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ABSTRACT code words). If all test patterns occur with equal frequency, then

Testing systems-on-a-chip (SOC) involves applying huge amountsn® compression is achieved at all. Thus, using partially specified
of test data, which is stored in the tester memory and then trans-€St VeCtors adds more flexibility to statistical coding techniques
ferred to the circuit under test (CUT) during test application. There- 1N @ Sense that test patterns containing don't care values can be
fore, practical techniques, such as test compression and compacgncoded with various possibilities. _ _
tion, are required to reduce the amount of test data in order to  TeSt compaction techniques can also benefit from a partially
reduce both the total testing time and the memory requirementsSPecified test. For example, when merging two test sequences
for the tester. Relaxing test sequences, i.e. extracting partially USing the overlapping compaction techniques described in [7], a
specified test sequences, can improve the efficiency of both tesdon't care value, 'X', can be merged with any one of the values:
compression and test compaction. In this paper, we propose an ef-0 ‘1’ and 'X. Therefore, increasing the number of X's in a test
ficient test relaxation technique for synchronous sequential circuits Set Will reduce the number of conflicts that may occur while merg-
that maximizes the number of unspecified bits while maintaining iNd two test sequences, and hence, improves the efficiency of the
the same fault coverage as the original test set. compaction process.

1. INTRODUCTION 2. PROBLEM DEFINITION

Rapid advancement in VLSI technology has lead to a new para-The problem of test relaxation, i.e. extracting a partially specified

digm in designing integrated circuits where a system-on-a-chip (et set from a fully-specified one, has not been solved effectively
(SOC) is constructed based on pre-designed and pre-verified coreg, ihe Jiterature. This problem, which is targeted in this paper,

such as CPUs, digital signal processors, and RAMs. Testing thesgap pe defined as followsGiven a synchronous sequential cir-
cores requires a large amount of test data which is continuously ot and a fully specified test set, generate a partially specified test
increasing with the rapid increase in the complexity of SOC. This get that maintains the same fault coverage as the fully specified
has a direct impact on the total testing time and the memory re- one while maximizing the number of unspecified Ifitse obvious
quirements of the testing equipment. Hence, reducing the amount,y 1o solve this problem is to use a bitwise-relaxation technique,
of test data is considered as one of the challenging problems inynere we test for every bit in the test set whether changing it to

testing SOC. an "X’ reduces the fault coverage or not. Obviously, this tech-

Test compression and compaction techniques are widely usedyique jsO(nm) fault simulation runs, where is the width of one
to reduce the storage and test time by reducing the size of the teS{ag; vector, andn is the number of test vectors. Obviously, this
data. Test compression techniques can achieve better results if th?echnique is impractical for large circuits. A partially specified

test set is composed of test cubes (i.e. if the test set is partially et set can also be obtained using dynamic ATPG compaction. In
specified). In fact, some compression techniques such as, LFSRyynamic compaction, every test vector is processed immediately
reseeding [1, 2], require the test vectors to be partially specified. gtier jts generation in order to specify unspecified primary inputs
Even those techniques which require fully specified test data canpjs). This feature can be disabled to obtain a compact and re-
benefit from unspecified bits in the test set. For example, variable-|aq test set. However, this technique does not solve the problem
to-fixed-length coding [3] and variable-to-variable-length coding f rejaxing an already existing test set. In addition, this technique

[4, 5] are known to perform better for long runs of 0's. Hence, cannot benefit from random test pattern generation, because it is
assigning 0's to the don't care values in the test set will improve ¢4 it oriented.

the efficiency of these techniques. Similarly, run-length coding
techniques [6] can specify the don't care values in a way that will full-
reduce test vector activity (i.e. the number of transitions from 0
to 1 and vice versa), which in tern improves the compression ef-
ficiency. On the other hand, the amount of compression that can
be achieved with statistical coding techniques depends on the de
gree of variation in the occurrences of unique test patterns (i.e.

Recently, two test relaxation techniques for combinational and
scan sequential circuits were proposed in [8, 9]. The main
idea of both techniques is to determine logic values in the fully-
specified test set that are necessary to cover (i.e. detect) all faults
which are detectable by this test set. Unnecessary logic values are
setto X's.

As far as synchronous sequential circuits are concerned, the

The authors would like to thank King Fhad University of Petroleum ONly existing solution to the problem of relaxing a given test set is
and Minerals for support. the bitwise-relaxation method. In this paper, we propose an effi-




cient test-relaxation technique that extends the technique proposedor newly detected faults and justifies them. Justifying a fatilt,
in [9] to cover synchronous sequential circuits. involves two operationsmarking reachable lineand backward
justification which are described below.

