
Technical Report Series
Center for Data and Simulation Science

Z. Wang, S. Wesner, S. Zellmann

Immersive ExaBrick: Visualizing Large AMR Data in the CAVE

Technical Report ID: CDS-2023-01
Available at https://nbn-resolving.org/urn:nbn:de:hbz:38-711746

Submitted on October 4, 2023

https://www.uni-koeln.de
https://www.cds.uni-koeln.de
https://orcid.org/0009-0007-8606-6826
https://orcid.org/0000-0002-7270-7959
https://orcid.org/0000-0003-2880-9090
https://nbn-resolving.org/urn:nbn:de:hbz:38-711746


Technical Reports 2023 CDS Technical Reports (2023)

Immersive ExaBrick: Visualizing Large AMR Data in the CAVE

Zhaoyang Wang1 Stefan Wesner1 , Stefan Zellmann1

1University of Cologne

Figure 1: Real-time rendering of AMR data sets with our tool, in the CAVE virtual environment at the University of Cologne. Left: molecular
cloud data set; Mid: Meteor impact data set (t=46,122s); Right: Meteor impact zoomed in.

Abstract
Rendering large adaptive mesh refinement (AMR) data in real-time in virtual reality (VR) environments is a complex challenge
that demands sophisticated techniques and tools. The proposed solution harnesses the ExaBrick framework and integrates it
as a plugin in COVISE, a robust visualization system equipped with the VR-centric OpenCOVER render module. This setup
enables direct navigation and interaction within the rendered volume in a VR environment. The user interface incorporates
rendering options and functions, ensuring a smooth and interactive experience. We show that high-quality volume rendering of
AMR data in VR environments at interactive rates is possible using GPUs.

1. Introduction

In recent years, a trend can be observed for scientific simulations to
generate volumetric data in the form of adaptive mesh refinement
(AMR) topologies. AMR data [BO84,BC89] is characterized by its
hierarchical structure, where the computational domain is divided
into a series of hierarchical grids with varying levels of refinement.
It offers the advantage of enhanced simulations by enabling higher
resolution in critical regions while maintaining a coarser represen-
tation in less significant regions. With the help of the ExaBrick
framework [WZU∗21], large AMR data can be re-arranged into the
ExaBricks data structure. This restructuring of data enables scien-
tific visualization of such data at interactive framerates. However,
real-time visualization of large AMR data sets presents formidable
challenges due to their intricate nature and the imperative for inter-
active exploration and analysis.

Real-time rendering technology assumes a pivotal role in en-
abling interactive exploration and analysis in virtual reality (VR)
environments, allowing users to seamlessly navigate and manipu-
late data in a responsive manner. VR has become a powerful tech-

nology that provides an immersive and interactive experience, mak-
ing it an ideal platform for visualizing complex scientific data. By
harnessing the potential of VR, researchers and scientists can attain
a profound comprehension of the complex structures and phenom-
ena represented by AMR data.

To create an immersive experience that seamlessly integrates
users’ natural head movements, enables exploratory interactions,
and facilitates the manipulation of data sets within the VR envi-
ronment, rendering frameworks are required to implement virtual
stereo cameras to generate viewports from; in contrast to camera
models used for non-immersive applications, VR camera models
support head tracking by placing the camera position at an off-
center position. These off-axis cameras allow for the camera to be
positioned at an angle that does not rigidly align with the center
of the scene or object. Leveraging the advanced capabilities of the
CAVE system [CNSD∗92] installed at the University of Cologne
and the VR renderer OpenCOVER, which is integrated within the
COVISE platform, we can expand upon the ExaBrick framework.
Our extensions allow us to harness the power of 3D rendering

© 2023 The Author(s)

https://orcid.org/0009-0007-8606-6826
https://orcid.org/0000-0002-7270-7959
https://orcid.org/0000-0003-2880-9090


Z. Wang & S. Wesner & S. Zellmann / Immersive ExaBrick

within VR environments, promising a groundbreaking leap in im-
mersive data visualization and interaction.

