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Abstract

Microwave Holography is an accurate and efficient method for measuring the surface
shape of large reflector antennas. The method is based on the Fourier transform
relationship between the antenna’s far-field diffraction beam pattern and its aperture
field. Measuring the antenna’s far-field beam both in amplitude and phase can deduce
the aperture field distribution. The phase deviations of the aperture field are directly
related to the antenna’s surface shape. This technique has become a well-established
method for surface metrology of large radio telescopes because of its high efficiency and
measurement accuracy.

However, employing the traditional holography cannot identify the surface deformity
in a ’two-reflector’ antenna system. This thesis investigates a new multi-map holography
metrology to overcome this limitation. The new method is developed to align the Fred
Young Sub-millimeter telescope (FYST), a coma-corrected Crossed-Dragone antenna
with two 6-m off-axis reflectors. The surfaces of the two reflectors must be aligned to
be better than 10.7µm. The multi-map holography identifies the surface errors between
the two reflectors by taking five holographic beam measurements by placing the receiver
at well-separated points in the focal plane. The parallactic shift of the surface errors
allows assigning them to either one of the two mirrors. A new data processing technique
is developed using an inference technique to simultaneously analyze the five beams
and convert them to two surface error maps. Extensive numerical simulations have
been carried out to check the feasibility, measurement accuracy, and optimum set-up
of the new holographic system by modeling the systematic errors in the system, such
as random instrument noise and fluctuation of performance of the instruments. These
indicate that a measurement accuracy of ∼ 2µm is achievable.
The critical part of the data processing technique of the ’Multi-map’ holography is

to develop a fast and accurate beam simulation algorithm. The conventional physical
optics method is very time-consuming for analyzing the FYST antenna. A new ’two-step’
Kirchhoff-Fresnel diffraction method is developed, which, compared to the conventional
physical optics analysis, can reduce the computational time by four orders of magnitude
without noticeable accuracy degradation.

The new multi-map holography and its data processing technique are implemented
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to measure the reflector errors for a 0.4-m diameter Crossed-Dragone antenna in
the laboratory. The experiments prove that the errors on the two reflectors can be
discriminated and accurately measured with a statistic error lower than 1µm. The
holographic measurements and reflector corrections also indicate that the large spatial
errors existing on the two reflectors also can be measured.
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Chapter 1.

Background and Introduction

1.1. Background of Radio Astronomy

Radio astronomy is a branch of observational astronomy which studies celestial objects
through their radio emission using radio techniques. In 1932, K. G. Jansky, while working
as a radio engineer for Bell Telephone Laboratories, detected natural radio emission
from the center of our Galaxy at 20.5MHz (14.6 m wavelength) [1] and unexpectedly
opened the radio observational window for astronomical research. Following Jansky’s
discovery, Grote Reber built a 9.6-m parabolic radio telescope and systematically
observed at 160MHz (1.9 m), eventually confirming the discovery and suggesting that
the observed signal is non-thermal radiation. Today, with tremendous improvements
in radio techniques, people today can easily observe 21-cm (1.42GHz) line [2], which
is emitted by neutral hydrogen atoms in our Galaxy, using a home-made 0.5-m tinfoil
horn and a commercial software-define-radio (SDR) receiver. The frequency range of
radio astronomy is roughly from 10MHz to 1THz. The high boundary is limited by
the atmospheric opacity and given at the boundary between radio and far-infrared
astronomy. The low-frequency boundary is limited by the Earth’s ionosphere which
reflects signals with a frequency below 10MHz. Through the radio window, a set of
sources have been discovered, for example, thermal spectral-line emission from cold
interstellar gas atoms and molecules, maser emission from interstellar [3], the 2.7K
cosmic microwave background (CMB) radiation from the hot big bang [4], and extrasolar
planets[5].

The development of solid-state technology for Schottky mixers and extremely low noise
amplifiers and the implementation of superconductivity devices in radio instruments
significantly improve the sensitivity of the radio telescopes, enabling the observation
frequencies at millimeter (1mm < λ < 10cm) and sub-millimeter (0.3mm < λ < 1mm)
bands. These bands cover a great number of spectral lines, for example, the rotational
lines of CO and atomic lines of carbon in 350µm and 650µm bands, which are useful
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for studying astrophysical process like the star formation within molecular clouds. The
frequency peak of the 2.7K CMB radiation is in the millimeter band at 160.2GHz
(1.9 mm). Measuring the B-mode polarization patterns of the CMB radiation [6] are
important to detect the primordial gravitational wave, which would lead to the support
to the inflation hypothesis. Inverse Compton scattering of the CMB photons by the
hot electrons (> 106 K) in the gravitational wells of galaxy clusters results in a spectral
distortion of the CMB due to the shift in photon energy, which is called thermal
Sunyaev-Zeldovich (t-SZ) effect [7]. Using the CMB radiation as a backlight, the t-SZ
effect offers an excellent approach to tracing the mass, spatial distribution, and peculiar
motions of galaxy clusters.

Observation in millimeter and sub-millimeter bands on the ground-based observatory
is limited by the attenuating nature of the Earth’s atmosphere. In the millimeter band,
the atmosphere is almost completely transparent except for a few broadened absorption
lines of water vapor (22.235GHz) and Molecular oxygen O2 (60GHz). The most critical
limitation for sub-millimeter signals is the broadband absorption of water vapor in the
atmosphere above the telescope expressed by precipitable water vapor (PWV). Hence,
millimeter and sub-millimeter telescopes are commonly constructed in places where the
climate is very dry, mostly also high, such as the Atacama Large Millimeter Array at an
altitude of 5100 m in north Chile [8] and the CCAT observatory at 5600m, to minimize
atmospheric attenuation. Even though, still, some spectral lines are blocked out by
absorption and only can be observed from space or airborne observatories, for example,
Herschel Space Observatory [9] and SOFIA airborne telescope [10]. But ground-based
telescopes still have virtues compared to space and airborne telescopes. Telescopes with
large and precise reflectors can be constructed on the ground to achieve better angular
resolution and sensitivity. Telescope instruments can also be easily upgraded with the
newest state-of-the-art receivers techniques, like efficient receivers with more pixels and
wider operating bandwidth because of no weight, size, or power electricity limitations.

Another difficulty for millimeter and sub-millimeter observations is about constructing
telescopes with high surface precision. The tolerance theory of random errors in the
antenna surface indicates that an error of λ/16 root-mean-square deviation (RMS) leads
to 50% loss of the antenna’s efficiency that is the limit of the acceptable roughness
of radio antenna surface. For a telescope operating in 350µm (850GHz) atmospheric
window, the required surface deviations must be less than 21µm. Radio telescopes
generally require large aperture sizes because they suffer from extremely poor angular
resolution. According to Rayleigh criterion (θ = 1.22λ/D, D is the diameter of a
telescope)[11], a 10-m telescope operating in 350µm has an angular resolution of about
nine arcseconds, but a 10 cm diameter optical telescope can easily achieve an angular
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resolution of about one arcsecond. Constructing a 10-m telescope with 20µm surface
precision is very challenging. The common way is to segment the reflectors into a set of
small and easily manufactured panels, and individual panels are supported by three or
more adjustable screws called adjusters. This allows that reflectors can be adjusted to
the desired shapes. Therefore, a technique that can measure the surface shapes with
accuracy even less than the surface precision (< 10µm) becomes critical.

This thesis focuses on the development of metrology with a measurement accuracy of
< 2µm for the coming Fred Yound Sub-millimeter Telescope located at 5600 m high.
The specificity of this telescope is presented in section 1.3. The new challenges of the
surface diagnosis for this telescope are detailed in section 1.4. The following section
reviews the methods of measuring large reflector antennas.

1.2. Alignment of Large Radio Telescope

Most of today’s radio telescopes operating in millimeter and sub-millimeter have an
optical design with two reflectors: one large parabolic reflector used to achieve the
required high angular resolution and referred to as the primary reflector, and a relatively
small secondary reflector employed to fold the light path and make the telescopes more
compact. If the required size of the antenna is larger than a few hundred operating
wavelengths, an optical design similar to those of optical telescopes can be used. Optical
layouts commonly used by radio telescopes are shown in figure 1.1. The radio receiver
or detector is mounted in the focus of the optics. Then, the ray length from a planar
wavefront to the focus is a constant for all reflection points on the reflectors, which
means the collected signals are coherently added at the focus. Equivalently, suppose a
transmitter replaces the receiver. In that case, the lights from the transmitter will be
reflected to produce a planar wave and give a constant wavefront in any aperture plane.
The far-field diffraction pattern propagated from such aperture has a narrow main beam
and many sidelobes referred to as error beams. An excellent antenna can concentrate
as much energy as possible into its main beam and compress the power levels of its
error beams. Based on the reciprocity theorem in radio antenna, the receiving and
transmitting properties of radio antennas are equivalent. In the following thesis, all
simulated antenna beams are transmission patterns.
Any surface deviations of the reflectors in figure 1.1 will change the ray lengths and

also modify the phase of the aperture field. Then the non-uniform aperture phase will
degrade the gain of the main beam and increase the power levels of the sidelobes. The
optical propagation in the reflector antennas has a Fourier transformation relationship
between the far-field complex (amplitude and phase) beam pattern and the aperture
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complex field. This is explained in detail in chapter 2. Figure 1.2 shows the distorted
beam of a simple parabolic antenna with aperture phase errors of 30◦ RMS.

Figure 1.1.: Five general telescope optical geometries [12]. On-axis symmetrical Cassegrain (top left)
and Gregory (top right), their off-axis configurations (bottom left and center), and the crossed-Dragone
optics (bottom right). The horizontal dotted line in each diagram is the optical axis of the primary
reflector. D and D2 are the diameters of the primary and secondary reflectors.

Figure 1.2.: A polar power pattern of a parabolic antenna. The ideal beam pattern (Blue) and the
distorted beam pattern (red).
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1.2.1. Surface Tolerance Theory

Deformity of reflector surfaces degrades the wave optical performance of the designed
telescopes. In 1952, Ruze published his ’tolerance theory’ of a statistical surface error
in antenna reflectors [13]. Ruze’s analysis gives the relationship between the random
surface errors in the antenna reflector and the antenna’s efficiency. If the surface error
is small with respect to the operating wavelength and randomly distributed with a
Gaussian distribution, the efficiency reduction or axis gain loss can be expressed as the
following formula,

G(δ)
G0

= e−δ
2
, δ = 4πε

λ
(1.1)

where G0 is the gain of the antenna with perfect surfaces, δ is the wavefront error
caused by antenna surface errors ε. Figure 1.3 illustrates the antenna’s efficiency as
a function of operating wavelength or frequency for the case with different surface
deviations [14]. It can be seen that a surface error of 1/16th wavelength RMS results in
one-half efficiency reduction, and a value of 1/20th RMS reduces the antenna’s gain to
∼ 67% of the maximum. The power loss in the antenna’s main beam is converted into
the sidelobes, which increases the gain of the antenna’s error beams and degrades the
signal-to-noise (SNR) ratio of the antenna, see figure 1.2.

Figure 1.3.: The Ruze’s analysis about the relationship of reflecting antenna efficiency and half
wavefront error (HFWE) of incident light caused by its surface deviations, ε represents RMS of the
surface deviations, and λ is the operating wavelength.

The following error sources contribute to the overall surface errors of reflector antennas:
1) profile errors in individual reflector panels, which are determined by the manufacturing
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precision; 2) distortion caused by temperature difference in the telescope structure; 3)
deformations produced by the wind stresses; 4) gravitational deformation of the panels
and panel backup structure; 5) panel setting errors depending on the accuracy of the
chosen method of the surface diagnosis.
The distortions caused by the thermal effect, gravity, and wind stresses generally

produce surface errors in large spatial scales, for example, astigmatism, coma, and other
large-scale features. These errors mostly reshape the main beam and increase the gain
of near-in sidelobes. If the telescope observes extended objects, the near-in sidelobes
with higher income also watch parts of the source, which results in overestimation of the
source intensity and degrades the sensitivity of the telescope. Figure 1.4 presents the
simulated beams with different large-spatial scale surface deformations. The simulations
are based on the Fourier transformation relationship between the aperture fields of the
reflector antenna and its far-field radiation beam pattern [15].

Figure 1.4.: Effects of large-spatial reflector deformations on antenna’s far-field beam. The top plots
are the phase deviations in the aperture plane. The bottom is the responding beams. The contour lines
represent the values of -20, -15, -10, -5, and 0 dB from outer to inner. The beams are simulated using
the Fourier Transform relationship between aperture fields and far-field beam[15][16].

After alignment, the desired surface precision of the antenna reflector should be
better than 1/20th (5%) of the shortest operating wavelength. In order to achieve this
precision, the error contributed by the surface measurement errors must be better than
one or two percent of the wavelength. Therefore, it is desirable to have an approach to
accurately and efficiently measure the surface profiles of the reflector antenna.

1.2.2. Microwave Holography Technology

The Fourier transform (FT) relationship between the aperture fields and far-field beam
pattern of a reflector antenna has been discussed by S. Silver in his book ’Microwave
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Antenna Theory and Design’ [17] published in 1949. If the antenna’s far-field beam
pattern is measured both in amplitude and phase, the aperture field distribution can
be given by making an inverse FT to the measured complex pattern. The surface
deviations on the antenna’s primary reflector are then deduced by geometrical optics
if assuming the small secondary reflector is perfect. Bates and Napier published two
papers [18][19] and presented the theory of the idea and experimental confirmations
in 1971. Unfortunately, these papers did not attract the attention of astronomers.
Until Richard Hills returned to Cambridge in the UK and suggested this method to
Scott and Rylc, they measured the beam pattern of four of the eight antennas of the
5-kilometer synthesis telescope array [20] at 15.4GHz, both in amplitude and phase
by using another four antennas as a phase reference. The measurement accuracy of
∼ 0.1mm was achieved for the spatial resolution of ∼ 1.5m, around one-panel size. The
experimental tests were published in 1977 [21]. This method of measuring reflector
surface profile has been called microwave holography.

The critical process of the microwave holography measurement is to accurately mea-
sure the far-field beam pattern of the antenna under test both in amplitude and phase.
In order to get the phase of the beam, an additional antenna is required to keep ob-
serving a point source, e.g. available satellites and astronomical sources like 22.235GHz
water maser in Orion [22] and provide a phase reference. Then the antenna under
test is scanned across the source. Two receivers are mounted in the focal plane of the
antennas and share the same reference, the receiver in the tested antenna is denoted
by the signal receiver, and another is named the reference receiver. The amplitude
of the signal receiver and the phase difference between the two receivers are recorded.
The fundamentals of microwave holography and the designing criteria are detailed in
Chapter 3. This technique has been widely used for large radio telescopes, such as
100-m Effelsberg telescope holography at 11.78GHz [23], 30-m IRAM millimeter radio
telescope holography using the 22.235GHz Water Maser source [24] and so on. The test
time of this technique is typically from the whole night to a few hours, according to the
specific observation conditions. The accuracy of the method depends on the SNR of the
measured antenna beam pattern, which is always in the range of 0.001λ < σ < 0.01λ.
For example, the 30-m IRAM holographic experiment achieved a measurement accu-
racy of around 25µm (0.002λ). This method analyzes the reflector surface profiles
by measuring the telescope’s beam, which is the antenna characteristics we want to
improve. Repeating the reflector corrections and holographic analysis, we can check
the correctness of the previous measurement and reflector correction. Based on this
technique, there are some variations of the microwave holography approaches that are
developed for special test conditions, like near-field holography measurement and phase
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retrieval holography.

Near-Field Holography Measurement The accuracy of the holographic measure-
ment is generally limited by the SNR of the reference antenna, which is generally much
smaller than the antenna under test. To achieve the required measurement accuracy, an
artificial source with strong output power will be used and placed relatively close to the
antenna so that the reference receiver can achieve a high enough SNR without using
an additional large telescope. But the measured antenna response is in the near field,
and the Fourier transform relationship does not work any more. Instead a complex
transform should be used. The near-field holography technique has been successfully
implemented for several sub-millimeter telescopes, for example, measuring the 12-m
Vertex ALMA telescopes at 104GHz and achieving a measurement accuracy of 8µm and
15-m James Clerk Maxwell Telescope (JCMT) at 80GHz and 160GHz with an accuracy
of 5µm [25][26]. The main disadvantage of this method is that the surface analysis only
can be measured for the telescopes pointing at one elevation defined by the elevation of
the source.

Phase Retrieval Holography If direct phase measurement is difficult, the phase
retrieval holography, introduced by Morris in 1985 [27], only requires the power response
of the telescope. Therefore, extremely sensitive astronomical receivers and detectors can
be employed to measure the telescope’s power beam pattern with excellent SNR. The
phase distribution in the aperture is estimated by measuring at least two power beam
maps of the telescope with putting the receiver along the optical axis to either side of
the focal plane. Then the method is often called out-of-focus (OOF) holography. Two
analysis methods, the Missel algorithm suggested by Morris [27] and numerical inference
technique developed by Nikolic [28], have been developed to analyze the surface shapes
for the 30-m IRAM telescope [29], 100-m Green Bank Telescope (GBT) [28] and the
3-m Kölner Observatorium für SubMillimeter Astronomie (KOSMA) [30].
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1.3. Fred Young Sub-mm Telescope, FYST

The Fred Young Sub-millimeter Telescope (FYST) [31][32], formally CCAT-prime, is a
6-m diameter, 10µm surface precision telescope located at an altitude of ∼ 5600 meters
on Cerro Chajnantor in the Atacama Desert of northern Chile where is the second
highest ground-based observatory (the highest is the University of Tokyo Atacama
Observatory at 5640 meters). Figure 1.5 left shows the rendering of the telescope on
Cerro Chajnantor. This high site offers an extremely dry atmosphere and excellent
observational conditions. Figure 1.6 illustrates the Cerro Chajnantor’s atmospheric
transmission [33][34] compared to that on the ALMA site, which is around 5100 meters
high on the Chajnantor plateau. It indicates that the PWV of the Cerro Chajnantor site
is 40% lower than the ALMA site under normal atmospheric conditions (50% observing
time). Around 10% observing time, the PWV on the Cerro Chajnantor is the value
of about 0.21 mm. At the best observational condition, the dry atmosphere makes it
possible to open the observation in the 200µm (1.5THz) atmospheric window. Through
this window, the [NII] 205µm emission line can be observed from the ground-based
observatory, which is very useful to trace the gas in the ionized region associated with
newly formed early-type stars [35].

Figure 1.5.: Left: The Rendering of FYST [36]; right: the cross-section view of the FYST telescope
and its optical layout. The instrument spaces are highlighted, the Prime-Cam [37] in the focal plane
and the CCAT-prim Heterodyne Array Instrument (CHAI) marked by a yellow cubic, which needs
extra optics to pick up the light from the telescope optics [38].

FYST will be an exceptional 6-meter survey telescope that uniquely combines the
features of a large field of view (7.8◦ at 3 mm wavelength), high antenna efficiency, and
excellent atmospheric transmission due to the superb site, its special Crossed-Dragone
optics shown in the cross-section view of figure 1.5, and the advanced instruments. The
rest of the section presents the first-light instruments of the telescope and its novel
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optics.

Figure 1.6.: Atmospheric transmission in the millimeter and sub-millimeter bands for Llano de Chaj-
nantor (left) and Cerro Chajnantor (right) [39]. The transmissions are calculated using the observed
350µm zenith optical depths and the ATM model. The green, red, and blue lines indicate the transmis-
sion for 50%, 25%, and 10% of the observing time, respectively. The corresponding values of PWV are
listed in the insert list.

1.3.1. Instruments: Prime-Cam and CHAI

FYST will accommodate two the-state-of-art instruments: Prime-Cam instrument
[40][37][41] and the spectroscopy of the CCAT-prime Heterodyne Array Instrument
(CHAI). The space of the two instruments is highlighted in figure 1.5.

Prime-Cam will be the first generation camera directly located at the focal plane to fill
the central 4.9◦ of the 8◦ diameter field of view of the telescope. The instrument uses the
direct-detection technique which only detects the power of the incident signals and cannot
keep the phase information. The sensitive elements will be two superconducting detectors:
transition-edge-sensor (TES) bolometers [42] and Microwave kinetic inductance detectors
(KIDs) [43]. The two detectors are designed to operate at a temperature of around 100
mK. The instrument is split up into seven independent instrument modules that are
housed together in a 1.8 meters diameter cryostat. Each module fills up to a 1.3◦ diameter
field-of-view and is separated by 1.8◦. These modules can be exchanged separately
to meet different scientific purposes. The seven modules include: five broadband
polarization-sensitive detector arrays to observe at five frequencies, 220GHz, 280GHz,
350GHz, 410GHz and 850GHz [44] for the wide field survey, and two spectrometer
modules that utilize Fabry-Perot interferometers (FPIs) and the sensitive detectors
to map the line intensity from 210 to 420GHz which are corresponding to redshifts
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z=3.5-8.05 in the 158µm [CII] line and the [OII] 88µm line from the ionized medium at
z>7.

The second first light instrument for FYST will be CHAI which will be developed by
the University of Cologne. It is a dual-band heterodyne array spectrometer primarily
designed to map extended sources in the two neutral atomic carbon fine-structure lines
and the nearby rotational lines of carbon monoxide. The low-frequency array (LFA)
operating from 455 to 495GHz will cover the [CI] 3P1 → 3P0 492GHz line and the CO
J = 4→ 3 (460GHz) rotational line. The 800-820GHz high-frequency array (HFA) will
get access to the 350µm atmospheric window and observe the [CI] 3P2 → 3P1 (809GHz)
fine-structure line and the CO J = 7→ 6 (807GHz) line. The two arrays consist of
8× 8 pixels, respectively. They can simultaneously observe the sky in a field of view of
7.5′ × 7.5′ for LFA and 4.5′ × 4.5′ for HFA.

Figure 1.7.: Overview of the location (left) and the schematic of CHAI (right), and the beam path of
the low-frequency array of CHAI from elevation bearing to down to the cryostat (middle).

CHAI uses the heterodyne technique, which converts the high-frequency signals
from the sky to a lower-frequency band where the signal can be easily processed using
conventional electronics. The heterodyne technique is based on the property that the
multiplication of two input signals of slightly different frequencies results in a set of new
signals that are the frequency difference between the two input signals. If the amplitude
and phase of one input signal maintain constant, the produced new signal can reflect
the changes of another input signal. The former signal is called a local oscillator (LO).
The new signal is commonly called the intermediate frequency (IF). CHAI uses the
advanced Superconductor-Insulator-Superconductor (SIS) mixers [45] to multiply the
local oscillator and the sky signal. The IF output of each pixel of CHAI is from 4 to
8GHz and analyzed in a digital Fourier transform spectrometer with 100kHz spectral
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resolution. The instrument will be placed in the second instrument space marked in
figure 1.5. A complex optical system is designed to pick off the central part of incoming
light from the FYST optics and deliver the light down to the CHAI receiver to the
second instrument space [46]. The CAD model of the complex optics and the CHAI
receiver is shown in figure 1.7.

1.3.2. ’Coma-corrected’ Crossed-Dragone Optics

FYST has a novel Crossed-Dragone optics, which consists of two 6-meter reflectors. The
optics is designed by satisfying the Mitzuguchi-Dragone conditions [47][48] to achieve
the performance of zero-blockage aperture, large field-of-view (FoV), and excellent
polarization isolation [49]. The feature of zero-blockage aperture can significantly
improve the antenna’s aperture efficiency (the ratio of effective illumination area to
the physical area), which the conventional antennas like Cassegrain and Gregorian
configurations suffer from the optical path blockage caused by their small secondary
reflectors and the supporting structures. Since the optical beam of a radio receiver
feedhorn mounted is Gaussian, and the beam power is mainly confined in the center of
the region, which unfortunately is blocked by the secondary reflector. For example the
aperture efficiency of the APEX telescope [50] is less than 60%. In addition, its large
FoV and excellent polarization isolation make the telescope to be the next-generation
CMB telescope [51], so the Simons Observatory Large Aperture Telescope (SOLAT) [52]
also adopted the same optical design of FYST for the CMB-stage 4 experiments [53].

Figure 1.8.: DLFOV regions in an 8 by 8 degree field as a function of frequency with the standard
crossed-Dragone design on the left and the coma-correction optics on the right. The colors (blue through
red) show the regions where the Strehl ratio is > 80% at 870, 490, 345, 230, 150, 100, and 75GHz,
respectively.

The primary design is based on Michael D. Niemack’s study in paper [54]. Then
the telescope FOV is further improved by Stephen C. Parshley and Richard E. Hills
[55] applying additional coma-correction terms on its two reflectors. The diffraction-
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limited field-of-view (DLFOV), where the Strehl ratio is > 80%, is extended to 26 deg2

at 2 mm wavelength and 4.4 deg2 at 350µm. The DLFOV changes before and after
the coma corrections are presented in figure 1.8. It can be seen that the DLFOV is
significantly enhanced, especially at higher frequencies. The polarization performance
of the modified optics was studied by Gallardo, P. in paper [56] by using commercial
software GRASP [57], and it was found that the coma-corrected optics still maintains
the low cross-polarization intrinsic to the classical design. The details of the FYST’s
geometry and the profiles of the modified reflectors are summarized in Appendix A.

1.3.3. Reflectors and Support Structure

The two 6-m reflectors of FYST must be segmented into panels. The panels are made
from light-weighted aluminum plates and mounted onto a carbon-fiber backup structure
(figure 1.9 left). There are 146 panels, 77 panels on M1 with sizes of 670× 750mm 69
on M2 with panel sizes of 700× 710mm. The panel sizes are chosen to ensure that
the surface distortion caused by thermal gradient across the panel can be tolerated.
The panels have been manufactured with a surface precision of < 3µm [58]. All panels
have the same backside structure and consist of five z-axis adjusters shown in figure
1.9 (right), which allow the panels can be finely adjusted to correct the low-order panel
distortions after the panel assembly.

Figure 1.9.: Carbon-Fiber backup structure (left) and backside of panels (right) of the FYST’s
reflectors.

1.4. Challenges in the FYST Holography

To enable the observation in the 200− µm atmospheric window, the reflectors of FSYT
must be aligned to be more precise than 10.7µm, with a goal of < 7.1µm. Although the
reflectors will be set to the correct shape with high precision in the factory and then
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shipped to the site fully assembled, we regard it as essential to have an accurate method
of measuring under operational conditions. We planned to use microwave holography
for this. Because this technique has a well-proven record for the measurement of large
sub-millimeter telescopes. For example, the 12-m ALMA telescopes were aligned by
implementing a 104.02GHz near-field holography [59] and achieving surface accuracy of
20µm with the measurement accuracy of 8µm. But applying this technique to FYST
presents several significant challenges:

1. The requirement on surface accuracy is for the whole telescope system, including
manufacturing errors and items like deformations due to the changing orientation
of the telescope and environment temperature. We expect the results from the
holography measurements to be used for the final adjustment of the reflector
panels, so any errors in the measurement will also contribute to the final surface
errors. Therefore, we cannot allow them to take up more than a small fraction
of the required error budget. We planned to adopt a goal of < 2µm under best
test conditions, where this should include both random errors, e.g., those due
to instrument noise and atmospheric fluctuations, and systematic errors due, for
example, to inconsistency between the actual antenna and the designed model,
and inaccurate modeling the antenna’s electromagnetic effects. To the best of our
knowledge, the FYST holography measurement is a significantly higher accuracy
than has been reported for such measurement thus far.

