
 1

Merging GF(p) Elliptic Curve Point Adding and Doubling on
Pipelined VLSI Cryptographic ASIC Architecture

Adnan Abdul-Aziz Gutub
gutub@kfupm.edu.sa

King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

Summary
This paper merges between elliptic curve addition presents a
modified processor architecture for Elliptic Curve Cryptography
computations in Galois Fields GF(p). The architecture
incorporates the methodology of pipelining to utilize the benefit
of both parallel and serial implementations. It allows the
exploitation of the inherited independency that exists in elliptic
curve point addition and doubling operations using a single
pipelined core. The processor architecture showed attraction
because of its improvement over many parallel and serial
implementations of elliptic curve crypto-systems. It proved to be
efficient having better performance with regard to area, speed,
and power consumption.

Key words:
Elliptic Curve Cryptography, Pipelined Crypto Architectures,
Crypto Arithmetic Hardware, Efficient crypto ASIC Processor.

1. Introduction

Elliptic Curve Cryptography (ECC) is a public-key crypto-
system proposed by Niel Koblitz and Victor Miller in
1985. The idea of ECC is based on the Discrete Logarithm
problem over the points on an elliptic curve. Since 1985,
the year ECC was introduced, no real breakthroughs have
been made in determining security weaknesses in the
algorithm [1-9]. Although evaluators are still unconvinced
to the trustworthiness of this technique, several
cryptographic applications have been developed lately
using these properties. The main improvement of ECC
when compared to other equal security cryptosystems (e.g.
RSA) is found in the significant reduction in its key size
[2,5,8], which results in a substantial faster system.

Several GF(p) ECC processors have been proposed in
the literature [4,7,10,12,13]. The gain of using dedicated
hardware as crypto-systems is that it results in a
considerable speed improvement and power reduction
when compared to software solutions on general purpose
programmable processors. It also provides higher security
than software solutions [10].

The proposed architecture considers representing the
elliptic curve points as projective coordinate points in
order to reduce the number of all inversion operations to
one, to enhance the overall performance as adopted in

many processors [4,6,12]. This design, however, differs
from existing ones in departing from the current sequential
and parallel approaches in the design of crypto processors
to pipelining in a four-stage pipelined architecture. It is
shown that pipelining will improve the speed and area
over the sequential and parallel approaches, actually
gaining the benefit of both, as will be proven by the AT
characteristics.

In the next section, we give an idea of encryption and
decryption using ECC. Then, in Section 3, we provide
some background on the main arithmetic operations and
its calculations as needed in ECC. The operations are
introduced (in Section 3) in the normal two dimensional
coordinates system known as affine coordinates. In
Section 4, the arithmetic in affine coordinates is extended
to projective coordinates to avoid the complexity of the
inverse computations. Section 4 also maps the projective
coordinate procedures into data flow graphs showing data
dependencies. Section 5 provides the new pipelined
hardware and discusses several aspects about
implementation. In Section 6, we present the concluding
comparisons.

2. Elliptic Curve Encryption & Decryption

There are many ways to apply elliptic curves for
encryption/decryption purposes. In its most basic form,
users randomly chose a base point (x, y), lying on the
elliptic curve E. The plaintext (the original message to be
encrypted) is coded into an elliptic curve point (xm, ym).
Each user selects a private key ‘n’ and compute his public
key P=n(x,y). For example, user A’s private key is nA and
his public key is PA = nA(x, y).
For any one to encrypt and send the message point (xm, ym)
to user A, he/she needs to choose a random integer k and
generate the ciphertext Cm = {k(x, y) , (xm, ym)+ kPA }. The
ciphertext pair of points uses A’s public key, where only
user A can decrypt the plaintext using his private key.

To decrypt the ciphertext Cm, the first point in the pair
of Cm, k(x, y), is multiplied by A’s private key to get the
point: nA (k(x, y)). Then this point is subtracted from the

2

second point of Cm, the result will be the plaintext point
(xm, ym). The complete decryption operation is:
((xm,ym)+kPA) - nA(k(x,y))=(xm,ym)+k(nA(x,y))-nA(k(x,y))=(xm,ym)

In fact, the most time consuming operation in the
encryption and decryption procedure is finding the
multiples of the base point, (x,y)[10], hence, scalar
multiplication. Scalar multiplication in the group of points
of an elliptic curve is the analogous of exponentiation in
the multiplicative group of integers modulo a fixed integer
p. Computing k.P can be done with the straightforward
double-and-add approach based on the binary expression
of k=(kl-1,…,k0) where kl-1 is the most significant bit of k.
However, several scalar multiplication methods have been
proposed in the literature. A good survey is presented by
Gordon in [15].

