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Iterative Inverse Design Method Based on Streamline Equations
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Aerodynamic characteristics are very sensitive to airfoil leading-edge geometry, and its accurate treatment is a
limitation of many existing design methods. The objective of the present research is to develop an interactive inverse
design method that is not only efficient but can also treat the leading-edge region accurately. In the formulation
of the method, a small-perturbation geometric equation is deduced from the streamline momentum equations,
the continuity equation, and the isentropic relations with the geometry similarity assumption of near streamlines
to the airfoil surface. Moreover, the transonic correction is considered in the aforementioned equation with the
assumption for the effects of waves reflected from the free surface (sonic line) because the method based on the
surface flow values cannot take into account the transonic characteristics such as wave interference. The geometric
perturbation normal to the airfoil surface is then calculated by solving this second-order initial value ordinary
differential equation iteratively to obtain an airfoil design. Techniques such as airfoil smoothing, nonuniform
relaxation, and the strained coordinate transfer are employed to accelerate convergence. The airfoil design cases
demonstrate the remarkable efficiency and accuracy of the method not only for compressible flows but also for
low-speed flows. Moreover, the method allows the leading-edge shape to be determined accurately and, thus, to
overcome the deficiency of many of the related methods.

Nomenclature
A = function defined by Eq. (11)
a = speed of sound, m/s
B = coefficient of the equation
C , D = constants
c = airfoil chord length
cp = pressure coefficient
d = ordinary derivative
F , f = functions of Mach number and pressure coefficient
F ′ = ∂ F/∂cp, Eq. (12)
M = Mach number
p = pressure
x , y = Cartesian coordinates
α = angle of attack
γ = specific heat ratio
� = increment
η = direction or coordinate normal to airfoil surface
ϑ = Prandtl–Meyer function or the angle between

characteristic line and the streamline
κ = curvature
ρ = density
ω = angle between characteristic line and the airfoil surface

Subscripts

o = objective or target value
s = surface value
0 = initial value
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∞ = freestream value

Introduction

T HERE are numerous aerodynamic inverse design methods
available for airfoil or wing design. Among these design meth-

ods, the iterative or iterative residual-correction methods such as
Takanashi’s1 and NASA’s streamline curvature method2−5 are very
powerful for engineering applications. They are based on iterative
corrections of pressure or velocity differences between the target
and designed airfoils and are only required to predict the correct
geometric variation tendencies rather than the exact values as the
solution will be improved during the iteration process. Moreover,
the flow solver is retained in its original form and can be treated just
like a “black box.” Therefore they can be directly coupled with any
newly developed and more efficient flow solver and can be easily
applied to complicated configurations because of their flexibilities.

Inverse design methods also have inherent problems such as
single-point design limitation and present difficulties in adding con-
straints. Moreover, the specified target pressure distribution can-
not guarantee minimum drag. Furthermore, iterative inverse design
methods are generally not very accurate, and their precision such as
maximum tolerance or maximum pressure coefficient differences is
rarely discussed. It is generally accepted, from a practical point of
view, that if the graphical differences between the target and design
pressure distributions are small enough the accuracy of the method
is taken for granted because in this case the lift, drag, and moment
differences between the two airfoils are so small that the design
requirements can be met without any problem.

As a result of limitations of inverse design methods, efforts have
to be made for geometry smoothing, for verification of aerodynamic
performance at off-design conditions or incorporation of additional
constraints, and for modification of target pressure distribution,
which is often obtained in engineering design by modifying the pres-
sure distribution of an existing airfoil whose certain characteristics
are required to be preserved and others to be improved. Because
aerodynamic characteristics are very sensitive to the leading-edge
geometry as it plays a very important role in low-speed maximum
lift, transonic shock location, etc., it is difficult to preserve the
key aerodynamic characteristics of the original airfoil if the design
method cannot work well in the leading-edge region. Therefore,
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accurate calculation of airfoil shapes, especially leading-edge
shapes, is essential for efficiency of inverse design methods.