Our main contributions are:

• A real-time rendering solution for large AMR data sets in a VR
environment;

• An analysis of the lessons learned and challenges to integrate the
ExaBrick framework [WZU∗21] as a plugin into COVISE;

• An immersive VR application that enables users to navigate and
interact with rendered data using head trackers or controllers,
and access and manipulate rendering options.

2. Related Work

Techniques to visualize large-scale data become paramount, and
there has been a lot of development in this area [SZD∗23]. For
example, Sarton et al. [SCRL20] introduced an efficient solution
for managing large 3D grid data on a GPU. This approach mini-
mizes memory transfers between GPU and host and is designed to
maintain GPU performance while reducing CPU-GPU communi-
cation. Morrical et al. [MWUP20] harnessed ray tracing hardware
in NVIDIA’s RTX GPUs, achieving substantial performance en-
hancements in unstructured mesh point location.

Rendering AMR data has been a subject of significant interest
and importance in the scientific visualization community. Berger et
al. brought up with the AMR data structure [BO84, BC89], which
enables simulations to focus on more interesting parts in the data.
The cells the data is composed of have different refinement lev-
els according to their relative importance. The more important the
area is, the smaller are the cells in this area. AMR data comes in
different forms, such as block-structured AMR [CGL∗09] or Oc-
trees [BWG11].

Kähler et al. [KSH03, KWAH06] proposed to render AMR data
on the GPU via a data structure that discards the original AMR
hierarchy and builds blocks containing only same-refinement-level
cells. While their works excel in supporting nearest neighbor recon-
struction and vertex-centered AMR, challenges of smooth interpo-
lation for cell-centered data resulting from T-junctions remain un-
addressed. These challenges were addressed by Weber [WCM12]
on the CPU by generating stitch cells in parallel using extra lay-
ers of cells around boundaries. Wald et al. [WBUK17] proposed
to use tent-shaped basis function interpolation, enabling smooth
interpolation including at refinement level boundaries. Wang et
al. [WWW∗19] presented reconstruction filters utilizing the octants
of dual AMR cells and operate directly on cell-centered AMR data.

These prior works by Wald and Wang primarily focused on CPU
reconstruction. Their contributions involved filters that demanded
expensive cell location calculations through KD-trees, requiring
eight such look-ups per ray marching step to interpolate the sam-
ples. This process becomes exceptionally costly when executed on
GPUs due to their limited caching capabilities and their high con-
currency, which can lead to congestion on the memory subsystem.

To address these issues, Wald et al. [WZU∗21] later introduced
a significant advancement in this field through the introduction of
the ExaBrick data structure and rendering framework. The paper

delves into an in-depth exploration of practical models and ren-
dering techniques tailored for AMR data sets. A detailed descrip-
tion is provided in Section 3. The focal point is a software solu-
tion called ExaBrick, which will also form the basis for our work.
The proposed framework extends earlier work by Kähler and oth-
ers [KSH03, KWAH06] but lifts the restriction that their GPU data
structure is only applicable to nearest neighbor interpolation or
vertex-centric data. Another notable property is ExaBrick’s use of
hardware ray tracing cores via OptiX [PBD∗10].

Zellmann et al.’s [ZSM∗22] subsequent extension adapts
ExaBrick to support steady flow visualization using particle trac-
ing. Later, Zellmann et al. [ZWS∗22a] harnessed modern work-
stations and APIs to visualize exa-scale time-varying AMR data
sets and achieved smooth animation at interactive rates. Address-
ing the challenges coming with scattering events and global illumi-
nation, Zellmann et al. [ZWS∗22b] implemented volumetric path
tracing for AMR data using Woodcock tracking [WMHL65], where
ExaBrick serves as an acceleration data structure supplying density
majorants.

Various visualization techniques have been explored in the con-
text of VR environments, aiming to enhance user experiences and
enable immersive interactions with complex data and simulations
[SC03]. In seminal work from 1998, Cruz-Neira et al. [CNSD∗92]
introduced the CAVE virtual reality and scientific visualization
system. A descendent of such systems, yet realized with modern
technology such as active stereo backprojection at high resolution,
or high-precision tracking with infrared markers, was recently in-
stalled at the University of Cologne [ICC23]. CAVE systems use
off-axis perspective projection techniques, which are required to
implement 6-DoF stereo camera systems with arbitrarily positioned
viewing centers.

