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Abstract

Implied volatility (IV) forecasting is inherently challenging due to its high dimensionality

across various moneyness and maturity, and nonlinearity in both spatial and temporal aspects.

We utilize implied volatility surfaces (IVS) to represent comprehensive spatial dependence

and model the nonlinear temporal dependencies within a series of IVS. Leveraging advanced

kernel-based machine learning techniques, we introduce the functional Neural Tangent Kernel

(fNTK) estimator within the Nonlinear Functional Autoregression framework, specifically tai-

lored to capture intricate relationships within implied volatilities. We establish the connection

between fNTK and kernel regression, emphasizing its role in contemporary nonparametric

statistical modeling. Empirically, we analyze S&P 500 Index options from January 2009 to

December 2021, encompassing more than 6 million European calls and puts, thereby show-

casing the superior forecast accuracy of fNTK. We demonstrate the significant economic value

of having an accurate implied volatility forecaster within trading strategies. Notably, short

delta-neutral straddle trading, supported by fNTK, achieves a Sharpe ratio ranging from 1.45

to 2.02, resulting in a relative enhancement in trading outcomes ranging from 77% to 583%.
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1 Introduction

Implied Volatility (IV) forecasting represents a crucial frontier in financial econometrics, carrying

profound implications for financial markets. Serving as a prominent gauge and an ’observable’

measure of volatility, IV intricately weaves through investment landscapes, risk management tac-

tics, and strategic financial blueprints. It offers valuable insights into market expectations, influ-

ences option pricing models, and impacts the theoretical value of options. Its dynamism captures

current market sentiment and projects forward-looking market expectations. Within this omnipres-

ence of IV lies the pressing challenge of precise forecasting—a conduit to maximize its potential

in shaping well-informed financial strategies. This underscores the critical need for innovation in

IV forecasting methods.

Numerous studies have dedicated considerable effort to forecasting IV, recognizing its signifi-

cance within the realm of financial markets Audrino and Colangelo (2010), Bernales and Guidolin

(2014, 2015), and Kearney, Shang, and Sheenan (2019). Achieving accurate forecasts in this con-

text demands that modeling approaches align with the actual characteristics and dynamics of IVs

found in real-world data. Among these characteristics, two distinct types of dependencies emerge.

Spatial dependence arises from the reliance of IVs on various moneyness levels and maturities.

Concurrently, temporal dependencies come into play as IVs dynamically evolve in response to

shifts in the financial market. Both of these dependencies are characterized by intricate, nonlinear

patterns Almeida et al. (2022) and Zhang, Li, and Zhang (2023).

Modeling the dynamics of IVs gains a comprehensive perspective when viewed through the

Implied Volatility Surface (IVS) prism. The IVS offers a holistic characterization of IV, encapsu-

lating its systematic variations in spatial aspects with respect to both strike price and expiration

date. By modeling the entire IV surface, we can comprehensively represent the spatial dependence

structures as a function, and the focus shifts toward understanding the temporal dependence within

the series of functions. There is an active area of research for embedding features of IVS in the es-

timation of parametric models (see Carr and Wu, 2016; Aït-Sahalia, Li, and Li, 2021a; Aït-Sahalia,
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Li, and Li, 2021b for some recent progress). While less commonly employed in IV forecasting,

functional time series analysis has gained prominence as a lively area of research.1 This includes

modeling the dynamics of IVS, albeit typically through linear modeling approaches, see e.g., Cont

and Da Fonseca (2002), Fengler, Härdle, and Mammen (2007), Park et al. (2009), Fengler and Hin

(2015), Ulrich and Walther (2020). However, it becomes evident that a model aiming to elucidate

the IVS dynamics should be flexible to encapsulate nonlinear nature.

To achieve our goal, we introduce the functional Neural Tangent Kernel (fNTK) estimator

within the Nonlinear Functional Autoregression (NFAR) modeling framework. In this framework,

future implied volatility surfaces depend on past implied volatility surfaces through a nonlinear

function-on-function regression framework based on a linear operator within the Reproducing Ker-

nel Hilbert Space (RKHS), see Kadri et al. (2010) and Sang and Li (2022). By leveraging advanced

kernel-based machine learning techniques, fNTK is specifically designed to capture intricate com-

plex relationships within implied volatilities. We show the connection between fNTK and kernel

regression, highlighting its role in contemporary nonparametric statistical modeling. Our inno-

vation extends the NTK approach proposed by Arora et al. (2019), Jacot, Gabriel, and Hongler

(2018) and Domingos (2020) into the functional setup. Our contributions are multifaceted: we es-

tablish a comprehensive methodological framework for modeling complex nonlinearity, elucidate

the relationship between NTK and kernel regression in the functional setup, and emphasize the

significance of fNTK in the modern analytical landscape.

Transitioning from theoretical concepts to empirical exploration, our analysis of the S&P 500

index Implied Volatility Surface (IVS) spanning from January 2009 to December 2021 unfolds

a compelling narrative. The fNTK estimator demonstrates a noteworthy improvement, averaging

between 4.54% to 39.44% in RMSE forecast accuracy relative to a linear benchmark and a range of

alternative models, across 5 to 20-day-ahead predictions. Furthermore, we delve into an important

economic question concerning the added value of accurate IV forecast accuracy within various

1Examples include forecasting natural gas transmission network (Chen et al., 2021; Xu et al., 2022), yield curves
(Xu, Li, and Chen, 2017), probability density functions (Petersen and Müller, 2016; Grith et al., 2018), Value-at-Risk
(Cai et al., 2019), limit order books (Chen, Chua, and Härdle, 2019), medical and genetic data (Li, Huang, and Härdle,
2019), brain networks (Solea and Li, 2022).
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trading strategies. Remarkably, short delta-neutral straddle trading, empowered by fNTK, yields

a Sharpe ratio between 1.45 and 2.02, resulting in a substantial enhancement in trading outcomes,

ranging from 77% to 583%. This convergence of methodological rigor and empirical results not

only advances statistical understanding but also serves as a guiding light for practitioners in the

options market. Our work underscores the presence of nonlinear patterns within the IVS series

and the advantages of acknowledging nonlinear dependencies in both modeling and forecasting.

Additionally, our study underscores the significant impact that accurate IV forecasting can have on

investment decision-making.

The paper is organized as follows. Section 2 gives an overall data description. Section 3

presents the NFAR model, the estimation procedure, and the asymptotic properties of the estimator.

Section 4 reports the implementation of the model on the data. Section 5 shows the economic

values of the predictability of the NFAR model. Section 6 concludes the paper.

2 Data

We consider daily options on the S&P 500 Index obtained from IvyDB OptionMetrics for the

period spanning from January 1, 2009, through to December 31, 2021, encompassing about 6.4

million European calls and puts. This repository facilitates a comprehensive insight into option

contract specifics: best bid and ask quotes, expiration date, strike, implied volatility,2 open interest

and volume. We also collect data on the closing value of the S&P 500 index, dividend, forward

prices, and the yield curve of riskless interest rates for constructing implied volatility surfaces and

further analysis.3

In the realm of implied volatility forecasting and trading strategy, options on the S&P 500 Index

2For a given option, IvyDB computes the Black-Scholes implied volatility from to the midpoint of the best closing
bid price and best ask of the option. The appropriate interest rate input corresponds to the zero-coupon rate that has a
maturity equal to the option’s expiration and is obtained by linearly interpolating between the two closest zero-coupon
rates on the zero curve. The daily dividend rate is assumed constant and is computed by IvyDB from the put-call parity
under a "constant dividend yield" assumption using the call’s bid price with the offer price of the put and vice versa.

3The zero-coupon interest rates curve used by IvyDB is derived from ICE IBA LIBOR rates and settlement prices
of CME Eurodollar futures.
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(SPX) stand as a paramount dataset. The SPX’s encompassing representation of the most promi-

nent U.S.-based publicly traded companies ensures that its options’ implied volatility serves as a

reliable barometer for broad market volatility expectations. The prodigious liquidity associated

with SPX options, attributable to their rank among the most frequently traded options globally,

ensures that the derived volatility signals are less tainted by liquidity-induced noise. The diverse

expiration cycles and an array of strike prices in these options allow for a meticulous investiga-

tion into the intricacies of the implied volatility surfaces. Such data granularity and the economic

significance of the SPX movements resonate not just with traders but extend to economists, pol-

icymakers, and risk management professionals. The cash-settled nature of SPX options further

simplifies the process for those focusing on volatility without the encumbrances of directional bi-

ases or the complexities of physical settlement. Furthermore, while individual stocks are often

subject to sharp volatility swings due to idiosyncratic events, the aggregated nature of the SPX

provides a more tempered and consistent snapshot of market volatility. As such, SPX options have

been popular tools for traders and researchers alike when studying implied volatility.

Drawing inspiration from the methodology outlined by Büchner and Kelly (2022), we metic-

ulously apply a set of filters to our dataset to eliminate entries that may arise from recording

discrepancies or erroneous inputs. Specifically, we discard all options in which i) the bid price is

negative or zero, ii) the bid exceeds the ask, iii) no-arbitrage conditions are violated,4 iv) implied

volatility is missing or non-positive, and (v) the open interest is negative.

For each option contract, we define time-to-maturity τ measured in years as the number of

trading days to expiration divided by 252. To measure the moneyness of a contract, we follow

Andersen, Fusari, and Todorov (2017) and define it as: m = ln(K/Fτ )√
τIVatm,τ

, where K is the strike price,

Fτ denotes the forward price for transactions τ years into the future, while IVatm,τ denotes the

annualized implied volatility of the option with the strike price closest to Fτ .5 This definition of

moneyness has two advantages: (i) an exactly at-the-money option (i.e., K = Fτ ) attains a delta of

4For example, we ensure the monotonicity of option prices with respect to the strike price.
5If a forward contract for a desired time-to-maturity τ is not available, we apply linear interpolation between the

two closest forward prices.
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roughly 0.5 in absolute value, and (ii) it ensures that the implied volatility surfaces are comparable

across different maturities and volatility regimes.

Our study models the implied volatility surface (IVS). The raw data are discretely observed at

irregular points (along with moneyness and maturity). We process a pre-smoothing to transform the

discrete observations on the same day into a daily continuous function. Specifically, we employ a

two-dimensional B-splines expansion6. Compared to discrete implied volatilities, IVS holistically

offers a comprehensive perspective, capturing the intricate dynamics across different strike prices

and expiration times. By encapsulating rich volatility information across the entire options chain

in a unified view, the inherent spatial relationships between implied volatilities at varying matu-

rities and moneyness are seamlessly integrated, eliminating the need for separate spatial models

and reducing the modeling complexity. Even for SPX, specific moneyness and maturities might

be sparse. Thus, we construct IV surfaces with tenors between 5 and 252 trading days, with mon-

eyness ranging from −2 ≤ m ≤ 2. To construct smooth implied volatility surfaces using daily

implied volatilities, we encompass options with moneyness stretching from −2.5 to a cap of 2.5,

and a time-to-maturity τ of up to 280 days. Our consolidated dataset spans 3273 days, averaging

908 call options and 875 put options daily7.

The implied volatilities of put and call options with the same strike and maturity provided by

OptionMetrics deviate from one another, thereby infringing upon the principles of put-call parity8.

To address this issue, we construct the implied volatility surfaces of call and put options sepa-

rately. By independently tailoring the IVS for puts and calls, we accommodate each option type’s

disparate dynamics and trading patterns. In Figure 1, we provide an illustration that showcases

6Specifically, we utilize two-dimensional cubic B-splines with intercepts and without interior knots. This approach
results in 16 basis functions. We experimented with different numbers of equidistant knots, such as a single knot at
1/2 and two knots at {1/3,2/3}. However, the RMSE for the smoothed surfaces remained largely consistent across
these variations.

7In Appendix, Table A.1 summarizes the composition of our consolidated sample. Figure A.1 illustrates histograms
of moneyness m and K/Fτ ratios for both option types. Notably, put options manifest a pronounced inclination towards
being out of the money, reflected by condition m < 0. In contrast, the moneyness distribution for call options seems
more equitably spread.

8This inconsistency can be attributed to varied factors. For instance, potential discrepancies in IvyDB’s dividend
computation methods have been alluded to (as elaborated in footnote 12 of in Bernales and Guidolin (2014)). Mean-
while, Büchner and Kelly (2022) hypothesizes that price pressure disparities may be the culprit.
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four IV surfaces for both call and put options: one from a calm period in 2019 and another from

a volatile period in 2020. This figure also includes snapshots of the discrete implied volatilities of

traded options for these periods. An IV surface clearly provides a smoother and more consistent

representation of volatility across diverse moneyness and maturity combinations. On the other

hand, a focus solely on discrete volatilities can introduce inconsistencies or abrupt transitions that

might not truly capture the market’s underlying volatility structure.

Call IVS, 02 Apr, 2019 Put IVS, 02 Apr, 2019 Call IVS, 02 Apr, 2020 Put IVS, 02 Apr, 2020

Im
pl

ie
d 

Vo
la

ti
lit

y

Figure 1: IVS of S&P500 calls and puts options on two different days with low and high volatility. The
observed IV values are black dots, and the surfaces are smoothed with two-dimensional B-splines.

Empirical studies unambiguously indicate a pronounced temporal dependence within the Im-

plied Volatility Surface (IVS), with shocks and co-movements manifesting pronounced correlations

across diverse time-to-maturities and moneynesses, see Fengler (2012). Figure 2 display the lead-

lag relationships and cross-lead-lag regressions for the average of call options, accentuating the

interconnectedness of the IV values from various days and maturities. Yet, this temporal relation-

ship is not linear. This is evident in Figure 2, where the nonparametric fit signifies the existence of

a nonlinear pattern in the dynamics of IV, especially in the longer forecasting horizons. While the

temporal nuances necessitate the application of autoregressive models, the intricate nonlinearities

observed command a more sophisticated nonlinear modeling approach.

3 Methodology

In this section, we introduce the nonlinear functional autoregressive (NFAR) model to capture the

intricacies of implied volatility surfaces using lagged surfaces. This is achieved through a nonlin-

ear function-on-function regression framework, facilitated by a linear operator in the Reproducing
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(a) Lead-lag regression

0.2

0.3

0.4

0.5

0.6

0.1 0.2 0.3 0.4 0.5
Lag 1

Le
ad

h =  1

0.2

0.3

0.4

0.5

0.6

0.1 0.2 0.3 0.4 0.5
Lag 1

Le
ad

h =  20

0.2

0.3

0.4

0.5

0.6

0.7

0.2 0.4 0.6
Average of 5 Lags

Le
ad

h =  1

0.2

0.3

0.4

0.5

0.6

0.2 0.4 0.6
Average of 5 Lags

Le
ad

h =  20

0.2

0.3

0.4

0.5

0.1 0.2 0.3 0.4 0.5
Average of 22 Lags

Le
ad

h =  1

0.2

0.3

0.4

0.5

0.6

0.1 0.2 0.3 0.4 0.5
Average of 22 Lags

Le
ad

h =  20

(b) Cross lead-lag regression

Figure 2: Temporal dependence in the average IVS of call and put options. We plot the lead-lag (both IV on
day t and on day t +h at 30 day-to-maturity and moneyness m = 0) as well as the cross-lead-lag regression
(IV on day t at 30 day-to-maturity and m = 0 while IV on day t +h at 60 day-to-maturity and m = −0.75)
at two horizons, h = 1 and 20 and different lags (the last one day, average of the last five days, and average
of the last 22 days), using data of the prediction period, from Jan 05, 2019 to Dec 31, 2021.

Kernel Hilbert Space (RKHS) - a functional space where regularized models can be defined from

data with the representer theorem. It enables the representation of high-dimensional objects and

their dependencies in a more feasible manner. We show that our model demonstrates adaptabil-

ity to a wide range of kernels. Leveraging advanced kernel-based machine learning techniques,

we utilize the Neural Tangent Kernel (NTK), a versatile kernel capable of capturing the complex

nonlinear relationship in the feature space of the original curves through convolutional neural net-

works. We rigorously draw the connection between NTK and kernel regression through derivation,

highlighting the NTK’s position as a contemporary nonparametric statistical model.
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3.1 Nonlinear functional autoregression

We denote by H = L2(I ) the Hilbert space consisting of all square-integrable surfaces defined

on a compact set I ⊂ Rq and equipped with the inner product ⟨ f ,g⟩H =
∫
I f (u)g(u)du, for any

f ,g ∈ L2(I ). Define the squared L2 norm of a function by ∥ f∥H = ⟨ f , f ⟩H .

Let {Yi}n
i=1 be a series of n random surfaces that take values on HY = L2(IY ). Associated with

each Yi, there is a regressor surface Xi ∈ HX = L2(IX). We consider functions with finite second

moment, i.e., E
[
||Yi||2HY

]
< ∞ and E

[
∥Xi∥2

HX

]
< ∞. For simplicity, we assume that Yi and Xi are

centered functions, i.e., µX(v) =E[Xi(v)] = 0, ∀v∈IX and µY (u) =E[Yi(u)] = 0, ∀u∈IY . Let PX

and PY denote the distributions of X and Y , and PY |X : HX ×HY → R the conditional distribution

of Y given X . If L2(PX) represents the class of all measurable functions of X with E[ f 2(X)] < ∞

under PX , then L2(PY ) is similarly defined for Y . Our goal is to capture the dependence between Yi

and Xi through a function f : HX → HY such that

Yi = f
(
Xi
)
+ εi, (1)

where the innovation εi is a noise function with E[εi(u)] = 0, ∀u ∈IY and E
[
∥εi∥2

HY

]
< ∞. In our

study, Xi can be a lagged surface Yi−1, multiple lagged surfaces Yi−1, . . . ,Yi−p, or linear combina-

tions of the lags. Hence, model (1) is a nonlinear functional autoregression model (NFAR).

To elucidate the nonlinear relation between Xi and Yi, we introduce another Hilbert space of

functions generated by a positive-definite kernel K : HX ×HX → R defined on the inner product

of HX through a function ρ : R3 → R+, such that

K(Xi,X j) = ρ(⟨Xi,Xi⟩HX ,⟨Xi,X j⟩HX ,⟨X j,X j⟩HX ), (2)

for any Xi,X j ∈HX . The kernel K satisfies the kernel property K(Xi,X j) = ⟨K(.,Xi),K(.,X j)⟩MX .9

The space induced by K, denoted by MX , is a nested space of HX via ρ , see Li and Song

9Intuitively, K(.,Xi) : HX → MX can be thought of as a feature map defined by the kernel, and K(Xi,X j) as a
measure of similarity between any two curves Xi, X j in the MX space.
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(2017). For ease of notation, we assume that kernels are demeaned, i.e., for any Xi ∈HX , µX(Xi) =

⟨µX ,K(.,Xi)⟩MX = E[K(X ,Xi)] = 0. The space MX is called RKHS since MX = span{K(·,Xi) :

Xi ∈HX} and K has the reproducing property, i.e., for any function g∈MX , g(Xi)= ⟨g,K(·,Xi)⟩MX .

