
ON EFFICIENT EXTRACTION OF PARTIALLY SPECIFIED TEST SETS FOR
SYNCHRONOUS SEQUENTIAL CIRCUITS

Aiman El-Maleh and Khaled Al-Utaibi

King Fhad University of Petroleum and Minerals
Dhahran 31261, Saudi Arabia

emails:{aimane, alutaibi}@ccse.kfupm.edu.sa

ABSTRACT

Testing systems-on-a-chip (SOC) involves applying huge amounts
of test data, which is stored in the tester memory and then trans-
ferred to the circuit under test (CUT) during test application. There-
fore, practical techniques, such as test compression and compac-
tion, are required to reduce the amount of test data in order to
reduce both the total testing time and the memory requirements
for the tester. Relaxing test sequences, i.e. extracting partially
specified test sequences, can improve the efficiency of both test
compression and test compaction. In this paper, we propose an ef-
ficient test relaxation technique for synchronous sequential circuits
that maximizes the number of unspecified bits while maintaining
the same fault coverage as the original test set.

1. INTRODUCTION

Rapid advancement in VLSI technology has lead to a new para-
digm in designing integrated circuits where a system-on-a-chip
(SOC) is constructed based on pre-designed and pre-verified cores
such as CPUs, digital signal processors, and RAMs. Testing these
cores requires a large amount of test data which is continuously
increasing with the rapid increase in the complexity of SOC. This
has a direct impact on the total testing time and the memory re-
quirements of the testing equipment. Hence, reducing the amount
of test data is considered as one of the challenging problems in
testing SOC.

Test compression and compaction techniques are widely used
to reduce the storage and test time by reducing the size of the test
data. Test compression techniques can achieve better results if the
test set is composed of test cubes (i.e. if the test set is partially
specified). In fact, some compression techniques such as, LFSR-
reseeding [1, 2], require the test vectors to be partially specified.
Even those techniques which require fully specified test data can
benefit from unspecified bits in the test set. For example, variable-
to-fixed-length coding [3] and variable-to-variable-length coding
[4, 5] are known to perform better for long runs of 0’s. Hence,
assigning 0’s to the don’t care values in the test set will improve
the efficiency of these techniques. Similarly, run-length coding
techniques [6] can specify the don’t care values in a way that will
reduce test vector activity (i.e. the number of transitions from 0
to 1 and vice versa), which in tern improves the compression ef-
ficiency. On the other hand, the amount of compression that can
be achieved with statistical coding techniques depends on the de-
gree of variation in the occurrences of unique test patterns (i.e.

The authors would like to thank King Fhad University of Petroleum
and Minerals for support.

code words). If all test patterns occur with equal frequency, then
no compression is achieved at all. Thus, using partially specified
test vectors adds more flexibility to statistical coding techniques
in a sense that test patterns containing don’t care values can be
encoded with various possibilities.

Test compaction techniques can also benefit from a partially
specified test. For example, when merging two test sequences
using the overlapping compaction techniques described in [7], a
don’t care value, ’X’, can be merged with any one of the values:
’0’, ’1’, and ’X’. Therefore, increasing the number of X’s in a test
set will reduce the number of conflicts that may occur while merg-
ing two test sequences, and hence, improves the efficiency of the
compaction process.

2. PROBLEM DEFINITION

The problem of test relaxation, i.e. extracting a partially specified
test set from a fully-specified one, has not been solved effectively
in the literature. This problem, which is targeted in this paper,
can be defined as follows.Given a synchronous sequential cir-
cuit and a fully specified test set, generate a partially specified test
set that maintains the same fault coverage as the fully specified
one while maximizing the number of unspecified bits. One obvious
way to solve this problem is to use a bitwise-relaxation technique,
where we test for every bit in the test set whether changing it to
an ’X’ reduces the fault coverage or not. Obviously, this tech-
nique isO(nm) fault simulation runs, wheren is the width of one
test vector, andm is the number of test vectors. Obviously, this
technique is impractical for large circuits. A partially specified
test set can also be obtained using dynamic ATPG compaction. In
dynamic compaction, every test vector is processed immediately
after its generation in order to specify unspecified primary inputs
(PIs). This feature can be disabled to obtain a compact and re-
laxed test set. However, this technique does not solve the problem
of relaxing an already existing test set. In addition, this technique
cannot benefit from random test pattern generation, because it is
fault oriented.

