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Abstract 
 

One of the hottest topics that emerged these days between the area of Internet and distrubted 
computing and the area of operating system is Web Operating System (WOS).  The objective of WOS  is 
to deliver the full benefit of the World Wide Web. The WOS will support geographically distributed, 
highly available, incrementally scalable, and dynamically reconfiguring applications. WOS will 
include mechanisms for resource discovery, resource collaboration, persistent storage, remote process 
execution, resource management, authentication and security. This paper presents an overview of a 
typical WOS. It describes the WOS process, components, communication protocols, and resources. 
Additionally, the paper discusses all the resolved and unresolved issues and difficulties surrounding 
the implementation and design of WOS 
 

1   Introduction 

Development of a new single operating system enabling global computing is a hot 

issue these days. Such an operating system is called the Web Operating System, or 

WOS.  Major Internet users use WOS to download files, execute of servers programs 

remotely, fetching client scripts, etc. The common model of these services consists of 

client-server or master-slave configuration with a network as a transportation media. 

WOS offers variety of services. These services could be software or hardware 

(computation, communication channels, storage capacity, specialized drivers, etc.).  

 

The use of web resources is highly motivated by different reasons. These include 

reliability, availability, fault tolerance, load sharing, function sharing, and 

performance aggregation. The many various real applications exhibit very different 

requirements. For example, 3D animation rendering is massively matrices 

computation. To take advantage of distributed infrastructure, mechanisms for efficient 
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resource management and access are needed. However, the heterogeneous and 

dynamic nature of the web infrastructure ensures that it is impossible to provide a 

complete catalog of all resources available on the web. Therefore, new approaches are 

needed which take into account the inherently decentralized and dynamic properties 

of the Internet and distributed system in general.  

 

In order to meet the need for such requirements, WOS has a framework for supporting 

applications that are geographically distributed,  highly available, incrementally 

scalable, and dynamically reconfiguring. It will also include fetures for resource 

discovery, resource collaboration, persistent storage, remote process execution, 

resource management, authentication and security.  

 

This paper has been organized as follows.  Section 2 gives an overview of a typical 

WOS. The overview includes a description of WOS nodes, process, components, and 

communication protocols, and resources. Section 3 addresses the issues and 

difficulties surrounding implementing and designing WOS. And finally, Section 4 has 

a summary and conclusion. 

 

2   WOS Overview 

WOS is designed as a distributed system. The WOS framework enables a new 

paradigm for Internet services. Instead of being fixed to a single location “client 

workstation”, services can dynamically push parts of their responsibilities out onto 

Internet computing resources and all the way to the client [1]. WOS goal is to provide 

a platform which allows the user to benefit from the computational potential offered 
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by the web. It’s aimed is to make available to all sites of the network resources to 

execute computations for which local resources are missing [1].  

 

To account for the dynamic nature of the Internet, generalized software configuration 

techniques, based on demand driven technique called eduction are developed for the 

WOS. The kernel of a WOS node is a general eduction engine, a reactive system 

responding to requests from users or other eduction engine. A WOS-node integrates 

thus client, server, and broker/trader functions. It is capable of providing a set of 

services, which can pass on to each other requests when appropriate. Again, because 

of web is dynamically changing, there exist some warehouses that associated with the 

WOS node provide the necessary information and components for meeting requested 

services. Each WOS node is using its own warehouses to store and continuously 

update information about the node and available services and resources. Therefore, 

with the above approach, the communication protocols may be seen as the glue of the 

WOS. Communication between WOS nodes is realized through a simple 

discovery/location protocol (WOSRP) and a generic service protocol (WOSP) [2]. 

 

What distinguishes one version from another are explicit features, which can come 

about in many different ways. Some will be changes resulting from straightforward 

linear development. Others will designate choices or variants, for such concepts as 

interface languages or host implementations.  

 

2.1  WOS Nodes 

The collection of WOS nodes constitutes the WOSNet or WOSspace. However, since 

the WOS is versioned system, subnets can be defined as a collection of some WOS 
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nodes may be defined as a particular version of the WOSNet. For example, a number 

of Internet services could be defined as a WOSspace “a version of the WOSNet 

including only these services”. Figure 1 shows the layered structure of a WOSNode. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure1: WOSNode Architecture 
 
The left side of this figure shows the server, while the right side represents the client 

features of each WOSNode. Services available on the WOSNode are described using 

profiles. Profiles describe resources with a list of key-value pairs, each pair defining a 

special feature of a resource. For instance, a printer has a special type (inkjet, laser 

etc.), is able to print black and white or color, and may handle Postscript files. Each 

resource also has a corresponding access-object describing its methods; e.g., for a 

printer, we might have self-test, economy mode, etc. That means that the user does 

not need to use the command line anymore. Restrictions on resource usage are 

described using the same data structure. 
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2.2  WOS Process 

