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 Abstract  

Test compaction is an effective technique for reducing test data volume and test application time. In this paper, we 

present a new static test compaction technique based on test vector decomposition and clustering. Test vectors are 

decomposed and clustered for faults in an increasing order of faults detection count. This clustering order gives 

more degree of freedom and results in better compaction. Experimental results demonstrate the effectiveness of 

the proposed approach in achieving higher compaction in a much more efficient CPU time than previous 

clustering-based test compaction approaches.  

 

I. INTRODUCTION  

Recent advances in VLSI technology have enabled the fabrication of systems-on-a-chip with millions of 

transistors. This tremendous increase in transistor count has resulted in large increase in test data volume that 

often exceeds current testers’ memory capacity. In order to reduce the test data volume, two basic strategies have 

been investigated. The first strategy is based on reducing the required number of test vectors needed to achieve a 

given desired fault coverage, known as test compaction. The second strategy is based on representing the test data 

in a compressed form in the tester and using decompression circuitry on chip to decompress the test data before 

application, known as test compression. Both strategies are necessary to reduce test data volume and test 

application time.   

Test compaction techniques can be classified as static or dynamic. In static test compaction, the number of test 

vectors is reduced after they are generated, whereas in dynamic test compaction, the number of test vectors is 

minimized during the automatic test pattern generation (ATPG) process.  Static test compaction algorithms for 

combinational circuits can be divided into three broad categories [1]: (1) Redundant vector elimination, (2) Test 

vector modification, and (3) Test vector addition and removal. In the first category, compaction is performed by 



dropping redundant test vectors. A redundant test vector is a vector whose faults are all detectable by other test 

vectors. Static compaction algorithms falling under this category are either based on set covering [4-6] or test 

vector reordering and fault simulation [7-11]. In the second category, compaction is performed by modifying test 

vectors. This is achieved by merging of compatible test vectors based on test relaxation or raising [12, 13-15], 

essential fault pruning [9, 15-17], or test vector decomposition and clustering [1-3]. Finally, the third category of 

static compaction algorithms consists of compaction algorithms that add new test vectors to a given test set in order 

to remove some of the already existing test vectors [10, 18].   

Static compaction techniques are preferred to dynamic compaction for several reasons. First, generating compact 

test sets using dynamic compaction is more time consuming as many attempts to modify partially specified test 

vectors to detect additional faults often fail [14]. In addition, dynamic compaction does not take advantage of 

random test generation which makes the ATPG process more efficient. Second, static compaction is ATPG 

independent allowing test sets to be generated using more efficient ATPG techniques. Finally, static compaction 

techniques could result in more compact test sets than dynamic compaction techniques as indicated by the results in 

[11, 17]. 

 

Recently, two static compaction techniques based on test vector decomposition and clustering have been proposed 

in [1-3]. The first technique, called Independent Fault Clustering (IFC) [1, 2], is based on clustering test vectors 

according to independent fault sets. The second technique, called Class-based Clustering (CBC) [1, 3], is based on 

classifying test vectors into classes and then eliminating test vectors by moving their components to other test 

vectors.  

In this work, we propose a new test compaction technique based on test vector decomposition and clustering. Test 

vector decomposition and clustering is performed for faults based on the number of test vectors detecting each 

fault i.e., fault detection count. This is in contrast to IFC which clusters test vectors based on independent fault 

sets.  



The rest of the paper is organized as follows. In Section II, the proposed test compaction technique is described. 

Experimental results are presented in Section III to demonstrate the effectiveness of the proposed technique. 

Finally, conclusions are given in Section IV.  

 

II. PROPOSED TEST COMPACTION TECHNIQUE 

Test vector decomposition is the process of decomposing a test vector into its atomic components. An atomic 

component is a child test vector that is generated by relaxing its parent test vector for a single fault f. That is, the 

child test vector contains only the assignments necessary for the detection of f. Besides, the child test vector may 

detect other faults in addition to f. 

