
Khaled Salah 

October 2006  The Arabian Journal for Science and Engineering, Volume 31, October 2B. 1 

 
 
 

 

TWO ANALYTICAL MODELS FOR EVALUATING 
PERFORMANCE OF GIGABIT ETHERNET HOSTS 

 
Khaled Salah* 

Department of Information and Computer Science 

King Fahd University of Petroleum and Minerals 

PO Box 5066, Dhahran 3126, Saudi Arabia 

 

:الخلاصة  
ر نموذجين تحليليين لدراسة تأثير طلبات المقاطعة على أداء نظم تشغيل الأجهزة تم العمل على تطوي

المتصلة بشبكة جيجابت إثرنت عند استقبالها لسيل البيانات من الشبكة، حيث تؤثر طلبات المقاطعة الناتجة 
وصا عن استقبال البيانات على الأداء بشكل ملحوظ خاصة عندما تزداد سرعة ورودها، ويظهر ذلك خص

على شكل زيادة في وقت المعالجة وتقليل لانتاجية النظام، آذلك يؤدي استنفاد طاقة المعالج في الاستجابة 
يقدم هذا البحث نموذجين   .لطلبات المقاطعة إلى التأثير على عمل التطبيقات الأخرى خاصة التفاعلية منها

هذين النموذجين يستعمل نماذج مارآوف تحليليين لأداء الأجهزة في تلك الظروف ويقارن بينهما، أول 
 على نماذج مارآوف، - وهو النموذج الأدق والأآثر تعقيدا –ونظرية الطوابير بينما يعتمد الثاني آلية 

: وينتج النموذجان صيغا رياضية متقاربة في معظم الحالات لعدد من المقاييس المهمة لأداء النظام ومنها
وقت الذي تستغرقه المعالجة، ومعدل انشغال المعالج بطلبات المقاطعة، انتاجية النظام، واستقراره، وال
تمكن هذه النماذج من فهم وتوقع آثار الاختيارات التي تتخذ عند تصميم . والوقت المتاح للتطبيقات الأخرى

 الأنظمة والشبكات على أداء الأنظمة المدارة بالمقاطعة تحت أحمال مختلفة للشبكة ، آما تفتح المجال
لتحسين أداء الأنظمة وذلك باتباع النصائح والمقترحات الواردة في هذا البحث والتي تشمل آلا مرحلتي 

  .التصميم والتنفيذ، آذلك يورد البحث نتائج المحاآاة والتجارب التي تدل على صحة ودقة النماذج المقدمة
 

 

 
 
 
 
 
 
 
 
 
 
* e-mail: salah@kfupm.edu.sa 

                                                 
Paper Received 8 December 2004; Revised 25 June 2005; Accepted 10 October 2005 



Khaled Salah 

 2 The Arabian Journal for Science and Engineering, Volume 31, October 2B. October 2006 

ABSTRACT 

Two analytical models are developed to study the impact of interrupt overhead on 
operating system performance of network hosts when subjected to Gigabit network 
traffic. Under heavy network traffic, the system performance will be negatively 
affected due to interrupt overhead caused by incoming traffic.  In particular, 
excessive latency and significant degradation in system throughput can be 
experienced.  Also, user applications may livelock as the CPU power is mostly 
consumed by interrupt handling and protocol processing.  In this paper, we present 
and compare two analytical models that capture host behavior and evaluate its 
performance. The first model is based on Markov processes and queueing theory, 
while the second, which is more accurate but more complex, is a pure Markov 
process.  For the most part both models give mathematically-equivalent closed-form 
solutions for a number of important system performance metrics.  These metrics 
include throughput, latency, stability condition, CPU utilizations of interrupt handling 
and protocol processing, and CPU availability for user applications.  The analysis 
yields insight into understanding and predicting the impact of system and network 
choices on the performance of interrupt-driven systems when subjected to light and 
heavy network loads.  More importantly, our analytical work can also be valuable in 
improving host performance.  The paper gives guidelines and recommendations to 
address design and implementation issues.  Simulation and reported experimental 
results show that our analytical models are valid and give a good approximation. 

Key Words: High-Speed Networks, Operating Systems, Interrupts, Receive Livelock, 
Modeling and Analysis, Performance Evaluation. 



Khaled Salah 

October 2006  The Arabian Journal for Science and Engineering, Volume 31, October 2B. 3 

TWO ANALYTICAL MODELS FOR EVALUATING PERFORMANCE OF GIGABIT 
ETHERNET HOSTS 

 

1. INTRODUCTION 

Interrupt overhead of Gigabit network devices can have a significant negative impact on system performance.   
Traditional operating systems were designed to handle network devices that interrupt on a rate of around 1000 packets 
per second, as is the case for 10Mbps Ethernet.  The cost of handling interrupts in these traditional systems was low 
enough that any normal system would spend only a fraction of its CPU time handling interrupts.  For 100Mbps Ethernet, 
the interrupt rate increases to about 8000 interrupts per second using the standard maximum 1500 byte packets. 
However, for Gigabit Ethernet, the interrupt rate for the maximum sized-packet of 1500 bytes increases to 80.000 
interrupts per second.  Of course, with 10 Gigabit Ethernet and considering smaller packets, the problem is much worse. 

In Gigabit networks, the packet arrival rate exceeds the system packet processing rate which includes network 
protocol stack processing and interrupt handling.  With Gigabit Ethernet and a rate of 80,000 interrupts per second for a 
minimum sized packet of 512 bytes, the CPU must handle an interrupt in less than 4 µs in order to keep up with such a 
rate.  According to [1], a null system call (not an interrupt) on a typical 666 MHz Intel Pentium III takes on the order of 
10 µs.  Also, a typical latency for handling interrupt due to a packet arrival in Linux is in the order of 50 µs.  It is 
important to notice that with the presence of more powerful multi gigahertz processors these days, it is expected the 
interrupt cost will not be reduced linearly by the speed frequency of the processor, as I/O and memory speed limits 
dominate [2].  In [2] it was concluded that the performance of 2.4GHz processor only scales to approximately 60% of the 
performance of an 800MHz processor.   

Interrupt-driven systems tend to perform very badly under such heavy network loads.  Interrupt-level handling, by 
definition, has absolute priority over all other tasks.  If interrupt rate is high enough, the system will spend all of its time 
responding to interrupts, and nothing else will be performed; and hence, the system throughput will drop to zero.  This 
situation is called receive livelock [3].   In this situation, the system is not deadlocked, but it makes no progress on any of 
its tasks, causing any task scheduled at a lower priority to starve or not have a chance to run.   At low packet arrival rates, 
the cost of interrupt overhead for handling incoming packets are low.  However, interrupt overhead cost directly 
increases with an increase of packet arrival rate, causing receive livelock. 

The receive livelock was established by experimental work on real systems in [3–5].  A number of solutions have 
been proposed in the literature [4,6–15] to address network and system overhead and improve the OS performance.  
Some of these solutions include interrupt coalescing, OS-bypass protocol, zero-copying, jumbo frames, polling, pushing 
some or all protocol processing to hardware, etc.  In most cases, published performance results are based on research 
prototypes and experiments.  However little or no research has been done to study analytically the impact of interrupt 
overhead on OS performance.  In [10,14],  a simple calculation of the interrupt overhead was presented.  In [10], a 
mathematical equation was given directly for the application throughput based on packet length and cost of interrupt 
overhead per byte and per packet.  In [14], the interrupt overhead was computed based on the arrival rate, interrupt 
handling time, and a fixed cost of interrupt overhead.  Both of these calculations are very simple.  The calculations fail to 
consider complex cases such as interrupt masking, CPU utilization, and effect of ISR (Interrupt Service Routine) and its 
overhead on packet processing at OS and application levels.  Moreover, the calculations fail to capture the receive 
livelock phenomenon and fail to identify the saturation point of the host.   

