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Abstract

This paper explores the underlying factors contributing to the recent decline in
labor share, focusing specifically on the roles of automation and the development of
new tasks that are exclusive to humans. First, our paper strengthens the argument
that automation has a negative impact on labor share. Second, we are the first to
empirically estimate the influence of new human-exclusive tasks on labor share.
Our findings suggest that the positive impact of human-exclusive tasks dominates
the negative impact brought about by automation. Third, we find that the elasticity
of substitution between labor and capital is less than one, offering a coherent frame-
work for predicting how various factors —capital price, robot price, and wages—
impact labor share. We identify two distinct mechanisms through which robots
negatively affect labor share: automation and a reduction in the price of robots. Our
general equilibrium model predicts that the latter will gain increasing importance
in the future as robots become more prevalent. Lastly, we estimate the elasticity
of substitution between tasks to be one, empirically validating an assumption that
many existing studies have made.
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1 Introduction

Karabarbounis and Neiman (2014) and Autor et al. (2020) have noted that the global labor
share has followed a declining trend since the early 1980s, with an average decrease
of about five percentage points. Figure 1, based on data compiled by Gutiérrez and
Piton (2020), compares the labor shares in the manufacturing sector between the USA
and the eight EU nations that we studied. While the USA, Sweden, Denmark, and
Austria have witnessed significant declines, other countries report comparatively slight
decreases. This discrepancy indicates that global labor share trends exhibit considerable
heterogeneity, further underscoring our aim to investigate variations across countries
and sectors to better understand this decline.1

Figure 1: Labor shares
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Although the precise cause of this decline is still a topic of debate, advancements in

automation emerge as a possible key driver. The urgency of addressing the diminishing
labor share intensifies with the accelerated growth in automation and artificial intel-
ligence technologies. For instance, Boston Dynamics has unveiled Atlas, a humanoid
robot with impressive speed and capabilities.2 The recent debut of Chat-GPT 4, which

1In this context, our study aligns with Graetz and Michaels (2018), which assesses seventeen EU
countries, although their focus is predominantly on productivity growth rather than the decrease in labor
share.

2https://youtu.be/-e1 QhJ1EhQ
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astoundingly achieved a 10% ranking in the United States bar exam, further underscores
the rapid evolution of AI systems.3

The influence of automation on labor share remains a prominent topic in active
research. Several studies such as those by Acemoglu and Restrepo (2020), Acemoglu et al.
(2020), Dauth et al. (2021), and Martinez (2018) suggest that automation reduces labor
share. In contrast, findings from research like De Vries et al. (2020) and Gregory et al.
(2016) propose that automation amplifies labor share. Moreover, studies by Humlum
(2019) and Hubmer and Restrepo (2021) explore the diverse impacts of automation on
various population groups and industry sectors.

Yet, another factor potentially promoting labor share is the ‘emergence of new tasks’
—innovative tasks beyond the capabilities of robots. Autor (2015) contends that the
sustained relevance of human labor in the future will largely depend on the pace at
which the ‘emergence of new tasks’ outstrips the advancement of automation. Despite
its significance, the effect of the emergence of new tasks on labor share is still relatively
underexplored. Our primary objective is to assess the impacts of the interaction between
the rise of automation and the emergence of new tasks on the labor share.

Automation and the emergence of new tasks are not the only factors contributing to
changes in labor share. In literature, many other reasons have been meticulously exam-
ined, especially using causality techniques. However, fewer studies attempt to measure
multiple reasons within a unified framework (Bergholt et al., 2022).4 Grossman and
Oberfield (2022) highlighted the importance of utilizing general equilibrium analysis,
stating: “Many authors present different sides of the same coin … Even if the various
mechanisms are all active, it becomes difficult to gauge what part of the effect estimated
in one study has already been accounted for elsewhere”. To address this challenge,
we adopt a general equilibrium model, an approach that represents a contribution to
the existing literature. The study most akin to ours is that of Acemoglu and Restrepo
(2022). They too utilize a general equilibrium model, though their main focus is on wage
inequality rather than the decline in labor share.

Our analysis incorporates five potential determinants within our general equilib-
rium model: automation, the emergence of new tasks, capital price, robot price, and
wages.5 Our most significant contribution lies in the empirical examination of the im-

3https://youtu.be/EunbKbPV2C0
4Bergholt et al. (2022) points out that “while a large literature has discussed each of these four

explanations in isolation, an empirical analysis including all of them in the context of the same model
is lacking. Our aim is to fill this gap.”

5In this context, the research by Bergholt et al. (2022) closely aligns with our study. They examine rising
markups, increased worker bargaining power, a declining investment price, and escalating automation as
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pact of the emergence of new tasks on labor share. To the best of our knowledge, we
are the first to empirically investigate this relationship. Our findings indicate that the
emergence of new tasks serves as an effective counterbalance to the negative effects of
automation on labor share. This is particularly the case in the USA, where the advent of
new tasks holds substantial importance.

We find that the elasticity of substitution between labor and non-robot capital is
below one. This allows us to make coherent predictions about the directional impact
of three price-related factors on labor share —non-robot capital price, robot price, and
wages— based solidly on our general equilibrium model. First, the correlation between
the non-robot capital price and the labor share is negative (gross complement). Second,
an increase in real wages positively affects labor share. Third, a decline in robot prices
negatively impacts labor share. These directional trends are confirmed by our regression
results.

This finding underscores the negative effect of robotics on labor share through two
key mechanisms. First, advancements in robotic capabilities lead to the displacement
of tasks traditionally carried out by humans, thereby reducing labor share. Second, a
decrease in the cost of robots, even without improvements in functionality, also con-
tributes to a lower labor share. Our general equilibrium model predicts that as robots
become more prevalent, the impact of this second mechanism —referred to as the robot
price channel— will intensify. This implies that as automation expands in the future,
our regression coefficient for robot price is likely to increase in magnitude and become
statistically significant.

Our results enrich the existing literature by emphasizing the importance of the elas-
ticity of substitution between labor and capital, which has also been highlighted by recent
studies like those of Martinez (2018), Oberfield and Raval (2021), and Zhang (2023). Our
work resonates with studies like Glover and Short (2020), which also report the elasticity
below one and stress the importance of bias correction when estimating this. To address
omitted variable bias, we regress factors such as automation, the emergence of new
tasks, wages, robot prices, and capital prices on labor share, indicating the significance
of automation and the emergence new tasks. Our findings are consistent with Glover
and Short (2020).

factors contributing to the falling labor share. Although their methodology, which employs time series
techniques (Structural VAR with sign restrictions) and focuses exclusively on the USA, differs from ours,
their findings are in line with our results. They identify automation as a principal driver of the reduction in
labor share. Interestingly, they conclude that a declining capital price does not contribute to the decrease
in labor share.
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In contrast, our findings do not support the hypothesis of Karabarbounis and Neiman
(2014), who claim that falling capital prices account for half of the recent labor share
decline. For their argument to hold, the elasticity would have to be greater than one
(gross substitute). Likewise, Piketty and Zucman (2014) suggests potential for gross
substitutability, a position we do not support.

Looking forward, as automation becomes increasingly prevalent, both our model
and empirical data suggest that the elasticity of substitution between labor and non-robot
capital will approach, but not surpass, one. This indicates that the influence of the labor
price channel on increasing labor share is likely to diminish in the future.

We further contribute to the existing literature by empirically showing that the
elasticity of substitution between different tasks is near one. Many studies, such as those
by Autor (2013) and Acemoglu and Autor (2011), have relied on the Cobb-Douglas pro-
duction function for tasks, implicitly assuming this elasticity approaches one. Addition-
ally, the static version of Acemoglu and Restrepo (2018) builds on Acemoglu and Autor
(2011) by allowing for a general elasticity of substitution between tasks. Meanwhile,
Acemoglu and Restrepo (2019) adopts a CES form and uses an elasticity value of 0.8 in
their empirical work, a figure derived from Oberfield and Raval (2021)’s estimation of
the elasticity between labor and capital.

In the following section, we present our general equilibrium model, while Section 3
details the datasets we used. Section 4 conducts the regression analysis, and Section 5
performs various accountings to ascertain which mechanism predominantly explains la-
bor share decline across different countries and industries. Finally, Section 6 provides our
concluding remarks. Separately in our Online Appendix,6 we discuss why the Superstar-
firm hypothesis proposed by Autor et al. (2020) falls short of fully explaining the global
decline in labor share, even though it adequately accounts for the situation in the USA.

2 Model

Acemoglu and Restrepo (2018) have offered a formal model that outlines how labor
share is influenced by ‘automation’ and the ‘emergence of new tasks.’ We have refined
our model based on their static version. Our key contribution is the distinction we
make between robots and other capital equipment, a distinction their model does not
delineate. Acemoglu and Restrepo (2020) found that advancements in robotics negatively
impact wages and employment. Conversely, they discovered that other forms of capital

6https://github.com/jayjeo/public/blob/main/Laborshare/Online Appendix.pdf
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Figure 2: Examples of Robot

(a) Robot (b) Not robot8

positively impact these variables. This distinction emphasizes that ‘robots’ and ‘capital’
can carry different implications for labor demand.

We adhere to the definition of a robot as specified by ISO standard 8373:2012, which
describes it as an “automatically controlled, reprogrammable, multipurpose manipulator
programmable in three or more axes.”7 The International Federation of Robotics (IFR)
also strictly adheres to this definition (Müller, 2022). We source our robot data from the
IFR.

In Figure 2, Panel (a) depicts a robot. However, Panel (b) is not robot because this
milling machine does not come with any type of hook-up to have it run automatically.
Therefore, it is neither reprogrammable nor automatically controlled. Additionally, it
cannot be considered multipurpose, as it is designed solely for milling. Also, it does
not operate on three or more axes. This example underscores the narrow definition of a
robot.

We define ‘automation’ as the enhancement of robots’ capabilities, which allows
them to perform tasks that were previously unachievable. Meanwhile, we define the
‘emergence of new tasks’ as new tasks that human-workers are expected to perform
because those are beyond the capabilities of robots. For instance, according to ONET,
the job description for Urban and Regional Planners (SOC 19-3051) expanded from 19
responsibilities in 2019 to include tasks related to statistics and data management. Pre-

7Acemoglu and Restrepo (2020) also defines robots in a manner consistent with this description: “fully
autonomous machines that do not need a human operator and can be programmed to perform several
manual tasks … This definition excludes other types of equipment.”

8Vertical milling machine by harborfreight

6

www.harborfreight.com


viously, their responsibilities included: (1) holding public meetings with officials and
scientists, (2) advising planning officials on project feasibility and cost-effectiveness,
and (3) mediating community disputes. One year later, their scope of tasks widened to
incorporate: (1) preparing reports using statistics, (2) developing and maintaining maps
and databases, and (3) researching, compiling, analyzing, and organizing information.
This serves as a prototypical example of the emergence of new tasks, illustrating that
individuals aspiring to become Urban and Regional Planners must now acquire skills in
data handling and statistics.

Our model holds advantages over existing literature, such as Berg et al. (2018) and
DeCanio (2016), which also introduced robots as a separate factor from traditional cap-
ital. Firstly, our model comprehensively incorporates factors affecting labor share, most
importantly automation and the emergence of new tasks, in addition to factor prices.
This allows us to quantitatively analyze the extent to which each factor affects labor
share across different sectors and countries. Secondly, our model delivers in-depth in-
terpretations regarding the substitutability between labor, capital, and robots. From the
regression equations derived from the task-based model, we gain unique insights into
the degree of substitutability among factors, as well as the tasks conducted by either
labor or robots.

2.1 Environment

2.1.1 Firms

In the model, firms face monopolistic competition, which allows them to generate pos-
itive profits. For simplicity, we assume that the production function is the same for all
firms9. Also, for brevity, we omit the time subscript.

Each firm utilizes a continuum of tasks, indexed betweenN−1 andN , in addition to
capital, for production. As in Acemoglu and Restrepo (2018), N increases over time due
to the emergence of new tasks, which can only be conducted by labor. Additionally, there
is an index I that falls betweenN−1 andN . I is related to the possibility of automation
and thus increases along with improvements in automation technology. Specifically,
tasks below I in firm i can technically be conducted by either labor or robots, while
tasks above I can only be performed by labor, as follows:

tj(i) = mj(i) + γjlj(i) if j ≤ I (1)

tj(i) = γjlj(i) if j > I (2)
9Introducing heterogeneity in terms of Hicks-neutral productivity does not change our analysis.
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, where mj(i) and lj(i) represent the number of robots and labor used for task j in firm
i. γj represents the productivity of labor for task j. The productivity, γj , increases with
a higher task index, j.