The double-and-add algorithm, so called binary
method, performs by point doubling each time regardless
to the bit value of ki. The point addition is performed only
if ki=1, otherwise no addition will be performed. This
could be shown in FMSB-Alg. for the most to least version
and in FLSB-Alg. for the least to most version.

Figure 1: elliptic curve arithmetic hierarchy

FMSB-Alg.: Double-and-add from most significant bit Alg
1. input k, P
2. Q ← P
3. for i from l-2 to 0 do

3.1. Q ← 2Q
3.2. if ki = 1 then Q ← Q + P

4. output Q

FLSB-Alg.: Double-and-add from least significant bit Alg

1. input P, k
2. Q ← 0
3. for i from 0 to l-1 do

3.1. if ki = 1 then Q ← Q + P
3.2. P ← 2P

4. output Q

Both algorithms, FMSB-Alg. and FLSB-Alg., compute

the same final result, however, the FLSB-Alg. is preferred
in our research because steps 3.1 and 3.2 are independent
and can be performed in parallel. This case does not exist
in FMSB-Alg., where step 3.1 is needed to be completed
before step 3.2 is to start.

3. Affine Coordinate Arithmetic

An elliptic curve over GF(p) is defined as the cubic
equation:

E: y2 mod p = x3 + ax + b mod p.
With a,b,x,y ∈ GF(p) and 4a3 + 27b2 mod p ≠ 0.
The set of solution {(x,y) | y2 mod p = x3 + ax + b mod p}
is called the points of the elliptic curve E. The elliptic
curve (EC) point multiplication is computed by repeated
point additions such as:

PkPPP
timesk

×=+++
44 344 21

...

with k ∈ N and P ∈ E.
The basic element of an elliptic curve cryptosystem is

the calculation of the point k.P, since it needed in each
encryption/decryption operation. The hierarchy of
arithmetic for EC point multiplication is shown in Figure
1. The top level k.P algorithm is performed by repeated
EC-Add and EC-Double operations. The EC operations, in
turn, are composed of the basic operations which include:
Modular Multiplication, Modular Squaring, Modular
Inversion (division) and Modular Addition.
The addition of two points on the elliptic curve is
computed as shown below:

 (x1 , y1) + (x2 , y2) = (x3 , y3) ; where x1 ≠ x2
λ = (y2 – y1)/(x2 – x1)
x3 = λ2 – x1 – x2
y3 = λ(x1 – x3) – y1

However, the addition of a point to itself (doubling a
point) on the elliptic is computed as show below:

 (x1 , y1) + (x1 , y1) = (x3 , y3) ; where x1 ≠ 0
λ = (3(x1)2 + a) /(2y1)
x3 = λ2 – 2x1
y3 = λ(x1 – x3) – y1

In both points addition and point doubling, we need an
inversion step to calculate λ. The inversion is the most
expensive operation [13]. However, there are designs that
replace the inversion by several multiplication operations
by representing the elliptic curve points as projective
coordinates.

4. Projective Coordinate Arithmetic

The projective coordinates are to eliminate the need for
performing inversion. For elliptic curve defined over
GF(p), the normal elliptic point (x,y) is projected to
(X,Y,Z), where x = X/Z,and y =Y/Z [1]. This
transformation computation to projective coordinates is
performed only twice: at the beginning and at the end, so
they can be calculated in software or by the main
processor. The form of procedures for point addition is
shown in Figure 2. The form of procedures for point
doubling is shown in Figure 3. The squaring calculation in

k× P

EC-Double EC-Add

Modular
Multiply

Modular
Add

Modular
Square

Modular
Inversion

3

GF(p) is very similar to the multiplication computation.
They both are noted as M (multiplication). The number of
multiplication processes for adding two points is found to
be 15M, while the number of operations for doubling a
point is found to be only 13M.

