
1. ABSTRACT
This paper presents an efficient and novel method for
sequential learning of implications, invalid states, and
tied gates. It can handle real industrial circuits, with mul-
tiple clock domains and partial set/reset. The application
of this method to improve the efficiency of sequential
ATPG is also demonstrated by achieving higher fault
coverages and lower test generation times.

2. INTRODUCTION
It is well-known that the performance of a search process can
be significantly enhanced by finding necessary assignments
and identifying relations between signals. An effective way
of identifying necessary assignments and signal relations is
by learning. The use of learned information helps the search
engine in recognizing value assignment conflicts sooner and
pruning the search space, significantly reducing the number
of backtracks. Learning relations in a circuit is typically
performed by injecting both logic values on a gate and
propagating them backward and forward. This can be done
either statically in a pre-processing phase [1,2], or
dynamically during the search process [3]. Dynamic learning
can extract significantly more implications since the learning
is done in the presence of assignments that have already been
made, which allows the search space to be pruned further.
However, this can be very computationally expensive since it
is performed multiple times during the search process.
Furthermore, the implications learned are only valid as long
as backtracking has not occurred beyond the point where
learning was performed. In most learning techniques,
justification stops when a decision node is reached.
Recursive learning [4] attempts to extract more relations by
learning implications which would be valid regardless of the
assignment made at the decision node. Furthermore, it can be
applied statically or dynamically. However, unless the depth
of the recursion is restricted, this technique can be even more
expensive than the search process. Note that most learning
techniques are performed in the combinational logic of the
circuit. Only [5] attempts learning of relations by extending
the analysis across sequential elements, but the learning is
only performed across two time frames.

Learning is used in several areas of computer-aided design,
most notably automatic test pattern generation (ATPG) [1-5],
redundancy identification [2,6], logic verification [7], and
logic optimization [8]. Although this paper focuses on the
application of the learning method to ATPG, the proposed
method is not restricted to test generation.

Sequential ATPG is a much more complex process than
combinational ATPG due to signal dependencies across
multiple time frames. Extracting such relations can
significantly enhance the performance of sequential ATPG as
backtracks across multiple time frames are reduced.
Furthermore, it has recently been shown [9] that a key
indicator of the complexity of sequential ATPG is the density
of encoding of the circuit, which is the ratio of the number of
valid states to the total number of states. With circuits that
have a low density of encoding, the test generator is more
likely to waste a lot of time trying to justify an invalid state.
Therefore, extraction of invalid states can also significantly
enhance the efficiency of sequential ATPG. Most methods
which identify the valid or invalid states in a sequential
circuit require the presence of a reset state (e.g., [10]), which
is not usually available in real circuits. Some more recent
techniques do not require a reset state [11,12]. However,
since those methods usually attempt to enumerate all invalid
states, they can only be used for small circuits.

In this paper, we present a fast, memory-efficient technique
for learning across multiple time frames. We propose the
sequential learning mechanism, and its application for
enhancing the performance of sequential ATPG by
identifying implications, invalid states, and tied values. Its
efficiency enables it to be used on very large circuits.
Furthermore, it can be used on real circuits including those
with multiple clock domains, and partial or full set/reset.

3. SEQUENTIAL LEARNING TECHNIQUE
Sequential learning can identify relations between two nodes
at different time frames or in the same time frame. Relations
learned between nodes in the same time frame are of more
interest since they represent the set of illegal assignments or
don’t care set for a circuit, which can be utilized by ATPG,
logic optimization or verification. Many more relations can
be learned between nodes at different time frames than those
between nodes in the same time frame. However, such
relations have limited application since they involve the time
domain. For an ATPG to take advantage of such relations, it
needs to work on a window equivalent to the number of time
frames across which the relations hold. The proposed
learning technique can learn relations of either type.
However, in this paper we present results for relations

 A Fast Sequential Learning Technique for Real Circuits
with Application to Enhancing ATPG Performance

Aiman El-Maleh, Mark Kassab, and Janusz Rajski
Mentor Graphics Corporation

8005 S.W. Boeckman Rd.
Wilsonville, OR 97070, USA

learned in the same time frame. Relations are learned
between pairs of sequential elements and between gates and
sequential elements. Relations between pairs of gates follow
directly from relations between gates and sequential
elements, and are therefore not extracted.

