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ABSTRACT

The cost of testing is a major factor in the cost of digital system
design. In order to reduce the test application time, it is required
to order the test vectors in such a way that reduces the time a de-
fective chip spends on a tester until the defect is detected. In this
paper, we propose an efficient test vector reordering technique that
significantly reduces both the time and memory complexities of
reordering procedures based on fault simulation without dropping.
Experimental results demonstrate both the efficiency and effective-
ness of our proposed technique.

1. INTRODUCTION

In Automatic Test Pattern Generation (ATPG), the goal is to effi-
ciently generate a complete test set for a given circuit. The test
set size is directly proportional to the cost and time of test applica-
tion. Hence, it is clear that a compact test set is highly desirable.
In addition to that, the order of test vectors in a test set should be
such that the fault coverage would show the maximal increase with
every additional test vector. This helps in reducing the time a de-
fective chip spends on a tester until the defect is detected, as the
defect may be detected earlier.

Given a test set 7', Algorithm 1 can be used to arrange the
test vectors in a near optimal order. The test set 7" has the impor-
tant property that every test vector achieves the maximum possible
fault coverage of all test vectors that could be applied in its place.
However, it requires the time consuming process of non-fault drop-
ping simulation. The memory requirement is also very high since
all the faults detected by every test vector have to be recorded.

Recently, a reordering procedure was proposed in [1]. It is
based on double detection fault simulation. Basically, a fault is
dropped once it is detected twice. Therefore, compared with Al-
gorithm 1, the fault simulation effort is reduced dramatically. The
proposed procedure, hereafter referred to as DD, can be applied
iteratively to improve the quality of the final test set.

A major drawback in DD is that it does not consider all faults
detected by a test vector. This is because a fault is dropped from
the fault list when it is detected by two test vectors. This has an
impact on the quality of the final test set, especially if the average
number of test vectors detecting a fault is much greater than two.

In this paper, we propose solutions to the time and memory
problems in test vector reordering procedures. Besides, we present
a heuristic to control test vector selection.

Algorithm 1 Order(7T)

1. Using non-fault dropping fault simulation, the set of faults

detected by each test vector is recorded.

2. Repeat the following steps until no test vector is left in 7"
2.1 Select a test vector ¢; from T such that ¢; detects the
largest number of faults.

2.2 Remove t; from T and append #; to the end of the ordered
test set T, which is initially empty.

2.3 For each test vector ¢; in T', remove the faults detected
by t; from the set of faults detected by ¢;.

3. Return 7.

This paper is structured as follows. First, our proposed so-
lutions are presented. Then, experimental results are discussed.
Finally, conclusions are given.

2. OUR PROPOSED SOLUTIONS

In order to overcome the time problem in test vector reordering
procedures, we propose the use of the CRlItical Path Tracing (CRIPT)
algorithm as a fault simulator. CRIPT was proposed in [2] as a
fault simulator for combinational circuits. Compared with con-
ventional fault simulation, CRIPT has the following features [3]:

1. Itdirectly identifies the faults detected by a test vector. Hence,
the work involved in propagating faults not detected by a
test vector towards primary outputs is avoided,

2. It deals with faults implicitly. Hence, fault enumeration,
fault collapsing, fault partitioning, fault insertion, and fault
dropping are not needed,

3. It does not require computing values in the faulty circuits
by gate evaluations or fault list processing, and

4. It is an approximate method. However, the impact of ap-
proximation is negligible.

From the above features, it can be concluded that CRIPT is
faster and requires less memory than conventional fault simulation.
Experimental results presented in [2] show that CRIPT is faster
than concurrent fault simulation. Moreover, it has the important
feature that the cost of fault simulation without dropping is the
same as that of fault simulation with dropping.

CRIPT does not solve the memory problem although it consid-
ers less faults. Algorithm 2, hereafter referred to as CPT+, shows
our proposal for handling the memory problem. The algorithm



Algorithm 2 CPT+(T)
1. Fori=1ton:
1.1. Run CRIPT. Do not store faults. Store only the number
of faults detected by every test vector.
1.2. Select the best m test vectors.
1.3. Drop all faults detected by the selected test vectors.
2. Run Algorithm 1. Use CRIPT as a fault simulator

Table 1. Example test set that show the effect of test vector
selection.

[TV ] Faults |

t1 fi.fo.f3,f4
ta | fi.fo.f5.fe
t3 fs.fr.fs
t4 foa.f1o0

proceeds as follows. First, CRIPT is run for a number of itera-
tions, which is equal to n. In every iteration, only the number of
faults detected by every test vector is recorded. Besides, m test
vectors are selected such that they detect the maximum number
of faults. Faults detected by the selected test vectors are dropped.
Second, Algorithm 1 is run. In this algorithm, CRIPT is used as a
fault simulator.

