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Summary 
This paper merges between elliptic curve addition presents a 
modified processor architecture for Elliptic Curve Cryptography 
computations in Galois Fields GF(p). The architecture 
incorporates the methodology of pipelining to utilize the benefit 
of both parallel and serial implementations. It allows the 
exploitation of the inherited independency that exists in elliptic 
curve point addition and doubling operations using a single 
pipelined core. The processor architecture showed attraction 
because of its improvement over many parallel and serial 
implementations of elliptic curve crypto-systems. It proved to be 
efficient having better performance with regard to area, speed, 
and power consumption. 
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1.  Introduction 

Elliptic Curve Cryptography (ECC) is a public-key crypto-
system proposed by Niel Koblitz and Victor Miller in 
1985. The idea of ECC is based on the Discrete Logarithm 
problem over the points on an elliptic curve. Since 1985, 
the year ECC was introduced, no real breakthroughs have 
been made in determining security weaknesses in the 
algorithm [1-9]. Although evaluators are still unconvinced 
to the trustworthiness of this technique, several 
cryptographic applications have been developed lately 
using these properties. The main improvement of ECC 
when compared to other equal security cryptosystems (e.g. 
RSA) is found in the significant reduction in its key size 
[2,5,8], which results in a substantial faster system.  

Several GF(p) ECC processors have been proposed in 
the literature [4,7,10,12,13]. The gain of using dedicated 
hardware as crypto-systems is that it results in a 
considerable speed improvement and power reduction 
when compared to software solutions on general purpose 
programmable processors. It also provides higher security 
than software solutions [10]. 

The proposed architecture considers representing the 
elliptic curve points as projective coordinate points in 
order to reduce the number of all inversion operations to 
one, to enhance the overall performance as adopted in 

many processors [4,6,12]. This design, however, differs 
from existing ones in departing from the current sequential 
and parallel approaches in the design of crypto processors 
to pipelining in a four-stage pipelined architecture. It is 
shown that pipelining will improve the speed and area 
over the sequential and parallel approaches, actually 
gaining the benefit of both, as will be proven by the AT 
characteristics.  

In the next section, we give an idea of encryption and 
decryption using ECC. Then, in Section 3, we provide 
some background on the main arithmetic operations and 
its calculations as needed in ECC. The operations are 
introduced (in Section 3) in the normal two dimensional 
coordinates system known as affine coordinates. In 
Section 4, the arithmetic in affine coordinates is extended 
to projective coordinates to avoid the complexity of the 
inverse computations. Section 4 also maps the projective 
coordinate procedures into data flow graphs showing data 
dependencies. Section 5 provides the new pipelined 
hardware and discusses several aspects about 
implementation. In Section 6, we present the concluding 
comparisons. 

2. Elliptic Curve Encryption & Decryption 

There are many ways to apply elliptic curves for 
encryption/decryption purposes. In its most basic form, 
users randomly chose a base point (x, y), lying on the 
elliptic curve E. The plaintext (the original message to be 
encrypted) is coded into an elliptic curve point (xm, ym). 
Each user selects a private key ‘n’ and compute his public 
key P=n(x,y). For example, user A’s private key is nA and 
his public key is PA = nA(x, y). 
For any one to encrypt and send the message point (xm, ym) 
to user A, he/she needs to choose a random integer k and 
generate the ciphertext Cm = {k(x, y) , (xm, ym)+ kPA }. The 
ciphertext pair of points uses A’s public key, where only 
user A can decrypt the plaintext using his private key. 

To decrypt the ciphertext Cm, the first point in the pair 
of Cm, k(x,  y), is multiplied by A’s private key to get the 
point: nA (k(x, y)). Then this point is subtracted from the 
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second point of Cm, the result will be the plaintext point 
(xm, ym). The complete decryption operation is: 
((xm,ym)+kPA) - nA(k(x,y))=(xm,ym)+k(nA(x,y))-nA(k(x,y))=(xm,ym) 

In fact, the most time consuming operation in the 
encryption and decryption procedure is finding the 
multiples of the base point, (x,y)[10], hence, scalar 
multiplication. Scalar multiplication in the group of points 
of an elliptic curve is the analogous of exponentiation in 
the multiplicative group of integers modulo a fixed integer 
p. Computing k.P can be done with the straightforward 
double-and-add approach based on the binary expression 
of k=(kl-1,…,k0) where kl-1 is the most significant bit of k. 
However, several scalar multiplication methods have been 
proposed in the literature. A good survey is presented by 
Gordon in [15].  

