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PENYEDIAAN, PENCIRIAN DAN PENGGUNAAN BAHAN HIBRID GARAM

MAGNESIUM-POLIAKRILAMIDA DALAM RAWATAN AIR SISA PEWARNA

ABSTRAK

Bahan hibrid garam magnesium-poliakrilamida disediakan, dicirikan dan

digunakan untuk rawatan air sisa pewarna. Poliakrilamida disediakan melalui

pempolimeran redoks daripada akrilamida. Aspek asas pempolimeran poliakrilamida

redoks telah dikaji melalui penyiasatan mekanisme, kinetik, termodinamik dan sifat

reologi in situ sepanjang proses pempolimeran redoks. Pempolimeran redoks

poliakrilamida dioptimumkan melalui reka bentuk eksperimen. Ciri fisikokimia

poliakrilamida yang sudah dioptimumkan dikaji dari segi struktur kimia, taburan jisim

molekul serta kelikatan dalam larutan akuas. Hasil pempolimeran poliakrilamida

optimum redoks adalah 96.89% dengan jisim molekul 1.66 x 106 Da. Bahan hibrid

garam magnesium-poliakrilamida telah disediakan melalui pengadunan fizikal

magnesium klorida dan magnesium hidroksida dengan poliakrilarnida dalam larutan

akuas untuk membentuk bahan hibrid MCPAM dan MHPAM, masing-masing. Ciri-ciri

bahan hibrid MCPAM dan MHPAM telah dikaji dari segi kimia, fizikal, sifat reologi,

terma dan morfologi. Ciri-ciri bahan hibrid berubah dengan komponen serta komposisi

dalam bahan hibrid, Bahan hibrid MCPAM dan MHPAM merupakan sejenis campuran

daripada percampuran fizikal dan tiada ikatan kimia baru yang terbentuk di antara garam

magnesium dan poliakrilamida, Bahan-bahan hibrid MCPAM dalam larutan akueus

mempunyai keberaliran yang lebih tinggi berbanding dengan bahari-bahan hibrid

MHPAM tetapi kelikatan menunjukkan tingkah laku yang songsang berbanding dengan

keberaliran, Bahan hibrid MHPAM mempunyai kestabilan terma yang lebih baik di
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mana tenaga pengaktifan yang diperlukan untuk menguraikan bahan hibrid MHPAM

adalah lebih tinggi daripada bahan hibrid MCPAM. Transmisi Mikroskopi Elektron

(TEM) dan Pengimbasan Mikroskopi Elektron (SEM) telah dijalankan untuk

menjelaskan mikrostruktur dalam bentuk akuas dan pepejal. masing-masing.

Mikrostrukturnya berubah dengan komponen dalam bahan hibrid. Bahan hibrid

MCPAM dan MHPAM telah digunakan dalam merawat air sisa pewarna reaktif

(Cibacron Red FN-R). Bahan hibrid MCPAM dan MHPAM dengan nisbah 90% MgCh:

1 0% PAM dan 90% Mg(OH)2: l 0% pAM, masing-masing, didapati merupakan nisbah

terbaik dalam menyingkirkan pewarna dari air sisa tekstil. Bahan-bahan hibrid tersebut

mampu untuk menyingkirkan 98% pewarna dari air sisa tekstil. Rawatan air sisa

pewarna reaktif yang menggunakan bahan MCPAM dan MHPAM hibrid telah didapati

sesuai bagi model kinetik pseudo kedua. Enapcemar terbentuk daripada kedua-dua

bahan hibrid MCPAM dan MHPAM mempunyai struktur kimia yang hampir sama yang

mana enapcemar adalah terdiri daripada kompleks Pewarna-Mg(OH)z-PAM. Isipadu

enapcemar terenap dan indeks isipadu enapeemar (SVI) berkurangan dengan ketara

dengan menggunakan bahan hibrid MCPAM dan MBPAM berbanding dengan MgCh

dan Mg(OHh. Floes yang dibentuk menggunakan bahan hibrid MCPAM dan MHPAM

telah didapati lebih padat dan bersaiz lebih besar daripada menggunakan MgCh dan

Mg(OHh masing-masing. Kesan faktor-faktor yang mempengaruhi penyingkiran warna

(%) dan pengurangan COD (%) daripada air sisa pewarna reaktif menggunakan bahan

hibrid MCPAM dan MHPAM disiasat melalui reka bentuk 25-1 faktorial pecahan.

Semua faktor bebas seperti kepekatan pewarna, pl-l, dos, kelajuan pengadukan dan masa

pengadukan telah diambil kira untuk menentukan kesan mereka ke atas penyingkiran

warna (%) dan pengurangan COD (%). Reka bentuk 25-1 faktorial pecahan telah
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ditambah ke dalam rekabentuk komposit pusat untuk mengoptimumkan prestasi

penyingkiran warna (%) dan pengurangan COD (%). Model regresi kuadratik bagi

penyingkiran warna (%) dan pengurangan COD (%) menggunakan bahan hibrid

MCPAM dan MHPAM sebagai fungsi faktor yang penting telah diggunakan. Bahan

hibrid MCPAM telah dipilih untuk merawat air sisa industri tekstil kerana kesesuaian

bahan hibrid MCPAM untuk merawat air sisa industri tekstil dalam pH yang tinggi.