In sharp contrast to early work presented in [16,17], this paper is different in significant ways.  Reference [16] is a 
short paper and presents only a preliminary simple throughput analysis for interrupt-driven kernels when utilizing PIO 
(Programmed Input/Output) and DMA. (Direct Memory Access) [17] focuses on DMA systems and studies latency and 
system power. In this paper, we present two equivalent analytical model to study a number of important performance 
metrics. One model is simple and the other is more complex.  Analytical Model I is more convenient and can yield more 
tractable mathematical solution than Analytical Model II.  Analytical Model I is based on M/M/1 queueing system and 
hence known equations can be directly applied to compute different performance metrics.  Analytical Model II is more 
complex as it is based on pure Markovian processes. Analytical Model II  is completely novel.  In this paper, we 
substantially expand and study the performance in terms system throughput, system latency, host saturation point and 
system stability condition, CPU utilizations of ISR handling and protocol processing, and CPU availability for other 
processing including user applications.  One major contribution of the paper is proving that these two models are 
mathematically equivalent, i.e., both yield the same analytical results.  Moreover, the paper gives guidelines and 
recommendations to address design and implementation issues.   



Khaled Salah 

 4 The Arabian Journal for Science and Engineering, Volume 31, October 2B. October 2006 

As opposed to prototyping and simulation, these two models can be utilized to give a quick and easy way of 
studying the receive livelock phenomenon and system performance in high-speed and Gigabit networks.  These models 
yield insight into understanding and predicting the performance and behavior of interrupt-driven systems at low and at 
very-high network traffic.  Our analytical work can be important for engineering and designing various NIC (Network 
Interface Card) and system parameters.  These parameters may include the proper service times for ISR handling and 
protocol processing, buffer sizes, CPU bandwidth allocation for protocol process and application, etc.   

The rest of the paper is organized as follows.  Section 2 describes the receive livelock phenomenon reported in 
literature.  Section 3 presents two exact analytical models that capture the system behavior and study the performance of 
Gigabit Ethernet hosts.   Section 4 shows numerical examples to compare and validate the analysis.  Section 5 gives 
some guidelines and recommendations to address design and implementation issues.  Finally, Section 6 concludes the 
study and identifies future work. 

2. RECEIVE LIVELOCK 

In this section we briefly describe the phenomenon of receive livelock.  Incoming network packets received at a 
host must either be forwarded to other hosts, as is the case in PC-based routers, or to application processes where they 
are consumed.  The delivered system throughput is a measure of the rate at which such packets are processed 
successfully.  Figure 1, adopted from [3,4], shows the delivered system throughput as a function of offered input load.  
Please note that the figure illustrates conceptually the expected behavior of the system and does not illustrate analytical 
behavior. The figure illustrates that in the ideal case, no matter what the packet arrival rate, every incoming packet is 
processed.  However, all practical systems have finite processing capacity, and cannot receive and process packets 
beyond a maximum rate.  This rate is called the Maximum Loss-Free Receive Rate (MLFRR) [3].  Such a rate is an 
acceptable rate and is relatively flat after that. 

 

 

Figure 1. Receive livelock phenomenon. 

Under network input overload, a host can be swamped with incoming packets to the extent that the effective system 
throughput falls to zero.  Such a situation, where a host has not crashed but is unable to perform useful work, such as 
delivering received packets to user processes or running other ready processes, is known as receive livelock. Similarly, 
under receive livelock, a PC-based router would be unable to forward packets to the outgoing interfaces.  

The main reason for receive livelock is that interrupts are handled at a very high priority level, higher than software 
interrupts or input threads that process the packet further up the protocol stack.  At low packet arrival rates, this design 
allows the kernel to process the interrupt of the incoming packet almost immediately, freeing up CPU processing power 
for other user tasks or threads before the arrival of the next packet.  However, if another packet arrives before the 
completion of handling the first one (e.g., in the case of high packet arrival rate), starvation will occur for user tasks and 
threads resulting in unpleasant performance of dropping packets due to queue overflows, excessive network latency, and 
bad system throughput. 



Khaled Salah 

October 2006  The Arabian Journal for Science and Engineering, Volume 31, October 2B. 5 

3. ANALYSIS 

In this section we present two analytical models to examine the impact of interrupt overhead on OS performance.  First 
we define the system parameters.  Let λ be the mean incoming packet arrival rate and µ  be the mean protocol processing 
rate carried out by the kernel.   Note that 1/µ  is the average time the system takes to process the incoming packet and 
deliver it to the user application.  This time includes primarily the network protocol stack processing carried out by the 
kernel, excluding any time disruption due to interrupt handling.  Let r/1  be the mean interrupt handling time, which is 
basically the interrupt service routine time for handling incoming packets.  r/1  basically includes the interrupt-context 
switching overhead as well as the ISR handling.  The main function of ISR handling is to notify the kernel to start 
protocol processing of the received packet.  In [10,15], ISR handling included flushing DMA’d incoming packets from 
kernel’s host memory to protocol incoming buffer.  Keeping r/1  to minimum execution is highly desirable.  Hence, 
flushing of incoming packets is highly recommend to be performed outside of the ISR and to be combined with protocol 
processing. 

After the notification of the arrival of a new packet, the kernel will process the packet by first examining the type of 
frame being received and then invoking immediately the proper handling stack function or protocol, e.g. ARP, IP, TCP, 
UDP, etc.  The packet will remain in the kernel or system memory until it is discarded or delivered to the user 
application.  The network protocol processing for packets carried out by the kernel will continue as long as there are 
packets available in the system memory buffer.  However, this protocol processing of packets can be interrupted by ISR 
executions as a result of new packet arrivals.  This is so because packet processing by the kernel runs at a lower priority 
than the ISR. 

There are two possible system delivery options of packet to user applications.  The first option is to perform an extra 
copy of packet from kernel space to user space.  This is done as part of the OS protection and isolation of user space and 
kernel space.  This option will stretch the time of protocol processing for each incoming packet.  A second option 
eliminates this extra copy using different techniques described in [7–9,14,18–20].   The kernel is written such that the 
packet is delivered to the application using pointer manipulations.  Our analytical model captures both options.  The only 
difference is in the protocol processing time.  The second option will have a smaller processing time than the first. 

Throughout our analysis, we assume the following: 

(i) It is reasonable not to assume the times for protocol processing or ISR handling to be constant.  These times change 
due to various OS activities.  For example ISR handling for incoming packets can be interrupted by other interrupts 
of higher priority, e.g. timer interrupts.  Also, protocol processing can be interrupted by higher priority kernel tasks, 
e.g. scheduler.  For our analysis, we assume these service times to be exponential.  In Section 4, we demonstrate that 
this assumption gives an adequate approximation. 

(ii) The network traffic follows a Poisson process, i.e., the packet interarrival times are exponentially distributed.  In 
many situations, assuming Poisson arrivals is adequate.  In [21], it was concluded that modeling the voice traffic as 
Poisson gives adequate approximation, especially if the voice traffic is high. 

(iii) The packet sizes are fixed.  This assumption is true for Constant Bit Rate (CBR) traffic such as uncompressed 
interactive audio and video conferencing.   

