
An Efficient Test Vector Compression Technique Based
on Block Merging

Aiman El-Maleh
Department of Computer Engineering

King Fahd University of Petroleum and Minerals
Dhahran, Saudi Arabia

aimane@ccse.kfupm.edu.sa

Abstract—In this paper, we present a new test data
compression technique based on block merging. The technique
capitalizes on the fact that many consecutive blocks of the test
data can be merged together. Compression is achieved by
storing the merged block and the number of blocks merged. It
also takes advantage of cases where the merged block can be
filled by all 0’s or all 1’s. Test data decompression is performed
on chip using a simple circuitry that repeats the merged block
the required number of times. The decompression circuitry has
the advantage of being test data independent. Experimental
results on benchmark circuits demonstrate the effectiveness of
the proposed technique compared to previous approaches.

I. INTRODUCTION
With recent advances in process technology, it is

predicted that the density of integrated circuits will reach
billion transistors per chip. The increasing density of
integrated circuits has resulted in tremendous increase in test
data volumes. Large test data volumes not only increase the
testing time but may also exceed the capacity of tester
memory.

One way to reduce the test data volume is by test
compression. The objective of test data compression is to
reduce the number of bits needed to represent the test data.
Test data compression techniques can be classified into two
categories; one is based on BIST and Pseudo-Random
Generators (PRG) and the other is based on deterministic test
compression.

Deterministic test compression techniques can be further
classified into test-independent and test-dependent. The
advantage of test-independent compression techniques is that
the decompression circuitry does not need to be changed due
to changes in the test set. Several test-independent
compression techniques have been proposed in the literature:
Golomb[1], FDR[2], EFDR[3], Geometric[4], and 9C[5].

In this paper, we introduce an efficient test-independent
compression technique based on block merging. The
technique is based on merging consecutive compatible

blocks of the test data. The merged block and the number of
blocks merged is stored in the encoded test data. In cases
where the merged block can be filled by all 0’s or all 1’s, it is
encoded by 2 bits, otherwise its content is stored. Test data
decompression is performed on chip using a simple circuitry
that repeats the merged block the required number of times.

II. BLOCK MERGING COMPRESSION TECHNIQUE
The Block Merging (BM) compression technique is

based on partitioning the test set into blocks of size b bits and
then merging consecutive compatible blocks. Two blocks
are considered compatible if all two bits in corresponding
positions in the two blocks are compatible. Two bits are
compatible if they have the same value or any one of them is
an X. The technique merges all compatible consecutive
blocks into one merged block and then stores the merged
block along with a count indicating the number of blocks
merged. It encodes the merged block in two different ways
depending on if the block can be filled by only one value (i.e.
0 or 1) or it contains both values. If the merged block
contains both values, then it will be stored as is otherwise its
content is encoded.

In order to reduce the number of bits used for
representing the merged blocks count, the encoded merged
blocks are grouped into six groups, where a prefix is used to
represent the group. This is motivated by the observation
that the frequency of merged blocks count is the highest at
low values and decreases with increasing values. Table I
shows the six groups with their different encoding schemes.
It should be observed that b is the block size and it is
assumed to be between 4 to 10 bits. The first group, B=1,
represents the case when a block cannot be merged with
consecutive blocks and in this case it will be represented by a
prefix 0 and b bits for storing the bits of the block. The
second group, B=2, represents the case when only two
blocks are merged and in this case a prefix 10 is used to
represent the group. If the next bit is 0, this indicates that the
block contains both 0’s and 1’s and hence its content needs
to be stored using b bits. However, if the block can be filled

This work is supported by King Fahd University of Petroleum &
Minerals, Dhahran, Saudi Arabia.