Tasks, tj(i), are aggregated using Constant Elasticity of Substitution (CES) aggrega-
tor, and both the aggregated tasks and capital are further combined using another CES
function. Therefore, the production function is:

Y (i) =
(
T (i)

σ−1
σ +K(i)

σ−1
σ

) σ
σ−1 (3)

T (i) =

(∫ N

N−1

tj(i)
ζ−1
ζ dj

) ζ
ζ−1

(4)

, where T (i) and K(i) represent the number of aggregated tasks and capital used for
the production of the final good i, denoted as Y (i). Meanwhile, σ and ζ represent
the elasticity of substitution between aggregated tasks and capital, and the elasticity
of substitution between tasks, respectively.

Factor markets are assumed to be perfectly competitive. Additionally, since we
focus on long-run change in labor share, it is reasonable to assume that factors are
supplied elastically. For further simplicity, we assume that factors are supplied perfectly
elastically at a given factor price at each period.

2.1.2 Households

The representative consumer consumes an aggregated continuum of final goods, with
the mass of final goods assumed to be 1 for simplicity. It’s also assumed that there is no
disutility from the supply of labor. The utility function of the representative consumer
takes the following form:

U =

(∫ 1

0

Y (i)
η−1
η di

) η
η−1

(5)

, where η represents the elasticity of substitution between final goods.

The representative consumer’s budget constraint is as follows:∫ 1

0

P (i)Y (i)di =

∫ 1

0

(∫ N

N−1

Wjlj(i)dj +

∫ N

N−1

ψmj(i)dj +RKi +Πi

)
di (6)

, whereWj , ψ, andR represent wage for labor conducting task j, robot price, and capital
price, respectively.
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2.2 Labor Share

A step-by-step process for this section is provided in Appendix A. We set an assumption
related to robot and labor productivity for simple algebra in deriving the equilibrium in
the model.

Assumption 1. ψ < WI

γI

The above assumption implies that it is efficient to use a robot for task j below I .
This means that whenever firms can technologically replace labor with a robot, they
would want to do so.10

Based on the Assumption 1 and by solving the firm’s cost minimization problem,
factor demands, the price for the aggregated task, and the marginal cost of firm i are
derived as follows:

lj(i) = 0, if j ≤ I (7)

lj(i) = γζ−1
j

(
Wj

PT

)−ζ

T (i), if j > I (8)

mj(i) =

(
ψ

PT

)−ζ

T (i), if j ≤ I (9)

mj(i) = 0, if j > I (10)

T (i) =

(
PT

MC(i)

)−σ

Y (i) (11)

K(i) =

(
R

MC(i)

)−σ

Y (i) (12)

PT =

(I −N + 1)ψ1−ζ +

∫ N

I

(
Wj

γj

)1−ζ

dj

 1
1−ζ

(13)

MC(i) =
[
P 1−σ
T +R1−σ] 1

1−σ (14)

Wjlj(i) =

(
Wj

γj

)1−ζ

· P ζ
T · Ti (15)

, where PT and MCi represent the price for the aggregated task and marginal cost of
firm i, respectively.

10This is reasonable considering that robot prices have significantly decreased while wages have steadily
increased.
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Based on Equations (7) to (14), labor share is derived:

SL =
η − 1

η

∫ N
I

(
Wj

γj

)1−ζ
dj

P 1−ζ
T

P 1−σ
T

P 1−σ
T +R1−σ (16)

, where PT ≡

(I −N + 1)ψ1−ζ +

∫ N

I

(
Wj

γj

)1−ζ

dj

 1
1−ζ

It is worth mentioning that the term, η−1
η

, is the inverse of the firm’s mark-up. Since
we focus on labor income as a fraction of total factor income, we denote it as SfL as
follows:

SfL ≡ η

η − 1
SL =

∫ N
I

(
Wj

γj

)1−ζ
dj

P 1−ζ
T

P 1−σ
T

P 1−σ
T +R1−σ (17)

2.3 Estimating Equations

By taking the natural log of Equation (17) and then computing the total derivative of the
resulting equation with respect to the exogenous variables in the model (I , N , R, W,
and ψ), we obtain the following estimating equation:
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d lnSfL =

−

(1− ζ) +
(
−(1− ζ) + SfK(1− σ)

)
×

∫ N
I

(Wj

γj

)1−ζ
dj

P 1−ζ
T

 d ln γ

+

−
(
WI

γI

)1−ζ∫ N
I

(Wj

γj

)1−ζ
dj︸ ︷︷ ︸

Direct loss by dI : (-)

+
(
−(1− ζ) + SfK(1− σ)

)
× 1

1− ζ

ψ1−ζ −
(
WI

γI

)1−ζ
P 1−ζ
T︸ ︷︷ ︸

Change in aggregated task price by dI : (-)

 dI

+


(
WN

γN

)1−ζ∫ N
I

(Wj

γj

)1−ζ
dj︸ ︷︷ ︸

Direct gain by dN : (+)

+
(
−(1− ζ) + SfK(1− σ)

)
× 1

1− ζ

−ψ1−ζ +
(
WN

γN

)1−ζ
P 1−ζ
T︸ ︷︷ ︸

Change in aggregated task price by dN : (+)/(-)

 dN

+

 (1− ζ)︸ ︷︷ ︸
Direct gain by d lnW: (+)

+
(
−(1− ζ) + SfK(1− σ)

)
×

∫ N
I

(Wj

γj

)1−ζ
dj

P 1−ζ
T︸ ︷︷ ︸

Change in aggregated task price by d lnW : (+)

 d lnW
−
[
SfK(1− σ)

]
d lnR

+


(
−(1− ζ) + SfK(1− σ)

)
× (I −N + 1)ψ1−ζ

P 1−ζ
T︸ ︷︷ ︸

Change in aggregated task price by d lnψ: (+)

 d lnψ
(18)

, where W ≡
∫N
I

(
Wj
γj

)1−ζ

dj∫N
I W−ζ

j γζ−1
j dj

is the average wage, and assume d lnW = d lnWj for all j.
Additionally, d ln γ represents the change in labor productivity. It also is assumed that
d ln γ = d ln γj for all j.

The coefficients of the five explanatory variables (dI , dN , d lnW, d lnR, and d lnψ)
in Equation (18) reflects not only the direct effect caused by the change in the variable,
but also the general equilibrium effects that influence the labor share through changes
in the price of the aggregated tasks. Changes in automation technology, dI , changes in
the emergence of new tasks, dN , and changes in wage, d lnW, directly affect the labor
share. dI directly causes labor to be replaced by robots in task I , which results in a
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decrease in labor share by
(

WI
γI

)1−ζ

∫N
I

(
Wj
γj

)1−ζ

dj
.11 In contrast, dN and d lnW directly increase

labor share by
(

WN
γN

)1−ζ

∫N
I

(
Wj
γj

)1−ζ

dj
and 1− ζ respectively.

All five variables affect the price of the aggregated task, which in turn influences
the labor share. The impact of this price change on the labor share is multiplied by the
factor −(1 − ζ) + SfK(1 − σ). The sign of this indirect effect hinges on the values of σ
and ζ . In Equation (19), the term −(1 − ζ) + SfK(1 − σ) recurs frequently, exerting a
significant impact on many coefficients.

Given that we utilize data for robot penetration, as employed in Acemoglu and
Restrepo (2020) —which corresponds to (I − N + 1)— and data for the emergence of
new tasks —which corresponds to N in our model— we adjust Equation (18) as follows:

d lnSfL =

−
[
(1− ζ) +

(
−(1− ζ) + SfK(1− σ)

)
STL

]
d ln γ

+

− (
WI

γI

)1−ζ∫ N
I

(Wj

γj

)1−ζ
dj

+
(
−(1− ζ) + SfK(1− σ)

) 1

1− ζ

ψ1−ζ −
(
WI

γI

)1−ζ
P 1−ζ
T

 d(I −N + 1)

+
(
SLN − SLI

) 1

1− ζ

[
STM(1− ζ) + STLS

f
K(1− σ)

]
dN

+

[
(1− ζ) +

(
−(1− ζ) + SfK(1− σ)

)
STL

]
d lnW

−
[
SfK(1− σ)

]
d lnR

+

[(
−(1− ζ) + SfK(1− σ)

)
STM

]
d lnψ

(19)

, where STL ≡
∫N
I

(
Wj
γj

)1−ζ

dj

P 1−ζ
T

and STM ≡ (I−N+1)ψ1−ζ

P 1−ζ
T

represent the labor share and robot

share in the aggregated tasks, respectively. SLN ≡
(

WN
γN

)1−ζ

∫N
I

(
Wj
γj

)1−ζ

dj
and SLI ≡

(
WI
γI

)1−ζ

∫N
I

(
Wj
γj

)1−ζ

dj

represent the share of labor income conducting task N and I out of the total labor
income, respectively. Next section, we discuss the datasets used in this paper and the
construction of the variables.

11This term indicates labor losses of γ(I)(ζ−1)(1−α) in task I out of the total
∫ N

I
γ(j)(ζ−1)(1−α)dj
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3 Data

3.1 Automation andNewTasks by Acemoglu and Restrepo (2019)

Acemoglu and Restrepo (2019) (henceforth referred to as AR) presents a tool for infer-
ring automation and the emergence of new tasks (henceforth, ENT). This tool utilizes
a relatively small set of variables: labor compensation, employee count, value-added,
wage, and investment price. The AR framework enables the inference of automation
and ENT.

Fundamentally, the AR framework operates under the assumption that if there is an
observed increase in labor share (an indicator of the total income in an economy that goes
to labor), it must be attributed to ENT. Conversely, if there is a decrease, it is attributable
to automation. This principle is clearly articulated in Figure 1 of their paper.

The online appendix of the AR paper elaborates on this framework. For ease of
reference, we include it in our Appendix C. Equation (AR4) represents the percentage
change in labor share, which can be broken down into Equations (AR6) and (AR7). The
former represents the percentage change in substitution effects, while the latter shows
the percentage change in ‘task contents.’ A positive (negative) result in Equation (AR7) is
interpreted as indicative of emerging new tasks (automation). Given that the percentage
change in substitution effects (Equation AR6) is usually minimal, the percentage change
in ‘task contents’ (Equation AR7) virtually mirrors the percent change in labor share
(Equation AR4).

To summarize, AR’s inference of automation and ENT is largely based on the percent
change in labor share. However, using these inferred variables in our primary analysis
presents a challenge due to the expected high correlation with labor share, which could
lead to reverse causality. Furthermore, there is no certainty that the inferred variables
accurately represent the real-world values of automation and ENT. Consequently, we
require variables obtained through direct measurement.

For the purpose of assessing automation, we will use data provided by the Interna-
tional Federation of Robotics (IFR), which gives us the number of automated machines
at the country-industry-year level. To analyze ENT, we will use data from ONET, which
offers information on the number of new tasks in the USA, measured at the occupation-
year level. This data is collected directly by ONET.

13



3.2 The International Federation of Robotics

The International Federation of Robotics (IFR) provides data on the number of automated
machines (both flow and stock) at the country-industry-year level. Rather than using
the raw data on the number of robots from the IFR, we utilize the Adjusted Penetration
of Robots (APR), as proposed by Acemoglu and Restrepo (2020). APR is defined as in
Equation (20):

APRi,(t5,t1) ≡
Mi,t5 −Mi,t1

Li,2005
− Yi,t5 − Yi,t1

Yi,t1

Mi,t1

Li,2005
(20)

=
(Mi,t5 −Mi,t1

Mi,t1

− Yi,t5 − Yi,t1
Yi,t1

) Mi,t1

Li,2005
(21)

=
(
gM − gY

) Mi,t1

Li,2005
(22)

, where i is the industry sector (country × industry in our case), and t5 is 5-year after t1.
M is the number of robots (stock), L is the number of employees, Y is value-added (in
real terms).

We employ APR as a proxy for d(I−N+1), primarily because the observable growth
rate of the number of robots is not a suitable proxy for dI . The term dI encapsulates
the theoretical concept of a ‘pure direction of automation,’ which is abstract and not
directly observable in empirical settings. In contrast, the growth rate of the number of
robots reflects an equilibrium outcome in real-world scenarios. Given this, we seek an
alternative representation for dI . APR, as proposed by Acemoglu and Restrepo (2020),
serves as an effective proxy for d(I −N + 1).