The WOS works as follows: A request is made by a user to run a particular program, 

along with specified data and quality of service parameter. The request is sent to the 

closest eductive engine, which might reside anywhere on the web. Upon reaction of 

such a request, the engine performs a lookup operation in its resources warehouses to 

determine if it actually has the requested program and checks whether the local 

machine can meet the requested quality of service parameters. The engine might 

refuse the service or transfer the request to one or more other eductive engine, until 

finally and engine accepts responsibility for the request. However, every WOS user 

should be able to share his or her local resources with other users. In addition, users 

should be able to combine and use different resources for interactive problem solving. 

Figure 2 shows how eductive engine collaborate with other eductive engines or other 

WOS nodes warehouses [1]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Eductive engines collaboration 
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Due to the highly distributed WOSNode on the web, a lot of communication is needed 

to find these resources. Thus efficient strategies for communication and searching are 

needed. Two typical searching strategies are available to use: 

•  The broadcast strategy 

The requesting machine submits the request to each machine in the list. Each of 

these machines then sends messages back to the requesting machine. Since these 

machines can almost work in parallel the answer will be quickly available on the 

requesting machine. If the list contains n machines, 2n messages will be 

generated. n messages from requesting machine and n answers both positive and 

negative. Thus the network load is high. Furthermore, the broadcast 

implementation must be realized, hence delaying data transmission. 

•  The serial request strategy 

In this case the requesting machine sends one message containing the list of the 

remaining machines to one of the machines from the list. If the service is available 

on this machine, a positive answer is directly sent back to the requesting machine. 

So the generated network load is much less than in the first case. On the other 

hand, the respond time is much higher than in the first case and any 

communication problems or long transfer times directly influence the respond 

time [7]. 

 

2.3  WOS Components 

A typical WOS consists of three major components: 

1- User Interface: It is subdivided in three parts:  
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i. Profile editor: It helps the user generate profiles of resources he wants to 

make available for other users. It defines descriptive features of these 

resources. It also defines the object the remote user needs to access and the 

parameters for this object. All profiles are stored in the local profile 

warehouse.  

ii. Resource editor: The restrictions for each profile are stored in the resource 

warehouse.  These restrictions will be checked before a user can access the 

resources. 

iii. Request menu: Provides an easy-to-use interface to resources of the 

WOSNet. The user can access all resources stored in the local warehouse 

and might also initiate a search for new resources to update the warehouse. 

2- Resource Control Unit (RCU) accepts service requests from the user interface and 

contacts several known warehouses to find a WOSNode. First, the local warehouse is 

contacted, then other known warehouses in the WOSNet. If no service is found, a 

search for the requested service will be started. If an answer is found, the RCU asks 

for the service execution and returns the results to the user. After successful 

execution, the local warehouses are updated. 

3- Remote Resource Control Unit (RRCU) accepts service requests from other 

WOSNodes and examines whether the execution is allowed or not. Therefore, the 

resource warehouse is accessed. The RRCU transmits the answer to the client-side 

RCU. The service execution itself is also managed by the RRCU, which contacts the 

resource warehouse a second time to verify access rights. After that, the service is 

executed and the results are passed to the client-side RCU. 
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2.4  WOS Protocols 

The WOS has its own Communication Layer (WOSCL) and it uses two protocols. 

First protocol allows the selection of an appropriate version of WOS resources, the 

WOS Request Protocol (WOSRP). Second protocol, the WOS Protocol (WOSP), 

allows locating and using distributed resources, such as services, machines, etc., in a 

fault-tolerant manner over the Web. These protocols have been designed using 

TCP/UDP as transportation means [3]. 

 

2.4.1 WOSRP 

At first, a WOS client will broadcast a request to all machines in its immediate 

neighborhood. Any WOS server being able to provide a positive answer will respond. 

In this case, more detailed requests may be submitted to those WOS servers. 

Otherwise, the WOS client broadcasts a request to all the machines at the next 

network level, and so on. 

        
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: (a) T1: Initially, a message is broadcast to machines in the current local Network. T2: In the 
case where no local host responds to the initial request, a message is broadcast to hosts located in the 
next network level. (b) WOSRP Information Retrieval Strategy. 
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client could use WOSRP to obtain information about other WOS servers. WOSRP 

uses a “pull” philosophy, where a WOS node requests information from other nodes 

in its neighborhood. These messages may be lost without any disruption of service. 