The introduction of the kernel K is crucial in capturing the essence of the underlying nonlinear

relationship. With the RKHS MX generated by K, the nonlinear function in the model is rep-

resented by a linear expansion of functions in the nested space. Let B (H1,H2) be the class of

bounded linear operators mapping a Hilbert space H1 to another Hilbert space H2. Then Bg(Xi) =

⟨Bg,K(·,Xi)⟩MX = ⟨g,B∗K(·,Xi)⟩HY , for g ∈HY ,B ∈B (HY ,MX) and B∗ ∈B (MX ,HY ) the ad-

joint operator of B. This means that we can represent functions in HY by means of the kernel.

The function-on-function regression problem in Equation (1) can be reformulated as a func-

tional kernel regression, in which the task is to find B0 ∈ B (HY ,MX) such that

B0 = argmin
B∈B(HY ,MX )

E
[
∥Yi −B∗K(.,Xi)∥2

HY

]
. (3)

This model can be viewed as an extension of the traditional multivariate linear model that as-

sociates vector responses with vector covariates. The functional normal equation of the least

squares regression from the RKHS to HY takes the form ΣXY = ΣXX B0, with the (cross-)covariance

operators ΣXX ∈ B (MX ,MX), ΣXY ∈ B (HY ,MX) such that ΣXX = E[K(.,X)⊗ K(.,X)] and

ΣXY = E[K(.,X)⊗Y ]. Since ΣXX is a compact operator in L2, its inverse is not bounded, lead-

ing to an ill-posed problem. To address this issue, we define Σ
†
XX to be the Moore-Penrose inverse

of ΣXX . Theorem 2.1. in Sang and Li (2022) states that a solution to the regression (3) is given by

B0 = Σ
†
XX ΣXY . (4)

The solution B0 is well-defined under the following additional assumptions:

Assumption 1. MX is a dense subset of L2(PX) and E[|Y∥2
HY

]< ∞;

Assumption 2. There exists a constant C > 0 so that for any f ∈MX , E[ f 2(X)]≤C∥ f∥2
MX

;

10
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Assumption 3. ran(ΣXY )⊆ ran(ΣXX) and Σ
†
XX ΣXY is a bounded operator.

Proposition 2.2. and Proposition 2.3. of Sang and Li (2022) lead to the following relationship

between B0 and the predicted value of Yi for a given Xi ∈ HX and the kernel K

E[Yi|X = Xi] = B∗
0K(.,Xi)

= ΣY X Σ
†
XX K(.,Xi)

= E
[
{(Σ†

XX K(.,Xi))(X)}Y
]
.

(5)

where B∗
0 =ΣY X Σ

†
XX ∈B(MX ,HY ) is the adjoint operator of B0, and ΣY X =Σ∗

XY =E[Y ⊗K(.,X)]∈

B (MX ,HY ). The last equality is an expectation of weighted function Y , where the random

weights are defined as W : HX ×HX →R,W (Xi,X) :=(Σ†
XX K(.,Xi))(X)= ⟨Σ†

XX K(.,Xi),K(.,X)⟩MX .

Note that the conditional expectation in Equation (5) essentially depends on the kernel K. In what

follows, we transform the function-to-function regression into a vector-to-vector regression, result-

ing, under suitable assumption, in a reduced dimensional space representation of the curves.

3.1.1 From RKHS of functions to RKHS of vectors

For E[∥Xi∥2
HX

]< ∞, we apply the Karhunen–Loève representation of Xi in terms of eigenfunctions

(ψ1, ψ2, . . .) of the covariance operator CX = E[X ⊗X ], with ψv ∈ HX , and projection coefficients

xi = (xi1,xi2, ...)
T ∈ Hx ⊆ R∞. Hence,

Xi =
∞

∑
v=1

xivψv, with xiv = ⟨Xi,ψv⟩HX . (6)

Then, we can define a new kernel k : Hx×Hx → R such that for any xi,x j ∈ Hx

k(xi,x j) = ρ(⟨xi,x j⟩,⟨xi,x j⟩,⟨x j,x j⟩). (7)

Denote Mx the RKHS induced by k and determined by the inner product of Hx. The following

theorem states the isomorphism between the two Reproducing Kernel Hilbert Spaces MX and Mx.
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Theorem 1 (Isomorphism between Reproducing Kernel Hilbert Spaces). Under Equations (6)

and (7), it holds that

k(xi,x j) = ⟨k(.,xi),k(.,x j)⟩

= ⟨K(.,Xi),K(.,X j)⟩MX = K(Xi,X j).

(8)

Then the RKHS MX nested on HX is isometrically isomorphic to the RKHS Mx nested on Hx.

3.1.2 From function-to-function to vector-to-vector regression.

Functions contain abundant spatial dependence information but are defined in infinite regions,

leading to numerical challenges in analysis and estimation. Therefore, there is a motivation to shift

from the functional domain to the vector domain, where the vectors represent extracted factors

from the infinite dimensionality while encapsulating the crucial features of spatial dependence.

For E
[
||Yi||2HY

]
< ∞, we apply the spectral decomposition of the covariance operator CY =

E[Y ⊗Y ] to project the Yi onto the orthonormal eigenfunctions ϕ = (ϕ1, ϕ2 . . .)
T where ϕ j ∈ HY

Yi =
∞

∑
j=1

yi jϕ j, with yi j = ⟨Yi,ϕ j⟩HY , (9)

satisfying E
[
yi jyrv

]
= 0 for j ̸= v and any i,r. Let Σxx = E

[
k(.,x)⊗ k(.,x)

]
be the covariance

matrix of k(.,x) and Σ†
xx its Moore-Penrose inverse. Further define y = (yi1,yi2, ...)

T ∈Hy ⊆R∞,

and Σyx = E[y⊗ k(.,x)]. Now, we can establish the link between function-to-function regression

to vector-to-vector regression.

Theorem 2 (Vector-to-vector regression). Given the decomposition of Xi in Equations (6) and

Yi in Equation (9), under Assumptions (1) - (3) and Theorem 1, for a positive definite kernel k

defined by Equation (7), if there is a covariance matrix Σxx of k(.,x) that is diagonal, then the

function-to-function regression model in Equation (3) may be represented equivalently by

β0 = argmin
β∈B(Hy ,Mx)

E
[
∥yi −β

∗k(.,xi)∥2
2
]
, (10)
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with solution β0 = Σ†
xxΣxy. This leads to

E[yi|x= xi] = β
∗
0 k(.,xi)

= ΣyxΣ
†
xxk(.,xi)

= E
[
{(Σ†

xxk(.,xi))(x)}y
]
.

(11)

Although vectors offer a more compact representation of functions, they still exist within

an infinite-dimensional framework. This inherent complexity makes practical computations of

E[yi|x= xi] in Equation (11) challenging when working with finite sample sizes. To address this

issue, we employ classical sieve methods, as explained in detail in Appendix A.3. These methods

involve truncating the regression for the original functions while striving to minimize any loss of

information. More specifically, we adopt truncated Karhunen-Loéve representations to capture the

majority of the variance within the processes, as outlined in Appendix A.4.1.

3.2 Neural Tangent Kernel

Kernel functions are associated with particular feature spaces that may possess either finite or infi-

nite dimensions. Generally, these functions have simple parameterizations through the imposition

of regularity constraints on the feature space that facilitates the transformation of a regression prob-

lem with numerous features into a weighted average of observations, wherein the kernel utilized

plays a straightforward role in determining the weights assigned. While nonparametric kernel

regressions depend on the choice of kernel, parametric kernels can be limited in their ability to

describe nonlinear dependence. We propose a flexible class of kernels, the Neural Tangent Kernel

(NTK), which leverages neural networks to effectively capture complex nonlinear dependencies

in the data. Effectively, the NTK characterizes the behavior of neural networks during training

with first-order gradient descent and is specific to a given neural network architecture. It is com-

puted as the inner product of the gradients of the neural network with respect to the weights in the

network. Recent studies have shown that for infinite widths and specific parameterization, neural
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networks are equivalent to kernel regressions that depend on a deterministic limiting kernel de-

termined solely by the network architecture, see Jacot, Gabriel, and Hongler (2018), Arora, Du,

Hu, Li, Salakhutdinov, and Wang (2019) and Chen et al. (2020). Our paper employs the NTK of

shallow, fully connected neural networks with wide widths. These are shown to give good results

in finite samples, especially with weight decay, see Lee et al. (2020).

Suppose we have a NN of depth L, f (.;θ) : Rn0 → RnL with parameters θ , where layers are

indexed from 0 (input x) to L (output y), each layer containing n0,n1, ...,nL neurons. We use the

NTK parameterization of Jacot, Gabriel, and Hongler (2018) for the NN

input layer : α
(0)(x;θ) = x ∈ Rn0,

preactivation : α̃
(ℓ+1)(x;θ) =

1
√

nℓ
W (ℓ)

α
(ℓ)(x;θ)+ηb(ℓ),

activation : α
(ℓ+1)(x;θ) = σ(α̃(ℓ+1)(x;θ)),

output layer : f (x;θ) = α̃
(L)(x;θ) ∈ RnL ,

where parameters θ consist of the connection matrices W (ℓ) ∈ Rnℓ+1×nℓ , and bias vectors b(ℓ) ∈

Rnℓ+1 . All parameters are initialized as i.i.d. Gaussians N (0,1); the constant η > 0 controls the

influence of the bias on the training; and the nonlinear activation function σ(.) is applied element-

wise, to each element of α̃(ℓ+1)(x;θ). Note that NTK models are parameterized differently from

the standard NNs, commonly used in previous popular studies in finance, such as Gu, Kelly, and

Xiu (2020) and Almeida et al. (2022), which makes them more suitable in a kernel regression

setting10. Given a training dataset {(xi,yi) : i = 1, ...,n}, the least-squares loss is defined as

L (θ) =
n

∑
i=1

∥yi − f (xi;θ)∥2. (12)

The parameters of the NN model are updated and learned by minimizing a least-squares loss

10Usually, the standard NNs do not have the factors 1√
nℓ

, and their parameters are initialized using LeCun initial-

ization, with W ℓ
i j ∼ N (0,1/nℓ) and bl

j ∼ N (0,1). The factors 1√
nℓ

are essential for obtaining a consistent asymptotic
behavior of the NNs as the number of neurons n1,n2, ...,nL−1 go to infinity; while the factor η is introduced to balance
the influence of the bias and the weights.
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function L (θ) via the back-propagation algorithm and the Gradient Descent (GD) method with

learning rate ζ . At each updating step s, the parameters θs are updated to θs+1 by

θs+1 = θs −ζ ∇θL (θs), (13)

with ∇θL (θs) the gradient of the loss function with respect to θ at step s. Using GD, the weights

and biases in all layers are simultaneously updated towards the parameters that minimize the loss

function, effectively training the neural network to make accurate predictions. Let the prediction

vector of the NN be f (x;θ) = ( f1(x;θ), ..., fnL(x;θ))T , with f j(x;θ) denoting the j-th output of

the NN. Daniely, Frostig, and Singer (2016) have shown that at initialization, as the number of

neurons in each layer goes to infinite, the outputs f j(x;θ) for j = 1, ...,nL tend to i.i.d. centered

Gaussian processes (GP) with scalar covariance Σ(L) defined recursively by

Σ
(1)(x,x′) =

1
n0

xTx′+η
2

Σ
(ℓ+1)(x,x′) = Eθ

[
σ( f (x))σ( f (x′))

]
+η

2,

(14)

where Σ(1)(x,x′) can be computed from the network architecture. Suppose the NN is trained with

gradient descent over a number of updating steps indexed by s. Thus, f (x;θs) is the output of the

NN using θ = θs, and ∇θ f (x;θs) is the rate of change in output f (x;θs) with respect to parameter

θ at step s. The empirical neural tangent kernel matrix in RnL×nL for the depth L NN is defined as

k̃(L)s (x,x′) = ∇
T
θ f (x;θs)∇θ f (x′;θs). (15)

By Theorem 1 and Theorem 2 in Jacot, Gabriel, and Hongler (2018), for σ(.) being Lipschitz,

as n1,n2, ...,nL−1 → ∞, the empirical NTK k̃(L)s (x,x′) converges in probability to a deterministic

limiting kernel matrix k(L)∞ (x,x′)⊗ InL for all x,x′ ∈Rn0 and s ≥ 0, where InL is an identity matrix

in RnL×nL . This implies that an NN with nL outputs behaves asymptotically like nL NNs with scalar
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outputs trained independently. The scalar kernel k(L)∞ (x,x′) : Rn0 ×Rn0 →R is defined recursively

k(1)∞ (x,x′) = Σ
(1)(x,x′)

k(ℓ+1)
∞ (x,x′) = k(ℓ)∞ (x,x′)Σ̇(ℓ+1)(x,x′)+Σ

(ℓ+1)(x,x′),
(16)

where Σ̇(ℓ+1)(x,x′) = Eθ

[
σ̇( f (x))σ̇( f (x′))

]
and σ̇ is the derivative of σ with respect to θ . This

means that the empirical NTK is independent of the initialization value and is solely determined

by the NN architecture. Training the NN under least-square loss L (θ) by gradient descent is

equivalent to a kernel regression using the NTK. Although the limiting NTK k(L)∞ has a different

form compared to the standard kernels, it is suitable for our modeling framework. It is defined

recursively via the covariance of the GPs, Σ(ℓ) in (14) and (16) and utilizes the inner product of x

and x′ in each iterative steps. Hence, it satisfies Equation (7) and can be used in Equation (11).11.

3.3 fNTK algorithm

We develop an fNTK algorithm for the NFAR model, see Figure 3. In estimation, we project an

infinite-dimensional process onto a finite parameter space for computational feasibility. Employing

the sieve method, the infinite coefficients are estimated within a finite sample space based on a spe-

cific parameter space derived from a dataset with n observations. Functional Principal Component

Analysis (FPCA) identifies orthonormal bases for distinct functional spaces using empirical mean

and variance operators. We provide detailed information about the implementation in Appendix

A.4. We also conduct a simulation study in Appendix A.5, showing that the proposed estimation

is numerically consistent.

11In practice, it is infeasible to implement an NN with infinite widths. However, for large enough widths of the
hidden layers, the NN provides a fair approximation of k(L)∞ .
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Figure 3: Training an fNTK parametrized network. Parameters θ =
{

W (ℓ),b(ℓ) : ℓ= 1,L−1
}

are initial-
ized as i.i.d. N (0,1) and updated simultaneously in each gradient descent step. The pre-activation is
α̃(ℓ+1)(xi;θ) = 1√

nℓ
W (ℓ)α(ℓ)(xi;θ)+ηb(ℓ), and the activation is α(ℓ+1)(xi;θ) = σ(α̃(ℓ+1)(xi;θ)). For in-

finitely wide networks, the empirical NTK k̃(L) (xi,x j)
p→ k(L)∞ (xi,x j)⊗ InL for all xi,x j ∈ Rn0 .

4 Forecasting Implied Volatility Surfaces

This section aims to investigate the effectiveness of the proposed neural-based machine learning

estimation approach, fNTK, for nonlinear functional autoregressive models in forecasting implied

volatility surfaces (IVS). We compare the fNTK approach with classical IV forecasting alterna-

tives and nonparametric functional estimation using alternative kernels to assess their predictive

performance.

4.1 Forecasting Framework

To forecast IVS, incorporate different lags of implied volatility surfaces as the explanatory function

Xt . The response function Yt represents the future implied volatility surface IVt+h(u) of day t +h,

with a forecasting horizon of h. Following previous studies by Bernales and Guidolin (2014) and

Goncalves and Guidolin (2006), we consider IVS defined on two features representing continuous
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domains in maturity and moneyness, denoted as u = (τ,m).

IV (1)
t (u) = IVt(u), IV (5)

t (u) =
1
5

t

∑
k=t−4

IVk(u), IV (22)
t (u) =

1
22

t

∑
k=t−21

IVk(u).

The explanatory variables capture the daily, weekly, and monthly features of the IVS, respec-

tively. This approach effectively captures the three primary volatility components associated with

different types of traders: short-term, medium-term, and long-term. We standardize the three pre-

dictor surfaces, IV (1)
t (u), IV (5)

t (u), and IV (22)
t (u), and combine them into Xt(u). It’s important to

note that standardization is based solely on the training data to prevent information leakage from

the test data.

The Nonlinear Functional Autoregressive (NFAR) model is trained using a rolling window

spanning 2500 days, ensuring that the model remains adaptable to the most recent market condi-

tions. This training practice results in a roughly 80%/20% train/test split ratio. Model hyperpa-

rameter tuning is conducted at six-month intervals, with detailed values provided in Appendix A.7.

During the hyperparameter tuning process, the training data is partitioned into a 2000-day training

set and a 500-day validation set. The optimal hyperparameters derived from this tuning process

are then retained until the subsequent update. The validation set is used for model and hyperpa-

rameter selection, while the test set assesses how well the models generalize to new, unseen data,

where no estimation or tuning is conducted 12. Additionally, we perform a robustness check by

training models using rolling windows of 1000 and 2000 days, further partitioned into 500/500 and

1500/500 days for training and validation, respectively. The results closely align with the reported

findings and are accessible for reference in Appendix A.9.

4.2 Alternative Models

In addition to fNTK, we explore alternative nonparametric functional estimation approaches. We

delve into a kernel regression approach, using linear, Gaussian, and Laplacian kernels within the

12Standard k-fold cross-validation is not considered since it violates the time series structure.
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proposed NFAR framework. The linear kernel (LinK) is defined by k(x,x′) = xTx′. In this case,

the new RKHS is the same as the original Hilbert input variable space, and the kernel regression

is equivalent to a linear regression. In other words, it becomes functional autoregression. We

also utilize two popular nonlinear parametric kernels: the Gaussian kernel (GauK), also known as

the radial basis function kernel (k(x,x′) = exp(−γ∥x−x′∥2)) and the Laplacian kernel (LapK)

(k(x,x′) = exp(−γ∥x−x′∥1)). This also equates to an infinitely dimensional feature space in the

context of kernels. γ is a constant controlling the roughness of the kernel.13 For the parametric

kernels, exact solutions are obtained in a kernel-ridge regression as explained in Appendix A.6.

We also consider several classical (non-functional) models for implied volatility forecasting. In

these classical models, the discrete implied volatilities are forecasted individually. The objective

is to scrutinize the importance of nonparametric modeling in capturing nonlinear dynamics. The

classical models encompass the renowned Carr and Wu model by Carr and Wu (2016) and the Ad-

Hoc Black-Scholes model by Dumas, Fleming, and Whaley (1998). These models have demon-

strated effectiveness for S&P 500 IVS and were previously employed in studies by Goncalves and

Guidolin (2006), Bernales and Guidolin (2014), and Almeida et al. (2022). Additionally, we adapt

the random walk model to our functional framework.

Carr and Wu (CW) Model. The approach introduced by Carr and Wu (2016) offers an option

pricing framework that characterizes implied volatility dynamics across various strikes and ma-

turities. For an option with strike and time to maturity, the risk-neutral measures encapsulate the

dynamics of the underlying spot price and the option implied volatility. The model involves param-

eters like the instantaneous variance rate, the average implied volatility drift and the exponential

dampening parameter. We employ the relative strike and formulate a quadratic Equation for the

square implied volatility. Parameter estimation involves minimizing a nonlinear least squares prob-

lem, and predictions are derived by solving the quadratic Equation using the estimated parameters.