P = (X1,Y1,Z1); Q = (X2,Y2,Z2);
P+Q = (X3 ,Y3,Z3); where P ≠ ±Q

(x,y)=(X/Z, Y/Z) (X,Y,Z)

λ1 = X1Z1 1M
λ2 = X2 Z1 1M
λ3 = λ2 - λ1
λ4 = Y1 Z2 1M

λ5 = Y2 Z1 1M
λ6 = λ5 - λ4
λ7 = λ1 + λ2
λ8 = λ6

2Z1Z2-λ3
2λ7 5M

Z3 = Z1Z2λ3
3

 2M
X3 = λ8λ3 1M
λ9 = λ3

2X1Z2-λ8 1M
Y3 = λ9λ6 - λ3

3 Y1Z2 2M

 15

M

Figure 2: form of procedures for point addition

P = (X1,Y1,Z1) ;

P+P = (X3 ,Y3,Z3)
(x,y)=(X/Z, Y/Z) (X,Y,Z)

λ1 = 3X1

2+a Z1
2 3M

λ2 = Y1 Z1 1M
λ3 = X1 Y1λ2 2M
λ4 = λ1

2
 - 8λ3 1M

X3 = 2λ4λ2 1M
Y3 = λ1(4λ3-λ4)-8(Y1λ2)2 3M
Z3 = 8λ2

3 2M

 13

M

Figure 3: form of procedures for point doubling

The data flow of doubling a point over the elliptic curve is
shown in Figure 4. It is made of sixteen multipliers and six
adders. On the other hand, Figure 5 shows the data flow
graph for adding two elliptic curve points. It is made of
thirteen multipliers and four adders.

Figure 4: data flow graph for adding two elliptic curve points

It is clear that it is unpractical to implement the elliptic
curve point operations as shown in the Figures 4 and 5, or
completely sequential. The time needed to complete the
operations is huge. We improved this implementation
significantly using pipelining design approaches.

5. Pipelined Architecture

The pipelined design consists of basic unit, or core. The
core used in point addition operation can be represented as
shown in Figure 6. This core consists of a modular adder,
a modular multiplier, a controller and register files. The
adder and the multiplier will be pipelined. Moreover, the
interconnection unit consists of mainly group of
multiplexers.

Pipelining has the advantage of increasing the
throughput, which is the number of results in time unit.
However, pipelining will cause additional area and time
because of the latching between the pipelined stages. The
pipelined multiplier used in this design consists of four
main stages, where each stage should have a well-defined
input and output interfaces. Each stage independently
processes its inputs and generates the outputs for the next

X1Z2

Z2λ3 λ6
2 Z1Z2 λ3

2

λ3
2λ1 Z2λ λ6

2Z1Z λ3
2λ

λ3
3 Z1Z2λ3 λ9λ6 λ8λ3

X2 Z1 Y2 Z1Y1 Z2

λ2 - λ1 λ1 + λ2 λ5 - λ4

λ6
2Z1Z2 - λ3

2λ7

λ3
2λ1 - λ8

λ9λ6 - λ3
3 Y1Z2

Y1 Z2
Y2 Z1 X2 Z1 X1 Z2

Z1
Z2 Z2 λ3

λ1 λ

λ7

λ3 λ8 λ6 Z1
Y1

Z3 Y3 X3

4

stage. In addition, the adder stages are equivalent to two
stage of the multiplier (the worst case). Actually, addition
is involved in multiplication where it is not lengthy
compared to multiplication, as we can see in [13].

Figure 5: data flow graph for doubling elliptic curve point

Figure 6: elliptic curve cryptography core design

The pipeline used for scheduling two points addition

operation can be shown in Figure 7. The space component
(pipelining stages) is the horizontal axes and time is the
vertical one. We can see that the last stage shows in which
register the result will be stored. The total number of
registers needed for this pipeline to store intermediate
values is seven registers. The total number of time units
needed is 31. Registers R1 , R3 , and R2 , contains the
values of Z3 , X3 , and Y3 , respectively.