TABLE I. BLOCK MERGING ENCODING SCHEME

Groups Type Codeword
B=1 No merging 0+b bits

1’s & 0’s 100+b bits
Fill with 1s 1011 B=2
Fill with 0s 1010
1’s & 0’s 110+2 bits+0+b bits

Fill with 1s 110+2 bits+11 B =3 to 6
Fill with 0s 110+2 bits+10
1’s & 0’s s 1110+3 bits+0+b bits
Fill with 1s 1110+3 bits+11 B=7 to 14
Fill with 0s 1110+3 bits+10
1’s & 0’s 11110+4 bits+0+b bits

Fill with 1s 11110+4 bits+11 B=15 to 30
Fill with 0s 11110+4 bits+10
1’s & 0’s 11111+5 bits+ 0+ b bits

Fill with 1s 11111+5 bits+11 B=31 to 62
Fill with 0s 11111+5 bits+10

by all 1’s then the two bits 11 are used otherwise the bits 10
are used to indicate that the block is filled with all 0’s. The
next group represents the case when the number of merged
blocks is between 3 and 6. In this case, the prefix 110 is used
to represent this group. This is followed by 2 bits to represent
the number of blocks merged. The next bit indicates whether
the block is a filled block with all 0’s or all 1’s or a block
containing both 0’s and 1’s. The same policy applies for the
remaining groups. Thus according to this code, the
maximum number of merged blocks supported by this code
is 62. It should be observed that the number of 1’s in the
prefix code of each group is the same as the number of bits
used for storing the merged blocks count code.

The next example illustrates the encoding of the block
merging technique for a block size of 5:

Input data: X0X1X 101XX XX111 1XX11 0X0X0
XX000 110XX (35 bits).

Encoded data: 001 11001010111 1010 0110XX (24 bits).

Note that the first 3 bits are for encoding the block size. It
is assumed that block sizes allowed are in the range of 4 to
10 and hence 3 bits are used to encode them. Thus, 001
encodes a block size of 5.

III. BLOCK MERGING DECODER
In this section, we present the design of the Block

Merging decoder describing its datapath and the control unit
modeled as a finite state machine (FSM).

A. Datapath Design
The datapath of the Block Merging decoder is composed

of eleven main components as shown in Fig. 1. The main
functionality of each component is described below:

Counter1: This counter is a 5-bit counter and is used to
store the code prefix (without the 0). When it receives five
consecutive ones, it sets the signal MAX so that the FSM
would stop sending more inputs to the counter.

Counter2: This counter is a 5-bit counter and is used to
store the merged blocks count, and it will not start unless
counter1 finishes.

3-bit counter: Used to count the number of 1’s in the
prefix code to determine the number of bits of the merged
blocks count to be read in counter2.

3-bit Shift Register: Stores the 3-bit block size.

4-bit Counter: Stores the decoded 4-bit block size and
gets its input from the block size decoder. It is decremented
during the generation of the block. Once the counter reaches
zero it will set RST3 and reload itself with the data again
from the 3-bit shift register through the block size decoder.

4/10-bit Shift Register: Configured to be used as a 4-bit
shift register to a 10-bit shift register. The configuration is
done based on the block size stored in the 3-bit shift register
through the 3-8 decoder. The register receives data through
either the serial input or the least significant flip-flop for
repeating the stored block. This is controlled by the REP
signal. The serial input gets data either from the FSM
directly or the latch based on the FILL signal.

3-8 Decoder: Used to configure the 4/10-bit shift register
according to the block size (4 bits to 10 bits). It decodes the
content of the 3-bit shift register considering that code 000
represents a block size of 4, and code 110 represents a block
size of 10.

A latch: Used to store the fill bit in case of a filled
merged block. The FSM sets or resets the latch according to
the filling bit.

2 Multiplexers: One multiplexer is inserted between the
4/10-bit shift register and the FSM in order to choose the
serial input either from the latch or the FSM directly. The
other multiplexer is inserted at the output stage in order to
drive the scan chain either directly from the serial input or
from the output of the 4/10-bit shift register.

Size decoder: Decodes the block size from 3 bits to 4 bits
and its output is connected to the 4-bit counter.