2. The difficulty of measuring the surface shapes for the two reflectors using con-
ventional microwave holography. The conventional approach employs a simple
inverse Fourier transformation of the measured complex (amplitude and phase)
beam pattern of the antenna under test. This can provide a map of the wavefront
distortion at the aperture, which is the phase error contributed by the surface
errors of the two reflectors. It cannot identify the error sources in the optical
system. Therefore, a new technique is required to break the degeneracy in the
two-reflectors system.

3. Since the measurements will often be made at night, it is not allowed to have
personnel present at the telescope in the evening because of the high altitude. It
must be possible to operate all aspects of the system remotely.

In addition to the above challenges, we also expect the measurement to be made fast
enough so that the effect of thermal changes over the whole day can be studied. To
meet the < 2µm measurement accuracy, a high operating frequency (∼ 300GHz) is used,
and an artificial source is designed and placed close to the telescope, which means the
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measurement will be done in the near field. Using a higher frequency means that a
given fractional error in measuring the beam pattern converts into a smaller surface
measurement error because of the shorter wavelength. The high frequency also offers a
narrow beam, which minimizes the effect of reflection of the signal by the ground and
other objects between the telescope and the source. The close artificial source provides
a strong signal to illuminate the telescope and get a high signal-to-noise ratio (SNR),
which means that the noise from the instrument contributes to small errors in the
measured surface shapes, even with measurement times as short as a few milliseconds
per point. The relationship between the measurement accuracy, operating wavelength,
and required SNR of the system is detailed in Chapter 3 of this thesis. Using short
distance also minimizes the atmosphere volume so that the phase variations caused by
the atmospheric fluctuations are reduced.
The central theme of my Ph.D. work is to develop a new technique to solve the

degeneracy problem in Crossed-Dragone optics or any two-reflector systems. I discussed
this issue with Richard Hills and Urs Graf in Cambridge, England, and we concluded
that the degeneracy could be broken by making beam maps with the receiver at several
well-separated positions in the focal plane because the projections of the panels on the
two reflectors could be separated at the aperture plane. Since the new method requires
more than one beam map, we call it ’Multi-map’ holography. But the new issue is that
there is no obvious direct method for converting the measured beam maps into two
surface error maps, analogous to an inverse Fourier transform. Instead, we treat this as
a numerical inference problem, which requires two parts: finding a way to parameterize
the reflector surfaces and developing a fast and accurate algorithm for simulating the
beam maps produced by the parameterized reflectors. To realize this method, a new
approach to simulate the wave optical performance of the FYST’s antenna has been
developed, which is a critically important part. In turn, massive numerical simulations
were studied to prove the feasibility of the multi-map holography and find the best
configuration and measurement approach.
The development and test of the holographic hardware were conducted in parallel

with the study of the new holographic technique. Before I was involved in the FYST
holography project, the basic holographic design based on microwave holography theory
had been discussed by Urs Graf and our collaborators, Nicolás Reyes from Max-Planck
Institute and the University of Chile, Richard Hills from the Cambridge of University,
and Stephen Parshley from Cornell University. The source and receivers were designed
using commercial microwave components produced by RPG-Radiometer Physics GmbH
[60]. Pablo Astudillo from Universidad de Chile designed, tested, and packed the source
and receiver modules. The back-end digital correlator and its controlling software were
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designed and programmed by Sebastian Jorquera in Chile based on the Re-configurable
Open Architecture Computing Hardware (ROACH2) [61] platform. In March 2020,
at the beginning of covid-19 pandemic, I visited Universidad de Chile to learn about
the back-end correlator from Sebastian and measure the designed receiver feedhorn
with Pablo. Richard and I studied and developed the optics for the reference receiver.
Lars Weikert, Urs Graf, and the Mechanical workshop at Universität zu Köln helped
me design and manufacture all mechanical structures, such as the receiver mounting
structure in the focal plane, reference receiver optics, and the mounting frame for a
small Crossed-Dragone antenna. In November 2021, all instruments were delivered to
Köln and assembled to build a testbed to check the feasibility of the novel multi-map
holographic method. The laboratory tests exhibit a promising and encouraging outlook
for the future FYST holography test.

1.5. Organization of the Thesis

This dissertation is dedicated to the alignment of the reflectors for the Fred Young
Sub-millimeter Telescope using microwave holography technology. The central theme
of the thesis is to study and test a new holographic metrology for a ’two-reflector’
configuration antenna, e.g., the Crossed-Dragone antenna used by FYST, which consists
of two 6-m diameter reflectors that need to be measured and aligned. One critical
aspect of the new metrology is to exploring an efficient method to calculate the wave
optical performance of FYST, which is employed in the new software analysis technique.
Furthermore, the experimental results of using the new holographic method on a small
laboratory antenna are detailed. The whole thesis is structured into three parts:

1. Optical Simulation (Chapter 2). This part is about developing a method to
predict the wave optical performance of the FYST telescope efficiently. The
method is the key to the new holography technique discussed in the next part.
In Chapter 2, the physical optics (PO) analysis technique is first demonstrated
and applied to explain the diffraction theory of reflecting antenna, which provides
the theoretical background under the holography technique. The wave optical
performances of the FYST telescope simulated by the commercial software TICRA
GRASP [57] using the PO analysis are presented. The effect of the FYST reflectors’
panel edges on the optical performance is also investigated. Two new analysis
techniques are studied to improve the efficiency of the PO analysis for FYST, and
the accuracy of the two methods is reported in comparison with the results from
the commercial software.
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2. Holographic Analysis (Chapter 3-5). This part focuses on the microwave holog-
raphy design for the FYST telescope, including the basic design of the holography
method, the challenge of analyzing the reflector errors in the FYST’s ’two-reflector’
optics, and the new approach developed to solve the challenge. Chapter 3 explains
the fundamentals of microwave holography and its design criterion and presents
the primary holographic design for the FYST telescope. Chapter 4 addresses
the difficulty of measuring the surface errors for the FYST’s two reflectors us-
ing the conventional holographic method. To overcome this challenge, a new
approach named ’Multi-map’ holography, which analyzes the surface errors of
the ’two-reflector’ system by measuring multiple complex (amplitude and phase)
beam maps is developed and investigated by numerical simulations. Chapter 5
details the hardware design of the FYST holographic system and the optimal
measurement approach and data analysis procedure based on the preceding theory
and simulations.

3. Experiments and Conclusion (Chapter 6-7). The developed ’Multi-map’ holog-
raphy technique is implemented to analyze the reflector surface errors for a small
Crossed-Dragone antenna constructed for the holographic testbed. The feasibility
of the new approach and the accuracy of the designed FYST holographic system
are investigated and reported. In Chapter 6, the Lab antenna’s optics and its
holographic setup are detailed. The conventional holographic analysis is applied to
check the performance of the beam measurement system, and it is also shown that
discriminating the errors on the two reflectors using the one-beam holographic
measurement is difficult. Finally, the multi-map holographic measurements are
implemented to measure the surface errors produced by copper foils of known
thickness. The experimental results are reported in the measurement accuracy
and the ability of surface error discrimination between two reflectors. In Chapter
7 the conclusion and outlook for future work are presented in Chapter 7.



Chapter 2.

Optics Simulation for FYST

The key to the FYST holography measurement is to solve the issue of surface error
degeneracy between the telescope’s two reflectors. In 2018, I discussed this problem
with Richard Hills in Cambridge and decided to analyze the surface errors by measuring
multiple beam maps of the telescope. Richard suggested treating the surface analysis
as an inference issue and solving the reflectors’ surface shapes using numerical fitting
techniques. Then the critical step is to build the fitting function, also called the ’forward
function’, which must precisely and fast compute the telescope’s beam maps based on
the given reflector surfaces.

Therefore, this chapter presents a fast and accurate method to simulate the diffraction
beams of the special ’Crossed-Dragone’ type antenna that FSYT uses. The developed
approach also can be employed to speed up the optical simulations for any multiple
reflector optics. The discussion starts with the fundamentals of the physical optics (PO)
analysis used for modeling general reflector antennas. Then, the PO method is employed
to calculate the far-field diffraction beam for a simple parabolic reflector. The simulated
far-field beam indicates the Fourier transform relationship in the antenna radiation
theory, which is the basis of understanding microwave holography technology. Then,
the PO analysis is implemented to study the near-field diffraction beam for the FYST
telescope. Since FYST is made of square aluminum panels, the diffraction effect of its
panel edges is modeled by commercial software, TICRA GRASP [57], using the PO
method and physical theory of diffraction (PTD). Next, two novel alternative methods,
’two-step’ PO analysis and ’two-step’ scalar Kirchhoff diffraction method, are developed
to speed up the FYST beam simulations. The two new techniques can efficiently
predict the diffraction fields of FYST without notable field accuracy degradation. The
computational efficiency has been improved by four orders of magnitude compared to
the conventional PO analysis.
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2.1. Introduction of Physical Optics Analysis

A reflector antenna is an excellent option for radio astronomical observations, especially
in millimeter and sub-millimeter bands, because the reflecting optics can offer a very
low loss in radio frequency compared to refractive optics and can fold the optical path
to make the telescope more compact. Since astronomical signals are usually extremely
weak, the reflectors of radio telescopes commonly have a large diameter to provide a large
collection area so that a high enough gain and high angular resolution can be achieved to
observe faint and compact celestial objects. If the size of the radio telescope is thousands
of its shortest operating wavelength, the geometrical optics (GO) method can be used
to preliminarily design the telescope’s optical layout. But the diffraction effects in large
radio telescopes still cannot be neglected. The telescope’s characteristics, such as the
gain, main beam size (angular resolution), and levels of error beams, must be carefully
considered. Therefore, after the optical design, a more precise diffraction analysis is
required to fine-tune the optics so that the radio telescope can achieve the optimum
performance, for example, high main beam efficiency and very low levels of error beams.
To precisely analyze the telescope’ wave-optical performance, a set of methods have
been developed for the large reflector antenna, such as the most fundamental physical
optics (PO) approximation [62][63], the physical theory of diffraction (PTD) [64][65]
and geometrical theory of diffraction (GTD) [66][67].
In this section, the PO approximation technique is demonstrated and employed to

analyze the diffraction optics of a simple parabola antenna illuminated by a Gaussian
beam. Because the commonly two-mirror optical system, like Cassegrain, Gregorian,
and their off-axis configurations shown in figure 1.1, can always be represented by an
equivalent symmetrical parabolic reflector[68] based on geometrical optics. The PO
analysis for the simple parabolic reflector gives the general optical characteristics of the
reflector antenna.
In the actual telescope observations, the signal propagates from a distant source

through the telescope’s reflectors and into the receiver. If we scan the telescope over a
point source and record the responses of the focal receiver, the recorded beam pattern
is the reception pattern of the telescope. For numerical analysis, it is more convenient
to simulate the equivalent time-reversed process (transmitting pattern), starting from
the receiver and through the telescope’s optics, to calculate the field on a spherical
surface at the distance of the source. The reciprocity theorem [69] implies that an
antenna’s reception and transmission patterns are equivalent. Therefore, in the rest of
this chapter, all simulated beam maps are transmission patterns.
The diffraction issue of a reflector antenna is about calculating scattered fields with
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knowing antenna geometry and incident field. When an incident electromagnetic
wave illuminates a reflector, surface currents are induced. If the reflector is perfectly
conducting, its scattered fields are generated by these induced surface currents. Therefore,
predicting the diffraction fields of a reflector antenna can be considered a three-step
procedure. The first step is to calculate induced currents on the reflector; if the reflector
is not a perfect conductor, the equivalent induced surface currents are used based on
electromagnetic boundary conditions. The next step is to calculate the scattered fields
radiated by the induced surface currents in Step 1. This calculation has a rigorous
solution deduced from Maxwell’s equations. Finally, the calculated scattered fields and
the incident fields from the device, e.g., the receiver, which illuminates the reflector, are
summed up to get the total diffraction field at the point we want to study. The last two
steps are straightforward. The first step, estimating induced surface currents, becomes
the most critical process. Generally, the method of moments is used to get a rigorous
solution by meshing the entire antenna space. But, it is very time-consuming because
the reflector is much larger than the operating wavelength. The physical optics method
offers a valid approximation to compute the surface currents for perfectly conducting
reflectors if the reflector is smooth and much larger than the operating wavelength.

2.1.1. PO currents

The basic PO method assumes that the induced surface current in a specific point
on a curved reflector surface is equal to the surface current on an infinite flat surface
if the dimension and surface curvature of the reflector is sufficiently larger than the
wavelength of the incident light. An infinite perfectly conducting plane is illuminated by
an arbitrary field called incident fields Hi, the boundary conditions define the surface
current as equation 2.1,

Je = ñ×H, (2.1)

where H represents the total magnetic fields which include the incident field and reflected
or scattered field (H = Hi + Hr), and ñ is the surface normal vector which points
outward from the illuminated side of the surface. For the infinite perfectly conducting
plane, the reflected magnetic field equals the incident magnetic field (Hi = Hr), then
we get the equation 2.2.

Je = ~n× (Hi + Hr) = 2~n×Hi. (2.2)

This equation gives a good approximation of simulating the induced currents on a
curved surface. The method also assumes induced current is zero in the regions not
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illuminated by the incident field. The PO method cannot deal with discontinuities in
reflector surfaces, such as reflector edges and gaps where the PO approximate currents
differ from actual currents. But these unusual currents are commonly concentrated in
the region of less than a few wavelengths, so the effect can be ignored if the reflector
size is much larger than the operating wavelength. For high precision requirements, the
physical theory of diffraction (PTD) is used to correct PO currents at the discontinuous
regions.

2.1.2. Surface currents integral

Once induced PO current distribution is known, the electromagnetic fields at any point
can be found by summing the radiation fields contributed by all current elements. With
introducing vector potential A (defined by H = 1

µO×A), substituting it to Maxwell
equations, and assuming the field is harmonic time dependence and written as e−jωt,
one can easily derive the wave equation as

O2A + k2A = −µJe (2.3)

where k is the wave number expressed by k = ω
√
εµ = 2π/λ. One wave equation

solution is given by equation 2.4 [70].

A(~r) = µ

4π

∫
S
′
Je ·

e−jkR

R
ds
′
, R = |~r − ~r′ | (2.4)

Here, R is the distance between current source ~r′ and target field point P denoted by ~r
in Figure 2.1, and the term of e−jkR

R is the Green function, which represents field on
target point contributed by a unit current element. The integration is carried out over
the entire surface S′ , which contains all current sources. From the calculated vector
potential in the target field point, one can obtain the magnetic and electric fields by
equation 2.5.

E(~r) = −jωA− j

ωµε
O(O ·A) (2.5a)

H(~r) = 1
µ
O×A (2.5b)

Then, replacing the vector potential in equation 2.5 with equation 2.4 and applying
the vector operators on the current vectors and Green function, finally, the electric and
magnetic fields on the target points can be calculated by following the integral equation,
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E(~r) = 1
4π

√
µ

ε

∫ ∫
S′

(
Je(−

j

kR
− 1
k2R2 + j

k3R3 ) (2.6a)

+ (Je · R̂)R̂( j

kR
+ 3
k2R2 −

3j
k3R3 )

)
e−jkRk2ds

′

H(~r) = 1
4π

√
ε

µ

∫ ∫
S′

Je × R̂ 1
k2R2 (1 + jkR)e−jkRk2ds

′ (2.6b)

where R̂ is the unit vector pointing from current source point to field point, defined by
R̂ = ~r−~r′

|~r−~r′ |
. The area element ds′ can be expressed by a weighted flat area element in

x’-y’ plane denoted by ds′ = Js ·dx
′
dy
′ . Figure 2.1 shows the geometry of a symmetrical

parabolic reflector, illustrates the vectors mentioned above, and surface currents integral.
Here, the x’-y’ plane is the projection area of the integral surface S′ , and Js is the
weight factor that is called Jacobian transformation expressed as

Js =
[
1 +

(
∂f

∂x′

)2
+
(
∂f

∂y′

)2]1/2
, (2.7)

f is the function of x′ and y′ , used to describe the surface S′ profile. Then, the surface
integral is converted to a two-dimension integration. The telescope’s aperture plane is
commonly chosen as the x’-y’ integral plane. Under geometrical optics approximation,
the light from the focal receiver through the telescope’s optics is converged to parallel
output light. The reflected light is perpendicularly projected to an infinite plane called
the aperture plane. Consequently, the above interpretation indicates that the field point
outside the reflector surface can be computed by the knowledge of electromagnetic field
distribution over the reflector surface.

Figure 2.1.: Geometry of an symmetrical parabolic reflector.
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2.1.3. Far-field Characteristics of a Parabolic Antenna

The PO approach is employed to analyze the radiation performance of a parabolic
reflector in near and far field regions. The formulas 2.6 deduced in section 2.1.2 can be
used to predict radiation fields at any point in finite distance from telescope. However,
for the application of radio telescope, the far-field electromagnetic performance is more
critical. To express it, the coordinate of the field point is replaced by angular coordinate.
The far field is defined by

Efar = lim
r→∞

[E(r)kr ejkr] (2.8a)

Hfar = lim
r→∞

[H(r)kr ejkr], (r = |~r|). (2.8b)

Substituting equations 2.6 in above definitions gives the far-field expression,

Efar = − j

4π

√
µ

ε

∫ ∫
B

(Je − (Je · r̂)r̂)ejk
~r′ ·r̂k2Jsdx

′
dy
′ (2.9a)

Hfar = − j

4π

√
ε

µ
r̂ ×

∫ ∫
B

Jeejk
~r′ ·r̂k2Jsdx

′
dy
′
, (2.9b)

where r̂ is the far-field direction and defined by ~r
|r| . B is projection area of the reflector

on its aperture plane shown in Figure 2.1. If the reflector optics is focused, the radiation
fields is confined in a small angular range in far field, the phase term ~r′ · r̂ in formula
2.9 can be simplified as

~r′ · r̂ = z
′
cos(θ) + ux

′ + vy
′ (2.10)

≈ z′ + ux
′ + vy

′
,

where
u = sinθcosφ, v = sinθsinφ. (2.11)

Since the far-field direction r̂ is closely perpendicular to the parabolic surface, the field
component along radiation direction that is expressed by (Je · r̂)r̂ in formula 2.9 can be
neglected, and substituting equation 2.10 and 2.11 into equation 2.9a, one obtains

Efar(u, v) = − j

4π

√
µ

ε

∫ ∫
B

J̃ · ejk(ux′+vy′ )dx
′
dy′ (2.12)

J̃ = Je · Js · ejkz
′

(2.13)

J̃ can be treated as the projection of reflector surface current on aperture plane, and
called aperture current distribution. Formula 2.12 indicates that a Fourier Transforma-
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Figure 2.2.: Far-field radiation beam of 6 meter parabolic reflector operating at 296GHz with illumi-
nation edge taper of 0,-6, and -12dB.

tion relationship exists between telescope’s far radiation fields and its aperture fields.
Neglecting the integral sign and multiplier factor, the inverse Fourier Transformation of
formula 2.12 can be written as

J̃(x′ , y′) =
∫ ∫

Efar(u, v) · e−jk(ux′+vy′ )du dv. (2.14)

Hence, if the fields in the telescop’s aperture plane are known, the diffraction beams of
radio antenna in far field can be easily predicted by using Fourier transform algorithm.
Figure 2.2 shows the far-field diffraction beams of a 6-meter symmetrical parabolic
antenna illuminated by a Gaussian beam. The divergence of the incident Gaussian beam
is changed to produce a illumination edge tape of 0, -6, and -12 dB. The illumination
edge tape is defined by the ratio of field intensity at antenna center and edge. It is
found that the large edge taper compresses telescope side-lobes, reduces noise coupled
from its error beams, but degrades the angular resolution of the antenna.

Conclusively, the PO analysis method offers the way to precisely predict the diffraction
beams of a reflector antenna based on the antenna’s geometry and the illumination
beam. Properly choosing input beam shape and modifying surface profile of the antenna
can achieve required optical performance, such as narrow main beam size, low level of
error beams and large field of view. The Fourier transformation relationship explained
above is very important for understanding the microwave holography used for surface
diagnosis of large reflector antenna, which derive the antenna geometry by measuring
the antenna’s diffraction beam map. If the far-field beam pattern Efar(u, v), including
amplitude and phase, is measured, the current projection in aperture plane J̃(x′ , y′) can
be fully determined also in amplitude and phase by making inverse Fourier transform to
recorded beam map. The phase of the current distribution is used to recover reflector
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geometry. The details of this technique will be presented in Chapter 3.

2.2. PO Analysis for FYST

FYST uses a particular crossed-Dragone optical configuration, an offset dual-reflector
antenna. Figure 2.3 shows the schematic of the FYST optics. An essential property of
this optical design is zero blockage in the telescope aperture, so high efficiency and low
error beams can be achieved. Its initial optical design uses the classical configuration,
which satisfies the ’Mizuguchi-Dragone’ condition [47][48][71] to minimize the first-order
astigmatism aberration by following the method presented by Granet in paper [72].
Based on the classical design, comatic aberrations are corrected by reshaping the two
mirror surfaces to improve the field of view further. The details of the optical design
were summarized by Stephen C. Parshley in paper [55]. The optical parameters and
mirror surface profiles are listed in appendix A. This section presents the simulations of
the electromagnetic performance of the telescope.

Figure 2.3.: The schematic of the FYST optics. The rays are shown for the lights from the Sky with
offset angles of −3.9, 0 and +3.9 degrees.

The easiest way of estimating the FYST’s electromagnetic characteristics, for example,
the beam size and the levels of its sidelobes, is to simply treat the dual reflectors as
an equivalent parabolic reflector [68][73][63] illuminated by a Gaussian beam from a
receiver horn in the parabolic focus. Then employing the PO analysis to the equivalent
reflector can predict the focused beam pattern. The simulated beam at 1mm wavelength
is shown in figure 2.2. However, this method neglects the diffraction effects of the wave
propagation between M2 and M1, and this parabolic equivalent method is only valid for
the case where the receiver is located at the telescope’s geometrical focus. In order to
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study the field of view of the telescope, the receiver should be placed at a point that is
offset from the optical axis.

Another approximation method uses the geometrical optics (GO) or geometric theory
of diffraction (GTD) to calculate the field propagation from M2 to M1. The telescope’s
radiation fields are predicted by employing PO analysis for the M1 reflector. The GO
and GTD techniques are fast but inaccurate or impractical for simulating antennae in
microwave. For example, the two methods are hard to model Gaussian beam propagation,
and the fields scattered by a finite reflector also cannot be expressed. In addition, the
FYST’s two reflectors are segmented into rectangular panels, and the diffraction feature
of each panel also needs to be considered.
The most accurate and direct approach is to apply the PO analysis to model the

wave propagation from M2 to M1, then continue the PO analysis for the fields scattered
by M1 to the Sky. This means the PO analysis needs to be implemented twice. We
call this analysis process the full PO analysis. This offers very high field accuracy but
at the cost of computation time. In this section, the full PO analysis process is first
explained and used to model the FYST radiation fields in the near field. The results
are used as a gold standard to study the accuracy of the new techniques developed in
the rest of the chapter.

2.2.1. PO analysis flow

In the actual telescope observation, the incident wave from a distant source is first
collected by M1, reflected to M2, and delivered to the focal receiver. Adopting the
time-reversed process is more convenient for modeling the telescope’s transmission
performance. The signal starts from the receiver, through the telescope optics, and
propagates to the distant sky or a region at a finite distance from the telescope. The
predicted field is the telescope’s transmission pattern. In accordance with the reciprocal
theorem [15], the reception and radiation patterns of a telescope are identical.

Figure 2.4 illustrates the wave propagation from the receiver to the region of the fields
that we want to know. This involves finding the induced PO currents on M2 by the
field radiated from the receiver horn, the calculation of the fields at the surface of M1
excited by those PO currents in M2, and hence finding the currents on M1 and finally,
calculating the radiation fields that the currents on M1 produce at the required region.
The calculations suffer from the tremendous amount of computing time of calculating
the fields in M1 surface produced by PO currents in M2 because the two same-sized
(∼ 6m) reflectors are sited too close, 6 meters between their centers, and phase variation
of the current integration is very rapid. To precisely simulate the fields at the M1
surface, for the case of a telescope operating at 300GHz (∼ 1mm), the sampling interval
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Figure 2.4.: The standard Physical Optics analysis process for the crossed-Dragone dual reflector
antenna. Here the plot is the FYST telescope optical layout.

of PO currents in M2 needs to be less than half wavelength ( ∼ 108 sampling points in
M2) because of the phase variations of the PO current integral. The simulations were
done by the commercial TICRA GRASP package that is a software commonly used for
reflecting antenna simulations, and took around a week for one beam simulation by a
machine with 100 CPUs.

2.2.2. Near-field Beam Pattern

Since the holographic measurement of FYST is planed to be done in near field, an
artificial source operating at ∼ 300GHz (∼ 1mm wavelength) is mounted at ∼ 300m
away from the telescope, predicting the radiation beam in near field is very important
for holographic system development and simulations. The near source changes the
new focus of the optics to ∼ 705mm behind its original focus, which can be easily
computed by geometrical optics. The focused radiation beam maps, including the
co-polarization beam map and its cross-polarization pattern, are shown in figure 2.5.
The strong cross feature in the diffraction patterns is caused by straight mirror rims.
The cross-polarization beam is around 65dB lower than the desired polarization beam
peak.
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Figure 2.5.: The near-field radiation beam of the FYST telescope at the frequency of 296GHz is
simulated with using physical optics analysis. The output beam from feed horn is linear polarization in
x direction. The calculated field region is 300 meters away from telescope aperture. The receiver is
moved to 705mm behind the nominal focus to re-focus the optics. Top plots are the simulated beam
pattern with x polarization (left), and its radiation beam with y polarization (right). Bottom is the cut
plots of the beam in azimuth.
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Figure 2.6.: The defocused beam patterns. The receiver is moved forward from the new focus by
105mm. The central beam is extended, gain of the beam is reduced by around 20dB.

Holographic measurement doesn’t require the telescope’s optics to be focused. On the
contrary, it is better to defocus the optics and spread out the beam so that the required
dynamic range of the measurement instrument, such as the digital back-end receiver,
can be reduced. For the near-field FYST holographic system, we move the receiver
105mm forward from the focus, which is 600mm behind the nominal focus. Main beam
is extended in angular range of ±0.1◦. The gain of the main beam is reduced by 20dB.
The defocused beam pattern and its cut plot compared with the focused beam are
presented in figure 2.6.