Recently, two test relaxation techniques for combinational and
full-scan sequential circuits were proposed in [8, 9]. The main
idea of both techniques is to determine logic values in the fully-
specified test set that are necessary to cover (i.e. detect) all faults
which are detectable by this test set. Unnecessary logic values are
set to X’s.

As far as synchronous sequential circuits are concerned, the
only existing solution to the problem of relaxing a given test set is
the bitwise-relaxation method. In this paper, we propose an effi-



cient test-relaxation technique that extends the technique proposed
in [9] to cover synchronous sequential circuits.

3. PROPOSED TECHNIQUE

The general behavior of the proposed test-relaxation technique can
be described as follows. At any time framei, all logic values which
are necessary to excite a newly detected fault and propagate it to
some primary outputp are marked as required. Next, these logic
values are justified backwards starting fromp towards primary in-
puts and/or memory-elements. At the end, unmarked primary in-
puts are not required and can be relaxed. On the other hand, re-
quired values on the memory-elements are justified when the next
time frame,i − 1, is processed. Note that justifying the detected
faults based on logical values alone may result in masking some of
the detected faults. Therefore, the proposed technique uses some
rules based on fault-reachability analysis to avoid fault masking.

Due to the nature of sequential circuits (i.e. feedback from
memory-elements), a fault excited in one time frame might prop-
agate through several time farms before it gets detected. Hence,
several time frames may need to be traced back to justify such
faults. Therefore, we need to store enough information about fault
propagation, detection and justification in order to perform the jus-
tification process frame by frame. Four lists are used to store the
the required information:POJustificationList, FFJustificationList,
FaultPropagationList, andEventList. The purpose of each one of
these four lists is explained below.

The purpose of thePOJustificationListis to store newly de-
tected faults in every time frame. These faults will be justified
backwards starting from the time frames where they first get de-
tected. During fault simulation, if a faultf propagates to one
or more memory-elements, then these memory-elements and their
faulty values are added to theFaultPropagationList. TheFFJusti-
ficationListis used to store faults that can’t be completely justified
during a certain time frame. Notice that if one or more memory-
elements are required to justify a faultf during some time framei,
thenf can’t be completely justified during this time frame. Hence,
the justification off will continue during time framei − 1. The
EventListkeeps track of the gates that need to be justified for a cer-
tain fault. Gates are inserted in event list according to their levels
in the circuit.

Figure 1 shows an outline of the proposed justification tech-
nique which consists of three phases. The first phase initializes
the four lists. Fault simulation is performed in the second phase to
identify newly detected faults. These faults are stored inPOJusti-
ficationList[i] for every test vectori. During fault simulation, if
a faultf propagates to one or more memory-elements, then these
memory-elements together with their faulty values are added to
FaultPropagationList[f ]. The information in this list will be used
to mark reachable lines of the circuit during the justification phase.
It is important to point out here that we need to store the logical
values of the memory-elements for all the time frames. This will
enable the third phase to perform logic simulation in a certain time
frame independent of the other time frames.

The third phase starts from the last time frame down to the
first one. In every time frame,i, the algorithm performs the fol-
lowing. First, it logic simulates the circuit under the test vectori to
determine the good value of every gate. Then, it checksFFJusti-
ficationList[i] for any fault that has not been completely justified
in time framei + 1. Unjustified faults are removed from the list
and justified one by one. Next, it checksPOJustificationList[i]

for newly detected faults and justifies them. Justifying a fault,f ,
involves two operations:marking reachable linesandbackward
justification, which are described below.

The first operation marks all the gates which are reachable
from a given faultf using local fault simulation. It starts by in-
jecting the faultf at its corresponding line in the circuit. Then,
it sets the faulty values of the memory-elements according to the
faulty values propagating from the time framei−1. Next, the fault
effects on the faulty-line and memory-elements are forward propa-
gated. During this fault propagation, if the faulty value of a gateg
is found to be different from its good value, theng is marked as
reachable.