B. FSM Design
The Block Merging FSM is composed of fourteen states

with 6 inputs and 16 outputs as shown in Fig. 2. The
behavior of the Block Merging FSM is summarized as
follows. S0 sets the EN signal to the tester indicating its
readiness for receiving the next encoded bit. S1-S3 read the
next 3 bits representing the block size and store it in the 3-bit
shift register. S4 checks the next bit to determine whether the
number of merged blocks is greater than one or not If it is
greater than one, it goes to state S5, otherwise it goes to state
S10. S5 checks the next bit to determine whether the number
of merged blocks is twice or not. S6 reads the prefix code of
the codeword and stores it in counter1. S7 reads the merged
blocks count and stores it in counter2. S8 checks the next bit
to determine whether the merged block is a filled block (=1)
or not. S9 checks the next bit for determining the filling bit
and sets or rests the latch accordingly. It also outputs the first

TABLE III. COMPARISON WITH OTHER TECHNIQUES

Compression Ratio # CLK Cycles Circuit FDR EFDR BM FDR EFDR BM
S13207 81.3 81.85 84.89 691169 680804 673145
S15850 66.21 67.99 69.49 337633 326109 307725
S35932 19.36 80.31 78.35 135665 115581 122339
S38417 43.37 60.57 59.39 765365 704633 713101
S38584 47.98 51.93 54.98 110081 102560 93125
S5378 43.61 45.89 51.19 184331 173087 159861
S9234 60.93 62.91 66.86 885537 848914 811571

Average 51.82 64.49 66.45 444254 421670 411552

bit of the filled block. S10 reads and outputs the merged
block. S11 outputs the remaining bits of the filled block.
S12 outputs the merged block a number of times equal to
counter1 which is the prefix code without the 0. S13 outputs
the merged block a number of times equal to counter2, which
is the merged blocks count code. It should be observed that
the number of times a block is repeated is equal to the sum of
the number of times stored in counter1 and counter2.

IV. EXPERIMETAL RESULTS

In order to demonstrate the effectiveness of our scheme, we
have performed experiments on a number of the largest full-
scanned versions of ISCAS89 benchmark circuits. We have
used the Mintest[6] test sets generated using the dynamic
compaction option.
Table II presents the compression ratios achieved by the
proposed technique for different block sizes. The
compression ratio is computed as (# Orig. bits - #Comp.
bits)/# Orig. bits X 100. As can be seen, the block sizes
achieving the highest compression ratios vary depending on
the test set.

Table III compares the proposed technique to both FDR
and EFDR techniques in terms of the compression ratio and
the number of clock cycles needed to decompress the test
sets. The number of clock cycles is obtained based on
VHDL models of the decoders of the three techniques. As
can be seen, the block merging compression technique
achieves higher compression than the FDR technique for all
the circuits and achieves higher compression than the EFDR
technique in five out of seven circuits. On average, it
achieves around 15% higher compression than FDR and 2%
higher compression that EFDR per circuit. Furthermore, the
average number of clock cycles needed to decompress the
test sets is less than both FDR and EFDR correlating with
the compression ratios achieved.

The decompression circuitry for the three techniques
were synthesized using Xilinx Spartan2 XC2S100-6tq144
FPGA optimized for area. The estimated gate count was
1105, 1176, and 1818 gates for the FDR, EFDR and BM
compression techniques, respectively.

V. CONCLUSIONS
In this work, we have presented an efficient test
compression technique based on merging consecutive
blocks. The merged block along with merged blocks count

is stored in the compressed test set. The merged block is
either stored as is or encoded if it is a filled block. The
technique achieves higher compression ratios in comparison
to other test-independent compression techniques.

ACKNOWLEDGMENT
The author would like to thank Mr. Mohammad

Kalkattawi for his help in the implementation of this work.

REFERENCES
 [1] A. Chandra and K. Chakrabarty, “Test data compression and

decompression based on internal scan chains and Golomb coding,” IEEE

Trans. Computer Aided Design of Integrated Circuits and Systems, Vol. 21,

No. 6, pp. 715-722, June 2002.

 [2] A. Chandra, and K. Chakrabarty, “Test data compression and test

resource partitioning for system-on-a-chip using frequency-directed run-

length (FDR) Codes,” IEEE Trans. Comp., Vol. 52, pp. 1076-1088, 2003.

 [3] A. El-Maleh and R. Al-Abaji, “Extended frequency-directed run length

code with improved application to system-on-a-chip test data compression”

Proc. 9th IEEE Int. Conf. Elect., Circuits and Systems, pp. 449-452, 2002.

 [4] A. El-Maleh, S. Al-Zahir and E. Khan,“A geometric-primitives-based

compression scheme for testing systems-on-a-chip,” 19’th IEEE VLSI Test

Symposium , pp. 54-59, 2001.