The double-and-add algorithm, so called binary 
method, performs by point doubling each time regardless 
to the bit value of ki. The point addition is performed only 
if ki=1, otherwise no addition will be performed. This 
could be shown in FMSB-Alg. for the most to least version 
and in FLSB-Alg. for the least to most version.  

 

 
Figure 1: elliptic curve arithmetic hierarchy 

FMSB-Alg.: Double-and-add from most significant bit Alg  
1. input k, P 
2. Q ← P  
3. for i from l-2 to 0 do 

3.1. Q ← 2Q 
3.2. if  ki = 1 then Q ← Q + P 

4. output Q 
 
FLSB-Alg.: Double-and-add from least significant bit Alg  

1. input P, k 
2. Q ← 0 
3. for i from 0 to l-1 do 

3.1. if  ki = 1 then Q ← Q + P 
3.2. P ← 2P 

4. output Q 
 
Both algorithms, FMSB-Alg. and FLSB-Alg., compute 

the same final result, however, the FLSB-Alg. is preferred 
in our research because steps 3.1 and 3.2 are independent 
and can be performed in parallel. This case does not exist 
in FMSB-Alg., where step 3.1 is needed to be completed 
before step 3.2 is to start.   

3. Affine Coordinate Arithmetic 

An elliptic curve over GF(p) is defined as the cubic 
equation: 

E: y2 mod p = x3 + ax + b mod p. 
With a,b,x,y ∈ GF(p) and 4a3 + 27b2 mod p ≠ 0.  
The set of solution {(x,y) | y2 mod p = x3 + ax + b mod p} 
is called the points of the elliptic curve E. The elliptic 
curve (EC) point multiplication is computed by repeated 
point additions such as: 

PkPPP
timesk

×=+++
44 344 21

...  

with k ∈ N and P ∈ E. 
The basic element of an elliptic curve cryptosystem is 

the calculation of the point k.P, since it needed in each 
encryption/decryption operation. The hierarchy of 
arithmetic for EC point multiplication is shown in Figure 
1. The top level k.P algorithm is performed by repeated 
EC-Add and EC-Double operations. The EC operations, in 
turn, are composed of the basic operations which include: 
Modular Multiplication, Modular Squaring, Modular 
Inversion (division) and Modular Addition. 
The addition of two points on the elliptic curve is 
computed as shown below: 

 (x1 , y1) + (x2 , y2) = (x3 , y3) ; where x1 ≠ x2 
λ = (y2 – y1)/(x2 – x1) 
x3 = λ2 – x1 – x2 
y3 = λ(x1 – x3) – y1 

However, the addition of a point to itself (doubling a 
point) on the elliptic is computed as show below: 

 (x1 , y1) + (x1 , y1) = (x3 , y3) ; where x1 ≠ 0 
λ = (3(x1)2 + a) /(2y1)   
x3 = λ2 – 2x1      
y3 = λ(x1 – x3) – y1 

In both points addition and point doubling, we need an 
inversion step to calculate λ. The inversion is the most 
expensive operation [13]. However, there are designs that 
replace the inversion by several multiplication operations 
by representing the elliptic curve points as projective 
coordinates. 

4. Projective Coordinate Arithmetic 

The projective coordinates are to eliminate the need for 
performing inversion. For elliptic curve defined over 
GF(p), the normal elliptic point (x,y) is projected to 
(X,Y,Z), where x = X/Z,and y =Y/Z [1]. This 
transformation computation to projective coordinates is 
performed only twice: at the beginning and at the end, so 
they can be calculated in software or by the main 
processor. The form of procedures for point addition is 
shown in Figure 2. The form of procedures for point 
doubling is shown in Figure 3. The squaring calculation in 

k× P 
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Modular 
Multiply 

Modular 
Add 

Modular 
Square 

Modular 
Inversion 



 

 

3

GF(p) is very similar to the multiplication computation. 
They both are noted as M (multiplication). The number of 
multiplication processes for adding two points is found to 
be 15M, while the number of operations for doubling a 
point is found to be only 13M.  
 