Bahan hibrid MCPAM dapat menyingkirkan warna sebanyak 82.83% ..
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PREPARATION, CHARACTERIZATION AND APPLICATION OF

MAGNESIUM SALT-POLYACRYLAMIDE HYBRID MATERIALS IN DYE

WASTEWATER TREATMENT

ABSTRACT

Magnesium salt-polyacrylamide hybrid materials were prepared, characterized

and applied for reactive dye wastewater treatment. Polyacrylamide was prepared from

acrylamide monomer through redox polymerization. The fundamental aspects of

polyacrylamide redox polymerization were studied through investigation ofmechanism,

kinetics, thermodynamics and in situ rheological properties of the redox polymerization

process. The redox polymerization of polyacrylamide was optimized through design of

experiment. The physicochemical properties of the polyacrylamide were investigated in

terms of chemical structure, molecular weight distribution as well as viscosity in

aqueous solution. The yield of the optimal redox polymerization of polyacrylamide was

96.89% with molecular weight of 1.66 x 106 Da. Magnesium salt-polyacrylamide hybrid

materials were prepared through physical blending of magnesium chloride and

magnesium hydroxide with polyacrylamide in aqueous solution to form magnesium

chloride-polyacrylamide (MCPAM) and magnesium hydroxide-polyacrylamide

(MHPAM) hybrid materials, respectively. The characteristics ofMCPAM and MHPAM

hybrid materials were investigated in terms of chemical, physical, rheological, thermal

and morphological properties. The characteristics vary with the components as well as

the compositions. MCPAM and MHPAM hybrid materials are physical mixtures and 110

new chemical bonding was formed between magnesium salts and polyacrylamide.

MCPAM hybrid materials in aqueous solution have higher conductivities compared to
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that ofMHPAM hybrid materials but the viscosity shows a reverse behaviour. MHPAM

hybrid materials have better thermal stability where the activation energies needed to

decompose MHPAM hybrid materials are higher than that ofMCPAM hybrid materials.

Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM)

were carried out to elucidate the microstructure in aqueous and solid form, respectively.

The microstructure varies with the component in hybrid materials. MCPAM and

MHPAM hybrid materials were applied in treating reactive dye (Cibacron Red FN-R)

wastewater. MCPAM and MHPAM hybrid materials with the ratios of 90% MgCh: 10%

PAM and 90% .Mg(OH)z: 10% PAM, respectively, were found to be the best ratios in

removing of reactive �ye from the wastewater. They were able to remove 98% of

reactive dye from the wastewater. The reactive dye removal percentage using MCPAM

and MHPAM hybrid materials was found to fit pseudo-second order kinetics model.

Both sludge formed using MCPAM and MHPAM hybrid materials have an almost

similar chemical structure where the sludge were constituted of Dye-Mg(OHh-PAM

complex. The settled sludge volume and sludge volume index are reported to be lower

using MCPAM and MHPAM hybrid materials compared to that ofMgCh and Mg(OH)2.

The floes formed using MepAM and MHPAM hybrid materials were found to be

relatively compact and larger in size compared to that of MgCh and Mg(OH)2. The

factors affecting colour removal (%) and COD reduction (%) of reactive dye wastewater

using MCPAM and MHPAM hybrid materials were investigated through 25-1 fractional

factorial design. All independent factors such as dye concentration, pH, dosage, agitation

speed and agitation time were taken into account to determine their effects. 25-1

fractional factorial design was augmented into central composite design to optimize the

performance of colour removal (%) and COD reduction (%). Quadratic regression
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models for colour removal (%) and COD reduction (%) using MCPAM and MHPAM

hybrid material as a function of significant factors were applied. MepAM hybrid

material was selected to treat textile industrial wastewater in view of its suitability in

treating high pH textile industrial wastewater. MCPAM hybrid material is able to

remove 82.83% of colour.
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CHAPTER l

INTRODUCTION

1.1 Textile industry

Textile industry is one of the industries that pose a high demand on water

supply and produce large amounts of wastewater. One of the common dyestuffs,

reactive azo dye, has been extensively used to colour cellulosic and cotton-based

fabric in textile industry. It constitutes 60 - 70 % of all produced dyestuffs. The

degree of dye fixation on fabric is never complete during the dyeing process, results

in producing coloured effluents (Garcra-Monta''no et al., 2008). The wastewater

from textile dyeing and printing industries is often characterized by high pH,

alkalinity and temperature, contains high concentration of organic matter, non

biodegradable matter, toxic substances, detergents and soaps, oil and grease, sulfide

and suspended/dissolved solids (Gao et al., 2007a). The discharged textile effluent

not only poses aesthetic problems when the coloured effluents reach the natural

water currents, but also absorb sunlight, thus impeding the photosynthesis activity of

aquatic plants and seriously threatening the whole ecosystem (Nunez et al., 2007).

This highly polluted wastewater is also highly toxic to the organisms and causes skin

irritation, cancer, and mutation of aquatic organic organisms and human.

(Noppakundilograt et al., 2010). In line with Environmental Quality Act 1974 which

was gazette in year 2009 - Environmental Quality (Industrial Effluent) Regulations

2009, industrial effluent from textile industry needs to be treated before being

discharged into environment. The regulations focus on prohibition of discharging

hazardous substances from textile industries into Malaysia waters in contravention to

acceptable conditions as specified by the Act (Halimoon and Goh, 2010).
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1.2 Overview ofbybrid materials in wastewater treatment

Various materials have been developed in recent years for wastewater

treatment. Among them are inorganic-based coagulants, organic-based flocculants as

well as hybrid materials (Moussas and Zouboulis, 2009). Though many materials

have been developed and used in removing pollutants from wastewater, there is still

a need to improve their performance (Moussas and Zouboulis, 2008). The increasing

needs for efficient and effective materials in wastewater treatment have initiated the

development of hybrid materials for wastewater treatment. Hybrid materials thus

have emerged as new materials of tremendous potential in treating wastewater due to

their better performance compared to that of conventional inorganic-based

coagulants and organic-based flocculants (Wang et al., 2006).

Hybrid materials refer to materials obtained from the addition of effective

components into the original material to enhance the aggregating power. It is logical

to introduce functional chemical groups or components into the hybrid which can

strengthen the aggregating power (Tzoupanos and Zouboulis, 2011). Due to the

synergetic effect of hybrid components in one material, hybrid materials hence pose

a superior performance than that of individual components (Tang and Shi, 2002;

Yang et al., 2004).

1.3 Dye wastewater treatment through coagulation-flocculation process

Conventional solid-liquid separation through coagulation-flocculation is an

important unit operation in dye wastewater treatment (Gao et al., 2003a).

