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Abstract

Sequencing deals with the problem of assigning slots to agents who are waiting for a

service. We study sequencing problems as coalition form games defined in optimistic and

pessimistic scenarios. Each agent’s level of utility is his Shapley value payoff from the cor-

responding coalition form game. First, we show that while the core of the optimistic game

is always empty, the Shapley value of the pessimistic game is an allocation in its core. Sec-

ond, we impose the ”generalized welfare lower bound” (GWLB) that ex-ante guarantees each

agent a minimum level of utility. One of many application of GWLB is the ”expected costs

bound”. It guarantees each agent his expected cost when all arrival orders are equally likely.

We prove that the Shapley value payoffs (in both optimistic and pessimistic scenarios) satisfy

GWLB if and only if it satisfies the expected costs bound (ECB).
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1 Introduction

There is a finite set of agents who are in need of a service. Each agent has one job to process

and the service provider can serve one agent at a time. A job can not be interrupted once it

starts getting processed. Each agent is identified by two parameters namely, his per unit time

waiting cost and his job processing time. We allow both the parameters to vary across agents.

An agent’s urgency is defined as the ratio of his per unit time waiting cost to his job process-

ing time. Each agent is assigned a position and makes a monetary contribution to the service

provider (can either be a payment or reward). Preferences are defined over pairs consisting of a

position and a monetary contribution. They are quasi-linear. A rule is a mapping that specifies

for each problem of this type, an order in which agents are served and a list of monetary contri-

butions. Efficiency entails minimizing the aggregate job completion cost by serving agents in a

non-increasing ordering of their urgency indices.

This paper models sequencing problems as cooperative games. Each sequencing problem is

associated to a coalition form game and the worth of a coalition is defined based on the priority

of serving its members. First, we define the optimistic scenario where the members of a coalition

are always served first. The optimistic worth of this coalition is the minimum job completion

cost of serving its members, as if they are the first to arrive. Second, we define the pessimistic

scenario where the members of a coalition are always served last. The pessimistic worth of this

coalition is the minimum job completion cost of its members if they are the last to arrive and the

non-coalitional members are served before them. We calcuate the Shapley value payoffs for both

these games. This allows us to design (for both the optimistic and pessimistic scenarios) a list of

equitable monetary contributions when agents are served efficiently.

An allocation rule is a Shapley value rule if it selects those allocations that assign to each agent,

a utility level equal to his Shapley value payoff from a corresponding coalition form game.

Banerjee et al. [3] introduce the ”generalized welfare lower bound” in which each agent is guar-

anteed a minimum level of ex-post utility. This bound is a unifying representation of several
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specific lower bounds in the literature 1. One specific application of this bound is the expected

costs bound that guarantees each agent a utility level (in the absence of transfers) equal to his

expected cost when all arrival orders are equally likely. We show that the Shapley value rule

satisfies the generalized welfare lower bound if and only if it satisfies the expected costs bound.

We also study the set of core stable solutions of both the optimistic and pessimistic coalition

form games. The core of the optimistic games is always empty. Whereas, the Shapley value of

the pessimistic game belongs in its core.

2 Literature

The literature studies sequencing from both incentive and normative point of views 2. Sequenc-

ing problems are a subclass of indivisible object allotment problems. This general class has been

examined from the cooperative game point of view (see Abdulkadiroglu and Sonmez [1], Moulin

[26]) as well as from the fair allocation perspective (see Alkan et al. [2], Cres and Moulin ([13],

[12]); Tadenuma [31], Tadenuma and Thomson ([32], [33], [34]); Thomson [35]). Moulin [26]

showed that in a rich class of problems of fair division with money, the Shapley value solution

indeed has many normatively appealing properties.

Curiel et al. [14] are the first ones to study cooperation in sequencing situations. They intro-

duce the ’equal gain splitting rule’ in a cost saving game when customers are rearranged with

the objective of minimizing the total cost. The equal gain splitting rule is shown to belong to

the core of the corresponding coalition form game where the worth of a coalition is the maximal

cost saving its members can ensure by rearranging themselves efficiently. They also calculate

the Shapley value and the τ value of this game.