The APR represents the 5-year growth rate of robots adjusted by labor input and
the value-added within a given sector. Multiplication by Mi,t1

Li,2005
is necessary as the raw

number of robots does not adequately represent our definition of automation. Consider,
for instance, that the IFR began collecting data in many countries starting in 2004. A
change from 1 robot to 100 robots between 2004 and 2005 would represent a growth rate
of 9900%, whereas an increase from 100 to 200 robots between 2005 and 2006 would only
reflect a 100% growth rate. These rates are not useful because the number of machines
increased by the same amount (100) in both cases. The term Mi,t1

Li,2005
is introduced to adjust

for this discrepancy. Suppose Li,2005 = 100. In 2005, gM× Mi,t1

Li,2005
equals 99%, and in 2006,

it amounts to 100%, which makes them comparable. The underlying idea is that the 5-
year difference in the number of machines across countries and industries is not directly
comparable; we need to normalize it by dividing by the number of employees.12

12Instead of dividing by Li,2005, dividing by ‘quantity’ would be more accurate, but it will not change
the results significantly.
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The second term in Equation (22), −gY , serves to measure the ‘penetration’ of robots.
In other words, if the growth rate of robots exceeds that of value-added, we interpret this
as a positive penetration. Within the AR framework, this penetration equates to I−N+1

in their terminology, which represents the length between N-1 and I.

3.3 The Occupational Information Network

The Occupational Information Network (ONET), managed and maintained by the United
States Department of Labor, serves as a comprehensive database of occupational in-
formation (National Center for O*NET Development, 2023). For each Standard Occu-
pational Classification (SOC),13 ONET consistently updates the spectrum of tasks that
workers are expected to perform. For example, in 2023, Automotive Engineers were
assigned 25 responsibilities, which included the calibration of vehicle systems, control al-
gorithms, and other software systems. When new tasks, previously nonexistent, come to
light, ONET increases the number of tasks associated with the Automotive Engineering
occupation. Furthermore, ONET periodically reports ‘Emerging new tasks’ about once
or twice annually. These tasks have recently emerged but have not been extensively
studied by the ONET department; hence, these specific tasks are not included in the
occupational list. We incorporate these ‘Emerging new tasks’ in addition to our base
number of tasks provided by ONET. This process completes our generation of ‘task
scores’ by each occupation.

The ‘Task scores’ vary by Standard Occupational Classification (SOC) and year. AR
translated this information into variations by industry and year using the US Census
from IPUMS (Ruggles et al., 2020), a dataset comprising individual worker data with
specific occupation codes.14 After associating the ‘Task score’ with each individual,
an average is calculated at the industry and year level. We denote this variable as the
emergence of new tasks (ENT). ENT can also be formulated for EU countries using the
EU Labor Force Survey (EU-LFS) instead of the US Census. It’s crucial to recognize that
the ‘task scores’ from ONET are used to generate ENT for EU countries.

The European Commission has recently initiated a project akin to ONET, named
‘European Skills, Competences, Qualifications, and Occupations’ (ESCO). ESCO has dis-

13SOC is an acronym for Standard Occupational Classification employed by US agencies. The ONET
classification system (ONET-code) is a subclassification of the SOC system, hence, every ONET-code
has a corresponding SOC. However, the ONET-code does not align perfectly with the Occupational
Classification Code (OCC).

14Contrary to our approach, AR exclusively utilizes the ‘Emerging new tasks’ as reported by ONET.
They do not combine these with the base number of tasks provided by ONET. We did not favor this
method because the ‘Emerging new tasks’ reported by ONET are sparse and not thorough.
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closed the tasks required for workers for a single year and has yet to release a Task
score.

In the absence of a European equivalent of the ‘Task scores’, we depend on data
from ONET. A foundational assumption in the creation of the EU’s ENT is that the task
requirements in the USA mirror similar trends in the EU. For example, if the number of
tasks required for Automotive Engineers surged in the USA in 2015, it is assumed that
a similar trend occurred in the EU around the same period. Therefore, the variation for
the EU originates from the differing composition of workers in each country, occupation,
and year; regrettably, the EU-LFS does not offer more detailed industry variation beyond
the manufacturing sector.

While we adopt AR’s concept when generating ENT, our method offers more refine-
ment. Detailed explanations of this can be found in Appendix D. ENT can be compared
with the inferred value of ENT proposed by AR. As mentioned earlier, the inferred
variable may not be a true representation of the actual value obtained directly from
data collection. Consequently, any discrepancies between ENT and the ‘inferred value
of ENT’ do not necessarily indicate that ENT is misleading. Instead, it could suggest that
the ‘inferred value’ is not an effective proxy for the real value.

We compared ENT and the ‘inferred value of ENT’ in the USA. First, both have fixed
differences at the industry level. Therefore, to make meaningful comparisons across
industries, the industry-fixed effect must be removed. We regress each variable solely
on industry dummies and take the residual. Secondly, as we are interested in long-term
growth rates, we convert the variables into 5-year growth rates. Figure 3 presents a
scatter plot of the two variables’ growth rates. They are highly correlated.

Before concluding this section, it’s worth noting that ‘task contents’ constitute the
sum of ‘inferred ENT’ and ‘inferred Automation’, which nearly matches the labor share
(refer to Panel B of Figure 5 in AR). In Figure 3, we compared ENT and inferred ENT at the
country and year level. Acemoglu and Restrepo (2020) performed a similar comparison at
the industry level in the USA, focusing solely on the year 2018 (the growth rate from 1990
to 2018). Interestingly, they compared their version of ENT with ‘task contents’, while we
believe that a comparison between ENT and ‘inferred ENT’ would be more appropriate.
Using their replication code, we compared their version of ENT with the ‘inferred ENT’
they computed. The similarity was found to be insignificant. Our explanation for their
insignificant comparison is provided in Appendix E. In essence, the reason lies in their
comparison of ENT with the inferred ENT across industries at a single point in time
(2018). As will be elaborated on in the appendix, the magnitude of inferred ENT across
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Figure 3

(a) ENT and inferred ENT (5-year growth rate)
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industries at a specific point in a year is meaningless. Consequently, the insignificant
result is expected.

3.4 Capital Price

In our paper, we utilize the replicated values for capital price from Karabarbounis and
Neiman (2014) (specifically, the their KLEMS version). To calculate this, we initially
require the investment price, which the KLEMS data provides, including industry vari-
ations.

It’s important to note that we don’t directly observe the capital price, which repre-
sents the usage cost of one unit of capital. We do, however, observe the investment price,
which signifies the purchase cost of one unit of capital. In accordance with the theory of
investment by Jorgenson (1963), we can calculate the capital price as follows:

Rt = ξt−1(1 + it)− ξt(1− δt) (23)

In this equation,R represents the capital price, ξ is the investment price, i is the nominal
interest rate, and δ is the depreciation rate. Equation (23) signifies that investors are
indifferent between paying a usage cost for capital (Rt) and purchasing capital, paying
interest, and then selling the depreciated capital at a later date.
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3.5 Robot Price

Unfortunately, the International Federation of Robotics (IFR) provided robot prices in
the form of an average unit price until 2009, and as a price index until 2005. Klump et al.
(2021) and Jurkat et al. (2022) provide in-depth information on this topic. They noted,
“Due to the considerable effort involved and owing to compliance issues, the IFR no
longer continues to construct the price indices.” An alternative method to obtain robot
prices is by following the approach of Fernandez-Macias et al. (2021), which involves the
use of UN Comtrade data.15 We adopted this method, though, unfortunately, as they did
not provide a replication code and data, there may be slight differences in our results.

UN Comtrade provides annual import and export values for HS847950.16 They also
provide the number of HS847950 for both imports and exports. Hence, we infer the robot
prices by dividing the values by their numbers. Fernandez-Macias et al. (2021) illustrate
in their Figures 3 and A1 that the robot price trends based on IFR and UN Comtrade
data are similar. Furthermore, they demonstrate that the robot price has been steadily
declining.

3.6 KLEMS

Aside from the IFR dataset, the ONET dataset, and Robot Price, we will use data from
KLEMS.17 KLEMS comes in two different versions: one follows national accounts, and
the other follows growth accounts. The main difference between these versions is that
the national accounts allow room for a markup greater than one, while the growth
accounts do not. The latter assumes that the sum of labor cost and capital cost equals
the value-added, implying that the markup is exactly one. As allowing for a markup is
critical for our analysis, we use the national accounts when using KLEMS.

KLEMS shares similar characteristics with OECD STAN in terms of many national
account variables at a country-industry-year level. Table 1 presents descriptive statis-
tics. Predominantly, the values for OECD STAN and KLEMS are comparable, albeit not
identical. In some instances, the values are in fact identical. This alignment is a result of
collaborative projects aimed at fostering more consistent values between the two.

All nominal values are converted to real values through division by the chain-linked
price index provided by KLEMS (VA PI), following the methodology implemented by
Karabarbounis and Neiman (2014).

15https://comtradeplus.un.org/
16Machinaery and mechanical appliances; industrial robot, n.e.c. or included.
17KLEMS: EU level analysis of capital (K), labour (L), energy (E), materials (M) and service (S) inputs.
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Table 1: Descriptive Statistics

STAN KLEMS STAN KLEMS STAN KLEMS STAN KLEMS
USA 867,789 851,834 292,456 308,662 1,647,140 1,593,719 52.85 53.60
DEU 366,787 366,806 104,117 104,034 569,189 570,196 64.67 64.57
SWE 256,507 256,540 115,040 124,370 502,728 502,728 51.17 51.18
DNK 219,076 226,496 199,337 220,713 410,478 426,533 55.33 54.87
ITA 140,568 140,568 57,107 54,924 253,368 253,353 55.60 55.60
FRA 135,093 135,098 52,379 41,244 226,181 226,181 59.74 59.74
GBR 110,603 109,347 26,230 25,535 171,778 170,498 64.45 64.19
AUT 28,106 29,959 9,427 12,090 51,011 54,254 55.22 55.31
FIN 17,100 17,979 7,512 7,204 33,112 34,848 51.91 51.85
PRT 11,537 12,897 3,166 3,166 20,575 23,030 56.06 55.99

Total 215,317 214,753 86,677 90,194 388,556 385,534 56.75 56.69

WL (labor comp) RK (capital comp) Labor ShareValue added
Country

4 Regressions

Based on the specification in Equation (19), we provide consistent regression equations.
Equation (25) is for the corresponding regression. It should be noted that the coefficient
of d lnµ is required to be −1, as directed by Equation (24). Given that our emphasis is
not on measuring the coefficient of d lnµ, we have transposed this term to the left-hand
side, as depicted in Equation (25). This adjustment is consistent with the specification
outlined in Equation (19).

gr laborshare =− gr markup

+ α1APR + α2gr ENT

+ α3gr labor price + α4gr robot price

+ α5gr capital price + γi + γj + γt + γij + εijt (24)

⇔ gr (laborshare × markup) =α1APR + α2gr ENT

+ α3gr labor price + α4gr robot price

+ α5gr capital price + γi + γj + γt + γij + εijt (25)

, where gr indicates the variables are in a 5-year growth rate. APR and ENT stand for
Adjusted Penetration of Robots and Emergence of New Tasks, respectively. We exclude
the notation of gr from APR, as by definition, they already represent a 5-year growth rate
(refer to Equation (22)). Within this context, i, j, and t correspond to country, industry,
and year, respectively.

For convenience, we have rewritten Equation (19) as Equation (26) below. A repre-
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sents ‘the share of the effective wage for task I’ times −1. B represents the task price
channel (the partial derivative). Lastly, C represents the price drop in the aggregate task
(T ) when robots replace human labor.

d lnSfL =

−
[
(1− ζ) +

(
−(1− ζ) + SfK(1− σ)

)
STL

]
d ln γ

+

−
(
WI

γI

)1−ζ∫ N
I

(Wj

γj

)1−ζ
dj︸ ︷︷ ︸

A

+
(
−(1− ζ) + SfK(1− σ)

)
︸ ︷︷ ︸

B

1

1− ζ

ψ1−ζ −
(
WI

γI

)1−ζ
P 1−ζ
T︸ ︷︷ ︸

C


︸ ︷︷ ︸

α1

d(I −N + 1)

+
(
SLN − SLI

) 1

1− ζ

[
STM(1− ζ) + STLS

f
K(1− σ)

]
︸ ︷︷ ︸

α2

dN

+

[
(1− ζ) +

(
−(1− ζ) + SfK(1− σ)

)
STL

]
︸ ︷︷ ︸

α3

d lnW

+


−(1− ζ) + SfK(1− σ)︸ ︷︷ ︸

G

STM


︸ ︷︷ ︸

α4

d lnψ

−
[
SfK(1− σ)

]
︸ ︷︷ ︸

α5

d lnR. (26)

In Equation (26), SfL represents labor share times markup, I −N + 1 is automation,
N is emergence of new tasks, W is wage, ψ is robot price, and R is non-robot capital
price. Meanwhile, the sum of the coefficients of d lnW and d lnψ is equal to the negative
coefficient of d lnR (i.e. α5= −α3−α4 ). Therefore, we prefer to put this restriction to
our regression accordingly.