Coagulation of dissolved and colloidal substances in wastewater is essentially

understood in light of Derjaguin-Landau-Verwey-Overbeen theory (DLVO theory)

whereby coagulation is referred to overcoming the interparticle repulsive energy
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barrier by simply increasing in ionic strength and destabilizes colloids by

neutralizing the forces that keep them apart. Coagulation can be induced by

introducing aluminium and iron based substance (Addai-Mensah and Prestidge,

2005). Flocculation is. the action ofpolymers to form bridges between floes and bind

the particles into large clumps. Bridging occurs when the polymer chains adsorb on

different particles and help particles to form bigger floes (Somasundaran et al., 2005;

Natalia and OlIi, 2006). Coagulation-flocculation process has been proven to be an

effective method in treating dye wastewater (Tan et al., 2000). It is applied as a

treatment process to decolourize dye wastewater and reduce the total load of

pollutants with the help ofhybrid materials (Gao et al., 2003a; Gao et al., 2008).

1.4 Problem statements

In this study, polyacrylamide is selected to he the polymeric matrix due its

high water soluble and high molecular weight which is desirable for wastewater

treatment (Daughton, 1998). Though the application of polyacrylamide has been

studied in previous literature (Wong et al., 2006), the synthesis of polyacrylamide is

still the interest for current study. Redox polymerization was used to synthesize

polyacrylamide. The effect of reducing agent in affecting the redox polymerization is

able to give insight of polyacrylamide synthesis (Sarac, 1999) .. The in situ

rheological property change of polyacrylamide is particularly novel and it is able to

depict the conformation change of acrylamide in solution during redox

polymerization (Feng et al., 2005). Hybrid materials have been recognized to be able

to give better treatment performance (Wang et al., 2009). Hybrid materials are

products which are composed of two or more different types of components in one

polymeric matrix. They have been receiving increased attention in recent years due
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to their unique properties and superior performance compared! to that of conventional

inorganic coagulants and organic polymeric tlocculants (Moussas and Zoubolulis,

2009). Magnesium salt-polyacrylamide hybrid materials were prepared using

magnesium salts (magnesium chloride and magnesium hydroxide) with

polyacrylamide in this study. Combination ofmagnesium salts and polyacrylamide in

hybrid matrixes produces a series of inorganic-organic hybrid materials. Magnesium

salts are selected due to its less toxicity to the environment compared to aluminium

and iron salts. Magnesium salts are chosen to be the components in hybrid materials

due to Mi+ has a: relatively higher ionic potential (3.08 elA) compared to other

cation (Ca2+ = 2.02 elA). Thus, it is expected to have stronger effect in coagulation

(Gao et al., 2007; Ozkan and Yekeler, 2004). Magnesium salt-polyacrylamide hybrid

materials were characterized in terms of chemical, physical, rheological, thermal as

well as morphological in view of these properties are yet to be investigated by other

researchers (Moussas and Zouboulis, 2009; Yang et aI., 2004). With the

characteristics obtained, it is able to predict the performance ofwastewater treatment.

For industries that discharge large volume of wastewater, such as textile industry,

effective materials in treating their wastewater are required (Gao et aI., 2003a). The

application and the effect ofproperties of hybrid materials in treating dye wastewater

are also the interests of this study. The effect of operating parameters on treatment

efficiency was also studied. Hybrid materials that are applied in treating dye

wastewater will have better efficiency than that of their individual component (Gao

et al., 2003a).

1.5 Objectives

The specific objectives of the present study are:
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1. To synthesize and determine the kinetics, mechanism and the optimized

conditions of redox polymerization ofpolyacrylamide.

2. To develop a method of preparation of magnesium salt-polyacrylamide

hybrid materials using magnesium salts and polyacrylamide and to

characterize their chemical, physical, rheological, thermal as well as

morphological properties.

3. To determine the effects of operating parameters. as well as to optimize the

performance of magnesium salt-polyacrylamide hybrid materials, in treating

dye wastewater.

1.6 Scope of study

There are three focus areas in this research. The first focus area is the

synthesis of polyacrylamide where polyacrylamide is synthesized through redox

polymerization. The kinetics, thermodynamic as well as the mechanism of the redox

polymerization is investigated. Magnesium salts-polyacrylamide hybrid materials are

prepared using magnesium chloride and magnesium hydroxide with polyacrylamide.

The second focus area is the characterization of magnesium salt-polyacrylamide

hybrid materials. The characteristics of the magnesium salt-polyacrylamide hybrids

in terms of chemical, physical, rheological, thermal as well as morphological

properties are systematically studied. In the third focus area, magnesium salt

polyacrylamide hybrids are applied in treating reactive azo dye synthetic wastewater

as well as the textile industrial wastewater.
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1.7 Organization of thesis

This thesis is divided into six chapters. In Chapter one, a general description

on the textile wastewater as well as the environmental problem arises from textile

industry are highlighted. A general overview of the hybrid materials in wastewater

treatment is mentioned. The problem statement, significance of study, objectives and

scope of study are also covered in this chapter.

Chapter two reviews the classifications and preparation methods for hybrid

materials. A particular emphasis is given to the characterization and application of

hybrid materials in wastewater treatment. The properties of hybrid materials are

reviewed in terms of chemical, physical, thermal, morphological as well as structural

properties. Effect of operating parameters, such as pH, dosage, stirring speed, stirring

time as well as operating temperature during the application of hybrid material in

wastewater treatment is also reported in this chapter.

Chapter three covers the materials and methods employed in this study.

Detailed descriptions concerning the preparation, characterizations as well as the

application ofhybrid materials in wastewater treatment are given in this chapter.

Chapter four presents the results and discussion of the three main studies.

First, polyacrylamide is synthesized and used for the preparation ofmagnesium salt

polyacrylamide hybrid materials. Second, characteristics of magnesium salt

polyacrylamide hybrid materials are discussed. Third, magnesium salt

polyacrylamide hybrid materials are applied in treating dye wastewater.