We refer to Appendix A.8.1 for detailed formulation.

13We experimented with polynomial kernels of different degrees of 2, 3, 4, and 5. However, their performance is
significantly worse than all other kernels; hence, our methodology and results do not report it.
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Ad-Hoc Black–Scholes (AHBS) Model. The approach proposed by Goncalves and Guidolin

(2006) extracts features of a cross-section of options on moneyness and maturities based on the ad-

hoc Black-Scholes (AHBS) model by Dumas, Fleming, and Whaley (1998) and utilizes a vector

autoregressive model to predict the features, enabling the forecasting of implied volatilities. We

refer to Appendix A.8.2 for detailed formulation.

Functional Random Walk (fRW) Model. The functional random walk model, adapted from

Bernales and Guidolin (2014), predicts the implied volatility surface of a future day to be the

same as the current day’s. This straightforward approach is a comparative baseline to gauge the

significance of incorporating implied volatility surface dynamics in enhancing predictions.

4.3 Forecasting performance measures

We assess prediction accuracy and goodness of fit derived from observed test data. Specifically,

root mean square error (RMSE) captures prediction accuracy, and out-of-sample R2 (OoR2) mea-

sures the goodness of fit, depicting the proportion of variance the models explain.14

RMSEh =

√√√√ 1

∑
T−h
t=t0 Nt

T−h

∑
t=t0

Nt

∑
j=1

(Yt+h(u j)− Ŷt+h(u j))2,

OoR2
h = 1−

∑
T−h
t=t0 ∑

Nt
j=1(Yt+h(u j)− Ŷt+h(u j))

2

∑
T−h
t=t0 ∑

Nt
j=1(Yt+h(u j)− Ȳt+h)2

.

4.4 Results

Table 1 presents an overview of model performance across different forecasting horizons (h =

1,5,10,15, and 20 days ahead).15 This analysis underscores the exceptional performance of the

fLink model for one-step-ahead predictions. This can be attributed to the inherently linear nature

of implied volatility surfaces for short lags, where linear predictors effectively capture the high
14In addition, we report mean absolute percentage error (MAPE) and mean correct prediction of direction of change

(MCPDC) in the Appendix A.9.
15For clarity, it is worth noting that the results reported represent the average performance measures for both put

and call options. Detailed results for put and call options are available upon request.
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persistence pattern. This observation aligns with analogous findings in prior financial time series

research, such as Christensen, Siggaard, and Veliyev (2022) in the context of forecasting realized

variance and Nunes et al. (2019) for yield curve prediction. However, this dynamic changes as the

forecasting horizon extends. These prior studies generally show that nonlinear machine learning

models tend to outperform their linear counterparts, particularly when dealing with medium to

long forecasting horizons.

Notably, surpassing all other models, the fNTK model exhibits remarkable performance gains

for forecasting horizons beginning at h = 5, especially for extended prediction horizons. For in-

stance, in the case of a 20-day ahead forecast, fNTK outperforms both fLinK and classical models

CW and AHBS by approximately 45%. Additionally, fNTK surpasses the two other nonlinear ker-

nel models, fGauK and fLapK, by around 20% in terms of RMSE. The out-of-sample R2 (OoR2)

of fNTK consistently outperforms all other models, firmly establishing its superiority. The good

performance of fNTK is further demonstrated in Figure 4, where we visualize RMSE and OoR2

across various forecasting horizons, accompanied by corresponding 95% confidence intervals de-

rived using block bootstrapping.16 In addition to RMSE and OoR2, we provide insights into the

model performance through mean absolute percentage error (MAPE) and mean correct prediction

of the direction of change (MCPDC) in Table A.3. These metrics exhibit similar patterns to RMSE,

with fNTK consistently outperforming parametric and classical models, except for fGauK.17 These

findings remain robust when varying the training sample size to 1000 or 2000 days (Table A.4).

To ensure robustness, we also conduct an analysis of model performance on an annual basis,

as presented in Table 1. The consistent superiority of nonlinear models for extended forecasting

horizons is evident across three distinct periods: 2019, the year prior to the Covid-19 pandemic;

2020, marked by pandemic-induced market volatility; and 2021, a year of market recovery. Re-

markably, nonlinear models, with fNTK leading the way, exhibit enhanced performance relative

to fLinK, AHBS, CW, and fRW, especially during the turbulent year of 2020. The performance

16The 95% confidence intervals are obtained using the non-overlapping block bootstrap method with a bootstrap
length of 20 days.

17Diebold-Mariano tests validate the statistical significance of fNTK’s superior performance in terms of both MAPE
and RMSE for extended forecasting horizons (Tables A.5 and A.6).
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RMSE OoR2

h = 1 h = 5 h = 10 h = 15 h = 20 h = 1 h = 5 h = 10 h = 15 h = 20
Overall (from Jan 9, 2019 to Dec 31, 2021)

CW 3.57 5.45 7.23 8.87 9.91 88.74 74.18 54.50 32.01 15.21
AHBS 3.72 5.53 7.37 8.69 9.55 87.79 73.35 52.87 34.83 21.33
fRW 3.65 5.72 7.66 9.27 10.57 88.28 71.59 48.97 25.69 3.49
fLinK 3.48 5.31 7.29 8.41 9.40 89.19 75.46 53.78 38.76 23.59
fGauK 9.23 9.38 9.38 8.95 7.67 25.54 23.32 23.67 30.88 49.32
fLapK 7.51 8.32 8.05 7.99 7.49 50.70 39.71 43.74 44.90 51.63
fNTK 4.11 5.07 6.03 6.32 5.73 85.24 77.24 68.17 65.38 71.67

From Jan 9, 2019 to Dec 31, 2019
CW 1.53 2.23 2.65 2.91 3.19 86.13 70.52 58.33 50.05 40.40
AHBS 1.62 2.28 2.66 2.91 3.04 84.54 69.35 58.10 49.89 45.86
fRW 1.51 2.39 2.89 3.19 3.51 86.62 66.28 50.48 39.74 27.68
fLinK 1.41 2.15 2.48 2.75 2.86 88.28 72.65 63.63 55.34 51.97
fGauK 1.56 1.88 1.82 1.92 1.91 85.67 79.15 80.43 78.16 78.48
fLapK 1.61 1.92 2.01 2.07 2.10 84.65 78.26 75.97 74.70 74.01
fNTK 1.66 1.95 1.97 1.96 1.96 83.73 77.43 76.99 77.15 77.43

From Jan 1, 2020 to Dec 31, 2020
CW 5.29 8.11 10.95 13.57 15.19 82.92 59.91 24.89 -16.35 -48.49
AHBS 5.46 8.17 11.11 13.20 14.54 81.81 59.28 23.18 -10.04 -35.87
fRW 5.43 8.43 11.53 14.10 16.15 82.00 56.78 17.11 -25.61 -67.87
fLinK 5.21 7.86 11.02 12.78 14.38 83.14 62.38 23.93 -3.81 -33.68
fGauK 14.74 14.87 14.80 13.98 11.85 -31.32 -35.54 -36.20 -23.39 9.91
fLapK 11.92 13.11 12.55 12.33 11.50 14.09 -5.34 1.89 3.99 15.23
fNTK 6.16 7.65 9.23 9.68 8.68 77.18 63.24 46.11 40.48 51.41

From Jan 1, 2021 to Dec 31, 2021
CW 1.97 2.81 3.22 3.40 3.49 89.69 78.95 72.39 69.14 66.14
AHBS 2.18 3.06 3.47 3.66 3.80 87.42 75.14 67.94 64.42 59.98
fRW 1.96 3.14 3.63 3.83 3.95 89.79 73.92 65.01 61.03 56.83
fLinK 1.83 2.91 3.44 3.63 3.61 91.08 77.54 68.52 65.00 63.98
fGauK 1.96 2.29 2.35 2.59 2.56 89.79 86.17 85.28 82.16 81.80
fLapK 1.89 2.37 2.63 2.90 2.76 90.54 85.16 81.59 77.71 78.86
fNTK 2.06 2.47 2.50 2.48 2.39 88.72 83.81 83.38 83.61 84.21

Table 1: Prediction accuracy for all models in different forecasting horizons. Results are for four prediction
periods: overall (from Jan 09, 2019 to Dec 31, 2021), from Jan 09, 2019 to Dec 31, 2019, from Jan 01, 2020
to Dec 31, 2020, and from Jan 01, 2020 to Dec 31, 2020. Bold numbers indicate the best-performing model
(or models) in a given column.
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Figure 4: Prediction measurement in terms of (a) RMSE, (b) OoR2 of all models for forecasting horizons
h = 1,5,15,10 and 20. The prediction period is from Jan 09, 2019 to Dec 31, 2021. Shaded areas are the
95% confidence intervals using block bootstrapping.
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gap widens during periods of heightened market volatility, as exemplified in 2020. For instance, in

the 20-day ahead prediction scenario in 2020, fNTK demonstrates an OoR2 that is approximately

170% to 240% higher than that of linear and classical models, underscoring its dominant perfor-

mance during times of increased uncertainty. We further investigate the robustness of these models

with respect to hyperparameters, moneyness, and maturity groups, as detailed in Appendix A.9.1.

These findings collectively emphasize the robustness of nonlinear models, particularly fNTK, in

capturing the intricate dynamics of implied volatility surfaces across diverse market conditions.

They also provide valuable insights into the interplay between model complexity and performance

across various prediction horizons. In essence, our results highlight the capability of fNTK to cap-

ture the intricate dynamics of implied volatility surfaces across a range of forecasting horizons and

performance metrics. Its capacity to outperform alternative models underscores its effectiveness in

handling the complex nonlinearities inherent in financial data.

5 Economic Value of Predictability

This section investigates the economic value of an accurate IV forecaster. By leveraging the en-

hanced predictability offered by the fNTK model, we demonstrate its potential benefits for in-

vestors in the options market. Our evaluation encompasses various trading strategies: call and

put delta-hedging and delta-neutral straddle strategies, both short and long, that exploit the h-step

ahead forecasts of IVS. We also conduct robustness checks under different test periods, transaction

costs, and varying filtering thresholds in the trading.

5.1 Trading strategies

The trading strategies we consider enable option traders to focus on fluctuations in volatility. The

delta hedging strategy is specifically designed to mitigate the risk associated with underlying asset

price movements by establishing a corresponding position in an option and the asset. Conversely,

the delta-neutral straddle strategy relies on option deltas and attains directional neutrality by bal-
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ancing opposite exposures in the underlying and simultaneously investing in a weighted combina-

tion of call and put options with the same characteristics, see Gao, Xing, and Zhang (2018). An

investor who holds a short position is essentially betting against volatility, while someone with a

long position is betting that volatility will increase (see Coval and Shumway, 2001; Bakshi and

Kapadia, 2003; Driessen and Maenhout, 2007). Our setup relies on trading signals extracted from

the predicted IVS and includes only non-zero volume options at time t. An increase (decrease)

in the implied volatility is equivalent to an increase (decrease) in the options prices. For brevity,

we describe the straddle strategies below and delegate the details of delta-hedging strategies to

Appendix A.10.

Delta-neutral straddles. For the short delta-neutral straddle strategy, on each day t, we short wt

units of call option and (1−wt) units of put option of the same strike and expiration date, where

the weights wt = −∆
sp
t /(∆sc

t −∆
sp
t ) and 1−wt are used to ensure the straddle delta equal 0. We

trade a pair of put and call options if the IV of both options is predicted to decrease on the day

t + h, see Gao, Xing, and Zhang (2018). Recall that put and call IVS are modeled and predicted

separately. Define Qs
t as the set of put and call option pairs to be traded. On day t, we sell all

the pairs of options in Qs
t and gain a cash inflow of ∑i∈Qs

t
(wi,tCi,t +(1−wi,t)Pi,t), and close off the

positions by paying a cost of ∑i∈Qs
t

(
wi,tCi,t+h +(1−wi,t)Pi,t+h

)
on day t+h. Similarly, in the long

delta-neutral straddle strategy, we only trade a pair of put and call options if the IV of both options

is predicted to increase on the day t+h. The returns Rs
t of the short and Rl

t of the long delta-neutral

straddle portfolios are

Rs
t = 1−

∑i∈Qs
t
(wi,tCi,t+h +(1−wi,t)Pi,t+h)

∑i∈Qs
t
(wi,tCi,t +(1−wi,t)Pi,t)

and Rℓ
t =

∑i∈Qℓ
t
(wi,tCi,t+h +(1−wi,t)Pi,t+h)

∑i∈Qℓ
t
(wi,tCi,t +(1−wi,t)Pi,t)

−1.

We use a filtering threshold of 0.5% deviation in implied volatility for each trading strategy.

Specifically, on a given day t, if the implied volatility of an option is predicted to increase (or

decrease) by at least 0.5% on day t +h, we buy (or sell) the option. The practice of using filtering

thresholds to avoid noisy signals is also used in Goncalves and Guidolin (2006) and Liu et al.
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(2021). In the robustness check, we also investigate a threshold of 1% and 5%. Additionally,

to assess whether trading strategies remain profitable after accounting for transaction costs, we

measure these costs using effective bid-ask spreads when selling and buying put and call options,

as in Zhan et al. (2022). Given the absence of transaction data, we will recompute option returns

using assumed effective option spreads equal to 50%, 75%, and 100% of the quoted spread.

5.2 Performance of Trading Strategies

In evaluating the performance of our trading strategies, we report two key metrics: mean returns

(MR) as a percentage and the annualized Sharpe ratio (SR).18 We present the detailed performance

of the short delta-neutral straddle strategy exclusively in the main text due to space constraints.

However, we will provide a general overview of the performance of the remaining strategies. More

detailed performance metrics for these additional strategies can be found in Appendix A.11.

The upper section of Table 2 and Figure 5 present the results for the short delta-neutral strad-

dles. It is evident that the performance of fNTK stands out prominently, surpassing most bench-

mark strategies across various forecasting horizons. It exhibits remarkable mean returns and

Sharpe ratios, with a weekly mean return of 4.68% and a monthly return of 11.91%. This rep-

resents an improvement ranging from 38% to 173% in returns and a Sharpe ratio ranging between

1.45 and 2.02. These results translate to a substantial 77% to 583% relative enhancement in trad-

ing outcomes compared to a random walk benchmark. While other nonlinear kernel models also

produce impressive results, fNTK remains the clear leader in terms of overall performance.

Further analysis of performance over multiple years, as shown in Table 2, reveals that during

periods of high market volatility, most benchmarks experience a decrease in performance, result-

ing in negative returns and Sharpe ratios, particularly in 2020. In contrast, fNTK consistently

maintains a positive Sharpe ratio, ranging between 0.37 and 0.61 across all trading horizons. All

18We base our analysis on simple returns Rt . The excess return is calculated as ERt = Rt −
(

exp
(

h·rt,h
252

)
−1

)
, where

rt,h represents the annualized riskless interest rate with a time-to-maturity of h days. The Sharpe ratio is defined as µER
σER

,

where µER = 1
Ntraded

∑
Ntraded
t=1 ERt and σER =

√
1

Ntraded−1 ∑
Ntraded
t=1 (ERt −µER)2 denote the mean and standard deviation

of excess returns, and Ntraded is the number of traded days.
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Mean return (%) Sharpe ratio
h = 1 h = 5 h = 10 h = 15 h = 20 h = 1 h = 5 h = 10 h = 15 h = 20

Overall (from Jan 9, 2019 to Dec 31, 2021)
CW 0.21 0.36 -1.10 -2.44 -2.34 0.57 0.14 -0.21 -0.28 -0.19
AHBS -0.28 -0.32 -1.22 -3.13 -3.84 -0.80 -0.13 -0.20 -0.30 -0.23
fRW 0.45 3.37 6.16 5.62 4.25 1.09 1.14 0.93 0.50 0.24
fLinK 0.28 0.60 -0.14 -2.05 -2.54 0.66 0.20 -0.03 -0.18 -0.15
fGauK -0.01 2.68 5.66 7.98 8.65 -0.04 1.12 1.11 1.09 1.13
fLapK 0.01 1.62 5.52 4.09 7.38 0.01 0.60 0.99 0.40 0.68
fNTK -0.03 4.68 8.23 9.94 11.91 -0.07 2.02 1.78 1.45 1.64
From Jan 9, 2019 to Dec 31, 2019
CW 0.33 0.81 1.21 1.86 3.72 1.13 0.51 0.51 0.64 0.89
AHBS 0.03 1.26 4.74 5.84 9.47 0.06 0.60 1.42 1.37 1.65
fRW 0.75 4.23 9.72 10.45 11.10 2.12 2.06 2.68 2.36 2.03
fLinK 0.49 1.43 5.32 8.69 9.44 1.34 0.68 1.67 2.25 2.04
fGauK 0.05 4.27 7.80 10.92 10.80 0.10 1.98 2.44 2.59 2.10
fLapK 0.42 2.54 7.77 10.69 11.54 1.07 1.24 2.58 2.52 2.25
fNTK 0.57 6.42 8.22 8.96 11.67 1.36 2.99 3.07 2.27 2.38
From Jan 1, 2020 to Dec 31, 2020
CW -0.03 -1.89 -9.31 -17.49 -23.15 -0.06 -0.49 -1.01 -1.16 -1.08
AHBS -0.62 -2.77 -8.07 -12.52 -16.38 -1.36 -0.74 -0.91 -0.85 -0.69
fRW -0.30 -1.96 -6.41 -15.77 -26.09 -0.63 -0.46 -0.63 -0.90 -0.93
fLinK -0.34 -2.85 -9.27 -19.00 -24.42 -0.69 -0.68 -0.96 -1.09 -0.92
fGauK -0.51 -0.81 -1.48 -1.37 0.33 -1.04 -0.27 -0.22 -0.14 0.03
fLapK -0.74 -1.44 -1.29 -9.61 -3.64 -1.59 -0.40 -0.17 -0.68 -0.25
fNTK -0.60 1.81 3.26 3.67 5.49 -1.21 0.61 0.50 0.37 0.54
From Jan 1, 2021 to Dec 31, 2021
CW 0.33 2.01 3.53 5.75 8.79 1.27 2.18 2.50 2.74 2.68
AHBS -0.23 0.99 2.69 4.50 6.31 -0.82 0.98 1.79 2.07 2.88
fRW 0.97 7.74 14.79 19.51 23.64 2.52 4.72 5.75 4.96 5.40
fLinK 0.76 4.11 7.40 11.93 20.60 2.04 2.88 2.90 3.33 4.15
fGauK 0.52 5.54 13.14 17.75 19.08 1.37 3.93 4.94 4.66 4.94
fLapK 0.56 4.77 13.04 18.14 20.43 1.48 3.50 5.12 5.29 5.24
fNTK 0.05 6.38 14.30 18.16 19.07 0.13 4.60 5.37 4.83 4.41

Table 2: Mean simple returns (%) and annualized Sharpe ratio of short delta-neutral straddles over the
whole test period, from Jan 9, 2019 to Dec 31, 2021, and over each year (2019, 2020, and 2021) of the test
period. Bold numbers indicate the best-performing model (or models) in a given column.

h = 1 h = 5 h = 10 h = 15 h = 20

C
W

A
H

B
S

fR
W

fL
in

K
fG

au
K

fL
ap

K
fN

T
K

C
W

A
H

B
S

fR
W

fL
in

K
fG

au
K

fL
ap

K
fN

T
K

C
W

A
H

B
S

fR
W

fL
in

K
fG

au
K

fL
ap

K
fN

T
K

C
W

A
H

B
S

fR
W

fL
in

K
fG

au
K

fL
ap

K
fN

T
K

C
W

A
H

B
S

fR
W

fL
in

K
fG

au
K

fL
ap

K
fN

T
K

0

5

10

M
ea

n 
re

tu
rn

 (
%

)

(a) h = 1 h = 5 h = 10 h = 15 h = 20

C
W

A
H

B
S

fR
W

fL
in

K
fG

au
K

fL
ap

K
fN

T
K

C
W

A
H

B
S

fR
W

fL
in

K
fG

au
K

fL
ap

K
fN

T
K

C
W

A
H

B
S

fR
W

fL
in

K
fG

au
K

fL
ap

K
fN

T
K

C
W

A
H

B
S

fR
W

fL
in

K
fG

au
K

fL
ap

K
fN

T
K

C
W

A
H

B
S

fR
W

fL
in

K
fG

au
K

fL
ap

K
fN

T
K

0

1

2

S
ha

rp
e 

ra
tio

(b)

Figure 5: Mean simple returns (%) and annualized Sharpe ratio of short delta-neutral straddle strategy. The
prediction period is from Jan 09, 2019 to Dec 31, 2021. The blue color is for functional kernel models,
while the red color is to indicate classical models.

nonlinear kernel models yield profitable strategies in 2019 and 2021, achieving the best Sharpe

ratios ranging between 3.07 and 5.37. These compelling findings underscore the critical role of
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Figure 6: Mean traded volume, mean simple returns (MR) in percentage, Sharpe ratio (SR) of the models
for all the short trading strategies at the forecasting horizon h = 20, across different moneyness m groups
[−2,−0.5],(−0.5,0],(0,0.5], and (0.5,2], and time-to-maturity τ groups [5,60],(60,120],(120,180], and
(180,252]. The prediction period is from Jan 09, 2019 to Dec 31, 2021.

nonlinearities in modeling implied volatility surface (IVS) dynamics and extracting valuable trad-

ing signals. Moreover, they suggest that integrating fNTK into trading strategies is particularly

rewarding during turbulent market conditions.