Hence, most of the existing design methods do not perform very
well in leading-edge regions owing to large flow gradients and high
curvature distributions. As a result, their practical applications are
limited because aerodynamic characteristics are very sensitive to
airfoil leading-edge geometric shapes. More recently, several ap-
proaches have been tried to improve or overcome this limitation.
Takanashi’s streamline curvature method2 is successfully employed
for subsonic flows, but it is not very efficient in other flow regimes.
Representation of airfoil geometry by families of smooth analytic
functions6,7 is an effective way, but the design results are restric-
tive. The objective of the current research under the Bombardier
Aeronautical Chair at Ecole Polytechnique is to develop an iterative
inverse method that is not only efficient but also accurate for both
compressible and low-speed flows. The design method has been
developed for use by the Advanced Aerodynamics Department of
Bombardier Aerospace.

In this paper, a new iterative inverse design method based on
streamline equations is presented. Instead of the typical assumptions
to streamline curvature variations normal to the airfoil surface, as
in the streamline curvature methods, a small perturbation geometric
equation is deduced from the streamline momentum equations, the
continuity equation, and the isentropic relations with the geome-
try similarity assumption of near streamlines to the airfoil surface.
Moreover, the transonic correction is also considered in this equa-
tion with the assumption for the effects of waves reflected from the
free boundary (sonic line) because the method based on the surface
flow values cannot take into account the transonic characteristics
like wave interference. For the specified target pressure distribu-
tion and the initial airfoil, the stagnation point is taken as the ini-
tial point with its zero perturbation value, and then the geometric
perturbation normal to the airfoil surface can be calculated by solv-
ing this ordinary differential equation as initial-value problem. The
airfoil is designed in iteration. Techniques such as airfoil smooth-
ing, nonuniform relaxation and the strained coordinate, which are
employed to remove nonuniformity from perturbation solutions of
nonlinear problems, are applied for accelerating the convergence.
The high efficiency and accuracy of this method is demonstrated
by several subsonic and transonic airfoil design cases. In addition,
some concerned problems are also discussed in detail.

Governing Equations
The momentum equation with the isentropic relations along a

streamline can be written as

[γ /(γ − 1)](p/ρ) + V 2/2 = [γ /(γ − 1)](p∞/ρ∞) + V 2
∞
/

2 (1)

The momentum equation normal to the streamline has the following
form:

ρV 2κ = ∂p

∂η
(2)

For a streamline tube very near the airfoil surface, as shown in Fig. 1,
with the first-order accuracy for η, the continuity equation can be

Fig. 1 Streamline tube and its coordinates near the airfoil.

approximated as

ρV η + 1

2

∂(ρV )

∂η
η2 = C (3)

Assuming small differences between target and design airfoils, the
following equations can be obtained:

(ρV )o = (ρV ) + �(ρV ), ηo = η + �η

[
∂(ρV )

∂η

]
o

=
[

∂(ρV )

∂η

]
+ �

[
∂(ρV )

∂η

]
(4)

Substituting Eq. (4) into Eq. (3) gives

(ρV )o�η + η�(ρV ) + η�η
∂(ρV )

∂η
+ 1

2
η2�

[
∂(ρV )

∂η

]

+ η�η�

[
∂(ρV )

∂η

]
= 0 (5)

Because the target pressure distribution is generally specified for
inverse design, it is convenient to express the variables in Eq. (5) as
functions of pressure coefficients along with the preceding equations
and the following equation of state, Eq. (6), the speed of sound
relation, Eq. (7), the isentropic relation, Eq. (8), and the definition
of the pressure coefficient, Eq. (9), as follows:

p = ρRT (6)

a2 = γ RT (7)

(
p

ρ

)γ

=
(

p∞
ρ∞

)γ

(8)

cp = 2(p − p∞)

ρ∞V 2∞
(9)

Thus the following dimensionless relations can be obtained:

F(cp, M∞) = ρV /ρ∞a∞ =
√

2
(
1 + 1

2 γ M2
∞cp

)1/γ
A (10)

where

A =
[

1
2 M2

∞ + 1/(γ − 1) − [1/(γ − 1)]
(
1 + 1

2 γ M2
∞cp

)(γ − 1)/γ
] 1

2

(11)
Consequently,

1

ρ∞a∞

∂(ρV )