The pipelining used for scheduling elliptic curve point
doubling operation is shown in Figure 8. The number of
registers needed here is six registers, and number of time
units is 30. Register R6 , R3 , and R1 , contains the values

Z3 , X3 , and Y3 , respectively. It can be noticed from
Figure 7 and Figure 8 that both pipelines are partially
utilized, because of the stalls existence.

Figure 7: pipelining a two elliptic curve points addition

However, we can merge those two pipelines since we can
do doubling and addition at the same time as observed in
the FLSB-Alg. where steps 3.1 and 3.2 are independent
(Section 2). The resulting pipeline is shown in Figure 9.
The total number of registers needed is sixteen registers,
and the number of time units is 45. Registers R1 , R3 , R2 ,
R13 , R10 , and R8 , contains the values of Z3a , X3a , Y3a , Z3b
, X3b ,and Y3b, respectively. The index a points to the result
of doubling operation and index b points to the addition
operation.
 In fact, the pipeline shown in Figure 9 represents the
full word length operations. However, we can generalize
the pipeline by introducing the size of the digit used in the
multiplier: C = 45(N/w), where, C is the total number of
time units, N is the full word length, and w is the digit size.
Therefore, the first four operations in the pipeline (Y1 Z2),
(Y2 Z1), (X2 Z1) and (X1Z2) will be repeated (N/w) times.
The core suggested in Figure 6 is interfaced using the pins
described in Table 1.

Interconnection Unit

Registers

Modular
Pipelined

Adder

Modular
Pipelined
Multiplier

3X1
2 Y1 Z1 Y1 X1

X1 Y1 Y1 Z1 X1 3X1

8λ3

Z3 X3

a Z1

Z1 a

λ1
2 Y1X1λ2 Y1λ2 λ2

2

2λ4λ2 λ5λ1 (Y1λ2)2 8λ2
3

3X1+ a Z1
2

λ1
2

 - 8λ3 4λ3- λ4

λ5λ1-8(Y1λ2)2

λ1

Y1

8λ2

λ4

a Z1
2

Z1

Y3

λ2

Pipelining space

Y1 Z2
Y2 Z1 Y1 Z2
X2 Z1 Y2 Z1 Y1 Z2

X1Z2 X2 Z1 Y2 Z1 R1 =Y1 Z2

Z1Z2 X1Z2 X2 Z1 R2=Y2 Z1
R2-R1 Z1Z2 X1Z2 R3=X2 Z1

R1=R2-R1 Z1Z2 R4=X1Z2
R1R1 R3+R4 R5=Z1Z2

R1R1 R4-R3 R2=R3+R4
R1R1 R3=R4-R3

Z2R3 R6=R1R1
R6R5 Z2R3
R3R3 R6R5 Z2R3

R3R3 R6R5 R5=Z2R3

R3R3 R6=R6R5

R7=R3R3

R4R7

R2R7 R4R7

R5R7 R2R7 R4R7

R5R7 R2R7 R2=R4R7

R5R7 R4=R2R7
R6-R4 R5=R5R7

Z1R5 R6-R4
Y1R5 Z1R5 R6-R4
R4R3 Y1R5 Z1R5 R4=R6-R4
R2R1 R4R3 Y1R5 R1=Z1R5

R2R1 R4R3 R2=Y1R5
R2R1 R3=R4R3

R4=R2R1

Time R4=R4-R2 R2=R4-R2

5

Figure 8: pipelining an elliptic curve point doubling operation

Table 1: pins description of the hardware core
Pins Type Description
p Input The modulus.
a Input A constant in the GF(p) elliptic

curve equation to be used.
X1 , Y1 , Z1, X2 , Y2

, Z2

Inputs The projective coordinates of the
elliptic curve points.

Z3a, X3a, Y3a, Z3b,
X3b, Y3b

Output The added/doubled elliptic curve
points in the projective
coordinates.

Clk Input Clock input.
Start Input Active high signal; the input

values are available.
Done Output Active high flag; that the results

are available at their output pins.

The Interconnection unit (Figure 10) is constructed of

twenty multiplexers. The multiplexers are to map the data
between the sixteen registers and computation modules

(the adder and the multiplier). Since the multiplier used
will be a digit serial multiplier, the first operand of the
multiplier is fed in parallel through register Rx. However,
Rx itself is fed digit by digit while the pipelined
multiplication process is taking place. The other operand
is fed from the registers digit be digit.

