 77 analysis program for the problem according
to the direct stiffness method [45]. Second-order influences mentioned
previously in section 1.3 will be taken into account in the analysis as
follows:

a. In regard to geometric nonlinearity (P-A effect), iterative method
[45,46,47] will be used. In this method the analysis is complicated
by the fact that the axial forces in the members, which are not
known in advance, are related to the displacements, which are also
unknowns, through the stiffness matrix. Therefore, the analysis
must be conducted in a cyclic fashion, rcevaluating the terms in
the stiffness matrix after each cycle to account for changes in axial
loads. This process is repeated until two successive analyses yield
approximately the same results. This method has been called
“exact” by MacGregor [48].

b. In regard to material nonlinearity, the ACI moment redistribution
method will be used. In this method, the negative moments at the
supports of continuous flexural members are modified by a factor
that is a function of the percentage of reinforcement. The modified
negative moments are used, thereafter, to calculate moments at

midspans.

2. Formulate the optimal design problem of reinforced concrete frames

and create its mathematical model. This requires identification of
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design variables, objective function, and design constraints.

Develop subroutines for the design of reinforcement, ties, and stirrups

according to the ACI ultimate strength design method.

Integrate the analysis program developed in "I’ above and the design
subroutines developed in "3° with the general purpose optimizer

IDESIGN [49,50,51] to create the proposed system.
Evaluate the performance of the system through several case studies.

Perform some parametric studies and develop some simple rules for
estimating economical cross-sectional dimensions and reinforcement

areas for columns and beams.
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CHAPTER 2

ANALYSIS OF REINFORCED CONCRETE FRAMES

2.1 GENERAL

The basic objective of frame analysis is to determine the bending moment,
shear, thrust, and other load effects at each critical section in columns and
beams. Final design of the structural components in the building frame is based

on such effects.

A number of methods has been developed over the years for the analysis of
building frames. The so-called classical methods, such as the method of slope
deflection and the method of moment distribution, provided the basic analytical
tools for the analysis of frames for many years. Computer-based matrix
methods of analysis have worked their way into the structural engineering
profession at a steady rate over the past thirty years, initially against some
strong opposition from those who preferred to keep the developing electronic
computer at a safe distance. Physically the distance was considerable in the
days of solitary mainframes but it became more immediate with the increasing

availability of time-sharing, high-speed computers.

Use of matrix thcory makes it possible to reduce the detailed numerical
operations required in the analysis of building frames to systematic processes of
matrix manipulation which can be performed automatically and .rapidly by
computer. As a consequence, an ‘exact’ determination of bending moments,

shears, and thrusts throughout the entire frame can be obtained quickly and at
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small expense. Provided that computer facilities are available, highly refined
frame analyses are possible at lower cost than for the classical methods of

analysis previously employed.

In this study, the powerful, computer-oriented direct stiffness method [45]
will be utilized to perform the analysis of the building frames. Derivation of the

basic equations is given in the cited reference and is not presented here.

2.2 STRUCTURAL MODELING
2.2.1 Introduction

It is seldom possible for the engineer to analyze an actual complex
indeterminate structure. Almost without exception, certain idealizations must be
made in devising an analytical model, so that the analysis will be practically
possible. Therefore, .it is prudent to define a structural model for reinforced
concrete frames in terms of geometry and loading that could represent a wide

array of realistic conditions.

2.2.2 Geometry Parameters

Truthfully speaking, all building frames are three-dimensional (Fig. 2.0).
Because of the repetition of frames in the z-dircection, designers typically divide
the structure into simpler two-dimensional frames and assumc them to act
independently, even though they are actually linked and interact. This reduces
the amount of time, and consequently the amount of money, needed for the

analysis, while at the same time, permits the computation of displacements and
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Figure 2.1 Three-dimensional frame.
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actions with sufficient accuracy. A two-dimensional (plane) frame is shown in

Fig. (2.2).

In this study, only regular rectangular reinforced concrete plane frames are
considered. These represent the most common framing scheme used in
construction. Colunins and beams are represented by straight lines, generally
coincident with their actual centroidal axes. They frame into joints which are,
according to a nearly universal assumption, considered to be rigid. That is, the
angular relationship between columns and beams framing into a joint remains
constant throughout the loading history of the frame. In this context, the term
Joints refers to points of intersection of columns with beams, as well as points of

support. Supports may be fixed, or pinned, or there may be roller supports.

The critical sections for b_ending moments in columns are located at their
tops and bottoms near the joints. For beams, the critical sections for positive
and negative bending moments are assumed to be located at midspans and near
the joints, respectively. To obtain moments at midspans, each beam is divided at
its midpoint into two portions. For the purpose of structural analysis, each one
of these two portions is called a member. Moreover, each column is also called a
member. The points at which members mect are called nodes. Thus, each joint

is a node but not every node is a joint.

Stiffness calculations for frame analysis arc based on the gross concrete
cross section and not on the cracked scction. The contribution of the
reinforcement is neglected, which compensates to some cxtent for the neglect of
the influence of cracks [5]. In most cases in frame analysis, it is only the ratio of
stiffness which influences the result, and not the absolute values of the

stiffnesses. Stiffness ratios are but little affected by different assumptions (c.g.,
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Figure 2.2 Two-dimensional (plane) frame.
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use of gross section vs. cracked section) in computing the moment of inertia,
provided there is consistency for all members. In recognition of this fact, it is
sufficiently accurate to base stiffness calculations on the full concrete cross
section. There may be some justification for including the transformed area of
the steel in.computing moments of inertia of columns, because, unlike beams,
often the column stress will be entirely compressive with no cracking to
compensate for the neglect of the steel. In addition, steel percentages are
considerably higher for columns than for beams. However, it is the usual
practice to compute moments of inertia of columns just as for beams,

considering only the cross section of the concrete.

The number of stories in a building is a significant parameter in analysis
and design. Most reinforced concrete buildings are in the low- to medium-rise
range, perhaps less than ten to fifteen stories. The focus of this study is on low-
to medium-rise reinforced concrete buildings, thus excluding special design
considerations that are particularly important for high rises. The range of stories

dealt with here is from five to ten stories.

2.2.3 Loading Parameters

Vertical (gravity) loads which include dead plus live loads are assumed to be
uniformly distributed over the whole beam. Service live loads are assumed not to
cxceed three-quarters of service dead loads. This is a rcasonable assumption in
many cases and it eliminates the need to consider loading patterns in structural
analysis [52,53]. Only one loading pattern will be considered, with full live load

on all spans for maximum positive and negative bending moments.
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Lateral loads, e.g., wind forces, are assumed to be resisted by the building
frame, with no stiffening assistance from the floors, walls, and partitions. This is
a very common assumption in frame analysis methods. Figure (2.3) illustrates

the loading parameters for a typical multibay, multistory building frame.

2.3 FIRST-ORDER ELASTIC ANALYSIS
2.3.1 Introduction

The general approach during the stiffness analySis of a structure is to
generate a set of nodal equilibrium equations for the structure which relate the
nodal displacements to the nodal actions. By solving these equations for the
nodal displacements, and then combining the member deformations with the
member stiffnesses, the end actions for each individual member can be

computed.

The equations mentioned above can be expressed in matrix form as:
A=SD (2.1)
where A and D are the vectors that contain the nodal actions and nodal
displacements, respectively, for all of the nodes in the structure. The symbol S
represents the overall structure stiffness matrix which is assembled from the
stiffness matrices of the individual members. The assembly of the structure

stiffness matrix, assuming m members, may be stated as:

"
S =3 S 22)

i=1
where Sy, is the ith member stiffness matrix with end displacements and end

actions taken in the directions of structural (global) coordinates.
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2.3.2 Method of Analysis

Figure (2.4a) shows a typical member i within a plane frame. The nodes on
the member are denoted as j and k. The orthogonal set of axes x, y and z shown
in Fig. (2.4a) are reference axes for the structure. The plane frame lies in the x-y
plane, which is assumed to be a principal‘ plane of bending for ail the members.

Orthogonal member-oriented axes x,,, y,, and z,, appcar in Fig. (2.4b) with the
origin located at node j. The x,, axis coincides with the centroidal axis of the

member and is positive in the sense from j to k. The possible displacements of
the member ends are indicated, in their positive senses, in Fig. (2.4b) for the

member-oriented axes. They consist of translations in the x,, and y,, directions,
and rotations in the z,, sense. The member axes are rotated from the structure

axes x¢ and y about the z,, axis through the angle y.

If A4 denotes the cross-sectional area of member i, / denotes its moment of
inertia, L denotes its length, and E denotes the modulus of clasticity of its
material, then the ith member stiffness matrix for member (local) coordinates

can be written as follows:

- E4 0 _E4 o |
2 0 2
0 1261 6EI  , _ 12El 6EI
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o (& = 5 _oH e
1‘2 L 112 1
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() (b)

Figure 2.4 Plane frame member.
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It is assumed here that deformations due to shear forces are negligible
compared to those due to bending. This is a reasonable assumption since
members are long and slender. Consequently, the stiffness matrix in Eq. (2.3)

does not include the effect of shear deformations.

In order to perform the assembly process stated in Eq. (2.2), it is necessary
to transform the member stiffness matrices, from the individual member
coordinate systems, to the structural coordinate system. This can be

accomplished by introducing the rotation transformation matrix R, which is

defined as:

 cosy smy 0 O ¢ 0]
—sinycosy 0 O 0 o

0 0 1 o0 0 0
R, = 0 0 0 cosy siny 0
0 0 0 —sinycosy 0
0 0 0 O 0 1]

where v is positive if measured counterclockwise.

Having the rotation transformation matrix on hand, one may then calculate
the member stiffness matrices for structure coordinates using the following

equation (omitting the subscript i):
S, = RS
ms — RrSy Ry
in which R$ is the transpose of R;. The next step is to assemble the member

stiffness matrices for structure coordinates into the overall structure stiffness

matrix as stated in Eq. (2.2).

In the next phase of the analysis, arrays associated with loads on the frame

are formed. External actions applied at nodes constitute the vector A. Actions

at the ends of restrained members, with respect to member-oriented axes, due to
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loads constitute the matrix A,,. This matrix is an array of order 6 x m, in

which each column consists of the end actions of a given member. These are

two forces in the x,, and y,, directions and a moment in the z,, sense, applied at
both ends. Fixed-end actions Ay, in the directions of structure axes, can be

computed using the relationship
_of
Aus ~ Ry Avi.

Similar to the assembly of the structure stiffness matrix, an equivalent nodal

load vector A can be constructed from member contributions, as follows:

m
Ap =~ Y Aysi

i=1

where A, is a vector of fixed-end actions at both ends of member i.

Addition of the vectors Ay and A produces the combined nodal load vector

A, as follows:

AC=AN+AE

It is useful to rearrange and partition the structure stiffness matrix S and

the nodal load vector A so that terms pertaining to the free displacements come

before those pertaining to the restrained (support) displacements. Thus, the

-sFF SFR] [Dj 2.4)
SRF SRR_ D

expanded form of Eq. (2.1) is:

{AFC} _
Arc

In this cxpression, the subscripts F and R refer to frec and restrained

displacements, respectively.

Having all of the required arrays on hand, one may complete the solution
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by calculating the free nodal displacements D... For convenience in solution, Eq.
(2.4) will be rewritten as two separate matrix equations:

Apc = Sip D. + Ser Dr (2.5a)

Apc = Spe Dy + Spp Dy (2.5b)

The first of these equations may be solved (symbolically) for the unknown nodal

displacements D (which are expanded later into the vector D), as follows:
= ! _
De = Sge (AFC Ser DR)

Support reactions may now be calculated from Eq. (2.5b) as:

Ag = “Apc t Spe D¢

However, they are of no immediate importance in this study.

As the final step in the analysis, the member end actions A, are calculated

using the relationship
Ay = Ay ¥ Sy R D

Writing the stiffness matrix as in Eq. (2.3) implies an assumption that is
very common in frame analysis methods. This assumption is that the structure
behaves linearly under the applied loads. That is, the computed nodal
displacements and member end actions are directly proportional to the applied
loads. If the loads are doubled, then these quantitics also double. In _addition,
the principle of superposition holds, i.e., for a building having lateral wind loads
(causing axial forces in members) and vertical gravity loads (causing bending
moments) applied simultaneously, it is assumed that the individual loads act
independently, and the total effect of all loads can be obtained by a linear

superposition of the effects of each individual load. In another word, there is no



33

interaction between axial forces and bending moments in a structural member.
A frame analysis incorporating these assumptions is referred to as a first-order

elastic analysis.

2.4 SECOND-ORDER ELASTIC ANALYSIS
2.4.1 Introduction

If the axial forces in the members are large or if the members are slender,
the analysis will have to take into account the additional bending moments that
are produced in the members by the axial forces when the members deflect
laterally. To illustrate this, reference is made to Fig. (2.5). Figure (2.5a) shows a
frame member, often known as a beam-column, axially loaded by P and bent
under the action of the end moments M,. If no axial load were present, the
moment M, in the member would be constant throughout and equal to the end

moments M,. This is shown in Fig. (2.5b). In this situation, i.e., in simple

bending without axial compression, the member deflects as shown by the dashed

curve of Fig. (2.5a), where A, represents the deflection caused by bending alone.

When P is applied, the moment increases by an amount equal to P times its

lever arm A,. The increascd moment causes additional deflection, so that the
deflection curve under the simultaneous action of P and M, is the solid curve of
Fig. (2.5a). The final deflection at midspan is:

A=A, +A,
and the total moment is now:

M =M, + PA



(b)

Figure 2.5 Moments in slender members due to compression plus bending.
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i.e., the total moment consists of the primary moment M, which acts in the
absence of P and the additional secondary moment caused by P, equals P times
the deflection A. This axial-flexural interaction is referred to as the P-A effect.
When this affect is taken into account in the structural analysis of the building,

the analysis is referred to as a second-order elastic analysis.

2.4.2 Method of Analysis

A number of methods for second-order analysis of building frames have
evolved in the past two decades. Most of them are based on simplified
approximate hand calculations. Moreover, some of them cannot be considered
as second-order analysis methods in the first place, because they merely apply
some modifications to first-order analysis results in order to incorporate second-
order effects. This can lecad to inaccuracies for large structures. A review of some

of those methods is presented in [48].

Since the structural analysis in this study is based on matrix theory, it
would seem logical to incorporate P-A effect in the analysis using the same
theory [45,46,47]. This will lead to an ‘exact’ determination of displacements and

actions in the building [48].

The procedure is based primarily on modifying the member stiffness matrix
of Eq. (2.2) by introducing the so-called stability stiffness functions: 515 855, 53 and
s,- These functions account for the change in bending stiffness of the member
duc to the presence of an axial force. Each term in the member stiffness matrix
will be expressed as the product of the stiffness without P-A effect and a

stability stiffness function. The modified member stiffness matrix will be:
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(2.6)

The axial force P may be cither compression or tension, but compression is

usually of greater interest than tension because of the possibility of buckling.

For the case when P is a compressive axial force

s = (kLysinkL
! 12¢,
_ (kLYX(1 — cos kL)
5, = oo
g = kL(sin kL — kL cos kL)
3 40,
_ kL(kL — sinkL)
5, = %
in which

¢. =2 —2coskL — kLsinkL

and

1
2
k= ()

while for the case when P is a tensile axial force

. = (kL)’sinh kL
o 120,
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_ (kL)X(cosh kL — 1)

60,
_ kL{(kL cosh kL — sinh kL)
5 = 20
4
. = kL(sinh kL — kL)
- 20,
in which

@, =2 — 2cosh kL + kL sinh kL

If the axial force in the member is zero, it can be shown by applying L’Hospital
rule successively that s; = s, = s5; = 5, = I. All of the expressions given for the

stability stiffness functions can be derived by cicmentary beam analysis

considering the presence of the axial force.

In addition to the modifications performed on the member stiffness matrix,
other modifications have to be performed on the member fixed-end moments in
order to account for the presence of the axial force. The modified member fixed-
end moment at cach end can be expressed as the product of the fixed-end
moment at that end in the absence of the axial force and a factor F that depend
on whether the axial force is compressive or tensile [54]. For uniformly loaded

members, it can be easily shown that the fixed-end moments at both ends are

equal to wLY/12 (with the appropriate sign) where w is the magnitude of the

uniform load. For the case when P is a compressive axial force

12 u u
==t - Zcot =
F uz[ 2c0 2]

in which
u=kL

while for the case when P is a tensile axial force
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F= -:l—i [%coth (%) - l]

The stiffness matrix expressed in Eq. (2.6) is a function of the axial force in
the member which, in turn, depends on the displaced configuration of the
structure that is not known in advance. As a result, the solution can only be
obtained through an iterative process. An initial solution can be obtained by
ncglecting the effect of the axial forces, ie., by setting the stability stiffness
functions in Eq. (2.6) equal to unity. The resulting solution is the first-order
theory prediction. The axial forces found from the first iteration can then be
used to calculate the stability stiffness functions. One can then evaluate the
modified member stiffness matrices (Eq. (2.6)) and solve for a new set of axial
forces; the second iteration is then completed. The latter values are then used to
calculate a new set of the stability stiffness functions which gives new values for
the axial forces. The process is repeated until the axial loads found in one
iteration are close to the values computed in the previous iteration, ie., until a
predetermined convergence criterion is fulfilled. Since second-order effects will
not change the axial loads in the members significantly, the process will usually

converge rapidly so that two iterations are generally sufficient.

The iterative method of analysis described above can be used to determine
the critical (buckling) load for a framc. The loads on the frame can be gradually
increascd until the stiffness matrix S, becomes singular. This singularity is the
criterion for obtaining the magnitude of loading that causes elastic instability in

the frame.

The ACI Building Code [18] permits the use of second-order analysis in the

design of reinforced concrete buildings. In addition, the Code allows direct
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design for column forces if such analysis is performed. Since the second order
P-A effects are now directly accounted for in a second-order structural analysis,
there is no need to indirectly account for them by calculating moment
magnifiers. Moreover, there is no need to differentiate between sway-prevented
(braced) and sway-permitted (unbraced) frames since the method considers that
all buildings sway. Columns are designed with bending moments obtained from
the second-order analysis, with the effective length factor K always
conservatively taken as 1.0 [55]. These simplifications represent significant
reduction in effort for the optimization process, since there are fewer constraints

and gradients to evaluate for each column in the building frame.

2.5 INELASTIC ANALYSIS
2.5.1 Introduction

Since it is known that reinforced concrete does not respond elastically to
loads of more than about half the ultimate, there is a certain inconsistency in
designing reinforced concrete cross sections based on inelastic (ultimate strength)
behavior when the moments, shears, and thrusts for which those sections are
being designed have been found by elastic analysis. Although this presently
accepted procedure by which elastic analysis is coupled with inelastic design is
inconsistent, it is safe and conservative [S]. It has been shown that a frame so
analyzed and designed will not fail at a lower load than anticipated. On the
other hand, it is known that an indeterminate frame will not fail when the
ultimate moment capacity of just one critical section is reached if adjacent, less
stressed sections can pick up additional load. The ability to shift load to

adjacent sections in an indeterminate structure, termed moment redistribution, is
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used in an ultimate-strength-design method called plastic design. Although
plastic design has been used to size steel members for many years, its use is
restricted by the current ACI Code because the ductility of underreinforced

concrete members is limited.

2.5.2 Inelastic Analysis Under the ACI Code

A limited amount of moment redistribution is permitted under the ACI
Code, depending upon a rough measure of available ductility. The Code allows
the negative moments at the supports of continuous flexural members,

calculated by elastic theory (not by an approximate analysis), to be increased or

0l1 - 2P | o
Py

where p = ratio of tension reinforcement

decreased by not more than

p’ = ratio of compression reinforcement

p, = reinforcement ratio producing balanced strain condition

The Code states that the net reinforcement ratio p—p’ at the cross section where

the moment is reduced must not excced 0.50p,. Redistribution for steel ratios

above 0.50p, is conservatively prohibited.

As mentioned above, the adjustment of the negative moments may be either
an increase or decrease so long as the positive moments are also adjusted to
satisfy static equilibrium. The envelope of adjusted moments would then be used
to design the sections by the strength method. The net effect on the cnvelope is a

reduction for both negative and positive moments. This is not actually a
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reduction in the safety factor below that implied in code safety provisions;
rather, it means a reduction in the excess strength which would otherwise be
present in the structure because of the actual redistribution of moments that

would occur before failure [5].