The sequential learning technique proposed in this paper is
mainly based on forward simulation across time frames.
This is in contrast to combinational learning techniques,
which inject both a 0 and 1 on each gate and perform
backward and forward implications across non-decision
nodes. Performing the implications both backward and
forward can allow learning of relations that may not be
learned using only forward or backward implications. This
is because a decision node may cease to be a decision node
due to other assignments made by implications, allowing
further propagation. However, this approach requires the
learning mechanism to be performed twice the number of
gates in the circuit. Since sequential learning for each gate
can traverse the circuit forward and backward across time
frames several times, this could make such an approach less
attractive for large circuits. Furthermore, the time frames
across which learning is to be performed has to be decided
and memory has to be allocated a priori.

3.1 Implication Learning
The proposed learning technique is comprised of several
steps. First, fanout stems (i.e., nodes that have a fanout
greater than one) are identified. Then, for each fanout stem,
both a 0 and a 1 are injected and simulated forward across
time frames. This step allows the extraction of relations
between nodes that are implied by the different values on
the same stem based on the contrapositive law. If

A=0 F1=0 and A=1 F2=0, then by the contrapositive
law, F1=1 A=1 which results in the relation F1=1 F2=0.
This technique is called single-node learning. For example,
consider the circuit in Figure 1. This circuit has five fanout
stems, namely I1, I2, F1, F2, and F3. The forward simulation
results for each value on every stem and their corresponding
implied gates are shown in Table 1. Simulation is allowed to
continue forward for a specified number of time frames.
However, the simulation is stopped if the same state is
repeated over two consecutive time frames. For example,
injecting a 1 on stem F3 produces the same state after time
frame 1 and hence simulation is stopped at time frame 2.
Similarly for stem I2, simulation stops at time frame 4.
Relations between nodes at two different time frames can be
easily extracted from the simulation results for each stem.
For example, the relation G1=0 at T=i+1 I2=0 at T=i is
learned based on the stem I2. Relations between nodes in the
same time frame are extracted similarly. For example, the
relation F6=1 F4=0 is extracted based on stem I2 since
I2=0 F6=0 in time frame 1 and I2=1 F4=0 in time frame
1 as well. By the contrapositive law, F6=1 I2=1 F4=0.
Relations extracted between sequential elements based on
single-node learning are shown in Table 2. Relations
between sequential elements are called invalid-state
relations since they represent the presence of invalid states.
The relation F6=1 F4=0 represents the set of invalid states
(F1,F2,F3,F4,F5,F6)=(X,X,X,1,X,1). Learning of invalid
states by implication has the benefit that sets of invalid
states are extracted concurrently and their representation is
compact. However, invalid states that cannot be represented
as implications cannot be learned using this approach.

→ →
→ →

→

→
→ →

→ →

→

Figure 1: An example illustrating the sequential learning technique

F5

G10

G4

G2

G3

G5

G6

G7

G13

G12

G8

F6

G11

F4

F3

F2

G9 F1

G1

G14

G15

I5

I4

I3

I1
I2

Single-node learning can only learn relations due to a single
stem. However, relations that can be learned due to multiple
assignments are missed. This occurs when two or more
stems result in a node having the same value. Thus, the
contrapositive of the value on the node implies the
contrapositive of the values on each of the stems. By
injecting the contrapositive values of all the stems and
performing forward logic simulation, relations can be
identified between the node and other nodes set by the
simulation. Injecting the values on multiple stems
concurrently usually allows values to propagate further
during simulation and hence allows more relations to be
extracted. Thus, for each value on a gate, the set of stems
that produce this value on the gate are stored. This analysis
is called multiple-node learning.