Figure 9: Pipeline for both elliptic curve point addition and doubling

 Pipelining space

Y1 X1
Y1 Z1 Y1 X1
X1+ X1 Y1 Z1 Y1 X1
Z1a R3=X1+ X1 Y1 Z1 R1=Y1 X1
Z1a R3+ X1 R2=Y1 Z1
R1R2 Z1a R3=R3+X1
R3X1 R1R2 R1=Z1a
R1Z1 R3X1 R1R2
R2Y1 R1Z1 R3X1 R3=R1R2
R2R2 R2Y1 R1Z1 R1=R3X1
R3+R3 R2R2 R2Y1 R4=R1Z1

R2+R2 R3=R3+R3 R2R2 R5=R2Y1
R5R5 R2= R2+R2 R2+R3 R6=R2R2
R1+R4 R5R5 R2=R2+R2 R3=R2+R3
R1=R1+R4 R5R5 R4=R2+R2
R1R1 R2=R4+R4 R4=R5R5
R5+R5 R1R1 R2=R3+R3 R4=R4+R4
R4R6 R5=R5+R5 R1R1 R1=R3+R3
 R4R6 R5+R5 R4=R1R1

 R4R6 R5=R5+R5
R5+R5 R4-R1 R6=R4R6
 R5=R5+R5 R1=R4-R1
R1R2 R3-R1

R1R2 R3=R3-R1
R3R1 R1R2

 R3R1 R3=R1R2
 R3R1

 R1=R3R1
 R1+R5

 R1=R1+R5

Time

 Pipelining space

Y1 Z2
Y2 Z1 Y1 Z2
X2 Z1 Y2 Z1 Y1 Z2
X1Z2 X2 Z1 Y2 Z1 R1=Y1 Z2
Z1Z2 X1Z2 X2 Z1 R2=Y2 Z1
R2-R1 Z1Z2 X1Z2 R3=X2 Z1
 R1=R2-R1 Z1Z2 R4=X1Z2
R1R1 R3+R4 R5=Z1Z2
Y1 X1 R1R1 R4-R3 R2=R3+R4
Y1 Z1 Y1 X1 R1R1 R3=R4-R3
X1+ X1 Y1 Z1 Y1 X1 R6=R1R1
Z1a R10=X1+ X1 Y1 Z1 R8=Y1 X1
Z2R3 Z1a R10+ X1 R9=Y1 Z1
R6R5 Z2R3 Z1a R3=R10+X1
R3R3 R6R5 Z2R3 R8=Z1a
R8R9 R3R3 R6R5 R5=Z2R3
R10X1 R8R9 R3R3 R6=R6R5
R8Z1 R10X1 R8R9 R7=R3R3
R9Y1 R8Z1 R10X1 R10=R8R9
R9R9 R9Y1 R8Z1 R8=R10X1
R10+R10 R9R9 R9Y1 R11=R8Z1
R9+R9 R10+R10= R10 R9R9 R12=R9Y1
R12+R12 R9+R9= R9 R10+R10 R13=R9R9
R8+R11 R12+R12 R9+R9 R10=R10+R10
R4R7 R8+R11= R8 R12+R12 R11=R9+R9
R2R7 R4R7 R11+R11 R12=R12R12
R5R7 R2R7 R4R7 R11=R11+R11

R8R8 R5R7 R2R7 R2=R4R7
R12+R12 R8R8 R5R7 R4=R2R7
R11R13 R12+R12 R8R8 R5=R5R7
R6-R4 R11R13 R12+R12 R11=R8R8
 R6-R4 R11R13 R12=R12+R12
R2-R4 R12+R12 R11-R8 R13=R11R13
Z1R5 R2-R4 R12+R12 R8=R11-R8