A special case of sequencing problems in which agents have identical job processing times

1See Moulin [25] and Yengin [36] (study identical costs bound (ICB)), Maniquet [19], Chun [6], Banerjee et. al [3],
Kayi and Ramaekars [18], and Mitra [24] (study both identical costs bound (ICB) and expected costs bound (ECB)),
Chun and Yengin [11] (study the k-welfare bounds)

2For sequencing problems with incentives, see Dolan [17], Mendelson and Whang [20], Suijs [30], Mitra ([22],
[23]), De [15], Banerjee et al. [3]. For the normative studies, see Chun [5], Chun, Mitra and Mutuswami ([8], [9],
[10]), Chun and Yengin [37], and De [16]
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are the class of queueing problems. Maniquet [19] studies queueing problems as coalition form

games and defines the worth of a coalition in an optimistic manner. Chun [6] takes an identical

approach but defines the worth of a coalition in a pessimistic manner. The minimal (maximal)

transfer rule has been derived by applying the Shapley value solution to the corresponding

coalition form game and characterized axiomatically.

Mishra and Rangarajan [21] also characterize the Shapley value solution for sequencing games

in the optimistic case. [7] explores the consistency and monotonicity axioms in sequencing prob-

lems and studies how the maximal transfer rule responds to changes in waiting cost and pro-

cessing time. Moulin [27] studies scheduling problems in which agent have identical waiting

costs but differ in their job processing times. The server can monitor the length of the job but not

the identity of the user; thus leading to merging, splitting or partially transferring jobs to offer

cooperative strategic opportunities. He shows that the Shapley value solution is merge proof,

but not split proof.

3 The model

A finite set of agents N = {1, 2, . . . , n} are in need of a service. A facility provider processes

their jobs but can only do so one job at a time. For each i ∈ N, agent i is identified by a pair of

parameters (θi, li) ∈ R2
++ where θi is his per unit time waiting cost and li is his job processing

time. Let Li denote the job completion time for agent i and τi be his consumption of money.

Agent i has quasi linear preferences defined over R++ ×R. They are assumed to be continuous

and strictly monotone with respect to money. Given (Li, τi), agent i gets a utility of ui(Li, τi) =

−θiLi +τi where −θiLi is his cost of job completion and τi is the amount of money he either pays

or receives. A sequencing problem with agent set N is a list Ω = (θ, l) where θ = (θ1, . . . ,θn) is

the vector of per unit waiting costs and l = (l1, . . . , ln) is the vector of job processing times. The

set of all sequencing problems is given by SN.

An order is a bijection σ : N → N that assigns a position to each agent i ∈ N. For instance,
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if σi = 3 then i occupies the third position. Let Σ be the set of all possible serving orders on

N. For a given order σ ∈ Σ, let Pi(σ) = { j ∈ N \ {i} | σ j < σi} be the set of predecessors

of i and Fi(σ) = { j ∈ N \ {i} | σ j > σi} be the set of successors. Let τ ∈ RN specify each

agent’s consumption of money. For Ω ∈ SN, an allocation is a pair (σ , τ) ∈ Σ × RN. An

allocation rule ψ associates to each Ω ∈ SN a non-empty subset ψ(Ω) of allocations. Given

σ ∈ Σ, the job completion time for agent i is Li(σ) = ∑ j∈Pi(σ)
l j + li and his cost of job completion

is Ci(σ) = θiLi(σ). For each Ω ∈ SN and each (σ , τ), utility of agent i is ui(σ , τi) = −θiLi(σ)+τi.

The total cost of job completion is C(σ) = ∑i∈N θiLi(σ). Let the ratio of the waiting cost to

the processing time of agent i, given by θi/li, be agent i’s urgency index. For Ω ∈ SN, an order

σ ∈ Σ is efficient3 if σ ∈ argminσC(σ). It is well known that efficiency can be achieved if and

only if for each pair i, j ∈ N, θi/li > θ j/l j ⇒ σi < σ j (Smith [29]). In case of a tie between two

agents i, j ∈ N, we first take the linear order 1 < 2 < . . . < n on the set N and then pick the

order σ with σi < σ j iff i < j. When we deal with a strict subset of agents S ⊂ N, the order σ is

restricted to S and written asσS ∈ ΣS where ΣS is the set of all possible orderings of agents in S.

4 Sequencing games - optimistic scenario

Let CN be the set of all coalitional games with the agent set N. To analyse sequencing problems

as cooperative games, we associate to each Ω ∈ SN a coalitional game v ∈ CN. The worth of a

coalition can be calculated in two ways depending on whether its members are served first (op-

timistic scenario) or last (pessimistic scenario). The former has been studied by Maniquet [19].