Horan et al. [HSM∗18] for example introduced a versatile
CAVE-like VR system. This system integrates a 6-DoF haptic in-
teraction system and immersive 3D surround sound audio, offering
a highly immersive experience. A standout feature is the INCA 6D
haptic system developed by Haption GmbH [PD09], enabling users
to grasp and feel objects with up to 37.5N force feedback on a grip-
ping tool. The paper discusses the system’s pros and cons across
various configurations and VR applications.

Head-mounted displays (HMDs) are an alternative to CAVE-
like VR and are used widely in this field. For example, the Oculus
Rift headset and Oculus Touch controllers are used in the study by
Kalarat and Koomhin [KK19] with a VR application for real-time
volume rendering interaction with 1D transfer functions, enabling
users to visualize stereoscopic images at 60 frames per second.

Utilizing the advantages of VR techniques, scientists are able to
visualize data in different domains; Koger et al. [KHYD22], e.g.,
investigated the potential of VR as an immersive platform for inter-
active medical analysis, enabling the manipulation and exploration
of CT images of the cardiopulmonary system in a 3D environment,
facilitating the generation of new data analysis perspectives and
enhancing data interpretation for medical practices including train-
ing, education, and investigation. Recently, Nam et al. [NASN23]
introduced an extension to OSPRay Studio, enabling 3D virtual en-
vironment display on tiled walls. This extension employs gesture-

© 2023 The Author(s)



Z. Wang & S. Wesner & S. Zellmann / Immersive ExaBrick

based interaction, utilizing Microsoft Kinect sensors to track user
movements and update 3D objects based on interpreted gestures.

The COVISE visualization framework [RLL∗96], along with its
COVER module [RFL∗98] (later OpenCOVER), serves as a piv-
otal avenue for rendering scientific data within VR environments.
This integration of virtual reality with scientific visualization lever-
ages OpenSceneGraph [WQ10] and OpenCOVER, enabling real-
time 3D rendering in COVISE. COVISE’s versatility is highlighted
by the incorporation of various rendering approaches, exemplified
by Schulze et al.’s volume plugin [SDWWL01] and by Zellmann
et al.’s Visionaray library [ZWL17], which, notably, inspired the
development of our ExaBrick plugin.

3. Background: ExaBrick Data Structure and Framework

Our contribution builds considerably upon ExaBrick by Wald
et al. [WZU∗21]. ExaBrick can be considered a data structure over
the basis function method presented in earlier work by Wald et
al. [WBUK17], as well as a framework based on NVIDIA OptiX
that makes use of hardware ray tracing. The fundamental prob-
lems solved are those of smooth interpolation including at the level
boundaries—this is achieved by using tent basis functions—as well
as coherent traversal with viewing rays, in the spirit of the data
structure proposed by Kähler et al. [KWAH06].

Other than Kähler’s data structure, the integration domains cho-
sen by Wald do overlap (as they include one half cell’s overlap per
side to accommodate the tent basis); Wald et al. address this is-
sue by computing a domain decomposition over the regions where
the basis function domains overlap, so a volume renderer perform-
ing absorption and emission integration is still presented with non-
overlapping integration regions. Each domain of the domain de-
composition stores pointers to a set of “bricks” (these are the same
as Kähler’s, and span the actual data domain of the cells). By in-
teractively classifying and culling empty regions, only those re-
gions that are visible become active, hence the term active brick
regions (ABR) for the axis-aligned boxes constituting the domain
decomposition. The ABRs can be traversed similarly to the original
bricks by Kähler, allow for coherent accesses amenable to GPUs,
and serve as an adjacency data structure required for smooth level
boundaries.