2.2.3. Diffraction effect of panel edges

FYST is made of square panels. To avoid the issue caused by thermal expansion, these
square panels are assembled with 1.2mm gap between them. The surface discontinuity
results in that the induced surface currents close to the panel edges differ from the PO
currents. The difference is concentrated in the boundary region only at a distance of
the order of a wavelength. Therefore, we consider that the effect of the panel edges on
the telescope’s diffraction beam pattern could be neglected, if the operating wavelength
is much shorter than the panel size.
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The method called the physical theory of diffraction (PTD) [64][74] is a critical
technique that addresses this problem. The method provides the additional current
as a correction term for the PO solution to improve the accuracy. The PTD method
used in the TICRA GRASP modeling software employs the algorithm developed by
Johansen in paper [65]. The diffraction effect of the panel edges of the FYST telescope
is studied by carrying out PO-only analysis and PO + PTD analysis separately. Their
differences are the nonuniform part of the fields contributed by the diffraction effect
of panel edges. The simulations are done at 100GHz (around 1/3rd of the holographic
frequency) and 148GHz (half of the required frequency) because the PO analysis at
a lower frequency is more efficient for the same telescope geometry. The effects at
296GHz, which is very time consuming, can be predicted by the results of these two
lower frequencies. The simulations were done for the out-of-focus optics, where the
receiver is 600mm behind its nominal focus, and the value of the beam peak is reduced
by 20dB at 296GHz, and the input beam is linear polarization in the x direction. Figure
2.7 presents the diffraction fields produced by the panel edges. They are concentrated in
the cross feature of the beam pattern and contribute to the total radiation beam with a
ratio of -48dB at 100GHz and -52dB at 148GHz. If the operating frequency is turned
to 296GHz, the contribution of the edge diffraction fields should go down to -58dB,
assuming that the intensity of the edge diffraction fields is proportional to the operating
wavelength. The maximum of the fields is -78dB below the peak of the focused beam,
which is even much less than random noise in the beam measurement system. Therefore,
we can ignore the panel edge effects in the holographic measurements. The case of
the telescope reflectors illuminated by a y-polarized receiver beam is also simulated,
we find that the edge diffraction patterns are similar for the x and y polarization but
with opposite signs. This means that we could, in principle, cancel the edge diffraction
effects by measuring two independent beam maps with different polarization signals
and adding them up. The diffraction fields produced by the panel edges of FYST are
shown in figure 2.7.
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Figure 2.7.: Radiation pattern produced by the panel edges of the FYST telescope at 100GHz and
148GHz, respectively. The fields are calculated by taking the difference between the PO-only analysis
and PO+PTD analysis results. The map size is around 1.72 × 1.72deg2 for the simulated fields at
100GHz and about 1.15× 1.15deg2 for that of 148GHz. The simulated fields are normalized by the field
of the map center.
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Figure 2.8.: Radiation pattern caused by panel edges at 148GHz. The top is the field with an x-
polarized illumination beam; the Middle is the case with the y-polarized receiver illumination beam;
the Bottom is the summation of the two polarized fields. The diffraction caused by panel edges can be
eliminated by separately measuring the beam in two linear polarization cases.
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2.3. ’Two-step’ PO analysis Technique

The electromagnetic characteristics of the FYST telescope in the near field have been
simulated and studied by the physical optics analysis. The method is accurate but
very time-consuming. It is inconvenient for some applications that require fast beam
prediction, for example, simulating the beam shape changes as the receiver is mounted
at different positions in the focal plane and fitting the predicted beam with the observed
beam for telescope surface diagnosis, which is called holography analysis described in
chapter 4, and generally requires thousands of beam simulations. Thus it is of interest
to develop a new method to speed up the PO analysis for FYST.

Figure 2.9.: The calculation flow of the physical optics analysis for the FYST telescope. Black arrows
indicate the conventional PO analysis, and green arrows present the ’two-step’ PO analysis processes.
The calculation procedure by applying the ’two-step’ PO method includes: 1) calculate fields in the
M2 surface based on the illumination beam pattern of the receiver feed horn and convert the fields to
induced PO currents; 2.1) Calculate the fields on intermediate focal plane by using PO integration,
likewise calculate the equivalent PO current distributions on this plane by the fields; 2.2) Carry out PO
analysis to calculate the fields in M1 and its induced PO currents; 3) Compute the fields in the region
that we want to predict with the PO currents in M1.

The most time-costly step in the computation flow described in figure 2.4 is the
integration of PO currents on the M2 surface to find the fields on M1 because the
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two reflectors have similar size (∼6 meters) and are arranged too close, which implies
that the phase varies rapidly in the current integration and a very fine sampling on
M2 is required. Fortunately, we know that M2 forms two foci shown in figure 2.9; one
is 12 meters in front of the mirror and occupied by the receiver feed, another is the
image of the receiver feed at 30 meters behind the mirror and called the imaginary focal
plane. The fields at the imaginary plane are confined to quite a small range. So, we can
break down this costly computation into two steps: 1) Simulate the diffraction fields
on the imaginary focal plane by PO analysis, then convert the computed imaginary
fields to equivalent currents; 2) Calculate the desired fields in the M1 surface by taking
the PO integration for these equivalent currents. The actual calculating procedure of
modeling the FYST beam maps is illustrated in figure 2.9. This ’two-step’ PO analysis
can significantly reduce the computation time. For example, employing it to predict
the FYST beam at 300GHz only requires around one hour for a computer with 12
Intel E5-2620 CPUs. The computing efficiency is improved by more than two orders
of magnitude compared to the previous conventional PO analysis by GRASP software
which took around one week using a machine with 100 CPUs). We also find that this
method can make the simulations almost frequency independent.
This developed ’two-step’ PO analysis technique uses the same idea, calculating

a large mirror by two steps, as the technique presented by Bondo in paper [75][76],
which was developed to model the quasi-optics mirror and len and has been successfully
implemented to check the optics components of the Herschel SPIRE instrument[77].
Bondo named this technique A-PO analysis because the technique refers to the use of
an Auxiliary plane or intermediate plane; here is the imaginary focal plane in figure 2.9.
The basic clue of the method is to calculate the fields on an intermediate plane where
the scattered fields of the mirror are concentrated in a limited spatial extension, leading
to a fast convergence of the PO integral. Fields propagating from this intermediate
plane to the target area are calculated by the equivalent PO currents on this ancillary
plane. In this section, the method will be described in detail by applying it to speed up
the FYST beam simulations. The accuracy of the technique is checked by comparing
the simulated fields with the previous results from the GRASP package in section 2.2.

2.3.1. Fields on the Intermediate Plane

The key to the ’two-step’ PO analysis is to properly choose an intermediate plane,
and the fields on the plane scattered from a reflector can be computed very fast. In a
reflecting optical system, an off-axis reflector is commonly used to focus or diverge a
Gaussian beam from a feed horn to achieve the required beam size. Figure 2.10 shows
the case where the beam is reflected and focused to a new plane, and the fields in this
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Figure 2.10.: Off-axis reflecting system where a feed horn produces a Gaussian beam scattered by
elliptical or hyperbolic reflectors. The beam waist plane and the desired field plane after or before the
beam waist plane are drawn. The beam waist of the reflected beam can be a real image in front of the
reflector (left) or a virtual image behind the reflector (right).

plane are confined in a narrow region with a constant phase which is called the beam
waist of the reflected beam. The beam waist can be an actual image in front of the
reflector or a virtual plane behind the reflector. If the intermediate plane is placed at
the beam waist, the scattered fields in this plane can be computed very fast because
the fields contributed by each PO current element on the reflector have nearly identical
phases. It means that the integrand in the PO integral is almost constant, so only a
small number of PO current elements on the reflector must be sampled to compute the
fields. The calculated fields in the beam waist plane are represented by equivalent PO
currents used to predict the fields in the desired region. The fields in the beam waist
plane are concentrated in the central beam region or within a few beam waist sizes.
This can further speed up the calculations. Notably, the fields produced by fields in
the intermediate plane are only exact if the intermediate plane is extended to infinite.
Therefore, the accuracy and computation efficiency of the ’two-step’ PO analysis is
related to the size of the chosen intermediate plane. If there is such an intermediate
plane where the fields are concentrated in a very small range, using the ’two-step’ PO
method can significantly improve the computation efficiency without degrading field
accuracy that much.
For some cases, the beam waist is imaginary and located behind the reflector like

a hyperbolic reflector shown in figure 2.10 (right). Directly applying the PO Integral
formula 2.6 to predict the beam waist fields is incorrect. To predict the imaginary fields
correctly, we need to back-propagate the reflector fields along the opposite direction of
the reflected beam. The imaginary fields can be treated as a source area that radiates
electromagnetic fields and produces the reflector surface fields. Therefore, instead of
using the general retarded potential [11], the correct imaginary fields must be calculated
using the advanced potential in the PO integral. The main difference between the
retarded and advanced solution is that the exponential factor e−jkR in formula 2.6 is
replaced by e+jkR, where R is the distance between the PO element in the reflector and
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Figure 2.11.: The equivalent optics of the secondary mirror of the FYST telescope. S and D are the
distance between M2, the receiver plane, and the receiver’s image.

the target field point in the imaginary beam waist plane.
In the case of the FYST simulation, the intermediate plane is chosen as the imaginary

focal plane of the secondary mirror shown in figure 2.9. The position of this plane can
be found by using geometrical optics because the distance between the receiver and
the secondary reflector is much larger than the confocal distance (πw2

0/λ) [78] of the
receiver horn, which means that the beam from the receiver can be considered as a
point source with Gaussian amplitude profile. Although the shape of the FYST mirrors
in the classical crossed-Dragone design has been modified to correct coma aberrations,
the geometrical optics analysis indicates that the reflector’s focus and local focal length
remain similar to the original design. The optics of this reflector is equivalent to that
described in figure 2.11. The geometrical relationship between the position of receiver
(S), mirror local focal length (f), and position of imaginary focus (R) is expressed by
following the formula 2.15. The local focal length of the M2 is 20 meters. We choose
the intermediate plane to be perpendicular to the central ray.

1
S
− 1
R

= 1
f

(2.15)

Considering the configuration of near-field beam measurement described in section 2.2,
the receiver is moved to 12.705 meters behind the M2 to refocus the telescope beam into
the source 300 meters away from the telescope aperture. Then the intermediate plane is
shifted around 4.8 meters further from M2. For the near-field optical setup, the beam
size in this plane is about 6mm (R · λ/D) at the wavelength of 1mm (300GHz). The
computed field region is 750× 750mm2, around 125 beam size in each direction. This
size is large enough to capture all relevant information for calculating the fields in M1.
To avoid the aliasing errors in the generated intermediate fields, we sample the currents
on M2 by ∼ 144× 144 points with a sampling space of around 44mm. The calculated
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intermediate fields in the co-polarization and cross-polarization are presented in figure
2.12. The fields are confined in the plane’s center, and the cross-polarization beam is
more than 30dB lower than the co-polarization beam. If ignoring the cross-polarization
performance of the telescope, we can further simplify the computation by using the
scalar Kirchhoff diffraction theory (section 2.4). Finally, the fields on the plane are
meshed by 151× 151 grids; the sampling spacing is about 0.8 times the beam size. In
modeling the electromagnetic performance in different frequencies, the required region
of the intermediate plane just needs to be enlarged or shrunk according to its beam size.
This makes the ’two-step’ PO technique is almost frequency-independent.

Figure 2.12.: The computed co-polarization and cross-polarization beams in the intermediate plane.
The top is the case with the receiver in the center of the focal plane; the Middle and bottom are beams
with the receivers at points of (400mm,400mm) and (400mm,-400mm).
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In addition to the cases shown in figure 2.10 where the beam waist after reflection
is at a finite distance from the reflector, the special case is that the reflected beam is
focused in the distant region, which means the optimal position of the intermediate
plane is in the far field. The far-field fields can be treated as an expansion of the fields
on the reflector in a set of plane waves from different directions, which is called the
plane wave spectrum of the fields in reflector. Considering the time-reversing case, the
near fields on the desired surface are calculated as the combination of the set of plane
waves described by the far fields that are expressed by the following formula,

Enear(r) ∝
∫ ∞

0

∫ ∞
0

f(kx, ky) · e−jk·r · dkxdky (2.16)

where k is wave vector and f(kx, ky) is the complex far-field plane wave spectrum.

2.3.2. Equivalent Currents

When the field distribution on the intermediate plane is generated, we replace the fields
with a set of equivalent surface currents as the radiation source to predict the fields
in M1. The field equivalence principle[70] indicates that the field outside or inside a
closed surface can be deduced by a set of virtual electric and magnetic currents at
the surface. These currents are chosen to satisfy the proper boundary conditions of
the electromagnetic field. Here, the closed surface is the infinite intermediate plane;
assuming a null field behind this plane, the equivalent electric currents Je and magnetic
currents Jm on the plane are expressed by following:

Je = n̂×Hi (2.17a)

Jm = −n̂×Ei (2.17b)

where Ei and Hi are the calculated incident fields on the intermediate plane and n̂

is the normal vector of the plane pointing from the plane to M2 in figure 2.9. The
scattered fields in the region from this plane to the reflectors can be exactly represented
by the PO currents integral if the plane has an infinite spatial extension. The equivalent
currents radiate a zero field behind this plane. The PO integration, in this form of the
equivalence principle, includes the electric current integral expressed by formula 2.6 and
also the magnetic current integral, which is represented by the following formulas:

E(~r) = − 1
4π

∫ ∫
Jm × R̂ 1

k2R2 (1 + jkR)e−jkRk2ds
′ (2.18a)

H(~r) = 1
4π

√
ε

µ

∫ ∫
S′

(
Jm(− j

kR
− 1
k2R2 + j

k3R3 ) (2.18b)
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+ (Jm · R̂)R̂( j

kR
+ 3
k2R2 −

3j
k3R3 )

)
e−jkRk2ds

′
,

The symbols in the formula are the same as those described in formula 2.6.
Two variations of this field equivalence principle can further simplify the calculations.

Since we assume a null field behind the intermediate plane, we can place an infinite
perfectly conducting surface in the plane. Then the electric current in formula 2.17a is
short-circuited. Thus the scattered fields can be computed by the magnetic currents on
an infinite perfect conductor. The equivalent magnetic current can be obtained using
the Image Principle, which is twice the current calculated in formula 2.17b. In the same
way, if we place a perfect magnetic conductor in the intermediate plane, the magnetic
currents on the surface must vanish. The scattered fields are found from the electric
current on the magnetic conductor. In the region behind the intermediate plane, these
currents radiate the mirrored field in front of this plane.

2.3.3. Accuracy

When the fields on the M1 surface are predicted, the beam map in the near or far field
is continuously calculated following steps 2 and 3 in figure 2.9. The computation time
and accuracy of the fields simulated by the ’two-step’ PO are investigated by comparing
to the results of the PO analysis from the GRASP software. The near-field beam maps,
which is 300 meters away from the telescope’s aperture, are simulated by the ’two-step’
PO technique for the focused and defocused setups. Figure 2.13 and 2.14 show the
co-polarization and cross-polarization beams in the symmetrical plane at 300GHz. The
beams are normalized by the peak value of the focused beam. If we treat the beam
from the full PO analysis presented in section 2.2 as the standard gold reference, the
errors of the ’two-step’ PO are shown in figure 2.15. It can bee seen that the maximum
error of the co-polarization beam is down to 65dB below the peak value of the focused
beam. The cross-like error patterns is caused by the panel edge diffraction simulated
by using the PTD analysis in the results from the full PO analysis. The field errors in
the map center is caused by the inconsistencies in the definition of the input Huygens
Gaussian beam, but the difference is very small.

The required computation time as a function of the operating frequency is also studied.
The beam maps of the telescope are simulated at frequencies of 1500GHz, 296GHz,
148GHz, and 100GHz. It indicates the method is almost frequency-independent for the
similar field accuracy and only takes around one hour for modelling the FYST telescope.
Consequently, the properties of fast convergence, frequency-Independence and good
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accuracy of the ’two-step’ technique make this technique to be an excellent alternative
algorithm for the full PO analysis.

Figure 2.13.: Comparison of the focused beam of the FYST telescope simulated by PO analysis
and two-step PO method. The field region is 300 meters away from telescope aperture. Top is the
co-polarization beam and bottom is the cross-polarization beam.

Figure 2.14.: Comparison of the defocused beams simulated by PO analysis and two-step PO method
respectively. The field region is the same with the focused case. The beam is spread out by moving
the receiver 105mm forward from the system focus. The co-polarization (top) and cross-polarization
(bottom) beams are plotted.
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Figure 2.15.: The difference patterns between the simulated fields calculated by using the PO analysis
and two-step PO analysis. The telescope is illuminated by a x-polarized Gaussian beam from the
receiver horn. Top is the error patterns of the co-polarization beam in real and imaginary components.
Bottom is the error map of the fields in another polarization. All the fields are normalized by the
co-polarization beam peak value.
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2.4. ’Two-step’ Fresnel-Kirchhoff Analysis

Employing the two-step PO analysis has significantly improved the radiation beam
simulations for FYST without notable accuracy degradation. Meanwhile, all electric
performances of the telescope, including co-polarization and cross-polarization fields, are
preserved and predicted. It has been proven that the ’coma-corrected’ FYST telescope
still has excellent cross-polarization isolation, which is more than 65dB lower than the
peak value of the focused co-polarization beam. To further speed up the PO simulations
for FYST, we will neglect the cross-polarization effects and treat the fields as scalars.
The scalar Kirchhoff’s diffraction theory [11][79][80] gives the field solutions of the
scalar Helmholtz wave equation in homogeneous space with given boundary conditions.
The Fresnel-Kirchhoff diffraction formula is the solution for the case where the field is
scattered by an aperture surface shown in Figure 2.16, which is expressed by

U(P ) = − j

2λ

∫ ∫
S

A · e−jk(r+s)

rs
[cos(n, r) + cos(n, s)]ds, (2.19)

where U is the space-dependent part of the studied monochromatic scalar wave
V (x, y, z, t) = U(x, y, z)e−jωt, and the trigonometric terms, cos(n, r) and cos(n, s),
are the cosine of the angle between normal vector on the reflector and incoming and
outgoing rays, r and s are the distance between reflection point Q and the source and
target field point. The Amplitude A in the original formula in chapter 8 of the book [11]
is a constant and represents a source radiating equally in all directions, here we should
allow the illumination pattern function from the source, for example, the Gaussian
radiation pattern from feed horn. This formula presents the field U at point P produced
by a source with amplitude of A at P0, which has been diffracted by an aperture at
surface S.

Figure 2.16.: Illustrating the diffraction formula 2.19.

Applying the scalar diffraction theory to deal with the case where the surface is a
reflector does not need real modification on this formula. Strictly, there is a phase
reversal on reflection, but that can be represented by a multiplication factor ejπ. The
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Figure 2.17.: Diagram of the field diffraction by a reflector.

diagram of the field scattered by a reflector now looks like Figure 2.17. We rewrite the
cosine terms in formula 2.19 as [cosθi + cosθr] where θi and θr are the angles between
the incoming and outgoing rays and the normal vector on the reflector. Following the
two-step analysis flow described in Figure 2.9 and replacing the vector PO current
surface integration by simple scalar field integral, processes of the two-step Kirchhoff
analysis are summarized as follows:

1. Calculate the field at M2 produced by the illumination from the feed horn.

2. Calculate the field on the intermediate focal plane, the imaginary focal plane in
Figure 2.9, produced by the fields on M2.

3. Calculate the field on M1 produced by the fields on the intermediate plane.

4. Calculate the field at the region we want to study, produced by the fields on M1.

Step 2 of the field calculation on the intermediate plane is still critical to speed up
the field integration. The way of choosing the intermediate plane and sampling issues
explained in section 2.3.1 is still adaptable. Meanwhile, the field propagation in the
back side of the reflector, for example, M2 in FYST seen Figure 2.18, needs to use the
’advanced values’ e+jkr. The virtual field on the intermediate plane is computed by the
following:

U(P ) = − j

2λ

∫ ∫
S

A · e−jk(s−r)

rs
[cosθi + cosθr]ds. (2.20)

Since the intermediate plane is chosen to be perpendicular to the central ray and the
field in the plane is confined in the area of around 750mm×750mm at 300GHz, the value
of trigonometric terms approximately can be replaced by 2 for the calculation of field
on M1 from the field on the intermediate plane. Using the two-step Fresnel-Kirchhoff
method for the beam pattern prediction of FYST gives the same level of field accuracy
in the co-polarization beam simulations. The required computing time for simulating
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Figure 2.18.: Diagram of the virtual diffraction field on the intermediate plane behind a mirror.

the 300GHz near-field beam map of the FYST model in this way is now down to only
about 1 minute using a private computer with an Intel i7-10700 CPU and 8GHz RAM.
Compared to the results from the GRASP computation, the difference is 68dB down
related to the peak value of the beam. This new technique will be used to build a new
algorithm for the FYST holographic analysis described in the coming chapter 4.

2.5. Summary

In this chapter, two precise and efficient methods for simulating the optical characteristics
of the FYST telescope have been studied and presented. The study began with an
explanation of the principle of the physical optics approximation technique for analyzing
reflector antennas. The physical optics analysis was used to study the far-field radiation
performance of a simple parabolic reflector. Then the Fourier transform relationship
in the antenna’s radiation was deduced. This relationship is the guidance theory of
the microwave holography technology. Next, the near-field FYST beam was simulated
using the PO method, which took around a week for one beam simulation due to
the two close reflectors. After the PO analysis, the diffraction effects of the panel
edges of FYST on its near-field beam pattern were studied by the physical theory of
the diffraction method. The simulation indicates that the panel edge effects can be
neglected at 300GHz because the effect is 78dB below the peak value of the FYST’s
focused beam. Finally, in order to speed up the beam simulations for FYST, a new
’Two-step’ PO analysis technique and ’Two-step’ Fresnel-Kirchhoff diffraction method
were developed to speed up the beam simulations for the special Crossed-Dragone
FYST telescope. The computational time has been reduced by four orders of magnitude
without notable accuracy degradation. The two advanced methods can be used to speed
up the simulations for general two-reflector optics.



Chapter 3.

Microwave Holography
Technology

This chapter is dedicated to the principle of microwave holography technology and the
primary holographic design for the reflector surface diagnosis of the FYST telescope.
The discussion begins with an explanation of the microwave holography fundamentals
using the far-field radiation theory of reflecting antenna. The criterion of designing a
holographic system is interpreted to meet the required surface accuracy and spatial
resolution. Next, the microwave holography measurement in near field is explained.
Finally, this .

3.1. Fundamentals of Microwave Holography

The electromagnetic characteristics of a large reflecting antenna have been studied in
the preceding chapter by the physical optics analysis. The scattered fields of a reflecting
antenna can be predicted in far or near field (Fraunhofer region or Fresnel region) if
knowing the antenna’s geometry and the fields illuminated on its surface. Here, the
illumination fields are the beam pattern of the antenna’s receiver feed horn. Naturally,
we can think of using the inverse process, inferring the antenna’s geometry by observing
its scattered fields with assuming the beam pattern of the receiver is known both in
amplitude and phase. The far-field radiation theory of a reflecting antenna indicates
that the Fourier transform relationship exists between the far-field radiation pattern
(Efar(u, v)) of the antenna and its surface induced current’s projection (J̃(x, y)) on
aperture plane [15][81]. The details of the radiation theory have been explained in
Chapter 2. Here, we rewrite the radiation formula by the equation 3.1 and neglect
the constant factor. In this expression, x and y are coordinates of the points on the
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aperture, and u, v are the antenna pointing directions.

Efar(u, v) =
∫

J̃(x, y) · e−jk·(ux+vy) dxdy; (3.1)

u = cos(θ)sin(φ), v = sin(θ)cos(φ).

The reversible Fourier Transform relationship offers elegant theoretical support for
solving the antenna’s shape by measuring its far-field radiation fields both in amplitude
and phase with microwave receivers.
The principle of holography is illustrated in Figure 3.1 for a simple symmetrical

parabolic antenna on the left. The field distribution on its aperture can be computed in
amplitude and phase by taking an inverse Fourier transform to the observed complex
radiation fields of the antenna; see the blue curves in Figure 3.1b. The ideal parabolic
antenna produces a constant phase distribution on this aperture. The phase changes
∆φ(x, y) of the measured aperture fields are calculated by the formula 3.2a, where Emeas

is the observed antenna beam, and Eideal are simulated ideal complex beam. Then
the measured phase changes can be converted to the surface deviations of the antenna
reflector by optical ray tracing shown in Figure 3.1a and the operating wavelength λ.
This is expressed by equation 3.2b, where ξ is the reflection angle at the reflection point.

∆φ(x, y) = phase(F−1[Emeas])− phase(F−1[Eideal]) (3.2a)

ε(x, y) = ∆φ(x, y)λ
4πcos ξ (3.2b)

Hence, the critical step is to accurately measure the far-field radiation beam of the
antenna under test. The principle of reciprocity in antenna theory [15][69] indicates
that the transmission field pattern and reception pattern of an antenna are equivalent.
It is convenient to measure the antenna’s reception beam pattern using microwave
receivers instead of the radiation beam pattern. The schematic of holographic analysis
is summarized in Figure 3.2. We let the antenna keep observing a distant point source.
The antenna’s reception pattern can be recorded by taking the response of its focal
receiver and scanning the antenna in azimuth and elevation coordinates. However, the
instability of the terrestrial atmosphere between the point source and antenna messes
up the phase measured by the receiver. Therefore, an extra antenna is used for looking
at the source in its bore-sight to provide a phase reference. Since the two antennas
look through the same atmosphere layers, the effect of atmospheric instability on the
signal phase can be canceled by taking the phase difference between the two antennas.
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Figure 3.1.: Principle of the microwave holography technique. a): Enlarged surface distortion on a
simple parabolic reflector with feed horn located in its focus; b): The simulated far-field radiation beam
(top) and aperture field (bottom) for the case of the antenna with an ideal surface (black curve) and
distorted surface (blue). The complex far-field beam and aperture field are a Fourier transform pair.

Hereinafter, the second antenna is called a reference antenna. The receivers in the
two antennas are locked by sharing the same local oscillator (LO). The outputs from
the two antennas are sampled and fed into a cross-correlator. Their phase differences
are collected and recorded as the measured phase pattern of the antenna under test.
The main receiver of the antenna under test records the amplitude pattern. After the
complex beam measurement, the collected data needs to be calibrated to remove the
electronic drift of the measurement system, for example, the gain fluctuation of the
receivers and slow phase changes between the light path of the two antennas. Next,
the recorded fields are interpolated into regular rectangular grids with the required
resolution for the subsequent Fourier Transformation. The aperture fields are computed
applying the fast Fourier transformation (FFT) algorithm. Then the surface deviations
of the antenna are inferred from the aperture phase error distributions, finally, converted
to the corrections of the antenna’s adjusters.
The advantage of employing the holography technique is that it directly measures

and assesses the antenna’s electromagnetic performance, which is the main concerned
feature of the designed antenna. After one circle of the antenna surface measurement
and correction, the second beam pattern measurement can help check the previous
measurement’s correctness. This method can use the advanced receiver system of
the antenna. It means the holographic measurement can be carried out during the
antenna operation so that the effect of different operating conditions on the antenna’s
surface deformations, such as the antenna deformation produced by gravity at different
elevations, can be explored. This technique also can achieve very high measuring
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Figure 3.2.: Diagram of the microwave holography measurement.

accuracy by improving the signal-to-noise ratio of the beam measurement system. For
example, the 100-m Green Bank Telescope (GBT) holography measurement aligned the
reflector with an accuracy of < 250µm by measuring its beam with a signal-to-noise
ratio of ∼ 73dB at 12GHz [82]. The details of designing a holographic system, which can
measure the surface error map that meets the required accuracy and spatial resolution,
are demonstrated in the rest of this section based on the most fundamental Fourier
transform theory.