In the optimistic definition, for each S ⊆ N, the worth vOpt(S) is the minimum job completion

cost of S when the members of S are served first. Formally, for each Ω ∈ SN and each S ⊆ N,

vOpt(S) = − ∑
i∈S
θi(li + ∑

j∈Pi(σS)

l j) = − ∑
i∈S
θiLi(σS). (1)

3In general, we define efficiency for an allocation. However, due to the assumption of quasi linear preferences it
meaningful to speak of the efficiency of an ordering.
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where σS ∈ ΣS is an efficient order on S when they are served before N\S.

For a game v ∈ CN, the burden imposed by agent i ∈ N on each S ⊆ N\{i} is defined by

v(S ∪ {i})− v(S). For vOpt ∈ CN we get,

vOpt(S ∪ {i})− vOpt(S) = −θi(li + ∑
j∈Pi(σS∪{i})

l j)− li ∑
j∈Fi(σS∪{i})

θ j

where σS∪{i} ∈ ΣS∪{i} is an efficient ordering over S ∪ {i}. The burden imposed by i is the sum

of his individual waiting cost and the cost imposed on his successors in S ∪ {i}.

The Shapley value of an agent is the average burden he imposes on all coalitions when all

possible permutations of the grand coalition are considered. In other words, it is the expected

value of i’s burden on each coalition when all possible orders are equally likely. For each Ω ∈ SN

and each i ∈ N, the Shapley payoff assigned to agent i is

Shi(vOpt) = ∑
S⊆N\{i}

|S|!(|N| − |S| − 1)!
|N|! [vOpt(S ∪ {i})− vOpt(S)].

Using the primitives (θ, l) of the model, the following lemma gives us the Shapley payoff of

agent i ∈ N.

Lemma 1. Let σ be an efficient ordering on N. For each i ∈ N, the Shapley value of i in vOpt is

Shi(vOpt) = −θili − ∑
j∈Pi(σ)

θil j/2 − ∑
j∈Fi(σ)

θ jli/2. (2)

For a set of agents N, we first define a game uT ∈ CN on a coalition T ⊆ N before proving

the lemma.

Definition 1. Let T ⊆ N. The unanimity game on T is the game (N, uT) defined by setting

uT(S) = 1 if T ⊆ S, and uT(S) = 0 otherwise.

Remark 1. A coalitional game v ∈ CN can be uniquely expressed as a linear combination of

unanimity games, i.e., for each v ∈ CN and each S ⊆ N there exists (δS)S⊆N, such that, v =
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∑S⊆N δSuS. For each S ⊆ N, δS is the dividend of S in v that is defined as follows: if |S| = 1,

δS = v(S) and if |S| > 1, δS = v(S)− ∑
T⊂S
T ̸=S

δT.

Claim 1. Consider the game vOpt ∈ CN. For each S ⊆ N, the dividends δS are

δS =


−θili if |S| = 1

−mini, j∈S{θi/li,θ j/l j}lil j if |S| = 2

0 if |S| ≥ 3

(3)

Proof.

• Case 1: When |S| = 1, let S = {i}. We have δ{i} = vOpt(i) = −θili.

• Case 2: When |S| = 2, let S = {i, j} and θi/li ≥ θ j/l j. We then have δ{i, j} = vOpt{i, j} −

δ{i} − δ{ j} = −θ jli = −min{θi/li,θ j/l j}lil j.

• Case 3: If |S| = 3, let S = {i, j, k} and without loss of generality θi/li ≥ θ j/l j ≥ θk/lk.

Let δ{i, j,k} = vOpt{i, j, k} − δ{i, j} − δ{ j,k} − δ{i,k} − δ{i} − δ{ j} − δ{k} = −θ jli −θk(li + l j) +

θ jli +θkl j +θkli = 0.

By induction on the size of the coalition S, let us assume δS′ = 0 where 3 ≤ |S′ | ≤ |S|. With-

out loss of generality, let S = {1, 2, . . . s} be such that θ1/l1 ≥ θ2/l2 ≥ . . . ≥ θs/ls. Using

the induction hypothesis, δS = vOpt(S) − ∑T⊂S;|T|=2 δT − ∑T⊂S;|T|=1 δT = −∑ j∈Sθ jL j(σS) +

∑ j∈Sθ j(∑m∈Pj(σS)
lm) + ∑ j∈Sθ jl j = 0. This proves the claim and we can now show Lemma 1.