As an example, consider the value 1 on the sequential
element F3 in the circuit shown in Figure 1. This value is set
on F3 at T=1 by each of the stems I2=1 and F3=1, at T=2 by

the stem I2=1, and at T=3 by the stem I2=1. Thus, the value
F3=0 at T=3 implies that I2=0 at T=3-3=0, I2=0 at T=3-2=1,
and I2=0 and F3=0 at T=3-1=2. By injecting those
assignments on the stems and performing forward
simulation, this results in F2=0 and F6=0 at T=1, F2=0,
F5=0, and F6=0 at T=2, and F2=0, F4=1, F5=0, and F6=0 at
T=3. Note that the fact that gate G3 is tied to a 0 is taken
advantage of during simulation. Extraction of tied gates will
be discussed in the next subsection. This learning leads to
the extraction of four invalid state relations, namely
F3=0 F2=0, F3=0 F4=1, F3=0 F5=0, and
F3=0 F6=0, the first three of which were not learned by
single-node learning. Similarly, multiple-node learning for
the other nodes can be performed. Additional invalid state
relations learned by multiple-node learning are shown in
Table 2.

Taking advantage of equivalent gates in combinational
circuits can help values propagate forward during
simulation. For example, gates G2 and G4 are equivalent
combinationally. However, injecting a 0 on F2 results in
G4=0 but does not set G2=0, due to the limitation of three-
valued simulation. Knowing that the two gates are
equivalent allows the simulator to set G2 to 0. This can help
in identifying extra relations. For example, for the multiple-
node learning of F3=0, the value I2=0 at T=0 results in F2=0
and F6=0 at T=1. Then, F2=0 at T=1 results in G4=0 and by
equivalence G2=0 at T=1. With I2=0 injected at T=1, this
leads to F1=0, F2=0, F5=0, and F6=0 at T=2. Injecting I2=0
and F3=0 at T=2 with the additional assignments on the
sequential elements propagating from the previous time
frame, this leads to the assignments F1=0, F2=0, F4=1,
F5=0, and F6=0 at T=3. Thus, a new relation is extracted
between F3 and F1 by utilizing gate equivalence in
combinational circuits, namely F3=0 F1=0. Equivalent
combinational gates can be efficiently identified based on
parallel pattern simulation techniques. Multiple-node
learning for the other nodes can be performed similarly.
Additional invalid state relations learned by multiple-node
learning taking advantage of gate equivalence are shown in
Table 2.

It is worth mentioning that the multiple-node learning
technique can identify relations that are not learned by
techniques based on backward/forward techniques. This is
illustrated by the example shown in Figure 2. From the
figure, it can be seen that each of the stems I2=0 and I3=0 at
T=0 imply G9=1 at T=1. Thus, G9=0 at T=1 implies that
I2=1 and I3=1 at T=0, which implies that F2=0 at T=1. Thus,
the relation G9=0 F2=0 is learned. Such a relation cannot
be extracted by injecting a 0 or 1 on G9 and performing
backward/forward implications.

3.2 Tie Gate Learning
In addition to learning implications, this learning technique
can effectively identify tie gates. A tie gate is one that can
only assume a single known value. Tied gates can be tied
combinationally or sequentially. A combinational gate tied
to the value will always be set to the value v and
cannot be set to the value . A sequential gate tied to the

Stem T=0 T=1 T=2 T=3
I1=0 G3=0 {} {} {}
I1=1 G3=0 {} {} {}
I2=0 G7=0 G13=0 F6=0 {} {}

I2=1
G6=0, G9=1

G10=1
G11=1

F1=1, F2=1
F3=1, F4=0
G1=1, G2=1
G4=1, G5=1
G6=0, G9=1

G11=1
G14=0
G15=0

F1=1, F3=1
F4=0, G5=1

G6=0
G11=1
G14=0
G15=0

F3=1, F4=0
G5=1, G6=0

G11=1
G15=0

F1=0 G2=0, G4=0 {} {} {}
F1=1 G14=0 {} {} {}
F2=0 G4=0, G8=0 {} {} {}
F2=1 G14=0 {} {} {}
F3=0 {} {} {} {}

F3=1
G5=1, G6=0

G15=0
G11=1

F3=1, F4=0,
G5=1, G6=0

G11=1
G15=0

{} {}

Table 1: Simulation results for stems of the circuit in Figure 1.