Experimental design is used in screening and optimizing the performance of

magnesium salt-polyacrylamide hybrid materials in treating dye wastewater.
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Chapter five outlines the conclusions obtained from the study whereas

chapter six provides the recommendations and suggestions for the future research in

this area of research.
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CHAPTER2

LITERATURE REVIEW

2.1 Classifications of hybrid materials

A number of terminologies have been used to address hybrid materials used

for wastewater treatment, e.g. composite coagulant (Gao et al., 2003a), composite

flocculant (Gao et aI., 2005a), composite polymer (Liu et al., 2011), hybrid coagulant

(Zhao et al., 2009b), hybrid flocculant (Dong et al., 2009), hybrid polymer so on and

so forth. A standardized terminology system is yet to be established. Researchers

tend to use the terms "hybrid" and "composite" interchangeably regardless of the

macroscopic and microscopic properties of the materials. The same is observed with

the terms "coagulant" and "flocculant". These would create confusion in classifying

hybrid materials. In this study, "hybrid materials" is used as a general term to address

hybrid materials to avoid confusion. Three primary groups of hybrid materials have

been proposed (Nanko, 2009):

(i) Structurally-hybridized materials (composites)

(ii) Chemically-bond-hybridized materials

(iii) Functionally-hybridized materials

2.1.1 Structurally-hybridized materials (composites)

Structurally-hybridized materials, also known as composites are referred to

the hybridization ofmacroscopic structure where the combination of materials takes

place. This is usually practised in preparing inorganic-organic hybrid materials which

are physical mixtures in which contain no new chemical species) such as polyferric

chloride-polydimethyldiallylammonium chloride (PFC-PDMDAAC hybrid material)
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(Gao et al., 2008; Moussas and Zouboulis, 2009). The performance of the materials

in wastewater treatment can be enhanced with the synergetic properties of

component materials.

2.1.2 Chemically-bond-hybridized materials

There are some hybrid materials with excellent properties and performance in

treating wastewater due to some particular chemical-bonds at the interface between

the component materials. Such a material is produced under hybridization through

chemical-bonding where a new chemical group is introduced into the composition of

materials to produce a new hybrid material complex (Nanko, 2009). Inorganic

polymeric coagulant, for instance, polyaluminium chloride (PAC) performs better

than inorganic coagulants but the performance of PAC is lower than organic

polymeric flocculants, e.g. PDADMAC in the process of coagulation-flocculation.

The lower molecular weight of inorganic polymeric coagulant than that of organic

polymeric flocculant has resulted in lower aggregating capacity of inorganic

polymeric coagulant. As such, a new chemical group such as polysilicic acid is

introduced into the composition of coagulants to form Al-polysilicate chemically

bond hybrid material complex to increase the molecular weight (Gao et aI., 2002a).

2.1.3 Functionally-hybridized materials

Functionally-hybridized materials are referred to the combination of two or

more functions that results in new or superior functions to be created. As mentioned

earlier, inorganic coagulants and inorganic polymeric coagulants pose lower

aggregating capacity than that of organic polymeric flocculants. To achieve the

objective of producing functionally-hybridized materials, inorganic coagulants or
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inorganic polymeric coagulants are selected to hybridize with organic polymeric

flocculants to perform coagulation-flocculation simultaneously. It is a new material

that requires only one unit operation instead of the conventional two stages of

process. coagulation-flocculation. The three primary groups can be clearly identified

with their respective preparation methods which are discussed in the latter section.

2.2 Terminology of hybrid materials

The term "composite" has been extensively used and it serves a quite similar

definition at macroscopic level with the term of "hybrid" (Nanko, 2009). However.

from the aspect of terminology. a "composite" can be considered as a "hybrid" but

not the other way round; composite is a subset of hybrid. To address these materials

in general, the term "hybrid materials" would be more appropriate to be used

throughout the research in view of its suitability to address all combinations of

hybridizing materials (Nanko, 2009). A hierarchy of classifications for hybrid

materials used in coagulation-flocculation is proposed in Figure 2.1 which is

modified based on the idea of Nanko (2009). To further elaborate the classifications

of hybrid materials, the hybrid materials that are used for wastewater treatment can

be classified into four secondary groups after the three primary groups in which they

can be composed with each other to form new hybrid materials:

(i) Inorganic

(ii) Organic

(iii) Natural polymer

(iv) Biopolymer

The hierarchy of classifications of hybrid materials as shown in Figure 2.1 IS

modified based the idea of Nanko (2009) on the combinations that have been
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reported in recent literatures (Nanko, 2009). The hybrid materials which have been

developed are indicated with black lines, e.g, inorganic-inorganic hybrid, inorganic-

organic hybrid, inorganic-natural polymer hybrid, inorganic-biopolymer hybrid,

organic-organic hybrid, organic-natural polymer hybrid and natural polymer-natural

polymer hybrid. For those which are indicated in grey lines are the potential hybrid

materials to be developed, e.g. organic-biopolymer hybrid, natural polymer-

biopolymer hybrid and biopolymer-biopolymer hybrid. Inorganic-organic hybrid

materials are the focus of this research in view of its characteristics and performance

are yet to be fully explored.

. Hybrid.materials

SlructuraDy-hybridized
materials

(Composites)

Functionally-hybridized
macerials

ChemicalIy-bond
hybridizedmaterials

Inorganic

Naturei polymer

Biopolymcf

Natural polymer

Figure 2.1 Hierarchy of classifications for hybrid materials used in coagulation-

Biopolymer

flocculation (Nanko, 2009).
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2.3 Combinations of hybrid materials

The components for hybrid materials are available commercially or they can be

obtained through different preparation routes. Among the most important

requirements for technological applications of these hybrid materials are water

soluble and high aggregating power to molecules, colloids as well as particles of

pollutants (Bolte, 1995). The selection of components for hybrid materials is based

on the characteristics of wastewater. Table 2.1 summarizes the types of hybrid

materials used for wastewater treatment based on secondary group classifications.