The second operation processes the event list level by level
starting from the maximum level. In each level, the logical values
of the stored gates are justified as follows. Ifg is a primary input
(PI), then the logical value ofg is required to detect the faultf .
Therefore, the corresponding bit in theRelaxedTestSetis set to
the logical value ofg. If g is a memory-element (DFF), then the
logical value ofg can not be justified in the current time frame.
Therefore, the faultf is added to the justification list of time frame
i − 1 (FFJustificationList[i − 1]). If g is an XOR, XNOR, or a
single-input gate, then all its inputs need to be justified. Hence, all
the inputs ofg are added to the event list according to their levels
in the circuit. If g is an AND, OR, NAND or NOR gate with a
non-controlling value, then we need to justify all the inputs ofg.
However, ifg has a controlling value, then we need to check if it
has an unreachable input with a controlling value. If it has, then it
is sufficient to justify that input. Otherwise, we check whetherg is
reachable or not. If it is not reachable, then we need to justify only
the reachable inputs ofg. Otherwise, all the inputs ofg need to be
justified.

4. SELECTION CRITERIA

When justifying a controlling value through the inputs of a given
gate, there could be more than one choice. In this case, priority
is given to the input that is already selected to justify other gates.
Otherwise, cost functions are used to guide the selection. Cost
functions give a relative measure on the number of primary inputs
required to justify a given value. Hence, they can guide the re-
laxation procedure to justify the required values with the smallest
number of assignments on the primary inputs.

The cost functions proposed in [9] combine theregular re-
cursive controllability cost functions [10] with new cost functions
calledfanout-basedcost functions. The regular cost functions are
computed as follows. For every gateg, we compute two cost func-
tionsCreg0(g) andCreg1(g). For example, ifg is an AND gate
with i inputs, then the cost functions are computed as:

Creg0(g) = min
i

Creg0(i)

Creg1(g) =
∑

i

Creg1(i)

These costs functions are computed for other gates in a similar
manner. The fanout-based cost functions can be computed for
an AND gate as follows. Letg be an AND gate withi inputs.
Let F (g) denotes the number of fanout branches ofg. Then, the
fanout-based cost functions are computed as:

Cfan0(g) =
mini Cfan0(i)

F (g)



(*Initialization phase*)
for every fault, f , in the fault list of the given circuitdo

Let FaultPropagationList[f ] ← φ
for every test vectori do

Let POJustificationList[i] ← φ
Let FFJustificationList[i] ← φ
for every level, l, of the given circuitdo

Let EventList[l] ← φ

(*Fault simulation phase*)
for i ← 1 to n do

Fault simulate the circuit under test vectori
for every fault, f , newly detected ini do

Add f to POJustificationList[i]
for every fault f propagating to the next time framedo

Add all memory-elements affected byf together with
their faulty values toFaultPropagationList[f ]

(*Fault justification phase*)
for i ← n downto 1 do

Logic simulate the circuit under the test vectori
while FFJustificationList[i] 6= φ do

Removef from FFJustificationList[i]
Mark lines reachable from f
for every memory-element,d, whose value is re-
quired to justifyf in time framei + 1 do

Let j be the input ofd
Let l be the level ofj in the given circuit
Add j to theEventList[l]

Justify the faultf
while POJustificationList[i] 6= φ do

Removef from POJustificationList[i]
Mark lines reachable from f
Let j be a primary-output at whichf get detected
Let l be the level ofj in the given circuit
Add j to theEventList[l]
Justify the faultf

Figure 1: Proposed Algorithm

Cfan1(g) =

∑
i
Cfan1(i)

F (g)

The regular cost functions are accurate for fanout-free circuits.
However, when fanouts exist, regular cost functions do not take ad-
vantage of the fact that a stem can justify several required values.
In general, the fanout-based cost functions provide better selec-
tion criterion than the regular cost functions. However, there are
some cases where the regular cost functions can perform better
than the fanout-based cost functions. To take advantage of both
cost functions, a weighted sum cost function of the two cost func-
tions was proposed in [9]. The combined cost functions are defined
below, whereA andB represent the weights given to the regular
and fanout-based cost functions respectively:

C0(g) = A · Creg0(g) + B · Cfan0(g)

C1(g) = A · Creg1(g) + B · Cfan1(g)

In synchronous sequential circuits, the controllability values of
the circuit in one time frame depend on the controllability values

computed in the current frame as well as the values computed in
the previous frames. Therefore, the controllability values should
be computed in an iterative manner starting from the first time
frame. However, this may cause the regular cost function to grow
much faster than the fanout-based cost function such that the effect
of the second cost function in the weighted sum becomes negligi-
ble. Therefore, the regular cost function is adjusted to reduce the
difference between the two cost functions [11].

