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Abstract

Network planning in the highly competitive, demand-adaptive and rapidly grow-
ing cellular telecommunications industry is a fairly complex and crucial issue. It
comprises collective optimization of the supporting, switching, signaling and in-
terconnection networks to minimize costs while observing imposed infrastructure
constraints. This work focuses on the problem of assigning cells to switches, which
comprise the Base Station Controller and Mobile Switching Center, in a cellular
mobile network. As a classic instance of the NP-hard Quadratic Assignment Prob-
lem (QAP), deterministic algorithms are incapable of finding optimal solutions in
the vast complex search space in polynomial time. Hence, a randomized, heuristic
algorithm, such as Simulated Evolution is used in this work to optimize the trans-
mission costs in cellular networks. The results achieved are compared with existing
methods available in literature.
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1 Introduction

Mobile cellular systems have become a ubiquitous component of telecommuni-
cation technologies. The growth in this sector is driven by an ever-increasing
subscriber demand and the potential for data technologies in 3G and 4G sys-
tems. These networks provide users freedom of mobility and ease of use, while
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Fig. 1. Basic architecture of cellular mobile network.

maintaining optimum conditions of quality and price. In other words, they
must provide a system of communication that the customer perceives to be as
efficient, simple, fast, reliable and as cheap as possible. The basic difference
between a fixed network and a mobile network is the medium of subscriber ac-
cess. In the former, the medium is by subscriber loop, while a mobile network
uses radio technology [1].

Though cellular networks are inherently scalable [2], managing the exponen-
tial growth is a tremendous task. The growing subscriber base, scarce existing
network resources and intense competition in the telecommunication market
place an ever-increasing emphasis on more efficient and ‘demand-adaptive’
network design for the cellular network providers. Further, with the upcom-
ing applications for data communications on these networks as advocated by
3G and 4G systems, there is a critical need for optimization of all aspects,
including efficient and flexible network structures [3].

The switching architecture of a cellular network follows a hierarchical approach
and is composed of three main types of elements:

(1) The Base Transceiver System (BTS)
(2) The Base Station Controller (BSC)
(3) The Mobile Switching Center (MSC)

These components are illustrated in Figure 1, where a Mobile Station (MS)
is in communication with the above three mentioned elements. The following
paragraphs describe the functions of the MS, the BTS, the BSC, and the MSC.

Mobile Station (MS): It is the user mobile terminal that allows users to
communicate, and also provides means of interactions and control between a
user and the network.

Base Transceiver System (BTS): The Base Transceiver System is the en-
tity corresponding to the site communicating with the MS. Usually, the BTS
will have an antenna with several radio transceivers each of which communi-
cates on a radio frequency. The link-level signaling on the radio-channels is
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interpreted here, whereas most of the higher-level signaling is forwarded to
the BSC and the MSC.

Base Station Controller (BSC): Each Base Station Controller (BSC) con-
trols several BTSs. It takes care of a number of different procedures regarding
call setup, location update and handover for each MS.

Mobile Switching Center (MSC): The Mobile Switching Center is a nor-
mal ISDN (Integrated Services Digital Network) switch with extended func-
tionality to handle mobile subscribers. Its basic function is to switch voice and
data connections between BSCs, other MSCs, other wireless networks, and
external non-mobile-networks. The MSC also handles a number of functions
associated with mobile subscribers, such as registration, location updating and
handover. Normally there exist only a few BSCs per MSC, due to the large
number of BTSs associated with the former.

In this paper, following the convention by Pierre and Houetto [4], the com-
bination of BSC and MSC is referred to as a switch. In a typical cellular
network, the area of coverage is often geographically divided into hexagonal
cells. Each of these contains a BTS covering a small geographic area [5]. The
BTS supplies the radio interface to mobile service users within its coverage
area and is controlled by a switch.

The complete design of the mobile service terrestrial network includes the
location of the switches, the allocation of BTSs to these locations, the in-
terconnection layout and dimensioning of the links between them, and their
connection to the public network. Optimization of the transmission infrastruc-
ture (access network) used to connect base stations with the switches can have
considerable cost savings for a mobile telephone operator. One of the largest
infrastructure expenditures is transmission - here, the costs are chiefly gener-
ated by the interconnection of BTSs with the rest of the terrestrial network
and as such, this requires careful planning for optimization.