Inorganic-inorganic hybrid and inorganic-organic hybrid are the most developed

combinations among hybrid materials currently used in wastewater treatment.

Table 2.1 Classifications of hybrid materials for wastewater treatment.

Type of Hybrid materials Reference

hybrid
materials

Inorganic- PACS (Po lyaluminiurn-chIoride-sul fate) (Gao and Yue,
inorganic 2005b)
hybrid PASiC (Polyaluminium-silicate-chloride) (Gao et al., 2002a,

Gao et aL, 2002b,
Gao et al., 2003b,
Song et al., 2003,
Zhang et al., 2004,
Cheng et al., 2008,
Tzoupanos et al.,
2008, Tzoupanos
et at, 2009,
Zouboulis and

Tzoupanos, 2009,
Xu et al., 2010,
Gao et al., 2007b)

PFSiS (Polyferric-silicate-sulfate) (Wu and Zhang,
2004, Moussas
and Zouboulis,

. 2008, Zouboulis
and Moussas,
2008)

PFSiC (Polyferric-si1icate-chloride) (Zhang el al.,
2007)
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PSiF (Polysilicic-ferric) (Fu et al., 2009)
PSiF (Polysilicate-ferric) (Xu et al., 2009)
PAFC (Polyaluminium-ferric-chloride) (Gao et al., 2003a,

Zhang et al., 2004,
Yang et aL, 2007b,
Lan et al., 2009a,
Lan et al., 2009b)

PAFSiC (Polyaluminium-ferric-silicate- (Gao et aL, 2006,
chloride) I Cheng et aI.,

. 2008)
PSiFA (Polysilicate-ferro-aluminium-sulfate) (Qiu et al., 2009)
PSiAF (Polysilicate aluminium ferric) (Zhang et al.,

20l0a)
PFASiS (Poly-ferric-aluminium-silicate- (Sun et al., 2011 b)
sulfate)
PMAS (Poly-magnesium-aluminiurn-sui fate) (Sang et al., 2008,

Liu et al., 2011)
PFMS (Poly-ferric-magnesium-suifate) (Liu et al., 2009,

Wei et al., 2010)
PZSiS (Poly-zinc-silicate-sulfate) (Zeng and park,

2009)
PPFS (Polymeric phosphate ferric sulfate) (Zheng et al.,

2011)
PFS-Na-Bentonite (Wang et al.,

2010b)
PFC-magnetic nanopartic1es (Jiang et al.,

2010a)
Clinoptilolite-Ah(S04)J (Ostapenko et al.,

2000)
Oxotitianiurn sulfate-AbfSOa), (Chemoberezhskii

et al., 2002)
FeCh-PAC (Ferric chloride-polyaluminium (Yang et al., 20 10)
chloride)
Iron-aluminium polymer hybrid (Fan et al., 2003)

Inorganic- Al(OH)3-PAM (Aluminium hydroxide- (Qian et al., 2004,
organic hybrid polyacrylamide) Yang et al., 2004,

Zheng et al., 2007,
Sun et al., 2008)

Al(OHh-P(AM-co-AA) (Noppakundilograt
et al., 2010)

PAC-PAM (Polyaluminium chloride- (Huang el al.,
polyacrylamide) 1994, Tzoupanos

and Zouboulis,
2011)

PFS-PAM (Polyferric chloride- (Moussas and

polyacrylamide) Zouboulis,2009,
Jiang et al.,
2010b)

PAFC-CPAM {Polyaluminium ferric (Ma et al., 2011)

13



chloride-cationic polyacrylamide)
AFPSi-PAM+-CTAB (Wang et al.,

2011a)
AIz(S04)3-PDMDAAC (Aluminium sulfate- (Li et al., 2008b,
polydimethyldiallylammonium chloride) Zhang et aL, 2009,

Zhao et al", 2009c,
Li et al., 201O,

i Zhao et al., 2010a,
Zhang et al., 2011)

FeClyPDMDAAC (Ferric chloride- (Wang et al.,
polydimethyldiallylammonium chloride) 2008)
FeS04-PDMDAAC (Ferric sulfate- (Li et al., 2008a)
polydimethyldiallylarnmonium chloride)
PFS-FeS04-PDMDAAC (Polyferrie sulfate- (Li et al., 2008a)
ferric sulfate- polydimethyldiallylammonium
chloride)
PAC-PDMDAAC (Polyaluminium chloride- (Gao et al., 2005a,
polydimethyldiallylammonium chloride) Lu et al., 2007, Li

et aL, 2008e,
Zhang et al., 2008,
Chu et al., 201O,
Tzoupanos and

Zouboulis, 20 i O,
Wang et al.,
20 lOa, Zhang et

al., 20 l Db, Zhang
et al., 201 Oc, Zhao
et al., 201 Ob,
Xiang et al., 2011)

PFS-PDMDAAC (Polyferric sulfate- (Liu and Gong,
polydimethyldiallylammonium chloride) 2005, Huang et aL,

2011 )
PFC-PDMDAAC (Polyferric chloride- (Gao et al., 2007a,
polydimethyldiallylammonium chloride) Gao et al., 2008,

Wang et al., 2008,
Wei el al., 2009a,
Wei et al., 2009b,
Wei et al., 2009c,
Wang et al.,
2011 b, V/ang et

al., 2011 c, Wang
et al., 2006)

PFAC-PDMDAAC (Polyferricaluminium (Sun et al., 2011 a)
chlOlide-polydimethyldiallylammoniulTI
chloride)
Si02-CSSAD (Zou et al., 2011)
PAC-starch-graft-acrylamide (PACSAM) (Yang and Jiang,

2008)
P(AM-DMC-MPMS)-PFS (Shang and Zheng,

2009)
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PAC-EPI-DMA-PM (Polyaluminum chloride- (Wang et al.,
epich lorohydrindimethylamine 2009)
Polyamine)
PFC-EPI-DMA (Polyferric chloride- (Gao et aL, 2011)
epichlorohydrin-dimethylamine)
PFCNS (Zheng and Shu,