The first operation marks all the gates which are reachable
from a given faultf using local fault simulation. It starts by in-

The general behavior of the proposed test-relaxation technique caﬂeCtIng the faultf at its corresponding fine in the circuit. Then,

be described as follows. At any time framall logic values which It sets the faulty values of the memory-elements according to the
: d‘aulty values propagating from the time frame 1. Next, the fault

effects on the faulty-line and memory-elements are forward propa-
gated. During this fault propagation, if the faulty value of a gate

3. PROPOSED TECHNIQUE

some primary outpup are marked as required. Next, these logic

values are justified backwards starting frertowards primary in- ; X ; -
puts and/or memory-elements. At the end, unmarked primary in- 'rsé:;l;]';glteo be different from its good value, thgris marked as

puts are not required and can be relaxed. On the other hand, re- Th q i th t list level by level
quired values on the memory-elements are justified when the next '€ second operation processes e event st Ievel by leve
time frame,i — 1, is processed. Note that justifying the detected starting from the maX|m.um.I.eveI. In each Ieyel, thg Ioglcgl values
faults based on logical values alone may result in masking some ofOf thehstorer:j glate_s e|1re jlustlfleql as f0|!0V\(Ing "Ea prlmr?ryflnput
the detected faults. Therefore, the proposed technique uses som hl)’ tfen t E ogical va UZ.Qf] 'E.re.qu'};:sl to d?li[eCt the auft
rules based on fault-reachability analysis to avoid fault masking. eretore, the corresponaing it in thtslaxedTestSes set to
Due to the nature of sequential circuits (i.e. feedback from the logical value ofy. If g is a memory-elemenD(FF), then the

memory-elements), a fault excited in one time frame might prop- logical value ofg can not be justified in the current time frame.
agate through sevéral time farms before it gets detected. HenceTherefore, thg _faul_f is gdded to thejus_tification list of time frame
several time frames may need to be traced back to justify such’ 1 (FFJUSt'f'Cat'OnL'S[tZ._ .1])' If gis an XO.R' X.NOR' ora
faults. Therefore, we need to store enough information about faultsmgle-lnput gate, then all its inputs negd to be Ju.St'f'Ed' Hgnce, all
propagation, detection and justification in order to perform the jus- mirzgp;trig? a|1fre ?Sdgid Atﬁltjhegée?\} AlliltDaZ(;o’\rlcgrg tgtt:wtlﬁ\fs
tification process frame by frame. Four lists are used to store thenon-controlliﬁ vgalue then W’e ne,ed o0 justify all th% inoutsof
the required informationPOJustificationListFFJustificationList g ’ J puty

FaPropagtonLstandEvent The purpose ofcach one of 0"V 1 1955 contolng vale,Uen e e o check 11,
these four lists is explained below. P 9 : '

The purpose of th@OJustificationListis to store newly de- is sufficient tOJUSt'fy. t_hat input. Otherwise, we check whet@gr
: . : A reachable or not. Ifit is not reachable, then we need to justify only
tected faults in every time frame. These faults will be justified

backwards starting from the time frames where they first get de- Fhe .rf.ea:;:hable inputs gt Otherwise, all the inputs af need to be
tected. During fault simulation, if a faulf propagates to one Justified.

or more memory-elements, then these memory-elements and their

faulty values are added to tiF@ultPropagationList The FFJusti- 4. SELECTION CRITERIA

ficationListis used to store faults that can’t be completely justified

during a certain time frame. Notice that if one or more memory- When justifying a controlling value through the inputs of a given

elements are required to justify a faglturing some time framg gate, there could be more than one choice. In this case, priority
thenf can’t be completely justified during this time frame. Hence, IS given to the input that is already selected to justify other gates.
the justification off will continue during time frame — 1. The Otherwise, cost functions are used to guide the selection. Cost

EventListkeeps track of the gates that need to be justified for a cer- functions give a relative measure on the number of primary inputs
tain fault. Gates are inserted in event list according to their levels required to justify a given value. Hence, they can guide the re-
in the circuit. laxation procedure to justify the required values with the smallest

Figure 1 shows an outline of the proposed justification tech- Number of assignments on the primary inputs.
nigque which consists of three phases. The first phase initializes ~ The cost functions proposed in [9] combine tregular re-
the four lists. Fault simulation is performed in the second phase to cursive controllability cost functions [10] with new cost functions
identify newly detected faults. These faults are storeB@Justi- calledfanout-basedost functions. The regular cost functions are
ficationLis{i] for every test vectoi. During fault simulation, if ~ computed as follows. For every gatewe compute two cost func-

a fault f propagates to one or more memory-elements, then thesetions Crrego(g) andCreq1(g). For example, ifg is an AND gate
memory-elements together with their faulty values are added to With ¢ inputs, then the cost functions are computed as:
FaultPropagationLigtf]. The information in this list will be used

to mark reachable lines of the circuit during the justification phase.
It is important to point out here that we need to store the logical .
values of the memory-elements for all the time frames. This will Cregi(g) = Z Crequ(i)
enable the third phase to perform logic simulation in a certain time @
frame independent of the other time frames.