When evaluating the performance of a trading strategy, it is essential to go beyond mere ag-

gregate results. Different options, distinguished by their features, carry varying degrees of risk.

Therefore, it is crucial to investigate how their predictability impacts strategy performance across

different moneyness and maturity groups for a more comprehensive understanding of the strategy’s

effectiveness. In Figure 6, we present data on the mean daily traded volume, mean returns (MR),

and annualized Sharpe ratio for short call delta-hedging, short put delta-hedging, and short delta-

neutral straddle strategies, all at the 20-step ahead forecasting horizon, representative of longer

forecasting horizons. The results reveal a clear trend: trading options with higher moneyness and

shorter time-to-maturity consistently leads to superior trading strategy performance. Notably, the

kernel-based models, with fNTK in the lead, exhibit substantial differences from the benchmark

strategies. We also show trading returns of all available options on both day t and day t +h. The

benefits of employing trading signals, particularly those generated by nonlinear kernel models, are
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striking across all moneyness and time-to-maturity groups.19

Our analysis also considers the robustness of trading strategies regarding transaction costs. The

results for short delta-neutral straddles, as presented in Table 3, highlight that fNTK maintains its

leading position when transaction costs are introduced. While there is a decrease in performance,

it is not substantial, with a roughly 12% reduction in mean returns and a 14% reduction in Sharpe

ratio for portfolios with a 20-day horizon and effective spread of 100%. Furthermore, nonlinear

models consistently outperform linear and classical models across various spread values, especially

for longer forecasting horizons. In the appendix, additional details on this matter are available in

Figure A.12. Overall, our results suggest that the trading strategy remains robust in the presence of

transaction costs, with a moderate decline in returns and Sharpe ratios. The superiority of nonlinear

models persists across different effective spreads and forecasting horizons.

Another critical variable affecting trading returns is the filtering threshold. Higher threshold

values require a higher deviation from option implied volatility (IV) on day t for the option to be

traded, resulting in fewer trades. We repeat the trading exercises with two additional threshold

values: 5% and 10%. The results in Table 4 demonstrate that as threshold values increase, mean

returns and Sharpe ratios for nonlinear models generally improve for both short and long delta-

neutral straddle strategies. For instance, in the short delta-neutral straddle strategy with a 20-step

ahead prediction, the fNTK model exhibits an increase in mean return from 11.91% to 24.02% and

an increase in Sharpe ratio from 1.64 to 2.57. In contrast, the fRW model’s mean return decreases

from 4.25% to -1.85%, and the corresponding Sharpe ratio decreases from 0.24 to -0.08. 20

In summary, the fNTK model consistently demonstrates strong performance across various

trading strategies and market conditions. It outperforms both functional alternatives and classical

models in terms of mean simple returns and annualized Sharpe ratios, particularly for strategies

involving delta-neutral straddle options. This robustness is evident across different prediction peri-

19Detailed results for the long strategies at the 20-step ahead forecasting horizon are reported in Figure A.23.
20This trend can potentially be attributed to the fact that nonlinear models exhibit statistically superior MAPE and

MCPDC measurements compared to fRW, fLinK, and classical models, particularly for longer horizons, as docu-
mented in Appendix A.9. Consequently, when the filtering threshold is raised, nonlinear models tend to capture
options with more accurate high deviations, whereas benchmark models may select options with higher errors on day
t +h.
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Mean return (%) Sharpe ratio
h = 1 h = 5 h = 10 h = 15 h = 20 h = 1 h = 5 h = 10 h = 15 h = 20

EM = 50%
CW -0.55 -0.44 -1.91 -3.27 -3.18 -1.50 -0.19 -0.35 -0.37 -0.25
AHBS -0.93 -1.06 -2.06 -3.97 -4.67 -2.56 -0.40 -0.34 -0.37 -0.27
fRW -0.41 2.46 5.24 4.75 3.40 -0.99 0.82 0.78 0.42 0.19
fLinK -0.53 -0.35 -1.05 -2.99 -3.48 -1.26 -0.12 -0.16 -0.25 -0.20
fGauK -0.91 1.77 4.81 7.16 7.87 -2.08 0.73 0.92 0.96 1.01
fLapK -0.85 0.71 4.62 3.15 6.55 -2.01 0.25 0.81 0.30 0.60
fNTK -0.93 3.75 7.40 9.14 11.16 -2.14 1.59 1.58 1.31 1.52
EM = 75%
CW -0.93 -0.85 -2.32 -3.68 -3.60 -2.51 -0.35 -0.43 -0.42 -0.28
AHBS -1.25 -1.44 -2.49 -4.39 -5.09 -3.41 -0.54 -0.40 -0.41 -0.29
fRW -0.85 2.00 4.77 4.30 2.97 -2.00 0.66 0.70 0.38 0.16
fLinK -0.93 -0.83 -1.51 -3.47 -3.95 -2.22 -0.28 -0.22 -0.29 -0.22
fGauK -1.36 1.31 4.37 6.75 7.48 -3.06 0.53 0.83 0.90 0.96
fLapK -1.28 0.24 4.17 2.66 6.13 -3.01 0.08 0.73 0.25 0.56
fNTK -1.39 3.27 6.98 8.73 10.78 -3.17 1.38 1.48 1.24 1.46
EM = 100%
CW -1.31 -1.25 -2.74 -4.10 -4.03 -3.51 -0.51 -0.50 -0.46 -0.32
AHBS -1.58 -1.82 -2.91 -4.82 -5.51 -4.24 -0.68 -0.46 -0.45 -0.32
fRW -1.29 1.52 4.30 3.85 2.53 -2.98 0.49 0.62 0.33 0.14
fLinK -1.34 -1.31 -1.97 -3.95 -4.43 -3.17 -0.43 -0.29 -0.33 -0.25
fGauK -1.82 0.85 3.94 6.33 7.09 -3.99 0.34 0.74 0.84 0.90
fLapK -1.72 -0.23 3.71 2.17 5.71 -4.00 -0.09 0.64 0.20 0.51
fNTK -1.85 2.80 6.55 8.31 10.40 -4.20 1.17 1.38 1.17 1.40

Table 3: Mean returns (%) and annualized Sharpe ratio of short delta-neutral straddles with three levels of
effective measurement (50%, 75%, and 100%) of all models over the whole test period, from Jan 9, 2019 to
Dec 31, 2021. Bold numbers indicate the best-performing model (or models) in a given column.

Mean return (%) Sharpe ratio
h = 1 h = 5 h = 10 h = 15 h = 20 h = 1 h = 5 h = 10 h = 15 h = 20

Threshold = 5%
CW 0.93 0.98 -2.07 -5.81 -7.48 2.13 0.31 -0.29 -0.49 -0.45
AHBS -0.19 -1.27 -4.02 -6.28 -9.51 -0.44 -0.41 -0.54 -0.50 -0.46
fRW 0.49 2.99 5.61 4.83 4.14 0.82 0.79 0.69 0.36 0.20
fLinK -0.61 -0.04 -1.69 -2.76 -3.22 -0.98 -0.01 -0.20 -0.20 -0.16
fGauK -0.05 3.77 9.03 11.73 11.84 -0.09 1.29 1.49 1.43 1.04
fLapK -0.57 1.61 7.23 10.80 13.91 -0.95 0.44 1.00 1.08 1.44
fNTK -0.58 6.98 12.78 13.65 17.82 -0.92 2.40 2.46 1.50 2.26
Threshold = 10%
CW -0.30 -1.62 -9.03 -12.35 -14.52 -0.45 -0.38 -0.97 -0.87 -0.79
AHBS -2.03 -5.64 -8.40 -12.26 -16.62 -2.98 -1.33 -0.86 -0.77 -0.66
fRW -5.45 -4.73 -4.55 -3.56 -1.85 -7.14 -1.05 -0.48 -0.24 -0.08
fLinK -5.98 -5.49 -7.44 -9.28 -10.55 -6.90 -1.18 -0.76 -0.60 -0.45
fGauK -3.20 1.05 9.43 10.94 15.92 -4.12 0.27 1.33 1.06 1.73
fLapK -4.93 -3.80 4.05 7.72 14.36 -5.89 -0.88 0.46 0.63 1.23
fNTK -3.42 7.03 16.66 14.99 24.02 -3.81 1.84 2.58 1.31 2.57

Table 4: Mean simple returns (%) and annualized Sharpe ratio of all models for short delta-neutral straddles,
using two different filtering thresholds of 5% and 10% over the whole test period (Jan 09, 2019, to Dec 31,
2021). Bold numbers indicate the best-performing model (or models) in a given column.
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ods, even during turbulent market conditions such as the Covid-19 pandemic in 2020. Furthermore,

fNTK’s superiority holds when accounting for transaction costs, with its positive returns persisting

and remaining relatively unaffected. The model’s resilience is further underscored by its ability

to maintain its advantage as filtering thresholds increase. Overall, the fNTK model’s remarkable

performance and consistency highlight its potential as a valuable tool for investors in navigating

option markets and optimizing trading strategies.

6 Conclusion

This study introduces a novel fNTK (Functional Neural Tangent Kernel) estimator for the Non-

linear Functional AutoRegressive (NFAR) model, focusing on its applicability to the financial

options market. Our research uncovers the intricate cross-dependent dynamics between functional

responses and multiple lagged functional predictors in this complex domain. Leveraging state-

of-the-art kernel-based machine learning techniques, fNTK facilitates the application of NN to

functional data. We rigorously draw the connection between NTK and kernel regression through

derivation, emphasizing the fNTK’s position as a contemporary nonparametric statistical model.

Our empirical findings consistently highlight the superior predictive power of the fNTK-based

NFAR model, especially for longer forecasting horizons. These results are not only statistically

significant but also carry substantial economic implications. By conducting extensive trading strat-

egy simulations, we demonstrate the real-world value of the fNTK-based NFAR model. It consis-

tently outperforms alternative models, generating superior trading returns and Sharpe ratios across

various market conditions. Moreover, its robustness maintains its competitive edge even when fac-

toring in practical transaction costs or filtering thresholds, making it a valuable tool for investors.

While rooted in IVS forecasting, our modeling framework has broader implications. Its gener-

ality makes it versatile for applications beyond IV forecasting, heralding a new era in econometric

modeling capable of analyzing data with complex, nonlinear dynamics. This work serves as both

a technical contribution and a clarion call for the broader analytical community to recognize the
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vast potential of accurate forecasting in shaping outcomes across a spectrum of applications.

Some extensions will be considered in future research. First, there are more sophisticated

procedures for dimensional reduction. For example, Li and Song (2017) extends the theory of

nonlinear sufficient dimension reduction to find the relevant subspace where the relevant infor-

mation about the relationship between the predictor and response functions lies. Liang, Sun, and

Liang (2022) also offers an innovative method for nonlinear sufficient dimension reduction for

large-scale data using stochastic neural networks. This inspires another approach in which we can

incorporate dimensional reduction and nonlinear modeling into one step instead of using two sepa-

rate steps. Second, there has been some work showing that there are equivalent NTKs for different

architectures of NNs, such as deep Gaussian processes (see Finocchio and Schmidt-Hieber, 2023).
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Appendix

A Appendix

A.1 Summary statistics
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Panel A: Call options

5 ≤ τ ≤ 60 60 < τ ≤ 120 120 < τ ≤ 180 180 < τ Total
m <−0.5

Contract (%) 11.46 3.04 1.55 1.33 17.38
Average IV 0.22 0.26 0.27 0.27 0.24

|m| ≤ 0.5
Contract (%) 19.87 7.09 3.09 3.72 33.77
Average IV 0.17 0.19 0.19 0.19 0.18

0.5 < m
Contract (%) 32.59 8.12 4.03 4.11 48.85
Average IV 0.15 0.17 0.17 0.17 0.16

Total
Contract (%) 63.92 18.25 8.68 9.15 100.00
Average IV 0.17 0.19 0.20 0.19 0.18

Panel B: Put options

5 ≤ τ ≤ 60 60 < τ ≤ 120 120 < τ ≤ 180 180 < τ Total
m <−0.5

Contract (%) 18.75 5.84 2.49 2.75 29.83
Average IV 0.23 0.26 0.28 0.28 0.24

|m| ≤ 0.5
Contract (%) 20.51 7.21 3.09 3.63 34.45
Average IV 0.18 0.19 0.20 0.19 0.18

0.5 < m
Contract (%) 23.03 6.56 3.07 3.07 35.72
Average IV 0.19 0.20 0.20 0.20 0.19

Total
Contract (%) 62.29 19.62 8.65 9.45 100.00
Average IV 0.20 0.22 0.22 0.22 0.20

Table A.1: Summary Statistics for Implied Volatilities by maturity and moneyness. Percentage of contracts
and mean of IV of call options (Panel A) and put options (Panel B), over different combinations of time-to-
maturity (τ , in days) and moneyness (m) between January 1, 2009, and December 31, 2021.

(a) Moneyness m (b) Strike over spot ratio K/S

Figure A.1: Histograms of moneyness m and strike over spot ratio K/S for call and put options.
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A.2 Technical proofs

Theorem 1 (Isomorphism between Reproducing Kernel Hilbert Spaces). Under Equations (6)

and (7), it holds that

k(xi,x j) = ⟨k(.,xi),k(.,x j)⟩

= ⟨K(.,Xi),K(.,X j)⟩MX = K(Xi,X j).

(1)

Then the RKHS MX nested on HX is isometrically isomorphic to the RKHS Mx nested on Hx.

Proof. Given that ⟨ψℓ,ψv⟩= δℓv, the Kronecker delta, it follows that

⟨Xi,X j⟩HX = ⟨
∞

∑
ℓ=1

xiℓψℓ,
∞

∑
v=1

x jvψk⟩HX

=
∞

∑
ℓ=1

∞

∑
v=1

xiℓx jv⟨ψℓ,ψv⟩HX

=
∞

∑
v=1

xivx jv

= ⟨xi,x j⟩.

(2)

For k : Hx×Hx → R that satisfies (7) and by Equation (2)

k(xi,x j) = ρ(⟨xi,x j⟩,⟨xi,x j⟩,⟨x j,x j⟩)

= ρ(⟨Xi,Xi⟩HX ,⟨Xi,X j⟩HX ,⟨X j,X j⟩HX )

= K(Xi,X j).

Let Mx be the RKHS generated by k(.,x), then we also have

K(Xi,X j) = ⟨K(.,Xi),K(.,X j)⟩MX

= ⟨k(.,xi),k(.,x j)⟩= k(xi,x j),

(3)

The map T : HX → R∞ defined as T X = (⟨Xi,ψν⟩HX
)ν=1,2,... is a bijective linear mapping,
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and is also distance-preserving as shown in Equation (3). Thus, by extension of Lemma 4.2. of

Klepsch and Klüppelberg (2017), the Hilbert space MX of K(.,X) is isometrically isomorphic to

the Mx space of k(.,x). Moreover, the function process {Xi} is isometrically isomorphic to the

vector process {xi}.

Theorem 2 (Vector-to-vector regression). Given the decomposition of Xi in Equations (6) and

Yi in Equation (9), under Assumptions (1) - (3) and Theorem 1, for a positive definite kernel k

defined by Equation (7), if there is a covariance matrix Σxx of k(.,x) that is diagonal, then the

function-to-function regression model in Equation (3) may be represented equivalently by

β0 = argmin
β∈B(Hy ,Mx)

E
[
∥yi −β

∗k(.,xi)∥2
2
]
, (4)

with solution β0 = Σ†
xxΣxy. This leads to

E[yi|x] = β
∗
0 k(.,xi)

= ΣyxΣ
†
xxk(.,xi)

= E
[
{(Σ†

xxk(.,xi))(x)}y
]
.

(5)

Proof. We first show that we can move from function-to-function to vector-to-function regression.

By projecting function Yi onto the set of orthonormal eigenfunctions ϕ = (ϕ1, ϕ2 . . .)
T where ϕ j ∈

HY

Yi =
∞

∑
j=1

yi jϕ j, with yi j = ⟨Yi,ϕ j⟩HY ,

and let the number of bases j go to infinity, there is no information loss in the expansion. Given

the fixed form of ϕ , the coefficients yi j-s explain the functional variables uniformly. Since Yi is

centered, its basis coefficient vector yi = (yi1,yi2, ...)
T has zero mean. As B∗

0K(.,Xi) ∈HY , we can
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express it in terms of
{

ϕ j
}

E[Yi|X = Xi] = B∗
0K(.,Xi) =

∞

∑
j=1

⟨ϕ j,B∗
0K(.,Xi)⟩HY ϕ j

=
∞

∑
j=1

⟨B0ϕ j,K(.,Xi)⟩MX ϕ j

=
∞

∑
j=1

⟨b0 j,K(.,Xi)⟩MX ϕ j

=
∞

∑
j=1

b0 j(Xi)ϕ j,

(6)

where b0 j = B0ϕ j ∈ MX and b0 j(Xi) ∈ R. On the other hand, taking conditional expectation in

Yi = ∑
∞
j=1 yi jϕ j leads to

E[Yi|X = Xi] =
∞

∑
j=1

E[yi j|X = Xi]ϕ j. (7)

Hence, predicting Yi is equivalent to predicting yi j-s given X = Xi and kernel K. Furthermore, by

(6), (7), and the orthonormality of {ϕ j}, the predicted value of yi j given X = Xi ∈ HX and kernel

K is

E[yi j|X = Xi] = b0 j(Xi) = ⟨B0ϕ j,K(.,Xi)⟩MX . (8)

This means that the original function-to-function regression is equivalent to vector-to-function

regression, where we predict the basis coefficient vector yi of Yi given the functional input X = Xi.