∂η
= − ∂ F

∂cp

∂cp

∂η
= F ′ f κ (12)

where f is a function of cp and M∞ given by

f (cp, M∞) = (
4
/

M2
∞
)(

1 + 1
2 γ M2

∞cp

)1/γ
A2 (13)

Used together with Eqs. (10) and (12), Eq. (5) becomes

ηF + 1
2 η2κ F ′ f = 0 (14)

Replacing η, F, κ , and f in the preceding equation with
η + �η, F + �F, κ + �κ , and f + � f , respectively, and ignoring
higher-order terms of �η, we obtain(

1
2 η + �η

)
ηF ′ f �κ + (Fo + ηF ′

o foκ)�η + η�F

+ 1
2 η2κ�(F ′ f ) = 0 (15)

From Eq. (4) and Fig. 1, we have

ηo = ho − hos, ηo = h − hs
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As a result,

�η ≈ (h − ho) − (hos − hs) = �h − �hs (16)

where h is the coordinate normal to the reference curve (which can
be considered as one of target and designed airfoil surfaces).

The streamlines very close to the airfoil surface are geometrically
similar to the airfoil form itself, and there is almost no difference
between streamlines very far from the airfoil because of the same
freestream condition; therefore, it can be assumed that the difference
between a near streamline around the target airfoil and the corre-
sponding streamline around the designed airfoil is proportional to
and smaller than that between the two airfoils. That is to say,

�η = −D�hs (17)

where D is a small positive constant and can be made equal to
the initial streamline value of the design airfoil without loss of
generality:

D = η0/c (18)

In addition, note that the curvature increment is given by

�κ = ∂2�hs

∂s2
(19)

Thus, using Eqs. (14–19), the following equation can be deduced:

A1
∂2�hs

∂s2
+ A3�hs + B = 0 (20)

where

A1 = (
1
2 η + �η

)
ηF ′ f, A3 = − (

Fo + ηF ′
o foκ

)
(η0/c)

B = η�F + 1
2 η2κ�(F ′ f ) (21)

The preceding equation cannot be applied directly because of the
following reasons. The ordinary differential equation, Eq. (20), is
very stiff because the first coefficient A1 is of the same order as the
other coefficients near the leading edge, whereas away from which
A1 decreases very rapidly. But this term cannot be ignored even if
it is made much smaller by choosing a smaller �η. Otherwise it is
impossible to get a reasonable solution near the leading edge because
of its large curvature variations. Furthermore, applying Eq. (20) to
the whole airfoil leads to nonphysical solutions because the ignored
terms can be of the same order as the coefficient A1 or even greater
in the regions other than the leading edge. Thus physically it is
meaningless to keep using this equation. Therefore for the remaining
part of the airfoil the following algebraic equation is used, which is
derived from Eq. (20) by ignoring the first term. Hence,

A3�hs + B = 0 (22)

For transonic flow, it can be shown that F ′ = ∂(ρV )/∂cp dom-
inates the properties of the first coefficient of Eq. (20) and is pos-
itive for supersonic flows, negative for subsonic flows, and null at
the sonic point. That is to say, the sonic point is a singular point
for Eq. (20). In fact, this singular point does not pose any serious
problem because this term is much smaller than the others; hence,
it can be ignored within the supersonic zone, and Eq. (22) used
instead. Moreover, the term B of Eq. (22) dominated by the dif-
ference �F = �(ρV ) also shows different tendencies for subsonic
and supersonic flows. Hence with the same pressure difference, the
direction of geometric perturbations for supersonic flows is oppo-
site to that of subsonic flows. In addition, for supersonic flows the
flow influence region is only limited in Mach zones, and as a result
Eq. (22) should be adapted, and it is more suitable to solve the fol-
lowing differential form of Eq. (15), with the first term ignored and
treated as an initial value problem:

A2T �η′ + A3T �η + BT = 0 (23)

where

A2T = Fo + ηF ′
o foκ, A3T = F ′

oc′
p,o + η′ F ′

o foκ

BT = η�(F ′c′
p) + η′�F + ηη′κ�(F ′ f ) (24)

However, transonic flows with their small supersonic zones can be
greatly different from pure supersonic ones with very far free bound-
aries. The supersonic variation relation between the geometry and
the pressure is not valid everywhere for transonic flow, especially
at the beginning of the small supersonic zone where the general
geometry and pressure variations might still obey the subsonic re-
lations. This phenomenon can be simply explained by reflection of
expansion waves from the very near sonic line as shown by Farrari
and Tricomi8 or Moulden.9 These reflected waves are compressive
and tend to slow down the flow. Therefore if there is a small concave
region even invisible on the airfoil surface, the flow can decelerate
instead of accelerating because of the effects of reflected compres-
sive waves and vice versa. Moreover, for transonic flows it is not
appropriate to express the geometry similarity assumption of near
streamlines to the airfoil surface as in Eq. (17), an additional relation
of streamline slopes might be preferred. Furthermore, the preced-
ing equations are based on the surface values rather than the whole
flowfield. Therefore they cannot reflect transonic flow characteris-
tics such as wave interference. The correction to transonic effects
must be taken into account, which is realized by the treatments based
on following ideas. Streamline slopes are the same along their iso-
clines, but only from the surface variables it is impossible to define
the isoclines. Consequently, an approximated relation is obtained
from characteristic lines whose direction is known at the airfoil
surface because it is well known that the angle ϑ between the left
characteristic line and the streamline satisfy the relation (Ref. 9,
p. 110): ϑ + ω = constant.

It is assumed that the slope difference of near streamlines between
the target and design airfoils is proportional to and smaller than that
between the two airfoil forms along the characteristic lines, that is,

�h′
s − �h′

c = D�h′
s (25)

where D is a small positive constant and the subscript c represents
the value at the characteristic line.

Because the equation will be solved as an initial value problem,
the left characteristics are supposed to be dominant because they
can directly affect the flow before a search point. Thus from the
geometric relations, as shown in Fig. 2, and the Mach angle relation,
we obtain

η′ = h′ − h′
s ≈ h′

c + ∂h′
c

∂s
�s − h′

s, �s ≈ η cot ϑ =
√

M2 − 1

∂h′
c

∂s
≈ ∂h′

s

∂s
= κ (26)

With similar relations used for Eq. (17) and with the higher-order
terms ignored, the following approximated differential equation for

Fig. 2 Geometric relations between an airfoil surface, a near stream-
line and a left characteristic line from the airfoil.



824 YU, PARASCHIVOIU, AND SAEED

transonic flows can be obtained:

C�h′
s − κη

(√
M2

o − 1 −
√

M2 − 1
)− κ�η

√
M2 − 1 + �η′ = 0

(27)

The preceding equations are only applied for correction purposes.
And thus they are only required to predict correct tendencies rather
than exact values because solutions will be improved during the
iteration process. Of course, the approximation precision will exert
great influence on convergence speed, that is to say, on the efficiency
of the method.

Perturbation Calculation and the Design Process
The geometry similarity assumption of near streamlines to the

airfoil surface is not valid near the stagnation point where the ge-
ometric shape of even a very near streamline is greatly different
from the airfoil shape. But the nearer the streamline line is to the
airfoil surface, the smaller this invalid region is. Consequently it
is appropriate to take the two discrete numerical points around the
stagnation point of the design airfoil as the initial calculation points
and then to calculate the perturbation before and after the stagna-
tion point separately. This measure has been found to be effective
because with the increase of iteration times the stagnation locations
of the target and the design airfoils generally become so close and
can be confined between the two initial points that the invalidity of
the similarity assumption should not bring about any problem.

As the transonic design is the most complicated, the main proce-
dure used for geometric perturbation calculation is as follows:

1) Calculate the near streamline coordinates η with the given
initial value η0 (1% airfoil chord generally used) with the help of
Eq. (14).