Table 2 is the regression result. Column (1) shows the Ordinary Least Squares (OLS)
results without the coefficient restriction; Column (2) displays the OLS results with the
coefficient restriction; Column (3) features the Non-linear Least Squares (NLS) results
with the restriction; Column (4) contains the two-step Generalized Method of Moments
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(GMM) results with the restriction; Finally, Columns (5-7) present the quantile regres-
sions with the restriction. The coefficients across different quantiles retain the same sign
as in the OLS regressions. This suggests that the implications hold steady across different
quantiles of labor share. In Appendix F, we additionally present the quantile regressions
without the restriction. The results do not differ from the quantile regressions with the
restriction.

In Column (1), using OLS without the restriction, we test the null hypothesis that the
restriction is non-binding. With an F-value of 1.54, we cannot reject the null hypothesis
even at the 0.2 significance level. Given that the restriction is non-binding, the quantile
regressions presented in Appendix F are meaningful.

For the remainder of our paper, we will use the results from Column (2) as our point
of reference. It’s worth noting that since the OLS in Column (2) and the NLS in Column
(3) operate under different assumptions regarding the error term, their confidence in-
tervals are expected to differ slightly, although this difference is not visible in Table 2.
The GMM approach in Column (4) is more efficient than OLS, even within a constrained
environment, under the assumptions that (a) the model is correctly specified, (b) the
sample size is large, and (c) errors are independent (Newey and West, 1987). However,
these assumptions may not hold in practice. Moreover, the results from Column (2),
which serves as our reference, and the GMM results do not show substantial differences;
the main divergence lies in the coefficient and standard error associated with APR, but
even this difference is minimal.

Using Equation (26), we can determine the signs of ζ and σ. Specifically, SfK > 0

and the coefficient for d lnR is negative, implying that σ < 1. Additionally, by plugging
in SfK = 0.494 that we acquired from dataset, we infer σ = 0.594 as shown in Equation
(27).

−

 SfK︸︷︷︸
0.494

(1− σ)

 = α5︸︷︷︸
-0.200

(27)

The derivation of the value of ζ is as follows. From Equation (26), using α3 , α4 , and
α5 , we derive Equation (Zeta), which we illustrate in Figure 4. To keep things concise,
denote α2= 0.015; α3= 0.195; and α4= 0.005, then

ζ = 1− α3 + α4
STL

1− STL
(Zeta)

As we will demonstrate at the end of this section, we estimate STL , which represents
the share of labor cost out of the aggregated task cost (i.e. labor cost + robot cost),
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Table 2: Regressions

OLS OLS NLS GMM Quantile
(1) (2) (3) (4) (5) (6) (7)

Restriction No Yes Yes Yes Yes Yes Yes
Quantile 0.2 0.5 0.8
α1 : APR -0.261∗ -0.235∗ -0.235∗ -0.178 -0.251∗∗ -0.121 -0.050

(0.113) (0.110) (0.110) (0.102) (0.094) (0.067) (0.042)

α2 : gr ENT 1.468∗∗∗ 1.483∗∗∗ 1.483∗∗∗ 1.535∗∗∗ 0.522∗∗∗ 0.507∗∗∗ 0.444∗∗∗
(0.372) (0.372) (0.372) (0.348) (0.076) (0.074) (0.059)

α3 : gr labor price 20.200∗∗∗ 19.520∗∗∗ 19.520∗∗∗ 20.411∗∗∗ 13.326∗∗∗ 16.262∗∗∗ 17.311∗∗∗
(2.387) (2.522) (2.522) (2.604) (0.589) (0.436) (0.371)

α4 : gr robot price 1.016 0.529 0.529 4.424 3.917∗∗∗ 5.307∗∗∗ 3.796∗∗∗
(2.650) (2.950) (2.950) (2.495) (0.828) (0.590) (0.391)

α5 : gr capital price -23.536∗∗∗ -20.048∗∗∗ -20.048∗∗∗ -24.834∗∗∗ -17.243∗∗∗ -21.569∗∗∗ -21.106∗∗∗
(3.133) (3.831) (3.831) (3.442) (1.011) (0.656) (0.495)

N 1027 1027 1027 1027 1027 1027 1027
R2 0.565 0.563 0.563
pseudo R2 0.386 0.540 0.444 0.578
Standard errors in parenthesis are heteroskedasticity-robust
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

The coefficients and the standard errors have been multiplied by 100 for better readability.

to be 0.979. By substituting STL = 0.979 into Equation (Zeta), we derive an estimate
of ζ = 1.051, which is a value close to one. It’s important to note that ζ signifies the
elasticity of substitution between different tasks and does not pertain to the elasticity
between labor and robots within a task; our model considers robots and labor as perfect
substitutes within a task.

To validate the reliability of ζ , we have conducted sensitivity tests. Rather than
relying on point estimates, we’ve used intervals encompassing one standard deviation
around these estimates. For the coefficient of gr labor price, denoted as α3 , the inter-
val is (0.183, 0.208), resulting in ζ falling within the interval of (1.038, 1.063). If we
instead consider the interval for the coefficient of gr robot price, represented by α4 , as
(−0.009, 0.007), then ζ falls within the interval of (0.364, 1.137). By considering inter-
vals for both α3 and α4 , we find that ζ falls within the interval of (0.352, 1.149). From
this analysis, we can conclude that the uncertainty associated with ζ predominantly
arises due to the low significance of α4 , gr robot price.

More generally, we present statistics for a linear combination of Equation (Zeta).
The null hypothesis of 1 − ζ = 0 is not rejected at the 0.05 significance level, with a
confidence interval of (−2.747, 2.646). Therefore we argue that ζ is close to 1.
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Figure 4: Equation (Zeta)
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Essentially, the elasticity of substitution between aggregate tasks and non-robot cap-
ital (σ) fundamentally influences the relationships of wage, robot price, and capital price
with labor share. Assuming that 1−ζ is close to zero, Equation (26) demonstrates that the
value of σ is pivotal in determining α3 , α4 , and α5 , provided thatSfK , STL , andSTM are em-

pirically established values. First, the expression
[
(1− ζ) +

(
−(1− ζ) + SfK(1− σ)

)
STL

]
simplifies to

(
SfK(1− σ)

)
STL , indicating that an increase in wages positively affects la-

bor share. Second, the expression
[(

−(1− ζ) + SfK(1− σ)
)
STM

]
simplifies to

(
SfK(1− σ)

)
STM ,

demonstrating that a decline in robot price leads to a decrease in labor share. Third, the
expression −

[
SfK(1− σ)

]
shows the negative correlation between non-robot capital

price and labor share. The regression results presented in Table 2 yield the consistent
results. Coefficients α3 , α4 , and α5 are 0.195, 0.005, and −0.200, respectively.18

The negative coefficient for robot price in our regression model reveals two key
mechanisms through which advancements in robotics affect labor share. First, improved
capabilities allow robots to execute tasks once reserved for humans, leading to a reduc-
tion in labor share. Second, a decline in robot costs, without an increase in functionality,
similarly lowers the labor share. Overall, both mechanisms contribute to a decrease in

18Meanwhile, the sign of the coefficient for d(I − N + 1) is negative. To elaborate, A < 0 by the
definition of productivity-adjusted wage; We have demonstrated that B is indeed greater than zero.19 ;
and, as per Assumption 1, C < 0. Therefore, B × C < 0. This means that both the direct effect (A) and
indirect effect ( B × C) are negative. Here, we define the ‘direct effect’ as the effect that does not operate
through the ‘task price’ channel. Conversely, we define the ‘indirect effect’ as the effect that necessarily
passes through this channel.
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labor share.

In the future, we anticipate that the second mechanism —the robot price channel—
will become more prominent as the share of robots in society increases. This expectation
is due to the term STM . Note that among the three price factors in Equation (26), STM
appears solely in relation to robot price. Also noteworthy is that STM ≡ (I−N+1)ψ1−ζ

P 1−ζ
T

includes the term I − N + 1, which corresponds to the share of robot tasks relative
to the combined tasks of labor and robots. As I − N + 1 increases in the future, the
coefficient for robot price in Table 2 is likely to grow larger and become significant.

The condition σ < 1 indirectly confirms that capital and labor are gross comple-
mentary, a result that aligns with the findings reported by Glover and Short (2020). Con-
versely, this result contradicts the hypothesis of gross substitutability (σ > 1) posited
by Karabarbounis and Neiman (2014) (henceforth referred to as KN). We clarify that the
term σ in our general equilibrium model does not align exactly with the definition of σ
in the work of KN as well as Glover and Short (2020). The divergence stems from our
model’s distinction between robots and capital. Specifically, in our model, σ represents
the elasticity of substitution between ‘non-robot capital’ and ‘aggregated tasks’, where
the latter encompass both robot and labor inputs. Assuming a Cobb-Douglas production
function between robot and labor input brings our definition of σ closer to that of KN.

Letµ denote the elasticity of substitution between labor and non-robot capital. Given
that our model incorporates two layers of production functions —Equation (3) and (4)—
it is not possible to derive a closed-form solution for µ. Assuming that ζ converges to
one, we can temporarily treat Equation (4) as a Cobb-Douglas function. It then follows
that (the derivation process is provided in Appendix B):

µ ≡
d
(
L
K

)
d
(
R
W

) R
W
L
K

=
d
(

Rσ

W1−(N−I)(1−σ)

)
d
(
R
W

) R
W
Rσ

W1−(N−I)(1−σ)

(28)

⇒ σ if N − I = 1.

When I > N − 1, differentiating Equation (28) becomes infeasible. However, we can
employ numerical approximation to estimate µ. We use actual W and R values from
the dataset (all possible combinations of these), along with σ = 0.594 as established in
Equation (27). We introduce small random variations to eachW andR and consider sce-
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narios where |∆ R
W
| is approximately 0.01. These values are then plugged into Equation

(28) to obtain an approximated µ.

Figure 5: Elasticity of Substitution between Labor and Non-robot Capital
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Assuming a Cobb-Douglas production function for Equation (4), the length between

N−1 and I is equivalent to the percentage of tasks that are automated. Figure 5 presents
the results. When the length between N − 1 and I is zero, we find that µ = σ = 0.594.
This stage indicates the absence of automation tasks and all tasks being executed by labor.
Even when we assume 20% of tasks are automated, the divergence from σ is minimal,
at most µ = 0.656. Consequently, we argue that in the context of the KN model, the
elasticity of substitution between labor and non-robot capital closely approximates σ.
Our analysis suggests that µ ranges between 0.594 and 0.656, supporting the idea of a
gross complementary relationship between the two. In the future, as automated robots
come to constitute a large portion of tasks, the elasticity of substitution between labor
and non-robot capital may move closer to one. However, making this prediction with
accuracy would require more thorough research.

Recent research underscores the importance of quantifying this elasticity of substi-
tution between labor and capital, as highlighted by Martinez (2018), Oberfield and Raval
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(2021), and Zhang (2023). Many studies report an elasticity less than one, endorsing
the concept of gross complementarity. However, Piketty and Zucman (2014) suggest
the potential for gross substitutability. They observed an escalating capital-output ratio
and argued that this trend could consistently account for the declining labor share if the
elasticity of substitution between labor and capital exceeds one —a position we do not
support.