Proof. The Shapley value of player i ∈ N in the game v is given by SVi(v) = ∑
S⊆N
i∈S

δS
|S| . By

substituting Eq. (3) in this expression, we obtain

Shi(vOpt) =−θili −
1
2 ∑

j∈N\{i}
min{θi/li,θ j/l j}lil j

= −θili − ∑
j∈Pi(σ)

θil j/2 − ∑
j∈Fi(σ)

θ jli/2.
.
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The desired conclusion.

Remark 2. For each Ω ∈ SN and each (σ , τ) whereσ ∈ Σ is an efficient ordering on N, the utility

of each agent is his Shapley payoff from vOpt (in Lemma 1). Agent i’s consumption of money is

τi = ∑
j∈Pi(σ)

θil j/2 − ∑
j∈Fi(σ)

θ jli/2.

4.1 Core

This section provides insights on the existence of the core in the defined coalitional form games.

We first provide a few preliminary definitions to understand the nature of allocations in the core

and use the necessary and sufficient condition provided by Bondareva [4] and Shapley [28], for

the core of a game to be non-empty. Let GN denote the set of all coalitional form games with the

player set N.

Given v ∈ GN, we define an outcome of the game (a payoff vector) as an n-dimensional vector

x = (x1, x2, . . . , xn). Let, for each coalition S ⊆ N, x(S) be the sum of individual payoffs assigned

to the members of S. A payoff vector x ∈ Rn is individually rational for N if for each i ∈ N, we

have xi ≥ v({i}). It is totally rational if x(N) = v(N). An imputation is a pay-off vector that is

both individually and totally rational. The core of v is the set of all those imputations that satisfy

x(S) ≥ v(S) for all non-empty coalitions S ⊂ N. The core of the game v is denoted by C(v).

Definition 2. A collection Φ = {T1, T2, . . . Tk} ⊆ 2N of non-empty coalitions is balanced if for

each i ∈ N, there exist positive numbers λ j, j ∈ {1, 2, . . . , k}, such that ∑
j∈{1,2,...,k}

i∋Tj

λ j = 1.

Theorem 1. The core of the optimistic game vOpt is always empty, that is C(vOpt) = φ.

Proof. We first show that the core of the game vOpt is empty.

Let Φ = {T1, . . . , Tk} be a balanced family with corresponding balancing weights {λTj}Tj∈Φ. The

core of a game v is non-empty if and only if for all balanced collections Φ = {T1, . . . , Tk} and
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their corresponding balancing weights {λTj}Tj∈Φ, the inequality ∑Tj∈Φ λTj v(Tj) ≤ v(N) holds.

For the game vOpt, it follows that for each Tj ⊆ N, we have vOpt(Tj) = −∑i∈Tj
θiLi(σ

∗(θTj)).

The left hand side of the above inequality can be expressed as,

∑
Tj∈Φ

λTj v
Opt(Tj) = − ∑

Tj∈Φ
λTj

[
∑

i∈Tj

θiLi(σ
∗(θTj))

]

= − ∑
Tj∈Φ

λTj

[
∑

i∈Tj

θi

(
li + ∑

k∈Pi(σ∗(θN))∩Tj

lk

)]

= − ∑
i∈N

θi

(
∑

Tj∈Φ
Tj∋i

λTj

)
li − ∑

i∈N
θi

[
∑

k∈Pi(σ∗(θN))

(
∑

Tj∋i
Tj∋k

λTj

)
lk

]

= − ∑
i∈N

θi

(
li + ∑

k∈Pi(σ∗(θN))

(
∑

Tj∋i
Tj∋k

λTj

)
lk

)

> ∑
i∈N

θi

(
li + ∑

k∈Pi(σ∗(θN))

lk

)
= v(N)

This inequality established the result.