Single-Node
Relations

Additional
Multiple-Node

Relations

Additional
Gate-Equivalence

Relations
F6=1 F4=0 F1=0 F2=0 F3=0 F1=0
F6=1 F3=1 F1=0 F5=0 F4=1 F1=0
F6=1 F2=1 F3=0 F2=0
F6=1 F1=1 F3=0 F4=1

F3=0 F5=0
F4=1 F2=0
F4=1 F5=0
F4=1 F3=0

Table 2: Learned invalid state relations for the circuit in
Figure 1.

→ → →
→ → →
→ →
→ →

→
→
→
→

→ → →
→

→

→

v 0 1{ , }∈
v

value will always be set to the value v for each of
the reachable states. If the circuit is powered up in one of the
unreachable states, then the sequentially tied gate can
initially be set to and after some number of cycles will be
set to the value v. Under three-valued simulation, a
sequentially tied gate will only get the value v once it is set
to a known value. It is worth noting that sequentially tied
gates are by the definition in [13] c-cycle redundant for
some cycle c. Thus, identification of tied gates can help in
identifying untestable faults in the circuit and also in
optimizing the design by removing the redundant gates.

Our technique identifies tied gates based on both single- and
multiple-node learning techniques. If both a value of 0 and a
value of 1 on a stem produce the same value v on a node G
at the same time frame, then this implies that node G is tied
to the value v and hence the fault stuck-at-v is untestable.
For example, consider the circuit in Figure 1. Both I1=0 and
I1=1 imply that G3=0. Thus, gate G3 is tied to 0. This is
considered a combinational tie since it is learned at T=0.
Extraction of tied gates based on this criterion is performed
after the single-node learning phase, so that the multiple-
node learning phase can take advantage of learned tied
gates.

Tied gates can also be learned during the multiple-node
learning phase. This is illustrated by the example given in
Figure 1. From Table 1, it can be seen that by the
contrapositive law, G15=1 implies I2=0 at T=0, I2=0 at T=1,
I2=0 and F3=0 at T=2, and F3=0 at T=3. Injecting those
assignments in their respective time frames and simulating
forward, this implies that F2=0 and F6=0 at T=1, F1=0,
F2=0, F5=0, and F6=0 at T=2, and F1=0, F2=0, F4=1, F5=0,
and F6=0 at T=3. The assignments F1=0 and F2=0 at T=3
imply that G14=1 which implies that G15=0. Thus, we get a
conflict which indicates that G15 cannot be assigned the
value 1, and hence is learned to be sequentially tied to 0. It
is also possible to learn that gate G15 is a tie gate in a
different way during logic simulation. For example, if G14 is

a stem, then we will have the implication G15=1 G14=0 at
T=3. However, from the multiple-node learning we
described above, simulation of the injected values results in
G14=1 at T=3, which is again a conflict indicating that G15
is a tie gate. Thus, conflicts occurring during logic
simulation indicate that the target gate for which learning is
performed is a tie gate. It should be observed that this gate
would not have been learned to be a tie without taking
advantage of the previously learned tie gate G3 and the
equivalence relation between gates G2 and G4.

3.3 Practical Issues
Industrial circuits are often featured with multiple clock
domains, multiple-phase clocks, multiple-port latches, and
partial set/reset. Such practical issues require special
consideration during learning.

3.3.1 Multiple-port Latches
Multiple-port latches have several ports through which their
values can be assigned. To guarantee that the extracted
relations during learning are valid, values are not allowed to
propagate across such latches. This is because the extracted
relations would otherwise only be valid with respect to a
certain port.

3.3.2 Multiple clock domains
To extract learned relations that are valid regardless of
temporal information and the clock domain used, sequential
elements are classified into classes where each class consists
of those that are driven by the same or equivalent clock and
at the same phase. A clock and a gated version of that clock
are considered as separate clocks. Then, learning is
performed for each class separately. Latches and flip-flops
are also classified into different classes even if they are
driven by the same clock and at the same phase, since their
different capture times may invalidate the learned relations.

3.3.3 Set/Reset handling
Values are not allowed to propagate across sequential
elements that have both unconstrained set and reset lines.
This is because the learned information will be invalidated
by the set/reset behavior since both a 0 and 1 can be
obtained on the sequential element regardless of the value
being propagated. However, if a sequential element contains
either an unconstrained set or reset line, then a value is
allowed to propagate across the sequential element if the
value is the same as what could be produced by the set or
reset line. This guarantees that the extracted relations cannot
be invalidated by the set/reset behavior and that all the
extracted relations are valid.