2) Solve Eq. (20).
3) When a jump appears in the solution of Eq. (20) or the ratio of

its first and second coefficients is smaller than a given value (1% is
generally used), Eq. (22) is used instead.

4) From the first sonic point, Eqs. (23) and (27) are solved as the
initial value problem.

5) After the shock position or the last sonic point, Eq. (20) is used
again.

6) Perform a coordinate transfer to match the supersonic solution
with the subsonic one after the shock, and keep it unchanged near
the first sonic point during the first few iterations.

Step 6 can be looked as a correction measure to avoid shocks
becoming stronger because the shocks on the airfoil tend to become
stronger with each iteration because transonic flows are influenced
by the presence of wave interferences and propagations and shocks
are simply the envelops of compressive waves. The assumption that
the left characteristics are dominant is mainly based on design and
calculation experience and is used to attain convergence. It can,
however, cause larger errors near strong shocks.

The principal airfoil design process, as shown in Fig. 3, is as
follows:

1) Calculate the pressure distribution of the initial airfoil using a
flow solver (viscous or nonviscous).

2) Perform the strained coordinate transfer for the target cp dis-
tribution during the first few iterations. This is discussed more in a
later section.

3) Calculate the normal geometric perturbation as just indicated.
4) Correct the calculated perturbations and perform the strained

coordinate transfer for them if needed.
5) Apply a nonuniform relaxation to the small perturbation equa-

tion for convergence acceleration. This is also discussed more in a
later section.

6) Add the geometric perturbation normal to the design airfoil.
7) Smooth the new airfoil.
8) Calculate the new leading-edge and trailing-edge locations,

transfer them to original ones, or make the trailing-edge gap equal
to the given one if specified.

9) Repeat the preceding steps until the convergence criterion is
satisfied.

Fig. 3 Flowchart of the inverse design process.

Different convergence criteria are employed in design process.
The principal one is that the maximum pressure coefficient differ-
ence between the target and the designed is smaller than 0.006. Even
this value is not very small, but it is still so demanding that this kind
of criterion has never been acceptable in any iterative correction
method.1−5 In fact, the precision of iterative inverse methods is gen-
erally judged from the graphical differences between the target and
design pressure or velocity distributions, and its exact amplitude
like the maximum pressure and geometric difference is rarely dis-
cussed. Exceptions can also exist, such as in the case of Milholen’s
paper,2 in which a precision of ±0.005 was specified for most cases
and was numerically determined. In the present study, the solution
is accepted at a specified iteration number if the graphical differ-
ences between the target and the designed pressure coefficients are
small enough as the convergence criterion for the specified maxi-
mum pressure coefficient difference cannot always be satisfied.

Flow Solver: MSES
To compute the airfoil pressure distributions, the flow solver

MSES10−12 of Mark Drela, Massachusetts Institute of Technology, is
employed. MSES is a multi-element airfoil design and analysis tool
for a wide range of Mach and Reynolds numbers that includes low
Reynolds numbers and transonic Mach numbers. For the purpose of
the current study, only the analysis part of MSES was utilized. It has
the capability to predict flows with transitional separation bubbles,
shock waves, trailing edge, and shock-induced separation. It is also
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able to predict surface pressure and aerodynamic forces accurately
just past the stall.

The numerical formulation of MSES is based on a finite volume
discretization of the steady Euler equations that make use of an
intrinsic streamline grid. A two-equation integral formulation with
lagged-dissipation closure is used to describe the boundary layers
and trailing-edge wakes. The inviscid and viscous interaction re-
gions are fully coupled through the displacement thickness. The
airfoil surface is used to specify a solid-body boundary condition.
The overall system is solved using a full Newton iteration method.
The numerical accuracy of the MSES code has been established via
comparison with known experimental data, and the reader is asked
to refer to the associated references10−12 for details. The code is
being used widely in academia as well as industry.

Some Special Treatments
Strained Coordinate Transfer

Pressure differences between the target and calculated airfoils
near the leading edge and the shock positions can be so large es-
pecially during the first few iterations that the calculated geometric
perturbation can be greatly deformed because of the large differ-
ences between their stagnation points, suction peak, and the shock
locations where the small perturbation assumption is not valid in
this case. Geometry smoothing can help solve the problem, but the
strained coordinate transfer can be more efficient.