5 Sequencing games: pessimistic scenario

The worth of a coalition is defined using the pessimistic approach in Chun [6]. The worth of

S ⊆ N is denoted by vPes(S) and is defined by taking the sum of its members’ job completion

cost in an efficient ordering provided the members of S are served after the members of N\S. In

other words, the members of S are the last to be served in the queue. Formally,

vPes(S) = − ∑
i∈S
θi(Li(σS) + ∑

k∈N\S
lk) = vOpt(S)− ∑

i∈S
θi( ∑

k∈N\S
lk) (4)
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where σS ∈ ΣS is an efficient ordering on S.

Lemma 2. Let σ be an efficient ordering over N. For each i ∈ N, the Shapley payoff of an agent

i in game vPes ∈ CN is

Shi(vPes) = −θi(li + ∑
j ̸=i

l j) + ∑
j∈Pi(σ)

θ jli/2 + ∑
j∈Fi(σ)

θil j/2. (5)

Proof.

Claim 2. Consider the game vPes ∈ CN. For each S ⊆ N, the dividends δS are ,

δS =


−θi(li + ∑ j ̸=i l j) if |S| = 1

maxi, j∈S{θi/li,θ j/l j}lil j if |S| = 2

0 if |S| ≥ 3

(6)

Proof

• When |S| = 1, let S = {i}. We have δ{i} = vPes({i}) = −θi(li + ∑ j ̸=i l j).

• If |S| = 2, let us S = {i, j} and without loss of generality suppose that θi/li ≥ θ j/l j. We

then have δ{i, j} = vPes{i, j} − δ{i} − δ{ j} = θil j = max{θi/li,θ j/l j}lil j.

• If |S| = 3 and let S = {i, j, k} and without loss of generality let θi/li ≥ θ j/l j ≥ θk/lk.

We define δ{i, j,k} = vPes{i, j, k} − δ{i, j} − δ{ j,k} − δ{i,k} − δ{i} − δ{ j} − δ{k} = −θi(l j + lk)−

θ j(li + lk)−θk(li + l j) +θi(l j + lk) +θ j(li + lk) +θk(li + l j) = 0.

By induction on the size of the coalition S, let us assume δS′ = 0 where 3 ≤ |S′ | ≤ |S|.

Without loss of generality, let S = {1, 2, . . . s} be such that θ1/l1 ≥ θ2/l2 ≥ . . . ≥ θs/ls.

By induction hypothesis, δS = vPes(S) − ∑T⊂S;|T|=2 δT − ∑T⊂S;|T|=1 δT = −∑i∈Sθi(Li(σS) +

∑k∈N\S lk) − ∑i∈Sθi(∑ j∈Fi(σS)
l j) + ∑i∈Sθi(li + ∑ j ̸=i l j). The term ∑ j ̸=i l j in the last expression

can be written as, ∑ j∈S\{i} l j + ∑ j∈N\S l j. Further, the expression ∑ j∈S\{i} l j can be expressed
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as ∑ j∈Pi(σS)
l j + ∑ j∈Fi(σS)

l j. We prove the claim by rewriting ∑ j ̸=i l j in terms of these expres-

sions.

The Shapley value of player i ∈ N in the game v is given by SVi(v) = ∑
S⊆N
i∈S

∆v(S)
|S| . By substituting

Eq. (6) in this expression, we obtain

Shi(vPes) =−θi(li + ∑
j ̸=i

l j) +
1
2 ∑

j∈N\{i}
max{θi/li,θ j/l j}lil j

=−θi ∑
j∈N

l j + ∑
j∈Pi(σ)

θ jli/2 + ∑
j∈Fi(σ)

θil j/2
.

This gives us the desired conclusion.

Remark 3. For each Ω ∈ SNand each (σ , τ) where σ ∈ Σ is an efficient ordering on N, each

agent’s utility is his Shapley payoff from the game vPes (given by Lemma 2). The consumption

of money by each agent i ∈ N is

τi = ∑
j∈Pi(σ∗(θN))

θ jli/2 − ∑
j∈Fi(σ∗(θN))

θil j/2.

5.1 Core

This section studies the existence of core in the above coalition form games. We show that the

Shapley value belongs to the core of the game vPes.

Theorem 2. The Shapley value of the game vPes belongs to its core, that is, Sh(vPes) ∈ C(vPes).