This work focuses on the process of planning the network and optimizing the
interconnection of base stations with the other elements of the terrestrial net-
work. This NP-hard problem has no exact algorithms that can achieve desired
results in acceptable runtimes, and hence we engineer a heuristic such as Sim-
ulated Evolution (SimE) to achieve optimization goals, while conforming to
design constraints imposed by the network planner.

Section 2 presents a survey of literature related to the cellular network design.
In particular, the application of iterative algorithms to the above problem is
reviewed. In Section 3, the cell-to-switch assignment is formulated as a multi-
objective problem. The cost functions related to the length of link and hand–off
are designed along with switch capacity constraints. Section 4 discusses the
details of the proposed SimE algorithm and the setting of various parameters.
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Other heuristics, such as Simulated Annealing and Tabu Search which are used
for performance comparison purposes are also reviewed. Experimental results
for varying sizes of data sets are discussed and compared in Section 5 along
with the effects of different parameters on the quality of the final solution.
The work and results are summarized in the conclusive Section 6.

2 Related Work

A reasonable amount of work has been published which addresses the problem
of designing cellular networks; in particular the assigning of cells to switches.
Merchant and Sengupta [6] attempted to solve the problem using determinis-
tic algorithms and provided a basic formulation. They considered a scenario
of assigning cells to the switches of a Personal Communication Services (PCS)
network in an optimum manner and approached the problem from the perspec-
tive of Integer Programming. Their work proposed three heuristic solutions,
two of which performed extremely well.

Pierre and Houeto [4] extended the above work, solving the same problem with
varying sizes (in terms of number of cells and switches) using Tabu Search, a
non-deterministic iterative algorithm. Their approach defines a series of moves
applicable to an initial solution in order to improve the cost and establish
its feasibility. For this purpose, they identified a gain structure with update
procedures to efficiently choose the best solution in the current neighborhood.
The implementation was tested with different parameters for Tabu Search.
They also compared these results against those obtained by using Simulated
Annealing [7], another popular non-deterministic iterative algorithm.

Menon and Gupta [6] improved upon the work of Pierre and Houeto [4] and
obtained results in lesser time [5]. According to them, in the presence of ca-
pacity constraints at the switches, the problem of assigning cells to switches
becomes a difficult one to solve, with all effective solution approaches being
based on heuristic techniques. They presented a hybrid heuristic named Price
Influenced Simulated Annealing (PISA), which integrates ideas from linear
programming into a simulated annealing framework. Extensive computational
results were presented comparing the performance of the heuristic with the
lower bound obtained from linear programming relaxation. These results in-
dicated that the PISA procedure is extremely efficient.

A Memetic Algorithm (MA) was recently proposed by Quintero and Pierre
[8] for assigning cells to switches in cellular mobile networks. Its implemen-
tation was subjected to extensive tests, which confirm the efficiency and the
effectiveness of MA in providing good solutions for moderate and large-sized
cellular mobile networks, in comparison with Tabu Search and Merchant and
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Fig. 2. Geographic division in a cellular network and hand–off between switches.

Sengupta’s heuristics.

Shyu et al. [9] implemented an algorithm based on the Ant Colony Optimiza-
tion (ACO) for solving the problem of cell assignment in PCS networks. It is
a metaheuristic inspired by the foraging behaviors of ant colonies. The prob-
lem is modeled as a form of matching problem in a complete bipartite graph.
Experimental results show that the proposed algorithm is an effective and
promising approach with reasonable run times. Similar work related to the
problem of cellular mobile network design has been carried out recently and
the details are available in literature [10][11][12].

In this paper, we engineer Simulated Evolution (SimE) to address the problem
of cells to switch assignment by optimizing the link cost and hand–off cost.
The design approach for defining the goodness measure is the core of the
algorithm, which is presented in Section 4.2. The results obtained from SimE
are compared with other two heuristics, i.e., Simulated Annealing and Tabu
Search.

3 Problem and Cost Function Formulation

In this section, the cell-to-switch assignment problem for cellular mobile net-
works is formulated. The objective is optimization of link cost, and hand–off
cost, while the switch capacity is a constraint.

