

An Efficient Test Vector Compression Technique Based on Geometric Shapes

Saif al Zahir1, Aiman El-Maleh2, and Esam Khan2

1 University of British Columbia, ECE Dept., Vancouver, B.C., Canada
2 King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

Email: saif_zahir@yahoo.com, {aimane,esamkhan}@ccse.kfupm.edu.sa

Abstract

One of the prime challenges of testing a system-on-a-
chip (SOC) is to reduce the required test data size.
In this paper, we introduce a novel compression /
decompression scheme based on geometric shapes that
substantially reduces the amount of test data and
reduces test time. The proposed scheme is based on
ordering the test vectors in such a way that enables the
generation of geometric shapes that can be highly
compressed via perfect lossless compression.
Experimental results on ISCAS benchmark circuits
demonstrate the effectiveness of the proposed technique
in achieving very high compression ratio. Compared to
published results, our technique achieves significantly
higher compression ratio.

1. Introduction

Due to the rapid advancement in VLSI technology, it
is possible to build very large systems containing
millions of transistors on a single integrated circuit. This
has resulted in a new paradigm for the design of
integrated circuits where a system-on-a-chip (SOC) is
constructed based on pre-designed and pre-verified cores
and user defined logic (UDL). As the complexity of
systems-on-a-chip continues to increase, the difficulty
and cost of testing such chips is increasing rapidly [6],
[7].

One of the challenges in testing SOC is dealing with
the large amount of test data that must be transferred
between the tester and the chip. The amount of time
required to test a chip depends on the size of test data
and the channel speed of data transfer. The cost of
automatic test equipment increases significantly with the
increase in their speed, channel capacity, and memory.
Thus, reducing test storage and test time is one of the
challenges for testing SOCs.

Applying lossless compression techniques can reduce
test storage and test time, which is the objective of this
work. Lossless compression techniques provide for the

exact reconstruction of the original data from its
compressed version. Run length coding, Huffman
codes, Lempel-Ziv algorithms, and arithmetic codes are
examples of lossless compression [8]. Several
compression/decompression techniques are proposed in
the literature to reduce test memory requirements and
test time. All the proposed compression techniques are
lossless and most of them attempt at utilizing either
Huffman coding, run-length coding, or variations of
these methods. Some sort of vector sorting to facilitate
higher compression ratio precedes the implementation of
these techniques. In [1], Burrows-Wheelers (BW)
transformation is applied on the test data to produce
longer and fewer runs, and then run length coding is
applied to compress the transformed data. In [4], a
statistical compression scheme is proposed that is based
on variable length codewords to encode fixed length
blocks of bits in test data. In [3], a compression scheme
is proposed that uses careful ordering of the test data and
formations of cyclical scan chains to achieve
compression with run-length codes. In this scheme, a
codeword is used to encode a block of data based on the
number of zeros followed by a one in that block.
Golomb code is used in [2], which is a variable-to-
variable run-length code, to enhance the scheme
described above. It divides the runs into groups, each is
of size m. The number of groups is determined by the
length of the longest run, and the group size m is
dependent on the distribution of test data. In [9], a
compression scheme using an embedded processor on a
SOC is proposed. This scheme is based on generating
the next test vector from the previous one by storing
only the information about how the vectors differ. In
[5], a different approach is proposed to design a core that
can be tested with fewer number of test vectors.

In this paper, we introduce a novel and very efficient
compression scheme for deterministic testing of SOCs
based on geometric shapes. This scheme is designed
based on test cubes to maximize the compression ratio.
Test vector decompression is performed on chip and is
implemented either in hardware or software. For
hardware decompression option, a decoding circuitry is

Table 1. The primitive geometric shapes.

 Lines Triangles Rectangle

placed on the chip to perform the decompression
algorithm. However, for software decompression option,
the compressed data is loaded into an embedded core.
The embedded core will then execute the decompression
algorithm and decompress the test data, which is then
applied to the circuit under test. The decompression
algorithm can be stored in a ROM on chip. This
approach can reduce both the amount of test data that
must be stored on the tester and the test time.

Type1

2. The Proposed Encoding/Decoding Algorithm

The proposed encoding/decoding algorithm is based
on geometric shapes. In this work, we limited those
shapes to the basic four namely: point, line, triangle, and
rectangle as shown in Table 1. The choice of those
shapes is made based on the following: (i) those shapes
are bounded by a maximum of two point coordinates
that can be encoded with a small number of bits; (ii) they
are the most frequently encountered shapes in the test
sets.