The concept of employing coordinate straining to remove nonuni-
formities from perturbation solutions of nonlinear problems is well
established. It was originally proposed by Lighthill13 five decades
ago and has found more applications14−16 in the 1970s and 1980s,
but to our knowledge the technique has not been applied to the treat-
ment of airfoil geometries. The basic idea of this technique is that a
straightforward perturbation solution might possess the right form,
but not quite at the appropriate location.

There are two kinds of strained transfer used according to
Stahara14: 1) in a “classical” sense, strained transfer is applied to
full governing equations and boundary conditions. Thus, the differ-
ential equations so obtained are generally more complicated than
the original ones, and 2) strained transfer is employed directly to
the known nonuniform solution and then solving algebraic rather
than differential equations. It is obvious that the second one is more
suitable for the present design method based only on the known
airfoil surface variables.

This technique was often used for nonlinear interpolation of two
similar solutions. The coordinate transfer is carried out generally
with the help of polynomials. The strained range and its vanishing
manner should be carefully considered.14 For the purpose of inverse
design, the requirements for strained coordinate transfer are much
more demanding in order to keep the geometric precision of the
designed airfoil. Thus, in this research the transfer is applied only
during the first few iterations for accelerating the convergence and a
transfer based on Bezier spline is tried instead of polynomials for the
sake of control flexibility. Moreover, the strained transfer is used for
similar solutions, whereas the pressure distribution of the calculated
airfoil during initial iterations might not be similar at all to the target.
For example, one might have a suction peak near the leading edge
and another might not. Therefore only some of the critical points
such as leading edge, trailing edge, stagnation point, suction peak
location, sonic point, and shock location of the two solutions need to
be selected as strained points according to different situations. The
application technique is similar to that as demonstrated in Ref. 16.

Airfoil Smoothing
Geometry smoothing is very important and even essential to some

inverse methods for which the airfoil smoothing is used during
each design iteration.2 Because airfoil smoothing effects need to
be meticulously controlled, it is impossible to directly apply the
general method, which tends to smooth an airfoil too much or too
less. Therefore, special methods suitable for airfoil smoothing must
be developed.

In this study, several smoothing methods were adapted. The global
smoothing technique is based on the optimized airfoil parameter-

ization method.17−19 This method can keep the third-order deriva-
tives continuous, but its smoothing effects are very local because
it is designed for accurately representing the original airfoil. Thus
in shock regions, another smoothing method based on the origi-
nal idea of Renz20 is adapted. With this method, the second-order
derivatives of perturbations are smoothed, and the differences be-
tween the smoothed derivatives and the original ones are integrated
back to get the geometry difference. In addition, during the first few
iterations the leading edge is smoothed with the sixth-order polyno-
mial fitting if the maximum perturbation is larger than a specified
value (say about 0.001). The Bezier function is widely used in the
leading-edge region during the design process and has been found to
be very efficient because it is able to preserve the general tendency
of the original curve, damp the too high peaks, and keep the slope
continuous at the two ends. If this kind of smoothing is not used, the
calculation convergence is slower because of the oscillations and
noises of the geometric perturbation solution in the leading-edge
region.

Nonuniform Relaxation
In the design process, underrelaxation is necessary to guarantee