3.1 Problem Description

In a cellular network, the area of coverage is often geographically divided
into hexagonal cells. These cells are hierarchically set to reduce link costs, as
illustrated in Figure 2. A certain number of cells are chosen to install switches
that communicate with one another and serve as relays for communication
between any pair of cells. For various reasons, particularly mobility, switches
serving as relays to a given user could change if the user moves from his current
cell. The operation that consists of detecting that a user has changed a cell
and carrying out the required updates constitutes a hand–off.

5



When a hand–off occurs between two cells linked to the same switch, it is
called a simple hand–off, because there are few necessary updates. On the
other hand, a complex hand–off involves two cells associated with different
switches. In this case the update procedures consume more resources than
those required for a simple hand–off. For example, in Figure 2, a user who
moves from cell B to cell A causes a simple hand–off. The network’s database
that keeps in memory the switch ID (managing each user) does not need an
update. Only Switch 1 is used for this procedure and no other network entity
intervenes. However, if a user moves from cell B to cell C, a complex hand–
off occurs where Switches 1 and 2 have to exchange information on the user,
and the database must also be updated. Furthermore, if Switch 1 is in charge
of the billing, the hand–off cannot simply replace Switch 1 with Switch 2.
Communications between the two switches continue to be relayed through
Switch 1 even after the hand–off. Thus, we would have a connection to Switch
2, then to Switch 1, and finally to the network. Thus the cost of such a complex
hand–off is higher. When the frequency of such hand–offs between cell B and
cell A (Figure 2) is very high, while the hand–off frequency between cell B
and cell C is low, it becomes reasonable to connect cells A and B to the same
switch.

Thus, the problem of cell assignment could be summarized as follows:

For a set of cells and switches (whose positions are known), assign the cells
to the switches in a way that minimizes the cost function. The cost function
integrates a component of link cost and a component of hand–off cost. The
assignment must take into account the switch’s capacity constraints that permit
hosting only a limited number of calls.

The following section gives a mathematical formulation to this problem of as-
signing cells to switches in a cellular network. This formulation is based on
conventional methods where only the complex handover cost and link cost
between cells and switches with respect to the maximum switch capacity con-
straints is considered.

3.2 Formulation Of Cost Function

The formulation of cost function presented in this section is based on the work
by Pierre and Houeto [4].

Let n be the number of cells to be assigned to m switches. Assume that the
location of cells and switches are fixed and known. Let Hij be the cost per
unit of time for a simple handover between cells i and j involving only one
switch, and H ′ij the cost per time unit for a complex handover between cells i
and j (i, j = 1, 2 . . . , n with i 6= j) involving two switches. Hij and H ′ij are
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proportional to the handover frequency between cells i and j that could be
measured or estimated. Let Cik be the amortization cost of the link between
cell i and switch k (i = 1, 2 . . . , n and k = 1, 2, . . . ,m) and λi the number
of calls per time unit destined to cell i. The capacity of a switch k is denoted
by Mk.

Let us define:

xik =





1 if cell i is related to switch k

0 otherwise

zijk = xikxjk for i, j = 1, 2 . . . , n

and k = 1, 2, . . . ,m with i 6= j

yij =
m∑

k=1

zijk for i, j = 1, 2 . . . , n with i 6= j

zijk is equal to 1 if cells i and j, with i 6= j, are both connected to the same
switch k, otherwise zijk is equal to 0. yij takes the value 1 if cells i and j
are both connected to the same switches and the value 0 if cells i and j are
connected to different switches.

The cost per time unit f could be calculated as:

f =
n∑

i=1

m∑

k=1

cikxik +
n∑

i=1

n∑

j=1,i6=j
H ′ij(1− yij) +

n∑

i=1

n∑

j=1,i6=j
Hijyij (1)

The first term of equation represents the link cost, while the second and third
terms take into account the complex handover and the simple handover costs
respectively. We should keep in mind that the cost function is quadratic in xik
as yik is a quadratic function of xik.