The selection step in Algorithm 1 is random when there is
more than one test vector with the same number of faults. This
has an impact on the quality of the final test set. For example, con-
sider the set of test vectors shown in Table 1. Test vectors ¢1 and t2
have the same number of faults but different effects on the quality
of the final test set. If we first choose ¢2, then every remaining test
vector detects only two faults. Therefore, after selecting the sec-
ond test vector, the total number of faults that can be detected with
two test vectors is six. On the other hand, if we first choose ¢1, the
total number of faults that can be detected with two test vectors is
seven.

In order to account for the above phenomenon, we associate
with every test vector a cost. Whenever there is more than one
test vector with the same number of faults, the test vector with
the minimum cost is selected first. The cost of a test vector ¢; is
defined as follows.

NumF
Cost(t;) = Z NumTV(f;),

Jj=1

where NumF is the number of faults detected by ¢; and NumT'V (f;)

is the number of test vectors that detect fault f;. In the above ex-
ample, the costs of ¢; and ¢ are six and seven, respectively. There-
fore, by first selecting ¢1, only ¢ is affected. The new number of
faults detected by ¢ is 2.

3. EXPERIMENTAL ANALYSIS & RESULTS

In order to demonstrate the effectiveness of our proposed tech-
nique, we have performed experiments on a number of the largest
full-scanned versions of ISCAS89 benchmark circuits. The exper-
iments were run on a SUN Ultra60 (UltraSparc I1-450 MHz) with
a RAM of 512 MB. We have used test sets generated by HITEC

Table 2. Runtimes spent by reordering procedures.
Cct #TVs FC Time (sec.) |
[ Greedy | DD [ CPT [ CPT+ |

s13207.1f 633 98.462 11.97 14.04 | 37.04 74
515850.1f 657 96.674 28 28 166 204
s38417f 1472 99.436 807 183 1800 2569
s38584f 1174 95.852 702 124 1410 2188
s5378f 359 99.131 1.97 1.12 6.01 15
§9234.1f 620 93.475 8 11 17 38

[4]. In addition, we have used the implementation of CRIPT pro-
vided in [5]. It should be pointed out that the implementation of
CRIPT is not very efficient. This is because it is based on serial
fault simulation of stems. However, the performance of CRIPT
is not our main concern since it is experimentally guaranteed that
CRIPT is faster than concurrent fault simulation.

In Table 2, we report the runtimes spent by reordering pro-
cedures. The first, second, and third columns indicate the circuit
name, test set size, and fault coverage, respectively. The runtime of
the procedure Greedy is given under the column headed Greedy.
This procedure is similar to Algorithm 1. In this procedure, fault
simulation is performed using HOPE [6]. The runtimes of proce-
dures DD, CPT, and CPT+ are given under the columns headed
DD, CPT, and CPT+, respectively. Procedure CPT is simi-
lar to Algorithm 1, except that fault simulation is performed using
CRIPT. Furthermore, test vector selection heuristic is employed to
make smart selections. Procedure DD is run for four iterations.
For procedure CPT+, n =4 and m =4.

The huge amounts of time required by the procedure Greedy
for reordering the test sets of s38417f and $s38584f show the effect
of non-dropping fault simulation on the performance of test vector
reordering procedures. It can be seen that the runtime of DD is sig-
nificantly less than that of Greedy. This is due to double detection
fault simulation. CPT+ requires more runtime than that required
by CPT. This is because in CPT+, CRIPT is run more than once.

Table 3 shows the memory required for every circuit under
DD, CPT, and CPT+. The first and second columns in the table in-
dicate the circuit name and size of fault list, respectively. The third
and fourth columns give the total amount of memory required by
DD and CPT, respectively. The fifth column gives the amount of
memory required by CPT+. Finally, the sixth and seventh columns
give the percentage reductions in memory compared to DD and
CPT, respectively.

As can be seen from Table 3, the memory required by CPT
is much larger than that required by DD. Besides, the memory re-
quired by CPT+ is significantly much smaller than that required by
CPT. It should be pointed out that the memory required by CPT+
is computed after selecting the 16" test vector and dropping the
faults detected by the selected test vectors. For example, the mem-
ory required to record the remaining faults in s5378f is 5594.