4. ENHANCING ATPG PERFORMANCE WITH
LEARNED DATA
Implication learning can enhance ATPG performance by
identifying conflicts early in the search process and by
eliminating decision nodes whose values are implied.
Implication relations can be used as known-value
implications or forbidden-value implications. Forbidden-
value implications are useful in identifying illegal
assignments. However, they do not eliminate implied

Figure 2: An example illustrating extraction of relations by
multiple-node learning that are not extracted by backward/

forward approaches.

F1

F2

F3

F4

F5

G1

G2

G3

G4

G5

I4

I5

I6

G6

G7

G8

G9

I1
I2

I3

v 0 1{ , }∈

v

→

decision nodes as known-value implications do. We
illustrate this by the example shown in Figure 2. To detect
the stuck-at-1 fault on G9, it is necessary to set G9=0 to
excite the fault. An implication relation exists between G9
and F2 namely, G9=0 F2=0. Without using the
implication, G6 and G7 become decision nodes with two
solutions each, F1=0 or F2=0 for justifying a 0 on G6, and
F2=0 or F3=0 for justifying a 0 on G7. If a solution other
than F2=0 is selected, this results in additional unnecessary
requirements to detect the fault. By taking advantage of the
known-value implication, G6=0 and G7=0 are longer
decision nodes and hence the search space is pruned. It
should be observed that if the implication is used as
forbidden-value implication i.e., G9=0 F2= , then no
benefit is gained as G6=0 and G7=0 remain decision nodes.

While known-value implications are more useful than
forbidden-value implications, they could result in
unnecessary requirements. To illustrate this, consider the
example in Figure 1. Suppose that we need to justify F6=1.
By known-value implication, this would require the ATPG
to justify F4=0, F3=1, F2=1, and F1=1. If any of those
requirements is targeted by the ATPG before the
requirement F6=1, this can complicate the ATPG further and
result in unnecessary requirements. In addition to causing
unnecessary requirements, known-value implications can
cause the ATPG to declare testable faults as untestable, as
demonstrated in [15].

To eliminate the unnecessary requirements caused by
learned implications, we propose the following solution.
Learned implications are used as forbidden-value
implications. However, forbidden values are implied
forward and backward dynamically during the ATPG
process similar to known-value implications. Forbidden 0
() is implied as 1, and forbidden 1 () is implied as 0.
Then, when a value on a decision node needs to be justified,
the inputs of the node are examined and the input with the
forbidden non-controlling value is selected. This provides
the same benefit that known-value implications provide
without justifying unnecessary values. However, while
known-value implications can eliminate decisions forward,
forbidden-value implications do not. To illustrate this,
consider the example in Figure 2 again. Using the
implication as forbidden-value implication, we have
G9=0 F2= . To justify a 0 on G6, the input with a
assignment is selected, which is F2. Then, a 0 on F2 is
justified which is what a known-value implication would
have required. However, if justifying a 0 on F2 fails, then in
the case of forbidden-value implications backtracking will
occur and the other choices for G6 and G7 will be tried and
will fail too. In this case, known-value implications will be
more effective. Considering the example in Figure 1,
justifying F6=1 would not require justifying any other value
since no assignments are required on F4, F3, F2, and F1.

Since the use of each of the known- and forbidden-value
implications has relative advantages and disadvantages,
neither method is expected to consistently perform better.
However, it is expected that the use of forbidden-value

implications can be enhanced to capture the full benefit of
known-value implications without its associated problems.

5. Experimental Results
Experiments using the proposed learning method were
conducted on several sequential circuits, including ISCAS
89 and 93 benchmark circuits, 4 retimed circuits, and 3
industrial circuits. The retimed circuits were chosen as it
was shown that ATPG can be particularly inefficient on this
class of circuits due to the large number of invalid states
introduced by retiming [9]. The 4 retimed circuits chosen
were those with the lowest density of encoding, and which
consequently had the highest APTG complexity when run
on HITEC [14]. The industrial circuits were used to
demonstrate the method on real circuits with set/reset and
multiple clock domains, and to show the high efficiency of
the method when handling very large circuits. All
experiments were run on a 167 MHz Sun Ultra 1.