The assignment of cells to switches is subject to a certain number of con-
straints. Each cell must be assigned to only one switch, which is translated
to:

m∑

k=1

xik = 1 for i = 1, 2 . . . , n (2)

If λi denotes the number of calls per time unit destined to cell i, the limited
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capacity of switches imposes the following constraint:

n∑

i=1

λixik ≤Mk for k = 1, 2 . . . ,m (3)

According to the above constraint the total load of all cells which are assigned
to the switch must be below the capacity of the switch. Finally, the constraints
of the problem are completed by:

xik = 0 or 1, for i = 1, 2 . . . , n and k = 1, 2 . . . ,m (4)

zijk = xikxjk and i, j = 1, 2 . . . , n and k = 1, 2 . . . ,m (5)

yij =
m∑

k=1

zijk for i, j = 1, 2 . . . , n (6)

The problem which is simplified to (1) under (2)–(6), cannot be solved using a
standard technique such as linear programming as constraint (5) is not linear.
Merchant and Sengupta [6] replaced it by the equivalent set of constraints:

zijk ≤ xik (7)

zijk ≤ xjk (8)

zijk ≥ xik + xjk − 1 (9)

zijk ≥ 0 (10)

The problem can be further simplified by proposing:

hij = H ′ij −Hij (11)

where hij refers to the reduced cost per time unit of a complex handover
between cells i and j. Objective function (1) could be rewritten as follows:

f =
n∑

i=1

m∑

k=1

cikxik +
n∑

i=1

n∑

j=1,i6=j
hij(1− yij) +

n∑

i=1

n∑

j=1,i6=j
Hij

︸ ︷︷ ︸
constant

The assignment problem thus takes the minimization of the following cost
function subject to constraints (2)–(4) and (6)–(10):

f =
n∑

i=1

m∑

k=1

cikxik +
n∑

i=1

n∑

j=1,i6=j
hij(1− yij) (12)
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In this form, the assignment problem could be solved by usual programming
methodologies. However, due to the complexity of the problem, exact methods
cannot scale with instances involving more than a few cells and switches [6].
Consequently, non–deterministic heuristic methods are applied that search the
solution space efficiently and within acceptable runtimes.

3.3 Inclusion of Additional Constraints

Though the problem formulation is formally complete, an additional constraint
is defined to address the limitations imposed by the number of ports available
on each switch. This has immense practical significance as the MSC, in a real-
life cellular mobile network, is limited not only by its call processing capability,
but also by the number of ports present. In certain scenarios though the switch
may have enough processing capability, it may have exhausted the number of
available ports, thus effectively causing congestion.

If Pk denotes the number of ports available on each switch k, then the con-
straint on the number of ports may be represented as follows:

n∑

i=1

xik ≤ Pk for k = 1, 2 . . . ,m (13)

where xik is as defined in Section 3.2. For this modified model, the problem
then is to solve Equation (12) subject to constraints (2)–(4) and (6)–(10) as
well as (13).

4 Proposed Approach

4.1 Simulated Evolution (SimE)

According to the theory of evolution the more an organism adapts to its en-
vironment, the better are its chances of survival. Hence, adaptation is seen as
a form of optimization. This similarity has given rise to a new class of ran-
domized, evolution-inspired, iterative algorithms such as Genetic Algorithms,
Simulated Evolution, and Stochastic Evolution. For these heuristics, the cost
function is an estimation of the degree of adaptation of a particular solution
to the target objective. In this work, SimE is engineered to traverse the search
space to find the optimal solution in terms of both minimal cost and runtime.
The results are compared against other reported algorithm, with a particular
focus on Simulated Annealing.
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ALGORITHM Simulated Evolution(B,Φinitial, StoppingCondition)
NOTATION
B= Bias Value. Φ= Complete solution.
mi= Module i. gi= Goodness of mi.
ALLOCATE(mi,Φi)=Function to allocate mi in partial solution Φi
Begin
Repeat

EVALUATION:
ForEach mi ∈ Φ evaluate gi;
/* Only elements that were affected by moves of previous */
/* iteration get their goodnesses recalculated*/

SELECTION:
ForEach mi ∈ Φ DO

begin
IF Random > Min(gi +B, 1)
THEN

begin
Ps = Ps ∪ mi; Remove mi from Φ

end
end

Sort the elements of S
ALLOCATION:

ForEach mi ∈ S DO
begin

ALLOCATE(mi,Φi)
end

Until Stopping Condition is satisfied
Return Best solution.
End (Simulated Evolution)

Fig. 3. Structure of the Simulated Evolution algorithm.