the calculation convergence especially during the first few iterations
because the calculated perturbation might be deformed as a result
of too large pressure differences near the leading edge while the
overrelaxation should generally be used for accelerating the con-
vergence speed. But the relaxation factor cannot be made constant
directly because 1) the geometric perturbations near leading edge
tend to be larger owing to large pressure gradients and they oscillate
and contain some noises; 2) geometric perturbations are too large
in the supersonic region of transonic flows as the flows are very
sensitive to smaller perturbations; and 3) geometric perturbations
are generally smaller in the aft part of airfoil upper surface and on
the lower surface at large angles of attack. This might be caused
by taking the same constant D in Eqs. (17) and (26) for the entire
airfoil. The problem can be solved by treating the constant D as
a function of curvature lengths, but it is more convenient to use
nonuniform relaxation. Therefore in this research, different relax-
ation factors are employed and varied between 0.3 and 5 in Eqs. (17)
and (26), and are adjusted automatically according to the amplitudes
of geometric perturbations and the pressure differences. Relaxation
factors should be selected in such a way that the convergence speed
to the target values should be more uniform at every point of the air-
foil. If the pressure differences in one part of the airfoil are already
near zero and there are still larger differences in the other part, the
convergence is much slower. In addition, a large relaxation factor
can sometimes give rise to a serious problem that small perturbation
waves are amplified. The amplified waves reduce the convergence
speed rather than accelerate it, which is one of reasons why geometry
smoothing is necessary.

Airfoil Design Results
Airfoil Design for High Subsonic Flows

To avoid complicated flows containing shock waves, the first test
design is selected for M∞ = 0.6, Re = 1.0 × 107, and α = 1.5 deg.
The target airfoil is RAE 2822, and the initial airfoil is NACA 0012.
The large difference between the two airfoils is suitable for test-
ing the capability of the method. The strained coordinate transfer is
used during the first 10 iterations. The strained points are the leading
edge, the trailing edge, the pressure peak location and the stagnation
point during the first five iterations, whereas in the next five itera-
tions the same strained points are selected except the pressure peak
location.

The design results are presented in Figs. 4a and 4b to show the
pressure distribution and the airfoil shape comparisons between the
initial, target, and design airfoils. The convergence is very fast,
the differences between the target and design are small even after
five design iterations, for example, and the lift coefficient difference
is smaller than 1%, which is appropriate for initial design problems.
After 15 iterations, the pressure differences are very small, the max-
imum pressure coefficient difference, which appears near the lead-
ing edge, is 0.006, whereas the geometric difference is smaller than



826 YU, PARASCHIVOIU, AND SAEED

Fig. 4a Inverse airfoil design results: comparison of airfoil geometry
and pressure distributions for M∞ = 0.6, Re = 1.0 ×× 107, and α= 1.5 deg
after five iterations.

Fig. 4b Inverse airfoil design results: comparison of airfoil geometry
and pressure distributions for M∞ = 0.6, Re = 1.0××107, and α= 1.5 deg
after 15 iterations.

5.0 × 10−5 considering the tolerance used in aerodynamic design.
The precision is surprisingly good.

Another design case, shown in Figs. 5a and 5b, is for M∞ = 0.725,
Re = 1.0 × 107, and α = 0.0 deg. The target and the initial airfoils
are again RAE 2822 and NACA 0012, respectively. But the strained
coordinate transfer is not applied because of the larger differences of
the suction peak locations between the target and the initial pressure
distributions. In addition, the stagnation point locations are too close

Fig. 5a Inverse airfoil design results: comparison of airfoil geom-
etry and pressure distributions for M∞ = 0.725, Re = 1.0 ×× 107, and
α= 0.0 deg after 10 iterations.

Fig. 5b Inverse airfoil design results: comparison of airfoil geom-
etry and pressure distributions for M∞ = 0.725, Re = 1.0 ×× 107, and
α= 0.0 deg after 20 iterations.

to the leading edge to be calculated with enough accuracy just from
the pressure distributions at given x locations.

The convergence is not as good as in the previous case because a
supersonic region appears on the upper surface of the initial airfoil
during the first few iterations and the strained transfer is not used. But
it is still fast enough. In 20 design iterations the pressure coefficient
differences are smaller than 0.0045 in the leading-edge region and
0.007 in the remaining part.
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Airfoil Design for Low-Speed Flows
The design case is selected for M∞ = 0.3, Re = 1.0 × 107, and

α = 4.0 deg. The target airfoil is RAE 5212, and the initial air-
foil is NACA 0012. The strained transfer is used during the first
10 iterations. From the results, as illustrated in Figs. 6a and 6b,
the convergence is very fast. In five iterations, the geometry and
pressure differences between the target and design are small, and
the lift coefficient difference is smaller than 3%. In 15 iterations,

Fig. 6a Inverse airfoil design results: comparison of airfoil geometry
and pressure distributions for M∞ = 0.3, Re = 1.0 ×× 107, and α= 4.0 deg
after five iterations.