2.6 MOMENTS AT THE FACE OF SUPPORTS

The ACI Building Code [18] and Commentary [56] require moments
obtained at the centerlines of columns to be reduced to the moments at the face
of columns for design of beam members. Because the slope of the moment
diagram for the beam is usually quite steep in the region of the support, there
will be a substantial difference between the column centerline moment and face
moment. If the former were used in proportioning the member, an unnecessarily
large section would result. Moments at the face of column can be computed as
shown in Fig. (2.6). The amount of reduction in moments between the column
centerline and its face is equal to the area under the shear diagram between

those two points.

It is common practice to conservatively disregard the reduction in column
moments from the centerline of the beam to top or bottom face of the beam.
The shear in columns is usually much less than that in beams, and the shape of
thc moment curve in the vicinity of supports is much flatter; hence, the
reduction in moment in column would be much smaller than in beams and can

be disregarded [5,53].
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CHAPTER 3

FORMULATION OF THE OPTIMAL DESIGN PROBLEM

3.1 GENERAL

Formulation of the optimal design problem requires identification of design
variables for the structural system, objective function that needs to be

minimized, and design constraints that must be imposed on the system.

Once the design problem has becn formulated, it is transcribed into the

following standard nonlinear constrained optimization model:

Find the set of n design variables contained in the vector b that will

minimize an objective function

Sb) 3.1
subject to the constraints
gd) <0, i=1,..m 3.2)
hfb) =0, i=1,.k 3.3
bi<b b, i=l..n (3.4)

where m = number of inequality constraints

k = number of equality constraints

b; = lower bound on the ith design variable

h? = upper bound on the ith design variablc
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3.2 DESIGN VARIABLES

Usually, the cost of formwork represents about fifty percent of the total cost
of a reinforced concrete frame [52,53]. Thus, it is obvious that any efforts made
to improve the economy of a concrete structural frame should be primarily
concentrated on reducing formwork costs. The cost of formwork is minimized by
simplifying and rcpeating the shapes to be formed as much as possible. Using
one column size for each story or for a number of stories and varying the
amount of reinforcement will simplify form construction. For a line of
continuous beams, keeping the beam size constant, even when loads and spans
differ, and varying the amount of reinforcement from span to span will also
simplify the construction of forms. In both cases, less labor will be used, fewer
supervisors and inspectors will be needed, and costs will bc lower. These ideas

are cmployed in this study as the basis of a general strategy for framc economy.

For the present formulation, cross-sectional dimensions and reinforcement
areas for columns and beams arc taken as design variables. Specifically, for
columns there exist three design variables: the width, b_, the cffective depth, d,,
and the longitudinal reinforcing steel area, 4. Also, for becams there exist threc
design variables: the width and the cffective depth of the web, b, and d,
respectively, and the tensile reinforcing steel arca, A.. For cach story, the design
variables pertaining to the concrete sections are linked, meaning that the column
widths are assigned the same design variable as well as each of the column
effective depths, beam widths, and bcam cffective depths. This gives practical
designs facilitating the use of repetitive formwork. For each story, there are only

two design variables pertaining to the reinforcing stecl. These are the

longitudinal rcinforcing steel arca in the most critical column and the tensile
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reinforcing steel area at the most critical location of bending moment in beams.
The steel areas in other columns and at other locations in beams are calculated
based on the respective moments and the widths and depths which are design
variables. As a result, each member will contain only the minimum amount of

steel required to satisfy the imposed constraints.

Therefore, there is a total of six design variables for each story. These are

arranged in the following order:

=
f

width of columns

)
I

.1+ = cffective depth of columns

>~
[

.1+, = longitudinal reinforcing steel area in the most critical column
213 = Width of beam webs

n1q = cffective depth of beam webs

> > >
|

.+s — tensile reinforcing steel area at the most critical location of

bending moment in beams

where n is a counter on the number of design variables. It starts with 1 for the
first story and increases by 6 for each consccutive story. Fig. (3.1) shows the

design variables for columns and beams at the ith story level.

3.3 OBJECTIVE FUNCTION

The objective function to be minimized is the total cost of the frame. It is
expressed in terms of concrete volume, steel weight, formwork surface area as
well as their unit costs. The total cost of a reinforced concrete plane frame can

be expressed as
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Figure 3.1 Decsign variables of reinforced concrete frame members:

Typical column (b) Typical beam.
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Cost = C + C

colwenns beams

where C,,,...= cost of columns for the whole frame

Cheams = cost of beams for the whole frame

and these can be written as

N, N, N,
Ccolumns = Ccnc_zl(Vcc— Vcr— l)i + Csncy:iZ‘(Va-_'- Vl)i + C/‘l CZ'(A‘J) i

and

N, N N,
Cheams = Ccan(Vbc— Ves— V)i CsnbysZ(Vbs+ V) + Cjnbz(Abf),
=1 i=1 i=1

where C, = cost of concrete per unit volume

C, = cost of steel, ties, and stirrups per unit weight

C, = cost of formwork per unit surface area
N, = number of storics

n, = number of columns per story
n, = number of beams per story

Y, = unit weight of steel

.« = volume of concrete in a column
V. = volume of longitudinal reinforcing stecl in a column
V, = volume of lateral ties in a column

A, = surface area of formwork for a column

V,. = volume of concrete in a beam

V,, = volume of tensile reinforcing steel in a beam

V. = volume of stirrups in a beam

A, = surface area of formwork for a beam

47
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For the present formulation, the number of columns per story as well as the
number of beams per story are kept constant assuming rectangular frames
which are the most common type in frame construction. The formulation,
however, can be generalized to treat variable number of columns and number of

beams per story.

The formulation of the objective function incorporates the concept of multi-
criteria optimal design. The following optimization alternatives may be obtained
as particular cases:

- minimum total cost design: C,=C,, C,;=C, C,=C;

- minimum concrete volume design: C,=1.0, C,=C;=0.0

- minimum steel weight design: C,=C,=0.0, C;=1.0

- minimum total volume design: C.=1.0, C,=1.0/y, C,=0.0

- minimum total weight design: C,=y,, C,=1.0, C;=0.0

- minimum formwork surface area design: C,=C,=0.0, C,=1.0

where y_ denotes the unit weight of concrete.

The various quantitics in Eqs (3.5) and (3.6) arc obtained below with
reference to Figs (3.2) and (3.3). All equations arc expressed in Inch-Pound

units.
a. Columns:

The volume of concrete in a column can be expressed as

Vcc = Agc Lu

(dy, +dy,)+2d )

= b (d+d) ( L— ;
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Figure 3.2 Typical column details.
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where A, = gross cross-sectional area of column
L, = unsupported length (clear height) of column
d& = concrete cover (to center of reinforcing steel bars)
L. = length of column between beam center lines
d,, = effective depth of beam web in the current story

d,, = cffective depth of beam web in the previous (lower) story

The volume of longitudinal reinforcing steel in a column can be written as

Vcs = A:t Lbars
=4A st (Lu + Linclined + Lsplices)
(dy, +d,,) +2d
=4A, (Lc— 5 +1.014(d,, +d') +30d,, 3.7
where L, . = length of longitudinal reinforcing stecl bars

L;, inea = length of the inclined portion of the steel bars

n

L

'splices

= length of splices
d, = diameter of longitudinal reinforcing steel bars

Eq. (3.7) is formulated for the most critical column in a story, i.e., the column

for which A, is a design variable. For other columns in the same story, the

longitudinal reinforcing steel area is calculated based on the respective moments

in those columns and is then substituted in Eq. (3.7).

For the present formulation, spiral columns arc avoided in favor of tied
columns. The weight of spirals is two or three times as much as the weight of
tics in a comparable column, and the cost of spiral steel is about twice the cost
of tic steel. Also, bars and machinery suitable for making spirals are not found

in cvery fabrication shop so dclivery of spirals in small quantitics may be
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declayed [43]. The volume of lateral tics in a column can be computed as follows:

V,=A,L,n

tie "t

dl Lu
= 4, [2(bc+dc+d')—8(d'—7’—d,)][-s_ + l]

= A, [2b.+d)—6d +4(d+ 2‘11)][% ( L~ (d,, +d,,) +2d ) N ]]

2

where A4, = cross-sectional area of bars used for ties

L. = length of one tie

n, = number of ties in one column
d, = diameter of bars used for ties
s, = vertical spacing of ties which shall not excced 16 longitudinal bar

diameters, 48 tie bar diamecters, or the least dimension of the

column [18].

Finally, the surface area of formwork for a column can be written as

Ay = 2Ab+d +d)L,

_(dy tdy)+2d )
2

= 2(bc+dc+d')(Lc

b. Beams:

The volume of concrete in a beam can be expressed as
Vie = Ay Ly,
=b,(d+d) L,
where A, = gross cross-scctional arca of beam

L, = length of beam between column center lines
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For the present formulation, the CRSI [57] recommended details for flexural
reinforcement are used. All recommended bar details use straight bars and meet
the ACI Code requirements for development of flexural reinforcement. Truss-
bent bars are climinated because bending increases fabrication and placing
costs. The volume of flexural reinforcing steel in a beam can be computed as

follows:

A.: L" L’l
Vo= \m3 )7

, ) (L, d-+d
= 4] [0875(L, — (d +d))+6]+(4; +A,2)(7— <

At . L d+d
2‘ (L, +12)+(4, +A:‘2)( 3" + ‘2 )

where A/ = positive flexural reinforcing stecl arca

A, A, = negative fiexural reinforcing steel areas (at the two ends of
the span: left and right, respectively)

L = clear span length

n

On one hand, 4, A, or A, could be the design variable b, , ; depending on
the magnitudes of the bending moment at the critical section locations
throughout the beam span length. On the other hand, nonc of them could be
that design variable if the maximum bending moment in the bcam is not the

most critical among all beams in the story.

The volume of stirrups in a beam can be written as

v o Avan:

— - v __ d-‘f _ i
= 4, [Z(bw+d,,+d') 3@ - dv)](sv + |) (3.8)

where A, = cross-sectional area of bars used for stirrups

L

v

length of onc stirrup
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X
[

number of stirrups in one beam

d,, = diameter of flexural reinforcing steel bars

d, = diameter of bars used for stirrups
[ = distance over which stirrups are distributed
s, = longitudinal spacing of stirrups

The magnitudes of s, and /in Eq. (3.8) depend on the shear design category.
If minimum shear reinforcement is required, then s, will be the smallest of
A f,/50b,, (in which £ is the yield strength of stirrup steel), d,/2 or 24 inches,
and / will be the distance from the face of the column to the point beyond which
shear reinforcement theoretically is no longer required, i.c., the point at which

V,=oV 2, where ¥V, is the shear force produced by the factored loads, ¢ is the

strength reduction factor, equals 0.85, and V, is the nominal shear strength

provided by concrete, equals 2./ /b, d, with 1’ being the specified compressive

strength of concrete. If, however, shear reinforcement must be provided, then

cach of s, and / will consist of two portions: s_, and s

Smim» @nd [ and [, .

X

According the ACI Code, if V, thc nominal shcar strength provided by the

stirrups, is not greater than 4./f’h d,, then s

“max?

the maximum spacing of

stirrups, will be the smallest of Ayfy/SObw, d,/2 or 24 inches. When V_ excceds
4./ f'b,d,, these maximum spacings are halved. In no case, is ¥, to exceed

8 f./b d,. The minimum spacing of stirrups, s which is required in the

min?

vicinity of a distance d, from the face of the column, is calculated from the

following relation with s equals s, :
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P Avfydb

oV

s = 3.9

The calculated s, ;. should be neither so small that placement problems would

result nor so large that maximum spacing criteria would control.

Knowing the maximum spacing of stirrups, Eq. (3.9) can be solved for the
excess shear, oV, for which a value for V,, call it’ V;, can be calculated. The
distance from the face of the column to the point at which V,= V; (referring to
Fig. (3.4)) is [ ;,, the distance over which stirrups are spaced with s, . And the
distance from the point at which ¥, =V, to the point at which V,=@V j2is [ _,

the distance over which stirrups are spaced with s__ .

Finally, the surface area of formwork for a bcam can bec computed as

follows:
Abf =b, L +2Ad,+d)L,

= b, (L, — (d+d))+2d,+d) L,

3.4 DESIGN CONSTRAINTS

3.4.1 Introduction

The constraints on the design consist of two types: structural constraints,
such as code requircments and serviceability criteria, and size limitation
constraints. Structural constraints are in accordance with the ACI 318-83 Code
provisions [I18]. Except for the explicit size limitations, all other constraints

depend on  the state variables (member forces) and arc therefore implicit
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Figure 3.4 Design of shear reinforcement.
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functions of the design variables. Each critical column has four constraints,
while each critical beam has nine constraints. In addition, there is one
compatibility constraint between beam web widths and column widths.
Therefore, there is a total of fourteen constraints for each story. All structural
constraints are expressed as inequality constraints. There are no equality
constraints in this formulation. Al constraints are presented in the normalized

form, i.e., in the form of Eq. (3.2).

3.4.2 Structural Constraints
3.4.2.1 Column Constraints
a. Geometric Constraint:

For the present formulation, columns may be square or rectangular. In
order to ensure that the width of the column will not exceed its depth (which is
assumed to be in the direction of bending), the column dimensions are

constrained by

f _ - 1050
dc+d’

b. Strength Constraint:

The ACI Codce establishes adequate safety margins for columns by applying
overload factors to the service loads and strength reduction factors to the

nominal ultimate strengths. Thercfore, P, < ¢P, is a basic safcty criteria, where

P, is the factored axial load at a given cccentricity, P, is the nominal axial
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strength at a given eccentricity, and ¢ is a strength reduction factor, equals 0.70

for tied columns.

For columns with very small or zero calculated eccentricities, the ACI Code
recognizes that accidental construction misalignments and other unforescen
factors may produce actual eccentricities in excess of these small design values.
Also concrete strength under high, sustained axial loads may be somewhat
smaller than the short-term cylinder strength. Thercfore, regardless of the
magnitude of the calculated eccentricities, the ACI Code limits the maximum

design strength to 0.80¢ P, for tied columns. Here, P, is the nominal strength of

the axially loaded column with zero eccentricity. This results in
P <(0.80)0.70)P,

where

Py =085f/ (A, —A)+A,f,
= 0851 (b{d . +d) — A} +A,f,
Thus, the foregoing constraint can be rewritten as
P s (0.80)(0.70)[(0.85) /] '{bc(dc+d') - A."} +A4 fy ]
or, in the normalized form

_ QAL ) ~ A HOS6A, S,
P <

u

1.0

This constraint establishes the minimum size of the column. Here, P, is the

factored axial load on the most critical column in a story and is obtained from

the analysis. The sign of P, is corrected if tension exists in the column because

after it is obtained from the analysis, its absolute value is taken and used in the

foregoing constraint. Thus, the compression constraint remains applicable.
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¢. Minimum Reinforcing Steel Area Constraint:

Columns that are concentrically compressed occur rarely, if ever, in
reinforced concrete construction. They mainly carry loads in compression, but
simultaneous bending is almost always present. Bending moments are caused by
continuity, i.e., by the fact that columns are parts of monolithic frames in which -
the support moments of the beams are partly resisted by the abuiting columns;
by unbalanced floor loads, and by transverse loads such as wind forces. Even
when design calculations show a column to be loaded purely axially, inevitable
imperfections of construction will introduce eccentricities and consequent
bending in the column as built. For this rcason, columns must be designed on
the basis of the interaction between combined bending and axial load. However,
since the axial load has direct influence on the moment capacity of the column,

and vice versa, there is no simple way of uncoupling the two effects.

Fig. (3.5) shows a strength interaction diagram typical for reinforced
concrete columns. Since a single curve represents only one reinforcing steel ratio,
a family of curves can be drawn for varying quantities of steel and placed on
the same diagram. This is done for 2 percent and 6 percent steel (different steel
quantity curves fall roughly linearly between these two). The ACI Code allows

the steel ratio to vary from a minimum of 1 percent to a maximum of 8 percent.

To establish the constraint for minimum steel area required to resist the
applicd moments, one must resort to the interaction diagram, Fig. (3.5). Since
the P-A cffect is directly included in structural analysis, the moment
magnification concept is not employed in the following procedure. To establish

the required constraint, it is nccessary to write the required steel ratio p, in



oh /A
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Figure 3.5 Schematic of an interaction diagram typical for reinforced concrete
columns (r =reinforcing steel ratio, p,).
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terms of the applied factored moment A, . This can be done [37,38] by observing

that in the ductile range for typical interaction diagrams the required steel ratio
varies linearly with the applied moment. Since most interaction diagrams express

the applied moment as a nondimensional quantity, this can be expressed as

where 4 is the column dimension in the direction of bending, equals d,+d4". But

p, can be easily expressed in terms of the design variables as

A
p = 5t
& bh
Therefore, the final constraint is given as
1.0 - A <0
. Y
0.02b (d_+d) +0.048—=

d+d

c

Here, M, is the factored bending moment applied on the most critical column in

a story and is obtained from the analysis.

d. Maximum Reinforcing Steel Area Constraint:

To ensure that the column steel ratio p, docs not cxceed the ACI Code limit
P max OF & percent, the following constraint is imposed:
pg < pg max
Expressing both of them in terms of the design variables and putting in the

normalized form, the final constraint can be written as
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A
= - 1.0<0
0.08b (d_+d)

3.4.2.2 Beam Constraints
a. Geometric Constraints:

Reinforced concrete beams may be wide and shallow requiring compression
steel, or relatively narrow and deep with no compression steel. Consideration of

maximum material economy often leads to proportions with effective depth 4, in
the range from about 1.5 to 2.0 times the web width b,. This results in the

following constraints:

a
1.0 - —2— <o
1.56
and
d
b
- 1.0<0
2.0b

b. Flexural Capacity Constraint:

All beams are designed to ensure that thec moment produced by factored

loads M, does not exceed the available flexural design strength @M, of the cross
section at any point along the length of the beam. Here, ¢ cquals 0.90, and M,

is the nominal moment capacity of the cross section. Mathematically, this can be

written as

M, <oM_ (3.10)

According to the ACI Code, the design strength in flexure of a cross section
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(without compression reinforcement) may be expressed as

= _a
oM_= w[A:f;,(d,, 2 )] G.11)
where a is the depth of the equivalent rectangular stress block, and can be

computed by

_ A 3.12
“ 7 085h, (12)

Substituting Eqs (3.11) and (3.12) into Eq. (3.10) gives the following constraint:

A S

M, < 0.9[AS £~ #)]

or, in the normalized form
A f
0.9 s/y <
0 - == ——SY yi<0
S [Asfy @, l.7fc’bw)]

u

Here, M, is the factored negative bending moment at the most critical location

in beams in a story and is obtained from the analysis.

¢. Minimum Reinforcing Steel Area Constraint:

On occasion, architectural or functional considerations may require beam
dimensions to be set much larger than those required for flexural strength.
Becausc of the large arm between the components of the internal couple, a beam
of this type may require a very small arca of rcinforcement. As a result, its
nominal flexural strength may be less than the cracking moment of the cross
section. If the cracking moment in a beam of this type is cver exceeded, ¢.g., by
accidental overload, the beam will fail suddenly by rupture of the steel. To

prevent such brittle failure, a lower limit is established for the steel ratio. The
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ACI Code sets this limit to

200
min f‘;
Thus, the following constraint can be imposed on the beam steel ratio p:
P2 Py
Expressing p in terms of the design variables and putting in the normalized

form, the final constraint can be written as

A f,

1.0 - —2—
2006 d,
wbh

<0

d. Maximum Reinforcing Steel Area Constraint.

In order to have reasonable assurance that concrete beams fail in a ductile
manner under flexure, the ACI Code limits the amount of tension steel to not

more than 75 percent of the amount in the balanced strain, that is,

pmax - 0'75pb
where
1! 87,000
Py = 083 "n[m‘]
y y
in which

0.85 fc' — 4000 5
= 0.85 - 0.0} ——— 20.6
B' 3 1000

for £’ greater than 4000 psi, and 0.85 for £ less than 4000 psi. This limitation

will provide adequate ductile behavior for most designs. Onc condition where
greater ductile behavior is required is in design for redistribution of moments in

frames. Since moment redistribution is dependent on adequate ductility in hinge
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regions, the ACI 318-83 Commentary [56] limits the amount of tension steel in
hinging regions by
= 0.5p,

pmax

Thus, the following constraint can be imposed:
p < pmax
Expressing p in terms of the design variables and putting in the normalized

form, the final constraint can be expressed as

— 1020
0.5p,6 d,

e. Shear Strength Requirement Constraint:

According to the ACI Code procedures, the design of beams for shear is to

be based on the relation
V. .seV, (3.13)
in which V, is the nominal shear strength of the cross section, equals to the sum

of the contributions of the concrete and the shear reinforcement if present.