3.1. Limitations 

Our analytical models assume the packet arrivals are Poisson, and the packets are of a fixed size.  In practice, network 
packets are not always fixed in size, and their arrivals do not always follow a Poisson process.  An analytical solution 
becomes intractable when considering variable-size packets and non-Poisson arrivals.  As we will demonstrate in Section 
4, it turns out that our model with the above assumptions gives a good approximation to real experimental measurements.  
The impact of having a constant network traffic instead of a Poisson is studied using simulation in this paper and results 
are shown and compared to those of Poisson.  However, systems having variable-size packets, e.g. Jumbo frames, and 
other traffic distributions, e.g. bursty traffic [22,23], are currently being studied by the author using simulations and 
results are expected to be reported in the near future. 

3.2. DMA-Based Design  

For our hosts, we assume that the NIC is equipped with DMA engines.  However, a NIC adapter can be designed 
with a PIO-based option.  A NIC adapter with PIO-based design can be an attractive option when considering factors 
such as cost, simplicity, and speed and efficiency in copying relatively small-size packets [24].  However, a major 



Khaled Salah 

 6 The Arabian Journal for Science and Engineering, Volume 31, October 2B. October 2006 

drawback for a PIO-based design is burdening the CPU with copying incoming packets from the NIC to kernel memory.  
In order to save CPU cycles consumed in copying packets, major network vendors equip high-speed NICs with DMA 
engines. These vendors include Intel, 3Com, HP, Alteon owned now by Nortel, Sundace, and NetGear.  NICs are 
equipped with a receive Rx DMA engine and a transmit Tx DMA engine.  A Rx DMA engine handles transparently the 
movement of packets from the NIC internal buffer to the host system memory.  A Tx DMA engine handles transparently 
the movement of packets from the host memory to the NIC internal buffer.  Both DMA engines operate in a bus–master 
fashion, i.e. the engines request access to the PCI bus instead of waiting to be polled.  It is worth noting that the transfer 
rate of incoming traffic into the kernel memory across the PCI bus is not limited by the throughput of the DMA channel.  
These days, a typical DMA engine can sustain over 1 Gbps of throughput for PCI 32/33 MHz bus and over 4 Gbps for 
PCI 64/66 MHz bus [25, 26]. 

It is important to note that the NIC is typically configured such that an interrupt is generated after the incoming 
packet has been completely DMA'd into the host system memory.   In order to minimize the time for ISR execution, ISR 
handling mainly sets a software interrupt to trigger the protocol processing for the incoming packet.  Please note in this 
situation if two or more packets arrive during an ISR handling, the ISR time for servicing all of these packets will be the 
ISR time for servicing a single packet, with no extra time introduced.   

3.3. Modeling Interrupts is a Challenging and Difficult Task. 

One might think that such an interrupt-driven system can be simply modeled as a priority queueing system with 
preemption in which there are two arrivals of different priorities. The first arrival is the arrival of ISRs, and has the 
higher priority.  The second arrival is the arrival of incoming packets, and has the lower priority.  As noted the ISR 
execution preempts protocol processing.   However this is an invalid model because ISR handling is not counted for 
every packet arrival.  ISR handling is ignored if the system is servicing another interrupt of the same level.  In other 
words, if the system is currently executing another ISR, the new ISR which is of the same priority interrupt level will be 
masked off and there will be no service for it.  We use instead two analytical models: one is based on an M/G/1 queueing 
model and the other is a pure Markov process.  

3.4. Analytical Model I 

The model is based on first determining the CPU utilization for ISR handling, next finding the mean effective 
protocol processing rate, and then modeling the protocol processing as an M/G/1 queueing system with this mean 
effective rate.  More details on Analytical Model I can be found in [16,17].  In order to find the CPU utilization 
percentage for ISR handling, we use a Markov process to model the CPU usage, as illustrated in Figure 2.   The process 
has state (0,0) and states (1,n).  State (0,0) represents the state where the CPU is available for protocol processing. States 
(1,n) with ∞<≤ n0  represent the state where the CPU is busy handling interrupts.  n denotes the number of interrupts 
that are batched or masked off during ISR handling.  Note that n also denotes the number of packet arrivals during ISR 
handling. Therefore, state (1,0) means there are no interrupts being masked off and the CPU is busy handling an ISR 
with one packet arrival.  State (1,1) means that one interrupt has been masked off and the CPU is busy handling an ISR 
with two packet arrivals.  Both of these packets will be serviced together with a mean rate r of servicing only one packet. 

 

 

Figure 2. Markov state transition diagram for modeling CPU usage with DMA. 

The steady-state difference equations can be derived from =0 pQ , where p },,,,{ 2,11,10,10,0 "pppp=  and Q is the 

rate-transition matrix and is defined as follows: 



Khaled Salah 

October 2006  The Arabian Journal for Science and Engineering, Volume 31, October 2B. 7 

0 0 0
( ) 0 0

0 ( ) 0
0 0 ( )
0 0 0 ( )

r r
r r
r r
r r

λ λ
λ λ

λ λ
λ λ

λ

−⎡ ⎤
⎢ ⎥− +⎢ ⎥
⎢ ⎥− +

= ⎢ ⎥
− +⎢ ⎥

⎢ ⎥− +
⎢ ⎥
⎢ ⎥⎣ ⎦

"
"
"
"
"

# # # # #

Q  

This will yield .0)( 2,11,10,10,0 =++++− "ppprpλ  

Since we know that 1
0 ,10,0 =+∑∞

=n npp , then 

.0)1( 0,00,0 =−+− prpλ  

Solving for p0,0, we thus have 

,0,0 r
rp
+

=
λ

  

and .1 0,0 r
p

+
=−
λ
λ

   

Therefore, the CPU utilization for ISR handling is 
r+λ

λ
.  The mean effective service rate µ′  for protocol processing 

can be computed in terms of CPU percentage availability for protocol processing.  The mean effective service rate can be 
expressed as 

×=′ µµ  (% CPU availability for protocol processing), 

r
r
+

⋅=′
λ

µµ . 
(1) 

The term 
r

r
+λ

is the percentage of CPU bandwidth available for protocol processing, and is equal to 
r+

−
λ
λ1 .  

Please note that by examining Equation (1) the disrupted or effective service time with a mean µ′1  is exponentially 

distributed since the service time with a mean of µ1  is exponential, and thus the M/G/1 queueing model becomes an 

M/M/1 model. 

CPU Availability.  For such a model, the percentage of CPU power available for other processing, including user 
applications, is basically the probability when there is no ISR handling and there are no packets being processed by the 
protocol stack. As noted from Equation (1), the effective service time is exponential.  Therefore, the protocol processing 
can be modeled as an M/M/1/B queue with a mean service rate of µ′ .  Hence, the CPU availability for other processing 

can be expressed as  

0p
r

rV ⋅⎟
⎠
⎞

⎜
⎝
⎛

+
=

λ
  

where 0p  is the probability of not queueing, i.e. finding zero packets, in the M/M/1 queueing system of the kernel’s 

protocol processing.  IPp ρ−=10 , where ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

'µ
λρ IP .  Note that IPρ  is the network load, or traffic intensity, being 

encountered due to kernel’s protocol processing. 