SimE is a general, non-deterministic, iterative meta-heuristic proposed by
Kling and Banerjee in 1987 [13] to solve combinatorial optimization problems.
The general SimE algorithm is illustrated in Figure 3 and comprises three
main steps namely Evaluation, Selection, and Allocation. The algorithm
starts with an initial solution or assignment, which it seeks to improve from
one iteration or generation to the next by following an evolutionary based ap-
proach. It works with a single solution, that is referred to as the population,
consisting of movable cells or elements. Each of these is associated with a cer-
tain goodness measure - a metric strongly correlated to the overall solution
fitness, which is indicative of how optimally the cell is placed.

In the Evaluation step, the goodness of each cell, in the range [0, 1], is
measured at its current location. The goodness is an approximate indicator
of how near a cell is to its optimum location. In Selection step unfit cells
are selected probabilistically for relocation and this is based on their goodness
value. Higher the goodness value, lower is the chance of it being selected.
These selected cells, comprising the selection set Ps, are removed from the
current solution and reassigned one at a time to new locations in a constructive
Allocation step, thereby increasing the overall goodness. SimE executes
these three basic steps or procedures in sequence until the average goodness
of the population reaches a maximum value, or no significant improvement to
the goodness is observed after a number of iterations.

Another deciding parameter crucial to the success of SimE is the bias value B
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which is used in the Selection function. It is not possible to find the accurate
goodness value for a cell because its exact optimum location is unknown.
Further, goodness only gives the local view of cell, and in order to compensate
the error in goodness calculation and to limit the size of selection set, a bias
parameter is used [14], where a cell i is selected if goodnessi +B < Random,
where Random is a uniformly distributed random number in the range [0, 1],
B is the selection bias with its typical values in the range [−0.2, 0.2], and
goodnessi is the goodness value of cell i. In this work, a bias value of 0.2 was
chosen through extensive trials.

4.2 Goodness Function

The goodness function, which is calculated for each cell in an assignment, is a
core component unique to SimE and is strongly correlated to the overall fitness
or cost optimization. The algorithm iteratively improves on the goodness of
each cell, thereby navigating the search space towards better quality solutions.

A simple goodness function is defined for the SimE algorithm, which comprises
the link cost and hand–off cost, following an approach similar to that used for
the cost function in the problem formulation. It is formulated as:

goodness =
O(Cl + Ch) + ε

C(Cl + Ch) + ε

where Cl and Ch are the link and hand–off costs respectively. Here, O(Cl+Ch)
is the optimal value for the cell while C(Cl + Ch) is its current value in that
particular iteration. The optimal link cost is the lowest cost among all possible
links from the cell to the switches. The optimal hand–off cost is the lowest
possible cost incurred between neighboring cells, which is zero (i.e., there is
no hand–off). These optimal values are computed only once, while the current
value for C(Cl + Ch) is computed in every generation.

This goodness function, though perceivably simple is validated and proven to
be effective as demonstrated by Figures 4, 5 and 6. These figures, drawn from
experimental results discussed later show the run-time trends exhibited by
Simulated Evolution for a problem instance involving 100 cells and 5 switches.
The first of these illustrates a gradual reduction in the size of the selection set
(i.e., the number of cells selected for allocation) which reflects an increasing
average goodness as shown in the second figure. This behavior along with
the corresponding cost optimization in Figure 6 confirms the validity of the
formulated goodness measure.
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Fig. 4. Decrease in the Selection Set size for problem size (100–5).
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Fig. 5. Increase in the average cell goodness for problem size (100–5).
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Fig. 6. Optimization of overall solution cost for problem size (100–5).

4.3 Simulated Annealing and Tabu Search

Simulated Annealing is one of the most popular and general adaptive heuris-
tics belonging to the class of non-deterministic algorithms [7]. It has been
successfully applied for solving a vast number of combinatorial optimization
problems. It is relatively easy to implement and also produces high quality
solutions regardless of the choice of the initial configuration. The main com-
ponents of the algorithm are the initial temperature T0, the cooling rate α,
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constant β, and M , which represents the time until the next parameter up-
date. The core procedure of the algorithm is the Metropolis function, which
simulates the mettalurgical annealing process. SA transitions from an approx-
imately random search process to a greedy, deterministic algorithm controlled
by the changing temperature parameter and thus is able to navigate com-
plex, multimodal search spaces and avoid local-optima. In-depth details and
discussion of the general simulated annealing algorithm can be found in [7].
The values for these parameters were assigned after carrying out a number of
trial runs for different parameter values and extensive tuning of parameters.
The main parameters are initial temperature T0=10000, number of iterations
before temperature update M=10, and the constants β=1.0095 and α=0.963.

