
 

 

An Efficient Test Vector Compression Technique Based on Geometric Shapes 

Saif al Zahir1, Aiman El-Maleh2, and Esam Khan2 

 

1 University of British Columbia, ECE Dept., Vancouver, B.C., Canada 
2 King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia 

Email: saif_zahir@yahoo.com,  {aimane,esamkhan}@ccse.kfupm.edu.sa 
 
 
 

Abstract 
 

One of the prime challenges of testing a system-on-a-
chip (SOC) is to reduce the required test data size.        
In this paper, we introduce a novel compression / 
decompression scheme based on geometric shapes that 
substantially reduces the amount of test data and 
reduces test time.  The proposed scheme is based on 
ordering the test vectors in such a way that enables the 
generation of geometric shapes that can be highly 
compressed via perfect lossless compression. 
Experimental results on ISCAS benchmark circuits 
demonstrate the effectiveness of the proposed technique 
in achieving very high compression ratio. Compared to 
published results, our technique achieves significantly 
higher compression ratio.  
 
1.  Introduction 
 

Due to the rapid advancement in VLSI technology, it 
is possible to build very large systems containing 
millions of transistors on a single integrated circuit.  This 
has resulted in a new paradigm for the design of 
integrated circuits where a system-on-a-chip (SOC) is 
constructed based on pre-designed and pre-verified cores 
and user defined logic (UDL). As the complexity of 
systems-on-a-chip continues to increase, the difficulty 
and cost of testing such chips is increasing rapidly [6], 
[7].   

One of the challenges in testing SOC is dealing with 
the large amount of test data that must be transferred 
between the tester and the chip.  The amount of time 
required to test a chip depends on the size of test data 
and the channel speed of data transfer. The cost of 
automatic test equipment increases significantly with the 
increase in their speed, channel capacity, and memory.  
Thus, reducing test storage and test time is one of the 
challenges for testing SOCs. 

Applying lossless compression techniques can reduce 
test storage and test time, which is the objective of this 
work. Lossless compression techniques provide for the 

exact reconstruction of the original data from its 
compressed version.  Run length coding, Huffman 
codes, Lempel-Ziv algorithms, and arithmetic codes are 
examples of lossless compression [8]. Several 
compression/decompression techniques are proposed in 
the literature to reduce test memory requirements and 
test time. All the proposed compression techniques are 
lossless and most of them attempt at utilizing either 
Huffman coding, run-length coding, or variations of 
these methods.  Some sort of vector sorting to facilitate 
higher compression ratio precedes the implementation of 
these techniques. In [1], Burrows-Wheelers (BW) 
transformation is applied on the test data to produce 
longer and fewer runs, and then run length coding is 
applied to compress the transformed data. In [4], a 
statistical compression scheme is proposed that is based 
on variable length codewords to encode fixed length 
blocks of bits in test data. In [3], a compression scheme 
is proposed that uses careful ordering of the test data and 
formations of cyclical scan chains to achieve 
compression with run-length codes. In this scheme, a 
codeword is used to encode a block of data based on the 
number of zeros followed by a one in that block. 
Golomb code is used in [2], which is a variable-to-
variable run-length code, to enhance the scheme 
described above. It divides the runs into groups, each is 
of size m. The number of groups is determined by the 
length of the longest run, and the group size m is 
dependent on the distribution of test data. In [9], a 
compression scheme using an embedded processor on a 
SOC is proposed. This scheme is based on generating 
the next test vector from the previous one by storing 
only the information about how the vectors differ.  In 
[5], a different approach is proposed to design a core that 
can be tested with fewer number of test vectors. 

In this paper, we introduce a novel and very efficient 
compression scheme for deterministic testing of SOCs 
based on geometric shapes.  This scheme is designed 
based on test cubes to maximize the compression ratio.    
Test vector decompression is performed on chip and  is 
implemented either in hardware or software.    For 
hardware decompression option, a decoding circuitry is 



Table 1. The primitive geometric shapes. 