Next, we show that we can move from vector-to-function to vector-to-vector regression. Next,

we show that we can move from vector-to-function to vector-to-vector regression. For this, we

can use different orthogonal projection of K(.,Xi). Although we illustrate the idea for the spectral

representation of K(.,Xi), the approach is generalisable to other basis functions in MX .

If E(∥K(.,Xi)∥2
MX

)< ∞, then K(.,Xi) admits the Karhunen-Loève decomposition

K(.,Xi) =
∞

∑
ℓ=1

ζiℓωℓ, with ζiℓ = ⟨K(.,Xi),ωℓ⟩MX , (9)
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with {ωℓ} the eigenfunctions and ζiℓ the ℓ−th basis coefficient of K(.,Xi).

Assume that k(.,xi) = (ζi1, ζi2, . . .)
T and denote ω = (ω1,ω2, ...) the vector of basis functions

of MX . Then, the covariance operator ΣXX can be decomposed into

ΣXX = E[K(.,X)⊗K(.,X)]

= E
[( ∞

∑
ℓ=1

ζℓωℓ

)
⊗
( ∞

∑
j=1

ζ jω j

)]
= E

[ ∞

∑
ℓ=1

∞

∑
j=1

ζℓζ j
(
ωℓ⊗ω j

)]
= ωΣxxω

T ,

(10)

where Σxx = E
(
k(.,x)⊗ k(.,x)

)
= diag

(
E[ζ 2

1 ],E[ζ 2
2 ], ...

)
is the covariance matrix of k(.,x) and

Σ†
xx = diag

(
E[ζ 2

1 ]
−11E[ζ 2

1 ]>0,E[ζ 2
2 ]

−11E[ζ 2
2 ]>0, ...

)
is its Moore-Penrose inverse. We can also ex-

press Σ
†
XX in terms of Σ†

xx and ω

Σ
†
XX = ωΣ

†
xxω

T . (11)

Multiply both side by ωℓ, we obtain

Σ
†
XX ωℓ = ωΣ

†
xx(⟨ω1,ωℓ⟩,⟨ω2,ωℓ⟩, ...)T

= (ω1Σ
†
xx,1,ω2Σ

†
xx,2, ...)eℓ

= ωℓΣ
†
xx,ℓ.

(12)

where eℓ = (0,0, ...,0,1,0, ...)T is a vector with all elements equal 0 except for the ℓ−th place,
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which is equal to 1, and Σ
†
xx,ℓ is the ℓ−th diagonal term of Σ†

xx.

⟨ϕ j,ΣY X ωℓ⟩HY = ⟨ϕ j,E[Y ⊗ (K(.,X))]ωℓ⟩HY

= ⟨ϕ j,E[Y ⟨(K(.,X),ωℓ⟩MX ]⟩HY

= ⟨ϕ j,E[Y ζℓ]⟩HY

= E[⟨ϕ j,Y ⟩HY ζℓ]

= E[y jζℓ].

(13)

For k(.,xi) = (ζi1, ζi2, . . .)
T the isomorphism also holds

K(Xi,X j) = ⟨K(.,Xi),K(.,X j)⟩MX

= ⟨
∞

∑
ℓ=1

ζiℓωℓ,
∞

∑
v=1

ζivωv⟩MX

=
∞

∑
ℓ=1

∞

∑
v=1

ζiℓζiv⟨ωℓ,ωv⟩MX

=
∞

∑
ℓ=1

ζiℓζlℓ

= ⟨k(.,xi),k(.,x j)⟩

= k(xi,x j).

(14)
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Now we can further rewrite b0 j(Xi) of Equation (8) as

b0 j(Xi) = ⟨B0ϕ j,K(.,Xi)⟩MX

= ⟨B0ϕ j,
∞

∑
ℓ=1

ζiℓωℓ⟩MX

=
∞

∑
ℓ=1

⟨B0ϕ j,ωℓ⟩MX ζiℓ

=
∞

∑
ℓ=1

⟨ϕ j,B∗
0ωℓ⟩HY ζiℓ

=
∞

∑
ℓ=1

⟨ϕ j,ΣY X Σ
†
XX ωℓ⟩HY ζiℓ

=
∞

∑
ℓ=1

⟨ϕ j,ΣY X ωℓΣ
†
xx,ℓ⟩HY ζiℓ by Equation (12)

=
∞

∑
ℓ=1

⟨ϕ j,ΣY X ωℓ⟩HY Σ
†
xx,ℓ ζiℓ

=
∞

∑
ℓ=1

E[y jωℓ(x)] Σ
†
xx,ℓ ζiℓ by Equation (13)

= E[y jk(.,x)] Σ
†
xx k(.,xi) by diagonality of Σ

†
xx

= Σy jxΣ
†
xxk(.,xi),

(15)

where Σy jx = E[y jk(.,x)]. The predicted value of the j−th basis coefficient yi j of Yi given the

vector of basis coefficients xi of Xi is

E[yi j|x= xi] = b0 j(Xi)

= Σy jxΣ
†
xxk(.,xi)

= E
[
{(Σ†

xxk(.,xi))(x)}y j

]
.

(16)

Thus, the function-to-function regression model can be represented equivalently by the vector-to-

vector regression. We predict each element yi j of the basis coefficient vector yi of Yi using the

basis coefficient vector xi of Xi and kernel k.

Denote β0 = Σ†
xxΣxy, with the adjoint operator β ∗

0 = ΣyxΣ†
xx. Equation (16) can be further

8
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written for predicting vector yi = (yi1,yi2, ...)
T

E[yi|x= xi] = E
[
{(Σ†

xxk(.,xi))(x)}y
]

= ΣyxΣ
†
xxk(.,xi)

= β
∗
0 k(.,xi).

(17)

A.3 Dimension reduction via Sieve

Estimating an infinite number of coefficients using a finite sample is computationally infeasible.

The sieves method (Chen, 2007) projects the infinite-dimensional process onto a finite parameter

space, minimizing information loss. Specifically, we construct sieves, a sequence of subspaces

{Θs} from the original infinite-dimensional space Θ, which is compact and non-decreasing with

each subspace satisfying the condition Θs ⊆ Θs+1 ⊆ ·· · ⊆ Θ and the union of these subspaces,⋃
s Θs, is dense in Θ.

Given a dataset with n observations, the strategy is to select ΘKn , a parameter space of degree

Kn, such that the loss function is well-defined in the finite-dimensional linear space:

ΘKn =

{
f (τ) ∈ L2(C ) | f (τ) =

Kn

∑
k=1

θkφk(τ),
Kn

∑
k=1

k2
θ

2
k ≤ cKn,θk ∈ R,τ ∈ C

}
,

where {θk} denotes the expansion coefficients for functional terms, and c is a positive constant

that controls the growth rate of Kn. We consider Kn as a hyperparameter in the sieve approach

and will address its selection in Section A.4. Under the sieves with degree Kn, the (approximated)

projection operates within a finite parameter space for k = 1, . . . ,Kn.

9
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A.4 Implementation

A.4.1 Functional Principal Component Analysis

Given the smooth curves1 {Yi,Xi}, i = 1, . . . ,n, we can estimate the orthonormal bases of HX and

HY using the empirical mean and covariance operators

µ̂Y (u) =
1
n

n

∑
i=1

Yi(u), µ̂X(v) =
1
n

n

∑
i=1

Xi(v),

ĈX(v,v′) =
1
n

n

∑
i=1

{Xi(v)− µ̂X(v)}{Xi(v′)− µ̂X(v′)},

ĈY (u,u′) =
1
n

n

∑
i=1

{Yi(u)− µ̂Y (u)}{Yi(u′)− µ̂Y (u′)}.

(18)

Throughout the paper, we assume that the eigenfunctions and projection coefficients corre-

spond to decreasing eigenvalues of the covariance operator. By performing functional principal

component analysis (FPCA) on ĈX and ĈY , we obtain a set of orthonormal basis {ψ̂ j(.)} for HX

and a set of orthonormal basis {ϕ̂ j(.)} for HY , such that we may write

Xi(v)− µ̂X(v)≈
dx

∑
j=1

x̂i jψ̂ j(v), Yi(u)− µ̂Y (u)≈
dy

∑
j=1

ŷi jϕ̂ j(u), (19)

where the loadings x̂i j =
∫
Ix
(Xi(v)− µ̂X(v))ψ̂ j(v)dv and ŷi j =

∫
Iy
(Yi(u)− µ̂Y (u))ϕ̂ j(u)du;2 dx and

dy are the truncated dimensions of the basis coefficient vectors x̂i and ŷi, respectively, using the

sieve method in Section A.3.

A.4.2 fNTK algorithm

We introduce the algorithm for the proposed functional Neural Tangent Kernel (fNTK) approach

within the context of the nonlinear functional autoregressive model. This algorithm aims to lever-

1Otto and Salish (2022) note that if the discrete observations are dense enough, the eigenfunctions and projection
coefficients can be estimated at the same

√
n rate as if the curves were fully observed.

2Since the B-splines are not orthogonal, for the implementation we follow Ramsay and Silverman (2005) and
discretize the observed functions Xi to a fine grid of nx equally spaced values v1, ...,vnx that span the interval Iv.
Similarly for Yi, we have a fine grid of ny equally spaced values u1, ...,uny that span the interval Iu.
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age the power of neural networks to capture intricate relationships within the implied volatility

surfaces, aiming for enhanced forecasting accuracy. An illustration of Algorithm 1 is shown in

Figure 3. We conduct a simulation study in Appendix A.5, and it shows that the proposed estima-

tion is numerically consistent.

Algorithm 1 fNTK regression
Given training data {(Yi,Xi)}n

i=1, predict for (Ytest ,Xtest).

1. Perform FPCA on ĈY and ĈX of smoothed surfaces {Yi}n
i=1 and {Xi}n

i=1

2. Truncate the representation to account for 99.99% of variance explained. Obtain set of
orthonormal basis {ϕ̂train, j(.)}

dy
j=1 and {ψ̂train, j(.)}dx

j=1, and set of scores ŷtrain,i ∈ Rdy and
x̂train,i ∈ Rdx , respectively.

3. Train a NTK parameterized neural network with {(ŷtrain,i, x̂train,i)}n
i=1 to minimize a least-

square loss function

4. Use estimated basis functions from training data to get scores x̂test of test data.

5. Use trained NN and x̂test to predict scores of Ytest .

6. Using predicted score ỹtest , obtain predicted surface Ŷtest(u) = ∑
dy
j=1 ỹtest, jϕ̂train, j(u), and get

predictions for observed values of Ytest .

A.5 Simulation study

In this section, we study the finite-sample performance of the proposed estimation in the NFAR

modeling framework. We consider settings with different linear and nonlinear dynamics, generated

with the parameters of the Ad-hoc Black–Scholes (AHBS) model.

For each day t, for a given moneyness and time-to-maturity (TTM), the implied volatility is

simulated with

IVi,t(mi,t ,τi,t) = α0,t +α1,tmi,t +α2,tm2
i,t +α3,tτi,t +α4,tmi,tτi,t + εi,t for i = 1,2, ...,Nt ,

where IVi,t(mi,t ,τi,t), mi,t and τi,t are the simulated implied volatilities, moneyness, and TTM (in

years) of the option i on day t, respectively; εi,t is the normally distributed random error term
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with mean 0 and standard deviation 0.01, and Nt is the number of options available for day t. For

simplicity, we assume that the IVS are observed at regularly spaced points on each day t. The

moneyness m values are set at 50 equidistant points in the range of -2.5 to 2.5, while for the time-

to-maturity τ , we use the sequence of values from 0.02 to 1 by step of 0.05. This mimics our real

data setup where we focus on options with m ∈ [−2.5,2.5] and time-to-maturity τ of at least 5

trading days and at most one year.

We set T = 2000, that is, the sample size, which is split into T1 = [1,1200] as the training set to

perform in-sample estimation, T2 = [1201,1600] as the validation set for tuning hyperparameters,

and T3 = [1601,2000] as the test set to conduct the out-of-sample prediction. The temporal depen-

dence between IVS is captured by the simulated dynamics of α = (α0,α1,α2,α3,α4). We consider

the two experiments described below. The generation was repeated 100 times in each experiment.

In the first experiment, which is referred to as the Linear experiment, we aim to investigate the

performance of functional models under simple linear dynamics. To reflect the values of observed

implied volatility of S&P 500 options, each α j, i = 0,1, ...,4 is simulated with an autoregressive

(AR) model

α j,t = a jα j,t−1 + e j,t ,

with unconditional mean and variance that match the mean and variance of α j estimated from our

S&P 500 data in the sample period 2009 to 2021. The error term e j,t is sampled from N (0,σ2
j )

where σ2
j is set to be 2% of the variance of α j estimated from real data.

Next, we have the Nonlinear experiment, in which we incorporate the nonlinearity of temporal

dependence of IVS by using a nonlinear model to simulate the dynamics of each α j

α j,t = 2sin(α j,t−1)+4cos(α j,t−1)+u j,t .

The simulated values of α j are rescaled to be in the range of α j estimated from real data, and the

error term u j,t is sampled from N (0,σ2
j ) where σ2

j is set to be 2% of the variance of α j estimated

from real data.
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(a) Lead and lag IV (b) Lead IV and lag α0 (c) Lead IV and lag α1

(d) Lead IV and lag α2 (e) Lead IV and lag α3 (f) Lead IV and lag α4

Figure A.2: Lead values of IV (0,0.5) on day t + 1 versus lag values of IV (0,0.5) in (a) and each αi, i =
0, ...,4 on day t in (b) to (f), in one of the simulations for the Linear experiment.

Figure A.2 shows the linear relationships between lead and lag of IV (0,0.5), i.e., IV at money-

ness m = 0 and time-to-maturity of half a year, time series, as well as the 3D plots when we incor-

porate in the lag of each parameter αi, i = 0, ...,4. In Figure A.3, we illustrate IV of day t +1 as a

nonlinear function of the parameters αi, i= 0, ...,4. The sine-cosine dynamics α j,t = a jα j,t−1+e j,t

is well reflected in the lead-lag IV relationship, and also in the 3D plots with the lag of each pa-

rameter αi.

Linear Nonlinear
RMSE MAPE OoR2 RMSE MAPE OoR2

fRW 0.83 (0.12) 1.37 (0.20) 94.47 (2.97) 9.16 (0.28) 18.60 (0.69) -107.88 (4.22)
fLinK 0.83 (0.11) 1.37 (0.20) 94.49 (2.96) 6.38 (0.18) 12.91 (0.42) -0.87 (1.40)
fGauK 0.85 (0.13) 1.40 (0.26) 94.30 (3.01) 1.52 (0.06) 2.98 (0.13) 94.27 (0.59)
fLapK 0.96 (0.39) 1.58 (0.76) 92.40 (7.79) 1.37 (0.13) 2.52 (0.24) 95.27 (0.90)
fNTK1 0.83 (0.11) 1.38 (0.20) 94.45 (2.97) 1.57 (0.07) 3.04 (0.13) 93.82 (0.57)
fNTK3 0.84 (0.11) 1.39 (0.20) 94.39 (2.98) 0.97 (0.15) 1.93 (0.35) 97.58 (0.85)
fNTK5 0.85 (0.12) 1.40 (0.21) 94.28 (3.04) 1.08 (0.38) 2.19 (0.82) 96.69 (2.89)

Table A.2: Mean and standard deviation (in brackets) of prediction accuracy in terms of RMSE, MAPE and
OoR2 of the functional models over the test set T3, under Linear and Nonlinear experiments.
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(a) Lead and lag IV (b) Lead IV and lag α0 (c) Lead IV and lag α1

(d) Lead IV and lag α2 (e) Lead IV and lag α3 (f) Lead IV and lag α4

Figure A.3: Lead values of IV (0,0.5) on day t + 1 versus lag values of IV (0,0.5) in (a) and each αi, i =
0, ...,4 on day t in (b) to (f), in one of the simulations for the Nonlinear experiment.

Table A.2 shows the mean and standard deviation of prediction performances in terms of

RMSE, MAPE, and OoR2 for the test set T3 in the Linear and Nonlinear experiments. As ex-

pected, we observe that for the Linear experiment, the linear model performs the best, with 0.83%

RMSE and 94.49% OoR2, followed closely by fNTK1 with 0.83% RMSE and 94.45% OoR2. The

random walk model, fRW also performs very well. After introducing nonlinearity, the nonlinear

models start to outperform fLinK and fRW significantly. In the Nonlinear experiment, fNTK3

achieves the best performance of 0.97% RMSE, compared to 6.38% for fLinK and 9.16% for fRW.

The outperformance is even more profound when we look at OoR2 and MAPE, with fNTK achiev-

ing the best OoR2 of 97.58%, while fRW and fLinK both have negative OoR2. The other nonlinear

models also perform well under the nonlinear setup, for example, RMSE is 1.37% for fLapK and

1.52% for fGauK.
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A.6 Estimation with parametric kernels

Each task j can be reformulated as a regression that can be solved by estimating a kernel-ridge

model. Suppose the reproducing kernel k has an eigen-expansion

k(x̂, x̂
′
) =

∞

∑
i=1

νiφi(x̂)φi(x̂
′
) (20)

with νi ≥ 0,∑∞
i=1 ν2

i < ∞. We can express each function f j ∈Mx in terms of these eigenfunctions

f j (x̂) =
∞

∑
ℓ=1

c jℓφℓ(x̂) (21)

with a generalized ridge penalty

J( f j) = ∥ f j∥2
Mx

def
=

∞

∑
ℓ=1

c2
jℓ/νℓ < ∞

where ∥ f j∥2
Mx

is the norm induced by k. The function f j ∈Mx can be found by the minimization

problem

min
f j∈Mx

[
n

∑
i=1

(
ŷi j − f j (x̂i)

)2
+λ∥ f j∥2

Mx

]
(22)

By the representer theorem from Schölkopf, Herbrich, and Smola (2001), the solution of (22) is

finite-dimensional and has the form

f j(x̂) =
n

∑
i=1

αik(x̂, x̂i) (23)

Using the reproducing properties of kernel k, we have ⟨k(., x̂i),h⟩Mx = h(x̂i) and ⟨k(., x̂i),k(., x̂ j)⟩Mx =

k(x̂i, x̂ j), and the penalty term J( f j) can be further expressed as

J( f j) =
n

∑
i=1

n

∑
ℓ=1

k(x̂i, x̂ℓ)αiαℓ (24)
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Let ŷ j = (ŷ1 j, . . . , ŷn j)
T , α = (α1, ...,αn)

T , and the gram matrix G where Gi j = k(x̂i, x̂ j). From

(22), (23) and (24), we can rewrite the minimization problem in terms of α and G

min
α

(ŷ j −Gα)T (ŷ j −Gα)+λαT Gα. (25)

Thus, the solution for α is simply α̂= (G+λI)−1ŷ j. The solution for the kernel ridge regression

is therefore ĥ j(x̂) = ∑
n
i=1 α̂ik (x̂i, x̂). The minimization problem in (25) is solved in one step for

known kernels.