To evaluate the relative efficiency and effectiveness of the re-
ordering procedures, we show in Tables 4 and 5 snapshots of the
fault coverage obtained after applying the number of test vectors
given under the column headed #T'V's. Compared with the num-
ber of test vectors in the original test sets required to achieve cer-
tain fault coverage, fewer test vectors are required after the orig-
inal test sets are reordered by Greedy, DD, CPT, or CPT+. For
example, for s38584f, to achieve 80% fault coverage, 90 test vec-
tors are required using the original test set. On the other hand, 35
test vectors are required using the order of test vectors generated



Table 4. Efficiency of reordering procedures.

T ST3207.1F I S15850.1F I S3SATTE |

[ #TVs |[ Orig. | Greedy [ DD [ CPT [ CPT+ || Orig. [ Greedy [ DD [ CPT | CPT+ || Orig. [ Greedy [ DD [ CPT [ CPT+ |
1 20.89 25.02 23.87 25.02 25.02 19.55 23.22 21.48 23.22 23.22 20.34 22.89 21.6 22.89 22.89
5 45.86 56.93 54.08 | 56.93 56 48.88 56.41 53.69 | 56.41 56.08 52.65 56.15 5426 | 56.15 51.86
10 55.99 66.63 64.88 | 606.63 66.29 55.27 67.49 64.66 | 67.49 66.37 60.94 67.61 6492 | 67.61 60.9
15 58.83 71.26 70.11 71.26 71.02 59.44 72.97 70.24 72.97 71.42 65.21 73.23 70.47 73.23 69.71
20 60.44 74.38 73.32 | 7441 74.24 61.54 76.35 73.86 76.35 75.2 67.53 76.71 74.22 76.71 74.57
25 61.68 76.74 75.66 76.83 76.87 62.85 78.71 76.48 78.7 78.01 69.59 79.24 76.78 79.24 77.62
30 62.29 78.63 717.55 78.66 78.89 63.44 80.61 78.33 80.61 80.15 70.7 81.08 78.96 81.08 79.76
35 63.55 80.24 79.28 80.24 80.5 64.58 82.1 80.06 82.14 81.72 71.73 82.55 80.54 82.56 81.5
40 64.17 81.58 80.7 81.57 81.75 66.06 83.28 81.54 83.38 83.07 72.68 83.72 81.87 83.75 82.88
45 65.03 82.62 81.86 | 82.64 82.76 66.56 84.26 82.78 84.38 84.15 73.68 84.75 83.08 84.76 84.02
50 65.19 83.56 82.95 83.49 83.69 68.34 85.14 8394 | 85.28 85.05 74.48 85.58 84.1 85.57 84.96
60 65.82 85.19 84.73 85.2 85.22 69.08 86.55 85.69 86.7 86.48 75.11 86.91 85.74 86.9 86.48
70 60.4 86.52 86.14 86.52 86.51 71.82 87.71 87.02 87.85 87.62 76.18 87.91 86.86 87.87 87.58
80 66.98 87.62 87.33 87.62 87.58 73.74 88.68 88.09 88.77 88.58 76.6 88.75 87.84 88.69 88.49
90 67.42 88.59 88.32 88.6 88.56 75.1 89.43 88.94 89.48 89.34 77.88 89.44 88.61 89.37 89.27
100 68.02 89.44 89.23 89.44 89.39 76.15 90.09 89.64 90.09 90 78.69 90.03 89.28 89.95 89.9

Table 5. Efficiency of reordering procedures.