Our finding also contradicts the hypothesis proposed by KN, who argue that the
falling price of capital accounts for half of the recent decline in labor share. For their
argument to hold, the elasticity of substitution between labor and capital must be greater
than one (gross substitutes). They directly measured the correlation between the trend of
capital price and labor share without using instrumental variables. In contrast, Glover
and Short (2020) reached a different conclusion, that of gross complements, by using
cross-country variation with instrumental variables. They argue that correcting for bias
is critical when estimating the correlation between the capital price and labor share.
Our paper addresses omitted variable bias using a control function approach. We regress
automation, the emergence of new tasks, wages, and robot price, along with capital price,
on labor share, believing that this approach corrects for omitted variable bias. Our study
supports Glover and Short (2020).

Table 3: Regressions using gr ENT USdetail

OLS OLS NLS GMM Quantile
(1) (2) (3) (4) (5) (6) (7)

Restriction No Yes Yes Yes Yes Yes Yes
Quantile 0.2 0.5 0.8
α1 : APR -0.245∗ -0.217∗ -0.217∗ -0.161 -0.324∗∗∗ -0.133∗ -0.108∗

(0.110) (0.107) (0.107) (0.098) (0.088) (0.055) (0.048)

α2 : gr ENT USdetail 0.555∗∗ 0.552∗∗ 0.552∗∗ 0.544∗∗∗ 0.272∗∗∗ 0.180∗∗∗ 0.227∗
(0.177) (0.176) (0.176) (0.165) (0.064) (0.031) (0.113)

α3 : gr labor price 20.390∗∗∗ 19.659∗∗∗ 19.659∗∗∗ 20.366∗∗∗ 13.463∗∗∗ 16.066∗∗∗ 16.499∗∗∗
(2.379) (2.502) (2.502) (2.577) (0.442) (0.449) (0.549)

α4 : gr robot price 2.109 1.611 1.611 5.873∗ 3.985∗∗∗ 5.991∗∗∗ 4.315∗∗∗
(2.710) (3.023) (3.023) (2.554) (0.777) (0.553) (0.424)

α5 : gr capital price -24.983∗∗∗ -21.269∗∗∗ -21.269∗∗∗ -26.238∗∗∗ -17.447∗∗∗ -22.057∗∗∗ -20.814∗∗∗
(3.319) (3.965) (3.965) (3.603) (0.953) (0.637) (0.640)

N 1027 1027 1027 1027 1027 1027 1027
R2 0.555 0.552 0.552
pseudo R2 0.386 0.537 0.441 0.574
Standard errors in parenthesis are heteroskedasticity-robust
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

The coefficients and the standard errors have been multiplied by 100 for better readability.
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Meanwhile, Table 3 represents the regressions, which are analogous to those in
Table 2, with the exception that it utilizes ENT USdetail instead of ENT. ENT remains
constant across sectors in both the EU and the USA. In contrast, ENT USdetail is sector-
specific in the USA but uniform in EU countries. This distinction stems from the EU-LFS’s
limitation in offering variations beyond the primary manufacturing sector. Conversely,
the US Census provides differentiation at the two-digit sector level. When formulating
ENT, we aligned with the broader manufacturing sector representation of the EU-LFS for
both the EU and the USA to maintain consistency. However, in creating ENT USdetail,
we incorporated the detailed sector classifications from the US Census for the USA,
while preserving the more generalized manufacturing sector for the EU countries. For
consistency between the USA and EU, we prefer using ENT.

The coefficients for both ENT and ENT USdetail consistently outweigh those for
APR. Notably, the coefficients for ENT USdetail are significantly smaller than those for
ENT. This suggests that if we had access to an EU-LFS dataset offering more granular
sector variations, the dominance might diminish. Investigating this remains a task for
future work.

Estimation of STL : Before concluding this section, let us explain how we estimated
STL , which denotes the share of labor cost out of the combined task cost (i.e., labor cost
+ robot cost). There isn’t official data available that directly provides this value, but it is
necessary to infer ζ . As a result, we must rely on various sources to accurately estimate
this value. Let’s assume labor cost to be 100 without loss of generality. According to
KLEMS data, the rental cost for OMach is recorded as 13.595. But it’s important to
note that OMach encompasses not just robots but also a range of other items, including
equipment, machinery, engines, and turbines (Stehrer et al., 2019; Gouma and Timmer,
2013). Therefore, the challenge is to determine the share of robots within the broader
category of OMach. The most reliable approach we can consider involves utilizing UN
Comtrade data, which offers information about import and export values by detailed
commodity categories. By calculating the total export values of commodities corre-
sponding to OMach,20 and separately calculating the total export values of HS Code
8479 (which pertains to robots),21 we find that the ratio between these values is 13.595 :
0.71. In brief, the ratio between labor cost, OMach cost, and robot cost is 100 : 13.595 :
0.71.

It is essential to acknowledge that the equipment cost for robots is estimated to be
20HS Classification 84 excluding 8401, 8402, 8403, 8404, 8405, 8429, 8440, 8443, 8470, 8471, and 8472.
21Machinery and mechanical appliances; having individual functions, n.e.c. in this chapter.
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around 33.04%22 of the total robot costs, covering aspects such as operation, training,
software, maintenance, and disposal (Zhao et al., 2021). The UN Comtrade estimate of
0.71 corresponds to the equipment cost. Therefore, the total cost of the robot amounts
to 0.71/0.33 = 2.149. Finally, we compute STL = 97.90 by performing the calculation
100/(100 + 2.149).

To explore the implications of the regression results further, we will now shift to the
accounting exercise.

5 Accounting Exercise

Based on the regression results from Column (1) of Table 2, we have assembled a series
of accounting tables. These comprehensive contents can be accessed in the Excel file,
which is provided in the associated footnote.23 This file contains information on ‘Average
variables’ and their contribution to change in labor shares.

chg APR = Coefficient of APR × Average APR. (29)

For instance, the term ‘Average APR’ refers to the APR value averaged over the period
from 2005 to 2019. We use this average to mitigate short-term fluctuations in the vari-
able. The ‘Coefficient of APR’ is the regression result in Column (1) of Table 2. Finally,
chg APR quantifies how the five-year growth rate of labor share (SfL) has changed due
to automation (APR).24

In the Excel file, odd-numbered sheets correspond to ‘Average variables,’ and even-
numbered sheets correspond to ‘chg variables.’ Sheets 1 and 2 present data by country
× sector, with samples provided in Tables 4 and 5, respectively. Sheets 5 and 6 are
aggregated by country (Tables 6 and 7, respectively). Sheets 9 and 10 are aggregated by
sector (Tables 8 and 9, respectively). Aggregation is based on ‘Average variables’ from
the country × sector data in Excel Sheet 1. These values are then aggregated using the
corresponding value-added as weights.

The remaining sheets in the Excel file —Sheets 3, 4, 7, 8, 11, and 12— are structured
similarly, but they use gr ENT USdetail instead of gr ENT.25 For readability, our focus
remains on the sheets using gr ENT. For more information, please refer to the ‘Readme’
sheet in the Excel file.

2233.04% = 35.73%× (1− 0.075), where 0.075 represents taxes, transactions, and after-sales fees.
23https://github.com/jayjeo/public/blob/main/Laborshare/accounting.xlsx
24Sf

L is defined in Equation (19) in the Model section.
25The meaning of gr ENT USdetail is explained in detail in the paragraph following Table 3.
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Table 4: Average Variables

location sector APR gr_ENT
gr_capital

price

gr_labor

price

gr_robot 

price

AUT 10-12 -0.117 0.179 0.844 1.050 6.297 -6.329 

AUT 13-15 -1.138 0.010 0.844 4.247 -6.828 -0.269 

AUT 16-18 1.133 0.093 0.844 8.614 7.769 4.088

AUT 20-21 -0.092 0.005 0.844 7.983 29.063 2.271

AUT 22-23 -0.785 1.588 0.844 2.904 6.136 -3.634 

AUT 24-25 -0.492 1.622 0.844 -2.119 3.285 -8.967 

AUT 26-27 -4.332 0.605 0.844 6.693 13.105 1.870

AUT 28 -1.731 0.532 0.844 1.102 15.561 -4.435 

AUT 29-30 -1.850 3.111 0.844 6.732 18.560 1.394

AUT 31-33 0.054 0.449 0.844 -0.615 10.690 -6.559 

DEU 10-12 0.887 0.240 0.866 0.327 4.385 -8.220 

DEU 13-15 1.455 0.016 0.866 -1.175 6.638 -8.417 

DEU 16-18 1.363 -0.285 0.866 4.886 8.845 -1.630 

DEU 19 -0.431 0.263 0.866 -27.546 -28.091 -39.132 

DEU 20-21 2.617 0.006 0.866 1.309 5.617 -9.444 

DEU 22-23 1.544 1.222 0.866 1.623 5.949 -6.842 

DEU 24-25 0.715 0.794 0.866 4.053 8.588 -4.858 

DEU 26-27 2.096 -0.091 0.866 9.482 14.893 0.193

DEU 28 0.731 0.783 0.866 -4.410 -0.925 -14.783 

DEU 29-30 -1.136 -2.512 0.866 1.370 7.288 -8.982 

DEU 31-33 -0.101 -0.176 0.866 -4.635 -2.412 -14.182 

ITA 10-12 0.958 1.261 0.740 3.239 6.690 -9.521 

ITA 13-15 -0.799 -0.010 0.740 7.401 8.281 -9.742 

ITA 16-18 -1.230 0.145 0.740 4.422 7.198 -7.637 

ITA 19 -12.079 0.386 0.740 -21.279 -32.843 -32.373 

ITA 20-21 -0.577 0.021 0.740 0.778 3.375 -11.734 

ITA 22-23 -2.164 0.857 0.740 2.693 6.952 -9.869 

ITA 24-25 0.165 0.820 0.740 4.655 10.120 -7.668 

ITA 26-27 -1.610 0.119 0.740 -7.317 -1.766 -18.731 

ITA 28 0.212 0.709 0.740 -1.078 4.907 -12.576 

ITA 29-30 -4.697 -2.286 0.740 -0.022 5.243 -11.992 

ITA 31-33 0.975 0.034 0.740 -2.031 1.273 -14.446 

USA 10-12 0.242 0.060 2.555 -7.774 -5.949 -16.491 

USA 13-15 -0.177 0.001 2.555 -3.711 2.706 -9.983 

USA 16-18 -0.530 0.004 2.555 -2.363 1.841 -8.808 

USA 19 -3.414 0.032 2.555 2.938 9.504 -6.019 

USA 22-23 -0.100 0.066 2.555 -3.510 -0.021 -11.694 

USA 24-25 -0.366 0.078 2.555 2.311 6.349 -5.663 

USA 26-27 0.167 0.184 2.555 21.149 37.001 15.158

USA 28 -0.418 0.025 2.555 -4.846 0.530 -12.613 

USA 29-30 -1.493 0.475 2.555 -0.417 0.900 -8.770 

USA 31-33 0.049 0.079 2.555 -2.198 8.760 -7.501 

gr_𝑆𝐿
𝑓
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Table 5: Chg Variables