The designer may wish to establish the beam web size to achieve a certain
maximum nominal shear stress. This may be desirable for economical stirrup

sizec and spacings. A practical guideline for ordinary design is to use
V.=4,/fbd,, typically permitting stirrup spacing from 3 inches to a maximum

of d,/2.

Thus, the total V, is

V.=V +V,
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= 2\/-Tc’bwdb + 4\/fbwdb
= 6J1b.d, (3.14)

If Eq. (3.14) is substituted into Eq. (3.13), the following constraint can be
imposed:

Vu < (96‘/]:-’[’";‘15
or, in the normalized form

S'I‘U::'bwdb .
—y ¢

u

1.0 0

Here, V, is the factored shear force in the most critical beam in a story and is

obtained from the analysis.

f- Beam Crack Width Constraint:

As a reinforced concrete beam deflects under flexure, the tension side of the
beam cracks wherever the low tensile strength of the concrete is exceeded. The
more the beam deflects, the greater the length and width of cracks. Although
cracking cannot be prevented, it is possible by careful detailing of the steel to
produce beams that develop narrow, closely spread cracks in preference to a few

wide cracks.

Excessive cracking of the concrete that covers the reinforcement is of
considerable concern: the protection of the reinforcement from the environment
depends on the integrity of the concrete cover. The acceptable width of flexural

cracks in service depends mostly on the conditions of exposure.

To control beam crack width under flexure, the ACI Code requires cross
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sections of maximum positive and ncgative moment to be so proportioned that
the quantity z given by

z=f.da" (3.15)
does not exceed 175 Kkips/inches for interior exposure and 145 Kips/inches for
exterior exposure. These values correspond to maximum crack widths of 0.016
inches and 0.013 inches, respectively. In Eq. (3.15), f, is the steel stress to be
taken as 60 percent of the specified yield strength f, d, is the thickness of
concrete cover measured from the tension face to the center of bar closest to
that face, and A is the concrete area surrounding onc bar, equals to total
effective tension arca of concrete surrounding the tension reinforcement and

having the same centroid as that reinforcement, divided by the number of bars.

For beams with main flexural reinforcement in one layer, a convenient
design aid can be developed, based on Eq. (3.15). With reference to Fig. (3.6),

the total tensile area of concrete equals 2d.h,. Because only one layer of steel

exists, d, equals &'. Thus the tensile arca per bar is

where n1_ ;. is the minimum number of bars in the single layer of reinforcement

at top or bottom of bcam, sct by the designer. The CRSI Handbook [57]

provides tables that can assist the designer to choosc a suitable n_, .

Eq. (3.15) can then be rewritten as

n .
min

2 1/3
2Ad')’h
z = 0.0006f | ——=

Using the limit for exterior exposurc which is more critical. the following
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Figure 3.6 Dimensional notation for beam crack width constraint.
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constraint can be imposed:

2 13
0.0006 | 24)b,

145 °» n

min

- 10=<0

2. Minimum Beam Width Constraint:

In regard to the placement of steel bars within the beam width, it is
necessary to maintain a certain minimum distance between adjacent bars in
order to ensure proper placement of concrete around them. Air pockets below
the steel are to be avoided, and full surface contact between the bars and the
concrete is desirable to optimize bond strength. The ACI Code spccifies that the
minimum clear distance between adjacent bars shall not be less than the

nominal diameter of the bars, or 1 inch.

To ensure that the steel area required for flexure will fit in the beam width
within the aforementioned standard spacing rcquircments, an approximate
relation between stecl area and beam width was derived [37,3R] from standard
rebar data. This relation can be written as follows:

172

424

b =60+ 2(n -1 2
r max ntn

max

where b, is the width required to accommodate the stcel area within the
standard spacing requirements, and n,_,, is the maximum number of bars at top

or bottom of beam, set by the designer. The ACI Detailing Manual [58] provides

tables that can assist the designer to choosc a suitable n_,,.
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Knowing b,, the following constraint can be imposed:

b <bh
r w
or, in the normalized form
_ Tl

424
6.0 + 2(n -1 2

max nn

max -10<0
- b
w

h. Deflection Requirement Constraint:

To be dcesigned properly, reinforced concrete beams must have adequate
stiffness as well as strength. Under service loads, deflections must be limited so
that attached nonstructural elements, e.g., partitions, doors, windows, pipes, and
plaster ceilings, will not be damaged or rendered inoperative by large deflections.
Obviously floor beams that sag excessively or vibrates as live loads are applied
are not satisfactory. It is important, therefore, to maintain control of deflections,
in one way or another, so that members designed mainly for strength at

prescribed overloads will also perform well in normal service.

There are two approaches to deflection control, both acceptable under the
provisions of the ACI Code. The first is indirect, and consists of sctting suitable
upper limits on the span-depth ratio. In the sccond, it is essential to calculate
deflections, and to compare those predicted values with specific limitations that

arc imposed by the code.

In reinforced concrete design, there is no such thing as exact calculated

deflections. Calculations can, at best, provide a guide to probable actual
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deflections. This is so because of uncertainties regarding material properties,
effects of cracking, and load history for the member under consideration.
Extreme precision in deflection calculations, therefore, is never justified, because

highly accurate results arc unlikely.

This leaves us with the first approach in which the ACI Code limits
deflections by placing restrictions on the minimum depth of the beam. This
approach eliminates the nced to compute deflections and controls deflections by
requiring that beam depths not be less than a specified fraction of the span
length. This is true only for those cases where partitions, ceilings, and other
nonstructural elements are not being supported. Otherwise, deflections must be
computed. It is assumed here that only walls are being supported. Minimum
depths for a variety of common support conditions are given in the ACI

Building Code [18].

For continuous beams, the ACI Code sets the minimum thickness to L,/18.5
if one end only is continuous, and L,/21 if both ends are continuous. For

reinforcement having a yield point other than 60,000 psi, these values are

multiplied by 0.4 +//100,000 with f in psi. Since each story contains one-end as
well as both-end continuous beams, it is requircd to determine a suitable ratio,
R, that takes these variations into account. Let us denote the span length of the
leftmost beam in a story by /j, the span length of the rightmost beam by /,, and
the maximum span length among intermediate bcams by /,. According to the
aforcmentioned prescribed limits, the greater of /; and /, should be divided by
18.5, and [, should be divided by 21. Now, the greater of these represents the

required ratio R. Thus, the final constraint is given as
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(d,*+ )

1.0 —
roa+—_2
" 100,000

<0

3.4.2.3 Compatibility Constraint

An important compatibility constraint is imposed to ensure that the width
of the columns at a given story is not less than the corresponding beam width to
allow continuation of beam reinforcing steel bars through the columns. In the
normalized form, this constraint can be written as

bc 0
10— —=<
b

w

3.4.3 Size Limitation Constraints

These are upper and lower bounds imposed on beam and column
dimensions, and reinforcing steel areas, based on architectural and/or
geometrical criteria. Such constraints have many different names in the
literature, such as the side constraints, technological constraints, and simple
bounds. All these names explain clearly the nature of this type of constraints.

Mathematically, they can be represented by Eq. (3.4).
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CHAPTER 4

RCFOPT SOFTWARE

4.1 GENERAL

Based on the structural analysis methods discussed in Chapter 2 and the
formulation presented in Chapter 3, an optimization system for reinforced
concrete frames has been developed. The system is called RCFOPT (Reinforced
Concrete Frame OPTimization system). It is capable of analyzing and designing
economical reinforced concrete rectangular frames of moderate height according

to the ACI 318-83 Code provisions [18].

The general flow chart shown in Fig. (4.1) illustrates the structure of
RCFOPT. At the heart of the system are the USER subroutines which contain
the objective function and the constraint function expressions. These
subroutines represent the link between the two main phases of the optimization
process: the analysis phase (RCFRAME) and the optimal design phase
(IDESIGN). The optimization process as a whole consists of cycling between

those two phases in an iterative fashion until the optimum is reached.

4.2 ANALYSIS PHASE (RCFRAME)
4.2.1 Introduction

The analysis phase operates through the program RCFRAME (Reinforced
Concrete FRAME analysis). RCFRAME consists of a main program that uses
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Figure 4.1 Genceral structure of RCFOPT program.
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a series of subprograms to perform the detailed calculations. It is written in
structured, double precision FORTRAN 77. The program was developed on the
IBM 3090-150E mainframe computer of the Data Processing Center at King
Fahd University of Petroleum and Minerals. However, it is completely system

independent.

RCFRAME can be used aside from the optimal design phase to analyze a
given framed structure. The program can handle building frames of the size
which is commonly encountered in engineering practice. Up to ten-bay, ten-story
frames can be analyzed. The program can perform first-order elastic analysis,
second-order elastic analysis, and second-order inelastic analysis. A variable
called TELAST is set in the input data file to 1, 2, or 3 to designate those

analyses, respectively.

4.2.2 Input Data

RCFRAME works in a batch mode of computation. The user has to
prepare an input data file describing the material properties and costs, and the
geometric layout of the frame as well as the loading. RCFRAME makes no unit
conversions during the analysis. All input data must have consistent units. The
data can be input in either SI or US customary units. However, the latter must
be used when RCFRAME is employed in the optimization system RCFOPT
because the objective function as well as the constraint functions are all
expressed in terms of US customary units. The input data file has a free
format, i.e., all READ statements in the program are not formatted cxcept when
rcading characters. This makes it casicr to input the data and climinates a lot of

potential errors. A sample input data file is presented in Appendix 1.
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4.2.3 Program Operation

4.2.3.1 Introduction

The primary mathematical task involved in the stiffness analysis of framed
structures consists of solving a set of n simultaneous linear algebraic equations
for n unknowns. For a plane frame with NN nodes, the number of equations
which must be solved is 3NN, since there are threc degrees of freedom at each
node. If the full structure stiffness matrix is stored in computer memory in a
square array, the total number of elements which must be stored will be equal
to the square of the number of equations. This number increases very rapidly
with an increase in the size of the structure. For example, for a plane frame with
50 nodes the structure stiffness matrix will contain 22,500 clements, while for a
frame with 100 nodes this number increases to 90,000. Since eight bytes are
required in FORTRAN to store a double precision real number in memory, in
either personal computers or mainframe computers, the corresponding memory

requirements are 180,000 and 720,000 bytes, respectively.

On the IBM PS/2 and compatible systems, FORTRAN compilers limit the
amount of memory for any dimensioned array or any COMMON area to a
maximum of 64K bytes or 65,536 bytes. With these limits, one will start running
into storage problems for a plane frame with just 31 nodes. Even on many
mainframe computers one cannot do a great deal better. Therefore, a computer
program which stores the full structure stiffness matrix in memory is severely
limited in the size of structure it can handle. Since it is the objective of this
study to develop a program that can be used to analyze and design building
frames of the size which is commonly encountered in practice, it is necessary to

devisc a way to conserve computer memory during program exccution.
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It was shown in Chapter 2 that the primary unknowns in stiffness analysis,

i.c., the free nodal displacements, can be solved for as follows:

= < _
D, = Ser (Arc SFRDR)
While it is symbolically convenient to imply inversion of the stiffness matrix Ser

in the above equation, it is not efficient to actually calculate S;'F in a computer

program. The number of arithmetic steps involved in the process of matrix
inversion increases very rapidly with the size of the matrix. For large framed
structures, the time spent to invert the matrix can be impractical, particularly on
small computers. Therefore, a more efficient scheme for solving the equations is

needed.

Fortunately, the structure stiffness matrix has two properties which can help
in solving the storage and equation-solving problems discussed above. First, the
matrix is always symmetric. Therefore, valuable computer memory space would
be wasted if all of the .elcments in the matrix were stored. By storing elements on
the main diagonal and above, the memory size requirements will be greatly

reduced. This can lead to significant savings for large frames.

The second property of the structure stiffness matrix which can be
advantageous is that, for many structures, the majority of the matrix elements
are with zero magnitude. In addition, the nonzero elements can often be
grouped into a relatively narrow band around the main diagonal by proper
numbering of the degrees of freedom. Therefore, considerable computer memory

can be saved by only storing the upper half-band of the matrix.

Some storage schemes and corresponding equation-solving procedures have

been developed to take advantage of the symmetric banded property of the
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structure stiffness matrix. The scheme employed in RCFRAME is the

rectangular upper half-band storage scheme.

4.2.3.2 Rectangular Upper Half-Band Storage Scheme

Figure (4.2a) shows the elements in the upper half-band of an arbitrary
stiffness matrix in their original positions in a square array, while Fig. (4.2b)
shows the same elements stored in a narrow rectangular array. Although the
new storage array still has the same number of rbws, the number of columns has
been reduced by more than three times. This latter number is usually called the
half-band width or simply the band width of the matrix. The actual reduction
percentage which can be achieved depends upon the connectivity of the
members and the numbering scheme used for the degrees of freedom at the two

end of the member.

During the analysis of any ‘structure, the analyst has no control over the
connectivity of the members, but there is complete control over the numbering
of the degrees of freedom. The minimum half-band width will be obtained by
numbering the nodes so that the absolute difference in the node numbers at the
two ends of each member is a minimum. This is generally achieved by
numbering the nodes sequentially across that side of the structure which has a
smaller number of nodes. The half-band width associated with any member

which connects the two nodes N1 and N2 is
MHOBW = (IABS (N2 — N1) + 1) * NDFN

where MHBW is thc member half-band width and NDFN is the number of

degrees of freedom per node. The matrix half-band width will be the largest
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Figure 4.2 Rectangular upper half-band storage scheme.
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number obtained for MHBW after considering all of the members in the

structure.

The rectangular array storage scheme results in the main diagonal of the
matrix being stored in the first column of the array. The elements to the right of
the main diagonal, in each matrix row, are stored sequentially in each row in the
array. This results in the elements in each column of the matrix, above the main
diagonal, being stored in a sloped arrangement extending upward to the right
from the left column of the rectangular array. One of the tasks involved in
writing a computer program which uses this storage scheme is to develop a
bookkeeping procedure which can be used to relate the locations of the elements
in the matrix to the locations of the elements in the rectangular storage array.
To simplify the bookkeeping, the unrestrained stiffness matrix Sge is initially
generated. Only the elements corresponding to the unrestrained degrees of
freedom are computed. The matrix is then adjusted so that the computed
displacements at the restrained supports are zero. The location of the elements
in the rectangular array are then determined and the assembly process is
performed. The matrix is checked after it has been totally generated, to ensure
that all elements on the main diagonal are nonzero. If a zero diagonal element is
found, the matrix is considered to be singular and cxecution of RCFRAME is

terminated.

The stiffness matrix generated in the form of Fig (4.2b) is factored and the

solution for D is obtained in forward and backward sweeps. The topics of

factorization and solution are covered in [45].

After the free nodal displacements have been calculated, the member end
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actions A,, are obtained from the relationship

Ay = Ay + S, R.D

and the analysis is then complete.

4.2.4 Output Data

RCFRAME generates an output file that contains a summary of the input
data as well as tables listing final member sizes, recommended reinforcement,
and, if desired, member end actions. A sample output file is presented in

Appendix 3.

4.3 OPTIMAL DESIGN PHASE (IDESIGN)

It has been stated before that thc optimal design problem of reinforced
concrete frames is highly nonlincar. Both the objective function as well as the

constraints are nonlinear functions of the design variables.

Many numerical methods have been developed to solve the general
nonlinear programming problem. The methods start from an initial design
provided by the user which is iteratively improved until the optimum is reached.
Many of these methods have been incorporated into gencral-purpose design
optimization software packages. One such package is IDESIGN (Interactive
DESIGN optimization of engineering systems) [49,50,51]. IDESIGN consists of
a main program and several standard subroutines that need not be changed by

the user. It is written in structured, double precision FORTRAN 77.
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In order to solve a problem through IDESIGN, the user must describe it by
coding the following four FORTRAN subroutines:

USERMF: Minimization (cost) Function evaluation subroutine

USERCEF: Constraint Functions evaluation subroutine

USERMG: Minimization (cost) function Gradient evaluation subroutine

USERCG: Constraint function Gradient evaluation subroutine

A fifth subroutine, USEROU, may also be provided by the user to perform

post-optimality analyses for the optimal solution and obtain more OUtput. The

user can call his own subroutines through the above subroutines. All of the user-

supplied subroutines must be compiled and linked to IDESIGN to create an

executable code with IDESIGN controlling the flow.

IDESIGN can solve any general nonlinear programming problem

formulated as given in Egs (3.1) to (3.4), linear programming problems and

unconstrained problems. It can treat equality, inequality, and design variable

bound constraints. The following algorithms are available:

1.
2.
3.

Cost function bounding (CFB) algorithm.

Pshenichny’s linearization method (LINRM).

Sequential quadratic programming (SQP) algorithm that generates
and uses approximate second-order information for the Lagrange
function; this algorithm has been also called recursive quadratic
programming (RQP) algorithm in the literature.

A hybrid method that combines the cost function bounding and the
sequential quadratic programming algorithms.

Conjugate gradient method for unconstrained problems.
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IDESIGN is used in this study to solve the nonlinear programming
problem. The optimization process as a whole consists of cycling between two
distinct phases defined as analysis and optimal design in an iterative fashion

until the optimum is reached. Figure (4.3) shows the structure of IDESIGN.

IDESIGN can be used in an interactive or batch mode of computation. It
has been designed to accommodate both beginners and experienced users. The
beginner can respond to one menu at a time as guided by the on-line instruction.
The expert can prepare an input data file and thus bypass immediate menus.
The program requires minimal input data for the problem; the user must
provide the initial design, lower and upper limits on design variables, problem
parameters, and the parameter values to invoke various options available in the

program. A sample input data file is presented in Appendix 2.

The following capabilities to evaluate gradients and check gradient
expressions are available:

I.  1f the user does not program gradient expressions in USERMG and
USERCG subroutines, the program has an option to automatically
calculate them. The finite difference method (forward, backward, or
central) is employed using the specified value of § (input data).

2. An option is available to determine the optimum value'of d for the
finite difference gradient evaluation of cost and constraint functions.

3. If the user has programmed gradient expressions in USERMG and
USERCG subroutines, an option is available to verify them, i.e., the
gradient evaluation is checked using the finite difference approach. If
the gradient expressions are in error, an option is available to either

stop the program or continue its execution.
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These options have proven to be extremely useful in many practical

applications.

The complexity of the problem under investigation makes it very
cumbersome to calculate the gradients analytically. Numerical evaluation of the
gradients is commonly used and practically justified in such a problem with
adequate accuracy being obtained. Therefore, USERMG and USERCG

subroutines are provided empty.

Several levels of output can be obtained from IDESIGN. This is specified in
the input data. The minimum output giving the final design, design variables
and constraint activities, and histories of cost function, convergence parameter
and maximum constraint violation, can be obtained. More detailed information
at each iteration can also be obtained. The detailed output is used primarily for
decbugging the program. A sample minimum output data file is presented in

Appendix 4.



86
CHAPTER 5

DESIGN EXAMPLES

S.1 GENERAL

To exploit the various capabilities of RCFOPT program, a three-bay, five-
story reinforced concrete frame is studied. The frame is designed according to
the different objective function criteria available in the program. The minimum
total cost design criterion is adopted as a reference case (Case 1). Other cases
are obtained and are compared with Case 1. All cases, except the last one (Case
8), are solved using second-order elastic analysis with no moment redistribution,

i.e., using IELAST to be equal to 2.

All cases are solved using the recursive (sequential) quadratic programming
algorithm available in the IDESIGN software package [49,50,51]. The CPU
times reported are for double preciSion calculations on IBM 3090-150E
mainframe computer in time sharing environment at the Data Processing

Center, King Fahd University of Petroleum and Minerals.

5.2 PROBLEM DESCRIPTION

The three-bay, five-story reinforced concrete frame in Fig. (5.1) is to be
designed for the loading shown. The load values indicated in the figure are
assumed to define the factored-load level in accordance with the American

National Standards Institute (ANSI) Minimum Design Loads for Buildings and
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Other Structures [59]. Material unit costs are based on recent average market

prices [60]. Complete input data files are presented in Appendices 1 and 2.

5.3 PROBLEM SOLUTION

The number of design variables for this problem is 30, and the number of
constraints (excluding 60 explicit design variable bound constraints) is 70. The
frame is designed according to the different objective function criteria available

in RCFOPT program. The following case studies are performed:

Case I:  Minimum total cost design

Case 2:  Minimum concrete volume design

Case 3:  Minimum steel weight design

Case 4:  Minimum total volume design

Case 5:  Minimum total weight design

Case 6: Minimum formwork surface area design
Case 7:  Zero-cost formwork design; IELAST =2
Case 8:  Zero-cost formwork design; IELAST =3

For the sake of comparison, optimum column and beam design variables for the
different cases are presented in Tables (5.1) and (5.2), respectively. Below are

some obscrvations on each case.