Y1R5 Z1R5 R10-R8

R4R3 Y1R5 Z1R5 R10=R10-R8
R2R1 R4R3 Y1R5 R1=Z1R5
R8R9 R2R1 R4R3 R2=Y1R5
 R8R9 R2R1 R3=R4R3
R10R8 R8R9 R4=R2R1

 R10R8 R4-R2 R10=R8R9
 R10R8 R2=R4-R2
 R8=R10R8
 R8-R12

Time R8=R8-R12

 6

5.1 Verification of the Pipeline

Pipelining is based on having independent operations that
can be done in the same time. To deduce a pipeline for the
set of operations needed in the ECC point operations, we
need to prove it through the data flow of the operations
and check the dependencies. If we take the first part of the
data flow of Figure 4, we can see that there are four
independent operations the can be achieved
simultaneously. Because of the independence of those

 operations, we can process them in a pipeline of four
different calculations. Therefore, as shown in Figure 9, in
the first clock cycle, we plcae (Y1 Z2) into the pipeline first
stage. In the next cycle, we move (Y1 Z2) to next stage and
load (Y2 Z1) into the first stage, and so on.

5.2 Modular Pipelined Adder

The sum: (X+Y) mod M, can be defined as:

MUX2

R1
.
.
.

R16

Slct2

Mult_in2
00000

10000

X1
Mult_result
Add_result

R16

MUX- R16

Slct- R16

New R13

000
001
010
011

MUX1

R1
.
.
.

R16

Slct1

Rx
00000

10000

MUX4

R1
.
.
.

R16

Slct4

Add_in2
00000

10000

MUX3

R1
.
.
.

R16

Slct3

Add_in1
00000

10000

Y1
Mult_result
Add_result

R15

MUX- R15

Slct- R15

New R15
000
001
010
011

Z1
Mult_result
Add_result

R14

MUX- R14

Slct- R14

New R11

000
001
010
011

Y2
Mult_result
Add_result

R12

MUX- R12

Slct- R12

New R1

000
001
010
011

X2
Mult_result
Add_result

R13

MUX- R13

Slct- R13

New R10

000
001
010
011

Z2
Mult_result
Add_result

R11

MUX- R1

Slct- R11

New R11

000
001
010
011

Mult_result
Add_result

R10,9…1

MUX-
R10,9…1

Slct- R10,9…1

New_ R10,9…1

000
001
010

w

w

w

w

R1
.
.

R16
New_ R1

.

.

.
New_ R16
Load_ R1

.

.

.
Load_ R16

P
Load_P

X1
Y1
Z1
X2
Y2
Z2
b

X3a
Y3a
Z3a
X3d
Y3d
Z3d
Clk

Mult_in1
Mult_in2

Mult_result
Mult_start
Mult_done

Add_in1
Add_in2

Add_result
Add_start
Add_done

Start

Done

Figure 10: The interconnection unit details

7

()
⎩
⎨
⎧

<++
≥+−+

=+
MYXYX
MYXMYX

MYX mod

The adder described in [14], exploits this fact. To obtain a
pipelined implementation of this adder, it has been divided
into two stages as shown in Figure 11.

Figure 11: the modular adder pipelined into two stages

The two Ripple Carry Adders (RCAs) are divided into two
stages using latches as shown in Figure 12. Table 2
compares the two adders, our two stage pipelined adder
with the original version of [14], in terms of time and area
with the following assumptions:
- N is the word-length in bits.
- Area is calculated in terms of simple gates, where:

o AND, OR, NAND and NOR are simple gates.
o XOR = 2 gates
o 1 Full-adder = 2 XOR + 3 gates = 7 gates
o 1 Latch = 4 gates

- The multiplexer is implemented using 2 levels of
gates, i.e. AND-OR implementation.

- The time is given in terms of a simple gate time.
- For the non-pipelined design, the given time is the

total time needed to get the result.
- For the pipelined version, the depth of the pipeline

(time for the longest stage) and the number of
needed cycles, to get the output, are given.

Table 2: A Comparison between two Implementations of Modular Adders
Time Area

Non-
Pipelined

Pipelined Non-
Pipelined

Pipelined

4N+6 2N+4 (2
cycles)

24N 36N+8

5.3 Modular Pipelined Multiplier

To obtain the value of (XY) mod M, one of two methods
can be used [11]:
1. Reduction after Multiplication: Where the product XY is

computed first and then it is divided over M to get the
remainder.

2. Reduction during Multiplication: Where each partial
sum is reduced modulo M before accumulating the next
partial product.

