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Abstract 
One of the major tasks of traditional general-purpose operating system is to provide an orderly and controlled 

allocation of processor among various executing programs competing for it in a fair and efficient manner. 

Multimedia applications have timing requirements that cannot generally be satisfied using the time-sharing 

algorithms of general-purpose operating systems.  Integrating discrete and continuous data of digital audio and 

video requires additional services from operating systems, especially handling of time-constrained characteristics of 

continuous media data, which poses a real-time characteristics on the underlying scheduler.  Implementing 

multimedia applications using a real-time scheduler leads to starvation of conventional applications.  In this paper, 

we briefly describe three of the popular multimedia scheduling algorithms.  We compare and discuss how adequate 

each algorithm is in handling the issue of starvation.  Additionally, we propose a new improvement for handling 

starvation for one of the most popular multimedia scheduling algorithms. 
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1 Introduction 

Multimedia application refers to the capture, storage, retrieval and presentation of audio and 

video data using computers.   Audio and video data streams consist of periodically changing 

values of continuous media data such as audio samples and video frames, and these convey 
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appropriate meaning only when presented continuously in time.  Multimedia applications 

handling audio and video data have to obey time characteristics of these media types, and are 

normally classified as soft real-time applications, because of their requirement for timely correct 

behaviors.   

Traditional real–time scheduling techniques used for control systems in application areas such as 

aircraft piloting, demand high security and fault tolerance.  The fault tolerance requirements of 

multimedia systems are usually less strict.  Short-time failure of a continuous media system, such 

as deadline misses do not lead to catastrophic consequences, but could degrade the Quality of 

Service (QoS).  It may even go unnoticed.   

The goals of traditional scheduling on general-purpose operating systems, like UNIX and 

Windows NT, are to provide optimal throughput, optimal resource utilization and fairness.  In 

contrast the main goal of real-time tasks is to provide a schedule that allows for as many time-

critical processes as possible to be processed in time to meet their deadlines.  None of the 

existing general-purpose operating system has been designed to provide multimedia data 

processing support. For the scheduling of multimedia tasks, therefore, the following objectives 

have to be considered: 

•  Time-critical tasks have to be scheduled so that they can always meet their execution 

deadlines.  This calls for real-time scheduling policies.   

•  Starvation of non-critical processes (such as those required to keep the system running), 

due to the execution of time-critical tasks, is unacceptable.  Since this may be in conflict 

with the previous objective, it is necessary to realize systems where time-critical and non-

critical tasks can co-exist.   
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Starvation is an issue that should be well addressed in any scheduling algorithm for multimedia 

systems if a reasonable level of quality-of-service is desired.  Comparison and evaluation of the 

basic approaches employed by different scheduling algorithms for scheduling multimedia 

systems form the crux of the contributions are made in this paper. 

 

The rest of this paper is organized as follows: Section 2 presents our problem statement, and 

Section 3 discusses some multimedia scheduling schemes and the rationale behind their various 

algorithms which form the basis for our comparison.  Evaluation of the scheduling algorithms in 

terms of starvation and their drawbacks as compared to other schemes is done in Section 4. 

Section 5 proposes an improvement to one of the popular scheduling algorithms to handle 

starvation.  Finally, Section 6 contains our conclusion and further study.  

2 Problem Statement 

Our motivation to study multimedia applications scheduling algorithms derives from the 

conflicting objectives stated in the previous section. In this paper, we will compare some of the 

scheduling algorithms for multimedia in the literature, and how the issue of starvation is handled 

to take care of requirements imposed by various applications that may co-exist in a multimedia 

system.   

 

In [BAV00], three multimedia algorithms SMART [NIE97], BERT [BAV99] and BVT 

[DUD99] were compared based on their implementation of virtual time. Our comparison, on the 

other hand shifts towards starvation issue, whether handled or sacrificed, for some popular 

multimedia scheduling algorithms.   
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3 Popular Multimedia Scheduling Algorithms 

Some of the early works in the area of OS support for multimedia systems focused on the real-

time aspect, and classical approaches for real-time processing like, earliest-deadline first (EDF), 

rate monotonic (RM) and least-laxity first (LLF) were adopted [STE95].   A danger of priority 

scheduling like earliest-deadline first is starvation, in which processes with lower priorities are 

not given the opportunity to run.  Although they are appropriate for hard real-time applications, 

yet these algorithms are not suitable for soft real-time multimedia, and conventional applications. 