3.1.1. Spatial Resolution

A large radio telescope generally is segmented into a set of small panels. These panels
are placed on a back structure where they are supported by three or more adjusters.
The antenna surface error map measured by the holography system must have enough
spatial resolution and accuracy so that we can determine the movement values of the
adjusters to compensate for these panel errors and achieve the required surface precision.
The spatial resolution of the aperture field function is determined by the measured
angular size of the beam pattern.
Considering the case that the beam pattern is sampled by N×N points in square

grid, based on Nyquist sampling theorem, the separation between two adjacent sampling
points must be less than beam size of the antenna, so that the entire aperture fields can
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be determined without aliasing error. The sampling interval ∆ is expressed as below

∆ = Kλ

D
(3.3)

where D is the diameter of the antenna aperture, and K is a constant less than one.
Then we record the beam pattern in angular size of N · Kλ

D . This can be treated as the
multiplication of the practical antenna beam and a rectangular function from N

2
Kλ
D to

−N
2

Kλ
D . Based on convolution theorem, applying the inverse Fourier transform to the

recorded data gives the convolution of the real aperture fields with a sinc function which
is the Fourier transform of the rectangular function. The sinc function is represented in
equation 3.4.

sin(πNKλx/D)
πNKλx/D

(3.4)

That is illustrated in Figure 3.3. The spatial resolution of the measured aperture phase
is defined by half width δ of the sinc function (equation 3.5).

δ = D

KN
(3.5)

Figure 3.3.: Fourier transform relationship between a rectangular window function in angular domain
and a sinc function in aperture spatial plane (black curves). The practical far-field beam (dash curve) is
truncated by a rectangular window function to be the measured beam (blue) for holography analysis.
The computed aperture field is the convolution of the real aperture field and the sinc function with size
of δ = D/N .

Therefore, when we know the spatial resolution δ required to describe the antenna’s
panel errors, the holographic beam is sampled in an angular range of θ = λ

δ with the
sampling interval of ∆. For the case of measuring the surface deformations for the 6m
diameter FYST telescope, if the holographic system operates at wavelength of ∼ 1mm
(300GHz) the telescope’s beam needs to be measured in a 0.6◦ field with 0.01◦ sampling
interval.
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3.1.2. Measurement Accuracy

The accuracy ∆ε of the measured antenna surface is related to the signal-to-noise ratio
of the measured aperture fields denoted by SNR(Aperture). If neglecting the reflection
angle ξ shown in Figure 3.1, the surface accuracy of the measurement is defined by

∆ε = λ

4πSNR(Aperture) . (3.6)

For simplicity, we assume the receiver illuminates the antenna uniformly, so the aperture
field points have the same SNR value. The Fourier transform relationship between the
antenna’s radiation fields and aperture fields indicates their noise relationship by the
formula

SNR(Aperture) = SNR(O)
N

, (3.7)

where SNR(O) is the signal-to-noise ratio of measuring the beam on boresight, called peak
signal-to-noise ratio (p-SNR). Substituting this formula to equation 3.6 and replacing
the sample point number N by D/Kδ give the equation 3.8 that relates the SNR of the
beam measurement system to required surface accuracy and spatial resolution.

∆ε = λD

4πKδ SNR(O) (3.8)

Therefore, to achieve high surface accuracy, the beam measurement system must be
sensitive enough to measure the antenna’s distorted beam or uses a high operating
frequency. For example, the 12m VertexRSI ALMA antenna carried out the holography
analysis at a frequency of 78.92 or 104.02 GHz and obtained the measurement accuracy
of ∼ 5µm [59]. For the 6-m FYST telescope, if the operating frequency is 300GHz and
the sampling interval is about 0.8 beam size, the SNR of the observed fields has to be
better than 70dB to achieve < 2µm measuring accuracy and 10cm spatial resolution.
The complex fields of the antenna are measured by taking the cross-correlation of

the output of the two receivers, the receiver on the tested antenna, and the reference
antenna. The equivalent SNR of the cross-corrector receiver is expressed by the following
equation

1
SNR2

E

= 1
SNR2

1
+ 1
SNR2

2
+ 1
SNR2

1 · SNR2
2
, (3.9)

where SNR1 and SNR2 are the signal-to-noise ratio of the antenna under test and
reference antenna, Figure 3.4 shows the output SNR as a function of SNR1 if fixing the
SNR of the reference antenna. It is found that the noise of the recorded complex field
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Figure 3.4.: Signal to noise ratio of cross-correlation receiver as a function of the SNR of the output
of under test antenna for the cases with fixing receiver SNR to be 20, 30, 40, 50, 60dB.

points is limited by the lowest signal-to-noise ratio of the two receivers. Normally, a
small antenna is used as the reference antenna and offers much less gain than the large
tested antenna. The holographic setup, such as the signal source selection, integration
time, and antenna scanning speed of the beam measurement, strongly depends on the
noise performance of the reference antenna.

3.1.3. Far-field Holography Measurement

The holographic method described above requires to observe the antenna’s complex
beam in far field. The far-field region of an antenna [83] is defined by a distance that is
larger than

Rfar = 2D2

λ
, (3.10)

where D is the diameter of the antenna. The distance Rfar is also called Fraunhofer
distance which can easily reach a value of several hundred kilometers for a 10m diameter
telescope. For example, in the 300GHz FYST holographic system, its Fraunhofer
distance is about 72km. The point-like source has to be placed beyond this distance,
then the Fourier transform relationship starts to be valid, and the simple FFT algorithm
can be used for the data analysis. Celestial sources become attractive choices. These
sources can also provide a range of elevation angles and allow the study of the antenna
deformations caused by gravity. The first far-field holography experiment was made by
Scott and Ryle for the Cambridge 5km radio telescope array [21][20] to observe the source
of 3C84 which is compact at 15.4GHz. Four of the eight dishes were simultaneously
measured by using the rest four telescopes as the reference antennas, and each field point
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was observed or 1min to get the SNR of ∼ 250 (48dB) and achieve 100µm accuracy.
Another astronomical source is the water-vapor maser at ∼ 22GHz in Orion Nebula [84].
The 30-m IRAM telescope used this water-vapor maser as a signal source, and a 1.75m
antenna mounted parallel to the optical axis of the IRAM telescope was used as a phase
reference antenna. The beam was measured at 32× 32 points by taking around 20
hours telescope time. This measurement achieved an effective surface accuracy of 65µm
with 10µm uncertainty [85]. Other option is to use the available satellite beacons. for
example, the Lincoln Experimental Satellite (LES-8), at a frequency of around 38GHz,
has been used for the holographic analysis of the NRAO 12-m radio telescope and the
Heinrich Hertz Telescope [86][87].

Using celestial sources to measure the groud-base antenna cannot avoid the influence
of terrestrial atmosphere [88]. The variations in the atmospheric water vapor column
density lead to signal path changes from the source to the antenna. Fortunately, the
path changes can mainly be compensated by using a reference antenna mounted close
to the beam axis of the antenna under test. The two antennas almost look through
the same atmosphere. However, the atmospheric turbulence [89] still creates the path
difference between the two antennas, which can degrade the accuracy of the holographic
measurement.

3.2. Near-field Holography Measurement

If there is no sufficiently strong celestial source to satisfy the required operating frequency
and surface accuracy, we have to use an artificial source and put the source from several
hundred meters to a few kilometers away from the antenna under test. In practice,
the distance is much shorter than the antenna’s Fraunhofer distance. The holographic
beam needs to be measured in the near field. The short distance can improve the signal
arriving at the antenna, so that a sufficient high SNR of the measured fields can be
obtained. It also reduces the atmospheric volumes that the signal passes through and
minimizes atmospheric variations. Usually, artificial sources are mounted on a steel
tower on the ground or mountain site with an elevation angle of < 10◦. The gravitational
deformation of the antenna for different elevation angles cannot be studied.
Since the source is close to the antenna, the phase front of the incoming wave front

from the source is not a plane and will contain higher orders phase terms over the
antenna aperture plane. We cannot directly apply the inverse Fourier transform to
the measured beam map until these high-order terms are corrected. For example,
one high-order term is the spherical wave front caused by the finite distance, which
behaves the same way as defocus error. This error can be compensated by an axial
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displacement of the antenna’s receiver. The details of the corrections of these high-order
phase terms are demonstrated by Jacob W. M. Baar for the near-field holography of
the ALMA telescopes [59][16]. Successful near-field holography measurements using the
Earth-bound transmitters have been reported for the Texas 4.9-m millimeter telescope
[90], The 12-m VertexRSI ALMA telescope [59][91], the JCMT telescope [25][26].

3.3. Primary Holography Design for FYST

In this section, as an exercise of using the technique described above, we present the
primary holographic system design for the FYST telescope based on the required surface
accuracy and spatial resolution. FYST will be located at the CCAT observatory at an
altitude of about 5600 meters. The telescope is designed to observe up to 1500GHz,
the 200-micron atmospheric window. Antenna tolerance theory indicates that the
efficient surface precision of FYST should be better than 10.7µm to preserve the desired
performance at 1500GHz. Under good measurement conditions, e.g., stable temperature
and moderate wind, the goal of a < 7.1µm surface precision. Since FYST consists of two
6-m reflectors, to achieve the < 10.7µm surface precision, the rms of the surface errors
on each reflector should be less than < 7.6µm. The reflector errors are contributed
by panel manufacturing errors, deformations due to gravity and ambient temperature
changes, and panel alignment error that depends on the surface diagnosis method, such
as microwave holography. The total reflector error sources are summarized in Table 3.1
and 3.2 [58], where Table 3.1 shows the errors of an individual panel, and Table 3.2
gives the error budget of each reflector.

Error Source RMS Error (µm)
Panel manufacturing error 3.0

Gravity (30− 150◦ elevation) 0.8
Ambient temperature changes ∆T = 15k 0.14
Temperature Gradients (front to back

side)=0.3K
1.86

Total panel 3.6

Table 3.1.: Surface error budget of an individual panel.

The error from the reflector measurement must account for a small fraction of the
overall surface error budget, then the errors contributed by other sources can be measured
and corrected. Here, We adopt the holographic measurement to align the reflectors
and set its accuracy ∆ε to 2µm which includes the effect of random errors due to the
instrument noise and atmospheric fluctuations, and systematic errors, for example,
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errors caused by telescope pointing trajectory errors and phase front errors from the
receiver feed horn. In this primary design, we expect the contribution from random noise
of the measurement system to be less than 1µm. To achieve such high measurement
accuracy, we use a high frequency ( 300GHz) and put the holographic source relatively
close to the telescope ( 300m away). Using a higher frequency means that a given
fractional error in measuring the aperture phase converts into a smaller error in the
surface.

Error Source RMS error M1 (µm) RMS error M2 (µm)
Total panel error 3.6 3.6

Panel alignment error 2 2
Manufacturing margin CFRP 3.5 3.5

Gravity 3.5 1.8
Wind (6m/s) < 0.1 < 0.1

Ambient temperature change
∆T = 15K

1.4 1.4

Temperature Gradients (front to
back side)=1K

< 0.44 < 0.44

Total reflector 6.6 5.9

Table 3.2.: Surface error budget of M1 and M2.

Parameters Value
Frequency freq 300GHz
Wavelength λ ∼ 1mm

Aperture Diameter D 6000mm
Beam size λ/D 34.4 arcsec

Spatial Resolution δ 100mm
Measured Map size θ 0.6× 0.6 deg2

Sampling Points N 61× 61
Total measurement error ∆ε < 2µm

Error contribution from receiver noise ∆ε1 < 1µm
Other systematic errors ∆ε2 < 1.8µm

Required Signal-to-noise ratio for
random error ∆ε1

SNR > 73.6dB

Measurement Time < 1h

Table 3.3.: The main requirements for the FYST holography system

The spatial resolution of the measured reflector surfaces must be high enough to guide
the corrections for individual panels. FYST consists of 146 square panels, 77 on M1 and
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Figure 3.5.: Location of the holography source relative to the CCAT-prime and TAO site. South is
at the top. The source is on the shoulder of the mountain where is about 20 meters higher than the
telescope and 300 meters away.

69 on M2, with the size of 670× 750mm and 700× 710mm respectively. Each panel is
supported by five vertical adjustment points to allow for correcting the higher-order
panel deformations. A spatial resolution of 10cm is sufficient enough to resolve the panel
errors and convert the surface error maps to the value of the adjuster movements. The
holographic beam must be measured in an angular range of 0.6◦ at 300GHz. According
to the equation 3.8, the required peak SNR of the measured beam map is around 73.6
dB. In addition, the measurement needs to be completed within an hour so that the
reflector deformation caused by ambient temperature changes can be studied. In Table
3.3, we summarize the requirements for the FYST holography system.

Near-field holography system
To meet the requirement of high speed and high SNR holographic measurement, a
300GHz artificial transmitter is used and placed around 300m away from the telescope
and 20m higher than FYST. Figure 3.5 shows the satellite geographic map of the
locations of FYST and the holographic source. The transmitter acts as a point source
and produces > 100µW (10dBm) output power. Extra optics is designed to converge the
transmitter’s output wave and provide a narrow beam (beam size of 1.8◦), which makes
the illumination pattern on the telescope’s aperture nonuniform, but further improves
the SNR. The nonuniform illumination can be corrected by taking deconvolution on the
measured beam. The narrow beam also reduces the effect of stray light caused by the
reflections of the ground between the transmitter and the telescope. The short distance
also minimizes the influence of the atmospheric turbulence on the phase front distortion
of the source beam.
The telescope’s beam will be measured in both amplitude and phase, so a reference
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antenna is required. Because the transmitter has a strong output power, we can use a
heterodyne receiver [92] and an additional 10cm-size reflector to observe the transmitter
and provide a phase reference for the holographic measurement. Here, the reference
receiver uses the same electronic design as the receiver in the telescope’s focal plane
(signal receiver) and is mounted in the yoke of FYST (see Figure 3.6). The two receivers
share a common microwave reference for their local oscillator. Their intermediate-
frequency (IF) outputs are coherently sampled and converted to the frequency domain
by fast Fourier transform by a digital correlator [61]. The measured signals will be
operated in the specific channel. The digital correlator acts as a digital filter to reduce
the noise bandwidth and further improve the SNR of the recorded data. The two
receivers’ power and cross-correlation are recorded in time sequence. The diagram of the
electronic schematic of the FYST holography system is illustrated in Figure 3.7. The
design of the electronic parts and the extra optical system in the source and reference
receiver shown in Figure 3.7 will be described in Chapter 5.

Figure 3.6.: The locations of the Signal Receiver and reference receiver in the telescope.

Figure 3.7.: Schematic of the FYST holographic measurement system.
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3.4. Summary

In this chapter, the basic theory of the microwave holography technology has been
presented. In the first part of this chapter, the holographic fundamentals and its
designing criterion were explained based on the reflecting antenna’s radiation theory.
Next, the near-field holography measurement was presented. Finally, this chapter ended
with a discussion of the primary holographic design for the FYST telescope to achieve
< 2µm measurement errors. In the next chapter, the issue of measuring the surface
deviations for the FYST’s two reflectors will be discussed.



Chapter 4.

Multi-map Holography for a
Two-Reflector System

In this chapter, a new holographic metrology developed for measuring the shapes of the
FYST’s reflectors is presented. The chapter first points out the difficulty of using the
conventional holography analysis to diagnose surface errors of a ’two-reflector’ system. To
address this challenge, a novel approach for measuring multiple beam maps is proposed,
and its feasibility is demonstrated through geometrical analysis. This is followed by
developing the corresponding software technique to convert the measured multiple maps
into two surface error maps. Subsequently, a numerical study is conducted to assess
the feasibility of the novel approach in which the effect of several noises and errors in
the measurement system is explored. Next, this section concludes with a summary of
the error budgets of the FYST holography measurement. Finally, this chapter ends
with a discussion of the effect of the beam sampling grid that commonly is rectangular
grids with uniform sampling, but it is proven that the new holography technique is not
limited by the data sampling grid. In this chapter, the measured FYST’s beam maps
used for the numerical simulations are computed by the ’two-step’ Fresenl-Kirchhoff
method described in Chapter 2.

4.1. Introduction

The microwave holography technique described in Chapter 3 provides an efficient and
accurate way to measure large radio telescopes’ reflector shapes by observing their beam
maps in the far or near field. But, employing this method to analyze the reflector
surfaces of FYST presents challenges. Conventional holography only gives one surface
error map, which is the sum of the surface errors of all telescope reflectors. For regular
large radio telescopes, for example, Cassegrain telescopes, errors on the telescope’s
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secondary reflector can be neglected because of its small size and small and measurable
manufacturing errors. So we can say the measured surface error map is the actual
surface deviations of the large primary reflector. However, FYST is a Crossed-Dragone
telescope with two 6-m reflectors (M1 and M2). Both reflectors are segmented into a
set of rectangular panels, and these panels are assembled and aligned on the backup
structure, which means the surface errors on the secondary reflector cannot be neglected
anymore. Clearly, a single beam measurement cannot offer enough information to
discriminate the surface errors between the two reflectors. We call this indeterminacy
degeneracy between two surfaces. It could be argued that this does not matter since
one could adjust one reflector, say M1, until the phase in the aperture plane was
flat, which would provide a perfect beam even if there were errors in M2 which were
being compensated by the deviations that had been put into M1. Unfortunately, this
is impractical for two reasons: 1) The reflectors are made of relatively large panels
(around 0.5m2); Each panel only has five vertical adjusters to correct its shape, and
the projections of these panels onto the aperture plane do not match, so an exact
compensation is not possible; 2) A critical property of the FYST optical design, coma-
corrected Crossed-Dragone optics, is to provide a wide field of view; the surface error
compensation made by M1 would only work for the receiver at one position in the focal
plane. As one moves the receiver to other positions, the projection of the two reflectors
onto the aperture plane will change, and the compensation will not work anymore.
Therefore, to preserve the best optical performance of the telescope at its entire field
of view region, a new measurement technique is developed to break the surface error
degeneracy in the ’two-reflector’ system and measure their surface shapes separately.

4.2. Multi-map Microwave Holography Technique

Any surface errors in the FSYT’s two reflectors lead to phase front errors on the
telescope’s aperture. In turn, the phase errors on the aperture distort the telescope’s
beam in the far and near fields. Adjusting the surface shape of one reflector can
compensate for the aperture phase error produced by the other reflector and optimize
the telescope’s beam. But if the receiver was moved to different points in the focal
plane, the compensation would fail because the phase errors contributed by the two
reflectors are shifted in the aperture plane, which means the effect of the two surface
errors is separated. Therefore, if we measure the telescope’s beam at several separated
points in the focal plane and analyze the observed beam maps simultaneously, we think
the surface error degeneracy can be broken, and the error maps of the two reflectors
can be obtained separately. Since this measurement requires more than one beam map,
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we name it ’Multi-map’ holography. The section first explains the feasibility of the new
method in geometrical optics. Then the new holographic analysis method is presented
to convert the measured beam maps to two surface error maps.

4.2.1. Geometrical Optics Analysis

We first make a simple discussion in ray optics to show that it should be in principle
possible to adjust the FYST optics by measuring a few beam maps. Consider a distant
source and a receiver located at the center of the focal plane. When the telescope
reflectors are perfect, the light paths from the source to the receiver through different
parts of the aperture are all the same. Now suppose that each of the reflectors M1 and
M2 is introduced some path errors called δ1 and δ2. Within the approximation of ray
optics, the total path error to the receiver becomes then δ1 + δ2. If we have an ideal
measuring system with mounting receiver on-axis, we can adjust any of the reflectors to
make the δ1 + δ2 to be zero, i.e. just correcting M1 surface to compensate error in M2.
Because of the degeneracy, we cannot make δ1 and δ2 both to be zero, but we can make
sure that δ1 is equal to −δ2. This will be true at all points on the mirror surfaces, so
we can write δ1(x1, y1) = −δ2(x2, y2), where the points (x1, y1) and (x2, y2) lie on the
same ray trace at M1 and M2 respectively.
If we then move the measuring system to a different point in the focal plane, i.e.

off-axis, the rays now take a different path through the telescope. If we consider the
same reflecting points (x1, y1) on M1, they now are projected to (x′2, y

′
2) on M2 that can

be expressed by x′2 = x2 + ∆x and y′2 = y2 + ∆y. We should note that with the off-axis
layout of the crossed-Dragone geometry ∆x and ∆y are not constant because the distance
of the two reflectors top part is much further than that of the bottom part. Figure 4.1
illustrates the changes of the reflection points on M2 for the light coming from the same
point on M1 but from different angles of the sky. So the measured path error becomes
ε = δ1(x1, y1) + δ2(x′2, y

′
2) + A(x′2, y

′
2), where A is the additional path error due to the off-

axis aberrations and can be calculated and corrected. Assuming the surface error varies
smoothly, we can write δ2(x′2, y

′
2) ≈ δ2(x2, y2) + ∆x · dδ2/dx2 + ∆y · δ2/dy2. Since we

already adjusted the surface of one mirror and arranged that δ2(x2, y2) = −δ1(x1, y1),
we can get the expression ε = ∆x · dδ2/dx2 + ∆y · dδ2/dy2. Therefore, it means we can
make just one additional measurement with an offset the receiver in the x direction,
employing the conventional holographic analysis can get ε, then we integrate the
(ε/∆x) · dx2 to compute δ2(x2, y2). In principle, making a beam measurement with
an offset in the y direction for the receiver also gives the same result δ2(x2, y2). This
argument based on ray tracing optics proves that employing at least two holographic
measurements with putting the receiver at different well-separated points in the focal
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Figure 4.1.: The reflection points on M2 surface for the light reflected by same points on M1 with 3
different incident angles, blue points for light from (0◦, 0◦) of the sky, green for (2.6◦, 0◦) and red points
for (0◦, 2.6◦).

plane can discriminate surface errors on the two mirrors. But the ray tracing optics
does not consider the diffraction effects between the wave propagation between the two
reflectors.

4.2.2. New Analysis Technique

Based on the analysis in ray optics, moving the holography to two different well-separated
points in the focal plane would be sufficient to break the degeneracy between the panels
of the two mirrors. Considering the presence of noise in the measurements, we think
the degeneracy breaking can be further improved by making additional measurements
by moving the receiver both in the x and y axes. We plan to use five points - the
center of the field and the corners of a square, as illustrated in figure 4.2 left, to cover
the focal plane. The corresponding focused beam patterns with the receiver at the
five positions are simulated and displayed in figure 4.2 right. As the holography beam
patterns are observed, we cannot find any obvious direct method, which is analogous to
an inverse Fourier transform, for converting the five beam maps into two surface error
maps. Instead, we treat this as a numerical inference problem. We come up with three
approaches:

1. Direct inversion and fit the mirror surface using ray optics. Taking the inverse
transform of the observed beams gives five aperture field distributions. For the
near-field measurement, geometrical corrections are required because the source
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is located at a finite distance from the telescope. The second step is to use the
ray tracing method to fit the movements of the panel adjusters that can produce
wavefront errors that best match the measured wavefront. Applying this method
doesn’t consider the diffraction issues of the detailed geometry of the telescope,
such as the diffraction that takes place from one reflector to the other, including
the effect of the panel gaps in the reflectors. Figure 4.3 shows the diffraction fields
on M1 that are produced by M2, which shows strong diffraction fringes on M1
edge panels.

2. Direct inverse transform of the measured and simulated beams. This method still
takes the direct inversion for measured data and also for the ideal beam maps
that are simulated by the accurate physical optics method described in Chapter 2.
Then, we could subtract the perfect aperture fields from the measured aperture
fields, and the diffraction issue mentioned in method 1) can be removed. After
this, we can continue using the ray optics fitting process to fit the shapes of the
two reflectors.

3. Fit the reflector surfaces by directly comparing measured beams to simulated beam
maps. We think it is not necessary to convert the beam maps of the telescope to
its aperture fields and process the data there. We can fit the reflector surfaces by
directly comparing the measured data with the simulated beams. Specifically, we
should find a way to parametrize the surface deviations of the reflectors, such as
using a set of orthogonal two-dimensional polynomials (e.g., Zernike polynomials
for circular mirrors) or direct using the movement values of the panel adjusters to
describe the panel errors. Then the beam maps of this parameterized model can be
predicted by numerical simulations. We call this calculation the ’Forward’ function
with variables of these parameters. Employing the numerical fitting technique,
we can find the set of parameters for the two reflectors that best account for the
measured data. This method requires a fast and accurate algorithm for computing
the ’forward’ function for any given reflector parameters.

The third method will be employed to analyze the five measured beams. There are
numerous advantages with this approach: 1) we can use an accurate formulation of
the electromagnetic aspects that includes a proper treatment of the rather complex
geometry of the telescope and of the diffraction that takes place between the components
and in the path from the source; 2) we directly deal with the original measured data,
it means more information is preserved so that we can study the effect of systematic
errors, like telescope unknown pointing errors, and find a way to avoid or minimize their
influence; 3) using this method, we can include various parameters that are used to
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represent systematic effects such as the uncertainty in the position of the receiver and
inaccuracy of the illumination pattern of the receiver and the source. In the rest of this
section, the details of this approach are explained, including the parameterization of
the mirror surfaces and systematic errors, the algorithm of the ’forward’ function used
to predict the telescope’s beam map with any reflector surface errors, and the details of
the fitting procedure.

Figure 4.2.: Left: The optical layout of the ’crossed-Dragone’ FYST telescope. The ray trace shows
that the light path error produced by two mirror surface errors is degenerate. It also indicates that
moving the receiver to different points in the focal plane, here the focal plane center (blue) and four
corners of a square 800mm on a side, can change the reflection points on the M2 surface, breaking
the light path degeneracy between the reflectors. Right: The corresponding focused beams with the
holography receiver at the 5 points in the focal plane.

Figure 4.3.: The field on the primary mirror (M1) of the FYST telescope that is produced by its
secondary mirror at frequency of 296GHz for the holography receiver at the telescope’s nominal focus.
Left: The amplitude distribution of the field on panels of M1; Right: The projection of the phases of
the M1 fields on telescope aperture.
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Parametrize Reflector Surface Errors

The FYST’s reflectors are made of a set of square panels, 69 on M2 and 77 on M1, with
panel sizes of 670× 750mm and 700× 710mm respectively. Each panel is supported by
five adjustable mounts in the z-axis, one of which is in the center and the four at the
corners of a rectangle, 440× 500mm in size shown in figure 4.4 (left). Since we wish to
be able to set the reflectors, rather than simply measure them, what we actually need is
the values of the adjustments that should be made to obtain a perfect reflector surface.
Therefore, we decided to choose these adjustment values as the parameters that we tune
to find the best fit for the measured beam patterns. Since the panels are almost square,
and the four supporters are located close to the panel corners, with these five adjusters
we can control five surface error terms for each panel - piston, x or y tilt, curvature,
and twist shown in figure 4.4 right. This means that the panel deformations ε(x, y) can
be described by a 2nd-order polynomial expressed by formula 4.1.