Case 1

The frame is designed according to the minimum total cost design criterion,

ic, C,=80.08/yd’, C,=0.3858$/lb, and C,=2.8 $/ft>. Second-order elastic



Table 5.1 Optimum column design variables for different cases.
Story | Design Case 1 Case2 | Case3 | Case 4
No. variable

; 14.137 14.147 13.146 14.147

| A 11.836 11.647 17.879 11.647
A, 12.495 15.602 11.848 12.570

. 13.726 13.729 13.160 13.729

2 A 11.226 11.229 11.518 11.229
o 12.148 15.092 11.362 12.891

. 13.386 13.385 12.611 13.385

3 A 10.886 10.885 10.111 10.885
A, 11.025 13.659 9.969 | 11.641

. 13.095 13.094 12.374 13.094

4 A 10.595 10.594 9.874 | 10.594
o 10.124 12.765 8.725 10.606

b, 12.096 12.095 12.048 12.095

5 A 9.596 9.595 9.548 9.595
A, 8.538 | 11.266 8.280 8.625

b, and d, are in inches
A, is in square inches
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Table 5.1(Cont.) Optimum column design variables for different cases.

Story | Design Case5 | Case6 | Case7 | Case8
No. variable

. 14.147 14.147 13.542 13.019

| A 11.647 11.647 14.599 16.115

ot 12.536 12.589 11.928 11.860

A 13.729 13.729 13.636 13.206

2 A 11.229 11.229 11136 10.706

st 12.162 | 12.346 11.744 11.680

. 13.385 13.385 13.400 12.858

3 A 10.885 10.885 10.900 10.358

" 11.028 11.032 11.029 10.849

. 13.094 13.094 12.985 12.378

4 A 10.594 10.594 10.485 9.878

A, 10.126 10.171 9.904 9413

. 12.095 12.095 12.104 11.751

5 A 9.595 9.595 9.604 9.251

o 8.541 8.755 8.495 8.363

b. and d, are in inches
A, is in square inches
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Table 5.2 Optimum beam design variables for different cases.

Story | Design Case 1 Case2 | Case3 | Case 4
No. variable

v 14.137 14.147 13.146 14.147

| d, 21.208 | 21.221 24592 | 21.221

A 5.502 5.517 4.244 5.517

w 13.726 13.729 13.160 13.729

2 d, 20.619 | 20.594 | 23.722 -| 20.594

s 4.960 4.965 4.261 4.965

w 13.386 13.385 12.611 13.385

3 d, 20.079 | 20.078 | 24.868 | 20.078

A 4.534 4.533 3.633 4.533

w 13.095 13.094 12.374 13.094

4 d, 19.643 19.641 23.879 19.641

. 4.184 4.183 3.377 4.183

b, 12.096 12.095 12.048 12.095

5 d, 18.144 18.143 18.420 18.143

A 3.092 3.091 3.043 3.091

b, and d, are in inches
A_ is in square inches

5
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Table 5.2(Cont.) Optimum beam design variables for different cases.

Story Design Case5 | Case6 | Case7 | Case 8
No. variable

b, 14.147 14.147 13.542 13.019

| d, 21.221 21.221 23.420 | 22.662

s 5.517 5.517 4.727 4.094

w 13.729 13.729 13.636 13.206

2 d, 20.594 | 20.594 21.098 20.784

. 4.965 4.965 4.846 4.315

w 13.385 13.385 13.400 12.858

3 d, 20.078 20.078 20.100 | 20.422

A 4.533 4.533 4.551 3.909

v 13.094 13.094 12.985 12.378

4 d, 19.641 19.641 20.287 20911

N 4.183 4.183 4.056 3.381

w 12.095 12.095 12.104 11.751

5 d, 18.143 18.143 18.155 17.627

A 3.091 3.091 3.099 2.749

b, and d, are in inches
A is in square inches

¥
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analysis is used with no moment redistribution. The optimal design and the

history of the iterative design process are given in Appendices 3 and 4.

Starting from an infeasible design with a maximum constraint violation of
52.5%, the program takes I8 iterations to converge to an optimal design. At the
optimal point, the objective function value is $18953.2. Almost all of the design
variables pertaining to concrete dimensions are close to their lower bounds. The
active constraints on columns are those imposed on column geometry and its
minimum reinforcing steel area. Strength constraints do not have much effect on
columns for this case. For beams, the active constraints are those imposed on
the geometry, flexural capacity, crack width, and minimum width for steel
accommodation. The column/beam compatibility constraint is always active.

The CPU time for this case is 203 seconds.

Case 2

The frame is designed according to the minimum concrete volume design

criterion, i.e., C,=1.0, and C:=Cf=0.0. Second-order elastic analysis is used

with no moment redistribution.

At the optimal point, the objective function value is 38.4 yd3. The actual
cost of this design is $19264.6, i.e., more than the cost of Case 1 design by 1.6%.
Almost all of the design variables pertaining to concretc dimensions are close to
their lower bounds as in Case 1. Therefore, there is not much change in the
concrete dimensions for this case compared to Case |. The amount of steel,
however, increases by 25% with the major portion of this increase happening in

columns. Because of this increase, the constraint imposed on the minimum
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column reinforcing steel area is no more active and is replaced by the constraint
on the maximum reinforcing steel area with the geometrical constraint being still
active. The active constraints on beams are the same as in Case 1. Moreover,

the column/beam compatibility constraint is always active as in Case .

Case 3

The frame is designed according to the minimum stecl weight design

criterion, i.e., Cc=Cf=0.0, and C,=1.0. Second-order elastic analysis is used

with no moment redistribution.

At the optimal point, the objective function value is 19566.8 Ib. The actual
cost of this design is $19461.3, i.e., more than the cost of Case 1 design by 2.7%.
The amount of steel decreases by 8% in columns and 16% in beams. This is
accompanied by an increase of 4% in column cross sectional areas (mainly in
the first story) and 11% in beam cross sectional areas. The active constraints on
columns and beams are not much changed from Case 1. The column/beam

compatibility constraint is always active as in Case 1.

Case 4

The frame is designed according to the minimum total volume design
criterion, i.e., C,=1.0, C;=1.0/y,=7.6 x 10° yd*/Ib, and C,=0.0. Sccond-order

elastic analysis is used with no moment redistribution.

At the optimal point, the objective function value is 40.0 yd®. The actual

cost of this design is $18997.6, i.c., approximately cqual to the cost of Case I
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design. Almost all of the design variables pertaining to concrete dimensions are
close to their lower bounds as in Case 1. Therefore, there is not much change in
the concrete dimensions for this case compared to Case 1. The amount of steel
increases by 4% with the major portion of this increase happening in columns.
The active constraints on columns and beams are not much changed from Case

I. The column/beam compatibility constraint is always active as in Case 1.

Case 5

The frame is designed according to the minimum total weight design
criterion, i.e., C,=y,=4050.0 Ib/yd®, C,=1.0, and C,=0.0. Second-order elastic

analysis is used with no moment redistribution.

At the optimal point, the objective function value is 175976.6 ib. The actual
cost of this design is $18956.4, i.e., approximately equal to the cost of Case |
design. The design variables are close to those obtained in Case I. The active

constraints are the same as in Case 1.

Case 6

The frame is designed according to the minimum formwork surface area

design criterion, i.e., C,=C,=0.0, and C,=1.0. Sccond-order elastic analysis is

used with no moment redistribution.

At the optimal point, the objective function value is 2880.5 ft2. The actual
cost of this design is $19424.4, i.e., more than the cost of Casc 1 design by 2.5%.

Almost all of the design variables pertaining to concrete dimensions are close to
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their lower bounds as in Case 1. Therefore, there is not much change in the
concrete dimensions for this case compared to Case 1. The amount of steel
increases by 5% with the major portion of this increase happening in columns.
The active constraints on columns and beams arc not much changed from Case
.. Moreover, the column/beam compatibility constraint is always active as in

Case 1.

Case 7

The frame is designed while neglecting the cost of formwork, i.e.,
C.=80.0 $/yd*, C,=0.385$/Ib, and C,=0.0. Second-order clastic analysis is

used with no moment redistribution.

At the optimal point, the objective function value is $10831.0, i.e., the cost
of the frame decreases by 43% which shows the effect of formwork on the total
cost of reinforced concrete frames. The amount of stcel decreases by 2% in
columns and 4% in beams. This is accompanied by an increase of 4% in column
cross sectional areas (mainly in the first story with squarc columns bcing
replaced by rectangular columns) and 3% in beam cross sectional areas. the
active constraints on columns and beams are not much changed from Case 1.

The column/beam compatibility constraint is always active as in Case 1.

Case 8

All of the seven cases above have been performed using second-order elastic

analysis with no moment redistribution. In this case, moment redistribution will
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be utilized in the analysis and design of the frame in order to assess its effect on
the optimal design. The frame is designed while neglecting the cost of formwork
(similar to Case 7) in order to eliminate the effect of formwork on the design

variables.

At the optimal point, the objective function value is $10455.0, i.e., less than
the cost of Case 7 design by only 3.5%. However, the program takes 51% more

CPU time than Case 7 in order to converge to an optimal design.

Because the net effect of moment redistribution is a reduction in both
negative and positive bending moments, it is logical to have a reduction in beam
dimensions and reinforcement areas. Geometrical configurations of columns
have slight changes while their reinforcement areas are not much changed. The

active constraints are the same as in Case 7.

S.4 CONVERGENCE OF THE PROBLEM

To observe the effect of different starting designs on the convergence of the
problem, two widely separated starting designs are used to start the iterative
design process. For the first starting point all the design variables are at their
lower bounds and for the second point they are all at their upper bounds. Both
starting points converge to the same optimum solution with almost the same
values for design variables and objective function. The active constraints are the

same as in Case 1.

Table (5.3) gives the number of iterations, CPU times, and costs of the two

designs. The convergence (cost history) is shown in Fig. (5.2).



Table 5.3 Convergence of different starting designs.

Starting No. of CPU time Cost

design iterations (seconds) (dollars)
LB 18 203 18953.50
UB 24 266 18955.21

LB means lower bounds
UB means upper bounds
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5.5 DISCUSSION

The capability of RCFOPT program to generate different designs for a
particular reinforced concrete frame has been investigated. It has been proven
that the minimum total cost criterion is the most economical design criterion for
reinforced concrete frames. All other criteria have generated designs that are
more expensive than the design generatcd by the minimum total cost
criterion.This conclusion supports the choice of this criterion for the problem

formulation in this study.

The effect of formwork on the total cost of reinforced concrete frames has
been investigated. It has been proven that the cost of formwork comprises the
major portion of the total cost of frames. Therefore, any efforts made to
improve the economy of a reinforced concrete frames should be primarily
concentrated on rcducing formwork cost. This has been the basis of a general

strategy for frame economy in this study.

Two widely separated starting designs have been tried to observe their effect
on the convergence of the problem. For the first starting point all the design
variables were at their lower bounds and for the second point they were all at
their upper bounds. Both starting points have converged to the same optimum
solution with almost the same values for design variables and objective
functions. However, the number of iterations, and consequently the CPU times
were different. This shows that the starting dcsign cstimate for the iterative
process affects the rate of convergence of an optimization algorithm, while it
should not affect the optimum solution. A good starting dcsig'n can be obtained
after some preliminary analyses. It is desirable to use such a starting design for

the optimization algorithm because this can save substantial computational
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effort especially for large-scale problems.

While analysis and design using moment redistribution generates lower-cost
reinforced concrete frames than with no moment redistribution, it is believed
that the reduction in cost does not justify the extra computational effort to reach
an optimum solution. For the case of the three-bay, five-story reinforced
concrete frame studied above, there was a 3.5% reduction in cost while the CPU

time increased by 51%.
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CHAPTER 6

APPLICATIONS OF RCFOPT SOFTWARE

6.1 GENERAL

In addition to being a design optimization package for reinforced concrete
frames, RCFOPT can be used in two other ways. It can be used to develop
design aids in the form of equations and graphs for the preliminary design of
reinforced concrete frame members. Furthermore, RCFOPT can be used as a
research tool for studying the behavior of reinforced concrete frames at the
optimal point under different geometric conditions, material properties, and

loadings.

This chapter is divided into two main parts. The first part presents the
findings of twenty five optimal design cases performed on a three-bay, five-story
reinforced concrete frame in order to study the variations of column and beam
dimensions and reinforcement ratios under different combinations of beam span
lengths and service live loads. Based on those findings, some general guidelines
for the preliminary design of reinforced concrete frame members are developed
and tested. In the second part of the chapter, a behavioral study is performed
on a four-bay, ten-story reinforced concrete frame in order to study the actual
configuration of the frame at the optimal design and to assess the optimal
variations of the design variables under a multitude of conditions involving
changing number of storics, lateral (wind) loads, and aspect ratios. Finally, the

effect of the number of bays on hc the optimum cost of reinforced concrete
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frames is investigated.

The recursive (sequential) quadratic programming algorithm available in
IDESIGN is used exclusively. The CPU times reported are for double precision
calculations on IBM 3090-150E mainframe computer at the Data Processing

Center, King Fahd University of Petroleum and Minerals.

6.2 GENERAL DESIGN GUIDELINES
6.2.1 Introduction

In the previous chapter, it has been shown that RCFOPT program can take
any frame design specified by the user and iteratively refine it to obtain an
optimal design. The efficiency of this iterative process depends on the starting
preliminary design. A satisfactory preliminary design saves many analysis and
design cycles and consequently reduces the time required to reach an optimal
solution. Therefore, it is prudent to develop some guidance as to how to obtain
good starting points so that designers, even those who have no access to the

program, can generate economical framed structures in less time.

6.2.2 Model Description

The same threc-bay, five-story rcinforced concrete frame utilized in the
previous chapter and shown in Fig. (5.1) is used to develop the aforementioned
guidelines. For many years, most reinforced concrete buildings have been in the
low- to medium-risc range. Figure (6.1) shows the perccntages of buildings

constructed in 1983 in the United States in terms of different building height
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Figure 6.1 Percentages of buildings constructed in 1983 in the United States in

terms of different building height categories.
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categories [52]. From this it can be readily seen that the vast majority of the
volume of construction is in the one- to three-story range. There is no indication
that this trend has changed since then. Therefore, a five-story building seems

reasonable for the development of general design guidelines.

Concrete compressive strength and steel yield streﬁgth are 4 ksi and 60 ksi,
respectively. Both material strengths are readily available in the market place
and will result in members that are durable and perform well structurally.
Design live loads are in accordance with the American National Standards
Institute Minimum Design Loads for Buildings and Other Structures [59].

Material unit costs are based on recent average market prices [60). The cost of
concrete is taken as 80.0 $/yd>, the cost of steel is 0.385 $/lb, and the cost of

formwork is 2.8 $/ft>.

Beam span lengths are varied from 15 ft to 35 ft with 5 ft increments.
Service Live loads arc varied from 50 psf to 150 psf with 25 psf increments.

Therefore, a total of 25 optimal design cases are studicd.

6.2.3 Development of the Guidelines
6.2.3.1 Introduction

This section presents the findings of the twenty five optimal design cases
mentioned above. Based on these findings, the proposed guidelines are
developed for beams and then for columns. Their accuracies are checked and
they arc applied to a four-bay, four-story reinforced concrete frame in order to

ascertain their generality.
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6.2.3.2 Optimal Beam Depth Expression

Table (6.1) summarizes the variations of the optimal beam span to depth

ratio L,/d, with the change of span length for different service live loads. The

results are plotted in Fig. (6.2). It can be readily seen that, for span range from
20 ft to 35 ft, the variations are essentially lincar. Case studics on the 15-ft span
have shown that beam dimensions are controlled mainly by geometric rather
than strength constraints at such short span. For this span and for low live
loads, the beam dimensions hit the lower bounds on the design variables making

the L,/d, ratio always constant. Because of its effect on the general variation of

the curves, the 15-ft span case is disregarded.

The variations in Fig. (6.2) can now be expressed in the form of linear
equations, i.c.,
L,
d— = CI Lb + C2
b
where C, and C, are constants. The constants C, and C, can be determined by
linearly fitting the points of Fig. (6.2). Figure (6.3) presents results of that

fitting for various live loads. For the live load of 50 psf as an example, C, and
C, are 0.28223 and 9.6101, respectively. Therefore,

Lb
—2 =0.28223 L. + 9.6101
d, b

is the equation of optimal beam depth for that live load. Obviously, the
constants C; and C, will be different for different live loads. Thus, there is a
different cxpression for each live load. For the live load of 75 psf, the equation

is:



Table 6.1 Values of L,/d, as obtained from computer results.
Live load (psf)

s 75 100 125 150

15° | 12.000 | 12.000 | 12.000 | (2.000 | 11.921
207 | 15.094 | 14.724 | 14458 | 14.201 | 13.954
25" | 16854 | 16484 | 16.129 | 15790 | 15.464
30 | 18.182 | 17.734 | 17.391 17.143 | 16.744
35| 19355 | 18919 | 18.502 | 18.182 | 17.872
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Lb
-2 = 027670 L, + 9.3560
d, b

For the live load of 100 psf, the equation is:

L,
— = 0.26788 L, + 9.2532
d b
b
For the live load of 125 psf, the equation is:
L

b _
7{)— =0.26592 L, + 9.0161

For the live load of 150 psf, the equation is:

Lb
—b = 026068 L_ + 88398
4, b

Each pair of C, and C, is plotted with respect to service live load and fitted

lincarly as shown in Figs (6.4) and (6.5). The figures give the expressions for

each of C,(LL) and C,(LL) as functions of service live load.

The expression for optimal beam depth is now:
L,
—‘Tb- =C(L)) L, + C,(LL)

With the values from lincar fittings shown in Figs (6.4) and (6.5), the following

expression can be obtained:

L

d—" =(~22x10"LL +029223) L, + (— 7.5x 107 LL + 9.96720)
b

This expression can be written in a simpler form as:

Ly
db

I

(=22x10°LL +029) L, + (= 7.5%10° LL + 9.97)
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where L,/d, is dimensionless, LL is in psf, and L, is in ft.

The above expression is applicable when the spacing between frames is 12
ft. In order to generalize that expression to be applicable for any spacing, a
factor of S/12 should be incorporated, where S is the spacing between frames in

ft. Thus, the final form of the optimal beam depth expression can be written as:

b 4 S
— =(—-22x107LL{—) +029)YL +
= () + o,

(- 7.5%10° LL (%) +9.97) ©.1)

6.2.3.3 Accuracy of Optimal Beam Depth Expression

The accuracy of the optimal beam depth expression is checked by
comparing some L,/d, values picked up from the computer results with the
values calculated from Eq. (6.1). Comparison of the values of optimal L,/d,
ratio for two different live loads and for three different span lengths is given in
Table (6.2). The maximum error between values obtained from the equation and
exact optimal values is 1.5%. For the entire range of live loads and span
lengths, values from the equation and values picked up from the computer
results agree fairly closely. Thus, Eq. (6.1) is fairly accurate and can be used for

the calculation of optimal beam depth in the preliminary design stage.

6.2.3.4 Optimal Beam Reinforcement Ratio Expression

Table (6.3) summarizes the variations of the optimal becam reinforcement

ratio p with the change of span length for different service live loads. The



Table 6.2 Accuracy of beam depth expression.
75 psf 125 psf
b EQ | CR |ERR| EQ | CR |ERR
20" | 14878 | 14.724 | 1.1% | 14.283 | 14.201 | 0.6%
25" 1 16.245 | 16484 |-1.5% | 15.595 | 15.790 {-1.2%
30" | 17.613 | 17.734 |-0.7% | 16.908 | 17.143 |-1.4%

EQ means L,/d, is obtained from equation

CR means L,/d, is obtained from computer results

ERR means percetage error between the two values

I3



Table 6.3 Values of p (%) as obtained from computer results.

_ Live load (psf)
b 50 75 100 125 150
15| 0667 | 0667 | 0757 | 0845 | 0.908
200 1035 | L3 | owim | o122t | 1265
25 | 1362 | 1419 | 1478 | 1543 | 1.597
300 | 1656 | 1707 | 1756 | 1819 | 1.870
35 | 1.897 | 1948 | 2023 | 2066 | 2.102
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results are plotted in Fig. (6.6). It can be readily seen that, for span range from
20 ft to 35 ft, the variations are essentially linear. The 15-ft span case is
disregarded because of its effect on the general variation of the curves especially

at lower live loads.