Tabu Search (TS): Tabu Search starts from an initial feasible solution and
carries out its search by making a sequence of random moves or perturbations.
A tabu list is maintained which stores the attributes of a certain number of
previous moves. This list prevents taking the search process back to recently
visited states [7]. In each iteration, a subset of neighbor solutions is generated
by making a certain number of moves and the best move (the move that re-
sulted in the best solution) is accepted, provided it is not in the tabu list. If the
said move is in the tabu list, it is accepted only if it leads to a solution better
than the best found so far (aspiration criterion). In each iteration, a number of
neighbor solutions are generated by perturbing the solution: two cells are se-
lected randomly and their assignments are interchanged. The number of such
neighbor solutions generated in each iteration depends on the problem size.
The size of tabu list also depends on the problem size and is usually kept at
10% of the total number of cells. In this work, short-term memory element
was used for TS implementation. A straightforward aspiration criterion was
employed where, if the current best solution is the best seen so far i.e., better
than the global best, it is then accepted and the tabu restriction is overridden.

5 Experimental Results & Comparison

This section presents the experimental results achieved with the SimE heuris-
tic and compares it against Simulated Annealing, Tabu Search and Pierre
and Houeto’s SA-P algorithm [4]. The data sets used were generated as ex-
plained in [4][6] and comprise of problem instances with number of cells and
switches varying from 15 to 500 and 2 to 12 respectively. Twenty such sets were
generated and a series of test runs were conducted to measure SimE perfor-
mance against other algorithms, particularly in terms of the cost minimization
achieved.
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5.1 Comparison of Solution Cost and Runtimes

Table 1 compares the performance of SimE with Simulated Annealing as well
as other algorithms in literature such as Tabu Search and SA-P [4]. The re-
sults demonstrate the algorithm’s ability to navigate the search space more
effectively, thereby achieving better quality (lower-cost) solutions, particularly
for large size problems. The actual performance increment is tabulated in Ta-
ble 2 in terms of the percentage improvement with SimE over the other three
algorithms. The heuristic achieves 29-55% gain over SA-P, and in the range
of 11-29% over TS. SimE also consistently outperforms SA, especially for the
larger problem sets with a maximum gain of slightly over 32%.

Simulated evolution’s performance over annealing can be attributed to the
dynamics of each heuristic. SA spends most of its initial iterations approxi-
mating a random search process, while slowly gravitating towards a greedier
approach. SimE, however, with its goodness evaluation, selection and alloca-
tion steps can be engineered to reach consistently higher quality solutions from
the first few iterations onwards.

Another interesting comparison between SimE and SA is how the two algo-
rithms scale with problem sizes. Figure 7 shows how the runtime for annealing
increases exponentially with larger problem sizes, while SimE reports almost
constant, and much lesser computation time to reach its target fitness.

Table 1
Comparison of SimE and SA with TS and Pierre’s (SA-P) heuristics in terms of
best cost achieved.

Cells Switches SA-P TS SA SimE

15 2 123 118 97.8072 86.8706

30 3 405 324 257.1508 229.1357

50 4 851 580 486.8911 432.3942

100 5 1999 1234 1157.1383 1055.906

150 6 3240 2010 1943.6049 1701.811

200 7 5550 2768 2966.2921 2453.9762

250 8 - - 3852.7231 3329.5575

300 9 - - 5190.4683 4004.1733

350 10 - - 6574.7308 4624.6573

500 12 - - 11550.5805 7812.2196

5.2 Comparison with Additional Constraints

The results presented in the earlier section addressed SimE performance with-
out including the effect of limitation imposed by number of ports available on
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Table 2
Percentage improvement in SimE in relation to TS, Pierre’s (SA-P), and SA heuris-
tics.