 

Several new algorithms have recently been developed, some of which still employ one or two of 

those mentioned above.  They can be classified as proportional share resource allocation, 

reservation-based, and hierarchical algorithms [PLA00].  Proportional share schedulers are 

quantum-based weighted round-robin that guarantees that an application with N shares (or 

weights) will be given at least N/T of the processor time, on average, where T is the total number 

of shares over all allocations [REG00].  Some of the approaches employing proportional share 

include scheduler for multimedia and real-time applications (SMART) [NIE97], borrowed-

virtual-time (BVT) [DUD99] and adaptive rate-controlled (ARC) [YAU96].   In reservation-

based, an application is provided with load isolation (reserving an amount of CPU per period) 

and periodic execution.  One of the algorithms that belong to this category is processor capacity 

reserves in Real-Time Mach [MER94].  Hierarchical algorithm generalizes the traditional role of 

schedulers by allowing them to allocate CPU time to other schedulers.  Some examples of 

schedulers in this group are hierarchical start-time fair queuing (SFQ) [GOY96], and soft real-

time (SRT) [CHU99]. 
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3.1 Processor Capacity Reserves 

This approach provides a scheduling mechanism that allows users to control allocation of 

processor cycles among programs.  Applications request processor capacity reservations, and 

once a reservation has been granted by the scheduler, the application is assured of the availability 

of processor capacity.  It uses admission control to allow real time tasks to reserve a fixed 

percentage of the resources in meeting real-time requirements.  The reservation system was 

designed to support higher-level resource management policies; for example, a quality of service 

(QoS) manager could use the reservation system as a mechanism for controlling the resources 

allocated to various applications, by translating their QoS parameters to system requirements.  

 

In this algorithm, programs are scheduled consistently with the admission control policy, and an 

accurate measure of the computation time consumed by each program is done to ensure that 

programs do not overrun their reservations, hence interfering with other programs. 

 

Processor percentage provides a means of measuring requirements of both time-constraint and 

non-time-constraints applications, and the processor percentage consumed by a program over 

time defines its rate of progress.  The Rate Monotonic and Earliest-Deadline First algorithms are 

suitable for implementing reservation scheduling in the framework, because they are methods of 

assigning priorities to programs which ensure that each program progresses at its assigned rate.   

 

Using rate monotonic for fixed priority and given that n is the number of periodic programs, 

while Ci and Ti represent the computation time and period of program i respectively, an 

admission control policy follows from the rate monotonic scheduling analysis from [LIU73] that; 
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The reserved rates of programs that have been admitted are recorded, and the total reservation is 

the sum of these rates.  A simple admission control policy is to admit a new program if the sum 

of its rate and the total previous reservation is less than 69% using rate monotonic.  With earliest-

deadline first for dynamic priority policy, however, 
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an admission policy here admits if sum of rates is less than 100%, otherwise the reservation 

cannot be granted.  The assumption is based on [LIU73] assumptions that all programs will 

successfully meet their deadlines and compute at their associated rates, given that (1) and (2) 

hold for rate monotonic and earliest- deadline first respectively.  Programs that have not yet 

consumed their reservation take precedence over unreserved processor time available, but if 

there is unreserved processor time available, unreserved programs can take advantage of the 

extra processor time. 

 

3.2 Hierarchical Start Time Fair Queuing (SFQ) 

SFQ has a CPU allocation framework suitable for multimedia operating system.  The framework 

enables different schedulers to be employed for different application classes, and a tree specifies 

the hierarchical partitioning.  Each thread (task) belongs to exactly one leaf node and each node 

represents an application class.  Threads are scheduled by leaf node schedulers while 

intermediate nodes are scheduled by an algorithm that achieves hierarchical partitioning – SFQ.  
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If an application requests a real-time service, the QoS manager uses admission control algorithm 

which utilizes the capacity allocated to the class to determine if the request can be satisfied, and 

if so, assigns it to the appropriate partition.  If application requests best-effort service, then the 

request is not denied but assign to appropriate partition.  Each node has a weight that determines 

percentage of its parent node’s bandwidth that should be allocated to it.  Figure 1 shows a 

scheduling structure where the three sub-classes: hard real-time, soft real-time and best-effort, 

has weights 1,3, and 6 respectively, with further sub-division of the best-effort class equally 

among leaf classes.  While soft real-time and user1 leaf classes employ a fair scheduler, the hard 

real-time and user2 classes have EDF and time-sharing schedulers, respectively. 