Hence, V can be further simplified to 



Khaled Salah 

 8 The Arabian Journal for Science and Engineering, Volume 31, October 2B. October 2006 

.
µ
λ

λ
−⎟

⎠
⎞

⎜
⎝
⎛

+
=

r
rV  (2) 

CPU Utilization.  The CPU utilization ρ  which includes ISR handling and protocol processing can be expressed as 

.1
µ
λ

λ
λρ +⎟

⎠
⎞

⎜
⎝
⎛

+
=−=

r
V  (3) 

Note this CPU utilization gives a sensible result.  The utilization is basically the sum of the CPU utilization for ISR 

handling 
r+λ

λ
and for protocol processing 

µ
λ

.  The CPU utilization for protocol processing can also be thought of as 

the probability of no ISR handling and having one or more packets being processed by the protocol stack, i.e. 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅

+ 'µ
λ

λ r
r

, which can be simplified nicely to 
µ

λ
.   In addition, it is to be noted that CPU availability V derived by 

equation(2) gives a sensible results.  It shows that one can obtain V simply by subtracting the CPU utilization of for 

protocol processing 
µ
λ

  from the CPU availability for protocol processing 
r

r
+λ

. 

Saturation Point.  A critical operating point for the system is computing the saturation point.  It is the point at which the 
system can not keep up with the offered network load, i.e. 1=ρ .  This is also referred to the “cliff” point of system 

throughput, i.e. µλ ′= .  It is where the throughput starts falling as the network load increases.   Also the system will 

become unstable causing dropping of packets, excessive latencies and timeouts.  In addition, the user applications will 
livelock at this point as the CPU power is at 100%, i.e. 0=V .  The CPU power is being consumed by ISR handling and 
protocol processing.  The saturation condition can be expressed as 

µλρ ′=== orVor 01 . (4) 

Solving for λ  can be done in two ways which give the same outcome.  One way is to substitute Equation (2) for 1=ρ .  

Second is to substitute Equation (1) or µλ ′= .  The saturation point can be derived and solved for λ  as follows: 

0)( 2 =−+⇒=+ rrrr µλλµλλ . 

The roots of the quadratic equation 02 =−+ rr µλλ  are 

2

41

2
42

r
rrrrr

µ
µ

λ
+−

=
+−

=
∓∓

. 

Since the term under the square root is always greater than one then the negative sign is neglected. Therefore, the 
saturation point occurs at 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+= 141

2 r
r µλ . (5) 

Later we will refer to this point as the cliff point or cliffλ . 

Mean System Throughput.  The mean system throughput γ  is basically the departure rate due to protocol processing, 
and it can be expressed as 

.)
'

11(')1(' 0 λ
µ
λµµγ =+−=−= p  (6) 

Mean System Latency.  The mean system latency per packet is affected by both ISR handling and protocol processing.  
An incoming packet experiences a delay due to interrupt handling and due to the delay of protocol processing.   In order 



Khaled Salah 

October 2006  The Arabian Journal for Science and Engineering, Volume 31, October 2B. 9 

to find such a delay, we utilize the principles of Jackson theorem for analyzing our queueing model.  In particular, we 
use the approximation method of analyzing queueing models or systems by decomposition discussed in [27].  In this 
method, the arrival rate must be Poisson and the service times are exponentially distributed, which are the case in our 
model.  Analysis by decomposition is summarized in first isolating the queueing system into subsystems, e.g., single 
queueing system or process.  Next, analyzing each subsystem separately, considering its own surroundings of arrivals 
and departures.  Then, finding the average delay for each individual queueing subsystem.  And finally, aggregating all 
the delays of queueing subsystems to find the average total end-to-end network delay.  

Accordingly, the mean system delay is therefore decomposed to be the sum of the mean delay of interrupt handling 
plus the mean delay of protocol processing.  Hence the total mean system delay, )(rE , can be expressed as 

)()()( rErErE IPISR += ,  

where )(rEISR   is the mean delay due to ISR and )(rEIP  is mean delay due to  protocol processing. 

)(rEISR   is simply  r/1 .  This is so due to the nature of servicing packets during ISR handling.  The mean ISR 

handling time for one packet or many packets is the same, i.e.  r/1 .  This delay can also be computed using the Markov 
chain depicted in Figure 2.  First we compute np ,1  from Figure 2.   Using mathematical induction and the iterative 

method of solving the steady-state difference equations, .
2

,1

+

⎟
⎠
⎞

⎜
⎝
⎛

+
=

n

n r
rp

λ
λ

λ
  The average number of packets being 

serviced by one ISR, )(nEISR ,  can be expressed as 

∑∑∑
∞

=

∞

=

∞

=

+=+=
0

,1
1

,1
0

,1)1()(
n

n
n

n
n

nISR pnppnnE .  

With further simplification, 

r
nEISR

λ
=)( .  

And therefore, the average ISR delay per packet, )(rEISR , according to Little’s law, is  

r
nE

rE ISR
ISR

1)(
)( ==

λ
.  

As for the mean delay caused by protocol processing, )(rEIP , it is simply the mean delay encountered in the M/M/1 

queueing system with ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

'µ
λρ IP .  According to [28], such delay can be expressed as 

λµλρ
ρ

λ −
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

==
'
11

1
)(

)(
IP

IPIP
IP

nE
rE .  

Therefore, the mean system delay, according to the approximation by decomposition method, is 

λµ −
+=

'
11)(

r
rE . (7) 

3.5. Analytical Model II 

This model captures the behavior of the interrupt-driven system using only a Markov process. The interrupt-driven 
system with DMA design option can be modeled as a pure Markov chain with a state space 

}}1,0{,0),,({ ∈∞<≤= mnmnS , where n denotes the number of packets in the buffer and m denotes the type of 

activity the CPU is performing.  State (0,0) represents the state where the CPU is idle.  States (n,1) represent the states 
where the CPU is busy handling interrupts.  States (n,0) represent the states where the CPU is busy processing protocol.  
The rate transition diagram is shown in Figure 3. 



Khaled Salah 

 10 The Arabian Journal for Science and Engineering, Volume 31, October 2B. October 2006 

 

Figure  3.  Markov state transition diagram for interrupt-driven system with DMA 

Let pn,m be the steady-state probability at state (n,m).  A system of difference equations can be derived for the 
stationary probabilities as follows: 

0,10,00 pp µλ +−= , 

0,01,1)(0 ppr λλ ++−= , 

1for                   )(0 0,11,0, ≥+++−= + nprpp nnn µµλ , 

2for                   )(0 1,10,11, ≥+++−= −− npppr nnn λλλ . 

(8) 

The first two equations constitute the initial values. The last two equations constitute the system of difference equations.  
In order to solve this system of equations, we need to re-arrange them as follows: 

1,0 ,0 ,1

1,1 ,0 ,1

               1,

             1.

n n n

n n n

rp p p n

p p p n
r r

λ µ
µ µ
λ λ

λ λ

+

+

+
= − ≥

= + ≥
+ +

 

These equations can be written in the vector form as 

( 1) ( )p n A p n+ = , 

where  

r

A

r r

λ µ
µ µ

λ λ
λ λ

+⎡ ⎤−⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥+ +⎣ ⎦

, 

,0

,1

( )
n

n

p
p n

p

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

,  and 
1,0

1,1

( 1)
n

n

p
p n

p

+

+

⎡ ⎤
⎢ ⎥+ = ⎢ ⎥
⎢ ⎥⎣ ⎦

. 

Therefore, our equations have been nicely converted to a system of first order difference equation, in which we can apply 
the Putzer algorithm to obtain the solution [29]. 

Before we proceed further, let us denote µλα /= , and )/( r+= λλβ . Then, matrix A can be rewritten as 

1 (1 ) /
A

α α β β

β β

+ − −⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

. 