2001)
MMT-PAM (Montmorilonite-polyacrylamide) (Dong et al., 2009)
Palygorski te-polyacrylamide (PGS-PAM) (Qian et al., 2004)

Inorganic- Ah(S04)3-CTS (Aluminium sulfate-chitosan) (Yao et al., 2004)
natural PAC-CTS (Polyaluminium chloride-chitosan) (Huang et al.,
polymer 2008b)
hybrid PSiAF-CTS (Polysilicatealuminiumferric- (Wu et al., 2010)

chitosan)
CTS-PAC-Na2Si03 (Chitosan-Polyaluminium (Zeng et at, 2008)
chIoride-sadiurn si licate)
Rectorite-amvlose (Zeng et al., 2005)
Red mud-hydrochloric pickle liquor ofbauxite (Zhao et aI., 2011)

Inorganic- Pullulan-PAC (Pullulan-polyaluminium (Yang et. al.,
biopolymer chloride) 2007a)
hybrid MBFGAI-PAC (Microbial flocculant GAI- (Huang et al.,

polyaluminium chloride) 2008a, Yang et al.,
2009)

MBF(Aspergillus nigerj-zeolite (Cao et al., 20 10)
Organic- poly(acrylamide-co-acryl ic acid) (Liu et al., 2000)
Organic
hybrid
Organic- SAG-g-PAM (Sodium alginate grafted (Tripathy et al.,
natural polyacrylamide) 2001 )
polymer Chitosan-g-N,N-dimethylaerylamide (Tripathy et al.,
hybrid 2010)

PAM-g-CMS (Polyacrylamide grafted (Sen et al., 2009)
carboxvmethvlstarch)
CMC-starch hybrid (Carboxymethyl cellulose (Hebeish et al.,
and starch) 2010)
starch-g-PAM (Mishra et al.,

2011)
chitosan-g-N-vinyl fonnamide (Mishra et al.,

2008)
starch-g-PAM-eo-sodium xanthate (Chang et al.,

2008)
Natural Cationic starch-chitosan crosslinking (You et al., 2009)
polymer- copolymer
natural

polymer
hybrid
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2.3.1 Inorganic-inorganic hybrid materials

For inorganic-inorganic hybrid group, hybrid materials are developed on the

basis of Inorganic Polymeric Coagulants in which they are usually called as IPCs

(Moussas and Zouboulis, 2009, Zouboulis and Moussas, 2008, Moussas and

Zouboulis, 2008, Tzoupanos and Zouboulis, 2011). IPCs are referred to pre

hydrolyzed coagulants such as polyaluminium chloride (PAC), polyferric chloride

(PPC), and polyferric sulphate (PFS), which are prepared by partially neutralization

of inorganic salts e.g. AICh, FeCb and Fe2(S04)3 in the control of basicity. Wang et

al. (2008) and Zhang et al.(2004) have described the detailed preparation method for

polymeric species of iron and aluminium, respectively.

During hydrolysis, several polymerization reactions occur and result in the

formation of various polymeric species of aluminium and iron (Gao and Yue, 2005b;

Moussas and Zouboulis, 2008; Moussas and Zouboulis, 2009; Tzoupanos and

Zouboulis, 2011). Due to the existence of effective polymeric coagulating species,

IPCs were proven to be more effective than conventional inorganic coagulating sa1ts

in coagulation (Gao et al., 2007a). This is because IPCs are more resistant to the

influence of temperature and pH of the wastewater to be treated (Moussas and

Zouboulis, 2009). However, regardless of the fact that Il'Cs perform significantly

better compared to conventional aluminium-based or iron-based inorganic

coagulating salt, e.g. AICh, Ah{S04)3, FeCI3, Fe2(S04)3, the treatment performance

of IPCs are still much lower compared to that of organic polymeric flocculants

(Moussas and Zouboulis, 2008). This is attributed to the molecular weight and size of

IPCs that are still much lower than that of organic polymeric flocculants resulting in

a lower aggregating capacity.
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Several authors suggested that such a disadvantage can be compensated by

the addition of silicate group into the composition of IPCs. Therefore, chemically

bonding hybridized materials that consist of IPCs and silicate group, such as

aluminium-silicate (Gao et al., 2002a; Gao et aL, 2002b; Gao et al., 2003b; Song et

al., 2003; Zhang et al., 2004; Cheng et al., 2008; Tzoupanos et al., 2008; Tzoupanos

et al., 2009; Zouboulis and Tzoupanos, 2009; Xu et al., 2010) ar iron-silicate (Wu

and Zhang, 2004; Moussas and Zouboulis, 2008; Zouboulis and Moussas, 2008;

Zhang et al., 2007; Fu et al., 2009; Xu et al., 2009) hybrid material complexes have

been developed. There are also a few reports on the combination of aluminium, iron

and silicate groups in one hybrid material complex for coagulation-flocculation

purposes. Such attempt is to gather as many as effective components into one hybrid

material complex in which the aim is to form a bigger molecular structure as well as

to enhance the aggregating capacity (Fan et al., 2003; Zhang et al., 2004; Gao et al.,

2003a; Yang et aL, 2007b; Lan et al., 2009a; 2009b; Cheng et al., 2008; Gao et al.,

2006; Qiu et al., 2009; Zhang et al., 2010a; Sun et al., 2011 b). Some researchers

attempted to introduce other new effective chemical groups such as magnesium

(Sang et al., 2008; Liu et al., 2011; Liu et al., 2009; Wei et al, 2010), zinc (Zeng and

Park, 2009), phosphate (Zheng et al., 2011), sodium-bentonite (Wang et al., 2010b),

magnetic nanoparticles (Jiang et aI., 201 Da) into the composition of IPCs to enhance

the performance of inorganic-inorganic hybrid materials.