The variations in Fig. (6.6) can now be expressed in the form of linear
cquations, i.e.,
p=C L, +C,
where C; and C, are constants. The constants C, and C, can be determined by

linearly fitting the points of Fig. (6.6). Figure (6.7) presents results of that
fitting for various live loads. For the live load of 50 psf, the cquation of optimal

beam reinforcement ratio is:
p=58x10"L, —9.6x107
For the live load of 75 psf, the equation is:
p=56x10"L +99x10°
For the live load of 100 psf, the equation is:
p=57x10>L, +48x107
For.thc live load of 125 psf, the equation is:
p=56x10"L, +0.11626
For the live load of 150 psf, the equation is:

p=56x102L + 0.17798
b

Each pair of C, and C, is plotted with respect to service live load as shown

in Figs (6.8) and (6.9). The plots can be approximated by two straight lines for
a rcasonable fit. The figures give the expressions for each of C\(LL) and C(LL)
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as functions of service live load.

The expression for optimal beam reinforcement ratio is now:
p=CJ(LL)YL, + C(LL)
Using values from the linear fitting shown in Figs (6.8) and (6.9), the following

expression can be obtained:

p=(-16x10°LL +0.05814) L, + (2.6 x10° LL — 0.21050)

Generalizing for any frame spacing, the above expression can be written in a

simpler form as:

-5 S
=( - 1. —} + 0. +
p=(—-16x10 LL(IZ) 006)Lb

(2.6x10° LL (%) - 021) (6.2)

where p is a percentage, LL is in psf, and both of L, and S are in ft.

6.2.3.5 Accuracy of Optimal Beam Reinforcement Ratio Expression

The accuracy of the optimal beam reinforcement ratio expression is checked
by comparing some p values picked up from the computer results with values
calculated from Eq. (6.2). Comparison of the values for two different live loads
and for three different span lengths is given in Table (6.4). For the entire range
of live loads and span lengths, the error between values from the equation and
values picked up from the computer results is quite small. The maximum error
is 4.4%. Thus, Eq. (6.2) can be used for the calculation of optimal beam

reinforcement ratio.



Table 6.4 Accuracy of beam reinforcement ratio expression.

75 psf 125 psf
b EQ | CR |ERR| EQ | CcR |ERR
200 | 1161 | 1113 | 43% | 1275 | 1221 | 4.4%
25 | 1455 | 1.419 | 2.5% | 1.565 | 1.543 | 1.4%
30° | 1749 | 1707 | 2.5% | 1.855 | 1.819 | 2.0%

EQ means p is obtained from equation
CR means p is obtained from computer results

ERR means percetage error between the two values
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6.2.3.6 Determination of Beam Web Width

Having determined the beam depth and its reinforcement ratio, what
remains to complete the design is to determine the beam web width. This can be
achieved by observing the active constraints on beams at the optimal point. In
almost all of the twenty five optimal design cases, it has been noted that the

constraint on beam crack width which is

0.0006 _ | 2@, "
=1 ~10<0

145 n

min

and the constraint on minimum beam width for steel accommodation which is

_qin
4.24
60+2n - 1) =
max nn
rax -10<0

b

w

are always active. These constraints are directly related to the beam web width.

The web width can be directly obtained from the former constraint and then
be checked with the latter constraint to see which one of them controls. In all
cases, the d,/b, ratio should be maintained between 1.5 and 2.0, preferably on

the lower side.

6.2.3.7 Column Design Chart

The main design aid adopted by the ACI Code [18] for the proportioning of
columns are the interaction curves. The designer estimates the gross cross
sectional arca of the column, carry out the structural analysis and determine the

axial load and the maximum moment in the column. Using the interaction
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curves, the designer then reads the required value of the reinforcement ratio P
If p, falls within the I to 8 percent limits established by the ACI Code, the

design is complete. Otherwise, the dimensions must be readjusted and the

analysis and design repeated.

Sclecting a suitable initial estimate for the gross area depends primarily on
the cxperience of the designer. Even experienced designers cannot estimate the
minimum required gross area needed to satisfy the ACI Code requirements.
Therefore, a design chart for columns that is based on optimal design concepts

will be very valuable for designers.

All of the twenty five optimal design cases performed to develop these
guidelines have generated columns that are square rather than rectangular. In
addition, the column/beam compatibility constraint has been active in all of the
cases making column widths identical to beam widths. Since beam widths are
already known from before (Section 6.2.3.6), therefore column widths are also
known. And since all columns are square, onc ends up with the dimensions of

columns at hand.

What remains to complete the design of columns is to determine the

required values of the reinforcement ratio pe- In order to achieve that, the

results of the twenty five optimal design cases are utilized. Each case generates

five different combinations of P, and M, making thc total number of
combinations 125 each of which could represent specific p, at specific P, for
certain eccentricity e, where e=M,_/P,. By lumping several combinations of P,
and e for the same values of pg» normalizing e by dividing it by &, and plotting

the results, one cnds up with the curves shown in Fig. (6.10). Figure (6.10)
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Figure 6.10  Decsign chart for reinforced concrete columns.
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gives the column reinforcement ratio in percentage for a given factored axial

load at a given e/h. And now the column design is complete.

Several points have been checked and compared between Fig. (6.10) and the
ACI interaction curves. The saving in the amount of steel achicved by using Fig.

(6.10) has been found to be in the range from 10% to 16%.

6.2.4 Design Example

The above design guidelines have been developed using a three-bay, five-
story reinforced concrete frame. In order to ascertain the generality of these
guidelines, a four-bay, four-story reinforced concrete frame is designed using the
same material strengths, unit costs, and column heights. Beam span lengths are
taken to be 22 ft. The applicd service live load is 85 psf, and the spacing

between frames is 14 ft.

Comparison between values obtained from the computer results and those

obtained using the guidelines have shown the following facts:

1. The maximum percentage difference in the value of the beam effective
depth is 2.5%.

2. The maximum percentage difference in the value of the beam
reinforcement ratio is 3.0%.

3. The maximum percentage difference in the value of the column

reinforcement ratio is 3.8%.

Therefore, the developed design guidelines are fairly accurate and can be used

for the preliminary design of reinforced concrete frame members.
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6.3 BEHAVIORAL STUDY

6.3.1 Introduction

In order to demonstrate the utilization of RCFOPT software as a rescarch
tool, a behavioral study is performed on a four-bay, ten-story reinforced
concrete frame. The configuration of the frame at the optimal design is studied.
Then, the optimal variations of the design variables are investigated under a
multitude of conditions involving changing number of stories, lateral (wind)
loads, and aspect ratios. All studies are performed using second-order .elastic

analysis with no moment redistribution.

6.3.2 Model Description

Figure (6.11) shows the layout of the four-bay, ten-story reinforced concrete
frame which is used for this study. The geometric dimensions and the loadings
are similar to those of the three-bay, five-story frame shown in Fig. (5.1).

Material strengths and costs are also the same.

The number of design variables for this problem is 60, and the number of
constraints (excluding 120 explicit design variable bound constraints) is 140. The
program takes 20 iterations to converge to an optimal design; the convergence

(cost history) is shown in Fig. (6.12). The CPU time is 2424 seconds.

6.3.3 Optimal Frame Configuration

To study the actual configuration of the ten-story frame at the optimal

design, one needs only to investigate the design variables. Tables (6.5) and (6.6)
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Figure 6.11 Layout of the four-bay, ten-story frame.
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Figure 6.12 Cost history of the ten-story frame problem.
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Table 6.5 Column design variable variations

for the ten-story frame.

Story b, d, A,
No.
{ 14.4 232 | 29.617
2 14.6 20.1 26.456
3 14.5 17.6 | 23.365
4 14.3 15.3 | 20.293
5 14.0 13.0 17.123
6 13.9 1.4 13.433
7 13.7 11.2 12.633
8 13.4 109 | 11.692
9 13.2 10.7 10.936
10 12.1 9.6 9.374

b, and d_ are in inches
A,, is in square inches
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Table 6.6 Beam design variable variations

for the ten-story frame.

iltg‘ry b, d, A
f 14.4 224 5.651
2 14.6 22.0 6.179
3 14.5 21.8 6.038
4 14.3 214 5.708
5 14.0 214 5.345
6 13.9 21.0 5.158
7 13.7 20.5 4.897
8 134 20.2 4.603
9 £3.2 19.9 4.298
10 12.1 13.1 3.072

b, and d, are in inches

A

5

is in square inches
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summarize the variations of these variables with story level for columns and

beams, respectively. These variations are plotted in Figs (6.13) to (6.16).

Figure (6.13) shows column dimension variations with story level. It can be
readily scen that the changes in column depths are much more than the
corresponding changes in column widths up to the fifth story after which they
take the same trend. This behavior agrees with what is done in practice where
column widths are usually fixed and depths are changed to meet strength
requirements. One can also see that rectangular columns dominates in the lower
five stories after which columns become square. Column reinforcement area
variations are shown in Fig. (6.14). It can be noted that the changes in
reinforcement areas correspond closely to the changes in depths. All design
variables move to their lower bounds at the roof level. This configuration of the
columns implies that in the lower five st()-ries, column dimensions are governed
mainly by strength requirements, while in the upper five stories, columns can be

proportioned on the basis of geometric considerations alone.

Figure (6.15) shows beam dimension variations with story level. It can be
noted that the ratio of beam depths to beam web widths is almost always
constant due to the geometric constraints imposed on this ratio. Moreover,
beam web widths and column widths (shown before in Fig. (6.13)) vary
identically due to the compatibility constraint which is almost always active.
The variations in beam reinforcement areas are shown in Fig. (6.16). It can be
readily scen that beam reinforcement peaks at the second story because of
higher bending moments in the beams compared to the first story. This behavior
has been obtained before by Spires and Arora [37,38]. All design variables move

to their lower bounds at the roof level.
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6.3.4 Effect of Number of Stories on Columns

To study the effect of different number of stories on the variations of
column design variables, four reinforced concrete frames of different number of
stories are investigated: a four-story frame, a six-story frame, an cight-story
frame, and a ten-story frame. Tables (6.7) through (6.9) summarize the

variations of the design variables with story level.

Figure (6.17) shows column depth variations for the four frames. It can be
seen that as the number of stories decreases, the change in the magnitude of
depths between any two stories also decreasc. Moreover, the changes in the
magnitude of depths between any two stories in the lower stories are much more
than the changes in the upper stories for all frames except for the four-story
frame where the changes are almost equal. This suggests that column
dimensions are governed by strength requirements at lower stories in higher
frames, while at upper stories, geometric considerations control the sizes of
columns. For lower frames, such as the four-story frame, geometry controls
column dimensions in all stories. A similar behavior is exhibited by column
reinforcement arcas as shown in Fig. (6.18). The variations in column

reinforcement ratios are plotted in Fig. (6.19).

Additional insight regarding the variations of column design variables can
be gained by studying the active column constraints at the optimal design.
Figure (6.20) shows the activity of various column constraints. The variation of
the constraints conforms with the structural response of frames under uniform
and lateral loads. As the number of stories in a frame incrcases, axial forces and
bending moments on the lower columns also increase, making the constraints on

strength and maximum reinforcement ratio active. On the other hand, it can be



Table 6.7 Column depth variations for frames of
different number of stories. -

Story Number of Stories
No.
4 6 8 10
1 11.2 14.6 18.4 23.2
2 10.9 1.5 15.6 20.1
3 10.5 10.9 13.8 17.6
4 9.9 10.5 12.5 153
5 -—- 10.3 10.9 13.0
6 ---- 9.7 10.8 114
7 -—-- e 10.5 112
8 -—-- ---- 9.6 109
9 -—-- - -—-- 10.7
10 -—-- ---- ---- 9.6

Column depths are in inches
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Table 6.8

Column reinforcement variations for frames

of different number of stories.

Story Number of stories
No.
4 6 8 10
1 10.269 17.106 | 23828 | 29.617
2 10.066 14.135 | 20626 | 26.456
3 9.085 | 11.366 | 17.067 | 23.365
4 8222 | 10.377 13.002 | 20.293
5 9479 | 11.901 17.123
6 8.643 | 11.128 13.433
7 10.265 12.633
8 9.010 | 11.692
9 10.936
10 9.374

Column reinforcement areas are in square inches
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Table 6.9 Column reinforcement ratio (%) variations
for frames of different number of stories.

Story Number of stories
No.
4 6 8 10
1 5471 7.145 7.973 8.003
2 5.606 7.316 8.025 3.018
3 5.376 6.330 7.533 8017
4 5.347 6.140 6.374 7.972
5 - 5.786 6.628 7.891
6 - 5.807 6.291 6.953
7 - - 6.074 6.731
8 --—-- -—-- 6.154 6.512
9 ---- - ---- 6.276
10 -—-- -—e- --- 6.403
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Figure 6.17 Column depth variations for frames of different number of stories.
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seen from the figure that the constraints on the geometry and the minimum
reinforcing steel ratio form a band going up as the number of stories increase
which implies that, due to the decrease in axial forces and bending moments at
upper stories, geometry and minimum reinforcement ratio constraints start to

control the proportioning of columns.

6.3.5 Effect of Lateral (Wind) Load on Beams

To study the effect of lateral (wind) load on the variations of beam design
variables, the same four-bay, ten-story frame of Section (6.2.2) is utilized. The
original lateral load is taken as the reference load (Wind Load Factor,
WLF=1.0). Three other cases are investigated: WLF=0.0, WLF=0.5, and
WLF =L.5. Tables (6.10) through (6.12) summarize the variations of the design

variables with story level.

Figure (6.21) shows beam depth variations. Although the case of
WLF=0.0, in which it is assumed that no wind forces act on the ten-story
building, is purely theoretical, it does raise an interesting point. In the figure, it
can be seen that in all the cases, except when WLF=0.0, beam depths
expectedly decrease with increasing story number. When WLF is taken to be
0.0, beam depths actually increase with story number. Some thought into the
structural response of the frame explains this behavior. Because the frame is
subjected to uniform loads only with no lateral loads, axial forces decrease
rapidly with height causing column depths to decrcase while widths are almost
constant. Consequently, the stiffness ratio of columns decrcase with height,
whilc joints are still subjected to the same moments induced by the uniform

loads. Since distribution of loading at joints occurs according to the stiffness



Table 6.10 Effect of lateral (wind) load on beam depth

variations for the ten-story frame.

Story Wind load factor
No.

0.0 0.5 1.0 1.5
1 19.5 20.6 224 248
2 19.3 20.7 22.0 235
3 19.3 20.6 21.8 229
4 19.4 20.4 214 22.5
5 194 20.3 214 220
6 19.6 20.5 210 21.9
7 19.9 20.1 20.5 21.0
8 19.7 19.8 20.2 20.5
9 19.8 19.8 19.9 20.1
10 18.0 18.0 18.1 18.2

Beam depths are in inches
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Table 6.11 Effect of lateral (wind) load on beam reinforcement
variations for the ten-story frame.
Story Wind load factor
No.
0.0 0.5 1.0 1.5

I 3.427 4.446 5.651 6.686
2 3.474 4.779 6.179 7.311
3 3.618 4.758 6.038 7.162
4 3.727 4.689 5.708 6.765
5 3.750 4.625 5.345 6.222
6 3.840 4.461 5.158 5.572
7 3.840 4.403 4.897 5.307
8 3.925 4.300 4.603 4.880
9 3.923 4.108 4.298 4.420
10 2.987 3.028 3.072 3.131

Beam reinforcement areas are in square inches
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Table 6.12 Effect of lateral (windj load on beam reinforcement
ratio (%) variations for the ten-story frame.

Story Wind load factor
No.
0.0 0.5 1.0 1.5
1 1.352 1.564 1.752 1.797
2 1.395 1.673 1.924 2.020
3 1.453 1.686 1.910 2.044
4 1.489 1.690 1.865 2.004
5 1.498 1.675 1.784 1.924
6 1.496 1.636 1.767 1.792
7 1.508 1.647 1.744 1.805
8 1.545 1.645 1.701 1.738
9 1.536 1.596 1.636 1.653
10 1.383 1.402 1.403 1.422
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Figure 6.21 Effect of lateral (wind) load on bcam depth variations for the ten-
story frame (WLF = Wind Load Factor).
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ratio, beam depths and reinforcement areas (shown in Fig. (6.22)) have to
increase to take care of the difference in moments. Beam reinforcement ratios

are shown in Fig. (6.23); they take the same trend as the reinforcement areas.

6.3.6 Effect of Aspect Ratio on Optimal Frame Configuration

The effect of the aspect ratio, or ratio of building height to its width, on
optimal frame configuration is studied in this section. A four-bay, ten-story
reinforced concrete frame is used in this study. The building height is kept
constant at 132 ft while the width is varied by varying beam span lengths from
15 ft to 35 ft with 5 ft increments. Therefore, five different aspect ratios are
considered: 2.20, 1.65, 1.32, 1.10, and 0.94. Tables (6.13) to (6.15) and (6.16) to
(6.18) summari:ze the variations of the design variables with story level for

columns and beams, respectively.

Column width and beam width variations are shown in Figs (6.24) and
(6.28), respectively. They vary almost identically duec to the column/beam
compatibility constraint. It can be noted that at high aspect ratios, the changes

in widths are much more.than the changes at lower aspect ratios.

Column depth variations are shown in Fig. (6.25). It can be seen that as the
aspect ratio increascs, i.e., as the stiffness of the building decreases, the changes
in the magnitude of depths between any two storics decrease. Moreover, the
changes in the lower stories are much more than the changes in the upper
stories. A similar behavior is exhibited by column reinforcement areas as shown
in Fig. (6.26). Such behavior can be explained by studying the active column

constraints at the optimal points. Figure (6.27) shows the activity of various
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Figure 6.22 Effect of lateral (wind) load on beam reinforcement variations for
the ten-story frame.
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Figure 6.23 Effect of lateral (wind) load on beam reinforcement ratio
variations for the ten-story frame.



Table 6.13 Effect of aspect ratio on column width
variations for the ten-story frame.

Story Aspect ratio
No. -

2.20 1.65 1.32 1.10 0.94
1 13.5 13.8 14.4 15.7 16.2
2 13.3 13.8 14.6 15.7 15.7
3 13.1 13.7 14.5 15.6 15.7
4 129 13.5 14.3 15.6 15.7
5 12.5 13.2 14.0 154 15.7
6 12.1 12.8 13.9 14.7 15.6
7 11.6 12.4 13.7 14.3 15.7
8 11.0 12.1 134 14.1 15.7
9 10.5 11.8 13.2 14.0 154
10 10.0 10.8 12.1 134 14.9

Column widths are in inches
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Table 6.14 Effect of aspect ratio on column depth
variations for the ten-story frame.

Story Aspect ratio
No.

2.20 1.65 1.32 1.10 0.94
1 15.7 19.8 232 279 34.2
2 14.9 18.6 20.1 259 3L.5
3 13.7 15.5 17.6 21.7 27.6
4 124 14.1 15.3 IR.S 23.7
5 11.3 12.4 13.0 15.7 19.9
6 10.1 11.2 11.4 15.5 18.6
7 9.1 9.9 11.2 11.8 13.6
8 85 9.6 10.9 11.6 13.2
9 3.0 9.3 10.7 1.5 129
10 1.5 83 9.6 10.9 12.4

Column depths are in inches
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Table 6.15 Effect of aspect ratio on column reinforcement
variations for the ten-story frame.

151

Story Aspect ratio
No.
2.20 1.65 1.32 1.10 0.94
1 14.769 18.984 29.617 38.142 47.630
2 13.172 16.001 26.456 32.981 42.667
3 12.543 14.756 23.365 30.194 37.773
4 11.798 12.214 20.293 26.272 32913
5 10.849 11.746 17.123 22.356 28.069
6 9.719 11.098 13.433 16.459 20.877
7 8.602 10.187 12.633 14.236 17.092
8 7.380 9.151 11.692 13.645 16918
9 6.114 8.143 10.936 12.815 15.766
10 4.649 6.459 9.374 12.713 17.015

Column reinforcement areas are in square inches



Table 6.16 Effect of aspect ratio on beam width
variations for the ten-story frame.

Story Aspect ratio
No.

2.20 1.65 1.32 1.10 0.94
1 13.5 13.8 14.4 15.7 15.7
2 13.3 13.8 14.6 15.7 15.7
3 13.1 13.7 14.5 15.6 15.7
4 12.9 13.5 14.3 15.6 15.7
5 12.5 13.2 14.0 154 15.7
6 12.1 12.8 13.9 14.7 15.6
7 11.6 12.4 13.7 14.3 15.7
8 11.0 12.1 13.4 14.1 15.7
9 10.5 11.8 13.2 14.0 15.4
10 10.0 10.8 12.1 13.4 14.9

Beam widths are in inches
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Table 6.17 Effect of aspect ratio on beam depth
variations for the ten-story frame.