 

 

 

 

 

 

 

 

 

Figure 1: An example scheduling structure. 

 

In SFQ, each competing thread should receive an amount of CPU bandwidth that is proportional 

to its weight during any arbitrary finite interval.  The number of normalized work units allocated 

to a thread is defined to be the ratio between the numbers of allocated CPU instructions and the 

thread's weight. The proposed scheduling algorithm approximates fair scheduling by monitoring 
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the number of normalized work units that were allocated to each process, and give higher priority 

to processes that were given less than their fair share of the CPU bandwidth.  

 

The scheduler uses the notion of virtual time to do scheduling. Virtual time starts at 0 and is 

constant during the execution of a time quantum. Virtual time is expressed in terms of 

normalized work units.   When the CPU is busy, the virtual time is equal to the start tag of the 

thread in service at that time.  On the other hand, when the CPU is idle, the virtual time is set to 

the maximum of finish tag assigned to any thread.  Each thread has a start tag and an end tag 

associated with it.   Threads are serviced in the increasing order of the start tags, and ties are 

broken arbitrarily.  To have a flavor of how fair scheduling is achieved with SFQ algorithm, an 

example in [GOY96] gives a detail description. 

 

3.3 SMART: A Scheduler for Multimedia And Real-Time Applications  

SMART reduces the complex resource management problem into two decisions, one based on 

importance to determine the overall resource allocation for each task, and the other based on 

urgency to determine when each task is given its allocation. SMART provides a common 

importance attribute for both real-time and conventional tasks based on priorities and weighted 

fair queuing (WFQ). SMART then uses an urgency mechanism based on earliest-deadline 

scheduling to optimize the order in which tasks are serviced to allow real-time tasks to make the 

most efficient use of their resource allocations to meet their time constraints.  A bias on 

conventional tasks that accounts for their ability to tolerate more varied service latencies is used 

to give interactive and real-time tasks better performance during periods of transient overload.  
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An urgent task is one that has an immediate real-time constraint. On the other hand an important 

task is one with a high priority, or one that has been the least serviced proportionally among 

applications with the same priority. An urgent task may not be the one to execute if it requests 

more resources than its fair share. Conversely, an important task needs not be run immediately. 

For example, a real-time task that has a higher priority but a later deadline may be able to 

tolerate the execution of a lower priority task with an earlier deadline.  SMART avoids a 

situation where a real-time process that is not of much importance takes over the resource from 

an important conventional application. 

 

The importance of an application is measured by a value-tuple, which consists two components: 

priority and the biased virtual finishing time (BVFT). Priority is a static quantity either supplied 

by the user or assigned the default value. Virtual finishing time (VFT) is a dynamic quantity the 

system uses to measure the degree to which each task has been allotted its proportional share of 

resources, and it incorporates tasks with different priorities.  A task A has a higher value-tuple 

than task B if A has a higher static priority or if both A and B have the same priority and A has an 

earlier BVFT.   

 

The SMART scheduling algorithm used to determine the next task to run is as follows: 

1. If the task with the highest value-tuple is a conventional task (a task without a deadline), 

the task is scheduled. 

2. Otherwise, a candidate set is created consisting of all real-time tasks with higher value-

tuple than that of the highest value-tuple conventional task.  
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3. The best-effort real-time scheduling algorithm is applied on the candidate set, using the 

value-tuple as the priority. The algorithm attempts to schedule the candidate into a 

working schedule, which defines execution order. The candidate is inserted in increasing 

deadline order in this schedule provided its execution does not cause any of the tasks in 

the schedule with higher value-tuple to miss its deadline. The scheduler simply picks the 

task with the earliest deadline in the working schedule.  

4. If a task cannot complete its computation before its deadline, a notification is sent to the 

application. 

SMART behaves like a real-time scheduler when scheduling only real-time requests and behaves 

like a conventional scheduler when scheduling only conventional requests. However, it combines 

these two dimensions in a dynamically integrated way that fully accounts for real-time 

requirements.  

 

4 Comparative Evaluation of Starvation Issues in Selected Algorithms 

In this section, we compare and discuss how adequate each scheduler in handling the issue of 

starvation. 