ε(x, y) = a+ bx+ cy + d(x2 + y2) + exy (4.1)

If the five adjustments on each panel are noted by s0, s1, s2, s3 and s4, the coefficients
of the formula can be expressed by a = s0 for piston, b = (s1 + s4 − s2 − s3)/4lx and
c = (s1 + s2 − s3 − s4)/4/ly for x/y-tilt, d = [(s1 + s2 + s3 + s4)/4− s0]/(l2x + l2y) for cur-
vature term, and e = (s1 − s2 + s3 − s4)/4lxly for twist panel error, here, lx and ly are
the offsets of the four corner adjusters in x and y axes. The formula will be used to
interpolate between the support points onto a grid suitable for performing electromag-
netic calculations. The more accurate way of modeling the panel deformation caused
by supporter movements is to do finite element analyses (FEA) for a panel, here, since
the supporter errors will be less than 20µm, then using the above model should be a
reasonable approximation.
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Figure 4.4.: Left: The five z axis adjusters locations in the panel. Right: The four low-order panel
deformation terms, x and y tilt error, curvature Error, and twist error.

As an alternative, which may be useful for the diagnosis of some issues such as thermal
deformations, we can ignore the panels and their mounting points, and parameterize the
whole of each mirror in terms of a set of orthogonal functions such as Zernike polynomials
[11] that is widely used to analyze aberrations of circular optics. Although the mirrors
of the FYST telescope have zigzag rims, and the illumination fields on the mirrors are
not uniform, the strict orthogonality are not meet when the Zernike polynomials are
applied to the FYST surface parameterization. We though that nonetheless approximate
orthogonality is still maintained. The maximum order of the polynomials is determined
by the spatial resolution required.

Parametrize Errors in Large Spatial Scales

There are a number of effects in the practical system other than surface errors, which
will cause a mismatch between the observed data and simulations. These include an
error in the position of the holographic receiver, uncertainty of the receiver’s beam, and
inaccuracy of the assumed distance from the telescope to the source. These errors will
make a smooth modification in the field phase over the aperture, which are called errors
in large spatial scale, for example, the pointing offset and receiver lateral displacement
corresponding to linear phase gradients across the aperture and aperture phase curvature
produced by z-position error of receiver and source. We also need to account for that
the amplitude pattern in the aperture is not an exact match to the one that we have
assumed, which is affected by the inaccuracy of the designed Gaussian beam size of the
receiver’s feed horn and the illumination taper of the source.
These large spatial errors can degrade the measurement accuracy of the reflectors.

Fortunately, we do not need to know these errors for the purpose of setting the reflector
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panels, we can parametrize these errors and include them as free parameters in the
model. We do this by including in the model a multiplication term Map(x, y) for the
aperture fields, which is expressed by equation 4.2.

Map(x, y) = ∆Aap · ei·∆φap , (4.2)

∆Aap and ∆φ in this equation represent correction terms in amplitude and phase
expressed by equation 4.3, where x and y are the positions of the point in the aperture
plane.

∆Aap = A0 · (1 + ux+ vy + wxy + sx2 + ty2) (4.3a)

∆φap = φ0 + ax+ by + c(x2 + y2) (4.3b)

The phase term ∆φ gives four parameters, allowing for fitting the large spatial errors
that cause tilted and quadratic phase terms in the aperture plane. The correction term
Aap for amplitude is a linear approximation for the Gaussian beam assuming the changes
in beam center and beam width are small. The accuracy of using these correction terms
has been verified by numerical simulations in section 4.3.3. It should be noted that
these approximations in phase and amplitude corrections only work as long as these
errors are small, for example, < 5 mm position error of the receiver. Now there are
10 additional parameters required to be fitted for each measured beam map. We also
should pay attention to that these large spatial errors on the aperture also could be
represented by certain combinations of the movements of the panel adjusters in either
of the reflectors, which are not the real surface deformations on the reflectors. This
gives rise to the new degeneracy in the solution when seeking the best fit. To deal with
this, we plan to use a regularization term in the fitting model to compress the total
amount of the adjuster movements and assume the large spatial phase errors come from
the misalignment of the system. The details will be explained in the fitting procedure
section.

Forward Function

When the surface deviations of the reflectors are parametrized, the ’forward’ function of
these parameters is used to predict the telescope’s distorted beam maps. This section
talks about how to establish a ’forward’ function that can efficiently and accurately
simulate the telescope’s beams. In the actual experiment, the reception beams of the
telescope are measured. The process is that the signal comes from a distant source and
is scattered by the telescope’s reflectors and recorded by the receiver in the focal plane.
According to the antenna’s reciprocity theorem, the reception beam of an antenna is
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equivalent to its radiation beam pattern which is the time-reserved process of that we
described above. In order to simulate the telescope’s beam performance, it is convenient
to model the telescope’s radiation beam pattern, starting from the receiver and through
the telescope’s optics, to find the field on a spherical surface at the distance of the
source.
The numerical fitting technique will be used to solve the reflector surface errors

from the measured beam maps. According to the numerical simulations that we will
be presented in the later sections, the fitting process generally requires thousands of
calculation loops to find the optimum solutions. To achieve a reasonable analysis time
e.g., < 1 hour, we expect one calculation loop needs to be done within a few seconds
or even less. One option is to apply the highly efficient fast Fourier transform (FFT)
algorithm to convert the aperture fields to the telescope’s far-field beam based on the
Fourier transformation relationship described in Section 2.1.3. The aperture fields
can be computed using geometrical optics. But this technique does not consider the
diffraction effects of the wave propagation between the FYST’s two reflectors. Then, a
more accurate but time-consuming method, physical optics (PO) analysis, is employed
to account for this effect. Fortunately, in Chapter 2 the new ’two-step’ Fresnel-Kirchhoff
analysis has been developed to speed up the physical optics analysis, which can reduce
the computation time of the PO analysis from a week to < 1 minute on a personal
computer (e.g. Intel i7-10700 CPU) and still achieve the field accuracy of < 70 dB below
the peak value of the beam. As our goal is to reduce the computing time to less than a
second, additional linear approximation is studied and applied to the beam calculation,
which will be discussed in the rest of the section.

The details of the ’two-step’ Fresnel-Kirchhoff analysis for the FYST telescope have
been presented in Chapter 2. This technique speeds up the fundamental PO analysis by
incorporating two changes: 1) instead of using the complex PO expressions, the scalar
Fresnel-Kirchhoff integration formula [11] is applied, where the vector electromagnetic
field is described as scalar quantify. So the cross-polarization beam of the telescope
cannot be expressed, which is not important for the holographic analysis; 2) the PO
analysis flow explained by the black arrows in figure 4.5, are replaced by the four-step
calculations, see the green arrows in the figure. The most time-consuming process in
the PO analysis is step 2 which is the calculation of the fields in M1 scattered by M2
because the two reflectors are separated only by 6 m, the phase of the fields on M1
radiated by the PO current elements on M2 changes very fast over the M1 surface, we
need to sample the M2 surface very densely (e.g., > 7000× 7000 points) to preserve the
calculated field accuracy on M1. Step 2 is broken into two processes, calculating the
fields in the intermediate focal (IF) plane of M2 where the fields are confined in a small
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Figure 4.5.: Beam calculation process in the inference holographic analysis. The black arrows indicate
the standard wave propagation process, where the output beam starts from the receiver feed to illuminate
M2, then is scattered to M1, and reflected to the sky or source region. The blue arrows represent the
calculation process of the new two-step Fresnel-Kirchhoff diffraction method, which breaks the wave
propagation from M2 to M1 into two steps using the intermediate focal plane of M2.

region, and calculating the fields on M2 from the fields in M1.
We first formulate the calculation processes described above in figure 4.5. We denote

the field as Uj in M2, Vl in IF plane, Wm in M1, and Sn for fields in the source region,
where the subscript represents the point on the reflectors or plane surface. Based on the
Fresnel-Kirchhoff integration formula expressed in equation 2.19 the computing steps
can be expressed by following equations:

Vl = −i
λ

∑
j

eikrlj

rlj
·∆S · Uj (4.4a)

Wm = −i
λ

∑
l

e−ikqml

qml
·∆A · Vl (4.4b)

Sn = −i
λ

∑
m

e−ikpnm

pnm
·∆S′ ·Wm, (4.4c)

where λ is the operating wavelength, and rlj , qml and pnm represent the distance between
source field points and target field points in each wave propagating process, ∆S, ∆A and
∆S′ are the surface elements on M2 surface, IF plane and M1 surface respectively. Here,



80 Chapter 4. Multi-map Holography for a Two-Reflector System

the sum of the cosine term in the integration formula 2.19 is approximately constant,
equal to 2.

The next step takes the reflector surface errors into account in the calculations. The
slight reflector distortions do not impact the intensity of the fields on the reflector
surfaces. Phase changes of the fields are proportional to the surface deviations from the
ideal position. Here we denote the surface deviations ε1 on M1 and ε2 on M2 as shown
in figure 4.5, the field calculation process in equation 4.4 is rewritten as below:

Vl ≈
−i
λ

∑
j

eik·(rlj−ε2cosθrj )

rlj
·∆S · Uje−jkε2·cosθij

=
∑
j

Alj · Uj · e−ikε2·(cosθij+cosθ
r
j )

= A ·U (4.5a)

Wm ≈
−i
λ

∑
l

e−ikqml

qml
·∆A · V ′l

=
∑
l

Bml · Vl

= B ·V (4.5b)

Sn ≈
−i
λ

∑
m

e−ik·(pnm+ε1cosθrm)

pnm
·∆S′ ·Wme

−jkε1·cosθim

=
∑
m

Cnm ·Wm · eikε1·(cosθrm+cosθim)

= C ·W, (4.5c)

where the metrix elements, Alj , Bml and Cnm are the summation elements eikrlj/rlj ·∆S,
eikqnm/qnm ·∆A and eikpnm/pnm ·∆S

′ in equation 4.4, here we neglect the factor i
λ . It

is seen that these matrixes do not depend on surface deviations, so they just need to be
computed once for the distorted beam calculations. In equation 4.5, θi and θr represent
the incident and reflection angles at the field points on the two reflectors. Therefore, to
predict the beam map distorted by the surface deviations, we convert the surface errors
(ε1 and ε2), which are expressed by the parameters of the panel adjuster movements,
into the field phase changes. Then following the matrix multiplication in equation 4.5,
the fields distorted by the given surface errors are gotten.
In addition, the parameters used to compensate for the large spatial scale errors

described in section 4.2 are also included in the forward calculation. Before calculating
the field Sn in the source region, the field on the M1 surface (Wm) is multiplied by
the compensation term in the equation 4.2. The compensated M1 field and then is
expressed by W ′

m ·∆Aap · ei∆φap . Finally, the desired field Sn in the source region is
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computed. This method requires one detailed and time-consuming beam calculation in
advance that costs around 3 minutes for one beam calculation of the FYST telescope
using a normal personal computer, and the intermediate results are saved in memory.
Then carrying on the matrices multiplications will require < 1 second using normal 4
cores CPU and < 0.1 second with a graphics processing unit (GPU) e.g. using Nvidia
GeForce RTX 3070.

Fitting Procedure

We are now presenting the inference process using the forward function and parameters
developed in the sections mentioned above. The measured complex fields at a set of
points i in the beam map are denoted by Di. The fields are normalized by the total
power of the entire measured beam, and the phase terms are corrected by the phase
in the beam center. Then the fields computed by the developed forward function are
labeled as Yi, assuming initially that the telescope surfaces are perfect and the same
normalization and phase correction are applied to the data. The disagreement between
the measured data and modeled fields is characterized by the residual vector Ei = Yi−Di.
The best fitting movements SM1

n and SM2
m of the adjusters on M1 and M2 and large

spatial parameters described in section 4.2 are found by minimizing the sum of |Ei|2

over all the data points.
Although the degeneracy between the surface errors of the two reflectors can be

broken by measuring more than one beam map in the focal plane, it should be noted
that this separation will only work really well for errors with relatively small spatial
scales; the errors on larger scales will still be nearly degenerate. This can be easily
seen by considering a sample case of a linear phase error; a tilt of one mirror would be
compensated almost exactly by the reverse tilt of the other mirror, no matter where
the receiver is located in the focal plane. In addition, the large spatial errors described
in section 4.2 are also degenerate with the reflector deformations in large scales. The
existing degeneracy can result in over-fitting of the parameters SM1

n and SM2
m . To avoid

the degeneracy, we include in a quantity to be minimized the magnitudes of the adjuster
movements multiplied by the regularization factor λ0, which assumes that mirror surface
deviations are small and dominated by panel distortions. The value of the regularization
factor is not critical. It needs to be large enough to suppress the degeneracy but not so
large that it prevents the fitting process from finding real surface deformations. We can
do the minimization process and inspect the fitting mirror surfaces and data matching
between model beam patterns and measured data by changing the value of this factor.
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Therefore, the quantity to be minimized is given by equation 4.6 called the loss function.

R =
∑
i

|Yi −Di|2 + λ0 · (
∑
n

(SM1
n )2 +

∑
m

(SM2
m )2) (4.6)

The analysis flow of the fitting technique is illustrated in figure 4.6. If five beam
patterns were measured and used for the surface analysis, there would be 750 pa-
rameters (5 × 69 adjusters on M2, 5 × 77 adjusters on M1, and 10 × 5 large scale
parameters for the five measured beams) required to be fitted. We employed the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [93] as the iterative method
for solving the nonlinear minimization problem that requires the gradient of the loss
function R defined in equation 4.6. Computing the function’s gradient is expensive if
there are abundant variables. We employ the automatic differentiation technique [94],
which is based on applying the chain rule to accumulate the numerical value of the
differential as the developed algorithm executes. Then gradient of the loss function
∇R for all variables can be calculated by tracing back along the algorithm execution
path. This technique has the advantage that the computing time of evaluating ∇R is
in the same order as calculating the loss function R and independent of the number of
variables. The method is established using the package PyTorch [95], which makes it
easy to use and automatic offloading onto GPUs.

Figure 4.6.: Flowchart of the basic inference process used to find the panel adjuster movements
required to set the mirror surfaces.

The fitting software will be very sensitive to large-scale parameters if the holography
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system has a large absolute pointing offset or focus error. According to numerical
simulations, it is more efficient to find the best-fit mirror surfaces by two steps: 1)
fit the large-scale parameters to find telescope pointing and focus error by setting all
adjuster movements to be zeros; 2) the fitting large-scale parameters are fed into the
software as the initial values to fine-tune these values and find the values of the adjuster
movements. This inference method’s feasibility and detailed data analysis process will
be tested with numerical simulations in the next section.

4.3. Numerical Simulations for the FYST Holography

In this section, the feasibility, accuracy, and sensitivity of the new holography technique
described above are investigated by numerical simulations. These simulations are
carried out at 296GHz for the FYST telescope to find the optimum set-up, observational
approach, and data analysis flow for the FYST holography. The following aspects
are investigated: 1) What is the best-separated distance of the receiver for measuring
the multiple beam maps; 2) the effect of realistic errors, including random errors and
systematic errors, such as measurement system drift, telescope tracking error, and
atmospheric turbulence; 3) the influence of modeling errors for the holography system,
such as telescope optical misalignment and inaccuracy of source illumination beam and
feed-horn beam pattern; 4) check if the new technique can measure large-scale surface
errors on the two reflectors.

The FYST holography system described in Chapter 3 requires measuring the telescope
beam map in the near field where the source is around 300m from the telescope. The
’best’ focus of the telescope is moved to ∼ 725mm behind the astronomical focal plane.
The new holographic analysis method does not rely on having the receiver at this ’best’
focus. It is easy to see that, in fact, it is better to have the receiver somewhat closer to
the focal plane. Figure 4.7 shows the FYST optics layout, the position of the original
focal plane, and the ’best’ focus plane. Figure 4.8 shows the cut through the beam
pattern for the focused optics and the cases with the receiver moved forward by 125,
225, 325, and 425mm from the new focus. The plane with a 125mm offset mounts the
receiver and measures the telescope’s beam maps. The effect is to spread out the beam
so that the peak gain is reduced by ∼ 20 dB. This offers the advantage of reducing the
dynamic range required for the measurement system. In principle, we could defocus the
beam further, but if we spread the beam too far, we will start to lose some of the detailed
information on the reflector surfaces because parts of the beam patterns are pushed
outside the measured area, like the green curve in figure 4.8. Therefore, beam maps must
be measured in an extensive angular range to achieve the required spatial resolution.
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It can be seen that with 125mm of defocus, the power is still largely contained within
a region ∼ 0.2◦ in diameter, which is small compared to the 0.6◦ diameter of the map
designed to achieve 100mm spatial resolution in the measured surface maps.

Figure 4.7.: Optics layout of the FYST telescope with a source at 300m from telescope aperture and
the receive mounting locations. The new focus is changed to ∼ 725mm behind the original focus. The
receiver plane is 125mm before the new focal plane. The receiver will be mounted in the center and
four corners of a square that is 800mm on a side.

Figure 4.8.: The cut of the focused beam (black) and the defocused cases with the receiver 125mm
closer to the original focal plane than the best-focus position (blue). The beam patterns are simulated
using the ’two-step’ Kirchhoff diffraction method for the FYST telescope with perfect mirror surfaces.

The new holography technique requires measuring two or more beam maps. In the
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practical FYST holography, we plan to measure the beams at five points in the focal
plane shown in figure 4.7, four at the corners of a square and one in the center. To test
the new data analysis approach, a set of random movements at the panel adjusters with
a magnitude of 30µm RMS are introduced. Figure 4.9 shows the produced surface errors
on the two reflectors. The four off-axis beams together with the on-axis beam, with
and without the surface errors, are calculated by the ’two-step’ Kirchhoff diffraction
approach and shown in figure 4.10. The beam calculation method has been developed in
Chapter 2, and the accuracy of this method has been checked by comparison with the
industry-standard GRASP software. If we load the five beam maps into the developed
inference software and take the perfect surface as the starting point, the offset values of
the adjuster from their ideal positions can be solved to very high accuracy (� 1µm).
This is not surprising since we use the same method to get the measured beam maps
and to do the forward calculation in the fitting.
In the rest of the section, the measurement noise and the instrument effects in the

practical tests are simulated and added to the measured beam maps. The measured
data denoted by Di is replaced by noisy data D′i expressed by the following equation.

D
′
i = Di · (1 + ∆Gi) ej∆φi +Ni, (4.7)

where Ni is a set of random Gaussian variables with zero mean and RMS of σ, representing
additive noise, and ∆Gi and ∆φi are multiplicative errors which could arise from gain
and phase fluctuations of the holographic instruments or the atmosphere. We define
the signal-to-noise ratio (SNR) as the ratio of the peak amplitude, for the case of the
map made with perfect reflectors and with the receiver at the best-focus position, to
the noise, σ. The multiplicative terms are random, but, to make them realistic, they
are not white noise but instead filtered to produce a smoother variation with time.
This enables us to study the effects of systematic drift and atmospheric turbulence on
the final measurement accuracy and to develop a method or observational approach to
remove these effects.
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Figure 4.9.: Surface error maps with 30µm RMS random movements at the adjusters: secondary
mirror (M2) on the left and primary mirror (M1) on the right.

Figure 4.10.: Amplitude of the beam maps (relative to the focused peak) with the receiver located
at four off-axis points and center in the focal plane, from left to right, a receiver located at [400,400],
[400,-400], [0,0], [-400,400] and [-400,-400]. Top row - ideal mirror surfaces; bottom row - with the
surface errors shown in figure 4.9. The square maps cover 0.57× 0.57 degrees.
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Figure 4.11.: Deviations of the best-fitting surfaces from the input surfaces where noise with amplitude
-65dB with respect to the peak power was added to the data. The root-mean-square of the illumination-
weighted surface errors is 0.5µm on M1 and 0.6µm on M2.

The simplest case is to add the random noise to the five off-axis beam maps in figure
4.10, assuming the noise with amplitude -65 dB related to the peak power of the focused
beam. The values of the adjuster movements are solved from the five noisy maps and
converted to surface deformations of the two reflectors. Compared to the input reflector
surfaces shown in figure 4.9, the error of the measured surface shapes are plotted in
figure 4.11. RMS of the measurement errors is about 1.5µm. It can be seen, however,
that most of the errors occur near the edges of the mirrors, particularly on M2. In the
case of M1, the reason for this is the lower illumination at the outer edge by the receiver
horn. On M2, only the inner region contributes to all five of the beam patterns - the
regions near the corners are in the signal path for only one of the maps. This means
that the RMS over the whole surface is a pessimistic estimate of the actual operational
performance of the telescope. A reasonable representation of the measurement error is
multiplying the surface errors by the illumination amplitude pattern of the feed horn.
RMS of the ’illumination-weighted’ surface errors is used to present the measurement
accuracy expressed by ε. Then RMS of the illumination-weighted surface errors in figure
4.11 is about 0.6µm.

4.3.1. Effect of Random Noise and Holographic Setup

We first study the relationship between measuring accuracy, measurement noise, and
space of the receiver locations in the focal plane. The ratio of the peak of the focused
beam to the deviation σ of the thermal noise is expressed in terms of the voltage
ratio. The range is from 55dB (voltage ratio 560) to 70dB (3200). The measured maps
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consist of 61 by 61 points to sample each beam map in the range of 0.6× 0.6 degrees,
which satisfies the Nyquist sampling theorem. The curves in figure 4.12 illustrates
that the measurement error is inversely proportional to the signal-to-noise ratio of the
measurement if assuming the holographic setup is fixed. This agrees with the measuring
accuracy of the holography system described in Chapter 3. The conventional holography
measurement with SNR of 65dB produces a 2.6µm surface accuracy.

Figure 4.12.: The RMS of illumination-weighted error ε in deriving the reflector surfaces as a function
of signal-to-noise ratio with respect to the peak of the focused beam. The three curves are the results
when using different sets of receiver positions, as indicated in the legend. This simulation put the
receiver in the plane that is 105mm in front of the best-focused plane.

The simulations are respectively carried out for the setup with the receiver separated by
±200mm, ±400mm, and ±600mm in each direction. Figure 4.12 shows the measurement
errors for the three setups. It is found that using large spacing (±600mm) produces
little errors because the large separated space of the receiver can significantly shift the
phase errors produced by the two reflectors on the aperture plane. Figure 4.12 also
indicates that measuring accuracy of 600mm receiver spacing is only slightly better than
the accuracy of the case of 400mm receiver spacing. The designed receiver mounting
structure in the telescope’s cabin allows the receiver movement up to 500mm from the
focal plane center. The simulations in the rest of this section use the 400mm receiver
spacing. This simulation also indicates that the accuracy of < 1µm is achieved if the
SNR of the holographic system is greater than 60 dB. Here, the SNR is defined as
the ratio of the peak focused power to the noise, whereas the model case is for an
out-of-focus beam measurement where the peak power is reduced by 20 dB. It means
the required SNR of the defocused beam measurement just needs to be larger than 40
dB.
The effects of gain and phase fluctuation of the instruments are also studied. The
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variations of the gain and phase are assumed to be random and have a flat spec-
trum. For example, the gain of the receivers changes at the level of 1 part in 100,〈
(∆Gi/G)2〉1/2 = 0.01 (−20dB) or

〈
∆φ2

i
〉1/2 = 0.01radians (∼ 0.5◦), these contribute

the final surface errors of around 0.5µm seen the simulations results in figure 4.13. We
expect that the gain and phase fluctuation in the electronics of the system should be
much lower than those levels.

Figure 4.13.: The RMS of measured surface error ε as a function of random gain (right) and phase
(left) fluctuations. These simulations are for the set-up with the receiver separated by ±400mm in both
directions. The receiver plane is 105mm in front of the best-focus plane

4.3.2. Effect of Atmospheric Turbulence

As the signal from the source passes through the atmosphere, the effective path will
fluctuate due to variations in the refractive index of the air. At millimeter wavelengths,
these variations are mainly due to differences in the amount of water vapor in the
turbulent cells, particularly near the ground, but temperature differences may also
play a role. For example, even on the high dry site planned for the FYST where the
atmospheric pressure is ∼ 0.5 bar and the temperature ∼ 265 K, the total additional
path due to refraction over the 300m distance is about 45mm and, if the relative humidity
is 20%, the water vapor contributes about 1mm. This means that either a change in
the temperature of ∼ 0.6K or a change in the humidity from 19% to 21% would change
the path by ∼ 100µm. The path from the source to the reference receiver is, however,
close to that from the source to the telescope aperture, so most of the variations will be
common mode and will not affect the measurements.

To model the atmospheric phase fluctuations, we assume that they are random with
a power-law spectrum with a slope of -8/3, which is expected if they are produced by
Kolmogorov turbulence [89]. We can make a suitable time series by generating white
noise, transforming to the frequency domain and adjusting the magnitudes to have the
desired slope, and then transforming back to the time domain again. Figure 4.14 shows
the power spectrum of one such series.
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Figure 4.14.: Temporal power spectrum of the phase fluctuations assumed for simulation of atmospheric
effects.

Figure 4.15.: Simulated phase error due to atmospheric variations as a function of time (blue). The
data points where the beam passes through the center of the map are in red. The residuals after
correction using these data points are in orange.

Figure 4.15 shows the time sequence of the phase errors. If we apply these to a model
set of data and solve for the mirror surfaces, we find that the RMS error in the solution ε
is 2.5µm. We can, however, apply the correction procedure, where we take out the more
slowly varying components by using the data points taken when the beam is frequently
passing over the center of the pattern. This leaves the residual errors shown as the
orange line in figure 4.15. With these applied to the model data, we find errors in the
solution of only 0.5µm. Although we cannot predict in advance what the magnitude of
the atmospheric phase errors will really be at the site, this result demonstrates that the
correction technique that we plan to use should make a large reduction in their effects.
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Figure 4.16.: 4 off-axis focused beams of the ideal telescope (black) and the telescope with large spatial
amplitude and phase errors (red). From left to right, the large-scale amplitude, defocus, x-pointing, and
y-pointing errors are introduced to the four off-axis beams separately.

4.3.3. Optical Alignment Mismatch

The practical holography system always differs from the designed model, for example,
the uncertainty of the locations of the receivers or source and the inaccuracy of the their
beam size. These mismatches modulate the amplitude and phase distributions of the
telescope’s aperture fields in large spatial scales. Section 4.2 presented how to express
these amplitude and phase errors by two second-order polynomials. The coefficients of
the polynomials are included as free parameters in the holographic fitting process. To
check the feasibility, we plan to create these large spatial-scale errors and check if the
fitting software can precisely find these errors. The input 1/e beam size of the receiver
at the point [400mm,400mm] in the focal plane is changed from 0.2rad to 0.16rad to
model the large spatial amplitude errors. The edge taper (the ratio of the maximum
power of the aperture fields to the power of the field at the telescope’s edge) is reduced
by 4.88 dB. The second beam map, a receiver at [400mm,-400mm], is defocused by
moving the receiver 2mm back from the designed position, then the curved phase terms
are produced over the aperture plane. The receiver locations of the rest two beams are
set to the points of [-402mm, 400mm] and [-400mm, -398mm] to simulate the position
errors of the receiver. In order to easily see the effects of these large spatial errors on
the telescope’s beams, the focused optical setup is employed. The red contour lines in
figure 4.16 show the beams modified by these errors. The black lines show the ideal
beams.