5.1 Sequential Learning Results
Sequential learning is performed with simulation allowed to
propagate a maximum number of 50 time frames. In the
results shown in Table 3, the relations reported are those
learned sequentially; the relations which can be learned in
the combinational logic are excluded to isolate what can
only be extracted by sequential learning. The learned
relations between pairs of FFs and between gates and FFs
are reported. The efficiency of the sequential learning
technique is clearly demonstrated as for the largest circuit,
which has over 680,000 gates, it requires less than 7
minutes.

To illustrate the effectiveness of our approach at identifying
tie gates, we compare the number of untestable faults
identified due to tie gates with those identified by FIRES
[13]. FIRES uses sequential analysis to identify faults that
cannot be activated or cannot be propagated due to conflicts
on stems. So, it targets a more general class of untestable
faults than those which cannot be activated or propagated
due to tie gates. However, our method identifies untestable
faults as a by-product of learning tie gates during the
sequential learning process, and is not targeted for this
purpose. Table 4 shows the number of untestable faults
identified due to tie gates and those identified by FIRES. In
three circuits, namely s5378, s3330, and s38417, more
untestable faults are identified with tie gate information than
FIRES was able to identify.

5.2 ATPG Results
Sequential ATPG experiments were used to demonstrate the
benefit of the learned information in enhancing the
efficiency of test generation. The experiments were run with
and without the use of sequential learning. With sequential
learning enabled, two scenarios were used: using the
relations between signals as forbidden-value implications as
proposed, or as known-value implications. Note that all the
ATPG experiments performed make use of combinational
learning. Therefore, the difference in the results reported is
only due to the use of sequential learning.

For the smaller benchmark circuits in Table 3 (s382 through

→

→ 1

0 1

→ 1 1

s1269), no results were reported since the ATPG was
originally efficient and there was no benefit from using the
sequential learned data. Table 5 reports the test generation
results on the larger benchmark circuits which the ATPG
tool has difficulty with. The experiments were run in two
stages, with different backtrack limits. This allows a better
understanding of the trade-offs between ATPG results and
CPU time. From the results summarized in the table, it can
be seen that in most cases, sequential learning can increase
the number of detected faults and those identified as
untestable, as well as decrease the ATPG time. For example,
based on forbidden-value implications, s5378 with a
backtrack limit of 1000 achieves over 7% higher test
coverage (fault coverage excluding untestable faults) with
42% less CPU time. Even using the 1000 abort limit and
spending over 15 times more time, the ATPG without

sequential learning fails to achieve the test coverage that
ATPG with learning obtains using a 30 abort limit. Another
example is s4863, in which the use of known-value
implications gives approximately 4% higher test coverage in
less than one-seventh the ATPG time.

For the retimed circuits, higher fault coverage and lower
ATPG times were obtained using sequential learning. For
example, based on forbidden-value implications, s832jcsrer
with a backtrack limit of 1000 achieves over 31% higher test
coverage in less than half the CPU time, compared to no
learning. Note that for retimed circuits, a solution was
proposed in [16] for enhancing ATPG performance in which
the retimed circuit is transformed prior to ATPG to increase
the density of encoding. Although that solution is very
effective at enhancing ATPG results, the sequential learning
solution has the advantage that it is not restricted to this
class of circuits.

As predicted, experimental results indicate that neither
known-value implications nor the current use of forbidden-
value implications consistently performs better.

In a few cases, the use of sequential learning results in lower
fault coverage. For example, for the circuit s510josrre, using
forbidden-value implications resulted in fewer detected
faults than without learning. This was analyzed to be caused
by random effects. In ATPG, after a test sequence is
generated for a fault, the sequence is fault-simulated and all
detected faults are dropped. Therefore, it is possible to
detect a fault which ATPG would fail to find a test for. For
the cases where there were fewer faults detected with
learning, the additional faults which the original ATPG
detected were targeted individually. In all cases, the ATPG
failed to find a test for them, proving they were detected by
fault simulation of tests generated for other faults.