Proof. To prove that Sh(vPes) ∈ C(vPes), we first show that the allocation (Sh1(vPes), . . . , Shn(vPes))

is an imputation. Using equation (4) we can write,
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vPes({i}) = −θi(li + ∑
j∈N\{i}

l j)

= −θi ∑
j∈N

l j

< ∑
j∈Pi(σ∗(θ))

θ jli/2 + ∑
j∈Fi(σ∗(θ))

θil j/2 −θi ∑
j∈N

l j

= Shi(vPes)

Further,

Shi(vPes) = − ∑
i∈N

[θi ∑
j∈N

s j − ∑
j∈Pi(σ∗(θN))

θ jsi/2 − ∑
j∈F(σ∗(θN))

θis j/2]

= − ∑
i∈N

[θi(si + ∑
j∈Pi(σ∗(θN))

s j + ∑
j∈Fi(σ∗(θN))

s j)− ∑
j∈Pi(σ∗(θN))

θ jsi/2 − ∑
j∈F(σ∗(θN))

θis j/2]

= − ∑
i∈N

[θi(si + ∑
j∈Pi(σ∗(θN))

s j) + ∑
j∈Fi(σ∗(θN))

θis j − ∑
j∈Pi(σ∗(θN))

θ jsi/2 − ∑
j∈F(σ∗(θN))

θis j/2]

= − ∑
i∈N

[θi(si + ∑
j∈Pi(σ∗(θN))

s j) + ∑
j∈Fi(σ∗(θN))

θis j/2 − ∑
j∈Pi(σ∗(θN))

θ jsi/2]

= − ∑
i∈N

θi(si + ∑
j∈Pi(σ∗(θN))

s j)− ∑
i∈N

( ∑
j∈Fi(σ∗(θN))

θis j)/2 + ∑
i∈N

( ∑
j∈Pi(σ∗(θN))

θ jsi)/2

= − ∑
i∈N

θi(si + ∑
j∈Pi(σ∗(θN))

s j)

= vPes(N).

The next step is to prove that for all non-empty coalition S ⊂ N, we have ∑i∈S Shi(vPes) ≥
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vPes(S). For any given coalition S we have the following,

∑
i∈S

Shi(vPes) = − ∑
i∈S
θi

(
∑
j∈N

s j

)
+ ∑

i∈S
si

(
∑

j∈Pi(σ∗(θN))

θ j

)/
2 + ∑

i∈S
θi

(
∑

j∈Fi(σ∗(θN))

s j

)/
2

= − ∑
i∈S
θiSi(σ

∗(θN)) + ∑
i∈S

si

(
∑

j∈Pi(σ∗(θN))

θ j

)/
2 − ∑

i∈S
θi

(
∑

j∈Fi(σ∗(θN))

s j

)/
2

= − ∑
i∈S
θi

(
si + ∑

j∈Pi(σ
∗(θN))

j∈S

s j + ∑
j∈Pi(σ

∗(θN))
j/∈S

s j

)
+ ∑

i∈S
si

(
∑

j∈Pi(σ∗(θN))

θ j

)/
2

− ∑
i∈S
θi

(
∑

j∈Fi(σ∗(θN))

s j

)/
2

= − ∑
i∈S
θi

(
si + ∑

j∈Pi(σ
∗(θN))

j∈S

s j

)
− ∑

i∈S
θi

(
∑

j∈Pi(σ
∗(θN))

j/∈S

s j

)
− ∑

i∈S
θi

(
∑

j∈Fi(σ
∗(θN))

j/∈S

s j

)/
2

− ∑
i∈S
θi

(
∑

j∈Fi(σ
∗(θN))

j∈S

s j

)/
2 + ∑

i∈S
si

(
∑

j∈Pi(σ
∗(θN))

j∈S

θ j

)/
2 + ∑

i∈S
si

(
∑

j∈Pi(σ
∗(θN))

j/∈S

θ j

)/
2

= − ∑
i∈S
θi

(
si + ∑

j∈Pi(σ
∗(θN))

j∈S

s j

)
− ∑

i∈S
θi

(
∑

j∈N\S
s j

)/
2

+

[
∑
i∈S

si

(
∑

j∈Pi(σ
∗(θN))

j/∈S

θ j

)
− ∑

i∈S
θi

(
∑

j∈Pi(σ
∗(θN))

j/∈S

s j

)]/
2

Claim 3. For any i ∈ S, the term
[

∑i∈S si

(
∑

j∈Pi(σ
∗(θN))

j/∈S

θ j

)
− ∑i∈Sθi

(
∑

j∈Pi(σ
∗(θN))

