AE 421

Lecture 3

Statistics Formulae

- Some form of analysis must be performed on all experimental data.
- When a set of readings of an instrument is taken, the individual readings will vary somewhat from each other and the experiment is usually concerned with the mean of all readings.

Formulae

- Mean: (Arithmetic mean) x_{m}

$$
x_{m}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

- Median: It is the value that divides the data points in half, e.g., $10,12,13,14,15 \mathrm{~m} / \mathrm{sec}$ air velocity; Median: $13 \mathrm{~m} / \mathrm{sec}$.
- Mode: It is the value (or values) at which the distribution peaks, e.g., 10, 1, 12, 14, 16, 13, 12.
Mode: 16
Median: 14
Mean: 12.57

Formulae (Contd.)

- Deviation (d_{i})

$$
d_{i}=x_{i}-x_{m}
$$

- Average of Deviation $\left(\overline{\mathrm{d}}_{\mathrm{i}}\right)$
$\bar{d}_{i}=\frac{i}{n} \sum_{i=1}^{n} d_{i}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-x_{m}\right)$
- Average of Absolute Values of Deviation

$$
\left|\overline{d_{i}}\right|=\frac{1}{n} \sum_{i=1}^{n}\left|d_{i}\right|=\frac{1}{n} \sum_{i=1}^{n}\left|x_{i}-x_{m}\right|
$$

Formulae (Contd.)

- Standard Deviation (OR) Root Mean Square Deviation

$$
\sigma=\left[\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-x_{m}\right)^{2}\right]^{1 / 2}
$$

- Variance

$$
\sigma^{2}
$$

- Geometric Mean

$$
x_{g}=\left[x_{1} \cdot x_{2} \cdot x_{3} \cdot x_{4} \ldots \ldots . x_{n}\right]^{1 / n}
$$