In the fitting process of the surface analysis, we find it is better first to fit these large
spatial errors in the measurement system. These errors can be efficiently found and used
as the initial fitting values for the following surface analysis. The top plots in figure 4.17
show the calculated beams after the large spatial error fitting in blue contour lines. The
red lines in the figure are measured distorted beam. The pointing and defocused errors
in figure 4.16 have been found. After this step, the fine surface analysis is carried out
and starts from the ideal mirror surface and the large spatial parameters found above.
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The beams calculated by the best-fit surfaces are displayed in figure 4.17 bottom; more
details of the beams are displayed. We can see the fitting beams agree very well with
the measured beams. Only the first beam, which has a 4.88dB illumination error in
aperture fields, doesn’t agree well with the measured beam. Because the 4.88dB edge
taper change is too large, the linear approximation of describing the aperture amplitude
changes is not accurate enough. The practical source has about 10m 1/e beam size at
the telescope and reduces the edge tape only by 0.83dB. The simulations tell that its
effect on fitting surfaces is less than 0.1µm.

Figure 4.17.: The comparison of the observed beams (red curves) and beams calculated by fitting
process. The top is the contour plot of the four off-axis beams (blue) after fitting the large-scale
parameters. The bottom is the beams (green) calculated by the best fitting surfaces, and more details
of the beams are displayed.

These simulations prove that the terms used to express the aperture field errors in
large spatial scales are precise enough to compensate for the mismatches between the
designed holographic and practical systems. In real measurement, these terms can be
fitted and compared with the designed parameters; if their differences are too large,
that means something is wrong in the measurement. The simulations are also carried
out for the defocused holographic setup where the receiver is 125mm before the focus,
which indicates the same measurement accuracy.

4.3.4. Telescope Pointing Errors

We now consider the effect of the telescope pointing inaccuracy during beam scan. The
telescope pointing errors may result from servo tracking errors or telescope deformations
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due to a slow change of centrifugal forces or temperature with time. We simulate
the pointing errors by assuming that each sample in the observed maps is shifted by
random distance δEl, δAz from the expected position in elevation and azimuth directions.
These pointing offers are simulated with a ’random-walk’ process which calculates the
accumulative sum of Gaussian random variables to get random variables, and the RMS
of the new random data is modified to the designed level. We expect that the pointing
errors will be small and assume the telescope pointing direction will not offset too
much from the commanded position, so the mean of the simulated pointing errors is
removed. Figure 4.18 shows the measured surface errors as a function of the RMS of
the pointing errors. It is found that the accuracy of the is quite sensitive to pointing
errors. 2 arcseconds RMS (6 arcseconds peak-to-peak) of pointing error degrades the
measurement accuracy by around 4.5µm, which is already higher than the required
< 2µm measurement accuracy.

Figure 4.18.: The RMS of the measurement surface accuracy ε as a function of the RMS of the
telescope ’random-walk’ pointing errors.

The actual situation of the pointing error is not as bad because the telescope’s pointing
position can be read by the encoder. The readout from the encoder is much close to the
actual pointing position. In case there is a large pointing error in the future measurement
system, the actual telescope scanning path needs to be measured. After the holographic
analysis, we plan to implement additional fitting processes called the ’outer loop’. After
the surface analysis, we believe most surface errors of the telescope have been discovered,
although the results are not accurate enough. The solved reflector surfaces are fed into
the model in the holographic software. We express the trajectory of the telescope in
the time series by the sum of a set of the Fourier series. Then the holographic software
is employed to fit the Fourier series coefficients to find the actual telescope scanning
path. It was found that the measurement accuracy can be significantly improved by
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repeating this process twice. Figure 4.19 presents the simulated telescope variations in
the elevation angle of one scan. The fitting scanning path can compensate for most of
these deviations. The derived scanning path is fed into the holographic software, and
a new surface error analysis, in turn, is taken and results in a measurement error of
< 1.5µm.

Figure 4.19.: Simulated telescope pointing error in elevation angle for an azimuthal scan (red) and
the derived elevation changes (blue).

4.3.5. Effect of Panel Fabrication Errors

The manufacturing accuracy of the panels is one dominant surface error source of the
telescope. Figure 4.20 shows an overview of the panel fabrication errors measured by the
coordinate measuring machine (CMM). The average RMS of the errors is less than 3µm
(2.77µm in M1, 2.82µm on M2). This section studies the effects of panel manufacturing
errors on the accuracy of the fitting movements of the panel adjusters.
Assuming the panel adjusters are located in the ideal positions, and only the panel

fabrication errors exist on the reflector surfaces, we employ the holographic analysis to
the measured beams. As expected, a set of non-zero adjuster movements are found to
describe the surface errors. The analysis software uses the model with perfect panel
surfaces to find the best adjuster movements to express the panel fabrication errors.
But using five adjusters cannot precisely describe the detailed panel surface roughness.
Numerical simulations tell us that the RMS of the surface errors over the entire mirror
can be improved from 3µm to 2.5µm after applying these non-zero values to correct the
panel deformations. It means panel surface roughness will not affect the accuracy of the
holographic system; instead, the errors would be measured and compensated by turning
panel adjusters.
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Figure 4.20.: Summary of the measured surfaces of the panels on M2 (Left) and M1 (right), the panel
number, and RMS of the errors on each panel are written. Panels highlighted in orange have an RMS
greater than 3.5µm.

4.3.6. Summary and Error Budget

The feasibility of the Multi-map holography measurement and the developed software
technique has been proven by numerical simulations for the FYST telescope. The effect
of several errors in the FYST holographic system on measurement accuracy and the
optimal observation approach to minimize these effects are also investigated. It was
seen that the new software analysis technique could compensate for the error caused by
a mismatch between the practical system and the built model in the analysis software,
and the manufacturing error on each panel would not degrade the final measurement
accuracy. The most sensitive factor of degrading measurement accuracy is the telescope
pointing error. Fortunately, the scan trajectory of the telescope can be analyzed by the
fitting program if the relative pointing errors of the telescope are not much significant.
The contribution of the above measurement errors to the holographic measurement
accuracy is summarized in table 4.1. These simulations indicate that a measurement
accuracy of ∼ 2µm is achievable.
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Error Source Surface Error ε
Receiver noise (SNR < 65 dB) < 1µm

Random gain fluctuation (∆G < 0.01) < 0.5µm
Random phase changes (∆φ < 1) < 0.5µm

Atmosphere turbulence after calibration 0.5µm
Pointing errors (Max 6 arc second) < 1.5µm

Others (e.g,. phase error of Feedhorn) < 1µm
Total < 2.2µm

Table 4.1.: Summary of the measurement errors in the FYST holography system.

4.4. Star Sampling Pattern

The conventional holography technique uses the Fourier transform to analyze the
measured beam, which requires sampling the beam map in rectangular grids. This
limitation demands the telescope to scan the source row by row or use other scanning
modes but regrids the data series to the required grids. The data regridding may create
spatial errors, which is the inaccuracy of the telescope pointing directions. In addition,
it is also necessary to apply the calibration process during the telescope scan to correct
the effects of the drift of the instruments and the fluctuations of the atmosphere. The
calibrations are usually done by frequently moving the telescope to look at a fixed point
and recording the fields of this point in amplitude and phase. So the fluctuations can be
tracked and removed from the measured data. To implement this, additional motions
of the telescope are required, and this will reduce the ratio of the valid data during the
measurement.

Fortunately, the new holographic analysis technique doesn’t require the points to be
on a regular grid with uniform coverage of the beam map area. Therefore, the data can
be arranged in any pattern, which can easily achieve the data calibration procedure with
keeping good data-taking efficiency. One example is to use a ’star’ pattern [96], which
moves the telescope in a straight radial line, with each motion passing the nominal
on-axis position. Figure 4.21 blue dots show a radial scan pattern that has 50 radial
slices with 3.6◦ interval, and 72 points sample each slice. This pattern results in a
sampling biased toward the center of the beam, where the fields are sampled more
densely than the outer region. The center part of the telescope beam has higher gain
compared to the outer region, and we thought these regions include more important
information to resolve telescope mirror surfaces.
The gray curve in figure 4.21 is a regular raster scan pattern that includes 61-row

scans with 61 data points per line. So the valid observing time and noise in the measured
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Figure 4.21.: Telescope scan patterns, the radial data sampling pattern with 50 radial slices 3.6 degrees
apart in azimuth (blue dots) and 72 points in each slice, and regular square raster scan with 61-row
scan, and each scan contains 61 sampled data points.

Figure 4.22.: The RMS of illumination-weighted error ε of the fitting mirror surfaces as a function of
the peak signal-to-noise ratio for the case using different scan patterns. The black curve uses a regular
square pattern with 61-row scans and 61 points in each line. Other colorful curves are the cases of ’star’
scan patterns with different radial scan numbers.
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data are the same for the two scanning patterns. The simulations indicate that the
accuracy of the solved surfaces of the reflectors is the same for the cases using the two
scan patterns with the same noise in the measured beam maps. The simulated results
are shown in figure 4.22. We also checked the effect of the slice numbers by using 50, 40,
and 30 scans in each beam pattern but keeping the total number of sampling points and
signal-to-noise ratio, simulated measurement error as a function of the signal-to-noise
ratio of the beam is also plotted in figure 4.22. The effects of the errors described in
previous sections were also checked for the case of using this ’star’ scan pattern by
numerical simulations, which gave the same level of measurement accuracy. Due to
the sequential nature of the studies, the results in the preceding sections still use the
rectangular scan pattern.

4.5. Summary

In this chapter, the new holographic technique for surface diagnosis of a ’two-reflector’
system, which is named as ’Multi-map’ holography method, has been developed and
verified by numerical simulations for the FYST telescope. In the first part of the
chapter, surface error degeneracy between two reflectors of the FYST telescope was
explained, and it was emphasized that measuring and correcting the surface errors for
both reflectors was very important to preserve the optical performance of the designed
telescope. In the second part, the new multi-map holography approach and the new data
analysis technique were proposed and developed. Then the feasibility and accuracy of
the new method were verified by numerical simulations. The effects of different types of
errors in the measurement system on the accuracy were also investigated. The optimal
configuration, measurement approach, and analysis flow were explored to optimize the
measurement accuracy. This study concludes that the novel multi-map holography can
successfully discriminate surface errors on the two reflectors of FYST by observing five
different beam maps, and the measurement accuracy of ∼ 2µm is achievable. In the next
part, the multi-map holography and the new software technique will be implemented on
a small Crossed-Dragone antenna to check further the feasibility of the method and the
accuracy of the designed holographic hardware for FYST.



Chapter 5.

The FYST Holographic System

Based on the holographic design and the study of the ’Multi-map’ holography technique
described in the preceding chapters, the details of the FYST holographic system are
presented. The chapter begins with the holographic hardware which is designed to
satisfy the required surface accuracy and spatial resolution. Then the setup of the
holographic measurement and the data pre-processing procedures are described to get
the telescope’s beams. Finally, the holographic analysis flow is explained.

5.1. Hardware Design

We now describe the hardware design needed to make the FYST holographic measure-
ment. The diagram of the electronic schematic of the holographic system has been
illustrated in figure 3.7. There are four main modules: 1) the source (transmitter) that
will be mounted on a steel tower on the shoulder of the mountain, about 20m higher than
the telescope and 300m away; 2) the signal receiver, which is supported by a frame close
to the focal plane; 3) the reference receiver mounted on the telescope’s yoke, immediately
below the telescope aperture, where it has a direct view of the source; 4) the digital
correlation receiver housed in the electronics space inside the yoke. These modules were
designed, assembled and tested by our collaborator in Universidad de Chile to meet
the holographic requirements that were summarized in Table 3.3 in Chapter 3. The
specification of the receiver and source are given in Table 5.1.

The modules of the source and the receivers are all enclosed in temperature-controlled
boxes to provide stability and protection. The local oscillator (LO) signals shown in
figure 3.7 for the two receivers are derived from a common microwave reference at
12.32GHz which is also located in the electronics space. Since coherence during the
measurement is paramount, identical high-quality and phase-stable cables will be used
to carry this reference signal to the two receivers. The rest of this section will present
these modules’ optical design and electronic parts.
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Source Receiver
Reference Signal

Frequency 295.74GHz LO Frequency (×2) 295.68GHz 295.68GHz
Beam FWHM 1.8◦ Beam FWHM 1.1◦ 16◦

Frequency Stability 1× 10−9 Noise temperature < 5800 K < 5800 K
Output power > 100µW IF Frequency 60 MHz 60 MHz
Phase noise @ 1kHz -80 dBc/Hz Channel Bandwidth 8.2kHz 8.2kHz

Table 5.1.: The specifications of the FYST holography hardware.

Feed Horns
The same design of profiled diagonal horn [97] was used for all three radio frequency
(RF) modules, the source and two receivers. The horn of the signal receiver illuminates
the telescope directly, whereas the source and the reference receivers contain additional
optics to provide narrow well-defined beams, which serves both to increase the power
level of the signal and to reduce unwanted reflections.

This horn design was chosen because it is relatively simple to machine but has good
properties for our application. The half-power beamwidth (HPBW) is around 16◦, which
was chosen to provide an edge taper of 7dB on the telescope. This relatively modest
taper enables us to measure the outer parts of the reflectors accurately. The equivalent
beam waist of the designed horn is around 1.4mm at 295.74GHz. The sidelobes are
more than 20 dB below the co-polar maximum and the peak cross-polar components
are below -25 dB. We have manufactured the horns and verified their compliance with
the predictions of electromagnetic modeling by measuring the pattern at 296GHz in the
laboratory, using the planar near-field technique. The reconstructed far-field complex
(amplitude and phase) beam of the horn is shown in figure 5.1.

Figure 5.1.: Radiation pattern of the conical-spline horn. The black circle represents the edge of the
6m telescope aperture.
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Source Module
The 295.74GHz signal is produced by multiplying a 16.43GHz dielectric resonance
oscillator (DRO) in two stages - the first active and the second passive. The DRO is
in turn locked to a GPS-disciplined 10MHz oscillator. The combination is designed to
provide a stable signal with low-phase noise. The components making up the source are
shown in figure 5.2. All these components were obtained from commercial sources.
The feed horn illuminates a small off-axis parabolic mirror producing a beamwidth

of 1.8◦ FWHM, which means that its output beam is ∼ 10m wide when the output
beam reaches the telescope. This beam size is chosen as a compromise between making
it small to minimize the chance of reflection from the ground between the source and
the telescope and making it large to ensure that the wavefront across that telescope
aperture is spherical. After reflection off a flat mirror, which is used to align the beam,
the signal passes through a hermetic window, which is tilted to avoid reflections. Figure
5.3 shows the optical layout of the source and its CAD model.

Figure 5.2.: Schematic of the source.

Figure 5.3.: Left: The optical layout of the source module; right: the view of the source CAD model.

Receiver Modules
The two receivers contain almost-identical RF modules. The main components are shown
in figure 5.4.Each module contains a horn, a sub-harmonic mixer, an active multiplier



102 Chapter 5. The FYST Holographic System

chain for the LO, and amplifiers for the LO and IF signals. Apart from the horn, these
are again commercially available devices. The LO frequency is 147.84GHz, which means
that the IF frequency is 60MHz. The signal and reference receiver modules differ only
in the amount of IF gain, which is determined by the peak signal level expected. The
use of an ambient-temperature sub-harmonic mixer means that the noise temperature is
relatively high, ∼ 5.000K but, because we have a relatively powerful source that is quite
close and there is a substantial amount of gain in the optics, this is sufficient to give a
signal-to-noise ratio of more than 70dB. For this application, simplicity and stability are
more important than sensitivity. To assist in this, the components are again mounted
on an isolated, temperature-controlled plate and enclosed. See figure 5.5.

Figure 5.4.: Schematic of the receiver module.

Figure 5.5.: View of receiver module with part of the cover removed.

The signal receiver to sample the signal in the focal plane is supported by a stiff frame
which will be erected in the instrument space when measurements are to be undertaken,
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see figure 5.6. The receiver module sits on one of a set of mounting points on this frame,
chosen to give the required coverage of the focal plane.

Figure 5.6.: The mount for the receiver in the telescope focal plane, showing the support frame (brown)
and the X-Y stage (light grey).

Figure 5.7.: Close-up view of the signal receiver module at one of the mounting positions.

There is a motorized X-Y drive behind the frame that can pick up the receiver module
and move it from one mounting point to another under remote control. This should
take less than a minute. The support of the receiver module is kinematic to ensure that
it can be moved and replaced with repeatability. The locations of the mounting points
can be changed (manually) if we find that a different spacing is necessary. In addition,
the mounting frame can be moved nearer or closer to the focal plane to change the
amount of defocus.
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Figure 5.8.: Cut-away view of the reference receiver.

The reference receiver, which will be mounted directly on the structure of the telescope
yoke to ensure a stable attachment, contains the second receiver module and optical
components. See figure 5.8. Two off-axis mirrors produce a collimated beam with a
FWHM of 1.1◦. This is again a compromise between making the beam narrow, to reduce
reflections and increase the signal level, and making it wide so that the change in phase
and amplitude during the scanning movement, which will typically be ∼ 0.6◦. The
optics was designed based on Gaussian optics theory, and mirror parameters and optical
performance are shown in appendix B. A third flat mirror is mounted on a motorized
rotation stage which directs the beam at the source. The rotation is controlled remotely
over an Ethernet connection. This is needed because the telescope azimuth at the center
of the scan will change when we move the signal receiver to a different position in the
focal plane (by about 1.6◦ for a 400mm offset). We can also make a small scan with
this stage, while keeping the telescope stationary and pointed at the source, to calibrate
the phase and amplitude of the reference system as a function of azimuth. The mirror
can also turn the beam in the opposite direction so that we can make measurements
with the telescope flipped “over the back”, which will be important for testing whether
the deflections in the telescope mirrors due to the force of gravity are consistent with
the designers’ predictions.
Digital Back-end Correlator with high spectral resolution
We need to measure the amplitude and phase of the signal that has come via the
telescope reflectors relative to that from the reference receiver. Since we are using a
coherent source it is advantageous for us to make this measurement using a narrow
bandwidth. We do this using digital rather than analogue techniques which provides more
flexibility and, most importantly, guarantees that the signal and reference are treated
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Figure 5.9.: Diagram of the digital back-end correlator. The architecture consists in a FX correlator
with an oversampling and decimation stage. Concurrently a timestamp subsystem based on the IRIG
protocol is running.

in an identical way. Our approach is to use a dual-input high-resolution spectrometer,
essentially acting as a narrow-band filter on the signal and reference, followed by digital
multiplication and integration stages. This has been implemented in the Reconfigurable
Open Architecture Computing Hardware 2 (ROACH2) platform, composed of two 8-bit
high speed analogue to digital converters (ADCs), a Virtex6 FPGA and a PowerPC
440 microprocessor. Figure 5.9 shows the configuration of this subsystem. We run the
ADCs at a high rate, ∼ 2GS/s, and then reduce the sampling frequency by a factor
of 16 using a polyphase decimation FIR filter with 80dB of rejection, which gives us
a usable bandwidth of 67MHz and reduces the quantization noise by ∼12 dB. The
resampled data are then passed through a pipelined FFT using a polyphase window,
which provides high isolation between spectral channels and a relatively flat frequency
response within a channel. We fine-tune the ADC sampling frequency to place the
signal in the middle of a channel. We then select the real and imaginary outputs from
this channel and form the cross-product and the magnitudes. These are produced at
a rate of ∼8.2kHz and integrated for a selectable time, typically between 1 and 20ms.
The data are stored in the internal memory of the PowerPC for post-processing offline.

Concurrently, we run a finite-state machine to provide timestamps so we can align
the data samples with the corresponding telescope pointing position. The timestamp
subsystem is calibrated using an Inter-Range Instrumentation Group (IRIG) time code
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Figure 5.10.: Characterization of the vector voltage meter system. ROACH2 measurements in blue
and VNA measurements in red, for input difference in the range (0-85) dB. (a) Average power difference;
(b) ROACH2 standard deviation for the power differences; (c) Average phase difference; (d) ROACH2
standard deviation for the phase differences.

signal fed by the observatory’s master clock and uses each pulse of the IRIG packet to
update its internal value, ensuring that the system is locked to the master clock with a
time resolution of 957ns.

We have run numerous tests on this system, of which one is illustrated in figure 5.10.
Here we compare the results from our system with those from a commercial vector
network analyzer (Keysight E8364C VNA). We use two signal generators locked to
the same frequency, keeping one at a fixed power level (to represent the reference in
the holography measurement) while making a sweep in the power level of the other
(to represent the signal). Note that the relative phase of the two outputs will alter as
the power level is changed because of the switching of the internal attenuators: this is
seen in the results – figure 14c. The signals from the two oscillators are split so that
we can make measurements simultaneously with the ROACH2 system and the VNA.
With the ROACH2 system we collect 128 measurements and calculate averages and
standard deviations producing the blue curves in the plots. The red curves are the VNA
values. We find that the agreement is better than 0.2 dB in amplitude and 1◦ in phase
when the ratio of the powers is in the range 0 to 65dB. At lower power levels differences
start to appear, but the VNA values become noisy. These results do however confirm
the accuracy of our system over a larger dynamic range than we need. The measured
standard deviations (figure 5.10 b and d) represent an upper limit on internal random
errors due to things like round-off in the ROACH2 system. These are well below the
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levels that would affect our measurements.

5.2. Beam Measurement and Data Analysis Procedure

In this section, we describe the procedure of measuring the FYST holographic beam
maps using the developed measurement system. Based on the numerical study in chapter
4, the optimal beam measurement steps and data analysis procedure are also presented.
The numerical simulations tell us that five complex (amplitude and phase) beam maps
of the FYST telescope are needed to be measured by putting the signal receiver to 5
separated points in the focal plane (the center of the field and the corners of a square
with 800mm side). Each beam map has to be sampled in an angular range of ∼ 0.6◦

to obtain the required 100mm spatial resolution in the resolved mirror maps. We plan
to measure the beam pattern over a region about 0.7◦ in extent. Since the inference
data analysis approach doesn’t require sampling the beam map in regular grids, we plan
to use a radial scanning or star-scan pattern, where the telescope can repeatedly pass
to the map center and record the amplitude and phase. These data measured in the
map center will be used to calibrate the atmospheric fluctuations and the drift of the
holographic instruments.
Figure 5.11 shows one completed scan trajectory of the star scan pattern for the

FYST holography measurement. The scanning angular range is 0.7◦ which is slightly
wider than that used above simulations. Each scan takes 7 seconds on the straight
sections and 3 seconds on the turn-around path, so one full map scan will take 500
seconds. Actually, the turns can be executed as quickly as possible without exciting
vibrations in the telescope structure because the data recorded in these periods will not
be used for data analysis. The efficiency of the observing time can achieve about 70%.
It means the fluctuation of the measurement system can be calibrated and corrected
every 10 seconds.

Since the designed artificial transmitter is close to the telescope and reference receiver,
a high enough signal-to-noise ratio, for example, > 50dB using 0.15ms integration time,
is obtained, we adopt the ’on-the-fly’ (OTF) measurement mode, telescope continuously
scans the source, and the back-end digital voltage meter samples the beam patterns in
high rate. The telescope pointing position is recorded by the encoder on the telescope at
a rate of 200Hz, and read position values and sampled beam data are synchronized using
a time reference or timestamp. The recorded encoder values are interpolated to find the
actual pointing positions a the times when the field points were measured. In the case of
the FYST holography system, the scanning speed is about 0.1◦/s. The smallest angular
size required in the measured beam is about < 0.01◦ that is set by the beam size of
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Figure 5.11.: A possible star scan pattern for the FYST holography measurement. Left is the first 4
scans, and right is the designed full pattern with 50 scans. The line is the trajectory of the telescope
pointing position.

the telescope which is the ratio of the operating wavelength to the telescope aperture
size. So, we only need about 10 data points per second to sample the beam pattern.
However, to avoid smearing the data along the scan, we will oversample - e.g., we set the
integration time in the digital back-end to ∼0.01s giving ∼ 100 points per second. The
highest sampling rate of the designed back-end voltage meter is about 8.2kHz. Based
on the above setup, the beam measurement process, including the calibration step and
data pre-processing, is summarized in the following steps:

1. Correct amplitude fluctuations of the source. Since the quantity that we need in
order to have a result that is independent of amplitude fluctuations in the source
is the ratio of the output of signal receiver denoted by A in figure 5.9 to that
of reference receiver expressed by B. The recorded voltage product of the two
outputs is divided by the power of the reference channel, which is expressed by
A× B/|B|2.

2. Measure and correct the amplitude and phase pattern of the reference receiver as
a function of telescope azimuth. The reference receiver is placed in the yoke of the
telescope, and its pointing direction changes in azimuth during the telescope scan.
Its Gaussian amplitude beam and non-constant phase pattern will modify the
telescope’s beams. This effect can be calibrated if we know the exact beam pattern
of the reference both in amplitude and phase. Therefore, before the holographic
beam measurement, we fix the pointing direction of the telescope and scan the
reference receiver beam by rotating its flat mirror to measure its beam in azimuth.
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Since five beam maps are required with different pointing directions, the reference
beam measurement has to be carried out before each beam measuring. We label
the measured reference beam as Bref(φ), where φ is the azimuth angle. In this
step, the signal receiver works as a reference. Following the correction described
in item 2, we can express the measured reference beam as Bref(φ) = A× B/|A|2.
After this, the telescope’s beam is recorded by dividing the measured beam by
(Bref(φ)).

3. Smooth the recorded data. After the correction step, the recorded data is smoothed
using a sinc function. The width of this sinc function is chosen to make sure that
all the actual structure in the pattern is preserved, but the noise on the samples is
reduced as far as possible. In principle, it is unnecessary to smooth the data, using
the inference approach, we can calculate the complex fields of all recorded map
points and compare them with the measured data. But this slows down the beam
calculations and costs more computation resources. Consequently, the smoothed
data is resampled at coarser intervals (Nyquist sampling) so that we do not have
to process an unnecessarily large number of samples in the later data analysis.

4. Remove the systematic amplitude and phase drift using the field points at the
center of the map. The data from each radial scan is interpolated to find the
amplitude and phase of the center point. Ideally, these values would all be the
same, but in practice, there will be drifts from scan to scan due to changes in
the instrument and, probably more significantly, in the atmospheric path between
the source and the telescope. (It is of course only the differences between the
atmosphere along the path from the source to the telescope aperture and that
along the path to the reference receiver that matter). Then we get the field changes
as a function of time, fit a suitable smooth function of time to the amplitude and
phase of the field at the center points, and adopt these as representing the drifts
that occurred during the course of making the entire beam map. We then use
these fitted functions to correct the observed data.