[5] M. Tehranipoor, M. Nourani, and K. Chakrabarty, “Nine-coded

compression technique for testing embedded cores in SoCs,” IEEE

Transactions on Very Large Scale Integration Systems, Vol. 13, No. 6, 719

– 731, June 2005.

[6] I. Hamzaoglu and J. H. Patel, “Test set compaction algorithms for

combinational circuits’’, Proc. Int. Conf. Computer-Aided Design, pp. 283-

289, 1998.

TABLE II. BLOCK MERGING COMPRESSION RESULTS

Circuit #VEC B=3 B=4 B=5 B=6 B=7 B=8 B=9 B=10 B=11
S13207 700 81.78 83.19 84.70 84.24 83.45 84.69 84.89 84.74 83.97
S15850 611 65.97 68.05 68.82 68.60 69.49 68.76 68.48 67.94 66.62
S35932 1763 77.20 77.19 78.35 77.95 76.96 74.47 73.81 73.39 72.77
S38417 1664 59.08 59.39 58.87 58.31 58.21 56.90 57.43 54.84 54.68
S38584 1464 63.86 65.53 66.47 66.86 66.80 66.36 66.08 66.24 65.40
S5378 214 50.49 52.27 53.50 54.98 53.51 52.99 53.25 52.47 52.75
S9234 247 46.32 48.99 51.19 49.31 50.75 49.55 49.25 48.24 46.45

FSM
counter1

counter2

Counter

4-bit
counter

3-8 decoder

3-bit shift register

4/10-Bit shift register

S1

S2

D

C ENB

Multiplexer

S1

S2

D

C ENB

Multiplexer

SE R1

SER2

SER2

SER2

FILL

REP

DEC1

RST1

MAX

SHIFT 2

DEC2

RST2

INC

DEC4

RST4

DEC3

LOAD

RST3

SHIFT 1

SER2

X2 X1 X0

Y 0Y1Y 2Y 3Y4Y5Y6

OUT

ENSFT

ENSF 2

EN

V

BIT_IN

CLK

 CLK

 CLK

CLK

CLK

CLK

CLK

3-bit

LATCH

SIZ E
DECODER

X 2

X1

X0

Figure 1. Block merging decoder design.

s0

s1

s2 s6

bit_in, rst1, rst2, rst3, rst4, max / en, v, shift1, dec1, shift2, dec2, dec3, inc,dec4, rep, fill ,ser1, ser2,
ensft, ensft2, load

- - - - - - /100000000-- -- 000

0 - - - - - /100000000- - - 0 0101- - - - - /100000000- - - 1
010

010
- - -1

- - -

1-- - - 0/101000010- - - 1 -- -

1----1/101

0----

s5

s8

s9

s12

s11

s10

s3

s4

s7

s13

0- - - - - /100000000- - - 00101- - - - - /100000000- - - 1
010

1-
- - - -/10100

0

0
-----/100000000

---0
010

1-

/100000000

1
010

000010
--

-1

-/100000000
--

--
-

--

1- - - 0 - /100010001-- -1
- - -0 - - - 0 - /100010001- - -0

- --
0 - - - - -/101000001 - - - 0 - - -

- - - - 1 - /000000000- - - - - - -

1- - - - - /101000010- - - 1-01

0- - - - - /10000000000- - - - -

1- - - - - /10000000001-- - - -

0 - - - - - /10100000000- 0 - 01

0 -- 0 - - /11000010000– 01 --

1 -- 0 -- /11000010000- 11 - -

0

--
/110000100010

-1--

1
-

-/110000100011

–
1

--

- - -0 - - /01000010001- - 1 - -

- - - 1- - /000100000
1 - - - 0 - -

-0 – 0 - - /0100001001- -- 1 - -

- - - 1- - /00010 000 01
-

- - 0
- -

- 0 –1 - - /0001000001- - - 0 - -
-10 - - -/0000000001 - - - 0

--

- - 00- - /0100001001- --1 - -- - 01 - - /0000010001- - - 0 - -

- -1 - - - /0000000000- - - 000

- 11 - - - /000000000-- -0 00

Figure 2. Block merging decoder FSM design.