A.7 Hyperparameters

There are several hyperparameters involved in the estimation process. The sieve hyperparameter Kn

dictates the dimensions of the reduced parameter space. Tuning hyperparameters γ and λ control

the bandwidth and sparsity of curve predictors in regressions with parametric kernels. Additionally,

for the NTK, unique hyperparameters pertain to the NN architecture.

Sieve approximation hyperparameters. The number of sieves for predictor and response curves

is determined using the explained variance principle. We truncate the number of eigenfunctions

to account for 99.99% of the variance explained. Consequently, the final number of eigenvectors

retained is 15 for Y and 46 for X .

Ridge regularization and bandwidth hyperparameters. Kernel ridge regression is implemented

with a ridge regularization strength λ > 0 for each kernel. The hyperparameter λ modulates the

balance between fitting the training data and preventing overfitting, dictating the extent to which

the regularization term influences the final solution. The hyperparameters γ and λ are fine-tuned

across a value grid, ranging from 0.005 to 0.025 for γ and from 10−5 to 10−1 for λ , at the start of

every six months using cross-validation (see, e.g., Yao, Müller, and Wang (2005)).

NN hyperparameters. Implementation of an NN model requires the specification of several

hyperparameters, including the number of hidden layers, choice of activation functions, and reg-

ularization strengths. However, an exhaustive search for the optimal architecture by evaluating

16

Electronic copy available at: https://ssrn.com/abstract=4616867



infinite hyperparameter combinations is typically impractical. In this study, we employ an NN

architecture featuring large widths of 500 neurons in each hidden layer. This design ensures that

the empirical NTK of the NN closely approximates its limiting NTK. We opt for three hidden lay-

ers and deploy the ReLU activation function across all of them, primarily since most theoretical

results for the NTK align with ReLU. We also conduct a robustness test using NNs with one and

five hidden layers, with findings presented in Appendix A.9.

The NN parameters are refined and learned by minimizing L (ΩMLP(L)) through the gradient

descent optimizer with a learning rate of 0.05. Every six months, we adjust the weight decay rate

over a set of five possible values, spanning from 10−5 to 10−1. Weight decay, also recognized as

L2 regularization, offers multiple benefits: it counteracts overfitting, enhances generalization to

unseen datasets, regulates model complexity, lowers sensitivity to noise, and stabilizes the training

process. Through penalization of large weight values, weight decay promotes the development of

simpler models, reducing susceptibility to overfitting and ensuring better generalization to novel

data.

A.8 Alternative models

A.8.1 Car and Wu model

Carr and Wu (2016) proposes an option pricing framework that models the near-term dynamics of

the implied volatility across different strikes and expiries. For an option with strike K and time to

maturity τ , the dynamics of the underlying spot price St and the option implied volatility IVt(K,τ)

under the risk-neutral measures are captured as

dSt/St =
√

vtdWt ,

dIVt(K,τ)/IVt(K,τ) = e−ηtτ(atdt +wtdZt),

(26)

where vt denotes the time-t instantaneous variance rate of the underlying asset log-returns, at is

the average drift of the implied volatility, and the exponential dampening parameter e−ηtτ accom-
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modates the empirical observation that implied volatilities of long-dated options tend to move less.

Wt and Zt are the Wiener processes with correlation process ρt ∈ [−1,1]. Additionally, at ,wt and

ηt are stochastic processes independent of K,τ and IVt(K,τ).

Denote k = log(KSt) the relative strike. It is shown by Carr and Wu (2016) that the square

implied volatility IV 2
t (k,τ) satisfies the quadratic equation

1
4

e−2ηtτw2
t τ

2IV 4
t +(1−2e−ηtτatτ − e−ηtτwtρt

√
vtτ)IV 2

t − (vt +2e−ηtτwtρt
√

vtk+ e−2ηtτw2
t k2) = 0.

(27)

The implied volatility surface on day t is fitted with the values of parameters θt = (vt ,at ,wt ,ηt ,ρt)

at t. Given the set of options on day t with implied volatility IVi,t , relative strike ki,t and maturity

τi,t , the parameters θt are estimated by minimizing the nonlinear least squares

θ̂t = arg min
θt

Nt

∑
i=1

[1
4

e−2ηtτi,t w2
t τ

2
i,tIV

4
i,t +(1−2e−ηtτi,t atτi,t − e−ηtτi,t wtρt

√
vtτi,t)IV 2

i,t

− (vt +2e−ηtτi,t wtρt
√

vtki,t + e−2ηtτi,t w2
t k2

i,t)
]
.

(28)

With the estimated parameters θ̂t , the parameters on day t + h is predicted to be θ̂t+h = θ̂t and

hence the implied volatility IVi,t+h of day t + h predicted by the Carr and Wu (CW) model is

obtained by solving equation (27) using θ̂t+h as inputs as well as the option relative strike and time

to maturity.3

A.8.2 Ad-hoc Black–Scholes model

Goncalves and Guidolin (2006) propose a vector autoregressive approach to model the dynamics

of the parameters of the Ad-hoc Black–Scholes (AHBS) model of Dumas, Fleming, and Whaley

(1998) and predict their values in the future. For each day t, the AHBS model is estimated with a

3We are grateful to Gustavo Freire for sharing his codes implementing the Carr and Wu model.
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cross-section of i = 1, ...,Nt options using the following regression

IVi,t = α0,t +α1,tmi,t +α2,tm2
i,t +α3,tτi,t +α4,tmi,tτi,t + εi,t , (29)

where IVi,t , mi,t and τi,t are the observed implied volatilities, moneyness, and time to maturity

(in years) of the option i on day t, respectively; εi,t is the random error term, and Nt is the

number of options available for day t. A VAR(p) model is fitted to capture the dynamics of

αt = (α0,t ,α1,t ,α2,t ,α3,t ,α4,t):

αt+h = µ+Φ1αt +
1
5
Φ5

t−4

∑
j=t

α j +
1

22
Φ22

t−21

∑
j=t

α j +εt+1, (30)

where εt+1
i.i.d∼ N(0,Ξ). After estimating α̂t+h with equation (30), the implied volatility predicted

by the AHBS model is attained by using α̂t+h and equation (29). Comparing the NFAR mod-

els with the CW and AHBS models allows us to see whether using a nonparametric nonlinear

model can help improve prediction accuracy, as opposed to using a traditional parametric model

for predicting IV.

A.9 Additional results on statistical performance

On top of RMSE and OoR2 reported in the main text, we assess prediction accuracy from two

more angles, error magnitude, and directional changes, both derived from observed test data. Mean

absolute percentage error (MAPE) captures prediction accuracy and error magnitude, while mean

correct prediction of direction of change (MCPDC) evaluates the ability of the models to anticipate

the direction of price movements. These two metrics contribute another unique insight into the
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performances of the models.

MAPEh =
1

∑
T−h
t=t0 Nt

T−h

∑
t=t0

Nt

∑
j=1

∣∣∣∣Yt+h(u j)− Ŷt+h(u j)

Yt+h(u j)

∣∣∣∣ ,
MCPDCh =

1

∑
T−h
t=t0 Nt

T−h

∑
t=t0

Nt

∑
j=1

×1(Yt+h(u j)−Yt(u j))(Ŷt+h(u j)−Yt(u j))>0.

Here, t0 = 2523 and T = 3273 mark the start and end of the testing period. The MCPDCh is

computed solely for options traded on both day t and day t +h.

A.9.1 Robustness of statistical performance

The outcomes documented in Table A.3 underscore an intriguing observation: while utilizing a

Neural Tangent Kernel (NTK) framework with three hidden layers contributes to improved pre-

diction accuracy, the benefits of incorporating a higher number of hidden layers are not uniformly

positive. For example, when focusing on the forecasting horizon of h = 20, the Mean Absolute

Percentage Error (MAPE) diminishes from 14.85% to 10.83% with the adoption of fNTK with

three hidden layers instead of one, whereas employing five layers slightly exacerbates MAPE to

10.94%.

Furthermore, we categorize options into distinct groups based on their moneyness (m) and

time-to-maturity (τ), subsequently examining the statistical performance of the models within each

group. With respect to moneyness, the options are stratified into four groups: [−2,−0.5], (−0.5,0],

(0,0.5], and (0.5,2], while maturity is divided into four intervals based on days to maturity: [5,60],

(60,120], (120,180], and (180,252] days. The performance of the models across moneyness and

time-to-maturity groups, as measured by the Root Mean Square Error (RMSE), is illustrated in

Figure A.4.4

The analysis reveals that, on the whole, prediction errors, as quantified by RMSE, tend to be

higher for options with larger moneyness (m) and shorter maturity (τ). Remarkably, the consistent

4We tried the put and call options separately and the same conclusions hold. Hence, it does not seem to be a matter
of liquidity. Additional results for put and calls separately aare available upon request.
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Figure A.4: Prediction accuracy in terms of RMSE of all the models across forecasting horizons h = 1,15
and 20, in (a) four different moneyness m values: [−2,−0.5],(−0.5,0],(0,0.5], and (0.5,2] and (b) time-
to-maturity τ values: [5,60],(60,120],(120,180], and (180,252] days. The performance period is split into
overall (from Jan 09, 2019, to Dec 31, 2021), year 2019, year 2020, and year 2021.

pattern across all moneyness and time-to-maturity groups, as well as prediction periods, is the

superior performance of nonlinear functional models, notably exemplified by fNTK, particularly

in longer forecasting horizons. It is noteworthy that across the entirety of the analysis, all models

exhibit diminished forecasting accuracy in the year 2020 when compared to both 2019 and 2021.

These findings collectively underscore the robustness of nonlinear models across various mar-

ket conditions and reveal nuanced insights into the interplay between model complexity and per-

formance across distinct prediction horizons.
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Panel A: Training size of 1000 days

RMSE MAPE
h = 1 h = 5 h = 10 h = 15 h = 20 h = 1 h = 5 h = 10 h = 15 h = 20

CW 3.57 5.45 7.23 8.87 9.91 8.46 12.49 16.05 18.36 20.23
AHBS 3.82 5.57 7.60 8.85 9.68 9.12 13.17 16.47 18.51 19.86
fRW 3.65 5.72 7.66 9.27 10.57 7.21 11.89 15.80 18.36 20.45
fLinK 3.94 5.74 7.56 8.24 9.01 7.37 12.32 16.47 18.09 19.05
fGauK 10.13 10.31 10.32 9.87 8.45 13.16 14.30 14.64 14.72 14.54
fLapK 8.64 8.88 9.30 9.08 8.21 10.49 12.36 13.84 14.68 14.95
fNTK 5.67 5.88 6.73 7.19 6.14 9.34 10.57 11.13 11.51 11.07

OoR2 MCPDC
h = 1 h = 5 h = 10 h = 15 h = 20 h = 1 h = 5 h = 10 h = 15 h = 20

CW 88.74 74.18 54.50 32.01 15.21 41.80 43.40 45.35 49.11 51.85
AHBS 87.11 72.99 49.89 32.23 19.17 45.37 44.50 47.65 49.95 53.54
fRW 88.28 71.59 48.97 25.69 3.49 39.92 44.64 46.23 49.61 51.41
fLinK 86.28 71.25 49.92 41.40 30.08 44.60 48.09 52.09 56.45 59.93
fGauK 10.33 7.48 7.62 15.75 38.35 48.48 58.84 65.65 69.58 72.11
fLapK 34.81 30.99 24.87 28.69 41.91 46.57 55.59 63.00 66.12 68.61
fNTK 71.91 69.93 60.70 55.14 67.48 45.62 59.11 65.87 71.62 75.33

Panel B: Training size of 2000 days

RMSE MAPE
h = 1 h = 5 h = 10 h = 15 h = 20 h = 1 h = 5 h = 10 h = 15 h = 20

CW 3.57 5.45 7.23 8.87 9.91 8.46 12.49 16.05 18.36 20.23
AHBS 3.76 5.53 7.47 8.75 9.59 8.97 12.77 15.70 17.55 18.72
fRW 3.65 5.72 7.66 9.27 10.57 7.21 11.89 15.80 18.36 20.45
fLinK 3.70 5.38 7.38 8.30 9.06 7.03 11.49 14.72 16.50 17.74
fGauK 9.82 9.90 10.05 9.61 8.21 12.51 13.64 14.26 14.59 14.32
fLapK 8.40 8.38 8.91 8.73 8.01 10.02 11.77 13.38 14.09 14.07
fNTK 4.39 4.96 6.50 6.64 6.17 8.39 9.57 10.89 10.85 11.12

OoR2 MCPDC
h = 1 h = 5 h = 10 h = 15 h = 20 h = 1 h = 5 h = 10 h = 15 h = 20

CW 88.74 74.18 54.50 32.01 15.21 41.80 43.40 45.35 49.11 51.85
AHBS 87.52 73.35 51.52 33.75 20.73 45.07 44.44 47.77 50.86 54.38
fRW 88.28 71.59 48.97 25.69 3.49 39.92 44.64 46.23 49.61 51.41
fLinK 87.87 74.81 52.68 40.44 29.14 44.10 48.07 52.68 56.69 59.37
fGauK 15.75 14.71 12.44 20.11 41.84 48.25 58.57 66.43 69.42 72.47
fLapK 38.40 38.75 31.14 34.17 44.70 47.52 56.60 63.78 66.38 70.04
fNTK 83.18 78.48 62.34 61.87 66.95 46.74 59.86 67.04 72.02 73.58

Table A.4: Prediction accuracy of all models in terms of RMSE, MAPE, OoR2, and MCPDC. The models
are trained with two different training sizes: 1000 days in Panel A and 2000 days in Panel B. The prediction
period is from Jan 09, 2019 to Dec 31, 2021. Bold numbers indicate the best-performing model (or models)
in a given column.
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A.9.2 Diebold-Mariano tests

We use the Diebold-Mariano (DM) test to determine whether the two prediction performances

are significantly different, see Diebold and Mariano (2002). Let eh,1t and eh,2t denote the h−day

forecasting error of model 1 and model 2 at time t ∈ [t0,T −h]. Since we have multiple observations

and forecasted values on each test day t, we define eh,t =
1
Nt

∑
Nt
j=1

∣∣∣Yt+h(u j)−Ŷt+h(u j)
Yt+h(u j)

∣∣∣ for MAPE,

and eh,t =
√

1
Nt

∑
Nt
j=1(Yt+h(u j)− Ŷt+h(u j))2 for RMSE. The differential loss is computed by dh,t =

eh,1t − eh,2t , and the DM test statistic is computed as follows

DMh =

1
T−h−t0+1 ∑

T−h
t=t0 dh,t√

(σ̂0 +2∑
h
k=1 σ̂k)/(T −h− t0 −22+1)

,

where σ̂0 is the sample standard deviation, and σ̂k is the autocovariance at lag k ≥ 1 of the series

dh
t . The null hypothesis H0 : DMh = 0 is that there is no significant difference in the accuracy of

the two models.
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CW AHBS fRW fLinK fGauK fLapK fNTK
h = 1
CW − 0.000 1.000 1.000 0.000 0.013 0.766
AHBS 1.000 − 1.000 1.000 0.000 0.295 1.000
fRW 0.000 0.000 − 1.000 0.000 0.000 0.000
fLinK 0.000 0.000 0.053 − 0.000 0.000 0.000
fGauK 1.000 1.000 1.000 1.000 − 1.000 1.000
fLapK 0.998 0.881 1.000 1.000 0.000 − 0.996
fNTK 0.955 0.000 1.000 1.000 0.000 0.006 −
h = 5
CW − 0.002 0.732 0.993 0.248 0.517 1.000
AHBS 1.000 − 0.987 1.000 0.398 0.701 1.000
fRW 0.999 0.039 − 0.994 0.228 0.517 1.000
fLinK 0.172 0.000 0.033 − 0.142 0.313 1.000
fGauK 0.872 0.678 0.799 0.890 − 0.995 0.983
fLapK 0.657 0.349 0.517 0.707 0.016 − 0.956
fNTK 0.000 0.000 0.000 0.002 0.025 0.069 −
h = 10
CW − 0.592 0.063 0.993 0.898 0.998 1.000
AHBS 0.971 − 0.273 1.000 0.836 0.984 1.000
fRW 1.000 0.760 − 0.992 0.937 1.000 1.000
fLinK 0.222 0.006 0.032 − 0.649 0.891 1.000
fGauK 0.453 0.308 0.198 0.553 − 0.915 0.927
fLapK 0.095 0.039 0.003 0.256 0.110 − 0.920
fNTK 0.000 0.000 0.000 0.000 0.074 0.105 −
h = 15
CW − 0.748 0.007 0.940 1.000 1.000 1.000
AHBS 0.672 − 0.154 0.964 0.954 0.999 1.000
fRW 0.999 0.872 − 0.966 1.000 1.000 1.000
fLinK 0.192 0.104 0.058 − 0.878 0.980 1.000
fGauK 0.046 0.100 0.000 0.320 − 0.855 0.953
fLapK 0.000 0.003 0.000 0.113 0.201 − 0.966
fNTK 0.000 0.000 0.000 0.000 0.058 0.039 −
h = 20
CW − 0.818 0.008 0.946 1.000 1.000 1.000
AHBS 0.413 − 0.117 0.949 0.983 1.000 1.000
fRW 0.999 0.903 − 0.972 1.000 1.000 1.000
fLinK 0.161 0.180 0.057 − 0.956 0.994 0.998
fGauK 0.001 0.045 0.000 0.166 − 0.758 0.949
fLapK 0.000 0.001 0.000 0.028 0.295 − 0.952
fNTK 0.001 0.000 0.001 0.003 0.064 0.059 −