Surface error analysis
When we get the corrected beam maps, using the inference technique described in
chapter 4 we can convert these beam maps to two surface error maps. The basic data
analysis flow has been explained in figure 4.6. In the practical experiments, some
modifications are required for different measuring purposes. The points are listed below:

1. The telescope model has to include the beam pattern of the feed horn in the signal
receiver model. The numerical simulation used in the previous section assumes
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that the receiver feed horn beam is ideal Gaussian and has a spherical wavefront.
Any wavefront errors of the practical feed horn will be transferred to the final
analyzed reflector surfaces. We do not think that we can measure the horn phase
pattern well enough for the holographic purpose. So we will rely on the theoretical
modeling of the horn for this. The measured beam pattern of the profiled diagonal
horn shown in figure 5.1 do confirm that the horn basically works as expected,
and we are confident that the phase must be very smooth on small and medium
angular scales because the physical dimensions of the horn aperture are small in
terms of the wavelength. We can check for phase errors on large scales by, for
example, making measurements with the horn rotated to different angles about
the line of sight. We can use a set of Zernike polynomials to express the wavefront
of the feed horn and fit their coefficients to study its wavefront errors.

2. Analyze large spatial errors of the holographic system. Telescope misalignment and
inaccuracy of beam size of the source and the signal receiver in the software model
create amplitude and phase errors over telescope aperture in large spatial scales.
The effect of these errors on telescope beams is obvious, assuming telescope mirror
shapes are ideal, first fitting these errors can significantly reduce the residual of
simulated beam and observed beam. This step is very fast because of the few
fitting parameters and beam calculating loops. Then using fitted results as the
initial values for the following mirror surface analysis can reduce the fitting time
and avoid the algorithm from choosing wrong fitting paths.

3. Fit mirror surface errors. Since the parameters of the fit are the deviation of
the points of panel supporters, these values can be used directly to make the
adjustments required to bring the surfaces to the desired shape.

4. Check telescope scanning trajectory. The above analysis assumes that the tele-
scope’s pointing is stable throughout the beam scanning. In the practical, telescope
moving may have glitches. The pointing position would be different from the
expected position. To check the trajectory errors, after the surface error fitting, we
can look at the residuals, the difference between the measured data and the beam
of the best-fitting models, to see if there is evidence for trajectory errors. If there
is, we can build a model to express the telescope moving errors as a time function.
Using the fitted surfaces as the telescope model, we can fit the telescope tracking
errors. Corrections to this pointing error could then be made, and second iteration
of the surface solution carried out. This step has been explained in section 4.3.4.
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5. Repeat the holographic analysis and reflector corrections. The adjustment of the
reflectors is unlikely to be perfect in a single step, especially if the initial errors
are large: amongst other things some of the approximations in our model require
that the errors be small compared to the observing wavelength. The adjustment
process will be converged after a small number of iterations.

6. Other cases. If we want to monitor the mirror deformations, e.g., as a function of
temperature or over time, it is more convenient to fit for the surface shapes as a
sum of polynomials. This will give us numerical values for errors of various forms,
such as astigmatism, and can be used to make images of surface deformations.
Note that, because we are using a source at a fixed elevation, we cannot measure
the changing effect of gravity on the structure as the telescope is pointed to
different elevations. It is however possible to flip the telescope over and turn the
azimuth through 180 degrees so that it again points at the source. This essentially
reverses the gravity vector with respect to the reflectors. Hence, we should be able
to check whether or not the response to this component of gravity is as expected.



Chapter 6.

Holographic Test for a Small
Crossed-Dragone Antenna

In the preceding chapters of this thesis, a new holographic metrology has been built
upon which to measure the surface errors of the reflectors of FYST. The optimal setup
and detail of the data analysis procedure are studied with numerical techniques. In this
chapter, the new metrology is utilized for a small Crossed-Dragone configuration antenna
in the laboratory to demonstrate the feasibility and accuracy of the new method. The
details of the experimental setup and design are presented. The conventional holography
analysis is compared with the new multi-map holography analysis in order to validate
that the new technique can break the surface error degeneracy and discriminate the
surface errors in the ’two-reflector’ system.

6.1. Overview the Holographic Testbed

6.1.1. Small Laboratory Antenna

A small Crossed-Dragone antenna, hereafter called the Lab antenna, was designed and
constructed to test the feasibility of the novel FYST holography system. These include
checking measurement surface accuracy, designed spatial resolution, and the ability to
discriminate surface errors between two reflectors. The simple case is to shrink the
whole FYST holography system, including the antenna model and the requirements of
the holographic measurement, and the instruments developed for the FYST holography
measurement are used for the laboratory test. This means the operating wavelength λ
of the holographic test is still ∼ 1 mm, and the Lab antenna offers a broad beam size
compared to the FYST telescope. Its beam map must be measured in a wider angular
range than the FYST holographic measurement to achieve the scaled spatial resolution.
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The Lab antenna with 400 mm aperture size is used because the reflectors with this
size can be manufactured precisely in-house. Simply shrinking all the dimensions of the
6-meter FYST telescope by a factor of 15 can produce a model with this aperture size.
Then we get a spacing of 400 mm (Lm) between its two reflectors, a distance from M2 to
the focal plane, Ls = 800mm, and an effective focal length feff = 960mm. Figure 6.1(a)
shows the optical layout of the scale model. However, the edge of its two reflectors
marked by red circles in Figure 6.1 may cause clearance problems, because the Lab
holographic beam needs to be measured in a wide angular range. Ideally, the incoming
light from the sky is reflected by M1, in turn, delivered to the receiver by M2. But for
the off-axis beam measurement, the incident light is first scattered by the edge of M2.
The scattered fields are reflected by M1 and M2 to the receiver, significantly affecting
the receiver response. To improve the clearance, the distance of the two reflectors is
increased from 400 mm to 450 mm, keeping the reflecting angles of the on-axis light.
The optics is modified to satisfy the Mizuguchi-Dragone condition. The details of the
geometry of the Lab antenna are summarized in appendix A

Figure 6.1.: Optical layout of the Lab antenna. (a) The 1/15th scale FYST model; (b) Modified scale
model with increasing the space between its two mirrors also meeting the Mizuguchi-Dragone condition.

The two reflectors were milled directly from an aluminum plate. Elliptical rims
truncated by the rectangular aluminum plate were used for the two reflectors. The
CAD model of the reflectors is shown in figure 6.2. The rim effect on the antenna’s
radiation beam was simulated and presented in figure 6.3. The diffraction structures in
horizontal and vertical directions in the beam are caused by four straight edges cut by
the rectangular plate, and four planar areas produce the diffraction structures along
the diagonal of the simulated beam map. The effect of the planar regions of the four
corners on each reflector can be eliminated by covering absorbers. The two reflectors
were then fixed on an aluminum frame and arranged in designed angular positions. The
whole structure was mounted on the laboratory wall as shown in Figure 6.2.
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Figure 6.2.: CAD model of the scaled laboratory telescope. Left is model of the two mirrors with four
planar area at their corners. Right is the CAD model of the assembled telescope

Figure 6.3.: Simulated beam maps of the Lab antenna in source plane that is 5 meters away from the
scale telescope. Left is the focused beam for the reflectors without four planar areas in the reflector
corners. Right is the simulated beam of the antenna shown in CAD model.

6.1.2. Holographic Design

Requirements of the holography system
The aperture size of the Lab antenna is 1/15th of the FYST telescope. In comparison
with the requirement of 100 mm spatial resolution of the 6-m FYST holographic
measurement, choosing 10 mm as the spatial resolution to measure the surface errors of
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the 400 mm reflectors of the Lab antenna is reasonable, which means 40× 40 points on
the measured error map. We expect that the measurement accuracy still be better than
2µm, and the measurement error contributed by the thermal noise of the receivers is
less than 1µm. Therefore, according to the holography theory described in Chapter 3,
to achieve these requirements, the lab antenna’s beam maps need to be measured in the
angular range of 0.1 radians (40× λ/D, D = 400mm) with the measurement SNR of
> 70 dB.

Then, the new ’Multi-map’ holography technique is applied to measure the shapes of
the two reflectors separately. In keeping with the FYST holographic design, five beam
maps, an on-axis beam, and four off-axis beam maps, are measured by mounting the
holographic receiver at the center and 4 corners of a square with a side length of 100 mm
in the focal plane shown in figure 6.4. Since The antenna is fixed on the wall, the beam
maps only can be measured by scanning the source instead of rotating the antenna. An
XY-scanner with a delivery range of 1100 mm in both x and y axes, is used to scan the
source over the measured field region. To make sure the XY-scanner covers the whole
beam scan range including the four off-axis beams, the distance between the source
with XY-scanner and the antenna is set by 5 m. Using this distance, the beam maps are
measured in the region of 500× 500 mm2 to achieve the required 0.1 radians beam map
size. For the off-axis beam measurement, the receiver deviates from the optical axis by
±50 mm, which leads to ±0.048 radians offset of the antenna’s pointing direction and
±240 mm changes of the beam center in the XY-scanner plane. The requirements of
the laboratory holography system are summarized in table 6.1 and compared with the
FYST holographic design.

Parameters FYST Lab-Telescope
Wavelength λ ∼ 1 mm ∼ 1 mm

Aperture diameter D 6000 mm 400 mm
Beam size λ/D 34.4 arcsec 515.7 arcsec

Distance of source and telescope L 300 m 5 m
Error caused by receiver noise ε 1 µm 1 µm

Spatial Resolution δ 100 mm 10 mm
Measured angular range θ 0.01 rad 0.1 rad

Required SNR >73 dB >70 dB
Receiver offset from optical axis ±400 mm ±50 mm

Measured map size in the
XY-scanner plane

500× 500 mm2

Table 6.1.: Comparison of the basic holographic design for FYST and the Lab antenna.
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Figure 6.4.: 5 receiver mounting positions in focal plane. One is in center of focal plane. Other 4
positions are at the corners of a 100mm square.

Out-of-focus beam measurements
For the source 5 m away from the antenna, the system’s focus is moved 200 mm back
from the nominal focus; see figure 6.5. Following the defocused measurement in the
FYST holographic system, we put the receiver at the green plane in figure 6.5, 80 mm
before the new focal plane, to spread out the antenna’s beam and reduce the required
dynamic range of the receiver systems. The value of the beam peak is reduced by about
12 dB. Figure 6.6 shows several beams with different amounts of defocus.

Figure 6.5.: Focused optics of the Lab antenna for the source located at 5 meters from the antenna.
The new focal plane is 200mm behind the nominal focal plane. The holographic beam maps are designed
to be measured at the green plane in order to spread out the antenna’s beam.
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Figure 6.6.: Simulated beams of the Lab antenna with different amounts of defocus. Defocused optics
spreads out the antenna’s beam. The maximum gain is reduced by 12dB when the receiver is located at
the plane of 120 mm behind the antenna’s nominal focus or 80mm before the new focused plane for the
source at 5 m.

Configuration of the Holographic Testbed
The most critical step of the entire holographic analysis is to measure the antenna’s
beam maps both in amplitude and phase efficiently and accurately. Figure 6.7 shows the
schematic of the holographic system and the testbed in the laboratory. One receiver is
vertically sat in the receiver plate to record the incident signal collected by the reflectors
of the antenna under test. The reference receiver is mounted on the left of the antenna
and keeps looking at the source on XY-scanner to provide the phase reference. Here, the
beam is measured by moving the source, so the pathlength of the light from the source
to the reference receiver is not constant anymore, but the changes can be measured
by simple geometrical calculations. The source module is attached to a plate on the
XY-scanner. Its output beam points to the ground and is reflected by a 45-degree mirror
to illuminate the antenna and reference receiver.

The extra optics of the reference receiver and source modules presented in section 5.1
is removed, and just the bare feed horns with 1.4 mm beam waist are used to offer a
wide beam. The 1/e amplitude beam size of the horn is about 2.3 m for a 5 m wave
propagating distance, so the Lab antenna and reference receiver can be sufficiently
illuminated even if the source is delivered to the edge of the XY-scanner (550 mm from
the antenna center).
Scanning the source changes the pathlength of the signal between the source and

reference receiver. We cannot directly measure the phase changes in the reference
receiver because of the lack of phase reference. But for the reference receiver with a
small beam waist (1.4 mm), 5 meters is much larger than its confocal distance (∼ 6 mm),
which means the source is in the far-field region of the reference receiver. Therefore,
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Figure 6.7.: Setup of the laboratory holographic testbed. The top is the Schematic of the test setup.
The moving range of the XY-scanner is 1100mm in both the x and y axes to cover all required measured
field ranges. The signal receiver (Signal Rx) is sited at the focal plane to observe the beam delivered
by the telescope. The reference receiver (Ref Rx) is mounted beside the telescope on its frame to
provide phase reference. Cross-correlator is built by the ROACH2 platform and used to digitize receiver
responses and calculate the phase difference between the two receiver outputs. The bottom shows the
actual testbed setup.

the phase changes in the reference receiver are only related to the distance between the
source and the receiver.

Figure 6.8 illustrates the electronic connections of the holography system. The source
and the local oscillator of the two receivers are locked by a 10MHz reference signal from
the time reference box SyncBox N2X. The beam measurement uses the on-the-fly (OTF)
mode, where the source is moved with a speed of 50mm/s while taking data continuously.
Then the data stream and the points in the beam map are mapped based on the time
stamp. The output data stream includes the power intensity of the signal receiver |A|2,
the measured power of the reference receiver |B|2 and the Conjugate multiplication of
the outputs of the two receivers.
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Figure 6.8.: Schematic of Lab electronic connection. All components are locked by a 10MHz reference
(black line). The recorded data stream and source moving trace are synchronized by a time reference.

Data taking and pre-processing
We would like to employ the advanced ’star’ scanning pattern described in Chapter 5
for the laboratory test. However, the XY-scanner only can maintain stable movements
when moving vertically or horizontally. To obtain reliable test data, the regular square
pattern is adopted to scan the Lab antenna’s beam column by column, frequently
passing to the map center to calibrate the systematic drift. The sampled beam map
can first be analyzed using conventional holography analysis to check the measurement
system. The antenna’s beam is recorded in the range of 500× 500 mm2 by 51 vertical
scans with an interval of 10mm. The speed of each column scan is around 50 mm/s,
so each scan takes around 10s. The data sampling ratio of the back-end receiver is set
by 830 points per second to avoid smearing the data. The measured data is convolved
with a Gaussian filter to smooth the measured data. We set the Gaussian filter with a
bandwidth of 10 points. Then the smoothed data is interpolated into a square grid with
51× 51 points that are used for the holographic analysis in the following sections.
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6.2. Experiment 1: Conventional One-beam Holography
Analysis

We start the Lab test from the conventional near-field holography experiment to check
the operational performance of the Lab system. Measuring one beam map only offers
one reflector surface errors that are the error combinations in the two reflectors of the
antenna, but its mature theoretical frame and analysis technique can help verify the
accuracy of the test platform and check the systematic mistakes. In this section, the
software technique developed in Chapter 4, which analyze the reflector surfaces by
fitting the measured beam maps, in theory, also works foro the one-beam holography.
Therefore, we also present the results analyzed by this new technique, and compare the
analyzed errors with the conventional results.

6.2.1. Surface Diagnosis for the Smooth Reflectors

The initial test is to measure the antenna’s beam in the map size of 1000× 1000 mm2

by mounting the receiver at the focus, which means the optics is focused. The smooth
reflectors means that there is no artificial surface errors in the reflectors such as copper
foils used later. Figure 6.9 shows the measured and simulated beam pattern of the small
antenna. The diffraction features caused by the four planar corners in the reflector and
the reflectors’ rectangular rims are observed compared to the simulated beam. The
bottom plots in the figure are the zoomed-in central beams and their contour maps. It
can be seen that the measured center beam is distorted, which means the reflectors of
the antenna are not perfect, the surface deformations exist. The following holographic
analysis is presented to analysis the antenna deformations.
According to the holographic design in section 6.1, the beam map in the range of

500× 500 mm2 is required for 10 mm spatial resolution. Figure 6.10 is the holographic
beam in amplitude and phase which is measured in the near field. The conventional
holographic analysis only gives one aperture field distribution, and the phase deviations
are contributed by the surface errors in both reflectors. In this section, the solved
aperture phase distribution is converted into the equivalent surface errors in M1 with
assuming a perfect surface in M2. The data is first analyzed based on the physical
optics propagation (POP) [98][99]. Equivalent surface errors in M1 are also analyzed by
using the new fitting technique.
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Figure 6.9.: Initial measured beam pattern at the range of of 1000 × 1000mm2 and the simulated
beam for the antenna with ideal reflectors. Top: Measured beam pattern of the Lab antenna and the
simulated beam pattern for the ideal antenna model; Bottom: Enlarged center beam of the measured
and simulated beam maps. Their contour maps are also drawn, and the contour line level represent 0,
-5, -10, -15, and -20 dB from inner contour line to outer line.

Figure 6.10.: Measured focused beam map in amplitude and phase. Size of the beam map is 500×
500mm2 to achieve 10mm spatial resolution for the measured surface error map.
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Analysis Using Angular Spectrum Propagation

The Fourier transform pair exists between an antenna’s far-field complex (power and
phase) beam map expressed in the angular domain and its aperture fields. According to
this relationship, we can call the antenna’s far-field beam the angular spectrum of the
aperture fields, meaning that the aperture fields can be decomposed into parallel waves
from different directions with specific intensities and phases. Therefore, the fields in
any planes between the aperture and infinity can be predicted by correcting the phase
changes in each wave component. This technique is called angular spectrum propagation
[98][99].

The beam is measured in the plane parallel to the aperture plane and 5 m apart. We
denote the measured beam map as fA(x, y), which is converted into the aperture fields
expressed by fB(x, y) using the angular spectrum propagation technique. The analysis
processes are summarized below:

1. Calculate angular spectrum of the observed field labelled by FA(u, v) using fast
Fourier transform algorithm [100], where u and v are expressed by sinθ · cosφ and
sinθ · sinφ respectively. θ and φ represent the elevation and azimuth angles of
the antenna pointing direction. This step is expressed by equation 6.1.

FA(u, v) = FT [fA(x, y)] (6.1)

2. Compute the angular spectrum of the field in aperture FB(u, v). The calculated an-
gular spectrum in step 1 is modified in phase term by multiplying ej2π/λδz·

√
1−u2−v2 ,

where δz is 5 m, the distance between the two planes. The angular spectrum of
the aperture fields is expressed by

FB(u, v) = FA(u, v) · ej
2π
λ

∆z·
√

1−u2−v2
. (6.2)

3. Make inverse Fourier transform on the new angular spectrum FB(u, v) to get the
aperture fields fB(x, y) which is expressed by

fB(x, y) = IFT [FB(u, v)]. (6.3)

4. Calculate the phase deviations ∆φ in the aperture plane. Subtracting the phase
of the ideal aperture fields Fideal(x, y) from the measured aperture fields gives the
phase deviations produced by the surface errors of the reflectors. The calculation
is expressed by equation 6.4. Here, in the phase residual, the phase slope along
the x and y axes and curved phase terms must be removed by the fitting process,
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which is caused by the position errors of the receiver and the inaccuracy of the
measured distance between the source and the antenna’s aperture plane.

∆φ(x, y) = Phase{fB(x, y)/fideal(x, y)} (6.4)

5. Convert the aperture phase deviations into the equivalent surface errors εM1 in
M1 based on the reflection angle Θ and the operating wavelength λ.

εM1 = ∆φ · λ
4π · cos(Θ/2) (6.5)

Figure 6.11 left is the phase deviations in the aperture plane before removing the
slope and curvature terms. Figure 6.11 right shows the errors in M1 analyzed using the
above algorithm. It can be seen that twist errors in the reflector surfaces are observed,
which distorts the center beam of the antenna shown in figure 6.9. But the surface
errors cannot tell us which reflector is twisted.

Figure 6.11.: Measured equivalent surface error in M1 using the conventional holographic analysis.
Left: Phase difference between measured phase and theoretical phase on aperture plane. The phase
difference shows that sloped phase and curved terms exist because of alignment systematic errors in the
test system. Right: the equivalent surface errors in M1 after removing sloped and curved phase terms
from phase difference on aperture.

Analysis Using the Fitting Algorithm
In theory, the fitting algorithm in the software developed for analyzing the multiple
beam maps also works for the system with one reflector. The surface errors in M1
are expressed by 30× 30 grids (900 fitting parameters), and each grid has a size of
∼ 13.33× 13.33 mm2 that is a little bit larger than the design 10 mm spatial resolution.
We also can parametrize the surface by Zernike polynomials [101][11], for example, the
polynomials with a maximum order of 30th (496 parameters). The surface of M2 in the
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analysis is also assumed to be perfect. The parameters described in section 4.2 that
express the large spatial errors are also included in the fitting process. The analysis
procedure is summarized below:

1. Fit the parameters describing large spatial errors. These large spatial errors can
be caused by the misalignment of the antenna’s optical axis, inaccuracy of the
location of the receiver or source, and the size of the illumination beam of the
source and receiver. The fitting step converges quickly and can significantly reduce
the residual between the measured beam and the simulated data. It also helps to
improve the fitting efficiency for the next detailed surface analysis.

2. Fit surface errors. The fitting parameters from Step 1 are fed into the model to
compensate for the systematic errors; then, surface parameters are fitted.

Figure 6.12.: The computed beam in the different fitting stages. Black contour lines represent the
observed beam, and red lines are the computed beams in the fitting stages. Left: The comparison of
the observed beam and ideal simulated beam; Middle: The beam after fitting large spatial parameters,
here the large spatial error is a pointing error; Right: The beam simulated by the fitting M1 surfaces.

Figure 6.12 gradually demonstrates the improvement in the agreement between the
observed and fitted beams. It can be seen that the pointing offset in the system is
obvious and can be found and compensated by the fitting analysis. The parameters
describing the M1 surface deviations are also solved following the fitting process. Figure
6.13 shows the fitted surface maps analyzed using the Zernike polynomials and 900
grids. The twist errors are also observed compared to the previous analysis.
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Figure 6.13.: Equivalent surface error map in M1 analyzed by three different software methods. Left:
Error map analyzed by using physical optics propagation technique. Middle: Error map analyzed by
fitting the coefficients of 496 Zernike polynomials. Right: M1 error map resolved by inference approach
with 30× 30 grids. Results produced by the POP technique and inference approach both indicate that
the twist distortions exist in the antenna system.

6.2.2. Diagnosis for Artificial Surface Errors in the Reflectors

To further test the accuracy of the measurement system, copper foil with known thickness
is used to create piston surface errors. Some dielectric materials like Mylar and plastic
tape are used to make negative piston errors. The equivalent surface displacement of the
transparent dielectric materials is unknown because of the unknown dielectric constant
of the glue layer and the multi-reflection of the surfaces. But it is still worth introducing
negative piston errors. We expect that the laboratory test platform can measure it.
Figure 6.14 shows the position of patches in M1 and the image of the copper patch in
M2.

Figure 6.14.: Artificial piston errors in M1 and M2. Two copper tapes with the size of 20× 20mm2

and thickness of 50µm are separately attached in M1 and M2. Dielectric materials, plastic tape, and
Malyer membrane are used for negative piston errors.
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The beam distorted by these error patches is measured and compared with that of
the smooth reflectors shown in Figure 6.15. The distortion in the central beam is still
observed. Repeating the previous holographic analysis and comparing the position
and thickness of the artificial errors can help check the system’s accuracy. Figure 6.16
middle presents the analyzed error map. Removing the twist errors from the newly
measured error map can show the piston errors caused by copper and plastic patches.
The resolved piston errors caused by copper patches agree very well with the copper
thickness that we used. The equivalent negative piston errors created by plastic tape
and Mayler membrane are also measured. Figure 6.16 right shows the measured patches
and −10µm and 50µm contour line.

Figure 6.15.: The observed beam that is distorted by artificial errors explained in Figure 6.14. The
right picture is the measured distorted beam compared to the smooth mirror beam (Left).

Figure 6.16.: Measured artificial piston errors in M1. The 50µm copper patches are precisely resolved.
Left: The error map of smooth mirrors. Middle: Error map for mirror surfaces with copper tape, plastic
tape, and Mylar membrane. Right: Piston errors caused by artificial patches by removing the measured
twist error over the smooth reflectors.
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6.2.3. Summary

The holographic beam measurement system was successfully established and imple-
mented for the conventional holographic analysis and measuring the equivalent surface
errors in M1. It is proven that the 300GHz holographic system is operational in the
laboratory. The twist error in the antenna system and the artificial square errors
in the reflectors also can be measured. To test the system’s stability and statistical
performance, 8 independent measurements were implemented. The results indicate that
the equivalent M1 surface errors can be measured with a < 1µm statistic error.

The test also proves that using the fitting technique developed in Chapter 4 to analyze
traditional near-field holographic data also works. This analysis technique also can offer
the information about systematic errors, such as the misalignment of the antenna’s
optical axis and the illumination errors caused by the inaccuracy of the beam size of
the source and receiver.
Conventional holography measurement cannot solve the issue of surface error de-

generacy between two reflectors. The measured surface error tells us that the twist
error exists in the optics. But it cannot point out from which reflector the errors are.
Therefore, the designed multi-beam holography system will be implemented to solve
the issue, which will be presented in the rest of this chapter.

6.3. Experiment 2: Multi-map Holography Measurement

The operational performance of the laboratory holographic system has been verified.
The conventional holographic analysis can accurately measure the artificial errors and
indicates the twist errors in the reflectors. In this section, the multi-map holography
analysis is implemented to distinguish the source of the measured errors between the
two reflectors. The feasibility of breaking the surface degeneracy between the reflectors
and the ability to discriminate the small-size artificial surface errors are tested. The
measurement accuracy and ability to identify the large-scale deformations over the
entire reflector are also checked.
Following the configuration described in section 6.1, the other four off-axis beam

maps need to be measured by putting the receiver two four corners of a square in the
focal plane shown in figure 6.4. The two reflectors have the same size, 400× 440 mm2

The surface deviations of the two reflectors are expressed by the piston displacement
of 30× 30 grids, respectively. Each grid is about 14.7× 13.3 mm2. There are 1850
parameters in total for fitting, 1800 for describing the reflector surface errors, and
additional ten parameters for correcting the large spatial errors (50 parameters for the
five measured beams).
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6.3.1. Analysis for the Distorted Reflectors in Experiment 1

We first continue the surface diagnosis for the antenna with artificial surface errors shown
in figure 6.14 in Experiment 1. The one-beam holographic measurement accurately
measures the four error patches and indicates the twist-like large spatial errors in the
antenna system. Then the other four off-axis beams are measured to distinguish these
errors between the two reflectors. The four off-axis and focused beam maps are presented
in figure 6.17 compared to the ideal antenna’s simulated beam maps.

Figure 6.17.: Top: The simulated 5 focused beam patterns for the ideal reflectors; Bottom: Measured
5 focused beams of the distorted mirrors in 6.14, including center beam and 4 off-axis beams.

Figure 6.18.: Measured surface error maps of the laboratory antenna with artificial errors shown in
figure 6.14. The reflector surfaces are analyzed by fitting 30× 30 grids on each reflector.