Story Aspect ratio
No.

2.20 1.65 1.32 1.10 0.94
1 20.8 20.7 224 239 28.2
2 20.0 20.7 22.0 24.1 28.6
3 19.7 20.5 21.8 239 28.5
4 19.3 20.2 214 234 28.0
5 18.8 19.7 214 234 274
6 18.2 19.1 210 24 4 278
7 17.4 18.6 20.5 25.2 28.1
8 16.5 18.2 20.2 24.7 27.5
9 15.8 17.7 19.9 243 27.6
10 15.0 16.2 18.1 20.1 22.3

Beam depths are in inches
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Table 6.18 Effect of aspect ratio on beam reinforcement
variations for the ten-story frame.

Story Aspect ratio
No.

2.20 1.65 1.32 1.10 0.94
1 4.641 5.024 5.651 6.587 6.854
2 4.406 5.081 6.179 6.986 7.267
3 4.209 4.925 6.038 6.982 7.380
4 3914 4.635 5.708 6.878 7.387
5 3.554 4.266 5.345 6.717 7.505
6 3.105 3.798 5.158 6.027 7.159
7 2.610 3.434 4.897 5.621 6.987
8 2.063 3.122 4.603 5.475 6914
9 1.707 2.806 4.298 5.280 6.676
10 1.016 1.910 3.072 4.551 6.561

Beam reinforcement areas are in square inches
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Figure 6.24  Effect of aspect ratio on column width variations for the ten-story
frame (AR = Aspect Ratio).



40

156

= AR = 0.94
35 --AR = 1.10
= AR =1.32
?30 = AR = 1.65
= 5 AR = 2.20
£ 25
Q
[
e
| -
EZ
3
]
© 15
10
= [ § [ ]
1 2 3 5 6 9
Story No.

Figure 6.25 Effect of aspect ratio on column depth variations for the ten-story

frame.



157

50

45 -=- AR = 0.94
---AR = 1.10

40 =+ AR =132
S = AR = 1.65
¢ AR = 2.20

-

Column reinforcement (sq. in.)
N N W W

1 L
S 6 7

Story No.

10

N
(oY)
N
fov]
©

Figure 6.26 Effect of aspect ratio on column reinforcement variations for the
ten-story frame.



158

10-x = X u X u X B X u A
- X = X m X 8 X u X =
8-x=m X u X u X = X W
- X = X ®m X ® X W O X ® 0
o
Z bFx = X B X B O m O = 0
>
o - X m m o X O A O A o A
n
41 = " o o A ©o A o A
- [ ] o o A O A o A
2 & | X Geometry o O A o A o A
 Min. reinforcament
- M | O Strength (o] O A O A O A
A Max. reinforcement
0 T T T T
2.20 1.65 1.32 1.10 0.94
Aspect ratio

Figure 6.27 Active column constraint variations for the ten-story frame under
deifferent aspect ratios.



159

18¢—
16 -—\.-——-—I——’\’\-
<
~1
£
o
z
E12
o
D 1 leAR=110
= AR = 1.32
10
= AR = 1.65
[ 1 AR = 2.20
8 [ 1 [ ] § 1 1 ] 1 1
1 2 3 4 5 6 7 8 9 10

Story No.

Figure 6.28 Effect of aspect ratio on beam width variations for the ten-story
frame.



160
column constraints. It can be seen that at higher aspect ratios, the constraints
on the geometry and the minimum reinforcing steel ratio dominate, and they
shift upward as buildings become stiffer. The constraints on the strength and
the maximum reinforcing steel ratio are more active for stiffer buildings where
axial forces and bending moments coming from the longer beams to columns are

much more than for buildings of lower stiffness.

Figure (6.29) shows beam depth variations for the different aspect ratios.
Beam reinforcement area variations are shown in Fig. (6.30). It can be noted
that as buildings become stiffer, the change in the magnitude of beam
reinforcement areas between any two stories decreases which is expected because
the effect of wind forces on stiffer buildings is much less than their effect on

buildings of lower stiffness.

6.4 EFFECT OF NUMBER OF BAYS ON FRAME COST

To study the effect of different number of bays on the cost of reinforced
concrete frames, a one-story frame that could be an industrial building is
considered. The total width of the frame is kept constant at 60 ft and is divided
into different nu‘mber of bays (equal span lengths). The total cost of the frame
as well as its components (beam cost and column cost) are plotted in Fig. (6.31)

with respect to the number of bays.

It can be noted from the figure that as the number of bays increase, the
total cost of the frame decreases until the number of bays becomes 7 at which
the frame cost starts to increase. Beam cost decreases with increasing number of

bays because shorter beams are less expensive than longer beams. Column cost
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decreases with increasing number of bays until the number of columns becomes
more than what is needed, at span lengths in the order of 12 to 15 ft, at which
the column cost starts to increase. In this range, the cost of many small columns

exceeds the cost of a few larger columns.

From Fig. (6.31) it can be concluded that the optimum spacing is in the
order of 12 to 15 ft. Any increase in column spacing beyond this will increase

the cost of the frame significantly.
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 GENERAL

An optimization system for reinforced concrete frames has been developed.
The system can be used to analyse and design economical reinforced concrete
rectangular frames of moderate height according to the ACI 318-83 Code
provisions taking into account practical considerations. A second-order analysis
has been employed in which second-order influences pertaining to reinforced

concrete frames have been incorporated.

The capabilities of the system have been demonstrated through several case
studies. Some general design guidelines for reinforced concrete frame members
have been developed and tested. Also, some behavioral studies have been

performed.

7.2 CONCLUSIONS

Many design examples have been presented in this study to demonstrate the
application of RCFOPT software. From the findings of those examples, the

following conclusions are outlined:

I. An optimization systcm for the design of reinforced concrete frames has

been developed and tested successfully.
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2. Minimum total cost is the most economical design criterion for

reinforced concrete frames.

3. Cost of formwork affects the optimal design of reinforced concrete
frames, especially dimensions and reinforcement areas of columns and

beams in the lower stories.

4. The saving in the cost of reinforced concrete frames using moment
redistribution was only 3.5% . However, the CPU time increased by

51%.

5. Columns of reinforced concrete frames within five stories are mostly

governed by geometric rather than strength considerations.

6. At moderate values of wind load (about 30 miles/hour), beam depths

can be kept constant in all stories.

7. Most economical column spacing is in the order of 12 to 15 ft. Any
increase in column spacing beyond this will increase frame cost

significantly.

8. Some design guidelines in the form of equations and charts have been
developed for the ecconomical design of reinforced concrete frame

members.

7.3 RECOMMENDATIONS FOR FUTURE RESEARCH

The optimization system developed in this study forms the foundation of a

gencral, powerful system that can be used to optimize reinforced concrete
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frames. Further study in this area could be performed to:

I. Expand the formulation to include general three-dimensional reinforced

concrete frames.

2. Consider the cracked section behavior in the analysis and compare the

obtained results with those of this study.

3. Include the various material strengths in the developed design

guidelines.

4. Perform more parametric studies to investigate thc variations of the
design variables under a variety of conditions involving different cost

parameters, different material strengths, and different loadings.

Sufficient data for specific cases have been presented in this study which
point the way for further research. Ultimately, a very powerful optimization
system could be developed, one that would lead to substantial cost savings for

reinforced concrete frame projects cverywhere.
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APPENDIX 1
RCFRAME Input Data File

FRAME NO. 1

STRUCTURAL AND LOAD PARANETERS

HBAY NSTORY NJ NR NRJ NSJ NLJ NLM IELAST IPRINT
0 5 3¢

3 5 39 12 & 2 2
SPACING OF FRAMES
165.0
JOINT COORDINATES
JOINT X Y

1 0.00 g.00

2 0.06 180.00

3 0.00 336.00

4 0.00 492.00

5 0.00 648.00

6 0.00 804.00

7 150.00 180.00

8 150.00 336.00

9 150.00 492.00

10 150.00 648.00
1 150.00 805.00
12 300.00 0.00
13 300.00 130.00
14 300.00 336.00
15 300.00 4592.00
16 300.00 648.00
17 300.00 805.00
18 450.00 180.00
19 450.00 336.00
20 450.00 492.00
21 450.00 648.00
22 450.00 804.00
23 600.00 0.00
24 600.00 180.00
25 600.00 336.00
26 600.00 492.00
27 600.00 648.00
28 600.00 804.00
29 750.00 180.00
30 750.00 336.00
31 750.00 492.00
32 750.00 é648.00
a3 750.00 804.00
34 900.00 0.00
35 900.00 180.00
36 900.00 336.00
37 900.00 492.00
38 900.00 é648.00
39 900.00 804.00
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NENBER INFORMATION

M oNmMmeE DO

s e Nme n

m123§5

11

17
10

1"

16

10

10
"
12
13
14
15
16
17
138
19
20
21

15

1%

13
13
1%
15
16
17
22

12
13
14
15
16
17
22
16
21

28
21

22

27
20

24

15
20

26

26
27
28
29
30

19
25

1%
19
13
18

18
24

24
25

31

26
27
28

24
25
26
27

eRa8R

36

39

37
38
39
40
41

32

27
32

31

26
31

37

30

25
30

42

36

43
4

29

24
29
34
35
36

35

45
46
47

35

36

37

48

37

49

39

50



JOINT RESTRAINTS

JOINT JRT JR2
1 1 1
12 1 1
23 1 1
34 1 1
JOINT LOADS
JOINT AJ1
2 18000.0
3 16800.¢
& 16800.0
5 16800.0
6 8400.0
NEMBER LOADS
MEMBER UDL
6 -350.0
7 -350.0
8 -500.0
9 -500.0
10 -500.0
1 -500.0
12 -500.0
13 -500.0
14 -500.0
15 -500.0
21 -350.0
22 -350.0
23 -500.0
24 -500.0
25 -500.0
26 -500.0
27 -500.0
28 -500.0
29 -500.0
30 -500.0
36 -350.0
37 -350.0
3as -500.0
39 -500.0
40 -500.0
41 -500.0
42 -500.0
43 -500.0
44 -500.0
45 -500.0
COLUMN DATA

COLUNN MEMBER

1

L esuN

1
16
31
46

2

d-l-l-la

0.0
0.0
0.0
0.0
0.0

AJ3
0.0
6.0
0.0
0.0
0.0
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6 17
7 32
8 &7
9 3
10 18
" 33
12 43
13 4 =
14 19
15 34
16 49
17 5
18 20
19 35
20 56
BEAM DATA
BEAN HEMBERS
1 % 15
2 2% 30
3 44 45
4 12 13
5 27 28
[ 42 43
7 10 11
8 25 26
9 40 41
10 8 9
71 23 24
12 38 39
13 6 7
14 21 22
15 36 37
STORY DATA
STORY COLUMNS BEANS

1 1.2 3 4 12 3
2 5 6 7 8 4 5 6
3 9 10 11 12 7 8 9
4 13 14 1516 10 11 12

5 17 18 19 20 13 14 15
CONCRETE DATA
FC COVER HF
8000.0 2.5 11.0
STEEL DATA
FY NMIN NMAX . CBD
60000.0 3 4 1.6410

UNIT COST DATA
UCOSTC UCOSTS UCOSTF
80.0 0.385 2.8

TID
0.500

»

BBD
1.000

SRD
0.375
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APPENDIX 2
IDESIGN Input Data File

FRANE NO. 1 (3 X 5)

30 0 70 S0 e -1 1 4 2 5
1.0000D-03 1.0000D-03 1.0000D-03 1.0000D-03
1 1.2000D0+01 1.0000D+01 3.6000D+01
2 1.3000B+01 7.56000+60 3.6000D+01
3 1.0000D+01 1.0000D+00 2.5000D+01
& 1.2000D+01 1.0000D+01 © 3.6000D+01
5 2.2000D+01 1.5000D+01 5.0000D+01
6 3.5000D+00 1.0000D+00 2.0000D+01
7 1.2000D0+01 1.0000D+01 3.6000D+401
8 1.4000D+01 7.5000D+00 3.6000D+01
9 7.5000D+00 1.0000D+00 2.5000D+01
10 1.2000D+01 1.0000D+01 3.6000D+01
11 1.8000D+01 1.5000D+01 5.0000D+01
12 2.5000D+00 1.0000D+00 2.0000D+01
13 1.2000D+01 1.0000D+01 3.6000D+01
15 1.0000D+01 7.50000+00 3.6000D+01
3 7.0000D+00 1.0000D+00 2.5000D0+01
16 1.2000D+01 1.0000D+01 3.6000D+01
17 1.8000D+01 1.50000+01 5.0000D+01
18 2.5000D+00 1.0000D+00 2.0000D+01
19 1.2000D+01 1.0000D+01 3.6000D+01
20 9.0000D+00 7.5000D+00 3.6000D+01
21 6.0000D+00 1.0000D+00 2.5000D+01
22 1.2000D+01 1.0000D0+01 3.6000D+01
23 2.0000D+01 1.5000D+01 5.0000D+01
25 2.0000D+00 1.0000D+00 2.00000+01
25 1.2000D0+01 1.0000D+01 3.60000+01
26 9.5000D+00 7.5000D+00 3.6000D+01
27 5.5000D+00 1.0000D+00 2.50000+01
28 1.2000D+01 1.0000D0+01 3.6000D+01
29 1.9000D+01 1.5000D+01 5.0000D+01
30 1.5000D+00 1.0000D+00 2.0000D0+01
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APPENDIX 3
RCFRAME Output Data File

RCFoOPT

REINFORCED CONCRETE FRANE
OPTINIZATION SYSTEN

MOSTAFA HASSANAIN

DATE: THU, 07 MAY, 1992
TINE: 180334

FRANE NO. 1

*EX SUNMARY OF INPUT DATA *=x
STRUCTURAL AND LOAD PARAMETERS

NBAY NSTORY NJ NR NRJ NSJ NLJ NLM TIELAST IPRINT
3 5 39 12 & o 5 30 2 2

JOINT X Y
1 0.00 0.00
2 0.00 180.00
3 0.00 336.00
8 0.00 492.00
5 0.00 &48.00
6 0.00 804.00
7 150.00 180.00
8 150.00 336.00
9 150.00 492.00
10 150.00 648.00
11 150.00 824.00
12 300.00 0.00
13 300.00 180.00
14 300.00 336.00
15 300.00 492.00



300.00
300.00
450.00
450.00
450.00
450.00
450.00
600.00
600.00
600.00
600.00
600.00
600.00
750.00
756.00
750.00
750.00
750.00
900.00
960.00
900.00
960.00
900.00
900.00

648.00
804.00
180.00
336.00
492.00
648.00
804.00

6.00
180.00
336.00
492.00
648.00
804.00
180.00
336.00
§92.00
648.00
804.00

0.00
180.00
336.00
492.00
648.00
805.00

O 00 NAG WO

NN NN N b D owdoad omdood e d oo
S WN S OB NAMA S WN O
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25
26
27
28
29
30
31

32
33
34
3s
36
37
38
39
40
41
42
43
44
45
46
47
48

49
50

15
20
14
19
3
18
23
24
25
26

27
28
a3
27

32
26
31
25
30
24
29
34
35
36
37
38

20
26
19

18
24
26

26
27
28

39
32

31
37
30
36

RaBl

39

JOINT RESTRAINTS

JOINT JRtT JRZ2 JR3

1 1 1 1
12 1 1 1
23 1 1 1
34 1 1 1

JOINT LOADS
JOINT AJ1

2 0.180D+05

3 0.168D+05

L 0.168D+0S

5 0.168D+05

[ 0.840D+04

MENBER LOADS
NEMBER uDL

[ -0.350D+03

7 -0.350D+03

8 ~-0.5000+03

9 ~0.500D+03
10 -0.5000+03

AJ2
0.000D+00
0.000D+00
0.000D+00
0.000D+00
0.000D+00

AJ3
0.000D+00
0.000D+00
0.000D+00
0.000D+00
0.000D+00
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1 -0.500D+03
12 ~0.500D+03
13 -0.5000+03
14 -0.5000+03
15 -0.500D+03
21 -0.350D+03
22 -0.356D+03
23 -0.500D+03
24 -0.500D+03
25 -0.5000+03
26 -0.500D+03
27 -0.500D+03
28 -0.500D0+03
29 -0.500D+03
30 -0.5000+03
36 -0.350D+03
37 -0.350D+03
38 -0.500D+03
39 -0.500D+03
40 -0.500D+03
51 -0.500D0+03
52 ~-0.500D+03
43 -0.500D+03
44 -0.500D0+03
&5 -0.500D+03
COLUMN DATA
COLUMN NENBER
1 1
2 16
3 31
L 46
5 2
6 17
? 32
8 47
9 3
10 18
1" 33
12 48
13 4
14 19
15 35
16 49
17 5
18 20
19 35
20 50

BEAM DATA

176



BEAN HENBERS
1 % 15
2 29 30
3 &84 45
5 12 13
5 27 28
6 42 43
7 1 1
8 25 26
S 48 41
19 8 9
11 23 24
12 38 39
13 [ 7
146 21 22
15 36 37
STORY DATA
STORY COLUNKRS
1 1 2 3 4
2 5 6 7 8
3 9 10 11 12
4 13 14 15 16
5 17 18 19 20

CONCRETE DATA

FC

8000.0 2.5 11.0
STEEL DATA

FY NMIN NMAX
60000.0 3.0 4.0

UNIT COST DATA

UCOSTS

UCOSTC
80.000

0.385

COLUMN ACTIONS

COLUNN
1

2
3
4

ANCOLM1
0.331D+06
0.821D+06
0.799D+06
0.405D+06

BEANS
12 3
4 5 6
7 8 9

10 11 12
13 14 15

UCOSTF
2.800

TID
1.5410 0.500

BBD
1.000

SRD
0.375

*3% RESULTS OF ANALYSIS ®xx
**X AT OPTIMAL DESIGN =*=x

ANCOLNM2
0.126D+05
0.248D+05
0.226D+05
0.277D+05

ANCOLM3
0.1560+07
0.229D+07
0.216D+07
0.246D+07

ANCOLM4
0.331D+06
0.821D+06
0.799D+06
0.405D+06

ANCOLNMS
0.126D+05
0.248D+05
6.226D+05
0.277D+05

ANCOLM6
0.716D+06
0.217D+07
0.191D+07
0.252D+07
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5 0.268D+06
6 0.641D+06
7 0.630D+06
8 0.311D+06
9 0.200D+06
10 0.466D+06
11 0.461D+06
12 0.222D+06
13 0.128D+06
14 0.295D+06
15 0.293D+06
16 0.136D+06
17 0.531D+05
138 0.123D+06
19 0.123D+66
20 0.548D405
BEAN ACTIONS
BEAN
1 0.210D+04
0.210D+04
2 0.369D+03
0.369D+03
3 0.303D+04
0.3030+04
L) 0.139D+05
0.1390+05
5 0.806D+04
0.806D+04
6 0.375D+04
0.374D+04
7 0.124D+05
0.124D+05
a3 0.757D+04
0.757D+04
9 0.288D+04
0.288D+04
10 0.149D+05
0.149D+05
11 0.104D+05
0.104D+05
12 0.516D+04
0.516D+04
13 0.223D+05
0.223D+05
14 0.182p+05
0.182D+05
15 0.170D+05

0.170D+05

0.377D+04
0.217D+0S
0. 179D+05
0.301D+05
0.706D+04
0.147D+05
0.125D+0S
0.258D+05
0.117D+05
8.203D+04
0.702D+04
0.225D405
0.138D+05
0.515D+04
0.129D+04
0.171D+05

0.581D+05
0.1054D+06
0.711D+05
0.911D+05
0.735D+05
0.887D+0S
0.643D+05
0.973D+05
0.731D+05
0.885D+05
0.762D+05
0.854D+05
0.682D+05
0.929D+0S
0.754D+05
0.856D+05
0.792D+05
0.818D+05
0.712D+05
0.895D+05
0.776D+05
0.830D3+05
0.828D+05
0.778D+05
0.501D+05
0.641D+05
0.563D+05
0.579D+05
0.624D+05
0.517D+05

0.342D+06
0.170D+07
0.137D+07
0.230D+07
0.560D+06
0.113D+07
0.957D+06
0.195D+07
0.924D+06
0.683D+06
0.529D+06
0.169D+07
0.104D+07
08.295D406
0.106D4+06
0.126D+07

0.236D+05
0.579D+07
0.223D0307
0.509D+07
0.199D+07
0.415D+07
0.368D+06
0.510D+07
0.248D+07
0.4638D+07
0.251D+07
0.374D+07
¢.101D+07
0.455D+07
0.284D+07
0.429D+07
0.283D+07
0.321D+07
0.149D+07
0.412D+07
0.318D+07
0.395D+07
0.329D+07
0.257D+07
0.815D+06
0.284D+07
0.254D+07
0.277D+07
0.265D+07
0.110D+07