P = (X1,Y1,Z1);    Q = (X2,Y2,Z2); 
P+Q = (X3 ,Y3,Z3); where P ≠ ±Q 

(x,y)=(X/Z, Y/Z)  (X,Y,Z) 

λ1 = X1Z1 1M 
λ2 = X2 Z1 1M 
λ3 = λ2 - λ1  
λ4 = Y1 Z2 1M 

λ5 = Y2 Z1 1M 
λ6 = λ5 - λ4  
λ7 = λ1 + λ2  
λ8 = λ6

2Z1Z2-λ3
2λ7 5M 

Z3 = Z1Z2λ3
3

 2M 
X3 = λ8λ3 1M 
λ9 = λ3

2X1Z2-λ8 1M 
Y3 = λ9λ6 - λ3

3 Y1Z2 2M 
 ----- 
 15

M  

Figure 2: form of procedures for point addition 

 
P = (X1,Y1,Z1) ; 

P+P = (X3 ,Y3,Z3) 
(x,y)=(X/Z, Y/Z)  (X,Y,Z) 

 
λ1 = 3X1

2+a Z1
2 3M 

λ2 = Y1 Z1 1M 
λ3 = X1 Y1λ2 2M 
λ4 = λ1

2
 - 8λ3 1M 

X3 = 2λ4λ2 1M 
Y3 = λ1(4λ3-λ4)-8(Y1λ2)2 3M 
Z3 = 8λ2

3 2M 
 ----- 
 13

M  
 

Figure 3: form of procedures for point doubling 

The data flow of doubling a point over the elliptic curve is 
shown in Figure 4. It is made of sixteen multipliers and six 
adders. On the other hand, Figure 5 shows the data flow 
graph for adding two elliptic curve points. It is made of 
thirteen multipliers and four adders. 

 

Figure 4: data flow graph for adding two elliptic curve points 

It is clear that it is unpractical to implement the elliptic 
curve point operations as shown in the Figures 4 and 5, or 
completely sequential. The time needed to complete the 
operations is huge. We improved this implementation 
significantly using pipelining design approaches. 

5. Pipelined Architecture 

The pipelined design consists of basic unit, or core. The 
core used in point addition operation can be represented as 
shown in Figure 6. This core consists of a modular adder, 
a modular multiplier, a controller and register files. The 
adder and the multiplier will be pipelined. Moreover, the 
interconnection unit consists of mainly group of 
multiplexers.  

Pipelining has the advantage of increasing the 
throughput, which is the number of results in time unit. 
However, pipelining will cause additional area and time 
because of the latching between the pipelined stages. The 
pipelined multiplier used in this design consists of four 
main stages, where each stage should have a well-defined 
input and output interfaces. Each stage independently 
processes its inputs and generates the outputs for the next 
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2 Z1Z2 λ3

2 

λ3
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stage. In addition, the adder stages are equivalent to two 
stage of the multiplier (the worst case). Actually, addition 
is involved in multiplication where it is not lengthy 
compared to multiplication, as we can see in [13]. 

 

Figure 5: data flow graph for doubling elliptic curve point 

 

Figure 6: elliptic curve cryptography core design 

 
The pipeline used for scheduling two points addition 

operation can be shown in Figure 7. The space component 
(pipelining stages) is the horizontal axes and time is the 
vertical one. We can see that the last stage shows in which 
register the result will be stored. The total number of 
registers needed for this pipeline to store intermediate 
values is seven registers. The total number of time units 
needed is 31.  Registers R1 , R3 , and R2 , contains the 
values of Z3 , X3  , and Y3 , respectively. 

The pipelining used for scheduling elliptic curve point 
doubling operation is shown in Figure 8. The number of 
registers needed here is six registers, and number of time 
units is 30.  Register R6 , R3 , and R1 , contains the values 

Z3 , X3 , and Y3 , respectively. It can be noticed from 
Figure 7 and Figure 8 that both pipelines are partially 
utilized, because of the stalls existence.  

 

 
Figure 7: pipelining a two elliptic curve points addition 

However, we can merge those two pipelines since we can 
do doubling and addition at the same time as observed in 
the FLSB-Alg. where steps 3.1 and 3.2 are independent 
(Section 2). The resulting pipeline is shown in Figure 9. 
The total number of registers needed is sixteen registers, 
and the number of time units is 45. Registers R1 , R3 , R2 , 
R13 , R10 , and R8 , contains the values of Z3a , X3a , Y3a , Z3b 
, X3b ,and Y3b, respectively. The index a points to the result 
of doubling operation and index b points to the addition 
operation. 
 In fact, the pipeline shown in Figure 9 represents the 
full word length operations. However, we can generalize 
the pipeline by introducing the size of the digit used in the 
multiplier: C = 45(N/w), where, C is the total number of 
time units, N is the full word length, and w is the digit size. 
Therefore, the first four operations in the pipeline (Y1 Z2), 
(Y2 Z1), (X2 Z1) and (X1Z2) will be repeated (N/w) times. 
The core suggested in Figure 6 is interfaced using the pins 
described in Table 1. 