location sector chg_sum

chg

_fixed 

effects

chg_APR
chg_

gr_ENT

chg_gr

_capital

price

chg_gr

_labor

price

chg_gr

_robot 

price

AUT 10-12 -0.117 0.939 -1.255 -0.042 1.251 -0.210 1.229 -0.033 

AUT 13-15 -1.138 -0.081 0.856 -0.002 1.251 -0.852 -1.333 -0.001 

AUT 16-18 1.133 2.189 1.149 -0.022 1.251 -1.727 1.516 0.022

AUT 20-21 -0.092 0.964 -4.370 -0.001 1.251 -1.600 5.673 0.012

AUT 22-23 -0.785 0.272 -1.203 -0.373 1.251 -0.582 1.198 -0.019 

AUT 24-25 -0.492 0.565 -1.324 -0.381 1.251 0.425 0.641 -0.047 

AUT 26-27 -4.332 -3.275 -5.610 -0.142 1.251 -1.342 2.558 0.010

AUT 28 -1.731 -0.675 -4.594 -0.125 1.251 -0.221 3.037 -0.023 

AUT 29-30 -1.850 -0.793 -3.594 -0.731 1.251 -1.350 3.623 0.007

AUT 31-33 0.054 1.110 -2.211 -0.106 1.251 0.123 2.087 -0.035 

DEU 10-12 0.887 1.943 -0.032 -0.056 1.284 -0.065 0.856 -0.043 

DEU 13-15 1.455 2.511 -0.256 -0.004 1.284 0.236 1.296 -0.044 

DEU 16-18 1.363 2.419 0.330 0.067 1.284 -0.980 1.726 -0.009 

DEU 19 -0.431 0.626 -0.429 -0.062 1.284 5.523 -5.483 -0.207 

DEU 20-21 2.617 3.674 1.607 -0.002 1.284 -0.262 1.096 -0.050 

DEU 22-23 1.544 2.600 0.804 -0.287 1.284 -0.325 1.161 -0.036 

DEU 24-25 0.715 1.772 -0.164 -0.186 1.284 -0.813 1.676 -0.026 

DEU 26-27 2.096 3.152 0.840 0.021 1.284 -1.901 2.907 0.001

DEU 28 0.731 1.787 0.062 -0.184 1.284 0.884 -0.181 -0.078 

DEU 29-30 -1.136 -0.079 -3.054 0.590 1.284 -0.275 1.423 -0.047 

DEU 31-33 -0.101 0.955 -0.753 0.041 1.284 0.929 -0.471 -0.075 

ITA 10-12 0.958 2.015 0.608 -0.296 1.097 -0.649 1.306 -0.050 

ITA 13-15 -0.799 0.258 -0.922 0.002 1.097 -1.484 1.616 -0.051 

ITA 16-18 -1.230 -0.173 -1.714 -0.034 1.097 -0.887 1.405 -0.040 

ITA 19 -12.079 -11.023 -9.713 -0.091 1.097 4.266 -6.411 -0.171 

ITA 20-21 -0.577 0.480 -1.053 -0.005 1.097 -0.156 0.659 -0.062 

ITA 22-23 -2.164 -1.108 -2.768 -0.201 1.097 -0.540 1.357 -0.052 

ITA 24-25 0.165 1.221 -0.684 -0.193 1.097 -0.933 1.975 -0.041 

ITA 26-27 -1.610 -0.553 -2.645 -0.028 1.097 1.467 -0.345 -0.099 

ITA 28 0.212 1.268 -0.769 -0.167 1.097 0.216 0.958 -0.066 

ITA 29-30 -4.697 -3.641 -6.239 0.537 1.097 0.004 1.023 -0.063 

ITA 31-33 0.975 2.032 0.364 -0.008 1.097 0.407 0.248 -0.076 

USA 10-12 0.242 1.298 -2.786 -0.014 3.788 1.559 -1.161 -0.087 

USA 13-15 -0.177 0.879 -4.128 -0.000 3.788 0.744 0.528 -0.053 

USA 16-18 -0.530 0.527 -4.047 -0.001 3.788 0.474 0.359 -0.047 

USA 19 -3.414 -2.358 -7.373 -0.007 3.788 -0.589 1.855 -0.032 

USA 22-23 -0.100 0.956 -3.454 -0.015 3.788 0.704 -0.004 -0.062 

USA 24-25 -0.366 0.690 -3.826 -0.018 3.788 -0.463 1.239 -0.030 

USA 26-27 0.167 1.223 -5.584 -0.043 3.788 -4.240 7.222 0.080

USA 28 -0.418 0.639 -4.152 -0.006 3.788 0.972 0.103 -0.067 

USA 29-30 -1.493 -0.437 -4.326 -0.112 3.788 0.084 0.176 -0.046 

USA 31-33 0.049 1.106 -4.775 -0.019 3.788 0.441 1.710 -0.040 

gr_𝑆𝐿
𝑓
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Table 6: Average Variables (Country)

location APR gr_ENT
gr_capital

price

gr_labor

price

gr_robot 

price

AUT -1.070 0.888 0.844 3.225 11.194 -2.607 

DEU 0.755 -0.248 0.866 1.195 5.722 -8.392 

DNK -1.613 0.515 0.905 0.543 3.226 -10.233 

FIN 0.084 0.114 1.296 3.701 -3.846 -2.480 

FRA -0.203 0.055 0.847 3.084 11.117 -1.664 

GBR 0.192 0.160 1.349 2.991 4.502 -11.483 

ITA -0.808 0.286 0.740 1.177 5.125 -11.464 

PRT -0.114 0.254 -0.213 -4.991 -1.902 -3.538 

SWE 2.083 0.474 0.641 -2.740 0.055 -5.962 

USA -0.675 0.140 2.555 2.690 9.188 -4.854 

gr_𝑆𝐿
𝑓

Table 7: Chg Variables (Country)

location chg_APR
chg_

gr_ENT

chg_gr

_capital

price

chg_gr

_labor

price

chg_gr

_robot 

price

AUT -1.070 -0.209 1.251 -0.647 2.185 -0.014 

DEU 0.755 0.058 1.284 -0.240 1.117 -0.044 

DNK -1.613 -0.121 1.342 -0.109 0.630 -0.054 

FIN 0.084 -0.027 1.921 -0.742 -0.751 -0.013 

FRA -0.203 -0.013 1.255 -0.618 2.170 -0.009 

GBR 0.192 -0.038 2.000 -0.600 0.879 -0.061 

ITA -0.808 -0.067 1.097 -0.236 1.000 -0.061 

PRT -0.114 -0.060 -0.316 1.001 -0.371 -0.019 

SWE 2.083 -0.111 0.951 0.549 0.011 -0.032 

USA -0.675 -0.033 3.788 -0.539 1.794 -0.026 

gr_𝑆𝐿
𝑓

Table 8: Average Variables (Sector)

sector APR gr_ENT
gr_capital

price

gr_labor

price

gr_robot 

price

10-12  Food products 0.268 0.408 1.634 -3.941 -1.696 -11.569 

13-15  Textiles, wearing apparel 0.092 0.002 1.288 1.904 5.285 -7.046 

16-18  Wood and paper products -0.432 0.065 1.522 1.359 1.255 -4.661 

19  Coke and refined petroleum -2.828 0.068 2.246 -0.083 7.053 -7.974 

20-21  Chemicals -0.259 0.020 0.905 2.112 13.004 -8.738 

22-23  Rubber and plastics 0.072 0.612 1.532 -0.681 2.424 -8.652 

24-25  Basic metals -0.141 0.439 1.534 2.103 6.294 -5.866 

26-27  Electrical and optical 3.206 0.053 1.851 16.359 26.709 9.709

28  Machinery and equipment -0.779 0.762 1.370 -4.151 -0.978 -12.671 

29-30  Car and Transport equipment -1.668 -0.612 1.563 -1.300 2.589 -9.756 

31-33  Other manufacturing 0.031 0.158 1.482 -2.691 2.863 -9.860 

gr_𝑆𝐿
𝑓
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Table 9: Chg Variables (Sector)

sector chg_APR
chg_

gr_ENT

chg_gr

_capital

price

chg_gr

_labor

price

chg_gr

_robot

price

10-12  Food products 0.268 -0.096 2.423 0.790 -0.331 -0.061 

13-15  Textiles, wearing apparel 0.092 -0.001 1.910 -0.382 1.032 -0.037 

16-18  Wood and paper products -0.432 -0.015 2.257 -0.272 0.245 -0.025 

19  Coke and refined petroleum -2.828 -0.016 3.330 0.017 1.377 -0.042 

20-21  Chemicals -0.259 -0.005 1.342 -0.423 2.538 -0.046 

22-23  Rubber and plastics 0.072 -0.144 2.272 0.137 0.473 -0.046 

24-25  Basic metals -0.141 -0.103 2.275 -0.422 1.228 -0.031 

26-27  Electrical and optical 3.206 -0.012 2.744 -3.280 5.213 0.051

28  Machinery and equipment -0.779 -0.179 2.032 0.832 -0.191 -0.067 

29-30  Car and Transport equipment -1.668 0.144 2.317 0.261 0.505 -0.052 

31-33  Other manufacturing 0.031 -0.037 2.198 0.540 0.559 -0.052 

gr_𝑆𝐿
𝑓

The tables reveal patterns not readily discernible through regression results alone.
Starting from Table 4 (Excel Sheet 1), we observe that APR is mostly positive. This
implies that automation is outpacing value-added growth in most countries and sectors.
Meanwhile, gr ENT is generally positive, indicating that task indices are increasing over
time. Robot prices are predominantly declining, suggesting that robots become more
affordable. Contrary to robot trend, capital prices and wages vary across countries and
sectors.

Shifting our attention to Table 5 (Excel Sheet 2), in the analysis of chg APR, patterns
vary by country and industry. For instance, results for the ‘Car and Transport Equip-
ment’ sector show variation between countries. Austria and the USA display negative
signs, indicating deeper penetration of robots (APR) —that is, a faster growth of robots
compared to value-added in this particular industry. In contrast, countries like Germany,
France, and Italy show positive signs, indicating lighter penetration of robots— a slower
pace of robots growth relative to value-added in the same industry. Figure 6 further
elucidates this trend, revealing that the USA, South Korea, and Austria are experiencing
more accelerated robot growth relative to their value-added.

In Table 5, both chg APR and chg robot price are mostly negative. The results
for chg gr capital prices are mixed, displaying both positive and negative signs across
various countries and industries. This suggests a more complex influence of ordinary
capital —such as buildings, equipment, and non-robot machinery— on labor share. This
distinction underscores the need to consider different types of capital separately when
examining their effects on labor share.
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Figure 6: Robot and GDP in manufacturing (5-year growth rate)
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As we examine chg gr ENT, a distinct pattern becomes apparent: chg gr ENT out-
performs chg APR in the majority of cases. This indicates that the emergence of new
tasks has a more pronounced impact on labor share than automation does. Particularly in
the USA, the magnitude of chg gr ENT significantly exceeds that of chg APR, signaling
a robust innovation landscape in terms of new task development.

Despite the USA’s notable innovation in new tasks, it has seen a particularly sharp
decline in labor share. We attribute this to the rising market concentration within the
country, as detailed by Autor et al. (2020). Additional insights on this can be found
in our online appendix, where we provide an analysis showing that this increase in
concentration, leading to the decline in labor share, is largely specific to the USA and
does not extend to European Union countries. For future research, we recommend
an examination of firm-level data in EU countries, possibly utilizing resources like the
Amadeus database. This should be complemented by an in-depth study into the influence
of automation on market concentration, as initiated by Firooz et al. (2022).

Our accounting analysis reveals that the emergence of new tasks (ENT) has had a
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positive impact on labor share, despite the negative effects of increasing automation.
This suggests a balancing act between robots and the emergence of new tasks, with the
latter currently holding more sway. Tables 6 and 7 illuminate this dominance (Excel
Sheets 5 and 6). We obtain these tables by aggregating data to the country level. During
this aggregation, we base our calculations on the ‘Average variables’ from Table 4 and
use value-added by country × sector as weights. We then apply relevant coefficients
derived from the regression in Column (2) of Table 2 to generate ‘chg variables’.

Lastly, we examine Tables 8 and 9 (Excel Sheets 9 and 10), which are aggregated at the
sector level using value-added as weights. Similar to the previous tables, APR generally
exhibits positive values, indicating a faster rate of automation relative to the growth of
value-added. This trend is most pronounced in the ‘Machinery and Equipment’ sector,
which showcases a significantly high APR. In contrast, the ‘Car and Transport Equip-
ment’ sector is the sole sector to record a negative APR. Given the analysis period, which
spans from 2005 to 2019, this implies that automation in the ‘Car and Transport’ sector
has largely stagnated since 2005. While the rate of automation has increased in many
other sectors, this sector appears to have seen a relatively slower pace of technological
integration compared to its value-added growth.

It is important to exercise caution in interpreting these results. Specifically, this
analysis does not provide information about the absolute level of automation within
each sector. Instead, it sheds light on the relative penetration of automation in compar-
ison to value-added growth. That is, a negative APR indicates a slower growth rate of
automation relative to value-added growth, not necessarily a low level of automation in
absolute terms.

6 Concluding Remarks

The objective of this paper is to investigate the underlying causes of the recent de-
cline in labor share, with a particular focus on automation and the emergence of new
tasks. While existing studies offer conflicting perspectives (Acemoglu and Restrepo,
2020; Graetz and Michaels, 2018; Dauth et al., 2021; De Vries et al., 2020; Humlum, 2019),
our analysis affirms that automation has a negative effect on labor share.

We are the first to investigate the influence of the emergence of new tasks on labor
share. Our results indicate that this factor serves as an effective counterbalance to the
negative effects of automation on labor share. This observation is especially pertinent
in the United States, where the development of new tasks is particularly robust.
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We also provide a direct answer to our research question concerning the effects of
three price factors —capital price, robot price, and wage— on labor share. We find that
capital price is negatively correlated with labor share, while the other factors positively
correlate. Specifically, an increase in real wages enhances labor share, whereas a decline
in robot prices reduces it. These conclusions are derived from our key finding that the
elasticity of substitution between labor and non-robot capital is less than one. Incorpo-
rating this into our model allows us to coherently predict the directional influence of
these three price factors on labor share, a finding that is consistently corroborated by
our regression analysis.