 

Processor Capacity Reserves clearly sacrifices fairness in its framework; this makes starvation of 

conventional applications inevitable.  This is evident from the reservation policy implemented 

that allows real-time programs to reserve a fixed percentage of the resource in accordance with 

their resource requirements, and an application of real-time scheduling to execute real-time tasks, 

which results in starvation of conventional tasks. Any leftover processing time is allocated to 
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conventional tasks using a standard timesharing or round-robin scheduler.  In spite of the fact 

that reservations are targeted towards giving real-time systems better performance, late arrival of 

a real-time application in an overloaded system can result in its denial by the admission control 

system, even if it is more important than already admitted processes. 

 

Hierarchical Start-time Fair Queuing Scheduler (SFQ) implements fair sharing, but 

synchronization between threads can lead to priority inversions that would destroy the fairness of 

the scheduling algorithm, and hence leading to starvation.  Since it separates scheduling policy 

for real-time and conventional applications, it is limited by combination mechanism, thus a 

thread from real-time class synchronizing with another thread in the best-effort class (which does 

not perform any admission control), may violate the quality of service requirement of the thread.  

In particular, the algorithm does not extend scheduling decision to the lowest-level where the 

actual scheduling of processor cycle is done. The decision is left in its entirety to the leaf 

scheduler. Also, real-time applications will not take over the machine, but they also cannot 

effectively meet their time constraints as a result of the underlying proportional share mechanism 

taking the resource away from the real-time scheduler at an inappropriate and unexpected time in 

the name of fairness.  Meanwhile, there is no provision for feedback to allow real-time 

applications to adapt effectively in such situation. 

 

SMART tolerates some instantaneous unfairness, so as to meet deadlines and deliver good 

response time to short-running tasks.  And depending upon priorities, new time constraints can 

steal time that might otherwise have been needed to finish an existing constraint on time, or to 

maintain other applications proportional share requirements.  Thus it provides no guarantee for 
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real-time tasks unless they are executed at the highest priority, and there is possibility of starving 

time-sharing tasks.  As it is generally identified with priority-based systems, and with SMART 

using priority as the first major criteria for scheduling, a system that is composed of basically 

high-priority real-time applications leaves an open room for the starvation of conventional 

applications, since they can not be scheduled alternatively using urgency.  This implies that the 

admittance of real-time processes should be managed.  The SMART adaptability feature allows 

for already admitted processes to manage their own degradation policies in the event that enough 

CPU resource is not available.  However, it does not provide admittance in an overload situation.  

This situation still can clearly result in starvation of applications whether of low or high priority.   

 

5 Suggestions for Improvement 

From our comparison in the previous section, we discovered that SMART needs some more 

features to effectively handle starvation, in spite of its numerous features.  We suggest that 

admission control policy be clearly implemented in SMART.  An algorithm does not necessarily 

need to make reservation in order to control admittance of applications, as claimed in [NIE97].  

In this case, therefore, an evaluation of resource requirements of a real-time task can be done 

against available resources so as to decide on its admission.  With admission control, SMART 

will be able to evaluate the timing constraints of new programs against the available processor 

capacity.  Hence, an immediate feedback is given to the application so it can adjust its timing 

requirements accordingly, rather than executing to a point and have the other computation 

discarded.  An uncontrolled new real-time application of the same priority level with an equally 

important conventional application will take over processor resource since it has not accumulated 
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any bias. Dependencies among various application classes should also be reduced, so that the 

fate of conventional process does not completely rely on the priority of real-time processes.  This 

is not intended to mean that real-time characteristics of multimedia applications be sacrificed.  

6 Conclusion and Further Study 

In this paper, we have investigated some of the popular scheduling algorithms for multimedia 

operating systems, and discussed their handling of starvation in a system containing application 

mix of both soft real-time multimedia and time-sharing conventional systems.  

 

We conclude that SMART, is a very important scheduling algorithm since its policies are directly 

propagated to the lowest scheduling level while giving proper attention to different classes of 

applications.  On the other hand, Hierarchical algorithm relies on some other scheduler, the leaf 

scheduler, to complete process scheduling.  Apart from being a scheduler on its own, SMART can 

also be used as a leaf scheduler in hierarchical system, as well as scheduling multimedia in 

multiprocessor environment as implemented in [NIE98].  With this in mind, we suggested an 

approach that incorporates admission control in SMART so as to avoid situations where a high 

priority real-time process takes over total control of the system, thereby leading to starvation of 

other low-priority real-time and conventional applications.  For further study, a simulation and 

an implementation of the proposed improvement for SMART are underway to validate our 

claims.  
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