 

Interconnection Unit 
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Pipelined 
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3X1
2 Y1 Z1 Y1 X1 
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Z1Z2 X1Z2 X2 Z1 R2=Y2 Z1 
R2-R1  Z1Z2 X1Z2 R3=X2 Z1 

R1=R2-R1 Z1Z2 R4=X1Z2 
R1R1  R3+R4 R5=Z1Z2 

R1R1 R4-R3 R2=R3+R4 
R1R1 R3=R4-R3 

Z2R3   R6=R1R1 
R6R5 Z2R3 
R3R3 R6R5 Z2R3 

R3R3 R6R5 R5=Z2R3 

R3R3 R6=R6R5 
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R4R7 

R2R7 R4R7 

R5R7 R2R7 R4R7 

R5R7 R2R7 R2=R4R7 

R5R7 R4=R2R7 
R6-R4   R5=R5R7 

Z1R5 R6-R4 
Y1R5 Z1R5 R6-R4 
R4R3 Y1R5 Z1R5 R4=R6-R4 
R2R1 R4R3 Y1R5 R1=Z1R5 

R2R1 R4R3 R2=Y1R5 
R2R1 R3=R4R3 

R4=R2R1 

Time R4=R4-R2 R2=R4-R2
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Figure 8: pipelining an elliptic curve point doubling operation 

Table 1: pins description of the hardware core 
Pins Type Description 
p Input The modulus. 
a  Input A constant in the GF(p) elliptic 

curve equation to be used. 
X1 , Y1 , Z1, X2 , Y2 

, Z2 

Inputs The projective coordinates of the 
elliptic curve points. 

Z3a, X3a, Y3a, Z3b, 
X3b, Y3b 

Output The added/doubled elliptic curve 
points in the projective 
coordinates. 

Clk Input Clock input. 
Start Input Active high signal; the input 

values are available. 
Done Output Active high flag; that the results 

are available at their output pins. 
 
The Interconnection unit (Figure 10) is constructed of 

twenty multiplexers. The multiplexers are to map the data 
between the sixteen registers and computation modules 

(the adder and the multiplier).  Since the multiplier used 
will be a digit serial multiplier, the first operand of the 
multiplier is fed in parallel through register Rx. However, 
Rx itself is fed digit by digit while the pipelined 
multiplication process is taking place. The other operand 
is fed from the registers digit be digit. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Pipeline for both elliptic curve point addition and doubling

   Pipelining space 

Y1 X1 
Y1 Z1 Y1 X1 
X1+ X1 Y1 Z1 Y1 X1 
Z1a R3=X1+ X1 Y1 Z1 R1=Y1 X1 
Z1a R3+ X1 R2=Y1 Z1 
R1R2  Z1a R3=R3+X1 
R3X1 R1R2  R1=Z1a 
R1Z1 R3X1 R1R2 
R2Y1 R1Z1 R3X1 R3=R1R2 
R2R2 R2Y1 R1Z1 R1=R3X1 
R3+R3 R2R2 R2Y1 R4=R1Z1 

R2+R2 R3=R3+R3 R2R2 R5=R2Y1 
R5R5 R2= R2+R2  R2+R3 R6=R2R2 
R1+R4 R5R5 R2=R2+R2 R3=R2+R3 
R1=R1+R4 R5R5 R4=R2+R2 
R1R1 R2=R4+R4  R4=R5R5 
R5+R5 R1R1 R2=R3+R3 R4=R4+R4 
R4R6 R5=R5+R5 R1R1 R1=R3+R3 
  R4R6 R5+R5 R4=R1R1 