In Independent Fault Clustering (IFC) [1, 2], Independent Fault Sets (IFSs) with respect to a given test set are first 

derived. Two faults are independent if they are not detected by the same test vector.  Then, test vector clustering is 

performed based on the derived independent fault sets. This is motivated by the fact that the size of the largest IFS 

gives an upper bound on the possible size of the final test set after compaction and that test vector components for 

faults belonging to different IFSs are potentially compatible. During test vector clustering, compatible components, 

corresponding to compatible faults, are mapped to the same compatibility set. Whenever a component is mapped to 

a compatibility set, it is merged with the partial test vector of that compatibility set. At the end of the clustering 

process, every compatibility set represents a single test vector.  

Our proposed test compaction technique, Fault-detection Count-based Clustering (FCC), is based on clustering test 

vector components based on fault-detection count. Components derived from faults with the smallest detection 

count are clustered first followed by faults with increasing detection count. This is motivated by the fact that faults 

with N detection count have N test vector components and have a higher chance of being compatible with existing 

clusters. If a test vector component is not compatible with all the existing clusters, other test vector components are 

attempted. A new cluster is created only when all the N test vector components are not compatible with all the 

existing clusters.  



The FCC algorithm is shown in Fig. 1 and proceeds as follows. First, the given test set T is fault simulated without 

fault dropping. This step is performed to find the number and set of test vectors that detect every fault. Second, all 

the faults are sorted using their detection count in ascending order. Next, test vector components for essential faults 

(i.e. detection count=1) are clustered. In this step, for every essential fault f detected by t, the atomic component cf 

corresponding to f is extracted from t. Then, for every compatibility set CSi, if cf is compatible with the partial test 

vector in CSi, cf is mapped to CSi. On the other hand, if the number of compatibility sets is zero or cf is 

incompatible with all partial test vectors in the existing compatibility sets, a new compatibility set is created and cf 

is mapped to it. 

Next, the algorithm fault simulates the existing compatibility sets and drops all detected faults. This step saves the 

computation time which is otherwise spent on extracting atomic components of yet unmapped, non-essential faults 

and then either mapping them to existing compatibility sets or creating a new compatibility set for such faults. In 

addition, it could result in higher compaction. 

The algorithm then focuses on remaining unmapped, non-essential faults. This step exhaustively checks every 

component of a non-essential fault and attempts to minimize creating a new compatibility set. For every fault, an 

atomic component of a fault f is extracted. If it is incompatible with all partial test vectors in the existing 

compatibility sets, a new component is tried. In this step, a new compatibility set is created only if the number of 

compatibility sets is zero, which is possible only when there are no essential faults. At this point, only those non-

essential faults remain which require a new compatibility set and none of their atomic component could be mapped 

to any of the partially filled existing compatibility sets.  

The algorithm then randomly fills the partially filled test vectors of existing compatibility sets and fault simulates 

all the compatibility sets. This is done to maximize the chances of detecting yet unmapped, non-essential faults and 

therefore save an extra compatibility set. It should be noted that random filling in step 6 does not affect 

compaction, since it is guaranteed that none of the remaining test vector components could map to any of the 

existing partially filled test vectors.  

Finally, the unmapped remaining non-essential faults are clustered. The algorithm creates an additional 

compatibility set for the remaining non-essential faults only if all components of a fault f are incompatible with all 



partial test vectors in the existing compatibility sets. It should be noted that at this stage compatibility is only 

checked with newly created clusters. At the end, the algorithm randomly fills the remaining partially filled test 

vectors and returns the compatibility sets as the compacted test set.  

It is worth mentioning that for large circuits with large number of faults, fault simulation without dropping can be 

restricted to a k number of fault detects. The value of k chosen provides a tradeoff in memory and CPU time 

requirement and the achieved level of compaction. 