Cells Switches SimE vs. SA-P SimE vs. TS SimE vs. SA

15 2 29.37 26.38 11.18

30 3 43.42 29.27 10.89

50 4 49.18 25.44 11.19

100 5 47.17 14.43 8.748

150 6 47.47 15.33 12.44

200 7 55.78 11.34 17.27

250 8 * * 13.57

300 9 * * 22.85

350 10 * * 29.66

500 12 * * 32.36

Average 45.39 20.36 17.01
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Fig. 7. Runtimes for SA and SimE with increasing problem sizes.

a switch. As mentioned previously, the processing capability of an MSC is not
only limited by its own capacity, but also by this port constraint. This section
reports on the performance of SimE and SA when this additional factor is
addressed.

Table 3 compares the solution costs and the corresponding runtimes achieved
with and without port constraint for both SA and SimE. The fitness optimiza-
tions achieved, as determined by the cost attained, are reasonably similar for
both SA and SimE. However, the difference in runtimes is significant, with
SimE requiring a fraction of that needed by Annealing.

However, another perspective to be considered is the overall effect of the ad-
ditional constraint on each heuristic’s behavior. Looking at the difference in
the solution quality achieved with and without the port constraint for each
algorithm, SimE is seen to be more severely affected by the addition of new
constraints and parameters as compared to Annealing. This behavior is evi-
dent from Figure 8, where the SimE(WPC) search process attains much higher
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(b) Simulated Evolution

Fig. 8. Effect of the additional port constraint on the performance of Annealing and
SimE for different problem sizes.

solution costs as compared to its performance without the port constraint.

Table 3
Comparison between the performance of SA and SimE when taking the port con-
straint (WPC) into consideration.

Simulated Annealing Simulated Evolution

Cells-Switches SA Time(sec) SA (WPC) Time(sec) SimE Time(sec) SimE (WPC) Time(sec)

15-2 97.8072 0.272 102.4707 0.284 86.8706 0.005 97.8072 0.005

30-3 257.1508 0.995 260.9837 1.025 229.1357 0.013 265.5235 0.013

50-4 486.8911 2.934 548.1965 3.066 432.3942 0.033 505.3431 0.687

100-5 1157.1383 12.909 1198.347 14.801 1055.906 0.133 1162.0067 0.133

150-6 1943.6049 33.718 2116.6357 34.149 1701.811 0.348 1991.3575 0.348

200-7 2966.2921 67.753 3540.3312 68.433 2453.9762 0.719 3639.9645 0.729

250-8 3852.7231 116.987 4242.4876 118.911 3329.5575 1.184 4240.2983 1.193

300-9 5190.4683 184.926 6042.9186 187.413 4004.1733 1.863 6119.7368 1.869

350-10 6574.7308 272.424 7099.5593 274.690 4624.6573 2.740 7179.7658 2.739

500-12 11550.5805 640.933 12600.5318 643.328 7812.2196 6.392 13203.5318 6.401

6 Conclusion

The design and planning of cellular mobile networks in today’s rapidly ex-
panding and highly competitive telecommunications industry is a crucial fac-
tor in reducing operations costs while adhering to quality issues and perfor-
mance constraints. The inherent complexities involved have to be addressed
through reasonable and valid simplifications. There is a compelling require-
ment for software that would aid in this decision-making process, providing
cost-optimization algorithms, while adhering to technology and designer con-
straints. The focus is on a methodology that would make it possible to rapidly
assess various design alternatives and carry out studies on the sensitivity of
solutions to variations in demand or in the unit cost of equipment or circuits.

In this paper, a solution is proposed for one such area of mobile network design
- the cell to switch assignment problem. Simulated Evolution is engineered
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to solve this problem and its performance is compared against that of other
algorithms. An effective goodness function is formulated that guides the search
process towards lower-cost solutions through an iterative application of the
Evaluation, Selection and Allocation steps.

One of the main conclusions that can be drawn from the work is that the
performance of any non–deterministic iterative heuristic is closely related to
its interaction with the problem in general and the elements of the problem
in particular. The algorithm parameters that can be closely related to the
problem elements are the key entities in deciding the performance of the algo-
rithm and the quality of solution produced. This is evident in the application of
SimE, where the goodness function is derived from a detailed knowledge of the
problem and optimization objectives. This then provides a certain guided ran-
domness to the search process, thereby reaching higher quality solutions than
those attained by SA and TS, which often rely too heavily on non-determinism
alone.
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