   R4R6 R5=R5+R5 
R5+R5 R4-R1  R6=R4R6 
  R5=R5+R5 R1=R4-R1 
R1R2 R3-R1 

R1R2 R3=R3-R1 
R3R1  R1R2 

  R3R1  R3=R1R2 
   R3R1 

    R1=R3R1 
  R1+R5  

   R1=R1+R5 

Time 

       Pipelining space 

Y1 Z2 
Y2 Z1 Y1 Z2 
X2 Z1 Y2 Z1 Y1 Z2 
X1Z2 X2 Z1 Y2 Z1  R1=Y1 Z2 
Z1Z2 X1Z2 X2 Z1 R2=Y2 Z1 
R2-R1 Z1Z2  X1Z2  R3=X2 Z1 
  R1=R2-R1 Z1Z2 R4=X1Z2 
R1R1  R3+R4   R5=Z1Z2 
Y1 X1 R1R1  R4-R3  R2=R3+R4 
Y1 Z1 Y1 X1 R1R1 R3=R4-R3 
X1+ X1 Y1 Z1 Y1 X1 R6=R1R1 
Z1a R10=X1+ X1  Y1 Z1 R8=Y1 X1 
Z2R3 Z1a R10+ X1 R9=Y1 Z1 
R6R5 Z2R3 Z1a R3=R10+X1 
R3R3 R6R5 Z2R3 R8=Z1a 
R8R9 R3R3  R6R5  R5=Z2R3 
R10X1 R8R9 R3R3 R6=R6R5 
R8Z1 R10X1 R8R9 R7=R3R3 
R9Y1  R8Z1  R10X1  R10=R8R9 
R9R9 R9Y1 R8Z1 R8=R10X1 
R10+R10 R9R9 R9Y1 R11=R8Z1 
R9+R9 R10+R10= R10  R9R9 R12=R9Y1 
R12+R12 R9+R9= R9   R10+R10 R13=R9R9 
R8+R11 R12+R12 R9+R9 R10=R10+R10 
R4R7 R8+R11= R8  R12+R12 R11=R9+R9 
R2R7 R4R7 R11+R11 R12=R12R12 
R5R7 R2R7 R4R7 R11=R11+R11 

R8R8 R5R7 R2R7 R2=R4R7 
R12+R12 R8R8 R5R7 R4=R2R7 
R11R13 R12+R12 R8R8 R5=R5R7 
R6-R4 R11R13 R12+R12 R11=R8R8 
  R6-R4 R11R13 R12=R12+R12 
R2-R4  R12+R12  R11-R8  R13=R11R13 
Z1R5 R2-R4 R12+R12 R8=R11-R8 

Y1R5 Z1R5 R10-R8 

R4R3 Y1R5 Z1R5 R10=R10-R8 
R2R1 R4R3 Y1R5 R1=Z1R5 
R8R9 R2R1 R4R3 R2=Y1R5 
  R8R9 R2R1 R3=R4R3 
R10R8  R8R9 R4=R2R1 

  R10R8 R4-R2 R10=R8R9 
   R10R8 R2=R4-R2 
    R8=R10R8 
  R8-R12  

Time   R8=R8-R12    
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5.1  Verification of the Pipeline 

Pipelining is based on having independent operations that 
can be done in the same time. To deduce a pipeline for the 
set of operations needed in the ECC point operations, we 
need to prove it through the data flow of the operations 
and check the dependencies. If we take the first part of the 
data flow of Figure 4, we can see that there are four 
independent operations the can be achieved 
simultaneously. Because of the independence of those 

 operations, we can process them in a pipeline of four 
different calculations. Therefore, as shown in Figure 9, in 
the first clock cycle, we plcae (Y1 Z2) into the pipeline first 
stage. In the next cycle, we move (Y1 Z2) to next stage and 
load (Y2 Z1) into the first stage, and so on. 

  

5.2  Modular Pipelined Adder 

The sum: (X+Y) mod M, can be defined as: 
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Figure 10: The interconnection unit details 
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The adder described in [14], exploits this fact. To obtain a 
pipelined implementation of this adder, it has been divided 
into two stages as shown in Figure 11.  
 

 

Figure 11: the modular adder pipelined into two stages 

The two Ripple Carry Adders (RCAs) are divided into two 
stages using latches as shown in Figure 12. Table 2 
compares the two adders, our two stage pipelined adder 
with the original version of [14], in terms of time and area 
with the following assumptions: 
- N is the word-length in bits. 
- Area is calculated in terms of simple gates, where: 

o AND, OR, NAND and NOR are simple gates. 
o XOR = 2 gates 
o 1 Full-adder = 2 XOR + 3 gates = 7 gates 
o 1 Latch = 4 gates 

- The multiplexer is implemented using 2 levels of 
gates, i.e. AND-OR implementation. 

- The time is given in terms of a simple gate time. 
- For the non-pipelined design, the given time is the 

total time needed to get the result. 
- For the pipelined version, the depth of the pipeline 

(time for the longest stage) and the number of 
needed cycles, to get the output, are given. 