ExaBrick is however also an open source framework† orga-
nized into what can semantically considered to be a software li-
brary (depending on OptiX, and on OWL, the OptiX Wrappers Li-
brary [WML∗22]), and a viewer application (exaViewer) that uses
the library. Technically, the library and viewer are statically com-
piled into the same executable, but C++ classes define the interface
and allow for easy separation of the two components, so that the
library part could, e.g., be compiled into a Unix shared object or a
Windows dynamic link library. The main interface of the “library
portion” is the OptiXRenderer class, which also wraps the virtual
camera, consumes and populates a (CUDA device) pointer to the
frame buffer, and has pointers to the data that is supplied via a pro-
prietary (yet documented and simple) file format and config file
facilities.

† https://github.com/owl-project/owlExaBrick

4. Method Overview

We propose to use ExaBrick to drive immersive rendering in the
CAVE by building it as a shared library and integrating it into
OpenCOVER, COVISE’s rendering component, as a viewport plu-
gin. Viewport plugins capture the renderer’s tracking state, trans-
form that into camera parameters that can be consumed and finally
turned into rendered images using a custom rendering method, to
eventually be displayed in OpenCOVER’s viewport.

The exaViewer application developed by Wald et al. forms the
viewing tool and GUI of ExaBrick. For VR, however, this tool is
only of limited use. It relies on an on-axis pinhole camera placed in
direct alignment with the scene’s center. Consequently, it captures
scenes from a viewpoint where the camera’s optical axis is con-
gruent with the line of sight to the center of the scene. This yields
a straightforward and centrally-focused perspective of the scene,
but only for desktop applications with mono viewing and without
headtracking interaction.

The original camera needs to be replaced with an off-axis model
to support CAVE-like stereo. In ray tracing we use rays to simulate
the line of sight from the eyes to the object to simulate light trans-
port and light’s propagation to the human eye bouncing off objects.
The new camera in the plugin should generate primary rays follow-
ing the off-axis camera model.

5. Implementation

The main programming language used for the implementation is
C++. Important code snippets will be presented here, where ap-
plicable in C++, or in an abridged form of that where clarity de-
mands this; complete code is available on a development branch on
GitHub ‡.

5.1. OpenCOVER Viewport Plugin Control Flow

OpenCOVER can be extended using plugins, which are dynamic
libraries implementing a function interface that OpenCOVER calls
at runtime. To create a plugin, we inherit from the C++ class
coVRPlugin and implement its virtual methods. Some of the vir-
tual methods, when called, guarantee that an OpenGL context is
“current”, i.e., when issued from there, OpenGL calls by our im-
plementation are executed on the main graphics thread.

The interface to obtaining tracking parameters for the user’s po-
sition as mentioned in Section 4 is supported by accessing Open-
COVER’s OpenGL state. This is realized using the C++ utility class
MultiChannelDrawer; the multi-channel drawer class also allows
the plugin to write RGBA and depth pixels to each channel; chan-
nels form framebuffer abstractions, e.g., for the left/right eye, per
projection wall, of the CAVE environment. This workflow of ac-
cessing OpenCOVER’s camera transforms and directly writing to
the frame and depth buffer allows us to realize what is called a
viewport plugin—which is opposed to other plugin types that, e.g.,
extend the scene graph structure of the VR renderer.

‡ https://github.com/zywang3/covise/tree/zhaoyang

© 2023 The Author(s)

https://github.com/owl-project/owlExaBrick
https://github.com/zywang3/covise/tree/zhaoyang


Z. Wang & S. Wesner & S. Zellmann / Immersive ExaBrick

The ExaBrick plugin follows a structured workflow that in-
cludes Plugin initialization, data loading, setting up initial values
and menus, and initialization of the ExaBrick library. OpenCOVER
then enters the render loop, giving the plugin the chance to render
frames and display them. On shutdown, the plugin executes a final-
ization phase to tear down any state, including that of the ExaBrick
library. See Fig. 2 for an overview.

Figure 2: Flowchart depicting the structure of our plugin.

5.2. ExaBrick Application/Plugin–Library Interface

The ExaBrick plugin utilizes various functions and tools from
the original ExaBrick library. We build the ExaBrick tools and
exaViewer executable locally by integrating the whole C++ project
as a git submodule into COVISE. We build the rendering logic into
a shared library; interoperability between COVISE/OpenCOVER
and ExaBrick is ensured as both software projects use CMake as the
build system.