However, it is not necessary to reduce the partial sum
fully. It has been proven in [11] that it is much more
efficient to restrict the partial sum to be n-bits wide rather
than to be less than M. This can be done by truncating the
partial sum and adding a pre-calculated correction to make
up for that truncation, as shown in Figure 13.

Figure 12: 6-bit Ripple Carry Adder divided into two stages

The architecture of the multiplier in [11] (for radix 2) is
shown in Figure 14. To pipeline this design, each RCA is
divided into 2 stages, which can be formed in a pipeline of
4 stages. Table 3 compares, in terms of area and time,

Table 3: Comparing between two Modular Multiplier Implementations
Time Area

Non-
Pipelined

Pipelined Non-
Pipelined

Pipelined

4N2+16N+16 N+6 (4N+4) 71N+71 143N+119

Figure 13: Partial Sum Truncation and Correction

between a non-pipelined and a pipelined multipliers based
on the assumptions mentioned earlier.

6. Performance Evaluation & Comparisons

As mentioned earlier, the pipelined multiplier needs
more area and time that the non-pipelined multiplier used
in parallel design. In this part, we will compare the three

8

possible designs: sequential, parallelized and pipelined
design. Tables 4 and 5 compare the area and time for the
three designs. For the sequential design, we will need one
adder and one multiplier. The parallelized design needs
three adders and eight multipliers. Finally, the pipelined
design needs only one multiplier and one adder. Table 6
shows the AT characteristics for the designs.

Table 4: Area Component for the three designs
Design Add’s Area Mult’s Area Total Area

Sequential 24N 71N+71 95N+71

Parallelized 3(24N) 8(71N+71) 640N+568

Pipelined 36N+8 143N+119 179N+127

Table 5: Area Component for the three designs
Design Add’s Time Mult’s Time Total

Time

Sequential 10(4N+6) 28(4N2+16N+16) 112N2+
488N+

508

Parallelized 4(4N+6) 4(4N2+16N+16) 16N2+
80N +88

Pipelined --- (45/4)(4N2+28N+24) 45N2+
315N+

270

Table 6: AT characteristics for the three designs
Design AT

Sequential 10640N3+50512N2+80068N+36068

Parallelized 10240N3+60288N2+101760N+49984

Pipelined 8055N3+62100N2+88335N+34290

It is clear from table 6 that the proposed pipelined

design beats both the sequential and parallel design in
terms of AT. For the pipelined design, the AT is almost
75% and 78% for the sequential and parallelized design,
respectively, for high values of N. Figure 15 shows a
graph of the relation between the AT and the number of
bits N.

Moreover, the pipelined design has the advantage of
having less registers for storing intermediate values. As
shown earlier, the pipelined design found to have 16
registers whereas the parallelized design has three
registers in each core, leading to 24 registers in four cores.
In addition, the pipelined design has no inter-core
communication as in parallelized design which means less
power consumption in the pipelined design.

Figure 14: Radix 2 N-bit Modular Multiplier

7. Conclusion

This research proposed a pipelined processor architecture
for GF(p) Elliptic Curve Cryptography computations. It
exploited the inherited independency that exists in elliptic
curve point addition and doubling operations using a
single pipelined core made of 16-registers, 2-stage
pipelined adder, and 4-stage pipelined multiplier. Both
elliptic curve point addition and doubling are performed in
at the same time, which was the benefit of using the scalar
multiplication algorithm (binary double and add
algorithm) that scans the bits starting from least significant
bit. The processor architecture showed attractive results
because of its improvement over parallel and serial

9

implementations. Our proposed pipelined hardware proved
to be efficient. It showed better AT performance and
interesting area, speed which made it a suitable choice for
implementing elliptic curve crypto-systems.

Figure 15: comparison results: AT vs. N

Acknowledgments
The author is grateful to Professor Mohammad K.

Ibrahim for all his beneficial ideas and feedback. Thanks
to the student Mr Ahmad Kayali for his effort related to
this research. Thanks to King Fahd University of
Petroleum and Minerals (KFUPM) for supporting this
work.

References
[1] Miyaji A., : ' Elliptic Curves over FP Suitable for

Cryptosystems ', Advances in cryptology- AUSCRUPT’92,
Australia, December 1992.