Meanwhile, we would like to clarify that the focus of this paper is not to investigate
whether this decline in labor share exacerbates income inequality or necessitates policy
interventions. Although some studies have posited a correlation between a declining
labor share and increasing income inequality, a more comprehensive examination of
causality is necessary. (ILO and OECD, 2015; Torres et al., 2011). As such, we set these
topics aside and concentrate on identifying the reasons for the decline within a unified
framework.

However, as a policy recommendation, we suggest that governments implement
ONET programs aimed at keeping people updated on task requirements for specific
occupations. Providing such information will enable individuals to identify emerging
labor demands and prepare accordingly, thus improving the alignment between labor
supply and demand. This, in turn, could bolster labor share. While the USA is the
only country currently offering ONET, the EU has recently initiated a similar project.26

However, many countries, such as South Korea with its Korea Employment Information
Service (KELS), offer job information and matching services but lack ONET-style service.

In the current landscape, our paper shows that while automation contributes to a
declining labor share, the introduction of new tasks exerts a significantly more positive
impact on labor share. Drawing on our general equilibrium model, we anticipate that
in the future, the robot price channel will gain greater importance as the prevalence of
robot usage increases.

26The European Commission has recently initiated a project akin to ONET, named ‘European Skills,
Competences, Qualifications, and Occupations’ (ESCO). ESCO has disclosed the tasks required for workers
for a single year and has yet to release a Task score.
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A Appendix: Model Derivations

A.1 Environment

There is a representative household with utility function in Equation (30):

U =

(∫ 1

0

Y (k)
η−1
η dk

) η
η−1

. (30)

There are infinite number of identical firms i with production functions in Equation (33)
and (34):

tj(i) = mj(i) + γjlj(i) if j ≤ I (31)

tj(i) = γjlj(i) if j > I (32)

T (i) =

(∫ N

N−1

tj(i)
ζ−1
ζ dj

) ζ
ζ−1

(33)

Y (i) =
(
T (i)

σ−1
σ +K(i)

σ−1
σ

) σ
σ−1

. (34)

By Assumption 1, Equation (31) simplifies to Equation (35). Without this assumption,
the algebra becomes too complex to yield a closed-form solution. The implication of this
assumption is that whenever robot operation is technically feasible, firms opt for robots
over labor. This is because, according to Assumption 1, the cost of using a robot is lower
than the cost of labor for unit of production.

tj(i) = mj(i) if j ≤ I (35)

A.2 Step 1: derive PT , and optimal inputs for robot* and labor*

We derive PT , the price for an aggregated task, T (i), by solving the cost minimization
problem. We assume perfectly competitive market.

min cost(i) for T (i) s.t. Equation(35), (32), and (33)

⇒ min

∫ I

N−1

ψmjdj +

∫ N

I

wjljdj s.t.
(∫ I

N−1

m
ζ−1
ζ

j dj +

∫ N

I

(γjlj)
ζ−1
ζ dj

) ζ
ζ−1

= T (i)

⇒ This finds optimal inputs for robot* and labor* to produce T(i)

⇒ Specifically, letting T(i)=1 means the minimization solution is the price for T(i), PT :

⇒ PT =

(I −N + 1)ψ1−ζ +

∫ N

I

(
wj
γj

)1−ζ

dj

 1
1−ζ

(36)
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A.3 Step 2: find optimal inputs for T (i) and K(i)

Next, we find optimal inputs for T (i) and K(i) to produce Y (i).

min cost(i) for Y (i) s.t. Equation(34)

⇔minPT · T (i) +R ·K(i) s.t. Equation(34)

⇒This finds optimal inputs for T(i)* and K(i)* to produce Y(i)

⇒Specifically, the minimization solution is the minimum cost for producing Y (i)

⇒



T (i)∗ = Y (i)P−σ
T

K(i)∗ = Y (i)R−σ

Cost for Y (i) = Y (i)
[
P 1−σ
T +R1−σ] 1

1−σ

= Y (i)× AC
= Y (i)

We let
[
P 1−σ
T +R1−σ] 1

1−σ = 1 as a numeraire. This numeraire significantly simplifies
the algebraic complexity. Since we let AC= 1, MC is also one.

A.4 Step 3: find a demand function for Y (i)

Next, we find a demand function for Y (i) by minimizing consumption cost.

min cost for consumption s.t. Equation(30)

⇔min

∫ 1

0

P (i)Y (i)di s.t. Equation(30)

⇒Specifically, this yields a demand function for Y (i)

⇔Y (i) =

(
P (i)

P

)−η

, where P ≡

[∫ 1

0

P (i)1−ηdi

] 1
1−η

A.5 Step 4: find firm(i)’s profit

The final goods market is the monopolistic competition that allows firms’ positive profit.
Until now, we know two things: (1) a demand function for Y (i), and (2) the minimum
cost for producing Y (i). Firm’s profit maximization problem yields:

P (i)∗ =
η

η − 1

⇒ Π(i) =
1

η − 1
Y (i)∗
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Meanwhile, we naturally get optimal Y (i) as below, but this is redundant for this paper.

Y (i)∗ =

(
η

(η − 1)P

)−η

, where P ≡

[∫ 1

0

P (i)1−ηdi

] 1
1−η

A.6 Step 5: derive the labor cost for producing optimal Y (i)

In Step 1, we already found optimal inputs of lj(i) to produce T (i). Therefore we can
also know the optimal labor cost at task j for firm i to produce T (i).

lj(i)
∗ =

(
Wj(i)

γjPT

)−ζ

γ−1
j T (i)

⇒ Wj(i)lj(i)
∗ =

(
Wj(i)

γj

)1−ζ

P ζ
TT (i)

And we also derived optimal T (i) while in Step 2: T (i)∗ = Y (i)P−σ
T . Plugging in this to

the equation above,

Wj(i)lj(i)
∗ =

(
Wj(i)

γj

)1−ζ

P ζ−σ
T Y (i)

Therefore, the optimal labor cost for firm i to produce Y (i) by using every task from I to
N is: ∫ N

I

Wj(i)lj(i)
∗dj =

∫ N

I

(
Wj(i)

γj

)1−ζ

P ζ−σ
T Y (i)dj

=

∫ N

I

(
Wj(i)

γj

)1−ζ

dj · P ζ−σ
T Y (i)

A.7 Step 6: derive an expression for labor share

Until now, we have figured out (1) labor cost, (2) total cost, and (3) profit. Putting all
together, we find labor share. Since we prefer not to focus on η−1

η
, we move this term to

the left-hand side.

SL(i) =
Labor cost(i)

Total cost(i) + Profit(i) =
Labor cost(i)

Y (i) + 1
η−1

Y (i)

=
η − 1

η

Labor cost(i)
Total cost(i)

⇔ η

η − 1
SL(i) =

Labor cost(i)
Total cost(i)

≡ SfL(i)
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After substituting the expressions for Labor cost(i) and Total cost(i) that we derived
earlier, we finally construct a detailed expression for SfL(i).

SfL(i) =
Labor cost(i)
Total cost(i)

=

∫ N
I
Wj(i)lj(i)dj

Y (i)

=

∫ N
I
Wj(i)lj(i)dj

PTT (i) +RK(i)

=

∫ N
I

(Wj(i)

γj

)1−ζ
dj · P ζ−σ

T Y (i)

P 1−σ
T Y (i) +R1−σY (i)

=

∫ N
I

(Wj(i)

γj

)1−ζ
dj

P 1−ζ
T

P 1−σ
T

P 1−σ
T +R1−σ

, where PT ≡

(I −N + 1)ψ1−ζ +

∫ N

I

(
Wj

γj

)1−ζ

dj

 1
1−ζ

B Appendix: Derivation of µ

Let µ denote the elasticity of substitution between labor and non-robot capital. We have
two layers of production fuctions:

Y (i) =
(
T (i)

σ−1
σ +K(i)

σ−1
σ

) σ
σ−1 (37)

T (i) =

(∫ N

N−1

tj(i)
ζ−1
ζ dj

) ζ
ζ−1

(38)

, where T (i) and K(i) represent ‘the number of aggregated tasks’ and ‘capital’ used for
the production of the final good i, denoted as Y (i). Tasks, tj(i) are as follows:

tj(i) = mj(i) + γjlj(i) if j ≤ I (39)

tj(i) = γjlj(i) if j > I (40)

With Assumption 1 in Model section, Equation (39) becomes Equation (41):

tj(i) = mj(i) if j ≤ I (41)

Combining Equations (38), (40), and (41), we get Equation (42):

T (i) =

(∫ I

N−1

mj(i)
ζ−1
ζ dj +

∫ N

I

(γjlj(i))
ζ−1
ζ dj

) ζ
ζ−1

(42)
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Next, we assume limζ→1 and convert Equation (42) to Equation (43) below:

exp

{∫ I

N−1

lnmjdj +

∫ N

I

ln
(
γjlj
)
dj

}
. (43)

Under the Cobb-Douglas production function, it is necessary to derive PT , which will
differ from the PT derived in the CES case. Essentialy, we will do the same procedure
of Step 1 in Appendix A except that we now use Cobb-Douglas production function
(Equation 43).

min

∫ I

N−1

ψmjdj +

∫ N

I

wjljdj s.t. Equation(43) = 1 (44)

We derive optimal l∗j and m∗
j as follows:

∀j, m∗
j = m =

1

ψN−1

N∏
I

wj
γj

(45)

∀j, l∗j =
ψI−N+1

wj

N∏
I

wj
γj

(46)

Plugging in m∗
j and l∗j into

∫ I
N−1

ψmjdj +
∫ N
I
wjljdj, we derive PT :

PT = ψI−N+1

N∏
I

wj
γj

(47)

We introduce a parameter βj to act as a weight for the wage distribution correspond-
ing to each worker indexed by j. Employing βj allows us to define a representative wage
measure,W, whose properties we will elucidate in subsequent discussions.

wj ≡ βjW (48)

A representative wage, W, is total labor cost for producing Y (i) divided by total
number of workers to produce Y (i):

W ≡

(∫ N
I
wjl

∗
jdj
)
T (i)(∫ N

I
l∗jdj
)
T (i)

(49)

=
N − I∫ N
I

1
wj
dj

(50)

=W
N − I∫ N
I

1
βj
dj

(51)

∴
N − I∫ N
I

1
βj
dj

= 1 (52)
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Hence, it is evident that βj functions as the weight of the wage pertaining to the indi-
vidual indexed by j. It holds that βj varies with the index j, oscillating around a value
of one:

We make an assumption that an infinitesimal change in the representative wage,W,
does not alter the distribution of the wage weight, βj . In other words,

Assumption 2. ∀j, ∂βj
∂W

= 0

We resume the discussion of PT in Equation (47). Inserting wj ≡ βjW into the
equation yields:

PT = ψI−N+1 ·
N∏
I

(
βj
γj

)
·WN−I (53)

We define L(i) as total number of workers to produce Y (i). Therefore it satisfy the
following equation:

WL(i) =

∫ N

I

wjl
∗
jdj × T (i) (54)

Specifically, the termWL(i)/PTT (i) represents the share of labor cost in the aggre-
gate task cost for producing Y (i):

WL(i)

PTT (i)
=

∫ N
I
wjl

∗
jdj × T (i)

PTT (i)
(55)

= N − I (56)

This result confirms the well-known property of Cobb-Douglas function that the share
of costs that goes to labor is always equal to the power of the Cobb-Douglas function,
N − I .

From the equation discussed above, we derive the expression for L(i):

L(i) = (N − I)
PTT (i)

W
(57)

, where T (i) is as follows. We detailed this derivation in Step 2 of Appendix A.

T (i) =

(
PT
MC

)−σ

Y (i) (58)

Combining Equations (57) and (58) yields:

L(i) =
(N − I)PT

W

(
PT
MC

)−σ

Y (i). (59)
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In Step 2 in Appendix A, we derived:

K(i) =

(
R

MC

)−σ

Y (i). (60)

Hence, combining Equations (53), (59), and (60) yields:

L(i)

K(i)
= (N − I)ψ(I−N+1)(1−σ)

 N∏
I

βj
γj

1−σ (
Rσ

W1−(N−I)(1−σ)

)
(61)

= α

(
Rσ

W1−(N−I)(1−σ)

)
(62)

, where we denote α ≡ (N − I)ψ(I−N+1)(1−σ)
(∏N

I
βj
γj

)1−σ
for notational convenience.