Khaled Salah 

October 2006  The Arabian Journal for Science and Engineering, Volume 31, October 2B. 11 

The eigenvalues of matrix A can be obtained by solving the characteristic equation 0)det( =− zIA  where z is the 

eigenvalue, and I  is the identity matrix.  Now 

1 (1 ) /
det( ) det (1 )( ) 0

z
A zI z z

z

α α β β
α β

β β

+ − − −⎡ ⎤
⎢ ⎥− = = − − − =⎢ ⎥
⎢ ⎥−⎣ ⎦

. 

Hence, the eigenvalues of matrix A are 11 =z  and βα +=2z . 

So, according to the Putzer Algorithm, 

1

(1 ) /
(0) , and (1)

1
M I M A z I

α α β β

β β

− −⎡ ⎤
⎢ ⎥= = − = ⎢ ⎥
⎢ ⎥−⎣ ⎦

. 

Then, 

1( ) 1 1nu n = = , 

and 

1 1
2 0

1 ( )( ) ( ) (1 )
1 ( )

nn n i i
i

u n α βα β
α β

− − −
=

− +
= + =

− +∑ . 

Finally, we have 

1 2( ) (0) ( ) (1)

1 ( ) (1 )(1 ( ) )
1 ( ) (1 ( ))

(1 ( ) ) (1 )( )
1 ( ) 1 ( )

n

n n

n n

A u n M u n M

β α α β α β α β
α β β α β

β α β α β α β
α β α β

= × + ×

⎡ ⎤− − + − − +
⎢ ⎥

− + − +⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥− + − + − +
⎢ ⎥− + − +⎣ ⎦

. 

The solution of the difference equation is given by 

0,0

0,0

0,0 0,0

1 ( ) (1 )(1 ( ) )
1 ( ) (1 ( ))

( 1) (1)

(1 ( ) ) (1 )( )
1 ( ) 1 ( )

1 ( ) (1 )(1 ( ) )
1 ( ) (1 ( ))

(

n n

n

n n

n n

p

p n A p
p

p p

β α α β α β α β
αα β β α β

ββ α β α β α β
α β α β

β α α β α β α βα β
α β β α β

β

⎡ ⎤⎡ ⎤− − + − − +
⎢ ⎥⎢ ⎥− + − + ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥+ = = ×
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥− + − + − +
⎢ ⎥⎢ ⎥− + − +⎣ ⎦ ⎣ ⎦

− − + − − +
× + ×

− + − +
=

0,0 0,0
1 ( ) ) (1 )( )
1 ( ) 1 ( )

n n
p pα β α β α βα β

α β α β

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− + − + − +

× + ×⎢ ⎥− + − +⎣ ⎦

 

The solution can be nicely simplified to 

1
,0 0,0

1
,1 0,0

( )
1

( )

n
n

n
n

p p
n

p p

α α β

β α β

−

−

⎫= + ⎪ ≥⎬
= + ⎪⎭

 (9) 

To get 0,0p , we utilize the fact that all probabilities must sum up to 1.  Hence, 



Khaled Salah 

 12 The Arabian Journal for Science and Engineering, Volume 31, October 2B. October 2006 

,0 ,1 0,0
1 1

1n n
n n

p p p
∞ ∞

= =

+ + =∑ ∑ , 

1 1
0,0 0,0 0,0

1 1

( ) ( ) 1n n

n n

p p pα α β β α β
∞ ∞

− −

= =

+ + + + =∑ ∑ . 

Therefore 

1
1

0,0 1
1 ( ) ( )n

n
p α β α β

−∞ −
=

⎡ ⎤= + + +⎢ ⎥⎣ ⎦∑ . 

Now 
1

1
( )

n

n
α β

−∞

=
+∑  is geometric series and converges if and only if 1)( <+ βα . Thus for the existence of a steady-

state solution, ( )ρ α β= +  must be less than 1. Then, we have 

1

0,0 1 1 ( ) 1
1 ( )

p α β α β ρ
α β

−
⎡ ⎤+

= + = − + = −⎢ ⎥− +⎣ ⎦
. 

where )( βαρ += , or equivalently, )/(/ r++= λλµλρ . 

Thus the full steady-state solution for our system is the geometric probability functions 

0,0

1
,0

1
,1

1

(1 )
1

(1 )

n
n

n
n

p

p
n

p

ρ

α ρ ρ

β ρ ρ

−

−

= −

⎫= − ⎪ ≥⎬
= − ⎪⎭

 

 

(10) 

where βαρ += , µλα /= , and )/( r+= λλβ . 

CPU Utilization and Availability. Using the pure Markovian model, the CPU utilization for ISR handling can be 
derived as 

1 1
,1

1 1 1

(1 ) (1 ) /( )n n
n

n n n

p rβ ρ ρ β ρ ρ λ λ
∞ ∞ ∞

− −

= = =

= − = − = +∑ ∑ ∑ . 

Similarly, the CPU utilization for protocol processing can be derived as 

1 1
,0

1 1 1

(1 ) (1 ) /n n
n

n n n

p α ρ ρ α ρ ρ λ µ
∞ ∞ ∞

− −

= = =

= − = − =∑ ∑ ∑ . 

Hence, the CPU utilization ρ  due to both ISR handling and protocol processing is )./(/ r++ λλµλ   The CPU 

availability V for other processes, including user applications, is basically ρ−1 .  The CPU availability is also given in 

Equation (10) by 0,0p .  Note that V given here for the pure Markovian process matches exactly V given in Equation (2) 

for Analytical Model I.   

Saturation Point.  The saturation or the cliff point using  the pure Markovian model occurs when   

.1)/(/1 =++= ror λλµλρ  

The saturation point can be solved forλ  and can be expressed exactly as in Analytical Model I given by Equation (4).  

Mean System Throughput.  The mean system throughput, γ , for the pure Markovian model is the rate at which packets 

are successfully being processed by the kernel’s protocol stack.  According to [28], γ can be expressed as ∑
∞

=1
0,

n
npµ .  

Therefore, γ  can be derived as follows 



Khaled Salah 

October 2006  The Arabian Journal for Science and Engineering, Volume 31, October 2B. 13 

λ
ρ

ρµαρρµαρραµµγ =
−

×−=−=−== ∑∑∑
∞

=

−
∞

=

−
∞

= 1
1)1()1()1(

1

1

1

1

1
0,

n

n

n

n

n
np . (11) 

This equation and equation (6) of Analytical Model I are exact and are mathematically equivalent.  

Mean System Latency.  The mean system latency, E(r), for the pure Markovian model can be computed as follows  

,)()(
λ
nErE =   

where )(nE  is the Expected number of packets in the system and can be expressed as 

[ ]

ρ
ρ

ρ
ρρρρβα

ρρβρρα

−
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−=−+=

−+−×=+=

∑

∑∑
∞

=

−

∞

=

−−
∞

=

11
1)1()1)((

)1()1()()(

2

1

1

1

11

1
1,0,

n

n

n

nn

n
nn

n

nppnnE

 

Therefore, 

λρ
ρ 1

1
)( ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

=rE .  

Note in this case, this equation is not mathematically equivalent to Equation (7) of Analytical Model I.  As it will be 
demonstrated in Section 4 when giving numerical examples, both equations yield very close matching results.  In fact at 
light load, the equations yield exactly matching results.   