0.268D+06
0.641D406
0.630D+06
0.311D+06
0.200D+06
0.4566D+06
0.561D+06
0.222D+06
8.128D+06
€.294D+G6
0.293D+06
0.136D+06
0.531D+05
G.123D+06
0.123D+06
0.548D+05

0.210D+04

0.369D+03

0.303D+04

0.139D+05

0.806D+04

0.374D4+04

0.124D+05

0.757D+04

0.288D+04

0.149D+05

0.104D+05

0.516D+04

0.223D+05

0.182D+05

0.170D+05

0.377D+04
0.217D+05
0.179D+05
0.301D+05
0.706D+04
0. 147D+05
0.125D+05
0.258D+05
0.1170+05
G.903D+04
0.702D+04
0.225D+05
0.138D+05
0.414D+04
0.129D+04
0.171D+05

0.230D+05

0.999D+04

0.756D+04

0. 165D+05

0.767D+04

0.463D+04

0.123D+05

0.507D+04

0.131D+04

0.912D+04

0.266D+04

0.249D+04

0.696D+04

0.7830+03

0.540D+04

0.246D+06
0.169D+07
0.143D+07
0.240D+07
0.542D+06
0.117D+07
0.999D+06
0.208D+07
0.909D+06
0.726D+06
0.567D+06
0. 183D+07
0.1120+07
0.351D+06
0.957D+065
0.141D+07

0.302D+07

0.185D+07

0.244D+07

0.279D+07

0.194D+07

0.244D+07

0.273D+07

0.195D+07

0.243D0+07

0.271D+07

0.194D+07

0.258D+07

0.2120+07

0.129D+07

0.207D+07
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COLUNN B D AS NO. OF SPACING
NO. TIES OF TIES
1 14.1 11.8 9.277 13 14.1
2 1%.1 11.8 11.710 13 16.1
3 14.1 11.8 11.273 13 16.1
& 16.1 11.8 12.495 13 14.1
3 13.7 11.2 §.965 " 13.7
6 13.7 1.2 9.700 11 13.7
7 13.7 1.2 8.760 11 13.7
8 13.7 1.2 12.148 11 13.7
9 13.4 10.9 5.591 1 13.4
10 13.4 10.9 7.767 -1 13.4
11 13.4 10.9 7.164 11 13.4
12 13.4 10.9 11.025 11 13.4
13 13.1 10.6 6.815 12 13.1
14 13.1 -~ 10.6 6.089 12 13.1
s 13.1 10.6 5.507 12 13.1
16 13.1 10.6 10.124 12 13.1
17 12.1 9.6 7.358 13 12.1
18 12.1 9.6 4.320 13 12.1
19 12.1 9.6 3.347 13 12.1

20 12.14 9.6 8.538 13 12.1



10

11

12

13

14

15

B D AS1 AS2

) +)

14.1 21.2 0.999 5.302
14.1 21.2 5.502 5.302
14.1 21.2 §.783 5.302
13.7 20.6 0.943 5.155
13.7 20.6 4.960 5.155
13.7 - 20.6 6.521 5.155
13.4 20.1 0.947 5.020
13.4 20.1 4.534 5.020
13.4 20.1 4.259 5.020
13.1 19.6 1.439 4.911
13.1 19.6 G.184 4.911
13.1 19.6 4.000 4.911
12.1 18.1 0.847 4.536
12.1 18.1 3.092 4.536
12.1 18.1 3.008 4.536

4.783

3.844

4.960

4.521

3.560

4.534

&.259

3.177

6.184

4.000

2.537

3.092

3.008

1.152

STIRRUPS
L SHAX
59.5 10.6
35.3 10.6
30.8 10.6
52.6 10.3
35.7 10.3
30.0 10.3
48.2 10.0
35.7 10.0
27.6 10.0
§5.4 9.8
33.3 9.8
32.9 9.8
0.0 9.1
0.0 9.1
0.0 9.1

a3.8

83.8

83.8

81.7

81.8

81.8

86.0

8o6.e

78.6

78.6
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APPENDIX 4
IDESIGN Output Data File

ZXLTXXE ETXEXEX. b 2 P 422 2042 0 0 x x ZXTX

WELCONE TO PROGRAM IDESIGN3.5S
INTERACTIVE DESIGN OPTINIZATION OF ENGINEERING
SYSTENS TO SOLVE THE PROBLENM: HNININIZE F(B)
SUBJECT TO HI(B) = 0, AND GI(B) <= ¢
REPORT ANY PROBLENS TO PROFESSOR J.S.ARORA

INPUT DATA IS ECHOED
FRAME KG. 1 (3X5)
30 6 706 50 [ S | 1 0 2 5
1.0000D-03 1.0000D-03 1.0000D-03 1.0000D-03

1 1.20000+01 1.0000D+01 3.6000D+01
2 1.3000D+01 7.5000D+00 3.6000D+01
3 1.0000D+01 1.0000D+00 2.5000D+01 -
& 1.2000D+01 1.0000D+01 3.6000D+01
5 2.2000D+01 1.5000D+01 5.0000D+01
6 3.5000D+00 1.00000+00 2.0000D+01
7 1.2000D+01 1.0000D+01 3.6000D+01
8 1.4000D+01 7.5000D+00 3.6000D+01
9 7.5000D+00 1.0000D+00 2.5000D0+01
10 1.2000D+01 1.0000D+01 3.6000D+01
17 1.8000D+01 1.50000+01 5.00000+01
12 2.5000D+00 1.0000D+00 2.0000D+01
13 1.2000D+01 1.0000D+01 3.6000D+01
14 1.0000D+01 7.5000D+00 3.6000D+01
15 7.0000D+00 1.0000D+00 2.50000+01
16 1.2000D+01 1.0000D+01 3.6000D+01
17 1.8000D+01 1.5000D+01 5.0000D+01
18 2.5000D+00 1.00000+00 2.0000D0+01
19 1.2000D+01 1.0000D+01 3.60000+01
20 9.0000D+00 7.5000D+00 3.6000D+01
21 6.0000D+00 1.0000D+00 2.5000D+01
22 1.20000+01 1.0000D+01 3.6000D+01
23 2.0000D+01 1.5000D+01 5.0000D+01
24 2.0000D0+00 1.0000D+00 2.0000D+01
25 1.20000+01 1.0000D+01 3.6000D0+01
26 9.5000D+00 7.5000D+00 3.6000D+01
27 5.5000D+00 1.0000D+00 2.5000D+01
28 1.2000D+01 1.0000D+01 3.6000D+01
29 1.90000+01 1.5000D+01 5.0000D+01
30 1.5000D+00 1.0000D+00 2.0000D+01

EEERARERKKEEXE R XS LT R KX A XK XXX AR EEEXE XXX XX EAXEAEXE XXX XN

x FRAME NO. 1 (3 X 5) x
AEEEXTAREEEEEREEEX TR R XX R RS XA EEE R RER AR RER A AR XK R R XX E R KKK



NUMBER OF DESIGN

RUMBER OF EQUALITY CONSTRAINTS =
NUMBER OF INEQUALITY CONSTRAINTS =

VARIABLES

MAXINUN NUMBER OF ITERATIONS
PREVIOUS ITERATIONS RUN

PRINTING CODE

GRADIENT CALCULATION INDICATOR

PROBLEM TYPE (2=LP, 0,1=NLP)
ALGORITHN INDICATOR

NO. OF CONSECUTIVE ITER. FOR ACT

TOL. IN CORSTR. VIOL. AT OPT.
CONVERGENCE PARANETER VALUE

DEL FOR F. D. GRAD. CALCULATION
ACCEPTABLE CHANGE IN COST FUNC.

n
(L ]
o Q

nn unan
A NO a

= 1.0000D-03
= 1.0000D-03
= 1.0000D-03
= 1.00000-03

STARTING DESIGR AND ITS LINITS :::::::

W00 NAGND>WN

W NN NN NAONNDMNRN O @ o o o cd o wd b oad oed
Q OV OO VN O &£ WN QO VO NNV DAUNO

DESIGN LOWER LIN UPPER LIN
1.2000D+01 1.0000D+01 3.6000D+01
1.3000D+01 7 .5000D+00 3.6000D+01
1.0000D+01 1.0000D+00 2.5000D+01
1.2000D+01 1.0000D+01 3.6000D+01
2.2000D+01 1.50000+01 5.0000D+01
3.5000D+00 1.0000D+00 2.0000D+01
1.20000+01 1.0000D+01 3.6000D+01
1.4000D+01 7.5000D+00 3.6000D+01
7.5000D+00 1.0000D+00 2.5000D+01
1.2000D+01 1.0000D+01 3.6000D+01
1.8000D+01 1.5000D+01 5.0000D+01
2.5000D+00 1.0000D+00 2.0000D+01
1.20000+01 1.0000D+01 3.6000D+01
1.0000D+01 7.5000D+00 3.6000D+01
7.0000D+00 1.0000D+00 2.5000D+01
1.2000D+01 1.00000+01 3.6000D+01
1.8000D+01 1.50000+01 5.0000D+01
2.5000D+00 1.0000D+00 2.0000D+01
1.2000D+01 1.0000D+01 3.6000D+01
9.0000D+00 7.5000D+00 3.6000D+01
6.0000D+00 1.0000D+00 2.5000D+01
1.2000D+01 1.0000D+01 3.6000D+01
2.0000D+01 1.5000D+01 5.0000D+01
2.0000D+00 1.0000D+00 2.0000D+01
1.2000D+01 1.0000D+01 3.6000D+01
9.5000D+00 7.5000D+00 3.6000D+01
5.5000D+00 1.0000D+00 2.5000D+01
1.20000+01 1.0000D+01 3.6000D+01
1.9000D+01 1.5000D+01 5.0000D0+01
1.5000D+00 1.0000D+00 2.0000D+01
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183
REQUIRED DINENSION OF ARRAY A= 15351

DESIGN VARIABLES AY ITERATION = 1 (RQP ALGORITHM USED)
1 1.20000+01 2 1.3000D301 3 1.0000D+01 & 1.200004+01 5 2.2000D+01
6 3.5000D+00 7 1.2000D+01 8 1.4000D+01 9 7.5000D+00 10 41.2000D+01
11 1.8000D+01 12 2.5000D+0¢ 13 1.2000D+01 14 1.0000D+G1 15 7.0000D+00
16 1.2000D+01 17 1.8000D+01 18 2.5000D+00 19 1.2000D+01 20 9.0000D+00
21 6.0000D+00 22 1.2000D+01 23 2.0000D+01 25 2.0000D+00 25 1.2000D+01
26 9.5000D+00 27 5.5000D+00 28 1.2000D+01 29 1.9000D+01 30 1.5000D+00

HAX VIO CONV PARN COST
5.2530D0-01 1.0000D+00 1.7621D+04

DESIGN VARIABLES AT ITERATION = 2 (RQP ALGORITHM USED)
1 1.3641D+01 2 1.35510401 3 1.1424D401 & 1.3642D+01 5 2.3184D+01
6 4.8143D4+00 7 1.4192D+01 8 1.4499D#01 9 1.2346D+01 10 1.4194D+01
11 2.1288D+01 12 4.8828D+06 13 1.3941D+01 14 1.1503D+01 15 1.0851D+01
16  1.3943D+01 17 2.0912D+01 18 4.6643D+00 19 1.3528D401 20 1.0849D401
21 9.7126D+00 22 1.3429D+01 23 2.1396D+01 26 3.9510D+00 25 1.41747D+01
26 9.2468D+00 27 7.9379D+060 28 1.1747D+01 29 1.9513D+01 30 2.8716D+00

NAX VIO CONV PARN COST
3.3822D-02 7.8895D+01 1.9501D+04

DESIGN VARIABLES AT ITERATION = 3 (RQP. ALGORITHNM USED)
1 1.3646D+01 2 1.3532D401 3 1.1439D+01 & 1.3647D+01 5 2.3171D+01
6 4.8210D+00 7 1.54194D+01 8 1.4407D+01 9 1.2331D+01 16 1.4197D+01
11 2.1291D+01 12 4.8877D+00 13 1.3940D+01 14 1.1501D+01 15 1.0851D+01
16 1.3941D+01 17 2.0909D+01 18 4.6636D+00 19 1.3319D+01 20 1.0840D+01
21 9.6795D+00 22 1.3386D+01 23 2.1607D+01 26 3.9049D+00 25 1.1749D+01
26 9.2685D+00 27 7.9343D+00 28 1.1748D+01 29 1.9402D+01 30 2.8730D+00

MAX VIO CONV PARM COST
3.3751D-02 3.5025D+01 1.9502D+04

DESIGN VARTIABLES AT ITERATION = 4 (RQP ALGORITRM USED)

1 1.3965D+01 2 1.2082D+01 3 1.2511D+01 & 1.3967D+01 5 2.2700D+01
6 5.2310D+00 7 1.44110+01 8 7.5000D0+00 9 1.1209D+01 10 1.4413D+01
11 2.1617D+01 12 5.2642D0+00 13 1.3810D+01 14 1.1360D+01 15 1.1238D+01%
16 1.3811D+01 17 2.0715D+01 18 4.5993D+00 19 1.3253D+01 20 1.0688D+01
21 9.6510D+00 22 1.3226D+01 23 2.1604D+01 25 3.8300D+00 25 1.1859D+01
26 9.3594D+00 27 8.2703D+00 28 1.1859D+01 29 1.8677D+01 30 2.9614D+00

MAX VIO CONV PARNM COST
4.4111D-01 2.7804D+00  1.9309D+04

DESIGN VARIABLES AT ITERATION = S (RQP ALGORITHM USED)
1 1.41390401 2 1.1619D401 3 1.27710+01 & 1.4140D+01 5§ 2.12310+01
6 5.5021D+00 7 1.3763D+01 8 1.01130+01 9 1.1368D+01 10 1.3763D+01
11 2.0645D+01 12 5.0327D+00 13 1.2707D+01 14 1.0202D+01 15 1.0434D+01
16 1.2706D+01 17 2.3495D+01 18 3.7309D+00 19 1.2703D+01 20 1.0205D+01
21 9.4133D+00 22 1.2703D+01 23 2.1559D+01 24 3.7539D+00 25 1.2078D+0%



26 9.5778D+00 27 8.5092D+00 28 1.2078D+01 29 4.8133D+01

HAX VIO
9.1165D-02

CONV PARM
2.7576D+00

COST

1.8975D+05

DESIGN VARIABLES AT ITERATION =

1

6
1
16
21
26

1.3997D+01
5.3129D+00
2.06330+01
1.3060D+01
9.46407D+00
9.6035D+00

MAX VIO
2.6556p-22

2
7
12
17
22
27

1.4377D+01
1.3755D+01
4_9987D+00
2.1972D+01
1.2762D+01
8.4550D+00

CONV PARN
1.9037D0+01

3
8
13

18
23
28

6 (RQP ALGORITHM USED)

1.1921D+01
1.1161D+01
1.3060D+01
4.1317D+00
2.1528D+01
1.21030+01

COST

1.9029D+04

DESIGN VARIABLES AT ITERATION =

1
6
1
16
21
26

1.3981D+01
5.2917D+00
2.0701D+01
1.3081D+01
9.4448D+00
9.6047D+00

MAX VIO
2.6267D-02

2
7
12
17
22
27

1.4674D301
1.3743D+01
4.9826D+00
2.1863D+01
1.2765D+01
8.4517D+00

CONV PARM
6.8630D+00

13
13

28

5

9
14
19
25
29

1.3996D+01
1.2083D+01
1.0560D+01
1.2762D+01
3.8000D+00
1.8155D+01

7 (RQP ALGORITHN USED)

1.1923D+01
1.1150D+01
1.3081D+01
4.1563D+00
2.15230+01
1.2105D+01

COST

1.9034D+04

DESIGN VARIABLES AT ITERATION =

1
[
11
16
21
26

1.3833D+01
5.0961D+00
2.1260D+01
1.3683D+01
9.6477D+00
9.6071D+00

MAX VIO
1.0196D-01

2
7
12
17
22
27

1.64508D+01
1.3605D0+01
4.8053D+00
1.8431D+01
1.27951+01
8.4421D+00

CONV PARNM
2.6296D+00

13
18

28

4

9
14
19
25
29

1.3980D+01
1.2059D+01
1.0581D+01
1.2765D+01
3.8034D+00
1.81570+01

8 {(RQP ALGORITHM USED)

1.2027D+01
1.1059D+01
1.3682D401
4.8679D+00
2.1400D+01
1.2107D+01

COoSsT

1.9007D+04

DESIGN VARIABLES AT ITERATION =

1
6
1"
16
21
26

1.64124D+01
5.4781D+00
2.1048D+01
1.3377D+01
9.5929D+00
9.5937D+00

MAX VIO
1.5779D-02

2
7
12
17
22
27

1.1878D+01
1.3642D+01
5.8530D+00
2.01120+01
1.2769D+01
8.4812D+00

CONV PARN
2.3187D-01

13
18
23
28

4

9
14
19
25
29

1.3832p+01
1.1711D+01
1.1183D0+01
1.2794D+01
3.8367D+00
1.8161D+01

9 (RQP ALGORITHM USED)

1.2313D+01
1.1151D+01
1.3377D+01
4.5174D+00
2.1502D+01
1.2094D+01

COST

1.8984D+04

DESIGN VARIABLES AT ITERATION =

1
6

1.4123D+01
5.4835D+00

2
7

1.21100+01
1.3649D+01

3
8

10

1.2467D+01
1.1149D+01

4
9
14
19
24
29

4
9

1.4124D+01
1.2046D+01
1.0877D+01
1.2769D+01
3.8078D+00
1.8151D+01

(RQP ALGORITHM USED)

1.4123D+01
1.2049D+01

10
15

R

10
15
20
25
30

10
15
20
25
30

10
15
20
25
30

10

3.0710D+00

2.0995D0+01
1.3755D+01
1.0660D+01
1.02620+01
1.2103D+01
3.0960D+00

2.09710+01
1.3743D+01
1.0679D+01
1.0265D+01
1.2105D+01
3.0972D+00

2.18020+01
1.3605D+01
1.1625D+01
1.0294D+01
1.2107D+01
3.0997D+00

2.1208D+01
1.3642D+01
1.1099D+01
1.0269D+01
1.2094D+01
3.0862D+00

2.1184D+01
1.3649D+01

184



11 2.1013D+01 12 4.8627D+00 13 1.3395D+01
16  1.3395D+01 17 2.0093D401 18 §.5555D+00
27 9.6102D+00 22 1.2776D+01 23 2.1359D+01
26 9.5937D300 27 8.5833D+00 28 1.2094D301

*XXXX DESICGN AT THIS ITERATION IS USABLE Xz22%:

BAX VIO CONV PARN COST
1.7826D-04 6.4245D-01 1.8990D+04

14

24
29

1.0895D+01
1.2776D+01
3.8164D+00
1.81400+01

DESIGN VARIABLES AT ITERATION = 11 (RQP ALGORITHM USED)

1 1.4087D+01 2 1.2752D0+01 3 1.23580+01
6 5.4358D+00 7 1.3690D4+01 8 1.1190D+01
11 2.0829D+01 12 4.9158D0+400 13 1.3399D+01
16 1.33990401 17 2.0099D+01 18 &.5505D+00
21 9.6790D+00 22 1.2831D401 23 2.1085D+01
26 9.5978D+00 27 8.4818D+00 28 1.2098D+01

**x%® DESIGN AT THIS ITERATION IS USABLE *xxxx

MAX VIO CONV PARM COST
1.5045D-03 2.5505D-01 1.8984D+04

L]
9
14
19
24
29

1.4087D+01
1.20510+01
1.0899D+01
1.2831D+01
3.8782D+00
1.8147D+01

DESIGN VARIABLES AT ITERATION = 12 (RQP ALGORITHM USED)

1 1.4063D+01 2 1.2813D401 3 1.2342D+01
6 S5.6028D400 7 1.3697D+01 8 1.1197D+01
11 2.0791D+01 12 4.9250D+00 13 1.3398D+01
16  1.3398D+01 17 2.0098D+01 18 &.5491D+400
21 9.7526D+00 22 1.2877D+01 23 2.0830D+01
26 9.5983D+00 27 8.4895D+00 28 1.2098D+01