2.3.2 Inorganic-organic hybrid materials

The application of inorganic salts poses a limitation in coagulation where the

coagulation capacity is lower than that of IPCs and organic flocculants if they were

applied individually. To overcome this limitation, organic polymeric flocculants such
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as polyacrylamide (PAM) and polydimethyldiallylammonium chloride (PDMDAAC)

are introduced to prepare inorganic-organic hybrid materials in which are the most

developed combination among the hybrid materials for coagulation-flocculation

purposes. PAM and PDMDAAC share the common characteristics of relatively high

molecular weight and high solubility in water.

PAM as shown in Figure 2.2 is a high molecular weight water soluble

polymer of amenable to diverse chemical modifications. Inorganic coagulants and

IPCs such as AI(OH)3 (Qian et al., 2004a; Yang et al., 2004; Zheng et al., 2007; Sun

et al., 2008), PAC (Huang et aI., 1994; Tzoupanos and Zouboulis, 2011), PFS

(Maussas and Zouboulis, 2009; Jiang et al., 2010b), PAFC (Ma et al., 2011) and

PAFSi (Wang et al., 2011a) have been used to compose with PAM to form

inorganic-organic hybrid materials. With the addition of PAM in the composition of

inorganic-organic hybrid materials, the bridging mechanism hence can be enhanced,

which in turn improves the aggregating capacity (Tzoupanos and Zouboulis, 2011).

PDMDAAC as shown in Figure 2.3 is characterized with its cationic nature

and high charge density and water solubility. The presence of allyl monomers in the

molecular chain causes PDMDAAC to form a high molecular weight polymer during

polymerization (Tian et aL, 2006; Yu et al., 2006). PDMDAAC is not only effective

in removing the pollutants from wastewater but it is also able to reduce the formation

of CHCb during wastewater treatment. Therefore. PDMDAAC has been selected to

compose with various inorganic substances such as Ab(S04h (Li el al., 200gb;

Zhang et al., 2009; Zhao et al., 2009c; Li et al., 20 10; Zhao et al., 20 lOa; Zhang el al .•

2011), FeCh (Wang et al., 2008), FeS04 (Li et al., 2008a), PFS-FeSo.� (Li el al.,

2008a), PAC (Gao et al., 2005a; Lu et al., 2007; Li el al., 2008<:; Zhang el al., 2008;

Chu et al., 2010; Tzoupanos and Zouboulis, 2010; Wang et al., 2010a; Zhang et al.,
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2010b; 2010c; Zhao et al., 2010b; Xiang et al., 2011), PFS (Liu and Gong, 2005;

Huang et al., 2011), PFC (Gao et al., 2007a; 2008; Wang et al., 2008; Wei et al,

2009a; 2009b; 2009c; Wang et al., 2006; 2011 b; 2011 c) and PFAC (Sun et al., 2011a)

to improve the wastewater treatment efficiency as wel1 as to reduce the dosage of

inorganic substance (Gao et al., 2007a).

In spite of increasing studies of PAM and PDMDAAC based inorganic-

organic hybrid materials for coagulation-flocculation purposes, there are still

tremendous species of water soluble polymers that can be adopted to prepare hybrid

materials. Among them are polyamines, polyimines, polyvinylpyridines, polyacrylic

acid, polyvinyl sulfonic acid, polystyrene sulfonic acid, polyethylene oxide and so

forth (Tripathy and Ranjan De, 2006). In anticipation of versatile inorganic and

organic possible hybrids that are yet to be explored, inorganic-organic hybrid

materials pose a tremendous potential area to be studied. With a good selection of

inorganic and organic components for the hybrid material; it is possible to improve

the efficiency ofwastewater treatment.
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Figure 2.2 Chemical structure of polyacrylamide (PAM).
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Figure 2.3 Chemical structure ofpolydimethyldiallyl ammonium chloride

(PDMDAAC).
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2.3.3 Inorganic-natural polymer hybrid materials

Considering the increasing demand over the environmental friendly materials

to be applied in wastewater treatment, researchers have discovered the feasibility of

several new natural polymeric materials to be composed in hybrid materials for

coagulation-flocculation process. Chitosan-based hybrid materials have received

diverse modifications, where several inorganic additives such as Ah(S04)3 (Yao et

al., 2004), PAC (Huang et al., 2008b), PSAF (Wu et al., 2010), PAC-sodium silicate

(Zeng et aL, 2008) have been introduced to enhance the performance in wastewater

treatment. Chitosan is a kind of amino-polysaccharide produced by deacetylation of

chitin. It is a polymer of D-glucosamine with an NH2 group in place of the OH group

on carbon-2-of D-glucose as shown in Figure 2.4. It contains cationic charge and

commonly used to remove negatively charged suspended particles in aqueous

medium (Divakaran and Sivasankara Pillai, 2001; Pinotti et al., 200 l; Roussy et al.,

2005; Guibal and Roussy, 2007). Apart from chitosan, other naturally derived

substances based on polysaccharides skeleton such as starch, guar gum, xanthan gum,

sodium carboxymethyl cellulose (Tripathy and Ranjan De, 2006), pectin (Yokoi et

al., 2002) and amylopectin (Rath and Singh, 1998) could be composed with

inorganic substances to produce a series of new inorganic-natural polymer hybrid

materials.

r CI-I:,!OH --lI 11_- ---Q/ "
I ;'OH "

I 1-1/ '
_

I t/ .r

-, 0--1
01-1 1-1;" H
',I !;
1--
-_-

1
H NH2

n

Figure 2.4 Chemical structure of chitosan.
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2.3.4 Inorganic-biopolymer hybrid materials

There is another environmental-friendly hybrid material consisting of

biopolymer and inorganic substance where the biopolymer is associated with

inorganic coagulant to form new hybrid materials (Huang et aI., 2008a, Yang et al.,

2009). MBFGAI and Pullulan are associated with PAC to form hybrid materials.

MBFGAl represents microbial flocculant GAl which is a flocculant-producing

strain identified as Paenibacillus polymyxa by 16S rDNA sequence in which the

strain was screened from the soil (Yang et al., 2009). Pullulan is an extracellular

water-soluble microbial polysaccharide by strains ofAureobasidium pullulans. With

merits like innocuity, edibility, bio-degradability and non-polluting agent, it becomes

an excellent flocculant in wastewater treatment (Yang et al., 2007a). However,

biopolymers often pose limitation in flocculation performance and cultivation cost.