Table A.5: P-values of Diebold-Mariano (DM) tests using RMSE. The reported p-values are the maximum
of the p-values of the DM tests using RMSE for put and call options separately. The hypothesis being tested
is H0 : RMSEi = RMSE j against a one-sided alternative H1 : RMSEi < RMSE j, where model i is the label
of the selected row, whereas model j is the label of the selected column. Thus, for each forecasting horizon
h, if the reported p-value at the ith row and jth column is less than 0.05, it means that the model i performs
statistically better than model j at 5% level of significance.
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CW AHBS fRW fLinK fGauK fLapK fNTK
h = 1
CW − 0.002 1.000 1.000 0.007 0.951 1.000
AHBS 1.000 − 1.000 1.000 0.039 0.997 1.000
fRW 0.000 0.000 − 1.000 0.000 0.000 0.000
fLinK 0.000 0.000 0.071 − 0.000 0.000 0.000
fGauK 1.000 1.000 1.000 1.000 − 1.000 1.000
fLapK 0.880 0.033 1.000 1.000 0.000 − 0.928
fNTK 0.555 0.000 1.000 1.000 0.000 0.133 −
h = 5
CW − 0.583 1.000 1.000 0.930 0.997 1.000
AHBS 1.000 − 1.000 1.000 0.913 0.995 1.000
fRW 0.448 0.000 − 0.932 0.536 0.908 1.000
fLinK 0.039 0.000 0.098 − 0.398 0.746 1.000
fGauK 0.464 0.186 0.471 0.666 − 0.991 0.986
fLapK 0.089 0.011 0.167 0.314 0.062 − 0.972
fNTK 0.000 0.000 0.000 0.000 0.018 0.075 −
h = 10
CW − 0.922 1.000 1.000 1.000 1.000 1.000
AHBS 0.847 − 0.692 0.999 0.998 1.000 1.000
fRW 0.998 0.505 − 0.993 0.999 1.000 1.000
fLinK 0.127 0.019 0.050 − 0.954 0.994 1.000
fGauK 0.019 0.019 0.007 0.132 − 0.731 0.924
fLapK 0.000 0.000 0.000 0.022 0.350 − 0.969
fNTK 0.000 0.000 0.000 0.000 0.096 0.087 −
h = 15
CW − 0.856 1.000 0.996 1.000 1.000 1.000
AHBS 0.629 − 0.430 0.952 0.999 1.000 1.000
fRW 1.000 0.690 − 0.963 1.000 1.000 1.000
fLinK 0.181 0.070 0.081 − 0.987 0.999 1.000
fGauK 0.001 0.010 0.000 0.082 − 0.631 0.974
fLapK 0.000 0.000 0.000 0.022 0.437 − 0.995
fNTK 0.000 0.000 0.000 0.000 0.033 0.005 −
h = 20
CW − 0.866 1.000 0.993 1.000 1.000 1.000
AHBS 0.392 − 0.260 0.924 0.999 1.000 1.000
fRW 1.000 0.828 − 0.976 1.000 1.000 1.000
fLinK 0.127 0.077 0.054 − 0.994 1.000 1.000
fGauK 0.000 0.008 0.000 0.054 − 0.644 0.976
fLapK 0.000 0.000 0.000 0.004 0.399 − 0.994
fNTK 0.000 0.000 0.000 0.000 0.044 0.022 −

Table A.6: P-values of Diebold-Mariano (DM) tests using MAPE. The reported p-values are the maximum
of the p-values of the DM tests using MAPE for put and call options separately. The hypothesis being tested
is H0 : MAPEi = MAPE j against a one-sided alternative H1 : MAPEi < MAPE j, where model i is the label
of the selected row, whereas model j is the label of the selected column. For each forecasting horizon h,
if the reported p-value at the ith row and jth column is less than 0.05, it means that the model i performs
statistically better than model j at 5% level of significance.
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A.10 Delta-hedging of call and put options portfolios

Call delta-hedging. In a short call delta-hedging strategy, we sell one call option contract hedged

by a long position in delta shares of S&P 500. Our setup relies on trading signals extracted from

the predicted IVS and includes only non-zero volume call options at time t. Let Qsc
t be the set of

call options whose implied volatilities are predicted to decrease on day t +h, or in other words, the

set of call options to be sold on day t. The initial investment cost for such a delta-hedged portfolio

is ∑i∈Qsc
t
(∆sc

i,tSt −Ci,t), where Ci,t and ∆sc
i,t ∈ [0,1] denote the price and the Black-Scholes delta of

the call option i ∈ Qsc
t , and St is the closing S&P 500 stock price on the day t. The capital required

for the portfolio is always positive. To reduce transaction costs, we hold the position for an h-day

period without rebalancing the delta-hedges, as described in Goyal and Saretto (2009). The payoff

on day t + h is ∑i∈Qsc
t
(∆sc

i,tSt+h −Ci,t+h). Conversely, long-call delta-hedging involves buying Qlc
t

call options while selling shares with delta ∆lc
i,t , with i ∈ Qlc

t . Thus, the return Rsc
t of the short call

delta-hedging portfolio and return Rlc
t of a long call delta-hedging portfolio are

Rsc
t =

∑i∈Qsc
t
(∆sc

i,tSt+h −Ci,t+h)

∑i∈Qsc
t
(∆sc

i,tSt −Ci,t)
−1 and Rlc

t = 1−
∑i∈Qlc

t
(∆lc

i,tSt+h −Ci,t+h)

∑i∈Qlc
t
(∆lc

i,tSt −Ci,t)
.

Put delta-hedging. The short put delta-hedging strategy involves selling one contract of a put

option and delta-hedging the position by shorting the S&P 500 index. Like the call delta-hedging,

we use the predicted IVS to extract trading signals and discretely observed put options to build a

portfolio. Denote by Qsp
t the set of put options to be sold on the day t, i.e., those put options with

IV predicted to decrease on the day t +h. On day t, we have a cash inflow of ∑i∈Qsp
t
(−∆

sp
i,t St +Pi,t)

where Pi,t and ∆
sp
i,t ∈ [−1,0] denote the price and the Black-Scholes delta of the put option i ∈ Qp

t .

We hold the portfolio for h days without rebalancing, and on day t +h, we close the positions and

pay a cost of ∑i∈Qsp
t
(−∆

sp
i,t St+h +Pi,t+h). For long put delta-hedging, we buy one contract of a put

option hedged by a long position in the corresponding number of shares of S&P 500. The returns
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of the portfolios on the two strategies are, respectively

Rsp
t = 1−

∑i∈Qsp
t
(−∆

sp
i,t St+h +Pi,t+h)

∑i∈Qsp
t
(−∆

sp
i,t St +Pi,t)

and Rl p
t =

∑i∈Ql p
t
(−∆

l p
i,t St+h +Pi,t+h)

∑i∈Ql p
t
(−∆

l p
i,t St +Pi,t)

−1.

A.11 Additional results on economic performance

The performance of the remaining short and long strategies is detailed in this section. Overall,

fNTK performs the best over different strategies and trading periods, transaction costs, and filtering

thresholds. But some differences exist. We review the main findings below.

Compared to delta-hedging strategies, the straddle strategies show higher trading returns in

terms of mean simple returns and Sharpe ratio. Additionally, it is worth noting that theoretically,

delta-hedging (with put and call together), simple straddle (using one call and one put option) and

delta-neutral straddle (described in the main text) strategies using at-the-money (ATM) options,

defined by options with |∆|= 0.5, should yield the same returns. We verified this by using call and

put ATM options with 0.48 ≤ |∆| ≤ 0.52, and our results show that delta-hedging, simple straddle,

and delta-neutral strategies with ATM options yield highly similar results , see Table A.9.

Short call delta-hedging strategies, Table A.7 and Figure A.5 is the only one that does not fully

benefit from fNTK and is outperformed by the benchmark models. Its performance is surpassed in

particular by fRW which records high Sharpe ratios between 4.74 and 5.28, particularly in 2021,

while fNTK’s records a Sharpe ratio 2.29 to 4.65 in the same period. However, this changes

when we increase the filtering threshold to 10%; then fRW performs worse and fNTK performs

the best in the longer horizons, e.g., for 20 steps ahead, fRW has a Sharpe ratio of 1.08 while

fNTK has a Sharpe ratio of 2.66, as shown in Figure A.7. fNTK scores highest in short-put delta-

hedging strategies, Table A.8 and Figure A.6, but the returns are close to zero and negative for

most horizons.

For long strategies, the relative performance of the nonlinear kernels is evident in Figures A.14,

A.15, A.16 and upper panels of tables A.10, A.11, A.12. fNTK scores highest in the overall per-
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formance but the mean returns are relatively small compared to the short strategies. The returns of

long delta-hedging strategies are around 0, with a more pronounced negative pattern for put-based

strategies. Long delta-neutral straddles score a maximum return of 5.69% for 20-day portfolios,

but their Sharpe Ratio is only 0.41. Compared to the performance of short delta-neutral straddles,

this marks a sharp decrease in performance. However, this discrepancy in performance between

long and short delta-neutral straddles aligns with the existing literature.

When looking at the trading returns across different years, we observe reasonable patterns for

long and short strategies: for short strategies, the returns are generally better in the calmer periods

of years 2019 and 2021; while for long strategies, most of the returns are from the highly volatile

year 2021. Furthermore, across all trading strategies, it is also noteworthy that as we increase the

filtering threshold, the nonlinear models, especially the fNTK model, tend to have better returns;

but it is not always true for the classical methods, peculiarly the fRW model. With respect to

transaction costs, as the effective spread measures, i.e., the trading costs become higher, the returns

of the models tend to reduce, but not by significant amount.

A.11.1 Performance of short strategies
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Mean return (%) Sharpe ratio
h = 1 h = 5 h = 10 h = 15 h = 20 h = 1 h = 5 h = 10 h = 15 h = 20

Overall (from Jan 9, 2019 to Dec 31, 2021)
CW 0.00 0.26 0.59 1.06 1.56 -0.06 1.18 1.10 1.21 1.35
AHBS 0.01 0.19 0.57 0.96 1.48 0.32 0.97 1.24 1.23 1.30
fRW 0.06 0.44 0.87 1.28 1.73 1.63 2.14 1.77 1.56 1.51
fLinK 0.06 0.33 0.49 0.64 0.94 1.41 1.72 0.99 0.71 0.82
fGauK 0.05 0.20 0.40 0.63 1.03 1.22 1.03 0.86 0.86 1.29
fLapK 0.05 0.27 0.52 0.63 1.01 1.24 1.35 1.09 0.77 1.12
fNTK 0.08 0.27 0.54 0.74 1.16 1.92 1.47 1.24 1.08 1.39
From Jan 9, 2019 to Dec 31, 2019
CW 0.01 0.22 0.53 0.86 1.45 0.53 2.10 2.40 2.33 2.64
AHBS 0.02 0.24 0.86 1.54 2.11 1.32 2.07 3.46 3.60 3.69
fRW 0.06 0.46 0.94 1.42 1.88 3.07 4.01 4.23 3.99 3.63
fLinK 0.06 0.38 0.61 0.73 0.84 3.33 3.48 3.21 2.11 2.21
fGauK 0.08 0.30 0.61 0.92 1.27 3.97 3.06 3.36 2.33 3.06
fLapK 0.09 0.38 0.71 0.99 1.23 4.34 3.34 3.74 2.59 2.73
fNTK 0.09 0.33 0.58 0.70 1.22 4.12 3.32 3.20 1.96 3.05
From Jan 1, 2020 to Dec 31, 2020
CW -0.03 0.37 0.76 1.40 1.85 -0.64 1.06 0.90 1.02 1.03
AHBS -0.02 0.00 0.14 0.08 0.66 -0.36 -0.02 0.18 0.05 0.38
fRW 0.03 0.29 0.60 0.88 1.30 0.43 0.92 0.78 0.68 0.71
fLinK 0.03 0.18 0.06 -0.06 0.47 0.39 0.59 0.06 -0.07 0.26
fGauK -0.03 -0.07 -0.15 -0.06 0.47 -0.55 -0.29 -0.24 -0.09 0.41
fLapK -0.03 0.03 0.13 -0.18 0.37 -0.58 0.06 0.16 -0.17 0.26
fNTK 0.06 0.14 0.33 0.58 1.02 0.90 0.49 0.48 0.56 0.82
From Jan 1, 2021 to Dec 31, 2021
CW 0.02 0.19 0.47 0.91 1.36 1.49 2.73 2.84 2.98 2.95
AHBS 0.04 0.33 0.72 1.31 1.69 2.22 2.95 3.34 3.37 3.26
fRW 0.10 0.57 1.06 1.56 2.04 4.96 5.28 5.07 4.79 4.74
fLinK 0.09 0.45 0.83 1.32 1.61 4.73 4.32 3.87 3.78 3.20
fGauK 0.09 0.37 0.78 1.04 1.35 4.68 4.60 4.11 2.71 2.25
fLapK 0.09 0.40 0.75 1.11 1.45 4.45 4.48 3.47 3.11 2.75
fNTK 0.10 0.34 0.73 0.96 1.25 4.65 3.52 3.69 2.60 2.29

Table A.7: Mean simple returns (MR) and annualized Sharpe ratio (SR) of short call delta-hedging over
the whole test period, from Jan 9, 2019 to Dec 31, 2021, and in each year of the test period. Bold numbers
indicate the best-performing model (or models) in a given column.
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Figure A.5: Mean simple returns (MR) in percentage and Sharpe ratio (SR) of short call delta-hedging
strategy. The prediction period is from Jan 09, 2019 to Dec 31, 2021.

30

Electronic copy available at: https://ssrn.com/abstract=4616867



Mean return (%) Sharpe ratio
h = 1 h = 5 h = 10 h = 15 h = 20 h = 1 h = 5 h = 10 h = 15 h = 20

Overall (from Jan 9, 2019 to Dec 31, 2021)
CW 0.03 0.07 -0.03 -0.21 -0.50 0.67 0.28 -0.12 -0.27 -0.32
AHBS 0.00 0.02 -0.06 -0.20 -0.45 0.04 0.02 -0.19 -0.27 -0.31
fRW 0.00 -0.02 -0.06 -0.22 -0.44 -0.26 -0.20 -0.19 -0.30 -0.31
fLinK 0.00 -0.02 -0.12 -0.35 -0.62 -0.22 -0.19 -0.29 -0.39 -0.39
fGauK 0.00 0.02 0.05 -0.11 0.25 -0.29 0.03 0.04 -0.12 0.19
fLapK 0.00 0.01 -0.02 -0.49 -0.39 -0.27 -0.03 -0.11 -0.36 -0.21
fNTK -0.01 0.05 0.08 -0.09 0.30 -0.42 0.17 0.06 -0.12 0.22
From Jan 9, 2019 to Dec 31, 2019
CW 0.03 0.13 0.17 0.18 0.19 1.51 1.12 0.64 0.30 0.06
AHBS 0.02 0.07 0.14 0.22 0.31 0.54 0.33 0.38 0.51 0.57
fRW 0.01 0.06 0.12 0.17 0.23 -0.04 0.23 0.29 0.21 0.25
fLinK 0.01 0.07 0.18 0.25 0.31 0.16 0.28 0.69 0.66 0.60
fGauK 0.01 0.08 0.17 0.23 0.25 0.06 0.42 0.73 0.65 0.31
fLapK 0.01 0.06 0.17 0.22 0.22 -0.11 0.21 0.64 0.51 0.18
fNTK 0.00 0.08 0.17 0.23 0.29 -0.44 0.50 0.70 0.58 0.53
From Jan 1, 2020 to Dec 31, 2020
CW -0.01 -0.13 -0.62 -1.24 -2.24 -0.13 -0.42 -0.71 -0.77 -0.77
AHBS -0.03 -0.14 -0.57 -1.05 -1.75 -0.77 -0.45 -0.70 -0.73 -0.70
fRW -0.04 -0.27 -0.65 -1.32 -2.17 -0.93 -0.86 -0.79 -0.89 -0.82
fLinK -0.04 -0.24 -0.76 -1.55 -2.31 -1.05 -0.76 -0.89 -0.94 -0.83
fGauK -0.05 -0.19 -0.42 -1.11 -0.34 -1.22 -0.62 -0.57 -0.51 -0.26
fLapK -0.04 -0.19 -0.57 -2.00 -1.75 -1.01 -0.61 -0.66 -0.83 -0.52
fNTK -0.05 -0.10 -0.31 -1.09 -0.21 -1.16 -0.32 -0.31 -0.57 -0.14
From Jan 1, 2021 to Dec 31, 2021
CW 0.05 0.22 0.37 0.46 0.62 2.78 3.05 2.81 2.21 2.08
AHBS 0.03 0.14 0.32 0.47 0.82 1.73 2.11 2.37 2.34 3.13
fRW 0.02 0.15 0.39 0.54 0.74 1.29 2.53 3.91 3.87 3.22
fLinK 0.03 0.14 0.34 0.56 0.83 1.46 2.01 2.51 2.63 3.65
fGauK 0.03 0.20 0.50 0.77 1.05 1.54 3.29 4.82 5.17 5.20
fLapK 0.02 0.18 0.43 0.70 0.93 1.29 2.59 3.90 4.84 4.41
fNTK 0.03 0.18 0.42 0.69 0.89 1.38 2.84 4.08 4.99 4.25

Table A.8: Mean simple returns in percentage and annualized Sharpe ratio of short put delta-hedging over
the whole test period, from Jan 9, 2019 to Dec 31, 2021, and in each year of the test period. Bold numbers
indicate the best-performing model (or models) in a given column.
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Figure A.6: Mean simple returns (MR) in percentage and annualized Sharpe ratio of short put delta-hedging
strategy. The prediction period is from Jan 09, 2019 to Dec 31, 2021.
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Figure A.7: Mean simple returns (MR) in percentage and annualized Sharpe ratio of short call delta-hedging
strategy using three levels of filtering thresholds: 0.5%, 5% and 10%. The prediction period is from Jan 09,
2019 to Dec 31, 2021.
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Figure A.8: Mean simple returns (MR) in percentage and annualized Sharpe ratio of short call delta-hedging
strategy using three levels of effective measure (EM): 50%, 75% and 100%. The prediction period is from
Jan 09, 2019 to Dec 31, 2021.
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Figure A.9: Mean simple returns (%) and annualized Sharpe ratio of short put delta-hedging strategy using
three levels of filtering thresholds: 0.5%, 5% and 10%. The prediction period is from Jan 09, 2019 to Dec
31, 2021.
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Figure A.10: Mean simple returns (%) and annualized Sharpe ratio of short put delta-hedging strategy using
three levels of effective measure (EM): 50%, 75% and 100%. The prediction period is from Jan 09, 2019 to
Dec 31, 2021.
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Figure A.11: Mean simple returns in percentage and Sharpe ratio of short delta-neutral straddle strategy
using three levels of filtering thresholds: 0.5%, 5% and 10%. The prediction period is from Jan 09, 2019 to
Dec 31, 2021.
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Figure A.12: Mean simple returns in percentage and Sharpe ratio of short delta-neutral straddle strategy
using three levels of effective measure (EM): 50%, 75% and 100%. The prediction period is from Jan 09,
2019 to Dec 31, 2021.
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Figure A.13: Mean traded volume, mean simple returns in percentage, and annualized Sharpe ratio of the
models for short call delta-hedging, short-put delta-hedging, and short delta-neutral straddle at the fore-
casting horizon h = 20, across different moneyness m groups [−2,−0.5],(−0.5,0],(0,0.5], and (0.5,2], and
time-to-maturity τ groups [5,60],(60,120],(120,180], and (180,252], and in three prediction periods: 2019,
2020, and 2021.
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Mean return (%) Sharpe ratio
h = 1 h = 5 h = 10 h = 15 h = 20 h = 1 h = 5 h = 10 h = 15 h = 20