[2] Stallings, W., : ' Cryptography and Network Security:
Principles and Practice ', Second Edition, Prentice Hall Inc.,
New Jersey, 1999.

[3] Chung, J., Sim, S., and Lee, P., : ' Fast Implementation of
Elliptic Curve Defined over GF(pm) on CalmRISC with
MAC2424 Coprocessor ', Workshop on Cryptographic
Hardware and Embedded Systems, CHES 2000,
Massachusetts, August 2000.

[4] Okada, S., Torii, N., Itoh, K., and Takenaka, M., : '
Implementation of Elliptic Curve Cryptographic
Coprocessor over GF(2m) on an FPGA ', Workshop on
Cryptographic Hardware and Embedded Systems, CHES
2000, Massachusetts, August 2000.

[5] Crutchley, D. A., : ' Cryptography and Elliptic Curves ',
Master Thesis under Supervision of Prof. Gareth Jones,
submitted to the Faculty of Mathematics at University of
Southampton, England, May 1999.

[6] Orlando, G., and Paar, C., : ' A High-Performance
Reconfigurable Elliptic Curve Processor for GF(2m) ',
Workshop on Cryptographic Hardware and Embedded
Systems, CHES 2000, Massachusetts, August 2000.

[7] Stinson, D. R., : ' Cryptography: Theory and Practice ', CRC
Press, Boca Raton, Florida, 1995.

[8] Paar, C., Fleischmann, P. and Soria-Rodriguez, P., : ' Fast
Arithmetic for Public-Key Algorithms in Galois Fields with
Composite Exponents ', IEEE Transactions on Computers,
Vol. 48, No. 10, October 1999.

[9] Blake, I., Seroussi, G., and Smart, N., : ' Elliptic Curves in
Cryptography ', Cambridge University Press: New York,
1999.

[10] Gutub, Adnan Abdul-Aziz and Ibrahim, Mohammad, : '
High Radix Parallel Architecture For GF(P) Elliptic Curve
Processor ', IEEE Conference on Acoustics, Speech, and
Signal Processing, ICASSP 2003, pages 625- 628, Hong
Kong, April 6-10, 2003.

[11] Mekhallalati, M., Ibrahim, M. K. and Ashur, A, : ' Radix
Modular Multiplication Algorithm ', Journal of Circuits and
Systems, and Computers, Vol.6, N0.5, pp547-567, 1996

[12] Orlando, G., and Paar, C., : ' A scalable GF(p) elliptic curve
processor architecture for programmable hardware ',
Cryptographic Hardware and Embedded Systems, CHES
2001, May 14-15, 2001, Paris, France.

[13] Gutub, Adnan Abdul-Aziz, : ' VLSI Core Architecture For
GF(p) Elliptic Curve Crypto Processor ', IEEE 10th
International Conference on Electronics, Circuits and
Systems (ICECS 2003), pages 84-87, University of Sharjah,
United Arab Emirates, December 14-17, 2003.

[14] Piestrak S. J., : 'Design of High-Speed Residue-to-Binary
Number System Converter Based on Chinese Remainder
Theorem ', Proceedings of the Int’l Conf. Computer Design
(ICCD ’94), pp. 508-511, Oct. 1994.

[15] Gordon, D., : 'A Survey of Fast Exponentiation Methods',
Journal of Algorithms, 1998, pp. 129-146.

Adnan Abdul-Aziz Gutub received his
Ph.D. degree in June 2002 from the
Department of Electrical and
Computer Engineering at Oregon State
University. He received his B.S.
(1995) degree from the Electrical
Engineering Department and M.S.
(1998) degree from the Computer
Engineering Department in King Fahd
University of Petroleum & Minerals,

Dhahran, Saudi Arabia. Adnan's research interests are
in modeling, simulating, and synthesizing VLSI
hardware for computer arithmetic operations. Adnan is
currently an assistant professor in the Computer
Engineering Department at King Fahd University of
Petroleum & Minerals in Saudi Arabia.

Number of bits (N)

AT

10×1012

8×1012

6×1012

4×1012

2×1012

200 400 600 800 1000

Sequential

Parallel

Pipelined