Therefore, screening of new strains producing biopolymer with high flocculation

performance and optimizing the culture condition for a higher yield has become the

focus in recent years. Composing biopolymer with an inorganic substance becomes

another option to reduce the dosage of biopolymer as well as to improve flocculating

activity. Apart from that, biopolymer hybrids reduce the risk brought by synthetic

chemical substance with reduced dosage (Huang et aI., 2008a; Yang et al., 2009).

There are not many reports on the development of inorganic-biopolymer hybrid

materials. This indicates that it is still a tremendous potential area to be explored

where more work on the isolation and screening of effective strains that can produce

biopolymer should be carried out.

21



2.3.5 Organic-organic hybrid materials

Hybrid materials that consist of two different organic groups can be

considered as a new group of hybrid material. To date, "hybrid material" is not

commonly used to address this group ofmaterials but the terms such as copolymer,

grafted-polymer and chemically-modified polymer are used to represent the organic

organic hybrid. For instance, poly(acrylamide-co-acrylic acid) (Liu et al., 2000), in

which it is a new group oforganic monomer is introduced into the organic polymeric

chain to form organic-organic hybrid materials. Although the terms copolymer,

grafted-polymer as well as chemically-modified polymer have been used for decades,

it is still considered as organic-organic hybrid materials where they pose a

distinguished characteristics from the homopolymer after they have been hybridized.

2.3.6 Organic-natural polymer hybrid materials

There are other organic-based hybrid materials available in the literature in

which other constituents are incorporated, e.g. natural polymer. The chemical

combination of organic synthetic polymer with natural polymer produces organic

natural polymer hybrid materials with desirable properties of both components.

These organic-natural polymers can be synthesized by grafting certain proportion of

organic group into the main chain of natural polymer, e.g. SAG-g-PAM hybrid

(Tripathy et a1., 2001), chitosan-g-N,N -dimethylacrylamide (Tripathy et al., 2010),

PAM-g-CMS (Sen et al., 2009), CMC-starch hybrid (Hebeish et al., 20 10), starch-g

PAM (Mishra et al., 2011), chitosan-g-N-vinyl formamide (Mishra et al., 2008) and

starch-g-PAM-co-sodium xanthate (Chang et aI., 2008). Natural polymers can also

hybridize one another, for instance, cationic starch-chitosan crosslinking copolymer

(You et al., 2009).
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2.4 Preparation of hybrid materials - an overview

There are various routes to prepare hybrid materials. The methods of

preparation vary with the type of hybrid materials. To date, there is no literature has

reviewed the preparation methods of hybrid materials. Generally, there are five main

preparation methods, namely, hydroxylation-prepolymerization, physical blending

(at ambient temperature), elevated temperature blending, copolymerization (redox

polymerization) and chemical graftinglcrosslinking. For structurally-hybridized

materials, methods such as physical blending and elevated temperature blending, are

usually used where two different natures ofmaterials are combined into one matrix.

Hydroxylation-prepolymerization, copolymerization and graftinglcrosslinking are

extensively used to prepare chemically-band-hybridized materials where a new

chemical group is introduced into the composition of the materials. The products

which are mixed coagulant and flocculant, regardless of the nature of the materials,

in one hybrid material complex are considered as functionally-hybridized materials

that are able to induce coagulation-flocculation functions simultaneously. Such

materials can be prepared using anyone of the mentioned methods. An overview of

the hybrid material preparation methods based on the current literature is discussed

in the following sections.

2.4.1 Hydroxylation-prepolymerization

This method is applicable to prepare inorganic-inorganic hybrid material which

is one of the chemically-hybridized materials. It is commonly used to prepare

polymeric aluminium and iron based hybrid materials. Zhang et al. (2004) and

Tzoupanos et al. (2009) reported the formation of various aluminium species in

aqueous solution. Aluminium appears as six-coordinated A13+ ion at pH lower than 3.
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As the pH increases beyond 3, aluminium ion is hydrolyzed by OH- ion and forms

various species. At low concentration of OH- where the ratio of OH/Al is below 0.5

and the concentration oftota1 Al species of 10-2 to ]0-5 M, monomeric Al is formed:

A13+ + H20 :;=:::::: AI(OH)2+ + H+

A13+ + 2H20 :;=:::::: Al(OH)2
+
+ 2H+

(2.1)

(2.2)

However, with the increase of OH- concentration where the ratio of OHIAI is

between 0.5 and 2.46, polymerization of aluminium occurs and various polymeric Al

species, e.g. Ah(OH)24+, Ab(OH)45+, AI1304(OH)247+ (Al3) are formed:

Ah(OH)24+ + 2H+ (2.3)

(2.4)

(2.5)

3AI3+ + 4H20 � Ah(OH)l+ + 4H+

13AI3+ + 28HzO ::;::::=:: Al1304(OH)2/+ + 32H+

As hydrolysis and polymerization proceed, the solution of polymeric hydroxide

complexes reaches a metastable state among different aluminium species and

hydroxide precipitates. As the ratio of OH/AI increases over 2.5 and the

concentration of total Al species is higher than 10-2 M, polymeric species precipitate

as AI(OH)3:

Al"' + 3H20 :;::::::::: Al(OH)3 + 3H+

While in alkaline solutions, AI(OH}3 may convert to Al(OH)4-:

A13+ + 4H20 :;::::::::: AI(OH)4- + 4H�

(2.6)

(2 ..7)

As the concentration ofOH- ion increases in the Al solution, the hydroxylation of AI

species leads to partially neutralization of Al solution and, under aging, reactions (2.1)

to (2.7) may take place to certain extent that lead to the formation various of Al

species. AIl3 is regarded as the most stable and efficient species for coagulation due

to its high positive charge and molecular weight compared to other species in a

partially neutralized aluminium solution. In the application of conventional
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