j/∈S

s j

)]/
2 ≥ 0

Proof. Without loss of generality, let us assume that θ1/s1 ≥ . . . ≥ θn/sn. By the definition of

outcome efficiency, for any i ∈ N and for any j ∈ Pi(σ ∗ (θ)), whereσ∗(θ) is an efficient ordering

of agents in a non-increasing order of their urgency indices, we have θ j/s j ≥ θi/si implying

siθ j ≥ s jθi. We can thus say, ∑i∈S

[
∑

j∈Pi(σ
∗(θN))

j/∈S

(
siθ j −θis j

)]
≥ 0 by the above argument.
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Given the above claim, for any S ⊂ N observe that,

∑
i∈S

Shi(vPes)− vPes(S) = ∑
i∈S
θi

(
∑

j∈N\S
s j

)
/2 +

[
∑
i∈S

si

(
∑

j∈Pi(σ
∗(θN))

j/∈S

θ j

)
− ∑

i∈S
θi

(
∑

j∈Pi(σ
∗(θN))

j/∈S

s j

)]
/2

> 0

This completes the proof.

6 Shapley value and GMWB

Definition 3. The Shapley rule is an allocation rule that serves agents in their efficient order and

assigns transfers such that the payoff of an agent is his Shapley value in the corresponding

coalition form game.

Definition 4 (Banerjee et.al [3]). An allocation rule ψ satisfies expected costs bound if for any Ω ∈

SN with θ1
s1

= θ2
s2

= . . . = θn
sn

, for each (σ , τ) ∈ ψ(Ω) and for each i ∈ N we have:

ui ≥ −θi
[
si + ∑

j ̸=i
s j/2

]
This means the utility of each agent is atleast as much as their expected cost when no transfers

are allowed and every possible ordering is equally likely.

Define Oi : Rn
++ → Rn

++. Given a sequencing problem Ω ∈ SN, let Oi(s) represent the

welfare level of agent i and O(s) := (O1(s), . . . , On(s)) ∈ Rn be the welfare vector.

Definition 5 (Banerjee et.al [3]). An allocation rule ψ satisfies GWLB if for any Ω ∈ SN with an

associated O(s), for each (σ , τ) ∈ ψ(Ω) and for each i ∈ N we have:

πi(σ , τi) ≥ −θiOi(s)

14



where,

−θiOi(s) is the minimum utility guaranteed to i

The generalized welfare lower bound imposes a lower bound on each agent’s utility function,

in the form of a minimum guarantee. Banerjee et al. [3] have introduced this bound which

is a unified and comprehensive representation of several specific lower bounds that have been

previously examined in the literature. The expected costs bound is one application of this bound.

This section provides the necessary and sufficient condition for the Shapley value rule to

satisfy the generalized welfare lower bound (GWLB) property.

Theorem 3. For both the optimistic and the pessimistic formulations, the Shapley value rule

satisfies generalized welfare lower bound if and only if it satisfies expected costs bound.

Proof. Part A. The first part of the proof considers the corresponding characteristic form game

under the optimistic approach given by vOpt. The transfers are designed so that the utility of

each agent i ∈ N is given by the Shapley value Shi(vOpt).

For a sequencing problem Ω ∈ SN with an associated O(s), the utility of player i ∈ N (corre-

sponding to the Shapley value of the game vOpt) will satisfy the GMWB property if, Shi(vOpt) ≥

−θiOi(s) implying −θisi − ∑ j∈Pi(σ∗(θN))θis j/2 − ∑ j∈Fi(σ∗(θN))θ jsi/2 ≥ −θiOi(s). Or, θi(Oi(s)−

si) − ∑ j∈Pi(σ∗(θN))θis j/2 − ∑ j∈Fi(σ∗(θN))θ jsi/2 ≥ 0. Let, Oi(s) = si + ∑ j ̸=i s j/2 +ϵi. Thus we

have,θiϵi +θi(∑ j ̸=i s j/2)−∑ j∈Pi(σ∗(θN))θis j/2−∑ j∈Fi(σ∗(θN))θ jsi/2 ≥ 0. This implies, ∑ j∈Fi(σ∗(θN))(θis j −

θ jsi)/2 +θiϵi ≥ 0. Or, ∑ j∈Fi(σ∗(θN))(ui − u j) +θiϵi ≥ 0. We must have ϵi ≥ 0. This proves neces-

sity.