3.6. Comparison Between the Two Models 

From Section 3.4 and Section 3.5, it can be concluded that the two analytical models give exactly the same 
equations and results for all system performance metrics, except for system latency.  The exact mathematical solutions 
were given for system performance metrics which include system throughput, host saturation point and system stability 
condition, CPU utilizations of ISR handling and protocol processing, and CPU availability for other processing including 
user applications application.  For system latency, the equations given by the two models are not mathematically 
equivalent.  However and as will be demonstrated in Section 4 and Figure 4c, the equations give very close matching 
results.  In fact, an exact matching of results exists at light system load.  Therefore, it would be appropriate to conclude 
that the two analytical models are exact in general.  A key point to notice here is that Analytical Model II is an accurate 
model.  It is a pure Markovian process which captures totally the interaction between ISR handling and protocol 
processing.  However, Analytical Model I is an approximation by decomposition method that introduces somewhat loose 
coupling of ISR handling and protocol processing, and therefore introduces some error [27].   Analytical Model I 
decomposes the system and focuses on the subsystem or portion of protocol processing.  The protocol processing is 
modeled as a queueing system with an effective service rate.  The effect of interrupt disruption is captured by the 
effective service rate. 

It should be noted that conducting analysis using Analytical Model I is easier and more convenient than that of 
Analytical Model II.  Once the CPU utilization is determined for ISR handling, the performance metrics can be directly 
computed by applying known and already derived equations for M/M/1 queueing system [28].   Such a technique is 
currently being utilized to examine and compare the performance of different proposed schemes for minimizing and 
eliminating the interrupt overhead caused by heavy network loads.  Conducting analysis using Analytical Model II for 
such proposed methods will give intractable mathematical solution. 

3.7. Simulation 

In order to verify and validate our analytical models, a discrete-event simulation model was developed and written 
in C language.  The assumptions of analysis were used. The simulation followed closely and carefully the guidelines 
given in [30].  We used the PMMLCG as our random number generator [30].  The simulation was automated to produce 
independent replications with different initial seeds that were one million apart.  The initial seeds for the simulation 
model random variables within each replication were chosen to be five million apart.  During the simulation run, we 



Khaled Salah 

 14 The Arabian Journal for Science and Engineering, Volume 31, October 2B. October 2006 

checked for overlapping streams and ascertain that such a condition did not exist.  The simulation was terminated when 
achieving a precision of no more than 10% of the mean with a confidence of 90%.  We employed and implemented 
dynamically the replication/deletion approach for means discussed in [30].   We computed the length of the initial 
transient period using the MCR (Marginal Confidence Rule) heuristic developed by White [31].  Each replication run 
lasts for five times of the length of the initial transient period.  Analytical and simulation results, as will be demonstrated 
in Section 4, were very much in line.  

4. NUMERICAL EXAMPLES 

In this section, we report and compare results of analysis and simulation.  Numerical results are given for the mean 
system throughput, latency, and CPU utilization.  For validation, we compare our analysis and simulation results of 
system throughput to lab experimental results reported in [5]. In [5], the lab experiment basically consisted of a PC-based 
router, 450 MHz Pentium III, running Linux 2.2.10 OS with two Fast-Ethernet NICs with DMA.  Traffic of fixed-size 
packets was generated back-to-back to the router.  As measured by [5], the mean service time for ISR ( r1 )was 7.7 µs 
and the mean protocol processing time ( µ1 ) was 9.7 µs.    

Figure 4(a), Figure 4(b), and Figure 4(c) plot the mean system throughput, CPU utilization, and mean system 
latency, respectively,  as a function of packet arrival rate.  Analysis results are only plotted when the system is stable, i.e. 
up to the saturation point.  As for validation, we compare the experimental results for system throughput to those of 
analysis.  CPU utilization and availability as well as system latency using real experiments were not measured in [5].   
From the figure, it is clear that the discrete-event simulation results are very much in line with those of analysis.  It is 
also depicted that the analysis results give an adequate approximation to real experimental measurements.  For 
throughputs, Figure 4(a) depicts that the analysis and simulation results match exactly those of experimental at light 
load, i.e. in the stable region.  At high load, there is a slight difference between simulation and experimental results.  This 
difference can be contributed to the arrival characteristics of incoming packets.  Our analysis assumed a Poisson arrival; 
however, as stated earlier, the inter-arrival times of the packets are not purely exponential.  In the experiment, the 
packets were generated back-to-back by another host with almost a constant rate.   

When examining the mean system throughput of Figure 4(a) and the corresponding CPU utilization and mean 
system latency of Figure 4(b) and Figure 4(c), it can be noted that the saturation point for the system occurs at 
67.750 pps.  We referred to the point where the throughput starts being degraded as the “cliff” or saturation point.  We 

denoted this point as cliffλ , and it was given by Equation (5). At this point, the corresponding CPU utilization for both 

ISR handling and protocol processing is at 100%, with a CPU availability of zero.  Therefore, user applications will 
starve and livelock at this point.  In addition, the mean system delay will shoot rapidly to infinity, when reaching the 
saturation point of an arrival rate of cliffλ  = 67.750 pps, causing excessive latency and timeouts.  It can also be observed 

from Figure 4(b) that if the incoming traffic increases beyond the staturation point, as captured by the simulation, the 
CPU utilization of ISR handling continues increasing whereas the utilization of IP processing starts decreasing, as 
expected.  This causes more instability for the system as throughput worsens and packets start being dropped, causing a 
total collapse in both the system and user-perceived performance. 

Figure 4(c) compares the latency results of Analytical Model I with those of Analytical Model II.  It is depicted in 
the figure that both models give very close matching results.  The results are exact in the light load and are very closely 
matching around the saturation point of the system.  The results of both analytical models for other performance metrics 
are not plotted because they are mathematically equivalent, as discussed in Section 3.6. 

5. DESIGN AND IMPLEMENTATION ISSUES 

We studied the performance of hosts in terms of mean system throughput, CPU utilization, CPU availability, 
latency, and packet loss probability when subjected to light and heavy network loads. As noted, degraded and poor 
performance can be encountered due to heavy network loads.  Our work has provided insight into predicting such a 
system performance. Critical operating points of performance were identified.  Based on our analysis, simulation, and 
experimental studies, the following design recommendations, guidelines and observations must be considered in order to 
improve host performance. 

 



Khaled Salah 

October 2006  The Arabian Journal for Science and Engineering, Volume 31, October 2B. 15 

0 20 40 60 80 100 120 140
0

20

40

60

80

Packet Arrival Rate (Kpps)

T
hr

ou
gh

pu
t (

K
pp

s)

Simulation
Experimental
Analysis

Saturation Condition 

 

(a) 

0 20 40 60 80 100 120 140
0

10

20

30

40

50

60

70

80

90

100

Packet Arrival Rate (Kpps)

C
P

U
 U

til
iz

at
io

n 
(%

)

ISR Handling (A)
Protocol Processing (B)
ρ = Sum of A and B
CPU Availibility
Analysis Results

 

(b) 

0 20 40 60 80 100 120 140
0  

2

4

6

8

10

12

14

16

S
ys

te
m

 D
el

ay
 (

m
se

c)

Packet Arrival Rate (Kpps)

Simulation
Analytical Model I
Analytical Model II

 

(c) 

Figure 4. Mean system throughput, CPU utilization, and mean system latency  

   cliffλ  



Khaled Salah 

 16 The Arabian Journal for Science and Engineering, Volume 31, October 2B. October 2006 

Good Overload Performance is Critical. 