ExaBrick imports its data via a set of proprietary, yet doc-
umented, file formats. The corresponding code for loading
data is encapsulated in the loadFile function using COVISE’s
FileHandler class. The file handler of our plugin is defined to read
text-based config files, which point to binary input files with scalar
data and bricks; as described in the original publication [WZU∗21],
any cartesian AMR format with compatible data can be converted
to this format using tools coming with the ExaBrick framework.
When the file handler gets invoked, loading these files is realized
using ExaBrick functions that we promoted to API functions that
can be called at the library/application interface.

During the Initialize Render and Menu Settings phase (cf.
Fig. 2), a multitude of parameters for the renderer are initialized.
This encompasses setting up transfer function values, configuring
rendering preferences, and determining the ideal ray marching step
size dt. A detailed description of the menu structure is found in Sec-
tion 5.4. These settings are established directly after the creation of
OptiXRenderer, which is the central class of the ExaBrick library.

Afterwards we create the MultiChannelDrawer, the API that al-
lows us to realize viewport plugins and render into COVER’s view-
port. The class can handle various rendering modes, update geome-
try, and handle the data for each view independently or collectively,
depending on the selected view settings. The camera matrices are
obtained from the MultiChannelDrawer (Line 2–6 in Listing 1)
and passed to the renderer (Line 14–22 in Listing 1) using the func-
tion setCameraMat(). Furthermore, we obtain pointers the depth
and color buffer using the depth() and rgba() member functions
of the MultiChannelDrawer class (Line 26–29 in Listing 1) that
our renderer can write to directly. After rendering a single frame
(Listing 1, Line 32), the final phase responsible for displaying the

resulting images, now resident in the depth and color buffers, is ini-
tiated by calling the MultiChannelDrawer’s swapFrame function
(Listing 1, Line 35).

1 // Get osg matrices from drawer
2 osg::Matrix mv
3 = multiChannelDrawer->modelMatrix(chan)
4 * multiChannelDrawer->viewMatrix(chan);
5 osg::Matrix pr
6 = multiChannelDrawer->projectionMatrix(chan);
7

8 // cast osg matrices into ExaBrick-compatible
9 // types, also switching from row to col-major

10 math::mat4f view = osg_cast(mv);
11 math::mat4f proj = osg_cast(pr);
12

13 // update camera when matrices changed
14 if (notsame(view, oldView)
15 || notsame(proj, oldProj) {
16 // Compute inverse matrices and upload to
17 // the device
18 plugin->renderer->setCameraMat(
19 view, proj);
20 oldView = view;
21 oldProj = proj;
22 }
23

24 // Pass pointers to frame buffer and depth buffer
25 // along to the renderer
26 plugin->renderer->dbPointer
27 = multiChannelDrawer->depth(chan);
28 plugin->renderer->fbPointer
29 = multiChannelDrawer->rgba(chan);
30

31 // Render the frame
32 plugin->renderer->renderFrame();
33

34 // Display the rendered frame
35 multiChannelDrawer->swapFrame();

Listing 1: Interfacing between COVER and our library using the
MultiChannelDrawer C++ class.

5.3. Adjustments to Existing Shader Code

The original shader code of ExaBrick creates an on-axis camera
with the device function generateRay. However, since our appli-
cation requires an off-axis camera, we have extended the function-
ality of this generateRay function to calculate rays suitable for our
application’s needs.

As described for example in Zellmann’s dissertation [Zel14], we
generate orthogonal rays in normalized device coordinates (NDC)
through each pixel, originating at z = −1 and pointing in the pos-
itive z direction. By applying the inverse viewing transform (pro-
jection and model-view matrices obtained via setCameraMat in
Listing 1), these orthogonal rays are transformed to world (in our
case: CAVE) space and match the camera settings chosen through
OpenGL, i.e., if the chosen OpenGL camera frame exhibits an off-
axis frustum, so will the convex hull of the set of camera rays.
The procedure is summarized in Fig. 3 (reprinted with permission
from [Zel14]).