| I S38584F I S5378T SO2341F |

| #TVs || Orig. [ Greedy [ DD [ CPT | CPT+ || Orig. [ Greedy [ DD | CPT [ CPT+ || Orig. [ Greedy [ DD [ CPT [ CPT+ |
1 14.18 23.54 22.92 23.54 23.54 22.03 24.44 22.03 24.44 24.44 16.11 17.58 16.8 17.58 17.58
5 41.03 55.71 53.57 55.63 49.25 50.66 61.29 55.31 61.29 59.24 343 42.7 40.31 42.7 42.7
10 58.9 66.63 64.38 66.48 60.39 59.57 73.89 68.76 73.89 72.58 39.22 53.46 51.75 53.39 53.39
15 64.94 71.66 69.85 71.7 68.31 64.22 79.58 76.45 79.56 78.84 42.75 59.12 57.64 59.13 59.31
20 68.13 75.04 73.1 74.91 72.62 68.76 82.84 80.75 82.84 82.25 44.72 63.19 61.73 63.03 63.03
25 70.46 71.37 75.64 77.32 75.79 70.71 85.05 83.66 85.05 84.84 45.88 66.28 64.91 66.18 66.18
30 72.08 79.13 71.57 79.15 78.06 71.78 86.73 85.53 86.73 86.66 47.71 68.9 67.58 68.6 68.6
35 73.47 80.59 79.07 80.62 79.73 73.19 88.05 86.99 88.05 87.99 49.13 71.04 69.71 70.68 70.68
40 74.98 81.75 80.16 81.84 81.09 75.67 89.18 88.29 89.16 89.07 50.43 72.8 71.53 72.3 72.3
45 75.59 82.76 81.27 82.85 82.18 76.15 90.14 89.4 90.14 90.01 51.67 74.33 73.15 73.78 73.78
50 76.32 83.61 82.25 83.72 83.11 76.54 90.98 90.29 90.98 90.81 52.16 75.7 74.55 75.04 75.04
60 7791 85.05 83.84 85.15 84.65 78.3 92.31 91.81 92.22 92.16 54.27 77.96 76.95 71.7 71.7
70 78.88 86.19 85.15 86.28 85.9 79.64 93.31 92.85 93.22 93.18 55.02 79.72 78.82 79.49 79.49
80 79.49 87.09 86.16 87.18 86.92 81.08 94.03 93.7 93.98 93.96 56.23 81.2 80.37 80.87 80.87
90 80.33 87.87 87.05 87.93 87.74 82.82 94.68 94.35 94.63 94.61 58.03 82.42 81.74 82.13 82.31
100 81.22 88.54 87.79 88.57 88.43 83.38 95.13 94.89 95.09 95.11 60.89 83.46 82.94 83.15 83.15

Table 3. Memory required for every circuit under DD, CPT,
and CPT+.

Cet # Total Memory (bytes) Memory
Faults Reduction
DD | CPT_ | CPI+ | DD [ CPT
s13207.1f 9815 19630 | 1364941 17886 9 98.7
s15850.1f | 11725 | 23450 | 1546227 29359 0 98
$38417f 31180 | 62360 | 9745991 | 287771 0 97
$38584f 36303 | 72606 | 9317334 | 321100 0 96.6
s5378f 4603 9206 353358 5594 39.2 | 984
$9234.1f 6927 13854 640525 16631 0 97.4

by Greedy and CPT. Using the order of test vectors generated by
DD and CPTH+, 40 test vectors are required to achieve 80% fault
coverage.

It can be seen that for most of the circuits, the quality of test
sets reordered by Greedy is better than that of test sets reordered by
DD. It can also be seen that for most of the circuits, the quality of
test sets reordered by CPT is better than that of test sets reordered
by DD, especially with the first few test vectors. This is because
DD considers only two test vectors per a fault. Thus, the larger the
average number of test vectors that detect a fault is, the poorer the
quality of test sets reordered by DD is expected to be.

The quality of test sets reordered by Greedy and CPT is gener-
ally the same. However, for some circuits, CPT generates slightly

better test sets. This is due to the test vector selection heuristic
employed in CPT.

In four circuits out of six, CPT+ is better than DD. For the re-
maining two circuits, after the first 16 test vectors, CPT+ is better
than DD. For example, for s5378f, a difference of 4% is noticed
after applying the first ten test vectors. Also, for s15850.1f, a dif-
ference of 2% is noticed after applying the first 20 test vectors.

Figures 1 and 2 show the fault coverage curves obtained
by the original test sets and test sets generated by CPT+ and
DD after one pass and four passes for the circuits s5378f and
s38417f, respectively. We show the curves of two circuits
only due to space limitation. Information on other circuits
can be found in [7]. Clearly, for both circuits, the quality of
test sets reordered by CPT+ is better than that reordered by
DD.

4. CONCLUSIONS

In this paper, we have proposed an efficient test vector reordering
technique based on critical path tracing (CRIPT). CRIPT has the
advantage that it has the same cost for fault simulation without
dropping and with dropping. Our proposed solution significantly
reduces both the CPU time and memory requirements of test vector
reordering procedures based on fault simulation without dropping.



0.9 -

2= ,/r i
7
08 //
/o
07,

o ff
{

0.5
0.4

Fault Coverage

0.3

0.2

0.1

0 T T T
1 51 101 151

# Test Vectors

201

251 301 351

‘—Orig. DD - 1 pass

DD - 4 passes ——--CPT+ ‘

Fig. 1. Fault coverage curves for s5378f.
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Based on experimental results, our proposed technique pro-

vides a better test vector ordering than the recently proposed or-
dering technique based on double-fault detection with competitive
CPU time and memory requirements.
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