The third phase starts from the last time frame down to the
first one. In every time frame, the algorithm performs the fol-
lowing. First, it logic simulates the circuit under the test veétior
determine the good value of every gate. Then, it chégkdusti-
ficationLisf:] for any fault that has not been completely justified
in time framei + 1. Unjustified faults are removed from the list min; C'tano (i)
and justified one by one. Next, it checROJustificationLigt] Crano(g) = T

CTEQO (g) = m,in Crego (Z)

These costs functions are computed for other gates in a similar
manner. The fanout-based cost functions can be computed for
an AND gate as follows. Ley be an AND gate withi inputs.

Let F'(g) denotes the number of fanout brancheg ofThen, the
fanout-based cost functions are computed as:



(*Initialization phase*)
for every fault, f, in the fault list of the given circuitdo
Let FaultPropagationLidtf] < ¢
for every test vector do
Let POJustificationLiqt] < ¢
Let FFJustificationListi] «— ¢
for every level, [, of the given circuido
Let EventLisfl] < ¢

(*Fault simulation phase*)
for i — 1ton do
Fault simulate the circuit under test vecior
for every fault, f, newly detected i do
Add f to POJustificationLidt]
for every fault f propagating to the next time frande
Add all memory-elements affected ffytogether with
their faulty values td-aultPropagationListf]

(*Fault justification phase*)
for ¢ <— n downto 1 do
Logic simulate the circuit under the test vector
while FFJustificationLisfi] # ¢ do
Removef from FFJustificationLisf:]
Mark lines reachable from f
for every memory-elementd, whose value is re-
quired to justify f in time frame: + 1 do
Let j be the input ofi
Let! be the level ofj in the given circuit
Add j to theEventLisfi]
Justify the faultf
while POJustificationLidt] # ¢ do
Removef from POJustificationLidt]
Mark lines reachable from f
Let j be a primary-output at whiclfi get detected
Let! be the level ofj in the given circuit
Add j to theEventLisf]
Justify the faultf

Figure 1: Proposed Algorithm

Crani(g) = %

computed in the current frame as well as the values computed in
the previous frames. Therefore, the controllability values should
be computed in an iterative manner starting from the first time
frame. However, this may cause the regular cost function to grow
much faster than the fanout-based cost function such that the effect
of the second cost function in the weighted sum becomes negligi-
ble. Therefore, the regular cost function is adjusted to reduce the
difference between the two cost functions [11].

5. EXPERIMENTAL RESULTS

In order to demonstrate the effectiveness of our proposed test re-
laxation technique, we have performed some experiments on a
number of the ISCAS89 benchmark circuits. The experiments
were run on a SUN Ultra60 (UltraSparc || 450MHz) with a RAM

of 512MB. We have used test sets generated by HITEC[12]. In
addition to that, we have used the fault simulator HOPE[13] for
fault simulation purposes.

In Table 1, we compare the proposed test relaxation technique
with the bitwise-relaxation method. The two techniques are com-
pared in terms of the percentage of X’s extracted, and the CPU
time taken for relaxation. It is important to point out here that in
order to have a fair comparison between our technique and the bit-
wise-relaxation method, we have constrained the bitwise-relaxa-
tion method such that all faults detected at a particular time frame
remain detected in the same time frame after relaxation. How-
ever, the results obtained by both constrained and unconstrained
bitwise-relaxation are shown in Table 1.

It is clear that, for all the circuits, the CPU time taken by our
technique is less than that of the bitwise-relaxation method by sev-
eral orders of magnitude. The bitwise-relaxation method requires
enormous CPU times, and hence is impractical for large circuits.

The percentage of X's obtained by our technique is also close
to the percentage of X's obtained by the bitwise-relaxation method
for most of the circuits. The difference in the percentage of X’s
ranges between 0.5% and 16% (4% and 20% when compared with
the unconstrained bitwise-relaxation method), while the average
difference is about 5% (8% when compared with the unconstrained
bitwise-relaxation method). It should be observed that the bitwise-
relaxation method implicitly chooses the output for detecting a
fault that maximizes the number of X’s according to the order used.
However, our technigque does not do any optimization in selecting
the best output for detecting a fault. This can be investigated in
future work.