 Lines Triangles Rectangle

placed on the chip to perform the decompression 
algorithm. However, for software decompression option, 
the compressed data is loaded into an embedded core. 
The embedded core will then execute the decompression 
algorithm and decompress the test data, which is then 
applied to the circuit under test. The decompression 
algorithm can be stored in a ROM on chip. This 
approach can reduce both the amount of test data that 
must be stored on the tester and  the test time. 

 
Type1 

   

 
2. The Proposed Encoding/Decoding Algorithm 
 

The proposed encoding/decoding algorithm is based 
on geometric shapes.  In this work, we limited those 
shapes to the basic four namely: point, line, triangle, and 
rectangle as shown in Table 1.  The choice of those 
shapes is made based on the following:  (i) those shapes 
are bounded by a maximum of two point coordinates 
that can be encoded with a small number of bits; (ii) they 
are the most frequently encountered shapes in the test 
sets.  

 
The following steps summarize the encoding process 

of the proposed algorithm: 
 
Step 1. Test vectors sorting:  
 

This step is crucial and has a significant impact on the 
compression ratio as inappropriate sorting may cause 
lower compression ratio.  In this step, we aim at 
generating clusters of either zeros or ones in such a way 
that it may partially or totally be fitted in one or more of 
the geometric primitives shown in Table 1.  Several 
sorting scenarios have been considered and investigated.  
In this work, we used a simple correlation-based sorting 
technique.  This technique works as follows: At first, we 
chose the vector with the maximum number of zeros to 
become the first vector in the sorted vector set.  
Although this choice may not produce the optimal 
sorting of vectors, it was found to be a good heuristic 
based on experimentation.  To determine the second 
vector, the “distance” of each of the remaining vectors to 
this vector is calculated and the vector that generates the 
maximum distance, i.e., most correlated, is chosen to be 
the second vector in the sorted set and so on. The 
“distance” between two vectors can be computed based 
on either the 0’s, referred to as the zero-distance, or the 
1’s, referred to as the one-distance.  For example, to 
compute the zero-distance between two vectors, v1 and 
v2, we do the following.  For each ‘0’ in v1, we assign a 
weight of 1.0 to each of its immediate (vertical and 
diagonal) ‘0’ neighbor, 0.25 to each of its immediate ‘X’ 
neighbor, and 0.0 to each of the immediate ‘1’ neighbor 
in v2.  Furthermore, for each ‘X’ in v1, we assign a 
weight of 0.25 to each of its immediate ‘0’ or ‘X’ 
neighbor, and 0.0 to each of the immediate ‘1’ neighbor 
in v2.  A weight of 0.0 is given for all other cases.  The 

assignment of a 0.25 weight for an ‘X’ to each of its 
immediate neighbor be it an ‘X’ or a ‘0’ is chosen due to 
the following reasons.  First, this weight may help in 
completing or generating additional geometric shapes 
that can lead to a better solution.   Second, this can help 
in generating blocks filled by ‘X’s which can be 
minimally encoded.  Different weights have been 
experimented with, and a weight of 0.25 has been found 
to produce better results in most of the cases.  The one-
distance can be calculated similarly. 

Since the first vector chosen is the one with the 
largest number of zeros, we performed sorting based on 
the zero-distance. In Table 2, we show a simple example 
to illustrate this sorting procedure. Let v1, v2, and v3 be 
three test vectors to be sorted using the zero-distance 
approach. Then,  zero-distance(v1,v2) = (0.0 + 0.25) + 
(0.0 + 0.25 + 0.25) + (0.25 + 0.25 + 0.25) +  (0.25  + 
0.25 + 1) +  (0.25 + 1)  = 4.25, and  zero-distance 
(v1,v3)= (1.0 + 1.0) + (0.25 + 0.25 + 0.0) + (1.0 + 0.0 + 
1.0) + (0.0  + 1.0 + 0.25)  +  (1.0 + 0.25)  = 7.0.  Based 
on the calculated distances, the sorting scheme will 
choose the order (v1, v3, v2), as shown in Table 2.  Note 
that this sorting produces geometric shapes that can be 
encoded efficiently, as shown in the table.  However, if 
the vectors are sorted using the order (v1, v2, v3), more 
shapes would have been needed to cover the same 
number of 0s.  This sorting scheme produced good 
results in most cases compared to other scenarios. 