The following steps summarize the encoding process

of the proposed algorithm:

Step 1. Test vectors sorting:

This step is crucial and has a significant impact on the
compression ratio as inappropriate sorting may cause
lower compression ratio. In this step, we aim at
generating clusters of either zeros or ones in such a way
that it may partially or totally be fitted in one or more of
the geometric primitives shown in Table 1. Several
sorting scenarios have been considered and investigated.
In this work, we used a simple correlation-based sorting
technique. This technique works as follows: At first, we
chose the vector with the maximum number of zeros to
become the first vector in the sorted vector set.
Although this choice may not produce the optimal
sorting of vectors, it was found to be a good heuristic
based on experimentation. To determine the second
vector, the “distance” of each of the remaining vectors to
this vector is calculated and the vector that generates the
maximum distance, i.e., most correlated, is chosen to be
the second vector in the sorted set and so on. The
“distance” between two vectors can be computed based
on either the 0’s, referred to as the zero-distance, or the
1’s, referred to as the one-distance. For example, to
compute the zero-distance between two vectors, v1 and
v2, we do the following. For each ‘0’ in v1, we assign a
weight of 1.0 to each of its immediate (vertical and
diagonal) ‘0’ neighbor, 0.25 to each of its immediate ‘X’
neighbor, and 0.0 to each of the immediate ‘1’ neighbor
in v2. Furthermore, for each ‘X’ in v1, we assign a
weight of 0.25 to each of its immediate ‘0’ or ‘X’
neighbor, and 0.0 to each of the immediate ‘1’ neighbor
in v2. A weight of 0.0 is given for all other cases. The

assignment of a 0.25 weight for an ‘X’ to each of its
immediate neighbor be it an ‘X’ or a ‘0’ is chosen due to
the following reasons. First, this weight may help in
completing or generating additional geometric shapes
that can lead to a better solution. Second, this can help
in generating blocks filled by ‘X’s which can be
minimally encoded. Different weights have been
experimented with, and a weight of 0.25 has been found
to produce better results in most of the cases. The one-
distance can be calculated similarly.

Since the first vector chosen is the one with the
largest number of zeros, we performed sorting based on
the zero-distance. In Table 2, we show a simple example
to illustrate this sorting procedure. Let v1, v2, and v3 be
three test vectors to be sorted using the zero-distance
approach. Then, zero-distance(v1,v2) = (0.0 + 0.25) +
(0.0 + 0.25 + 0.25) + (0.25 + 0.25 + 0.25) + (0.25 +
0.25 + 1) + (0.25 + 1) = 4.25, and zero-distance
(v1,v3)= (1.0 + 1.0) + (0.25 + 0.25 + 0.0) + (1.0 + 0.0 +
1.0) + (0.0 + 1.0 + 0.25) + (1.0 + 0.25) = 7.0. Based
on the calculated distances, the sorting scheme will
choose the order (v1, v3, v2), as shown in Table 2. Note
that this sorting produces geometric shapes that can be
encoded efficiently, as shown in the table. However, if
the vectors are sorted using the order (v1, v2, v3), more
shapes would have been needed to cover the same
number of 0s. This sorting scheme produced good
results in most cases compared to other scenarios.

Table 2. An example of test vector sorting.

v1 0 X 0 0 0
v2 1 X X X 0

Original
Vectors

v3 0 0 1 0 X
v1 0 X 0 0 0
v3 0 0 1 0 X

Sorted
Vectors

v2 1 X X X 0

Type 2

X

Type3

X

Type 4

X

(x1 , y1)

(x2 , y2)

(x1 , y1)

(x2 , y2)

(x2 , y2)

Dir = 0

(x1 , y1)

Dir = 1
(x1 , y1)

(x2 , y2)

(x2 , y2) (x1 , y1)

(x2 , y2) (x1 , y1)

(x1 , y1) (x2 , y2)

Dir = 1
(x2 , y2)

(x1 , y1)

Dir = 0

(x2 , y2)

(x1 , y1)

Step 2. Test Data partitioning

Encode as:
0 1 0/1♦

of bits to encode the
block ≥ # of bits in the

block Yes

Encode as:
 0 0 real data

No

of shapes = 0
No

Encode as:
1 0/1♣

Yes

Test Vectors
(For each block)

0 0 (x, y)

0 1 (x1, y1), (x2, y2)

1 0 0/1♥ (x1, y1), (x2, y2)

1 1 (x1, y1), (x2, y2)

For each shape

♦ This case means all bits in this block are either zeros and Xs
 (which will be encoded as 010) , or ones and Xs(which will

 be encoded as 011) .
♣ If shapes are used to encode zeros then 10 will be used otherwise 11.
♥ This indicates the direction of the triangle as shown in Table 1.