It is imperative to design a system with good overload conditions. The system should be stable even under 
extremely high load. A major contribution of our analytical work is identifying the overload condition. Maintaining good 
performance under overload conditions is critical.  A system or a host under severe and heavy network traffic should 
sustain its throughput or capacity. Such throughput should not be degraded as the network load or traffic increases.  We 
referred to the point, where the throughput starts being degraded, as the “cliff” or saturation point.  It can also be called 
the application starvation point. Our analysis provided equations to predict, with adequate degree of accuracy, where this 
point occurs. We denoted this point as cliffλ , and it was given by Equation (5).    

As a good design practice, and in order to sustain the system throughput with no noticeable degradation at overload 
condition, precisely at the cliff point of cliffλ , the host should disable interrupts and enable a polling technique.   

Therefore, interrupt overhead will be eliminated.  In polling, the OS periodically polls its host system memory (i.e., 
protocol processing buffer) to find packets to process.  In general, there is a maximum number of packets to process in 
each poll in order to leave some CPU power for application processing.  There are primarily two drawbacks for polling. 
First, unsuccessful polls can be encountered as packets are not guaranteed to be present at all times in the host memory, 
and thus CPU power is wasted.  Second, latency of processing the packet is larger, as the packets get queued until they 
are polled.  Therefore, disabling interrupts and enabling polling is only practical at high load. At low load, polling yields 
excessive latency.   And hence, it is only practical to switch to polling mode at the overload condition.  Switching 
between interrupts and polling is proposed in [4,10].  However in [4,10], the overload condition was not identified 
accurately as is the case with our analytical study.  In [10], the overload condition was based on the arrival rate and was 
chosen arbitrarily and has to be tuned manually.  Also in [4], the overload condition was based on the host buffer 
occupancy and two levels of occupancy were selected arbitrarily. 

Identifying properly where overload conditions occurs is important.  In our analysis, the overload condition occurs 
at cliffλ .  Given the system parameters of interrupt overhead and protocol processing, cliffλ  can be computed.  We 

propose the use of two thresholds of operations: upper (U) and lower (L), where cliffwU λ=  and cliffzL λ= ;  w  and z  

are tunable and design parameters, and their value selection depends on how aggressive or relaxed the need of switching 
between interrupts and polling.  The value selection also depends on the CPU availability percentage required to be 
reserved for application processing.  Good design values for w  and z  can be 95% and 85%, respectively.     

 

cliffλ

 

Figure 5. Critical design and operating points 



Khaled Salah 

October 2006  The Arabian Journal for Science and Engineering, Volume 31, October 2B. 17 

As depicted in Figure 5, it is to be noted that as long as the host is operating in the region between U and L 
thresholds, no mode switching between interrupts and polling should take place.  Using two thresholds is necessary in 
order to avoid possible significant overhead that may result from frequent fluctuation around one threshold point.  When 
the arrival rate λ  exceeds the upper threshold U, the host’s OS must switch to polling mode.  When the arrival rateλ  
becomes lower than the lower threshold L, the host’s OS must switch to interrupt mode.   

From implementation point of view, we propose two solutions to measure the overload condition and implement 
such a hybrid interrupt-polling scheme.   

(A) NIC-Side Solution. 

In this solution, the OS should initially set the values for U and L thresholds in the NIC.  The NIC should be capable 
of computing λ  by recording and measuring the inter-arrival times of incoming packets using exponential averaging 
method as reported in [32].  When U>λ , the NIC should notify the OS to disable interrupts and enable polling.  
When L<λ , the NIC should notify the OS to enable interrupts and disable polling. 

(B) OS-Side Solution. 

 This solution should be employed when the NIC is not equipped with software to measure the inter-arrival times of 
incoming packets.  In this solution the measurement of the overload condition is performed entirely by the OS.  This 
solution requires more overhead on the part of the OS.  There are three possible approaches to measure the overload 
condition by the OS. 

o CPU Utilization.  Monitoring the CPU utilization of the host in order to determine network overload condition is an 
invalid approach.  This approach is stated here for the sake of discussion and coverage of all possible approaches.  
The CPU utilization can become high due to so many reasons other than interrupt handling and protocol processing.  
For example the CPU utilization can be high due to heavy CPU-bound processes or threads activities. 

o Host System Buffer Occupancy.  In this approach, the networking subsystem of the OS must periodically checks the 
status of kernel host buffer of where the incoming packets are being copied or DMA’d.  This approach was proposed 
in [4].  If the buffer occupancy is at 75%, then the OS should disable interrupts and enable polling.  Conversely if 
the buffer occupancy reaches a level of 25%, then the OS should enable interrupts and disable polling.  In [4], the 
upper and lower levels of buffer occupancy were selected arbitrarily.  According to [4], determining the proper 
upper and lower buffer occupancy is an arbitrary and in reality a non-trivial task.  These levels vary significantly as 
they depend on the size of the buffer being used. 

o System Throughput.  We propose and recommend this approach when the NIC-side solution is not feasible. In this 
approach, the OS keeps track of the average system throughput of the packets that get processed and delivered to 
applications.  This average system throughput was referred to analytically as γ  by Equation (9) or Equation (11).   

The point of overload condition occurs when cliffλγ = .  Also note that U and L thresholds for arrival rate are the 

same U and L thresholds for system throughput.  Hence, when U>γ , the OS must switch to polling mode.  

When L<γ , the OS must switch to interrupts mode.  This method is as accurate as that of the NIC-side solution, 

however this method requires more overhead on the part of the OS.  The OS can use a similar method, as that of the 
NIC, by recording and measuring the inter-arrival times of processed and delivered packets using exponential 
averaging method. 

Maximum Throughput, Latency, and CPU Availability. 

Our analysis effort provided equations that can be used to easily and quickly predict the host performance and behavior.  
Given certain known system parameters of protocol processing time and interrupt overhead, it would be useful to know 
how much traffic the system can process and how it would behave, even before building a prototype.  As discussed  and 
shown in Figure 4(a), the maximum system capacity is basically cliffλ , and is given by Equation (5).  In addition, given a 

worst-case network load, acceptable performance levels for throughputs, CPU availability, and latency can be reached by 
tuning the proper system parameters for protocol processing and ISR times.  An acceptable performance level varies 
from one system requirement to another and depends on the worst tolerable throughput, CPU availability, and latency. 
These worst tolerable performance indicators depend on the nature traffic of the and application.  For example real-time 
applications and traffic such as Voice over IP (VoIP) require a latency of 30ms at the end host [21].  However, non-real 
time traffic and applications HTTP and FTP tolerate much larger latencies. 



Khaled Salah 

 18 The Arabian Journal for Science and Engineering, Volume 31, October 2B. October 2006 

6. CONCLUSION 

We developed two analytical models to study the impact of interrupt overhead caused by Gigabit Ethernet network 
traffic on OS performance.  For the most part, the two models give mathematically equivalent closed-form solutions for 
performance.  As demonstrated in the paper, Analytical Model I is more convenient and can yield more tractable 
mathematical solutions than Analytical Model II.  Analytical Model I is based on the M/M/1 queueing system and hence 
known equations can be directly applied to compute different performance metrics. Model I can be applicable to model 
and analyze other similarly behaving systems that get distracted by higher priority events or activities.  Determining the 
distraction percentage, one can then use straightforward queueing system equations.  In fact, Analytical Model I is 
currently being utilized by the author to evaluate the performance of interrupt-handling schemes such as interrupt 
coalescing and polling.  Using these two models, we were able to conduct a throughput–delay analysis to evaluate the 
system performance of Gigabit Ethernet hosts when subjected to light and heavy network loads.  We also investigated 
the system saturation point and stability condition, CPU utilizations of ISR handling and protocol processing, and CPU 
availability for other processing including user applications.  As noted, degraded throughput, excessive latency, and 
starvation of user applications can be encountered due to heavy network loads.  Our analysis effort provided equations 
that can be used to easily and quickly predict the system and host performance and behavior. The paper also provided 
design and implementation guidelines and recommendations to improve performance.  The two analytical models were 
verified by simulation.  Also reported experimental results show that our analytical models give a good approximation. 
The impact of generating variable-size packets instead of fixed-size and bursty traffic instead of Poisson is being studied 
using simulation, and results are expected to be reported in the near future.  A lab experiment of 1-Gigabit links is also 
being set up to measure and compare the performance of different system metrics.  As a further work, we are currently 
studying and evaluating the performance of the different proposed schemes for minimizing and eliminating the interrupt 
overhead caused by heavy network loads. 