We next illustrate the steps of the proposed FCC algorithm through an example. Table 1 shows a set of four test 

vectors along with their detected faults and the components generated for each fault. Faults f1 and f2 are essential 

faults and will be clustered first resulting in two sets as shown in Table 2. We assume in this example that fault 

simulating the resulting compatibility sets will not detect additional faults. Then, faults with detection count=2 

will be clustered next i.e., faults f3, f4, f5, f7 and f8. The first component of f3=x0xxxx11x1 will be attempted for 

clustering and it will be found incompatible with the existing sets. The second component of f3=x0x1x1xxx1 is 

then successfully clustered into the second set. The first component of f4=00xx1xx1xx is successfully clustered 

into the first set. However, none of the components of the faults f5, f7 and f8 can be clustered in the existing sets 

and hence their clustering is delayed. Next, clustering is attempted for faults with detection count=3 i.e., f6. While 

neither the first nor the second components of f6 can be clustered into the existing sets, the third component of 

f6=00xx11xx0x is successfully clustered into the first set. Next, the algorithm will randomly fill the merged test 

vectors of the compatibility sets and will fault simulate the remaining undetected faults i.e., f5, f7 and f8. We 

assume in this example that fault f5 will be detected by the randomly filled test vectors. Finally, f7 and f8 will be 

clustered next. The first component of f7=1x1x1xx10x is mapped to a new set. Then, the first component of f8= 

x1xx1xx001 is found incompatible with the third set and hence its second component is attempted. The second 

component of f8=xxx11x0101 is then found compatible with third set and is clustered with it creating the merged 

test vector 1x111x0101,  which is randomly filled to create a fully specified test set. Thus, the test set is 

compacted into the following three test vectors: {0001110100, 1011011001, 1111100101}.  

 



III. EXPERIMENTAL RESULTS 

In order to demonstrate the effectiveness of the proposed FCC test compaction technique, we have performed 

experiments on a number of the ISCAS85 and full-scanned versions of ISCAS89 benchmark circuits. The 

experiments were run on a Pentium Mobile, with 2.0 GHz processor and 1GB DDR2 RAM. We have used test 

sets generated by HITEC [19], which achieve full coverage of all detectable faults in the circuits. HITEC test sets 

are used for comparison with the work in [1, 2, 12]. In addition, we have used the fault simulator HOPE [20] for 

fault simulation purposes and the test relaxation algorithm in [12] for test vector component generation.  

In Table 3, we compare the test compaction results of IFC [1, 2] and FCC algorithms when applied on the original 

test set. The first column gives the circuit name. The second column specifies the number of test vectors in the 

original test set before applying any compaction. The third and fourth columns give test set sizes after applying 

reverse-order fault simulation (ROF) and random merging (RM) [12], respectively. ROF is based on applying 

reverse-order and random order fault simulation for 20 iterations. RM is based on relaxing the test vectors 

generated by ROF and merging compatible vectors. Columns five and six give the results of the IFC technique [1, 

2] while columns seven and eight report the results of the proposed FCC technique. Test set sizes are given under 

the column headed #TV. The CPU time, in seconds, required by each of the techniques is given under the column 

headed Time. The FCC technique has shown better compaction quality on 12 out of 15 circuits, while 2 circuits 

resulted in a draw. In terms of overall savings, FFC has saved more than 120 test vectors than IFC [1, 2] (with an 

average compaction improvement of 7%). For example, for the circuits c3540 and c5315, FCC achieved 24% and 

25% higher compaction than IFC, respectively. Furthermore, FFC consumes significantly lesser CPU time than 

IFC [1, 2]. It has shown 13.37 times overall improvement than IFC [1, 2]. 