Figure 1. Schematic diagram of the encoding format.

A set of sorted test vectors, M, is represented in a

matrix form, RxC, where R is the number of test vectors
and C is the length of each test vector. The test data is
segmented into LxK blocks each of which is NxN bits,
where L is equal to and K is equal to ⎡ NR / ⎤ ⎡ ⎤NC / .
For test vectors whose columns and/or rows are not
divisible by the predetermined size of block N, a partial
block will be produced at the right end columns and/or
the bottom rows of the test data. Since the size of such
partial blocks can be deduced based on the vector length
and the block size, the number of bits used to encode the
coordinates of the primitives can be less than log N. The
decoder recognizes those special cases and decodes them
properly.

Step 3. Encoding process

As mentioned earlier, the encoding process will be
applied on each NxN block independently. The
procedure of encoding is as follows:
(i) Extraction of shapes: Let the type of the bit to be
encoded be b (b is either 0 or 1), then for each bit b, the
largest shape covering bit b is extracted for each
primitive geometric shape type (shown in Table 1). For
example, in the sorted vectors in Table 2, extraction of
shapes covering the first 0 produces a line of type 1, a
line of type 2, a line of type 3, a rectangle of type 1, a
triangle of type 2, and a triangle of type 4.
(ii) Covering problem: A covering problem is then
solved based on the extracted shapes in (i) to identify the
shapes covering all the bits to be encoded, with the
smallest number of bits.
(iii) Steps (i) and (ii) are performed once for covering
the zeros and another time for covering the ones. The
block is then encoded based on the one that produces
better results.

The format for encoding the shapes in a block is done

as illustrated in Figure 1. For each block, if the number
of bits needed to encode the shapes is larger than the
number of bits in the block, then such a block is not
encoded and the same test data is used. Otherwise, the
block is encoded. If the block can be encoded with one
rectangle covering all bits in the block, then such a block
is marked as a block that is filled with either 0s or 1s. In
this case, two bits are sufficient to encode the block
instead of encoding it as a rectangle. Otherwise, the
block is encoded with the geometric primitives. When
encoding a block that contains geometric shapes, the
number of shapes is encoded first followed by the
encoding for each shape.

For this scheme, the decoding process is simple and

straightforward. In this work, it is assumed that an
embedded processor on chip will implement the decoder.

A framework illustrating the details of how the test
vectors can be transferred from the embedded processor
to the tested parts of the chip has been outlined in [9]. A
similar framework can be used for our decoding
algorithm.

3. Experimental Results

In order to demonstrate the effectiveness of our

scheme, we have performed experiments on a number of
the largest full-scanned versions of ISCAS89 benchmark
circuits. We have used the test cubes obtained using the
Mintest program [10] with dynamic compaction.

The test vectors were sorted to maximize the
compression. In this work, test vectors were sorted
greedily based on the zero-distance measure starting
with the test vector with the largest number of 0s. The
test sets were partitioned into blocks of sizes 8x8, 16x16,
and 32x32 respectively. Then, the proposed encoding
algorithm was applied for each case separately as shown
in Table 3. The second column in the table shows the
scan size, which is basically the width of a test vector.
The compression ratio is computed as:

100X
Bits Original

Bits Compressed Bits Original
Ratio Comp

#

##
.

−
=

As can be seen from the table, the best compression ratio
obtained is dependent on the block size used. However,
for most of the cases a block size of 8x8 produces the
best results (which are highlighted in the table). The
effectiveness of the proposed encoding algorithm is
clearly demonstrated as very high compression ratio was
obtained for all the circuits (over 54%). The encoding
algorithm is very fast as the CPU time for encoding
each test set, for the three block sizes, was less than a
minute. Since the encoding algorithm is fast and since
the size of the block that produces the best results is
dependent on the test set, encoding can be performed for
the three block sizes and the best result is chosen.
In Table 4, a comparison between our technique with the
one proposed in [2] is shown. The last column shows
the percentage reduction in the number of compressed
bits obtained by our technique relative to what is
obtained in [2]. As can be seen from the table, for all the
circuits, our technique achieves significantly higher
compression ratio. Our technique reduces the size of
compressed bits by 20%-78% more than the size of
compressed bits in [2]. It is interesting to observe that

for the circuit s35932, while the technique in [2]
achieved 0.0% compression, our technique achieved
77.85% compression.