Furthermore, WOS nodes may decide to propagate these messages to other items. 

Eventually, replies may be returned to the node which made the original request. 

 
2.4.2 WOSP 

It allows WOSNode administrators to implement a set of services, called a service 

class, dedicated to specific users’ needs. WOSP is in fact a generic protocol defined 

through a generic grammar. A specific instance of this generic grammar provides the 

communication support for a service class of the WOS. This specific instance is also 

referred to as a version of WOSP; its semantics depends directly on the service class 

supported by that version. Several versions of WOSP can cohabit on the same 

WOSNode. The WOSP is used to execute a service, to transmit the results of the 

execution, and to search the WOSNet. It is handling following interactions between 

WOS nodes: 

1- Execution commands allowing a WOS client to use resources from another node. 

2- Query commands used by a WOS client to interrogate another WOS node’s 

warehouse. 

3- Setup commands to change the execution parameters of a WOS node [8]. 

 

2.5  WOS Resources 

A resource is every thing that can be manipulated by a given host. It could have 

physical representation such as printers or an abstract concept such as CPU-power.  

2.5.1 Resource Structure 

Resource objects can be represented with following structure: 
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•  Presentation part provides an interactive interface to a resource at user level.  

•  Properties part represents the state of the resource. Properties are the public 

fields of a class to implement a resource. It has READ and WRITE methods in 

order to interact with other entities.  

•  Inputs provide all public methods of a resource. Inputs and its corresponding 

calling interfaces are collected and published by the resource framework 

automatically. 

•  Outputs are stubs provided by the implementer of the resource. An output can be 

linked at runtime to one or more input if the interfaces match.  

 
Resource Name 
Presentation (User Interface) 

- Iconic 
- Inspector 
- …. 

Prosperities 
- read(prosperity) 
- write(prosperity, value) 
- set_RO(prosperity) 
- notification (prosperity) 

      - …. 

Inputs (Methods) Outputs (Stubs) 

 
           Figure 4: Resource Structure 

 

2.5.2 Resource Components 

Web Resources on WOS has been implemented on three different components:  

1- Resource set as the implementation of a coordination space to mange-shared 

resources. 

2- User interface for interaction purpose 

3- Resource servers used to export local resources to the web [1]. 
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Figure 5: An interface between resource set, two-user resource server, and two-user interface. 
 
 
3. WOS Difficulties and Issues 

The fundamental problem that makes WOS more difficult is the heterogeneous and 

rapidly evolving nature of the web, and show how the concepts of software 

configuration and version control can be applied. A WOS should provide the 

following services: 

•  Network applications: WWW, email, video, etc. 

•  Computational applications: number counting, distributed simulation, etc. 

•  Transactional applications: banking, e-commerce, travel reservation, etc. 

•  Virtual entities: classrooms, companies, etc. 

•  Knowledge-base applications: data-mining, database, etc. 

•  Real time applications: process control, real time multimedia, etc. 

 

An important issue is the way of communication among WOS nodes. It is clear that 

WOS resources will communicate heavily in order to execute a bit complicated 
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transaction. In this case normal TCP/IP connection will not fulfill the end users 

satisfactions from performance point of view. Therefore, a special communication 

protocol needs to be included on the system design in order to provide adequate 

communication channel among WOS nodes. 

  

Additional consideration is the fact that the web is not just heterogeneous at the 

conceptual level, but also at the physical level (hardware and software that is available 

at different sites). Different technologies are used for all level of networking, and 

different machines, from personal computers to workstations to supercomputers, can 

all be found on the web, each with its own particular setup of operating system, 

supported protocols, and applications. To make a situation worse, the very basis for 

the web and the Internet, namely IP, is itself not static. The current standard, Ipv4, is 

soon to be replaced by Ipv6. However, this change will take place over long period, 

and the two version of IP will be used simultaneously. So even the web network level 

itself is heterogeneous [6]. 

 

How to get volunteers on the web where they can allow using their resources is an 

issue need to be addressed. In January of 1998 there were about 29,6 millions of 

computers connected to the Internet. This mass of processors connected together 

represents a very powerful parallel supercomputer with an incredible computational 

power. Most of these machines are only used for small interactive tasks, like the 

reading of electronic mail, the editing of files or just the browsing of Web pages and 

most of them remain idle in a significant part of the time. Thus, it seems insightful to 

apply this vast computing resource for solving some problems of cryptography, 

mathematics and computational science. In fact, there are some quite interesting 
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projects that use the computational power of machines that are connected to the 

Internet. 