This is without loss of generality because α is not a function of R orW.

Finally, we denote µ as the elasticity of substitution between non-robot capital and
labor:

µ ≡
dα
(

Rσ

W1−(N−I)(1−σ)

)
d
(

R
W

) R
W

α
(

Rσ

W1−(N−I)(1−σ)

) (63)

=
d
(

Rσ

W1−(N−I)(1−σ)

)
d
(

R
W

) R
W(
Rσ

W1−(N−I)(1−σ)

) (64)

⇒ σ if N − I = 1.

C Appendix: Acemoglu and Restrepo (2019)

Let me first introduce their notations in Table 10.

The decomposition starts from the percent change in the wage bill normalized by
population (Equation (AR1)). Since ln

(
WtLt

Nt

)
can be expressed as ln

(
Yt
∑

i χits
L
it

)
, Equa-

tion (AR1) can be decomposed as Equation (AR2);
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Table 10

Notation Meaning
i Industry sector
Pi The price of the goods produced by sector i
Yi Output (value added) of sector i
Y =

∑
i PiYi Total value added (GDP) in the economy

χi =
PiYi
Y

= PiYi∑
i PiYi

= GDPi

GDP The share of sector i’s GDP
Wi Wage per worker in sector i
Li Number of workers in sector i
WiLi Total wage bill in sector i
WL =

∑
iWiLi Total wage bill in the economy

ℓi =
WiLi

WL
The share of the wage bill in sector i

sLi = WiLi

PiYi
=

Total wage billi
GDPi

The labor share in sector i
sL = WL

Y
= Total wage bill

GDP The labor share in the economy
Γi = Γ(Ni, Ii) The task content of production with regards to labor in sector i
γLi The comparative advantage schedules for labor in sector i
γKi The comparative advantage schedules for captial in sector i

ln
(WtLt
Nt

)
− ln

(Wt0Lt0
Nt0

)
(AR1)

= ln
( Yt
Nt

)
− ln

( Yt0
Nt0

)
(AR2)

+ ln
(∑

i

χits
L
it

)
− ln

(∑
i

χit0s
L
it0

)
= ln

( Yt
Nt

)
− ln

( Yt0
Nt0

)
+ ln

(∑
i

χits
L
it

)
− ln

(∑
i

χit0s
L
it

)
+ ln

(∑
i

χit0s
L
it

)
− ln

(∑
i

χit0s
L
it0

)
≈ ln

( Yt
Nt

)
− ln

( Yt0
Nt0

)
+
∑
i

sLit∑
j χjt0s

L
jt

(
χit − χit0

)
+ ln

(∑
i

χit0s
L
it

)
− ln

(∑
i

χit0s
L
it0

)
≈ ln

( Yt
Nt

)
− ln

( Yt0
Nt0

)
(AR3)

+
∑
i

sLit∑
j χjt0s

L
jt

(
χit − χit0

)
+
∑
i

ℓit0(ln s
L
it − ln sLit0) (AR4)43



The first-order Taylor expansion of the last term of Equation (AR3) yields Equa-
tion (AR5); Denote (1 − σ)(1 − sLit0)

(
ln Wit

Wit0
− ln Rit

Rit0
− gAi,t0,t

)
as Substitutioni,t0,t,

we can rewrite Equation (AR5) as AR8; Denote
(
ln sLit − ln sLit0

)
− Substitutioni,t0,t as

ChangeTaskContenti,t0,t, we can rewrite Equation (AR8) as (AR9).

≈ ln
( Yt
Nt

)
− ln

( Yt0
Nt0

)
(AR5)

+
∑
i

sLit∑
j χjt0s

L
jt

(
χit − χit0

)
+
∑
i

ℓit0

[
(1− σ)(1− sLit0)

(
ln
Wit

Wit0

− ln
Rit

Rit0

− gAi,t0,t

)
(AR6)

+
1− sLit0
1− Γit0

(ln Γit − ln Γit0)

]
(AR7)

≈ ln
( Yt
Nt

)
− ln

( Yt0
Nt0

)
+
∑
i

sLit∑
j χjt0s

L
jt

(
χit − χit0

)
+
∑
i

ℓit0

[
Substitutioni,t0,t

+
1− sLit0
1− Γit0

(ln Γit − ln Γit0)

]
≈ ln

( Yt
Nt

)
− ln

( Yt0
Nt0

)
(AR8)

+
∑
i

sLit∑
j χjt0s

L
jt

(
χit − χit0

)
+
∑
i

ℓit0

[
Substitutioni,t0,t

+
(
ln sLit − ln sLit0

)
− Substitutioni,t0,t

]
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≈ ln
( Yt
Nt

)
− ln

( Yt0
Nt0

)
(AR9)

+
∑
i

sLit∑
j χjt0s

L
jt

(
χit − χit0

)
+
∑
i

ℓit0

[
Substitutioni,t0,t

+ ChangeTaskContenti,t0,t
]

≈ ln
( Yt
Nt

)
− ln

( Yt0
Nt0

)
+
∑
i

sLit∑
j χjt0s

L
jt

(
χit − χit0

)
+ Substitutiont0,t

+
∑
i

ℓit0

[
ChangeTaskContenti,t0,t

]
∑

i ℓit0[ChangeTaskContenti,t0,t] can be decomposed again into Equation (AR10),
assuming that over five-year windows, an industry engages in either automation or the
creation of new tasks but not in both activities.

Displacementt−1,t =
∑
i∈I

ℓi,t0min

{
0,

1

5

t+2∑
γ=t−2

ChangeTaskContenti,γ−1,γ

}
(AR10)

Reinstatementt−1,t =
∑
i∈I

ℓi,t0max

{
0,

1

5

t+2∑
γ=t−2

ChangeTaskContenti,γ−1,γ

}

To sum up, starting from Equation (AR1), it can be decomposed into 1) productivity,
2) composition, 3) substitution, 4) displacement, and 5) reinstatement effects.

ln
(WtLt
Nt

)
− ln

(Wt0Lt0
Nt0

)
[Wage bill per capita] (AR11)

≈ ln
( Yt
Nt

)
− ln

( Yt0
Nt0

)
[Productivity effect]

+
∑
i

sLit∑
j χjt0s

L
jt

(
χit − χit0

)
[Composition effect]

+ Substitutiont0,t [Substitution effect]

+ Displacementt0,t [Displacement effect (Automation)]

+ Reinstatementt0,t [Reinstatement effect (New tasks)]
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D Appendix: Generation of ENT

Our detailed work differs from that of Acemoglu and Restrepo (2019) in several ways.
They generated a ‘Task score’ only for 2018, whereas we generated it on a yearly basis.
Additionally, they provided their version of the ENT variable only for the year 2018 in
the USA, while our ENT varies by country×year (and industry×year in the USA).

Our matching procedure from ‘Task score’ to the US Census also differs. They
convert the ‘Task score’ from SOC to OCC. In contrast, we use SOC as it is. The US
Census provides both SOC and OCC for occupational taxonomy, allowing us to simply
use SOC to match the US Census with the ‘Task score’.

Moreover, when matching ‘Task score’ to EU-LFS, using SOC is more advantageous
than using OCC. EU-LFS uses ISCO for occupational taxonomy, and ISCO (4-digits)
matches with SOC (6-digits).27 This granular level of crosswalk matching is made pos-
sible by the recent work of Frugoli and ESCO (2022). They used machine learning and
natural language processing for the initial matching, followed by human experts cross-
checking to generate the final crosswalks.

E Appendix: Why AR’s comparison was insignificant

We argue that the reason for their insignificant result is that they used just one time
point (2018) and compared the ‘inferred emergence of new tasks’ across industries. In
contrast, our comparison utilized yearly variation.

As we will explain carefully now, the size of ‘inferred emergence of new tasks’
across industries at a given point in a year has no meaningful interpretation. Equation
(AR10) in Appendix C clearly demonstrates this. For simplicity, let’s assume that li,t0 are
equal across industries. Suppose there are five subsectors within, say, the automotive
industry, and we focus on just one year. Suppose the ‘change in task contents’ in the
automotive industry is given as Table 11. Then the ‘inferred emergence of new tasks’
for the automotive industry is 6, and ‘inferred Automation’ is 8. It is important to
note that each sector’s ‘change in task contents’ is the result of combining (summing)
‘inferred emergence of new tasks’ and ‘inferred Automation’ in its sub-subcategory.
For example, the ‘change in task contents’ for Sector A in this instance was -7, which
would be a combination of 2 and -9. What if, in Sector A, the ‘change in task contents’

27The excel file for the crosswalk between ISCO and SOC is in this link. This is publicly released by
ONET and ESCO.
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is -2, which was a combination of 30 and -32? Even though -7 is larger than -2, the
‘inferred emergence of new tasks’ and ‘inferred Automation’ in the subcategory of Sector
A were much larger in the case of -2. This case is shown in the second row of Table 11,
which yields ‘inferred emergence of new tasks’ as 1.6 and ‘inferred Automation’ as -1.8.
Comparing the two examples (in the first and second rows), ‘inferred emergence of new
tasks’ in the first row is larger than in the second row. However, it does not mean that
the automotive industry has lower ‘inferred emergence of new tasks’ in the second row.
Therefore, the inference method by AR is meaningful only as the relative size between
‘inferred emergence of new tasks’ and ‘inferred Automation’ (the first row is 6

6+8
= 0.43

and the second row is 1.6
1.6+1.8

= 0.47). Additionally, it is meaningful in the relative
size across years. For example, for the automotive industry, when did it experience a
rapid increase, and when was it flat? However, it is crucial to understand that it is not
meaningful across industries at a given year. This is why our version of the comparison
removed the fixed effects and used only error terms.

Table 11: Example for Equation (AR10)

Sectors
Change in task 

contents in labor

Inferred Emerging 

new tasks
Inferred Automation

A -7 0 -7

B 20 20 0

C -3 0 -3

D 10 10 0

E -30 0 -30

6 -8

Sectors
Change in task 

contents in labor

Inferred Emerging 

new tasks
Inferred Automation

A -2 0 -2

B 5 5 0

C -1 0 -1

D 3 3 0

E -6 0 -6

1.6 -1.8

⇒

⇒

Decomposition result Inferred conclusion

Decomposition result Inferred conclusion
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F Appendix: Quantile without restriction

Only quantile regressions are different from Table 2.

Table 12: Regressions

OLS OLS NLS GMM Quantile
(1) (2) (3) (4) (5) (6) (7)

Restriction No Yes Yes Yes No No No
Quantile 0.2 0.5 0.8
α1 : APR -0.261∗ -0.235∗ -0.235∗ -0.178 -0.260∗∗∗ -0.129 -0.061

(0.113) (0.110) (0.110) (0.102) (0.072) (0.080) (0.054)

α2 : gr ENT 1.468∗∗∗ 1.483∗∗∗ 1.483∗∗∗ 1.535∗∗∗ 0.511∗∗∗ 0.524∗∗∗ 0.414∗∗∗
(0.372) (0.372) (0.372) (0.348) (0.076) (0.083) (0.069)

α3 : gr labor price 20.200∗∗∗ 19.520∗∗∗ 19.520∗∗∗ 20.411∗∗∗ 13.182∗∗∗ 16.124∗∗∗ 16.962∗∗∗
(2.387) (2.522) (2.522) (2.604) (0.543) (0.530) (0.362)

α4 : gr robot price 1.016 0.529 0.529 4.424 4.065∗∗∗ 5.117∗∗∗ 3.899∗∗∗
(2.650) (2.950) (2.950) (2.495) (1.011) (0.694) (0.432)

α5 : gr capital price -23.536∗∗∗ -20.048∗∗∗ -20.048∗∗∗ -24.834∗∗∗ -18.715∗∗∗ -21.623∗∗∗ -22.054∗∗∗
(3.133) (3.831) (3.831) (3.442) (1.108) (0.885) (0.636)

N 1027 1027 1027 1027 1027 1027 1027
R2 0.565 0.563 0.563
pseudo R2 0.386 0.541 0.445 0.579
Standard errors in parenthesis are heteroskedasticity-robust
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

The coefficients and the standard errors have been multiplied by 100 for better readability.
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