4. Conclusions

In this paper, a fast compression/decompression scheme
based on geometric shapes has been presented. The test
data is first sorted to minimize the number of geometric
shapes to be encoded and maximize the compression
ratio. Then, it is partitioned into blocks and each block is
encoded separately. The scheme exploits the block size,
the type of bits to be encoded, and whether or not to
encode the block. Based on experimental results, our
technique achieves a very high compression ratio.
Compared to compression based on Golomb codes, our
technique reduced the size of compressed bits by 20-
78%. In this work, we assumed that the decompression
algorithm is implemented in software and will be
executed by an embedded processor on chip.

Acknowledgment

This work is supported by King Fahd University of
Petroleum & Minerals (KFUPM), Dhahran, Saudi
Arabia, under project #FT/2000-07.

References

 [1] T. Yamaguchi, M. Tilgner, M. Ishida, and D.S. Ha, “An
Efficient Method for Compressing Test Data,” Proc. Int. Test
Conf., pp. 191-199, 1997.

 [2] A. Chandra and K. Chakrabarty, “Test Data Compression
for System-On-a-Chip using Golomb Codes,” Proc. of IEEE
VLSI Test Symp., pp. 113-120, 2000.

 [3] A. Jas and N.A. Touba, “Test Vector Decompression via
Cyclical Scan Chains and its Application to Testing Core-Based
Designs,” Proc. of Int. Test Conf., pp. 458-464, 1998.

 [4] A. Jas, J.G. Dastidar and N.A. Touba, “Scan Vector
Compression/ Decompression Using Statistical Coding,” Proc.
of Int. Test Conf., pp. 458-464, 1998.

 [5] A. Jas, K. Mohanram, and N.A. Touba, “An Embedded
Core DFT Scheme to Obtain Highly Compressed Test Sets,”
Proc. of IEEE Asian Test Symp., pp. 275-280, 1999.

 [6] R. Chandramouli, and S. Pateras, “Testing Systems on a
Chip,” IEEE Spectrum, pp. 42-47, Nov. 1996.

 [7] Y. Zorian, E.J. Marinissen, and S. Dey, “Testing
Embedded-Core Based System Chips,” Proc. of Int. Test Conf.,
pp. 130-143, 1998.

 [8] G. Gibson et-al, Digital Compression for Multimedia,
Morgan Kaufmann Publishers, Inc., 1998.
[9] A. Jas and N. Touba, “Using an Embedded Processor for
Efficient Deterministic Testing of Systems on a Chip”, IEEE
Int. Conf. On Computer Design, pp. 418-423, 1999.
[10] I. Hamzaoglu and J. H. Patel, “Test Se Compaction
Algorithms for Combinational’’, Proc. Int. Conf. Computer-
Aided Design, pp. 283-289, 1998.

Table 4. Comparison with Golomb codes [2].

 Proposed
Technique

Golomb [2]

Circuit Comp.
 Ratio

Comp.
Bits

Comp.
Ratio

Comp.
Bits

%
Reduction

Comp.
Bits

s5378f 54.69 10763 40.7 14086 23.59
s9234 54.51 17865 43.34 22252 19.72
s13207 84.86 25011 74.78 41664 42.37
s15850 68.96 23897 47.11 40718 41.31
s35932 77.85 6248 0.0 28208 77.85
s38417 60.55 64988 44.12 92055 29.40
s38584 64.17 71339 47.71 104111 31.48

Table 3. Compression results of the proposed
scheme.

 Block

8x8
Block
16x16

Block
 32x32

Circuit Scan
 Size

Original
Bits

Cmp.
 Ratio

Cmp.
Ratio

Cmp.
Ratio

s5378f 214 23754 54.69 46.99 39.84
s9234 247 39273 54.51 50.2 42.03
s13207 700 165200 84.36 84.86 84.09
s15850 611 76986 68.96 65.90 62.38
s35932 1763 28208 65.0 73.49 77.85
s38417 1664 164736 60.55 58.42 52.67
s38584 1464 199104 64.17 59.89 53.01

	Abstract
	1. Introduction
	2. The Proposed Encoding/Decoding Algorithm
	
	Acknowledgment
	
	This work is supported by King Fahd University of Petroleum & Minerals (KFUPM), Dhahran, Saudi Arabia, under project #FT/2000-07.
	References