5. EXPERIMENTAL RESULTS

In order to demonstrate the effectiveness of our proposed test re-
laxation technique, we have performed some experiments on a
number of the ISCAS89 benchmark circuits. The experiments
were run on a SUN Ultra60 (UltraSparc II 450MHz) with a RAM
of 512MB. We have used test sets generated by HITEC[12]. In
addition to that, we have used the fault simulator HOPE[13] for
fault simulation purposes.

In Table 1, we compare the proposed test relaxation technique
with the bitwise-relaxation method. The two techniques are com-
pared in terms of the percentage of X’s extracted, and the CPU
time taken for relaxation. It is important to point out here that in
order to have a fair comparison between our technique and the bit-
wise-relaxation method, we have constrained the bitwise-relaxa-
tion method such that all faults detected at a particular time frame
remain detected in the same time frame after relaxation. How-
ever, the results obtained by both constrained and unconstrained
bitwise-relaxation are shown in Table 1.

It is clear that, for all the circuits, the CPU time taken by our
technique is less than that of the bitwise-relaxation method by sev-
eral orders of magnitude. The bitwise-relaxation method requires
enormous CPU times, and hence is impractical for large circuits.

The percentage of X’s obtained by our technique is also close
to the percentage of X’s obtained by the bitwise-relaxation method
for most of the circuits. The difference in the percentage of X’s
ranges between 0.5% and 16% (4% and 20% when compared with
the unconstrained bitwise-relaxation method), while the average
difference is about 5% (8% when compared with the unconstrained
bitwise-relaxation method). It should be observed that the bitwise-
relaxation method implicitly chooses the output for detecting a
fault that maximizes the number of X’s according to the order used.
However, our technique does not do any optimization in selecting
the best output for detecting a fault. This can be investigated in
future work.

Table 2 shows the effect of varying the weights of the adjusted
regular cost function and fanout-based cost function on the per-
centage of X’s. As can be seen from the table, the use of cost
functions results in higher percentage of X’s. Also, it is worth
mentioning here that neither the adjusted regular cost function nor
the fanout-based cost function consistently performs better for all
the circuits. However, when both cost functions are combined, bet-
ter results are obtained. The table, also, shows that a weight of 1
for the adjusted regular cost function and a weight of 95 for the
fanout-based cost function seems to be a good heuristic as it gives
the highest percentage of X’s on average.

6. CONCLUSION

In this paper, we have proposed an efficient test relaxation tech-
nique for synchronous sequential circuits. Comparison between
our technique and the bitwise-relaxation method for a number of



Table 1: Test relaxation comparison between the proposed technique and the bitwise-relaxation method.
Percentage ofX ’s CPU Time (seconds)

Bitwise- Proposed Bitwise- Proposed
Circuit Relaxation Technique Diff. Relaxation Technique
s1423 69.922/74.392 54.314 15.61/20.08 943 1.300
s1488 76.154/81.090 71.902 4.252/9.188 12553 4.500
s1494 76.295/82.962 72.460 3.835/10.50 13146 3.550
s3271 83.894/85.527 77.265 6.629/8.262 87726 8.500
s3330 87.738/90.082 85.337 2.401/4.745 115585 6.783
s3384 78.579/81.655 77.943 0.636/3.712 16549 2.783
s4863 84.832/87.542 81.680 3.152/5.862 162894 8.267
s5378 87.738/88.969 85.815 1.923/3.154 218137 20.45
AVG 80.644/84.027 75.850 4.805/8.188

Table 2: Cost function effect on the extracted percentage ofX ’s.
CKT A=0 A=1 A=0 A=1 A=1 A=1 A=1 A=1