In order to increase the level of compaction, FCC can be applied in an iterative manner until no compaction 

improvement is possible. We have experimented with an iterative version of FFC, called FCC6+,  by applying 

FCC iteratively until the length of the test set cannot be reduced in the last six iterations. Unspecified bits in the 

test set T are assigned random values before every call to the FCC algorithm. Columns nine and ten in Table 3 

report the results of an iterative version of IFC applied on the test set generated by ROF, called ROF+ITER_IFC 



[1, 2]. Columns eleven and twelve report the results of FCC6+. It can be seen that FFC6+ has achieved higher test 

compaction than ROF+ITER_IFC on 12 out of 15 circuits, while 2 resulted in a draw. For example, for the circuit 

c5315, FCC6+ has achieved 29% more compaction than ROF+ITER_IFC.  Furthermore, it has shown higher 

overall savings (with an average compaction improvement of 8%) in a much more efficient CPU time (ranging 

from 1 to 14 times less CPU time). It should be observed that FCC6+ consumes more time on s15850 at the 

expense of more compaction as the algorithm continued on iterating due to more compaction improvements 

achieved.  

In Table 4, a comparison is made for the largest circuits between the number of compacted test sets obtained by 

FCC6+ and those obtained by Mintest [17] using both dynamic and static compaction techniques. It should be 

observed that Mintest static compaction has reported the smallest known test sizes for several circuits. For five 

out of the six compared circuits, the test size of FCC6+ is smaller than Mintest dynamic test compaction. 

Comparison in terms of CPU time is not made as the CPU time taken by Mintest dynamic compaction is not 

available. However, it is known that running ATPG with dynamic test compaction is slower than regular ATPG 

mode. While for all the circuits, the number of test vectors obtained by Mintest static compaction is smaller, the 

CPU time is significantly higher than FCC6+, limiting the practicality of the technique for large industrial 

circuits.  

It should be pointed out that any static compaction algorithm can be used after the proposed FFC algorithm. In 

fact, given a test set T, the FFC algorithm will generate a new test set T* whose characteristics are different from 

the characteristics of T. Thus, a static compaction algorithm that cannot compact T may manage to compact T*. 

 

IV. CONCLUSIONS 

In this work, we have proposed a new test compaction technique for combinational circuits based on test vector 

decomposition and clustering. Test vectors are decomposed and clustered for faults in an increasing order of fault 

detection count. Experimental results have demonstrated the effectiveness of the proposed technique in achieving 

higher level of compaction in a much more efficient CPU time than previously proposed clustering-based test 



compaction techniques.  An iterative application of the proposed technique has also shown significant increase in 

the achieved level of test compaction.  
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Algorithm  FCC(T) 
1. Fault simulate T without fault dropping. 
  1.1. Record the number of test vectors detecting each 

fault. 
2. Group the faults by their detection count. 
  2.1. Sort the faults in ascending order of their detection 

count. 
3. For every essential fault f that is detected by a test 

vector t: 
  3.1. Extract the atomic component cf from t. 
  3.2. If the number of compatibility sets is zero, create a 

new compatibility set, map cf to it, and then go to 
Step 3. 

  3.3. Map cf to an existing compatibility set, if possible, 
and then go to Step 3. 

  3.4. Create a new compatibility set and map cf to it. 
4. Fault simulate all the compatibility sets and drop all 

the remaining (Non-Essential) faults that are detected. 
5. For the remaining non-essential (un-detected) fault(s) f 

that is detected by a set of test vector T’: 
  5.1. For every test vector t’, where t’ is a member of T’: 
  5.2. Extract the atomic component cf from t’. 
  5.3. If the number of compatibility sets is zero, create a 

new compatibility set, map cf to it, and then go to 
Step 5. 

  5.4. Map cf to an existing compatibility set, if possible, 
and then go to Step 5, otherwise go to Step 5.1. 

6. Random fill test vectors of all the compatibility sets. 
7. Fault simulate all the compatibility sets and drop all 

the remaining (Non-Essential) faults that are detected. 
8. For the remaining non-essential (un-detected) fault(s) f 

that is detected by a set of test vector T’: 
  8.1. For every test vector t’, where t’ is a member of T’: 
  8.2. Extract the atomic component cf from t’. 
  8.3. Map cf to an existing compatibility set, if possible, 

and then go to Step 8, otherwise go to Step 8.1. 
  8.4. Create a new compatibility set and map cf to it. 
9. Random fill all the vectors of T∗. 
10. Return T∗. 