Table 2 shows the effect of varying the weights of the adjusted

The regular cost functions are accurate for fanout-free circuits. i {
However, when fanouts exist, regular cost functions do not take ad-"égular cost f‘U“Ct'O“ and fanout-based cost function on the per-
vantage of the fact that a stem can justify several required values.CeNtage of X’s. As can be seen from the table, the use of cost
In general, the fanout-based cost functions provide better selec-functions results in higher percentage of X's. Also, it is worth
tion criterion than the regular cost functions. However, there are mentioning here that neither the adjusted regular cost function nor
some cases where the regular cost functions can perform pettethe fanout-based cost function consistently performs better for all
than the fanout-based cost functions. To take advantage of boththe circuits. However, when both cost functions are combined, bet-
cost functions, a weighted sum cost function of the two cost func- ter results_ are obtained. The table_, also, shows_that a weight of 1
tions was proposed in [9]. The combined cost functions are definedfor the adjusted regular cost function and a weight of 95 for the
below, whereA and B represent the weights given to the regular fanout-based cost function seems to be a good heuristic as it gives
and fanout-based cost functions respectively: the highest percentage of X's on average.

Co(g) = A : Creg()(g) + B. Cfﬂ,n(](g)
C’1(g) =A- Cre.ql(g) +B- Cfanl(g)

6. CONCLUSION

In this paper, we have proposed an efficient test relaxation tech-
In synchronous sequential circuits, the controllability values of nique for synchronous sequential circuits. Comparison between
the circuit in one time frame depend on the controllability values our technique and the bitwise-relaxation method for a number of



ISCAS89 benchmarks showed that our technique is faster by sev- [6] T. Yamaguchi, M. Tilgner, M. Ishida and D. S. Ha,

Table 1: Test relaxation comparison between the proposed technique and the bitwise-relaxation method.

Percentage ofX's CPU Time (seconds)
Bitwise- Proposed Bitwise- Proposed
Circuit Relaxation Technique Diff. Relaxation | Technique
s1423 | 69.922/74.392| 54.314 15.61/20.08 943 1.300
s1488 | 76.154/81.090, 71.902 4.252/9.188 12553 4.500
s1494 | 76.295/82.962 72.460 3.835/10.50 13146 3.550
s3271 | 83.894/85.527| 77.265 6.629/8.262 87726 8.500
s3330 | 87.738/90.082| 85.337 2.401/4.745| 115585 6.783
s3384 | 78.579/81.655| 77.943 0.636/3.712 16549 2.783
s4863 | 84.832/87.542| 81.680 3.152/5.862| 162894 8.267
sb378 | 87.738/88.969) 85.815 1.923/3.154| 218137 20.45
AVG 80.644/84.027| 75.850 | 4.805/8.188
Table 2: Cost function effect on the extracted percentage’sf
CKT A=0 A=1 A=0 A=1 A=1 A=1 A=1 A=1
NAME B=0 B=0 B=1 B=15 | B=35 | B=55 | B=75 | B=95
s1423 | 33.922| 45.725| 48.314 | 53.686 | 54.314 | 54.431| 54.431| 54.314
s1488 | 43.355| 71.041| 56.346 | 66.816 | 69.744 | 71.004 | 71.293| 71.902
s1494 | 44,588 | 72.390| 57.229| 67.470| 70.452| 71.536| 71.888| 72.460
s3271 | 41.640| 71.824| 80.872| 77.558| 77.536| 77.476 | 77.373| 77.265
s3330 | 68.841| 85.069 | 84.689 | 85.208 | 85.307 | 85.385| 85.329 | 85.337
s3384 | 70.027| 71.862| 77.943| 77.972| 77.972| 77.943| 77.943| 77.943
s4863 | 72.173| 79.056 | 83.425| 82.712| 82.570| 82.232| 82.074 | 81.680
sb378 | 77.773| 85.388 | 81.983 | 84.486 | 84.837 | 84.856 | 84.912 | 85.815
[ AVG [56.540] 72.794] 71.350] 74.489] 75.342] 75.608] 75.655] 75.850 |

eral orders of magnitude. The percentage of X’s obtained by our
technique is close to the percentage of X's obtained by the bitwise-
relaxation method. The difference is about 5% on average.

Having a relaxed test set increases the effectiveness of both

(7]

compression and compaction techniques. Also, the proposed tech-
nique can be used for extracting self-synchronizing test sequences.
This will be investigated in future work.
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