Short delta-hedging
CW -0.43 -1.48 -6.22 -8.36 -8.78 -0.97 -0.27 -0.98 -0.74 -0.56
AHBS -0.55 -0.70 -4.50 -7.26 -10.15 -1.37 -0.23 -0.66 -0.57 -0.52
fRW 0.32 1.90 -0.49 -4.21 -7.49 0.70 0.55 -0.08 -0.34 -0.32
fLinK 0.00 -1.07 -4.20 -7.86 -9.80 0.00 -0.34 -0.58 -0.60 -0.49
fGauK 0.04 2.02 3.65 3.87 6.54 0.07 0.65 0.74 0.53 0.85
fLapK -0.31 1.36 1.84 2.89 5.33 -0.66 0.47 0.30 0.34 0.54
fNTK -0.60 2.95 6.23 7.47 10.08 -1.26 1.07 1.16 1.33 1.58
Simple short straddle
CW -0.48 -2.76 -6.21 -7.93 -8.07 -1.25 -1.07 -1.00 -0.76 -0.58
AHBS -0.42 -0.91 -4.35 -6.77 -9.44 -1.19 -0.36 -0.66 -0.58 -0.53
fRW 0.22 1.28 -0.25 -3.99 -5.04 0.55 0.46 -0.04 -0.35 -0.28
fLinK -0.31 -0.85 -4.16 -7.23 -9.03 -0.76 -0.30 -0.59 -0.60 -0.50
fGauK -0.42 1.65 3.28 3.60 6.77 -1.00 0.71 0.65 0.49 0.96
fLapK -0.36 1.00 1.60 2.82 5.40 -0.85 0.40 0.27 0.34 0.63
fNTK -0.65 3.39 6.74 7.53 10.41 -1.54 1.47 1.61 1.39 1.95
Delta-neutral short straddle
CW -0.49 -2.79 -6.23 -8.01 -8.17 -1.27 -1.08 -1.01 -0.77 -0.58
AHBS -0.42 -0.93 -4.36 -6.80 -9.52 -1.19 -0.36 -0.66 -0.59 -0.53
fRW 0.22 1.25 -0.29 -4.06 -5.16 0.54 0.45 -0.05 -0.35 -0.29
fLinK -0.32 -0.88 -4.19 -7.31 -9.10 -0.77 -0.31 -0.59 -0.60 -0.50
fGauK -0.43 1.65 3.32 3.62 6.78 -1.02 0.71 0.66 0.49 0.96
fLapK -0.37 0.98 1.61 2.80 5.37 -0.86 0.39 0.27 0.34 0.62
fNTK -0.66 3.34 6.74 7.51 10.37 -1.55 1.44 1.61 1.39 1.93

Table A.9: Mean simple return (%) and annualized Sharpe ratio of short delta-hedging (using both call
and put options), simple short straddle (consisting of one call and one put option), and short delta-neutral
straddle for at-the-money options, defined by |∆| ∈ [0.48,5.02], where ∆ is the delta of the options. Bold
numbers indicate the best-performing model (or models) in a given column.
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A.11.2 Performance of long strategies

Mean return (%) Sharpe ratio
h = 1 h = 5 h = 10 h = 15 h = 20 h = 1 h = 5 h = 10 h = 15 h = 20

Overall (from Jan 9, 2019 to Dec 31, 2021)
CW 0.01 -0.04 -0.11 0.05 0.13 0.22 -0.34 -0.34 -0.01 0.06
AHBS 0.03 0.08 0.06 0.11 0.08 0.73 0.31 0.05 0.08 0.01
fRW 0.06 0.16 0.23 0.23 0.23 1.33 0.68 0.40 0.25 0.18
fLinK 0.06 0.18 0.25 0.34 0.40 1.38 0.77 0.47 0.39 0.34
fGauK 0.05 0.11 0.21 0.47 0.54 1.54 0.73 0.52 0.59 0.52
fLapK 0.05 0.13 0.25 0.40 0.54 1.32 0.67 0.50 0.52 0.50
fNTK 0.06 0.19 0.31 0.44 0.56 1.34 0.84 0.63 0.54 0.54
From Jan 9, 2019 to Dec 31, 2019
CW -0.02 -0.11 -0.24 -0.20 -0.18 -1.56 -1.95 -2.78 -1.46 -1.31
AHBS 0.00 -0.04 -0.09 -0.06 -0.05 -0.39 -0.94 -1.19 -0.80 -0.80
fRW 0.02 0.01 -0.01 0.01 0.01 0.54 -0.34 -0.56 -0.46 -0.56
fLinK 0.02 0.02 0.00 0.04 0.17 0.34 -0.29 -0.50 -0.35 -0.03
fGauK 0.01 0.01 -0.03 0.04 0.08 0.19 -0.38 -0.88 -0.40 -0.35
fLapK 0.01 0.00 -0.03 0.03 0.09 0.07 -0.46 -0.76 -0.42 -0.31
fNTK 0.01 0.01 0.00 0.01 0.11 -0.04 -0.45 -0.60 -0.55 -0.23
From Jan 1, 2020 to Dec 31, 2020
CW 0.06 0.12 0.24 0.64 0.85 1.09 0.43 0.32 0.54 0.52
AHBS 0.11 0.39 0.54 0.72 0.69 1.64 1.17 0.69 0.67 0.54
fRW 0.15 0.47 0.76 0.73 0.72 2.20 1.37 0.95 0.65 0.51
fLinK 0.16 0.58 0.99 1.26 1.38 2.41 1.68 1.31 1.03 0.86
fGauK 0.14 0.41 0.91 1.74 1.92 2.80 1.99 1.60 1.43 1.22
fLapK 0.15 0.45 0.94 1.34 1.70 2.51 1.65 1.34 1.20 1.10
fNTK 0.16 0.59 0.98 1.36 1.49 2.36 1.74 1.33 1.14 1.01
From Jan 1, 2021 to Dec 31, 2021
CW -0.01 -0.13 -0.34 -0.35 -0.35 -0.72 -1.58 -2.03 -1.25 -0.96
AHBS -0.01 -0.11 -0.28 -0.35 -0.41 -0.69 -1.40 -1.65 -1.25 -1.09
fRW 0.01 0.00 -0.08 -0.09 -0.07 0.43 -0.02 -0.45 -0.31 -0.19
fLinK 0.01 -0.04 -0.19 -0.24 -0.30 0.29 -0.43 -1.05 -0.82 -0.78
fGauK 0.02 -0.01 -0.08 -0.08 -0.07 1.04 -0.17 -0.53 -0.31 -0.22
fLapK 0.00 -0.03 -0.11 -0.08 -0.09 0.15 -0.33 -0.68 -0.32 -0.27
fNTK 0.01 -0.02 -0.04 -0.04 0.03 0.59 -0.32 -0.26 -0.19 0.06

Table A.10: Mean simple returns (%) and annualized Sharpe ratio of long call delta-hedging over the whole
test period, from Jan 9, 2019 to Dec 31, 2021, and in each year of the test period. Bold numbers indicate the
best-performing model (or models) in a given column.
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Figure A.14: Mean simple returns (%) and annualized Sharpe ratio of long call delta-hedging strategy. The
prediction period is from Jan 09, 2019 to Dec 31, 2021.
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Mean return (%) Sharpe ratio
h = 1 h = 5 h = 10 h = 15 h = 20 h = 1 h = 5 h = 10 h = 15 h = 20

Overall (from Jan 9, 2019 to Dec 31, 2021)
CW -0.02 -0.14 -0.26 -0.31 -0.21 -1.60 -1.77 -1.36 -0.96 -0.36
AHBS -0.04 -0.20 -0.32 -0.34 -0.36 -2.57 -1.99 -1.80 -1.57 -1.27
fRW -0.05 -0.21 -0.34 -0.32 -0.32 -3.01 -2.26 -1.62 -1.11 -0.80
fLinK -0.05 -0.21 -0.23 -0.23 -0.23 -3.39 -2.37 -1.26 -0.95 -0.66
fGauK -0.04 -0.10 -0.09 0.10 0.35 -4.22 -1.18 -0.47 0.05 0.19
fLapK -0.05 -0.15 -0.13 0.02 0.26 -4.37 -1.95 -0.66 -0.05 0.14
fNTK -0.04 -0.04 -0.02 0.13 0.30 -2.64 -0.28 -0.15 0.10 0.17
From Jan 9, 2019 to Dec 31, 2019
CW -0.03 -0.12 -0.22 -0.25 -0.27 -3.73 -3.50 -3.23 -2.48 -2.14
AHBS -0.04 -0.12 -0.20 -0.21 -0.25 -4.67 -3.62 -3.26 -2.50 -1.96
fRW -0.04 -0.16 -0.26 -0.26 -0.23 -5.60 -3.70 -3.02 -2.37 -1.85
fLinK -0.05 -0.13 -0.24 -0.26 -0.27 -5.80 -3.20 -3.04 -2.47 -1.78
fGauK -0.04 -0.07 -0.11 -0.13 -0.16 -5.41 -1.78 -1.60 -1.44 -1.55
fLapK -0.04 -0.10 -0.12 -0.15 -0.16 -5.08 -2.26 -1.84 -1.64 -1.62
fNTK -0.03 -0.08 -0.11 -0.16 -0.12 -4.31 -1.94 -1.68 -1.65 -1.37
From Jan 1, 2020 to Dec 31, 2020
CW 0.00 -0.14 -0.26 -0.26 0.18 -0.25 -1.21 -0.82 -0.48 0.11
AHBS -0.03 -0.24 -0.30 -0.27 -0.18 -1.29 -1.46 -1.04 -0.83 -0.49
fRW -0.04 -0.20 -0.30 -0.21 -0.13 -1.59 -1.40 -0.91 -0.47 -0.22
fLinK -0.04 -0.23 -0.05 0.07 0.21 -1.74 -1.69 -0.20 0.09 0.24
fGauK -0.03 0.00 0.28 1.09 2.20 -1.93 -0.05 0.56 0.84 0.82
fLapK -0.06 -0.14 0.15 0.73 1.59 -3.38 -1.14 0.33 0.71 0.68
fNTK -0.03 0.16 0.41 1.08 1.55 -1.25 0.45 0.68 0.85 0.67
From Jan 1, 2021 to Dec 31, 2021
CW -0.04 -0.15 -0.31 -0.42 -0.55 -3.24 -1.98 -1.93 -1.68 -1.60
AHBS -0.05 -0.24 -0.47 -0.55 -0.66 -4.46 -3.69 -3.62 -2.70 -2.16
fRW -0.06 -0.26 -0.45 -0.50 -0.62 -4.77 -4.13 -3.04 -2.21 -1.88
fLinK -0.07 -0.25 -0.41 -0.46 -0.59 -6.82 -4.42 -3.25 -2.32 -2.02
fGauK -0.06 -0.20 -0.36 -0.42 -0.53 -6.28 -3.02 -2.52 -1.93 -1.62
fLapK -0.06 -0.23 -0.42 -0.44 -0.57 -5.92 -3.47 -2.99 -2.13 -1.78
fNTK -0.07 -0.20 -0.36 -0.50 -0.58 -5.49 -3.15 -2.71 -2.22 -1.79

Table A.11: Mean simple returns (%) and annualized Sharpe ratio of long put delta-hedging over the whole
test period, from Jan 9, 2019 to Dec 31, 2021, and in each year of the test period. Bold numbers indicate the
best-performing model (or models) in a given column.

h = 1 h = 5 h = 10 h = 15 h = 20

C
W

A
H

B
S

fR
W

fL
in

K
fG

au
K

fL
ap

K
fN

T
K

C
W

A
H

B
S

fR
W

fL
in

K
fG

au
K

fL
ap

K
fN

T
K

C
W

A
H

B
S

fR
W

fL
in

K
fG

au
K

fL
ap

K
fN

T
K

C
W

A
H

B
S

fR
W

fL
in

K
fG

au
K

fL
ap

K
fN

T
K

C
W

A
H

B
S

fR
W

fL
in

K
fG

au
K

fL
ap

K
fN

T
K

−0.2

0.0

0.2

M
ea

n 
re

tu
rn

 (
%

)

(a) h = 1 h = 5 h = 10 h = 15 h = 20

C
W

A
H

B
S

fR
W

fL
in

K
fG

au
K

fL
ap

K
fN

T
K

C
W

A
H

B
S

fR
W

fL
in

K
fG

au
K

fL
ap

K
fN

T
K

C
W

A
H

B
S

fR
W

fL
in

K
fG

au
K

fL
ap

K
fN

T
K

C
W

A
H

B
S

fR
W

fL
in

K
fG

au
K

fL
ap

K
fN

T
K

C
W

A
H

B
S

fR
W

fL
in

K
fG

au
K

fL
ap

K
fN

T
K

−4

−3

−2

−1

0

S
ha

rp
e 

ra
tio

(b)

Figure A.15: Mean simple returns (%) and annualized Sharpe ratio of long put delta-hedging strategy. The
prediction period is from Jan 09, 2019 to Dec 31, 2021.
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Mean return (%) Sharpe ratio
h = 1 h = 5 h = 10 h = 15 h = 20 h = 1 h = 5 h = 10 h = 15 h = 20

Overall (from Jan 9, 2019 to Dec 31, 2021)
CW -0.40 -4.41 -5.48 -2.79 2.64 -0.90 -3.08 -1.52 -0.36 0.15
AHBS -0.76 -3.29 -4.48 -3.52 -3.60 -2.34 -2.19 -1.49 -0.90 -0.80
fRW -0.83 -1.86 -1.84 -2.37 -2.57 -2.15 -0.77 -0.39 -0.53 -0.60
fLinK -0.73 -2.91 -2.23 -2.27 -3.30 -1.89 -1.34 -0.42 -0.34 -0.71
fGauK -0.91 -0.11 0.58 3.57 5.57 -2.78 -0.04 0.10 0.38 0.39
fLapK -1.04 -1.85 1.22 3.51 5.50 -2.91 -0.80 0.19 0.37 0.39
fNTK -0.90 0.27 1.90 4.09 5.69 -2.60 0.09 0.31 0.42 0.41
From Jan 9, 2019 to Dec 31, 2019
CW -0.93 -4.46 -5.66 -3.77 -3.10 -2.70 -3.54 -2.94 -1.39 -1.06
AHBS -0.92 -3.13 -4.52 -3.71 -3.49 -3.39 -2.74 -2.38 -1.27 -1.01
fRW -0.99 -2.39 -2.98 -3.42 -2.86 -2.84 -1.28 -1.12 -1.16 -0.83
fLinK -0.61 -2.75 -4.20 -5.10 -2.42 -1.46 -1.63 -1.26 -1.50 -0.75
fGauK -0.61 0.11 -0.15 -0.53 0.29 -1.66 0.03 -0.07 -0.18 0.03
fLapK -0.75 -1.52 0.01 -1.33 -0.47 -2.13 -0.91 -0.02 -0.42 -0.17
fNTK -0.96 0.10 -0.48 -1.67 -0.06 -2.64 0.02 -0.16 -0.54 -0.06
From Jan 1, 2020 to Dec 31, 2020
CW -0.15 -3.27 -2.03 1.54 14.99 -0.33 -2.26 -0.39 0.12 0.51
AHBS -0.14 -1.53 -1.68 0.00 -0.16 -0.32 -0.78 -0.40 0.00 -0.03
fRW -0.22 0.65 2.32 0.27 -1.26 -0.47 0.19 0.32 0.04 -0.23
fLinK -0.27 -0.89 4.91 5.29 0.35 -0.61 -0.29 0.57 0.47 0.05
fGauK -0.91 3.86 9.85 20.19 24.81 -2.48 0.78 1.05 1.23 0.96
fLapK -1.00 -0.07 9.24 17.66 22.63 -2.54 -0.02 0.92 1.13 0.94
fNTK -0.60 4.39 11.15 18.71 20.49 -1.58 1.04 1.20 1.20 0.91
From Jan 1, 2021 to Dec 31, 2021
CW -0.16 -5.51 -8.81 -6.41 -4.73 -0.29 -3.52 -3.48 -2.02 -1.32
AHBS -1.24 -5.21 -7.25 -6.70 -6.97 -4.76 -4.26 -3.29 -2.23 -1.74
fRW -1.31 -4.08 -5.21 -4.32 -3.71 -3.96 -2.79 -2.28 -1.53 -1.07
fLinK -1.33 -4.91 -6.57 -5.89 -6.74 -4.83 -3.46 -2.89 -1.95 -1.70
fGauK -1.24 -3.22 -5.12 -4.08 -3.65 -5.05 -2.15 -2.01 -1.26 -0.89
fLapK -1.40 -3.80 -5.28 -4.23 -4.01 -4.24 -2.64 -2.23 -1.35 -1.01
fNTK -1.14 -3.46 -4.56 -4.20 -3.03 -3.80 -2.49 -1.77 -1.36 -0.76

Table A.12: Mean simple returns (%) and annualized Sharpe ratio of long delta-neutral straddles over the
whole test period, from Jan 9, 2019 to Dec 31, 2021, and in each year of the test period. Bold numbers
indicate the best-performing model (or models) in a given column.
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Figure A.16: Mean simple returns (%) and annualized Sharpe ratio of long delta-neutral straddle strategy.
The prediction period is from Jan 09, 2019 to Dec 31, 2021.
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Figure A.17: Mean simple returns (%) and annualized Sharpe ratio of long call delta-hedging strategy using
three levels of filtering thresholds: 0.5%, 5% and 10%. The prediction period is from Jan 09, 2019 to Dec
31, 2021.
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Figure A.18: Mean simple returns (%) and annualized Sharpe ratio of long call delta-hedging strategy using
three levels of effective measure (EM): 50%, 75% and 100%. The prediction period is from Jan 09, 2019 to
Dec 31, 2021.
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Figure A.19: Mean simple returns (%) and annualized Sharpe ratio of long put delta-hedging strategy using
three levels of filtering thresholds: 0.5%, 5% and 10%. The prediction period is from Jan 09, 2019 to Dec
31, 2021.
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Figure A.20: Mean simple returns (%) and annualized Sharpe ratio of long put delta-hedging strategy using
three levels of effective measure (EM): 50%, 75% and 100%. The prediction period is from Jan 09, 2019 to
Dec 31, 2021.
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Figure A.21: Mean simple returns (%) and annualized Sharpe ratio of long delta-neutral straddle strategy
using three levels of filtering thresholds: 0.5%, 5% and 10%. The prediction period is from Jan 09, 2019 to
Dec 31, 2021.
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Figure A.22: Mean simple returns (%) and annualized Sharpe ratio of long delta-neutral straddle strategy
using three levels of effective measure (EM): 50%, 75% and 100%. The prediction period is from Jan 09,
2019 to Dec 31, 2021.
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Figure A.23: Mean traded volume, level mean simple returns (MR) in percentage, level Sharpe ratio (SR) of
the models for all the long trading strategies at the forecasting horizon h = 20, across different moneyness m
groups [−2,−0.5],(−0.5,0],(0,0.5], and (0.5,2], and time-to-maturity τ groups [5,60],(60,120],(120,180],
and (180,252]. The prediction period is from Jan 09, 2019 to Dec 31, 2021.
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Figure A.24: Mean traded volume, mean simple returns in percentage, and annualized Sharpe ratio of the
models for long call delta-hedging, long put delta-hedging, and long delta-neutral straddle at the forecasting
horizon h= 20, across different moneyness m groups [−2,−0.5],(−0.5,0],(0,0.5], and (0.5,2], and time-to-
maturity τ groups [5,60],(60,120],(120,180], and (180,252], and in three prediction periods: 2019, 2020,
and 2021.
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