For any i ∈ N, it is given that Oi(s) ≥ si + ∑ j ̸=i s j/2. The utility of player i is given by his

Shapley value Shi(vOpt). For any such player, consider the expression Shi(vOpt) + θiOi(s) =

−θisi − ∑ j∈Pi(σ∗(θN))θis j/2 − ∑ j∈Fi(σ∗(θN))θ jsi/2 +θisi +θi ∑ j ̸=i s j/2. Since σ∗(θN) is an efficient

ordering of the members of the grand coalition (N), then for any agent i ∈ N, if an agent j ∈

Fi(σ
∗(θN)) we must have θi/si ≥ θ j/s j. This means, Shi(vOpt) +θiOi(s) = ∑ j∈Fi(σ∗(θN))(θis j −

θ jsi) ≥ 0. For any i ∈ N, we have Shi(vOpt) ≥ −θiOi(s). This proves sufficiency.
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Part B. We define the associated cooperative game (vPes) using the pessimistic approach. The

utility of each player i ∈ N corresponds to the Shapley value of this game, Shi(vPes).

For a given sequencing problem Ω ∈ SN with an associated O(s), the utility of player

i ∈ N (corresponding to the Shapley value of the game vPes) will satisfy the GMWB prop-

erty if, Shi(vPes) ≥ −θiOi(s) implying −θi(∑ j∈N s j) + ∑ j∈Pi(σ∗(θN))θ jsi/2 + ∑ j∈Fi(σ∗(θN))θis j/2 ≥

−θiOi(s). Or, θi(Oi(s) − ∑ j∈N s j) + ∑ j∈Pi(σ∗(θN))θ jsi/2 − ∑ j∈Fi(σ∗(θN))θis j/2 ≥ 0. Let, Oi(s) =

si + ∑ j ̸=i s j/2 +ϵi. Thus, θiϵi −θi(∑ j ̸=i s j/2) + ∑ j∈Pi(σ∗(θN))θ jsi/2 + ∑ j∈Fi(σ∗(θN))θis j/2 ≥ 0. This

then implies, ∑ j∈Pi(σ∗(θN))(θ jsi −θis j)/2+θiϵi ≥ 0. Or, ∑ j∈Pi(σ∗(θN))(u j − ui) +θiϵi ≥ 0. We must

have ϵi ≥ 0. This shows the necessary part.

For any i ∈ N, it is given that Oi(s) ≥ si + ∑ j ̸=i s j/2. The utility of player i is given by

his Shapley value Shi(vPes). For any such player, consider the expression Shi(vPes) +θiOi(s) =

−θi(∑ j∈N s j) + ∑ j∈Pi(σ∗(θN))θ jsi/2 + ∑ j∈Fi(σ∗(θN))θis j/2 + θisi + θi ∑ j ̸=i s j/2 = −θi ∑ j ̸=i s j/2 +

∑ j∈Pi(σ∗(θN))θ jsi/2 + ∑ j∈Fi(σ∗(θN))θis j/2. Since σ∗(θN) is an efficient ordering of the members of

the grand coalition (N), then for any agent i ∈ N, if an agent j ∈ Pi(σ
∗(θN)) we must have

θ j/s j ≥ θi/si. This means, Shi(vOpt) +θiOi(s) = ∑ j∈Pi(σ∗(θN))(θ jsi −θis j) ≥ 0. For any i ∈ N, we

have Shi(vPes) ≥ −θiOi(s). This proves the sufficiency part.

7 Conclusion

This paper maps sequencing problems to cooperative games and adopts an optimistic and a

pessimistic approach to define the worth of a coalition. We study two solution concepts: the

core, which deals with stability of feasible allocations and the Shapley value, which assigns the

outcome in a fair and an impartial manner. We observe that the core of of the optimistic game is

always empty. For the pessimistic game, the Shapley value has been shown to be a core-stable

allocation. Under both the scenarios, the consumption of money by each agent is such that, the

utility of each individual corresponds to his Shapley payoff from the associated coalition form
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game. We show that it is both necessary and sufficient for the Shapley value rule to satisfy the

expected costs bound for it to satisfy the generalized welfare lower bound. Expected costs bound

guarantees each agent his expected cost when every possible order of arrival is equally likely.
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