Fig. 6b Inverse airfoil design results: comparison of airfoil geometry
and pressure distributions for M∞ = 0.3, Re = 1.0××107, and α= 4.0 deg
after 15 iterations.

there is no discernable difference between the pressure distributions.
Moreover, the lift coefficient difference is smaller than 0.001.

Transonic Airfoil Design
The design conditions are M∞ = 0.715, Re = 1.0 × 107, and

α = 2.30 deg. The target airfoil is RAE 2822, and the initial airfoil is
NACA 0012. The strained transfer is used for the first 20 iterations.
The results are presented in Figs. 7a–7c. The convergence is fast. In
five design iterations, the geometric differences, as shown in Fig. 7a,
between the target airfoil and the design are small, but the pressure

Fig. 7a Inverse airfoil design results: comparison of airfoil geom-
etry and pressure distributions for M∞ = 0.715, Re = 1.0××107, and
α= 2.30 deg after five iterations.

Fig. 7b Inverse airfoil design results: comparison of airfoil geom-
etry and pressure distributions for M∞ = 0.715, Re = 1.0××107, and
α= 2.30 deg after 15 iterations.
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Fig. 7c Inverse airfoil design results: comparison of airfoil geom-
etry and pressure distributions for M∞ = 0.715, Re = 1.0××107, and
α= 2.30 deg after 25 iterations.

distribution differences are still large owing to the sensitivity of tran-
sonic flows to small perturbations. From the pressure distribution
of the design airfoil, two shocks appear during the first few design
iterations, which make the flow complicated and the convergence
much slower. The first shock is caused by the invisible variations of
the curvature in this region. It is possible to solve this problem by
smoothing appropriately.

The comparison results, shown in Fig. 7b, in 15 design iterations
demonstrate that the pressure distribution of the design airfoil is
aerodynamically favorable, the lift coefficient difference between
the target and the design is smaller than 2%, and the shock strength
is little less than that of the target. From the comparison results,
shown in Fig. 7c, after 25 design iterations, the pressure distribution
of the design airfoil around the suction peak coincides with that of
the target (a difference of less than 0.005), which indicates that the
calculation for the leading-edge region is accurate. The results are
satisfactory from a practical point of view and from comparisons
with the transonic results1,3−5 of the other iterative methods. How-
ever, there are visible pressure differences near the shock locations,
which are probably caused by the following factors. As a pressure
jump appears owing to the shock wave at the same location, there is
also a jump in calculated geometric perturbations. Furthermore, the
calculated geometric perturbations are greatly deformed near the
shock locations of the target and design airfoils. Smoothing is gen-
erally used for solving this problem. But it is hard to make the two
shocks coincide together because it is very difficult to accurately
control the smoothing effects.

Conclusions
The following conclusion can be drawn from this research:
1) The new method is not only very efficient but also accurate

enough for both compressible and low-speed flows, especially the
leading-edge shape can be precisely calculated, which compensates
for the deficiencies of the many other methods.

2) The efficiency and the accuracy of the method depend greatly
on the techniques such as the strained coordinate transfer, geometry
smoothing, and nonuniform relaxation for accelerating the conver-
gence. A detailed study and understanding of these techniques can
further help improve the efficiency and accuracy of the method.

3) The transonic correction based on the assumption for the effects
of waves reflected from the free boundary (sonic line) is effective,
but detailed studies regarding its potential to improve transonic so-
lutions should be conducted.

4) A fully automated strained coordinate transfer is an effective
way to accelerate the convergence, but further research on its ability
to accurately reflect the geometric variations should be made.

For the treatment of geometric discontinuity caused by shock
waves, new techniques must be explored to replace the commonly
used techniques such as airfoil smoothing in order to meet higher
precision requirements in transonic flows.
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