Table 2: A Comparison between two Implementations of Modular Adders 
Time Area 

Non-
Pipelined 

Pipelined Non-
Pipelined 

Pipelined 

4N+6 2N+4 (2 
cycles) 

24N 36N+8 

5.3 Modular Pipelined Multiplier 

To obtain the value of (XY) mod M, one of two methods 
can be used [11]: 
1. Reduction after Multiplication: Where the product XY is 

computed first and then it is divided over M to get the 
remainder. 

2. Reduction during Multiplication: Where each partial 
sum is reduced modulo M before accumulating the next 
partial product. 

However, it is not necessary to reduce the partial sum 
fully. It has been proven in [11] that it is much more 
efficient to restrict the partial sum to be n-bits wide rather 
than to be less than M. This can be done by truncating the 
partial sum and adding a pre-calculated correction to make 
up for that truncation, as shown in Figure 13.  
 

 
 

Figure 12: 6-bit Ripple Carry Adder divided into two stages 
 
The architecture of the multiplier in [11] (for radix 2) is 
shown in Figure 14. To pipeline this design, each RCA is 
divided into 2 stages, which can be formed in a pipeline of 
4 stages. Table 3 compares, in terms of area and time, 
 

Table 3: Comparing between two Modular Multiplier Implementations 
Time Area 

Non-
Pipelined 

Pipelined Non-
Pipelined 

Pipelined 

4N2+16N+16 N+6 (4N+4) 71N+71 143N+119 

 

 

Figure 13: Partial Sum Truncation and Correction 

between a non-pipelined and a pipelined multipliers based 
on the assumptions mentioned earlier. 

6.  Performance Evaluation & Comparisons 

As mentioned earlier, the pipelined multiplier needs 
more area and time that the non-pipelined multiplier used 
in parallel design. In this part, we will compare the three 
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possible designs: sequential, parallelized and pipelined 
design. Tables 4 and 5 compare the area and time for the 
three designs. For the sequential design, we will need one 
adder and one multiplier. The parallelized design needs 
three adders and eight multipliers. Finally, the pipelined 
design needs only one multiplier and one adder. Table 6 
shows the AT characteristics for the designs. 

Table 4: Area Component for the three designs 
Design Add’s Area Mult’s Area Total Area 

Sequential 24N 71N+71 95N+71 

Parallelized 3(24N) 8(71N+71) 640N+568 

Pipelined 36N+8 143N+119 179N+127 
 

Table 5: Area Component for the three designs 
Design Add’s Time Mult’s Time Total 

Time 

Sequential 10(4N+6) 28(4N2+16N+16) 112N2+ 
488N+ 

508 

Parallelized 4(4N+6) 4(4N2+16N+16) 16N2+ 
80N +88 

Pipelined --- (45/4)(4N2+28N+24) 45N2+ 
315N+ 

270 

Table 6: AT characteristics for the three designs 
Design AT 

Sequential 10640N3+50512N2+80068N+36068 

Parallelized 10240N3+60288N2+101760N+49984 

Pipelined 8055N3+62100N2+88335N+34290 

 
It is clear from table 6 that the proposed pipelined 

design beats both the sequential and parallel design in 
terms of AT. For the pipelined design, the AT is almost 
75% and 78% for the sequential and parallelized design, 
respectively, for high values of N.  Figure 15 shows a 
graph of the relation between the AT and the number of 
bits N. 

Moreover, the pipelined design has the advantage of 
having less registers for storing intermediate values. As 
shown earlier, the pipelined design found to have 16 
registers whereas the parallelized design has three 
registers in each core, leading to 24 registers in four cores. 
In addition, the pipelined design has no inter-core 
communication as in parallelized design which means less 
power consumption in the pipelined design. 

 
 

 

Figure 14: Radix 2 N-bit Modular Multiplier 

7.  Conclusion 

This research proposed a pipelined processor architecture 
for GF(p) Elliptic Curve Cryptography computations. It 
exploited the inherited independency that exists in elliptic 
curve point addition and doubling operations using a 
single pipelined core made of 16-registers, 2-stage 
pipelined adder, and 4-stage pipelined multiplier. Both 
elliptic curve point addition and doubling are performed in 
at the same time, which was the benefit of using the scalar 
multiplication algorithm (binary double and add 
algorithm) that scans the bits starting from least significant 
bit. The processor architecture showed attractive results 
because of its improvement over parallel and serial 
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implementations. Our proposed pipelined hardware proved 
to be efficient. It showed better AT performance and 
interesting area, speed which made it a suitable choice for 
implementing elliptic curve crypto-systems. 
 

 

Figure 15: comparison results: AT vs. N 
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