*3%2x DESIGN AT THIS ITERATION IS USABLE *xxxx

MAX VIO CONV PARN COST
1.5463D-04 7.0393D-01 1.8976D+04

4

9
14
19
25
29

1.4063D+01
1.2048D+01
1.0838D+01
1.2877D+01
3.9309D+00
1.8147D+01

DESIGN VARIABLES AT ITERATION = 13 (RQP ALGORITHM USED)

1 1.64922D+01 2 1.2109D401 3 1.2423D+401
6 5.4816D+00 7 1.3731D+01 8 1.1231D+01
11 2.0598D+01 12 4.9677D+00 13 1.3392D+01
16 1.3392D+01 17 2.0088D+01 18 6.5410D+00
21 9.9453D+00 22 1.2989D+01 23 2.0194D+01
26 9.5966D+00 27 8.5168D+00 28 1.2097D+01

*Xxx%x DESIGN AT THIS ITERATION IS USABLE *xxxx

HAX VIO CONV PARM COST
1.7165D-03  2.3066D-01 1.8967D+04

4

9
14
19
24
29

1.4122D+01
1.2133D+01
1.0892D+01
1.2989D+01
4.0585D+00
1.8145D+01

DESIGN VARIRitES AT ITERATION = 14 (RQP ALGORITHM USED)

1 1.4135D+01 2 1.1878D401 3 1.2489D+01
6 5.4997D+00 7 1.3714D+01 8 1.1214D+01

4
9

1.4135D+01
1.2131D+01

15
20

3e

10
15
20

30

10
15
20
25
30

10

20
25
30

5
10

1.1115D+01
1.0276D+01
1.2094D+01
3.0861D+00

2.1131D+01
1.3690D+01
1.1100D+01
1.0331D+01
1.2098D+01
3.0903D+00

2.12310+01
1.3697D+01
1.1086D+01
1.0377D+01
1.2098D+01
3.09090+00

2.1183D+01
1.3731D+01
1.1062D+01
1.0489D+01
1.2097D+01
3.0891D+00

2.1202D+01
1.3714D+01

185



11 2.0677D+01 12 4.9455D+00 13 1.3389D+01 15 1.0889D+01
16 1.3389D401 17 2.0083D+01 18 4.5375D4+00 19 1.3006D+01
21 9.9801D+00 22 1.3006D+01 23 2.0104D+01 24 4.0792D+00
26 9.5953D+00 27 8.5235D+00 28 1.2095D+01 29 1.8143D401

**35%* DESIGN AT THIS ITERATION IS USABLE »*ex:x

MAX VIO CONV PARN COST
2.4073D-04 &4.6222D-01 1.8965D+04

DESIGN VARIABLES AT ITERATION = 15 (RQP ALGORITHNM USED)

1 1.4164D401 2 1.1640D+01 3 1.2536D+4061 & 1.5145D+01
6 5.5124D+00 7 1.3715D401 8 1.12150401 9 1.2148D+01
11 2.0665D+01 12 4.9565D+00 13 1.3385D+01 14 1.0885D+01
16 1.3385D+01 17 2.0077D+01 18 4.5322D+00 19 1.3092D+01
21 1.0125D+01 22 1.3092D+01 23 1.9642D401 24 &.1797D+00
26 9.5948D+00 27 8.5411D+00 28 1.2095D+01 29 1 _2L2D104

*3%*x DESIGN AT THIS ITERATION IS USABLE **xxx

MAX VIO CONV PARM COST
5.2290D-04% 4.32645D-02  1.8955D+04

DESIGN VARIABLES AT ITERATION = 16 (RQP ALGORITHM USED)

1 1.4145D+01 2 1.1683D+01 3 1.2530D+01 & 1.4145D+01
6 5.5130D+00 7 1.3719D+01 8 1.1219D+01 9 1.2150D+01
11 2.0648D+01 12 4.9514D+00 13 1.3385D+01 16 1.0885D+01
16 1.3385D+01 17 2.0077D+01 18 4.5327D+00 19 1.3094D+01
21 1.0126D+01 22 1.3094D+01 23 1.9641D+01 26 &.1827D+00
26 9.5951D+00 27 8.5404D+00 28 1.2095D+01 29 1.8143D401

2¥**%x DESIGN AT THIS ITERATION IS USABLE =xx2x

MAX VIO CONV PARM CoSsT
6.8127D-06 2.6830D-01  1.8954D+04

DESIGN VARIABLES AT ITERATION = 17 (RQP ALGORITHM USED)
1 1.4138D+01 2 1.1817D+01 3 1.2499D+401 & 1.4138D+01
6 5.5036D+00 7 1.3725D+01 8 1.1225D+01 9 1.2148D+01
11 2.0622D+01 12 4.9594D+00 13 1.3386D+01 14 1.0886D+01
16 1.3386D+01 17 2.0079D+01 18 4.5351D+00 19 41.3095D+01
21 1.0124D+01 22 1.3095D+01 23 1.9643D+01 25 &, 1839D+00
26 9.5959D+00 27 8.5383D+00 28 1.2096D401 29 1.8144D+01

*xx2x DESIGN AT THIS ITERATION IS USABLE *%3xx

MAX VIO CONV PARM COST
8.3464D-05 1.5296D-01 1.8953D+04

DESIGN VARIABLES AT ITERATION = 18 (RQP ALGORITHM USED)
1 1.4137D+01 2 1.1836D+01 3 1.2495D+01 & 1.4137D+01
6 5.5023D+00 7 1.3726D+01 8 1.1226D+01 9 1.2148D+01

ahda

10
15

a8

10
15
20
25
30

10
15
20
25
30

5
10

1.1053D+01
1.0506D+01
1.2095D+01
3.0878D+00

2.1240D0+01
1.3715D+01
1.10250+01
1.0592D+01
1.2095D+01
5.95873D+00

2.1223D+01
1.3719D+01
1.1025D+01
1.0594D+01
1.2095D+01
3.0876D+00

2.1209D+01
1.3725D+01
1.1025D+01
i.0595D+01
1.2096D+01
3.08854D+00

2.1207D+01
1.3726D+01
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"
16
21
26

2.086190+01
1.3386D+01
1.0125D+01
9.5960D+00

12
17
22
27

4.9604D+00
2.0079D+01
1.3095D+01
8.5380D+00

13

18
23
28

1.3386D+01
& .53430+00
1.9653D+01
1.2096D+01

=X2X* DESIGN AT THIS ITERATION IS USABLE *xx3x

MAX VIO
7.3675D-05

CONV PARM

1.5299D-01

COST

1.8953D+04

TEXXT CONVERGENCE CRITERIA SATISFIED *=X3=2x%

14
19
2%
29

1.0886D+01
1.3095D0+01
§.1840D+00
1.8145D+01

HISTORIES OF (1) MAXINUM CONSTRAINT VIOLATION - THIS SHOULD
BE NEARLY ZERO FOR FEASIBLE DESIGN (2} CONVERGENCE PARANETER
THIS SHOULD BE NEARLY ZERO FOR OPTINUM DESIGCN

W o NGNS WN

D ek b owd e = = b
NOALWN a0

18

- b

HAX. VIO. CONV. PARM COST
5.25296D-01 1.00000D+00 1.76211D+04
3.38217D-02 7.88%43D+01  1.95012D+04
3.37507D-02 3.50267D+01  1.95020D+04
4.41110D-01 2.78038D+00  1.93092D+04
9.11691D-02 2.75761D+00 1.89751D+04 -
2.65559D-02 1.90369D+01  1.90291D+04
2.62666D-02 6.86296D+00  1.90341D+04
1.01958D-01 2.62957D+00 1.90074D+04
1.57794B-02 2.31867D-01  1.89843D+04
1.78261D-04  6.42438D-01  1.89903D+04
1.50453D-03 2.55046D-01  1.89838D+04
1.44629D-04 7.03935D-01 1.89761D+04%
1.71651B-03  2.30665D-01  1.89668D+04
2.40735D-04 4.62220D-01  1.89645D+04
5.22897D-04 4.32447D-02  1.89549D+04
6.81274D-06 2.68296D-01  1.89544D+04
8.34644D-05  1.52958D-01  1.89533D+04
7.36755D-05  1.52994D-01  1.89532D+04

CONSTRAINT ACTIVITY
. ACTIVE VALUE LAGR. NULT.
1 YES -1.39365D-02 0.00000D+00
2 ~3.93885D-01 0.00000D+00
3 YES 7.36755D-05 3.12289D+02
-4 -2.29319D-01 0.00000D+00
5 YES -1.24271D-04 2.89887D+02
6 ~2.49907D-01 0.00000D+00
7 YES 6.526442D-06 7.30734D+02
8 -4.50591D+00 0.00000D+00
9 -4.38727D-01 0.00000D+00
0 ~3.13095D-01 0.00000D+00
1 YES  -3.39962D-02 0.00000D+00
2 YES 1.77475D-07 1.89876D+03

-h

(3) cosT

15

&8

1.1025D+01
1.0595D+01
1.2096D+01
3.0885D+00
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13
14
15
16
17
18
19
20
21
22

24

26
27
28
29
30
31

fRaR8N

37

39
50
&1
52
43

45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

Hodaa

i

i

YES

YES

YES

-4.61962D-01
-4.87164D-07
~&.72792D-07
-6.84517D-01
1.19867D-06
~1.93992D-01
~1.596447D-03
-2.48879D-01
-9.95025D-07
-4.25822D+00
~4.639770-G1
-3.26658D-01
-4 .34502D-02
-6.27820D-07
~&.25679D-01
5.78113D-07
-8.07154D-08
-1.16769D+00
2.58323D-06
-2.30956D-01
9.92752D-08
-2.50000D-01
-2.52524D-06
-4.06080D+00
-4.84102D-01
-3.20181D-01
-5.13980D-02
-8.07862D-08
~-3.92397D-01

. 9.92752D-08

-1.17068D-07
~2.24502D+00

1.75219D-06
-2.62074D-01

1.30928D-07
-2.500000-01
-2.58819D-06
-3.87974D+00
-5.02559D-01
-3.11311D-01
-5.83223D-02
-1.26072D-07
~3.65479D-01

1.46123D-07
-6.04266D-08
-5.57407D+00

1.96772D-06
-2.70575D-01

7.61699D-08
-2.50000D-01
-2.32163D-06
-3.22179D+00

0.00000D+00
1.03136D+03
4.69919D+02
0.00000D+00
2.57400D+02
0.00000D+00
3.56277D+02
0.00000D+00
8.60263D+02
0.00000D+00
0.00000D+00
0.00000D+00
0.00000D+00
2.41363D+03
0.00000D+00
1.38877D+403
4.56312D+02
0.00000D+00
2.33680D+02
0.00000D+00
2.99418D+02
0.00000D+00
7.83992D+02
0.00000D+00
0.00000D+00
0.00000D+00
0.00000D+00
2.25383D+03
0.00000D+00
1.31444D+03
5.51664D+02
0.00000D+00
2.14693D402
0.00000D+00
3.24757D+02
0.00000D+00
7.94428D+02
0.00000D+00
0.000000+00
0.00000D+00
0.00000D+00
2.36926D+03
0.00000D+00
1.40006D+03
5.54526D+02
0.00000D+00
1.80435D+02
0.000000+00
3.58571D+02
0.00000D+00
6.70012D+02
0.00000D+00
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65
66
67
68
69
70

YES
YES

YES

~-5.69631D-01
-5.61180D-01
-8.29106D-02
-6.11161D-08
~-2.73049D-01

7.61699D-08

DESIGN VARIABLE ACTIVITY

VO NGNS UWN

NN N NN O NN DN o o oo edood o e e mh e
SR YRRBNNEIEIIanraR

ACTIVE
LORER

LORER
LOWER
LOWER
LORER
LORER
LONER

LORER
LOWER

LORER
LONER

LOKER
LOWER

LOKER
LONER

LONER
LONER

LONER
LONER

DESIGN
1.613660+01
1.18364D+01
1.26954D+01
1.41366D+01
2.12075D+01
5.50227D+00
4.37256D+01
1.12256D+01
1.21476D+01
1.37256D+01
2.06191D+01
4.96042D+00
1.33863D+01
1.08863D+01
1.102545D+01
1.33863D+01
2.00794D+01
4.53429D+00
1.30953D+01
1.05953D+01
1.01235D+01
1.30953D+01
1.96429D+01
4.18404D+00
1.20960D+01
9.59603D+00
8.53800D0+00
1.20960D+01
1.81440D+01
3.08853D+00

COST FUNCTION AT OPTINUM =

NO. OF CALLS FOR COST FUNCTION EVALUATION (USERMF) ...........co000.. =
NO. OF CALLS FOR EVALUATION OF COST FUNCTION GRADIENT
NO. OF CALLS FOR CONSTRAINT FUNCTION EVALUATION (USERCF) ............
NO. OF CALLS FOR EVALUATION OF CONSTRAINT FUNCTION GRADIENTS (USERCG)
NO. OF TOTAL GRADIENT EVALUATIONS .......coiiieevecnnnnnnnnnnns

CPU TIME =

0.00000D+00
0.00000D+00
0.00000D+00
2.21587D+03
0.060000+00
1.31048D+03

LORER
1.000006D+01
7.50000D+00
1.00000D+00
1.000C0D+01
1.50000D+01
1.00000D+00
1.00000D+01
7.50000D+00
1.00000D+00
1.00000D+01
1.50000D+01
1.00000D+00
1.00000D+01
7.50000D+00
1.00000D+00
1.00000D0+01
1.500000401
1.00000D+00
1.00000D+01
7.50000D+00
1.00000D+00
1.00000D+01
1.50000D0+01
1.00000D+00
1.00000D+01
7.50000D+00
1.00000D+00
1.00000D+01
1.50000D+01
1.00000D+00

UPPER
3.60000D+01
3.60000D+01
2.50000D+01
3.60000D+01
5.00000D+01
2.00000D+01
3.60000D+01
3.60000D+01
2.50000D+01
3.60000D+01
5.00000D0+01
2.00000D+01
3.60000D+01
3.60000D+01
2.50000D+01
3.60000D+01
5$.00000D+01
2.00000D+01
3.60000D+01
3.60000D+01
2.50000D+01
3.60000D+01
5.00000D+01
2.00000D+01
3.60000D+01
3.60000D+01
2.50000D+01
3.60000D+01
5.00000D+01
2.00000D+01

1.895316D+04

203,140 SECONDS

LAGR. NULT.
0.00000D+00
0.00000D+00
0.00000D+00
0.60000D+00
0.00000D+00
0.00000D+00
©.00000D+00
0.00000D+00
0.00000D+00
0.00000D+00
0.00000D+00
0.00000D+00
0.00000D+00
0.00000D+00
0.00000D+00
0.00000D+00
0.00000D+00
0.00000D+00
0.00000D+00
0.00000D+00
0.00000D+00
0.00000D+00
0.00000D+00
0.00000D+00
1.89532D404
1.52994D-01
0.00000D+00
7.36755D-05
0.00000D+00
0.00000D+00

(USERMG) .....

575

575

610
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NOTATION

depth of the equivalent rectangular stress block

cross-scctional area of a member; concrete area surrounding one
bar

vector of end actions for all members in a frame

surface area of formwork for a beam

vector of combined nodal loads

surface area of formwork for a column

vector of equivalent nodal loads

vector of actions at free nodes

vector of combined nodal loads corresponding to D,
gross cross-sectional area of a beam

gross cross-sectional arca of a column

matrix of member end actions

matrix of fixed-end actions, with respect to member-oriented axes,
due to loads for all members in a frame

matrix of fixed-end actions, in the direction of structure axes, at
both ends of a member

vector of actions applied at nodes
vector of reactions at restrained nodes (supports)

vector of combined nodal loads corresponding to D,

tensile reinforcing steel area at the most critical location of
negative bending momert in beams in a story

negative flexural reinforcing stec! arca at the left end of a span

negative flexural reinforcing steel area at the right end of a span
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positive flexural reinforcing steel area
longitudinal reinforcing steel area in a column
cross-sectional area of bars used for ties in columns
cross-sectional area of bars used for stirrups in beams

aspect ratio
vector of design variables

width of columns in a story

ith design variable
lower bound on the ith design variable

upper bound on the ith design variable

web width required to accommodate the steel area within standard
spacing requirements

width of beam web in a story

constants used in developing beam design guidclines
cost of all beams in a frame

cost of concrete per unit volume

cost of all columns in a frame

cost of formwork per unit surface area

total cost of a reinforced concrete plane frame

cost of longitudinal steel, tics, and stirrups per unit weight

concrete cover (to center of reinforcing steel bars)

effective depth of beam web in a story
effective depth of beam web in the current story

effective depth of beam web in the previous (lower) story
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depth of columns in a story; thickness of concrete cover measured
from the tension face to center of bar closest to that face

diameter of flexural reinforcing steel bars

diameter of longitudinal reinforcing steel bars _in columns
diameter of bars used for ties in columns

diameter of bars used for stirrups in beams

vector of end displacements for all members in a frame
vector of free nodal displacements

vector of restrained (support) nodal displacements
column eccentricity

modulus of elasticity

compressive strength of concrete, measured at 28 days after casting
stress in tension steel

yield strength of steel

objective function

factor used to modify fixed-end moments of members in order to
account for the presence of axial forces

inequality constraint function

equality constraint function

column dimension in the direction of bending, equals d,+ 4
member number; story number; counting index

moment of inertia of a member

right end of a member

left end of a member; number of equality constraints; / P/EI
effective length factor

distancc over which stirrups are distributed (required)
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193
span length of the leftmost beam in a story

span length of the rightmost beam in a story

maximum span length among intermediate beams in a story
distance over which stirrups are spaced with s___

distance over which stirrups are spaced with s_;_

length of 2 member

length of beam between column center lines

length of longitudinal reinforcing steel bars in a column
length of column between beam center lines

length of the inclined portion of steel bars in a column
clear span length

length of splices in a column

length of one tie in a column

unsupported length (clear height) of a column

length of one stirrup in a beam

service live load

number of members in a frame; number of inequality constraints

nominal moment strength for a member subjected to bending alone
end moment

nominal moment capacity of a cross section

moment due to factored loads

member half-band width

number of design variables; counter on the number of design
variables

number of beams per story
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number of columns per story
maximum number of steel bars at top or bottom of a beam

minimum number of steel bars in a single layer of tension
reinforcement at top or bottom of a beam

number of stirrups in a beam
number of ties in a column

nodes connecting left and right ends of a member, respectively

number of stories in a frame

number of degrees of freedom per node, equals 3 for a plane frame
total number of nodes in a plane frame

unfactored axial (concentrated) load applied to a column or a
beam

nominal strength of an axially loaded column with zero eccentricity
nominal axial strength at a given eccentricity
factored axial load at a given eccentricity

ratio used for beam deflection constraint

rotation transformation matrix

stability stiffness functions

maximum spacing of stirrups

minimum spacing of stirrups

vertical spacing of tics in a column
longitudinal spacing of stirrups in a beam

spacing between frames
structure stiffness matrix

member stiffness matrix in the direction of member axes
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member stiffness matrix in the direction of structure axes

stiffness submatrix corresponding to actions Ap due
displacements D

stiffness submatrix corresponding to actions A, due
displacements D,

stiffness submatrix corresponding to actions Ap due
displacements D

stiffness submatrix corresponding to actions A, due
displacements D

kil

volume of concrete in a beam

volume of tensile reinforcing steel in a beam
nominal shear strength provided by concrete
volume of concrete in a column

volume of longitudinal reinforcing steel in a column
nominal shear strength of a cross section

nominal shear strength provided by stirrups
volume of lateral ties in a column

shear strength produced by factored loads

to

to

to

to
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unit

unit

unit

unit

factored shear force corresponding to the amount of excess shear

volume of stirrups in a beam

wind load factor
horizontal axis

member-oriented horizontal axis
structure-oriented horizontal axis

vertical axis
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member-oriented vertical axis

structure-oriented vertical axis

out-of-plane axis; factor of the ACI Code relating to crack width
member-oriented out-of-plane axis

ratio of depth of the rectangular stress block to the distance
between neutral axis and extreme compression fiber

angle from member-oriented axes to structure-oriented axes
measured counterclockwise

unit weight of concrete
unit weight of steel

paramcter used in IDESIGN for calculation of gradients of
various functions by the finite difference method.

maximum deflection

maximum first-order deflection caused by bending alone
additional deflection caused by axial load alone

ratio of tension reinforcement
ratio of compression reinforcement

reinforcement ratio producing balanced strain condition
ratio of longitudinal reinforcement in a column

ACl Code maximum ratio of longitudinal reinforcement in a
column

ACTI Code maximum ratio of tension reinforcement
ACI Code minimum ratio of tension reinforcement

ACI Code strength reduction factor
2 —2coskL — kLsinkL

2 —2coshkL + kLsinh kL
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