NAME B=0 B=0 B=1 B=15 B=35 B=55 B=75 B=95
s1423 33.922 45.725 48.314 53.686 54.314 54.431 54.431 54.314
s1488 43.355 71.041 56.346 66.816 69.744 71.004 71.293 71.902
s1494 44.588 72.390 57.229 67.470 70.452 71.536 71.888 72.460
s3271 41.640 71.824 80.872 77.558 77.536 77.476 77.373 77.265
s3330 68.841 85.069 84.689 85.208 85.307 85.385 85.329 85.337
s3384 70.027 71.862 77.943 77.972 77.972 77.943 77.943 77.943
s4863 72.173 79.056 83.425 82.712 82.570 82.232 82.074 81.680
s5378 77.773 85.388 81.983 84.486 84.837 84.856 84.912 85.815
AVG 56.540 72.794 71.350 74.489 75.342 75.608 75.655 75.850

ISCAS89 benchmarks showed that our technique is faster by sev-
eral orders of magnitude. The percentage of X’s obtained by our
technique is close to the percentage of X’s obtained by the bitwise-
relaxation method. The difference is about 5% on average.

Having a relaxed test set increases the effectiveness of both
compression and compaction techniques. Also, the proposed tech-
nique can be used for extracting self-synchronizing test sequences.
This will be investigated in future work.

7. REFERENCES

[1] B. Koenemann, “LFSR-Coded Test Patterns for Scan De-
signs”, inProc. European Test Conference, 1991, pp. 237–
242.

[2] S. Hellebrand, S. Tarnick, J. Rajski, and B. Courtois, “Gen-
eration of Vector Patterns Through Reseeding of Multiple-
Polynomial Feedback Shift Registers”, inIEEE Interna-
tional Test Conference, Sep. 1992, pp. 120–129.

[3] A. Jas and N. Touba, “Test Vector Decompression via Cycli-
cal Scan Chains and Its Application to Testing Core-Based
Designs”, inProc. International Test Conference, 1998, pp.
458–464.

[4] A. Chandra and K. Chakrabarty, “Test Data Compression for
System-On-a-Chip using Golomb Codes”, inProc. of IEEE
VLSI Test Symposium, 2000, pp. 113–120.

[5] A. Chandra and K. Chakrabarty, “Frequency-directed run-
length (FDR) codes with application to system-on-a-chip test
data compression”, in19th IEEE Proceedings on. VTS, 2001,
pp. 42–47.

[6] T. Yamaguchi, M. Tilgner, M. Ishida and D. S. Ha, “An
Efficient Method for Compressing Test Data”, inProc. In-
ternational Test Conference, Nov. 1997, pp. 79–88.

[7] R. Roy, T. Niermann, J. Patel, J. Abraham, and R. Saleh,
“Compaction of ATPG-Generated Test Sequences for Se-
quential Circuits”, Nov. 1988, pp. 382–385.

[8] S. Kajihara and K. Miyase, “On Identifying Don’t Care In-
puts of Test Patterns for Combinational Circuits”, inProc.
IEEE ICCAD, Nov. 2001, pp. 364–369.

[9] A. El-Maleh and A. Al-Suwaiyan, “An Efficient Test Relax-
ation Technique for Combinational & Full-Scan Sequential
Circuits”, in Proc. IEEE VLSI Test Symposium, 2002, pp.
53–59.

[10] M. Abramovici, M. Breuer and A. Friedman,Digital System
Testing and Testable Design, IEEE Press, 1990.

[11] K. Al-Utaibi, An Efficient Test-Pattern Relaxation Technique
for Synchronous Sequential Circuits, M.S. thesis, King Fhad
University of Petroleum and Minerals, Dhahran, 2002.

[12] Thomas M. Niermann and Janak H. Patel, “HITEC: A test
generation package for sequential circuits”, inProc. of the
European Conference on Design Automation (EDAC), 1991,
pp. 214–218.

[13] H. K. Lee and D. S. Ha, “HOPE: An Effecient Parallel
Fault Simulator for Synchronous Sequential Circuits”,IEEE
Trans. on Computer Aided Design, vol. 15, no. 9, pp. 1048–
1058, Sep. 1996.