The optical alignment errors in the five beam measurements are first analyzed by
fitting the 50 parameters describing large spatial errors. Then the detailed surface
analysis is implemented to fit the 1800 surface parameters. Figure 6.18 shows the
analyzed surface error maps. The two copper patches are measured and identified
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between the errors on the two reflectors. The two plastic squares (negative piston errors)
are also correctly distinguished.

Figure 6.19.: Error maps analyzed using Zernike Polynomials to express the surface deviations. a):
Large-scale error in the reflector surfaces analyzed by using Zernike polynomials with a maximum order
of 7th, indicating the large-scale twist-like errors are from M1; b): Error maps analyzed by using Zernike
polynomials with a maximum order of 30th.

In addition, the twist error observed in the previous experiment is also measured in
the multi-map experiment. It can be seen that both reflectors are twisted, but the errors
in M1 are more obvious than that in M2. To verify this large-scale error, we measured
the flatness of the two reflectors with a flat panel and found the errors only existed
in M1. The analyzed twist errors in M2 should be fake. Since the beam distorted by
the twist errors in M1 also can be produced by the similar error patterns in M2, and
these surface errors change smoothly in the reflector, even the difference in off-axis
beams is also slight. Moreover, using 30× 30 grids for expressing the surface deviations,
the inference software only partly measures the large-scale errors. But if the Zernike
polynomials with a maximum order of 7th are used to express the surface, and the
fitting analysis shows more reasonable results seen in figure 6.19 top. Using the Zernike
polynomials with a maximum order of 30th, 496 parameters describing surface errors of
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one reflector, the details of the reflector surfaces are also solved shown in figure 6.19
bottom.

This experiment proves that the multi-map holographic analysis can help distinguish
surface errors between the two reflectors for the case where the errors are not overlapped
in the aperture plane. The existing large-scale errors can also be measured and separated
by using the Zernike polynomials describe the surface deviations and fitting their
coefficients. Next step, the errors on the two reflectors overlapped in the aperture are
made to test the new metorogy further.

6.3.2. Analysis for the Case with Artificial Degenerate Errors

In this experiment, the copper foil with a thickness of 50µm is used to make the surface
errors on the reflectors, and the phase errors on the aperture plane produced by these
errors are overlapped. Figure 6.20 details the error patches on M1 and M2 and the
phase deviations on the aperture plane.

Figure 6.20.: Surface errors producing overlapped phase errors on the aperture plane. Left: Artificial
piston errors on the two mirrors created by copper tape with a thickness of 50µm; Right: Overlapped
phase errors on aperture produced by the piston errors on M1 and M2.

The multi-map holography analysis is implemented for the focused and out-of-focus
optical setups, respectively. For the out-of-focus setup, the receiver is placed at 120 mm
behind the antenna’s nominal focus or 80 mm before the new focus of the near-field
system. Figure 6.21 presents the measured distorted beams. The defocused setup
spreads out the antenna beam and reduces the maximum gain of the antenna by 12
dB relative to the focused beam. The out-of-focus measurement is to verify the setup
for the FYST holographic test, which is designed to spread out the beam and decrease
the gain by 20 dB to reduce the requirement of the dynamic range of the holographic
hardware.
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Figure 6.21.: Measured beam maps distorted by the reflector errors in figure 6.20 Top: Distorted
beam maps for the focused system; Bottom: Out-of-focus beam maps, receiver is 120 mm behind the
antenna’s nominal focal plane and 80 mm before the new focal plane of the near field system.

Figure 6.22.: Solved error maps of the Lab antenna using the focused and out-of-focused multi-map
holographic measurement. Top: Analzyed error maps using the focused beams; Bottom: Error maps
analyzed by the out-of-focus beam measurements.

The solved error maps are shown in figure 6.22. The two independent tests give
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a similar surface error distribution on the two reflectors, and both can distinguish
the overlapped surface errors between the two reflectors and gives the same values.
The difference between the two measurements is mainly caused by the changes in the
multi-path reflections in the laboratory and other unstable systematic errors, such as
the movement errors of the XY-scanner. The twist error on M1 is still observed.
Twist Errors
The one-beam holographic test shows that twist-like errors exist in the laboratory
antenna. Then, the multi-map holographic measurements further indicate that M1 is
twisted. Unfortunately, we cannot offer another way to measure the twisted reflector
and verify the validity of the measurements. The reflectors also cannot be precisely
adjusted. We used a flat panel to measure the flatness of M1 and can confirm the
distorted M1. In order to verify the tests, we adjust the mounting frame of M1 to fix
the twist error manually with keeping M2 unchanged. The multi-map holographic test
is employed again to check the surface changes in M1. Figure 6.23 presents the error
maps after the correction.

Figure 6.23.: Holography analysis results after correcting the twist error on the M1 surface.

From figure 6.23, it can be seen that the twist errors on M1 disappear compared to
the error maps in figure 6.22. The previous measurements also indicate slight twist
errors in M2, but the errors also disappear in figure 6.23. This further confirms that
the measured twist errors in M2 are fake, as explained in section 6.3.1. We also find
that using Zernike polynomials to describe the reflector surface deviations can discover
the large-scale surface errors more precisely than that using 30× 30 grids. This means
the accuracy of modeling the surface deviations degrades the ability to discriminate
the large-scale errors. Therefore, we suggest estimating large-scale errors of an antenna
under test before starting the detailed surface analysis.



6.3. Experiment 2: Multi-map Holography Measurement 133

Figure 6.24.: Comparison of the focused beams before and after the twist error correction. The
contour lines represent the power levels of 0, -5, -10, -15, and -20 from inner to outer contour lines.
Left: Focused beam distorted by twist error on M1. Bottom: Measured beam map after correcting the
measured twist error.

After the correction, the focused beam of the lab antenna removing all artificial errors
is measured and compared with the beam measured at the beginning of the laboratory
test. Figure 6.24 shows the beam comparison. It can be seen the beam distortion is
partly fixed after the previous holographic tests and corrections.

6.3.3. Measurement Accuracy

The thickness of the copper foil used in the previous experiments is around 50µm. Since
the copper foil is attached to the reflector surfaces with a glue layer of unknown thickness.
To check the measurement accuracy, we use highly precise copper foil with a thickness
of 10µm and 20µm and attach them to the reflectors by oil. The multi-map holographic
analysis is implemented twice, one for the smooth reflectors without artificial surface
errors and another for the errors described in figure 6.25. Taking the difference between
the two measurements can cancel the effect of the laboratory’s unknown reflections and
manufacturing errors in the two reflectors. Then the difference shows the measured
errors of the created errors. The results are displayed in figure 6.26.
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Figure 6.25.: Surface errors on M1 and M2 using high precise copper foil with thickness of 10µm and
20µm.

The measured surface error maps prove that the holographic system can measure
10µm surface deviations with an error of < 2.5µm. We can see that the measured
error maps still have high-order surface errors on the two reflectors, which are almost
compensated for each other. It is because the regularization term described in section
4.2.2 is used in the fitting software, which compresses the total surface deviations to
avoid the wrong fitting route. Seven independent tests show a statistic error with a
standard deviation of 0.8µm.

Figure 6.26.: Measured surface error maps for the 10µm surface errors. The statistic error is less than
0.8µm estimated by repeating the measurements seven times. The maximal measurement error for these
copper foil is less than 2.5µm.

6.3.4. Summary

The novel multi-map holographic approach has been successfully implemented to analyze
the artificial surface errors and the twist large-scale errors in the small Crossed-Dragone
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antenna. It has been proven that the new technique could discriminate and measure
these minor surface errors with a repeatable error of < 1µm. The tests have been done
for the focused and out-of-focus optical setups, and both could precisely discriminate
and measure the created errors. Large-scale errors, such as the twist errors on M1, can
also be measured and discriminated using the new method. We found that employing
Zernike polynomials in the fitting software to express large-scale surface errors can give
more precise results.



Chapter 7.

Conclusion and Outlook

In this dissertation, a novel holography metrology for measuring the surface shapes of
the reflectors of FYST has been investigated. This breaks new ground in both the high
measurement accuracy (< 2µm) and in the fact that it can measure and discriminate
the surface errors in the two large reflectors making up the FYST optics. The thesis
accomplished these goals through three aspects: 1) The multi-map holography technique
was developed to break the degeneracy between the two reflectors of FYST by making
beam measurements at multiple positions in the focal plane; 2) The method for efficiently
calculating the beam pattern of the Crossed-Dragone optics of FYST was developed by
using the scalar Kirchhoff-Fresnel diffraction theory and calculating the diffraction fields
of FYST by two steps. This method is the critical step for the new data processing
software of the multi-map holography to convert the multiple beam maps to two surface
maps; 3) The 300GHz holography system, including the necessary hardware, software,
and telescope scanning pattern, was designed and built to precisely measure beam maps
and minimize the effects of systematic errors.
In the first part of the thesis, the fundamentals of the PO analysis technique were

presented and used to demonstrate the reflecting antenna radiation theory, which explains
the basic principle of conventional microwave holography. Then, the electromagnetic
characteristics of FYST were also studied by the PO method with the commercial TICRA
GRASP software. The efficient ’two-step’ PO analysis was developed by breaking the
PO analysis into two steps and calculating the fields in an intermediate focal plane first,
which can reduce the computational time by two orders of magnitude. Replacing the PO
analysis with the scalar Kirchhoff’s diffraction method, which neglects the polarization
information, the computational was further reduced by two orders of magnitude. This
technique makes it possible to analyze the data of the multiple holographic beams
efficiently. The computational accuracy of the two new techniques has been verified
using the commercial GRASP software to model the same optics. The ’two-step’ PO
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method is equivalent to the fundamental PO analysis, which can simulate any large and
complex optical system.
Extensive numerical simulations of the FYST multi-map holography measurement

have been carried out to test its accuracy, sensitivity, and optical setup. The results
indicate that measurement accuracy of ∼ 2µm can be achieved. It was found that the
telescope’s pointing/tacking errors can significantly degrade the accuracy. To solve this,
an additional fitting model, modeling the telescope’s motion on time, is required to
fit the telescope’s moving path. The new holographic doesn’t require the measured
field points to be on a regular grid, so an efficient circular or star scanning pattern can
be used, effectively minimizing the systematic errors caused by instrument drafts and
atmospheric fluctuations.

In the final part of the thesis, the developed ’multi-map’ holography method and the
FYST holographic instruments were implemented for the small laboratory ’Crossed-
Dragone’ antenna to measure the artificial piston errors on its reflectors. The experiments
prove that this technique can help to identify the surface errors on the two reflectors and
achieve a statistic error of less than 1µm. Unexpected large spatial surface errors caused
by the twisted primary reflector (M1) were observed by both the conventional holographic
analysis and the multi-map holography software. The conventional holography analysis
only points out the existence of errors but cannot give a detailed diagnosis. The new
’multi-map’ holographic analysis, if fitting the large-scale errors by using a few low-order
Zernike polynomials (e.g., maximum order of 7th), can identify the large spatial errors
between two reflectors. But if fitting the 30× 30 square grids to solve the surface details
of the reflectors, the part of the large scale errors are converted to another reflector
because the fitting process rudely finds the fitting parameters to minimize the difference
between measured and simulated data. Actually, the large spatial errors are still partly
measured and corrected after the panel adjustment. Repeating another holographic
measurement, analysis, and panel corrections, the large-scale errors can still be removed.
Thus, in this dissertation, it has been shown that the new holographic metrology can
diagnose the surface quality for FYST.

The developed holographic system will be the first instrument installed in FYST. The
pretest and panel alignment for FYST will be in Xanten, Germany. In the laboratory
experiments, the analyzed surface maps suffer from multi-path reflections in the small lab
space, especially the reflections between the antenna and the source module. This can
be avoided for the FYST holography because of the outdoor test and the long distance
(200-300 m) between the source and telescope. Hence, the measurement accuracy
should be better than the laboratory measurement. Nevertheless, the atmosphere’s
influence will worsen, and the form of the phase errors caused by atmospheric turbulence
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may differ from what we assumed. It is better to measure the phase stability of the
atmosphere on the site by having the telescope and reference receiver observe the source
from their boresight. So that we can find the best telescope scanning pattern to minimize
these effects. For example, if the atmospheric phase errors change too fast, let the
telescope pass to the beam center more frequently by increasing the scanning speed
and the number of radial scans. It is effortless to load the developed data processing
software to a commercial graphic card with more than 20GB of memory. The time of
the holographic data analysis can be reduced from < 1 hour to < 20 min. It is also
worth checking the feasibility of this metrology for a telescope with three reflectors.
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Appendix A.

Optical Parameters of FYST and
Laboratory Antenna

FYST employs an advanced ’Crossed-Dragone’ (CD) optics which is made of two
similar-sized mirrors and arranges them off-axis to achieve a large field of view without
optical blockage in the telescope’s aperture. Figure A.1 shows the optics of FYST. The
two-mirror system is designed by satisfying the Mitzuguchi-Dragone criterion [47][48],
so that its optics can be equivalent to a symmetrical parabolic mirror [68][73] and offers
a circular symmetrical beam pattern and very low cross-polarization performance [49].
The field of view of FYST is further improved by minimizing the coma aberrations.
7.8 degrees field of view at the wavelength of 3mm is achieved. The details of the
FYST optical design and the technique of coma correction are summarized by Stephen
Parshley in paper [55][31]. This section shows the details of the geometry of FYST. The
optical parameters of FYST and the small laboratory antenna described in chapter 6
are presented. The mirror surfaces and practical panel layout of FYST are also given.
Classical Crossed-Dragone Antenna Design
The classical offset two-mirror antenna is fully characterized by 20 parameters, which
is explained by Granet in paper [72]. The paper also indicates that these parameters
can be computed from 5 specific parameters given by the designer. Granet offered 5
different options for the design parameters. Here, the following 5 parameters are used
as the design parameters: primary diameter Dm, the offset angel of the primary θ0, the
distance between two mirrors Lm, the angle between feed axis and secondary edge θe,
and angle between the primary axis and feed axis θp. The initial optics is based on
the design studied by M. Niemack [54]. Then the geometry is modified to increase the
clearance between the edges of the mirrors and the optical beam. Figure A.2 shows the
optical diagram of the designed optics. It is found that the path traced by the chief
ray inside the telescope forms a triangle with side in the proportion 3:4:5. Table A.1
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Figure A.1.: 2D layout slice showing the modified crossed-Dragone optical design for CCAT-prime.
The optical beam is magenta and mirror sections are red. All linear dimensions are in millimeters,
and numbers without decimal points are exact. Local coordinate systems for the primary (M1), the
secondary (M2), and the focal plane (FP) are illustrated in orange for the y and z axes (x axes follow
the “right-hand rule” convention, they all go into the page). The “world” coordinate system is the
intersection of the boresight and elevation axes.
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lists the all optical parameters describing the geometry of FYST. The third column in
the table is the dimensionless value shown in the optical diagram, and the fourth gives
the number scaled for FYST. The small laboratory antenna is designed by scaling the
FYST model by a factor of 15. To increase the clearance at edge of the mirror of the
scale model, the distance of the two mirrors is increased from 400mm to 450mm.

Figure A.2.: Diagram of the FYST optics satisfying the Mitzuguchi-Dragone criterion. Path traced
by the chief ray inside the telescope forms a triangle with side in the proportion 3:4:5, which is outlined
in red.

Comatic Correction and Mirror Surface
Based on the initial optical design, the comatic aberrations are corrected by reshaping
the mirror surfaces to the rms spot size for a set of points in the focal plane. The
configuration of the new optics still satisfies the Mizuguchi-Dragone condition. It is found
that the usable field of view for high frequency is significantly improved, see Figure A.3.
The mirror surfaces are expressed by a polynomial equation in local coordinate system
that is explained in Figure A.1. The general form of the mirror surface polynomials are
defined by

z(x, y) =
k∑
i=0

k∑
j=0

aij(
x

RN
)i( y

RN
)j , (A.1)

where z is the mirror sag at a given x and y position, RN is the normalized factor
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FYST Lab An-
tenna

Aperture Diameter Dm 5 6000 400
Offset angle on MR θ0 tan−1(4/3) 53.13◦ 53.13◦
Distance MR to SR Lm 5 6000 450
Angle of edge ray θe 2tan−1(Dm/4feff ) 11.894◦ 11.894◦
Angle between boresight
and feed axis

θp 90 90 90

MR focal length F 24 28800 1920
Offset distance on MR h 24 28800 1920
SR eccentricity e

√
5 2.236 2.236

SR parameter a 7.5 9000 585
Half inter-focal distance f 7.5×

√
5 20124.6 1308.1

Angle between MR and SR
axes

β tan−1(2) 63.435◦ 63.425◦

Angle between Feed and SR
axes

α tan−1(1/2) 26.565◦ 26.565◦

Distance SR to Feed, on axis Ls 10 12000 780
Distance SR to primary focus Lp 25 30000 1950
SR conic constant K = −e2 -5 -5 -5
SR radius of curvature Rs = a(e2 − 1) 30 36000 2340
Magnification of SR on axis m=(e-

1)/(e+1)
(
√

5− 1)/(
√

5 + 1) 0.382 0.382

Actual Magnification M = LS/Lp 0.4 0.4
Effective focal length feff = M(Lp+

Lm)
12 14400 960

MR chief ray angle of inci-
dence

incp tan−1(1/2) 26.565◦ 26.565◦

SR chief ray angle of incidence incs tan−1(1/3) 18.435◦ 18.435◦

Table A.1.: Optical characteristics of the initial FYST design and the small laboratory antenna. The
third column gives the values in the arbitrary units used in the diagram and the fourth gives the numbers
scaled for FYST. The parameters of the designed laboratory model are shown in fifth column.

and called normalization radius, k is the maximum polynomial power, and aij are the
coefficients. Here, for the primary mirror, the maximum polynomial power k is 6, and
for the secondary mirror k = 7. The two mirrors use RN = 3000 mm. The polynomials
describing the classical parabolic and hyperbolic surfaces are listed in table A.2. For
the modified surfaces are summarized in table A.3.
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Figure A.3.: Diffraction limited FOV of the coma-corrected optics as a function of frequency.

Parabolic Primary (M1)
aij j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6
i = 0 0 0 −55.90169 1.04167 −0.02429 0.00063 0.0906601
i = 1 0 0 0 0 0 0 0
i = 2 −69.87712 1.30208 −0.03643 0.00113 0.2610568 0 0
i = 3 0 0 0 0 0 0 0
i = 4 −0.00759 0.00042 0.2177414 0 0 0 0.0906601
i = 5 0 0 0 0 0 0 0
i = 6 0.0394559 0 0 0 0 0 0

Hyperbolic Secondary (M2)
aij j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7
i = 0 0 0 106.72691 5.90623 −0.25866 −0.07904 −0.00306 0.00081
i = 1 0 0 0 0 0 0 0 0
i = 2 118.58541 6.56249 −0.93772 −0.19574 −0.00084 0.00364 0 0
i = 3 0 0 0 0 0 0 0 0
i = 4 −0.72256 −0.11993 0.01061 0.00517 0 0 0 0
i = 5 0 0 0 0 0 0 0 0
i = 6 0.00863 0.00237 0 0 0 0 0 0
i = 7 0 0 0 0 0 0 0 0

Table A.2.: Polynomial Coefficients (aij) for the mirror surfaces of the classical Cross-Dragone Optics.
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Modified Primary (M1)
aij j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6
i = 0 0 0 −57.74022 1.5373825 1.154294 −0.441762 0.0906601
i = 1 0 0 0 0 0 0 0
i = 2 −72.17349 1.8691899 2.8859421 −1.026471 0.2610568 0 0
i = 3 0 0 0 0 0 0 0
i = 4 1.8083973 −0.603195 0.2177414 0 0 0 0.0906601
i = 5 0 0 0 0 0 0 0
i = 6 0.0394559 0 0 0 0 0 0

Modified secondary (M2)
aij j = 0 j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7
i = 0 0 0 103.90461 6.6513025 2.8405781 −0.7819705−0.04004830.0896645
i = 1 0 0 0 0 0 0 0 0
i = 2 115.44758 7.3024355 5.7640389 −1.578144 −0.03543260.2781226 0 0
i = 3 0 0 0 0 0 0 0 0
i = 4 2.9130983 −0.8104051−0.01852830.2626023 0 0 0 0
i = 5 0 0 0 0 0 0 0 0
i = 6 −0.02507940.0709672 0 0 0 0 0 0
i = 7 0 0 0 0 0 0 0 0

Table A.3.: Polynomial Coefficients (aij) for the mirror surfaces with coma correction



Appendix B.

Optics in the Reference Receiver
Module

The reference receiver shares the same electronic design with the signal receiver. The
receivers employ a spline-profile diagonal horn described in paper [97] and offers a
Gaussian beam with half power beam width (HPBW) of around 16 degrees. In the
FYST holography system, the beam of the telescope will be measured by recording the
product of the signals from the signal receiver and reference receiver. According to the
noise theory of a correlation receiver [102], the quality of the recorded holographic beam
is determined by the signal-to-noise ratio of the two receivers. Therefore, to improve the
quality of the measured beams, additional optics is designed and placed in the front of
the reference receiver chain to enlarge the signal collection area and improve its optical
gain. Since the reference receiver will be mounted in the yoke of the telescope and
rotate with the telescope in azimuth, during the beam scan, to avoid the gain reduction
due to receiver pointing offset, the Gaussian beam reshaped by the additional optics
has to cover the holographic beam measurement range which is around ±0.4 degrees at
300GHz. Here, we choose a Gaussian beam with HPBW of around 1.1 degrees as the
desired reference receiver beam. Off-axis mirrors are used to converge the HPBW of the
feed horn from 16 degrees to 1.1 degrees. In this section, Gaussian beam transformation
method of using off-axis curved mirrors is presented and employed to design the receiver
optics.
Gaussian Beam Transformation
The electric field E distribution of a propagating Gaussian beam can be represented by
its beam waist size w0 through the following expression[78]

E(r, z) =
√

2
πw(z)2 · exp(

−r2

w(z)2 − jkz −
jπr2

λR(z) + jφ0(z)) (B.1a)

R(z) = z + 1
z

(πw
2
0

λ
)2 (B.1b)
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Figure B.1.: Schematic diagram of Gaussian beam propagation.

w(z) = w0 ·
√

1 + ( λz
πw2

0
)2 (B.1c)

φ0(z) = tan−1( λz
πw2

0
), (B.1d)

where, z is the distance between the field and beam waist, w(z) is the Gaussian beam
radius in plane z that is perpendicular to the wave propagating direction, R(z) and
φ0(z) are radius of wavefront curvature and Gaussian beam phase shift respectively.
Figure B.1 shows the schematic diagram of Gaussian beam propagation. We can see
the phase center of the beam wavefront is changing along the propagating direction.
A critical parameter is called confocal distance zc which determines the near or field
region of the beam. After beam propagation of a distance on the order of the confocal
distance, the beam increases significantly and its phase center would be close to the
position of the beam waist of the beam. The confocal distance is defined by equation

zc = πw2
0

λ
. (B.2)

Off-axis mirrors with quadric surfaces are commonly used as focusing elements for
controlling the properties of Gaussian beams at millimeter and sub-millimeter wavelength.
For example, the elliptical mirror in Figure B.2, the phase center of the input Gaussian
beam at point P on the mirror (red curve) is placed in a focus F0 of the mirror, the
elliptical mirror can change the curvature of the beam wavefront and convert the reflected
beam phase center to the point F1. The radius Rin and Rr of the wavefront curvature
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Figure B.2.: Schematic of Gaussian beam transformation by a elliptical mirror.

and mirror local focal length f are related by the following expression
1
f

= 1
Rin

+ 1
Rr
. (B.3)

The sign of Rin and Rr should be positive for a real phase center and negative for the
case with a virtual one. The distance (din) between beam waist of the input beam and
point P on the mirror can be calculated by equation B.1b. If we assume the quadratic
mirror acts as a thin lens, the beam waist wr of the reflected beam and its position can
be found by using ABCD law and calculated by equation B.4, which is presented in
chapter 3 of book [78].

wr = win√
(din/f − 1)2 + (zc/f)2 (B.4a)

dr
f

= 1 + din/f − 1
(din/f − 1)2 + (zc/f)2 (B.4b)

When the reflection angle of the beam(2Θ) is defined, the geometry of the mirror surface
can be determined by the parameters a, b and c, which is resolved by formula B.5 using
the computed Rin, Rr and Θ. In the case where RinRr is negative, b is a imaginary
number which means the surface of the mirror is hyperbolic.

a = Rin +Rr
2 (B.5a)

b2 = RinRr(1± cos(2Θ))
2 (B.5b)

(2c)2 = R2
in +R2

r − 2RinRrcos(Θ) (B.5c)

Two-Mirror Optics for the Reference Receiver
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In the Gaussian beam transformation elements design, it is convenient to use beam waist
to represent the beam. Therefore, the beam with 16 degrees and 1.1 degrees HPBW
can be described by the beam with beam waist size of 1.4mm and 20mm respectively.
A two-mirror system is used to transfer the Gaussian beam twice and achieve the final
20mm beam waist. The diagram about the beam transformation is shown in Figure
B.3. The detail of the Gaussian beam parameters and the focal length of the mirrors
are summarized in table B.1.

Mirror win din Rin wr dr Rr f

M1 1.4 33.79 34.87 2.765 -63.54 -72.33 67.34
M2 2.765 170.54 173.82 20 146.938 10553.04 171.004

Table B.1.: The quasi-optical parameters of the two mirrors at frequency of 300GHz. The units in the
table is millimeter.

The reflecting mirror has to be off-axis to avoid blockage in the optical path, which
results in the distortion effects on the reflection beam from the off-axis mirror. The
beam distortion of a fundamental Gaussian beam on the reflection from an off-axis
elliptical mirror was studied in paper [103][104]. The paper [104] also presents the
way of employing two-mirror system to compensate the beam distortions by properly
orienting the secondary mirror and adjusting the distance between two mirrors. Here, the
configuration that is similar to the ’crossed-Dragone’ optics is adopted. The reflection
angle of the beams on both mirror surfaces is 90 degrees, which folds back the receiver
beam and make the module compact. The view of the designed optical model, receiver
box and beams are shown in Figure B.4.

Figure B.3.: Schematic of the Gaussian transformations of the two-mirror system.
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Figure B.4.: View of the CAD model of the reference receiver module and optics.

The far-field electromagnetic beam of the module is simulated by the GRASP package
using the method of physical optics, which agrees with the designed 1.1 degrees HPBW.
Figure B.5 shows the cut plot of the amplitude and phase beam pattern in azimuth.
The optical efficiency decreases by around 1.6dB as the telescope points to the edge
of the holographic beam map (±0.4 degrees). It also has been found that this optical
layout offers approximately symmetrical Gaussian beam and low cross-polarization, see
figure B.6.

Figure B.5.: Simulated beam of the designed reference receiver optics. The amplitude beam pattern
(blue curve) and phase pattern (green). The red curves are used angular region during holographic scan.
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Figure B.6.: Simulated beam patterns of the designed reference Rx optics. Co-polarization beam map
(left) and crossed-polarization beam (right).
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