Table 2. An example of test vector sorting. 
 

v1 0 X 0 0 0 
v2 1 X X X 0 

Original 
Vectors 

v3 0 0 1 0 X 
v1 0 X 0 0 0 
v3 0 0 1 0 X 

Sorted 
Vectors  

v2 1 X X X 0 
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Type 4 

 

   
X 

(x1 , y1) 

(x2 , y2) 

(x1 , y1) 

(x2 , y2) 

(x2 , y2) 

Dir = 0 

(x1 , y1) 

Dir = 1 
(x1 , y1) 

(x2 , y2) 

(x2 , y2) (x1 , y1) 

(x2 , y2) (x1 , y1) 

(x1 , y1) (x2 , y2) 

Dir = 1 
(x2 , y2) 

(x1 , y1) 

Dir = 0 

(x2 , y2) 

(x1 , y1) 



Step 2.  Test Data partitioning 

Encode as: 
0 1 0/1♦  

# of bits to encode the 
block  ≥ # of bits in the  

block Yes 

Encode as: 
 0 0 real data 

No 

# of shapes = 0 
No 

Encode as: 
1 0/1♣  

Yes 

Test Vectors 
(For each block)  

0 0  (x, y) 

0 1  (x1, y1), (x2, y2) 

1 0 0/1♥ (x1, y1), (x2, y2) 

1 1  (x1, y1), (x2, y2) 

For each shape 

 
♦ This case means all bits in this block are either zeros and Xs  
    (which will be encoded as 010) , or ones and Xs(which will 

 be encoded as 011) .  
♣  If shapes are used to encode zeros then 10 will be used otherwise 11. 
♥  This indicates the direction of the triangle as shown in Table 1. 

Figure 1. Schematic diagram of the encoding format. 

 
A set of sorted test vectors, M, is represented in a 

matrix form, RxC, where R is the number of test vectors 
and C is the length of each test vector.  The test data is 
segmented into LxK blocks each of which is NxN bits, 
where L is equal to  and K is equal to ⎡ NR / ⎤ ⎡ ⎤NC / .  
For test vectors whose columns and/or rows are not 
divisible by the predetermined size of block N, a partial 
block will be produced at the right end columns and/or 
the bottom rows of the test data.  Since the size of such 
partial blocks can be deduced based on the vector length 
and the block size, the number of bits used to encode the 
coordinates of the primitives can be less than log N.  The 
decoder recognizes those special cases and decodes them 
properly. 
  
Step 3. Encoding process 
 

As mentioned earlier, the encoding process will be 
applied on each NxN block independently.  The 
procedure of encoding is as follows: 
(i) Extraction of shapes: Let the type of the bit to be 
encoded be b (b is either 0 or 1), then for each bit b, the 
largest shape covering bit b is extracted for each 
primitive geometric shape type (shown in Table 1). For 
example, in the sorted vectors in Table 2, extraction of 
shapes covering the first 0 produces a line of type 1, a 
line of type 2, a line of type 3, a rectangle of type 1, a 
triangle of type 2, and a triangle of type 4. 
(ii) Covering problem: A covering problem is then 
solved based on the extracted shapes in (i) to identify the 
shapes covering all the bits to be encoded, with the 
smallest number of bits. 
(iii) Steps (i) and (ii) are performed once for covering 
the zeros and another time for covering the ones.  The 
block is then encoded based on the one that produces 
better results. 

 
The format for encoding the shapes in a block is done 

as illustrated in Figure 1. For each block, if the number 
of bits needed to encode the shapes is larger than the 
number of bits in the block, then such a block is not 
encoded and the same test data is used. Otherwise, the 
block is encoded.  If the block can be encoded with one 
rectangle covering all bits in the block, then such a block 
is marked as a block that is filled with either 0s or 1s. In 
this case, two bits are sufficient to encode the block 
instead of encoding it as a rectangle. Otherwise, the 
block is encoded with the geometric primitives. When 
encoding a block that contains geometric shapes, the 
number of shapes is encoded first followed by the 
encoding for each shape. 

 
For this scheme, the decoding process is simple and 

straightforward.  In this work, it is assumed that an 
embedded processor on chip will implement the decoder.  