6. Conclusions
We have presented a novel and very efficient method for
sequential learning, which can be used to identify
implications, invalid states, and tied gates. While most
learning techniques published in the literature perform
learning in the combinational logic, the method presented
also learns information which can only be extracted by
performing the analysis across memory elements. The
method can be used on large industrial circuits as it is
extremely fast, and capable of handling real circuit issues
such as multiple clock domains, and partial or full set/reset.

The learned information can be used in a variety of design
automation tools, including test pattern generation,
redundancy identification, logic verification, and logic
optimization. The experiments performed focus on
demonstrating the use of sequential learning to enhance
sequential ATPG efficiency. Although the technique can
also perform combinational learning, the focus of the
experiments was to isolate the effect of sequential relations
and demonstrate the benefit of doing the learning
sequentially. It can be observed for most circuits that when
ATPG uses the learned information, the number of detected
faults and those identified as untestable is higher, and the

Circuit FFs Gates Relations CPU (s)FF-FF Gate-FF
s382 21 158 9 37 0.06
s386 6 159 8 135 0.04
s400 21 164 12 47 0.07
s444 21 181 11 69 0.08
s641 19 377 36 197 0.04
s713 19 393 36 216 0.06
s953 29 424 145 1870 0.78
s967 29 395 126 1437 0.43
s1196 18 529 8 44 0.07
s1238 18 508 9 48 0.07
s1269 37 569 30 232 0.06
s1423 74 657 4 251 0.16
s3330 132 1789 367 1764 1.30
s3384 183 1685 31 48 0.19
s4863 104 2342 256 17398 4.15
s5378 179 2779 250 2233 6.42
s6669 239 3080 24 1603 0.39
s9234 228 5597 416 7321 4.38
s13207 638 7951 1566 35093 23.08
s15850 597 9772 1516 29378 42.04
s38417 1636 22179 1554 46981 30.24
s38584 1452 19253 2320 32372 41.93

s510jcsrre 26 243 127 891 0.10
s510josrre 28 243 50 484 0.07
s832jcsrre 27 195 125 743 0.11
scfjisdre 20 764 22 1980 0.56
indust1 460 8693 118 6774 2.74
indust2 7068 63156 2069 36397 24.31
indust3 15689 681595 8016 186930 403.30

Table 3: Sequential learning experiments

Circuit Untestable faults
Tie Gates FIRES

s5378 441 367
s3330 232 161
s9234 61 284
s13207 182 893
s15850 69 332
s38417 192 147
s38584 538 1437

Table 4: Comparison of untestable faults identified due to tie
gates with those identified by FIRES[13].

ATPG time is significantly reduced. The benefit of
sequential learning can be particularly observed on retimed
circuits, which have a large number of invalid state relations
that can significantly increase ATPG complexity.

7. ACKNOWLEDGEMENTS
The authors would like to thank Wu-Tung Cheng, Rob
Thompson, and Srinivas Patil of Mentor Graphics for their
useful discussions.

8. REFERENCES
[1] M. H. Schulz, E. Trischler, and T. M. Sarfert, “SOCRATES:

A Highly Efficient Automatic Test Pattern Generation Sys-
tem,” IEEE Transactions on Computer-Aided Design, pp.
126-136, January 1988.

[2] J.-K. Zhao, E. M. Rudnick, and J. H. Patel, “Static Logic
Implication with Application to Redundancy Identification,”
in Proc. VLSI Test Symposium, pp. 288-293, April 1997.

[3] W. Kunz and D. K. Pradhan, “Accelerated Dynamic Learning
for Test Pattern Generation in Combinational Circuits,” IEEE
Transactions on Computer-Aided Design, pp. 684-694, May
1993.

[4] W. Kunz and D. K. Pradhan, “Recursive Learning: An Attrac-
tive Alternative to the Decision Tree for Test Generation in
Digital Circuits,” in Proc. International Test Conference, pp.
816-825, September 1992.

[5] E. Auth and M. H. Schulz, “A Test-Pattern-Generation Algo-
rithm for Sequential Circuits,” in IEEE Design and Test of
Computers, pp. 72-85, June 1991.

[6] M. A. Iyer and M. Abramovici, “FIRE: A Fault-Independent
Combinational Redundancy Identification Algorithm,” IEEE
Transactions on VLSI Systems, pp. 295-301, June 1996.