Fig. 1 Fault-detection count-based clustering (FCC). 



 

 

TABLE 1 Example Test Vectors and their  components. 

Test Vector Fault  
Detected 

Fault 
Component 

f1 0x0xx1xxx0 v1 0000111110 
f4 00xx1xx1xx 
f2 1xx1xx10x1 
f5 xxxx10x0xx 
f6 1xx1x0x0x1 

v2 1101101001 

f8 x1xx1xx001 
f3 x0xxxx11x1 
f5 xxxx1xx101 
f6 1xxx11x10x 

v3 1010111101 

f7 1x1x1xx10x 
f3 x0x1x1xxx1 
f4 00xxx1x1x1 
f6 00xx11xx0x 
f7 xx1x1x0x0x 

v4 0011110101 

f8 xxx11x0101 

TABLE 2 Illustration of steps of FCC algorithm on the given example. 

 After mapping faults 
with detection count=1 

After mapping faults 
with detection count=2 

After mapping faults 
with detection count=3 

After 
Merging  

Components 

After 
Random 
 Filling 

Cluster Fault Fault  
Component 

Fault Fault  
Component 

Fault Fault  
Component 

Test Vector Test Vector 

1 f1 0x0xx1xxx0 f1 0x0xx1xxx0 f1 0x0xx1xxx0 000x11x100 0001110100 
   f4 00xx1xx1xx f4 00xx1xx1xx   
     f6 00xx11xx0x   

2 f2 1xx1xx10x1 f2 1xx1xx10x1 f2 1xx1xx10x1 10x1x110x1 1011011001 
   f3 x0x1x1xxx1 f3 x0x1x1xxx1   

 



 

TABLE 3 Comparison of compaction results. 

ROF RM[12] IFC[1, 2] FCC ROF+IFC-
ITR[1, 2] 

FCC6+ Circuit Orig. 
#TV 

#TV #TV #TV Time(s) #TV Time(s) #TV Time(s) #TV Time(s) 
c2670 154 106 100 98 0.993 98 0.04 85 42.07 82 3.93 
c3540 350 83 80 99 2.01 75 1.01 75 26.95 63 5.05 
c5315 193 119 106 107 3.97 80 1.96 86 88.04 61 10.94 

s13207.1f 633 476 252 244 34.06 238 10.02 238 473.12 234 69.02 
s15850.1f 657 456 181 142 50.97 144 15.97 129 374.95 118 1365.98 
s208.1f 78 33 33 34 0.001 32 0.001 32 0.01 32 0.01 
s3271f 256 115 76 60 1.95 59 1.93 60 18.98 55 3.95 
s3330f 704 277 248 238 3.05 230 0.99 196 30.02 192 4.2 
s3384f 240 82 75 72 1.98 72 0.96 72 7.07 72 2.98 

s38417f 1472 822 187 150 838 130 225.95 120 3775.06 108 2337 
s38584f 1174 819 232 148 4718 138 154.02 124 8217.08 114 1735.17 
s4863f 132 65 59 50 3.02 47 3.95 42 70.88 38 6.96 
s5378f 359 252 145 120 3.05 119 1 117 109 107 13.99 
s6669f 138 52 42 40 7.91 36 5.02 30 175.01 28 12.02 

s9234.1f 620 375 202 182 11.06 170 3.04 155 200.93 139 27.04 
 



 

TABLE 4 Comparison with Mintest [17] dynamic and static compaction test sets. 

FCC6+ Mintest 
Dynamic [17] 

Mintest  
Static [17] 

Circuit 

#TV CPU Time #TV #TV CPU Time 
s5378f 107 13.99 111 97 131.5 

s9234.1f 139 27.04 159 105 3157.1 
s13207.1f 234 69.02 236 233 1178.4 
s15850.1f 118 1365.98 126 94 9252.1 
s38417f 108 2337 99 68 28955.8 
s38584f 114 1735.17 136 110 38538.8 

 