 

JET project [11] has a software infrastructure that supports parallel processing of 

CPU-intensive problems that can be programmed in a client/server, or master/slave, 

paradigm. There is a Master process that is responsible for the decomposition of the 

problem into small and independent tasks. The tasks are distributed among the worker 

processes that execute a quite simple cycle: receive a task, compute it and send the 

result back to the master. The Master is responsible for gathering the partial results 

and to merge them into the problem solution. Since every task is independent from 

each other, there is no need for communication between worker processes. 

 

Other related issues, which also can affect the progress and future of WOS, may 

include:  

•  Because of large communication times, global on-line resource prediction is 

almost impossible. There is no global manager that can get and hold exact 

information about the current state of the whole system. Furthermore, the 

generated overhead would further increase the load of the already slow 

network. 

•  The structure of the system, especially of distant components can not be 

considered to be a fixed. Furthermore, it is truly heterogeneous in all aspects: 

structure of processing nodes, messages, used communication units, storage 

capacities and speeds, etc. 

•  In large networks with complicated structures failures or breakdowns of the 

system are not improbably. Specifically, failures at any intersection also result 
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in a system fault. Therefore, suitable reactions of the system in case of a 

failure must be implemented as a part of the load sharing system. 

•  Another general problem with a central data collection in the system is caused 

also by the transmission times, since the state of the system may already have 

changed during the transmission. The transmitted data will thus already be 

outdated upon arrival and therefore be invalid for any operations at the 

destination. 

•  Although most applications may be executed on any node without time limits, 

there might exist restrictions regarding the completion time of an application 

•  Off-line learning and adaptation methods cannot be used because too many 

parameters had to be collected. This could cause again a large overhead [5]. 

 

4. Conclusion 

WOS has the potential of being an important distributed computing system for the 

Internet. It promises supporting applications that are geographically distributed with 

high reliability, security, scalability, and manageability.   Some research and 

prototyping of WOS have been underway to overcome some of the challenges and 

difficulties pertaining to the design and implementation of such a system. However, 

many issues remain to be resolved.  Some of these remaining difficult issues include 

volunteering user system or resources, global on-line resource prediction, and the 

heterogeneous nature of many Internet components and protocols. 

  

 
5. References 
 
[1] Oliver Krone, Simon Schubiger. WebRes: Towards a Web Operating System. 

Kommunikation in Verteilten Systems 1999: 418-429. 
[2] Peter G Kropf. Overview of the Web Operating System (WOS) project, 1999  



 15

Advanced Simulation Technologies Conference (ASTC1999). San Diego,  
California, USA, pp.~350--356, April 1999.  

[3] Peter G. Kropf, Herwig Unger, Gilbert Babin. WOS: an Internet Computing  
 Environment. Quebec Canada, 19-21 Jun. 2000, Springer-Verlag, LNCS 1830,  

Berlin Heidelberg New York, 2000, pp1-1. 
[4] Simon Schubigr, Oliver Krone. Interactive Resource Sharing on the Web. 
[5] Herwig Unger, Peter Kropf. Overview about the Resource Scheduling in the  

WOS , Distributed Computing on the Web (DCW'98).Rostock, Germany,  
pp.~134--140, June 1998.  

[6] Slim Ben Lamine, John Plaice, Peter Kropf. Problems of Computing on the  
Web, High Performance Computing Symposium 97, A. Tentner, ed., The  
Society for Computer simulation International, Atlanta, Georgia,USA, 
pp.~296—301, April 1997.  

[7] Herwig Unger, Thomas Bohme. Search in the WOSNet , Distributed 
Computing on the Web (DCW), Rostock, Germany, 1998.  

[8] Gilbert Babin. Requirements for the implementation of WOS protocols. 
[9] Slim Ben Lamine, John Plaice. Simultaneous multiple Versions : The Key to 

the WOS. Distributed puting on the Web (DCW), Rostock, Germany, 1998.  
[10] Helmar Gebert, Carsten Pitz. Resource propagation within a Hyper-computer. 
[11] Francisco Soares, Luis Silva, Joao Silva. How to get volunteers for web base  
 meta-computing 
[12] Amin Vahdat, Eshwar Belani, Paul Eastham, Chad Yoshikawa, Thomas  
            Anderson, David Culler, Michael Dahlin. WebOS: Operating System Services 
            for Wide Area Applications. A project on Defence Advanced Research 
            Projects Agency 


	Abstract
	2.4  WOS Protocols
	
	
	
	2.4.1 WOSRP
	2.4.2 WOSP




	2.5  WOS Resources
	2.5.1 Resource Structure

	Resource Name
	
	
	
	
	
	5. References