ACKNOWLEDGEMENTS 

The author wishes to thank Mr. Khalid ElBadawi for his valuable feedback and input. The author also acknowledges 
the support of King Fahd University of Petroleum and Minerals in the development of this work.   

REFERENCES 

[1] W. Feng, “Is TCP an Adequate Protocol for High-Performance Computing Needs?”, Proceedings of SC2000, Dallas, Texas, 
USA, November 2000. 

[2] A. Foong, T. Huff, H. Hum, J. Patwardhan, and G. Regnier, “TCP Performance Re-Visited,” IEEE Symposium on Performance 
of Systems and Software, March 2003, pp. 70-79 

[3] K. Ramakrishnan, “Performance Consideration in Designing Network Interfaces,” IEEE Journal on Selected Areas in 
Communications, 11(2) (1993), pp. 203-219. 

[4] J. Mogul, and K. Ramakrishnan, “Eliminating Receive Livelock In An Interrupt-Driven Kernel,” ACM Trans. Computer 
Systems, 15(3) (1997), pp. 217-252. 

[5] R. Morris, E. Kohler, J. Jannotti, and M. Kaashoek, “The Click Modular Router,” ACM Transactions on Computer Systems, 
8(3) (2000), pp. 263-297. 

[6] A. Indiresan, A. Mehra, and K. G. Shin, “Receive Livelock Elimination via Intelligent Interface Backoff,” TCL Technical 
Report, ann Arber: University of Michigan, 1998. 

[7] P. Druschel, “Operating System Support for High-Speed Communication,” Communications of the ACM, 39(9) (1996), pp. 41-
51. 

[8] P. Druschel, and G. Banga, “Lazy Receive Processing (LRP): A Network Subsystem Architecture for Server Systems,” 
Proceedings Second USENIX Symposium on Operating Systems Design and Implementation, October 1996, pp. 261-276. 

[9] P. Shivan, P. Wyckoff, and D. Panda, “EMP: Zero-copy OS-bypass NIC-driven Gigabit Ethernet Message Passing,” 
Proceedings of SC2001, Denver, Colorado, USA, November 2001. 

[10] C. Dovrolis, B. Thayer, and P. Ramanathan, “HIP: Hybrid Interrupt-Polling for the Network Interface,” ACM Operating 
Systems Reviews, 35 (2001), pp. 50-60. 

[11] Alteon WebSystems Inc., “Jumbo  Frames,” http://www.alteonwebsystems.com/products/white_papers/jumbo.htm 

[12] A. Gallatin, J. Chase, and K. Yocum, "Trapeze/IP: TCP/IP at Near-Gigabit Speeds", Annual USENIX Technical Conference, 
Monterey, Canada, June 1999. 



Khaled Salah 

October 2006  The Arabian Journal for Science and Engineering, Volume 31, October 2B. 19 

[13] C. Traw. and J. Smith, "Hardware/Software Organization of a High Performance ATM Host Interface," IEEE JSAC, 11(2) 
(1993), pp. 240-253 

[14] C. Traw. and J. Smith, "Giving Applications Access to Gb/s Networking," IEEE Network, 7(4) (1993), pp. 44-52. 

[15] I. Kim, J. Moon, and H. Y. Yeom, “Timer-Based Interrupt Mitigation for High Performance Packet Processing, ” Proceedings 
of 5th International Conference on High-Performance Computing in the Asia–Pacific Region, Gold Coast, Australia, September 
2001. 

[16] K. Salah and K. ElBadawi, " Evaluating System Performance in Gigabit Networks ", The 28th IEEE Local Computer Networks 
(LCN), Bonn/Königswinter, Germany, October 20–24, 2003, pp. 498-505 

[17] K. Salah and K. Badawi, " Performance Evaluation of Interrupt-Driven Kernels in Gigabit Networks", The IEEE Global 
Telecommunications Conference, 2003, GLOBECOM’03, December 1-5, 2003, pp. 3953-3957 

[18] J. Brustoloni and P. Steenkiste, "Effects of Buffering Semantics on I/O Performance ," Proceedings Second USENIX Symposium 
a on Operating Systems Design and Implementation, October 1996, pp. 277-291. 

[19] Z. Ditta, G. Parulkar, and J. Cox, "The APIC Approach to High Performance Network Interface Design: Protected DMA and 
Other Techniques," Proceedings of IEEE INFOCOM 1997, Kobe, Japan, April 1997, pp. 179-187. 

[20] H. Keng and J. Chu, "Zero-copy TCP in Solaris," Proceedings of the USENIX 1996 Annual Technical Conference, January 
1996. 

[21]  M. Karam and  F. Tobagi, “Analysis of Delay and Delay Jitter of Voice Traffic in the Internet,” Computer Networks Magazine, 
40 (6) (2002), pp. 711-726. 

[22]  W. Leland, M. Taqqu, W. Willinger, D. Wilson, "On the Self-Similar Nature of Ethernet Traffic", IEEE/ACM Transaction on 
Networking, 2 (1994), 1-15. 

[23] V. Paxson and S. Floyd, “Wide-Area Traffic: The Failure of Poisson Modeling,” IEEE/ACM Transactions on Networking, 3(3) 
(1995), pp. 226-244  

[24] P. Steenkiste, "A Systematic Approach to Host Interface Design for High-Speed Networks," IEEE Computer Magazine, 24(3) 
(1994), pp. 44-52. 

[25] K. Kochetkov, “Intel PRO/1000 T Desktop Adapter Review,” http://www.digit-life.com/articles/intelpro1000t 

[26] 3Com Corporation, "Gigabit Server Network Interface Cards 7100xx Family,” 
http://www.costcentral.com/pdf/DS/3COMBC/DS3COMBC109285.PDF 

[27]  K. M. Chandy and C. H. Sauer, “Approximate Methods for Analyzing Queueing Network Models of Computing Systems,” 
Journal of ACM Computing Surveys, 10(3) (1978), pp. 281-317. 

[28]  L. Kleinrock, Queueing Systems: Theory, vol 1. New York : Wiley, 1975. 

[29]  S. N. Elaydi, S. N., An Introduction to Difference Equations. Berlin: Springer-Verlag, 1996, pp. 113. 

[30]  A. Law and W. Kelton, Simulation Modeling and Analysis, New York : McGraw-Hill, 2nd Edition, 1991. 

[31] J. White, “An Effective Truncation Heuristic for Bias Reduction in Simulation Output,” Simulation Journal, 69(6) (1997), pp. 
323-334 

[32] A. Silberschatz, P. Galvin, and G. Gagne, Operating System Concepts, New York: John Wiley & Sons, Inc, 4th Edition, 2003. 

 

 

 

 

 

 

 

 