[7] W. Kunz, “HANNIBAL: An Efficient Tool for Logic Verifica-
tion Based on Recursive Learning,” in Proc. International

Conference on Computer-Aided Design, pp. 538-543,
November 1993.

[8] W. Kunz and P. R. Menon, “Multi-Level Logic Optimization
by Implication Analysis,” in Proc. International Conference
on Computer-Aided Design, pp. 6-13, 1994.

[9] Thomas Marchok, Aiman El-Maleh, Wojciech Maly, and Jan-
usz Rajski, “A Complexity Analysis of Sequential ATPG,”
IEEE Transactions on Computer-Aided Design, Vol. 15, pp.
1409-1423, Nov. 1996.

[10] H. Touati, H. Savoj, B. Lin, R. K. Brayton, and A. Sangio-
vanni-Vincentelli, “Implicit State Enumeration of Finite State
Machines using BDD’s,” in Proc. International Conference
on Computer-Aided Design, pp. 130-133, November 1990.

[11] D. E. Long, M. A. Iyer and M. Abramovici, “Identifying
Sequentially Untestable Faults Using Illegal States,” in Proc.
VLSI Test Symposium, pp. 4-11, 1995.

[12] H.-C. Liang, C. L. Lee, and J. E. Chen, “Invalid State Identifi-
cation for Sequential Circuit test Generation,” in Proc. Asian
Test Symposium, pp. 10-15, 1996.

[13] M. A. Iyer, D. E. Long, and M. Abramovici, “Identifying
Sequential Redundancies Without Search,” in Proc. VLSI Test
Symposium, pp. 4-11, 1995.

[14] T. M. Niermann and J. H. Patel, “HITEC: A test generation
package for sequential circuits,” in Proc. European Design
Automation Conference, pp. 214-218, 1991.

[15] Wu-Tung Cheng, Aiman El-Maleh, Rob Thompson, Don
Ross, and Janusz Rajski, “The Pitfalls of Necessary Assign-
ments”, Fourth International Test Synthesis Workshop, May
1997, Santa Barbara, CA.

[16] Aiman El-Maleh, Thomas Marchok, Janusz Rajski, and
Wojciech Maly, “Behavior and Testability Preservation Under
the Retiming Transformation,” IEEE Transactions on Com-
puter-Aided Design, Vol. 16, pp. 528-543, May 1997.

Circuit Total
faults

Backtrack
limit

No learning Forbidden values Implications
Det Untest CPU(s) Det Untest CPU(s) Det Untest CPU(s)

s1423 1515 30 1329 19 685 1375 19 676 1385 19 716
1000 1343 19 4029 1381 19 3711 1395 19 3674

s3330 2870 30 2123 464 368 2124 542 276 2124 359 701
1000 2124 484 6801 2124 562 4848 2124 359 10572

s3384 3380 30 3141 1 500 3155 1 420 3155 1 414
1000 3211 1 7235 3183 1 5807 3183 1 5784

s4863 4764 30 4495 0 250 4600 126 100 4615 126 103
1000 4566 0 2069 4612 126 350 4623 126 271

s5378 4603 30 3411 289 1761 3540 630 1370 3519 642 1440
1000 3454 432 21012 3564 646 12095 3561 646 15995

s6669 6684 30 6574 0 189 6624 0 156 6632 0 197
1000 6596 0 2025 6654 0 969 6658 0 1168

s13207 9815 30 892 8887 14341 892 8896 16154 895 8903 15562
1000 892 8908 15362 892 8916 16915 895 8913 16298

s510jcsrre 668 30 309 9 134 309 9 148 309 9 144
1000 477 11 1775 563 11 1065 556 11 1134

s510josrre 656 30 179 4 142 179 4 150 179 4 157
1000 556 4 1126 487 4 1745 565 4 1077

s832jcsrre 596 30 343 0 65 331 0 74 266 0 100
1000 369 0 1496 556 0 659 525 0 850

scfjisdre 1920 30 507 6 680 503 6 811 503 6 764
1000 1700 6 7281 1714 6 7929 1746 6 6645

Table 5: ATPG experiments with and without sequential learning