A framework illustrating the details of how the test 
vectors can be transferred from the embedded processor 
to the tested parts of the chip has been outlined in [9]. A 
similar framework can be used for our decoding 
algorithm. 
 
3. Experimental Results 

 
In order to demonstrate the effectiveness of our 

scheme, we have performed experiments on a number of 
the largest full-scanned versions of ISCAS89 benchmark 
circuits. We have used the test cubes obtained using the 
Mintest program [10] with dynamic compaction.  

The test vectors were sorted to maximize the 
compression. In this work, test vectors were sorted 
greedily based on the zero-distance measure starting 
with the test vector with the largest number of 0s. The 
test sets were partitioned into blocks of sizes 8x8, 16x16, 
and 32x32 respectively. Then, the proposed encoding 
algorithm was applied for each case separately as shown 
in Table 3.   The second column in the table shows the 
scan size, which is basically the width of a test vector. 
The compression ratio is computed as: 
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As can be seen from the table, the best compression ratio 
obtained is dependent on the block size used. However, 
for most of the cases a block size of 8x8 produces the 
best results (which are highlighted in the table). The 
effectiveness of the proposed encoding algorithm is 
clearly demonstrated as very high compression ratio was 
obtained for all the circuits (over 54%).  The encoding 
algorithm  is  very  fast  as  the  CPU  time for encoding 
each test set, for the three block sizes, was less than a 
minute.  Since the encoding algorithm is fast and since 
the size of the block that produces the best results is 
dependent on the test set, encoding can be performed for 
the three block sizes and the best result is chosen.   
In Table 4, a comparison between our technique with the 
one proposed in [2] is shown.  The last column shows 
the percentage reduction in the number of compressed 
bits obtained by our technique relative to what is 
obtained in [2]. As can be seen from the table, for all the 
circuits, our technique achieves significantly higher 
compression ratio. Our technique reduces the size of 
compressed bits by 20%-78% more than the size of 
compressed bits in [2]. It is interesting to observe that 

for the circuit s35932, while the technique in [2] 
achieved 0.0% compression, our technique achieved 
77.85% compression.  
 
4. Conclusions 
 
In this paper, a fast compression/decompression scheme 
based on geometric shapes has been presented. The test 
data is first sorted to minimize the number of geometric 
shapes to be encoded and maximize the compression 
ratio. Then, it is partitioned into blocks and each block is 
encoded separately.  The scheme exploits the block size, 
the type of bits to be encoded, and whether or not to 
encode the block.  Based on experimental results, our 
technique achieves a very high compression ratio. 
Compared to compression based on Golomb codes, our 
technique reduced the size of compressed bits by 20-
78%.  In this work, we assumed that the decompression 
algorithm is implemented in software and will be 
executed by an embedded processor on chip. 
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Table 4. Comparison with Golomb codes [2]. 
 

 Proposed  
Technique 

Golomb [2] 

Circuit Comp. 
 Ratio 

Comp.  
Bits 

Comp. 
Ratio 

Comp. 
Bits 

% 
Reduction  

Comp. 
Bits 

s5378f 54.69 10763 40.7 14086 23.59 
s9234 54.51 17865 43.34 22252 19.72 
s13207 84.86 25011 74.78 41664 42.37 
s15850 68.96 23897 47.11 40718 41.31 
s35932 77.85 6248 0.0 28208 77.85 
s38417 60.55 64988 44.12 92055 29.40 
s38584 64.17 71339 47.71 104111 31.48 

 

Table 3. Compression results of the proposed 
scheme. 

 
 Block 

8x8 
Block  
16x16 

Block 
 32x32 

Circuit Scan 
 Size 

Original  
Bits 

Cmp. 
 Ratio 

Cmp. 
Ratio 

Cmp. 
Ratio 

s5378f 214 23754 54.69 46.99 39.84 
s9234 247 39273 54.51 50.2 42.03 
s13207 700 165200 84.36 84.86 84.09 
s15850 611 76986 68.96 65.90 62.38 
s35932 1763 28208 65.0 73.49 77.85 
s38417 1664 164736 60.55 58.42 52.67 
s38584 1464 199104 64.17 59.89 53.01 
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