© 2023 The Author(s)



Z. Wang & S. Wesner & S. Zellmann / Immersive ExaBrick

Figure 3: Algorithm calculating camera rays backwards using in-
verse projection and model-view matrices [Zel14].

5.4. VR User Interface

To allow for user interaction with the AMR data in the CAVE,
we expanded the functionality of the VR menu within the Open-
COVER interface by incorporating comprehensive menus and sub-
menus. These menus largely mirror the menu structure and user in-
terface of the exaViewer program. Typical tasks exposed through
the user interface include setting opacity scale, fine-tuning of iso-
surface and contour plane parameters, and toggling rendering op-
tions. An overview of the menu structure is given in Fig. 4. In the
CAVE environment, these menus are manipulated using the “Fly-
stick 2” input device.

Figure 4: Screenshot of the menu structure of the VR plugin.

6. Results

We performed a quantitative evaluation to assess what quality set-
tings can be achieved while still retaining interactive framerates for
VR. For the evaluation we use the following hardware and software
setup: five-sided CAVE, 3m3 in size, using back projection active
stereo (1600 × 1600 pixels per left and right eye, each frame is
delivered by a separate GPU). An ART infrared tracker is used for
the head position and pointing device (“Flystick 2”). The system
is powered by ten NVIDIA Quadro RTX 6000 GPU (Turing gen-
eration) with 24 GB GDDR memory, as well as Intel Xeon Gold

data set # Cells # Bricks # ABRs Size on Disc

SILCC 15.8 M 40 191 363 MB
Impact 283 M 3.1 M 77.1 M 6.5 GB

Table 1: Statistics for the data sets we use for the evaluation.

6130 CPUs @ 2.10GHz, with 128 GB RAM each. The software
environment used is based on Ubuntu Linux 20.04, NVIDIA driver
version 525.125.06, CUDA 12.0, and NVIDIA OptiX 7.0.

We have tested the performance of the plugin on two AMR
data sets: a) SILCC Molecular Cloud data set: as presented
in [GWN∗16], converted to the cells and scalar format us-
ing the FLASH converter coming with ExaBrick [WZU∗21]. b)
LANL Meteor Impact: Meteor impact simulation data set (at
time t=46,112s) produced by Gisler et al. at Los Alamos Na-
tional Laboratory (LANL) [PST∗16] using the xRage simulation
code [GWC∗08]. Statistics for these data sets are found in Table 1.
We picked two reprentative viewports (one zoomed-in view, and a
zoomed-out overview where the camera is moved outside the scene
bounds) depicted in Fig. 5.

We are interested in the sampling quality—represented by the
ray marching base step size dt—that can be achieved while retain-
ing real-time framerates. Since ExaBrick employs adaptive sam-
pling, dt serves as a scaling factor rather than an absolute step size;
in cases where we sample an ABR with the finest resolution, e.g.,
dt = 1.0 means we are marching through that region with steps of
size one; when sampling an ABR where the finest cells are from
refinement level L = 1, dt = 1.0 means the step size is 2L (= 2),
etc. Also note that in the CAVE setup, the framerate will be lim-
ited by that of the slowest viewport, i.e., the framerates we report,
in frames per second (fps), are that of the most costly frame in the
whole setup of stereo views across the five CAVE projection planes.

For the molecular cloud data set, a total of 50 measurements
were taken across the range of dt = 0.1 to dt = 5.0. For the LANL
meteor impact data set, 23 measurements were recorded spanning
dt = 0.1 to dt = 5.0. We report our results in Fig. 6.

The results suggest that the molecular cloud data set can be ren-
dered at interactive rates (25 fps and higher) when setting base
dt = 1. This is encouraging, as on average, at this quality setting
we will sample each cell exactly once. We also observe that the
viewpoint dependency is neglible. We achieve relatively consistent
framerates regardless which zoom level we choose. We observe di-
minishing returns on performance when choosing base dt > 2, but
note that the quality is impacted significantly at such low sampling
rates.

For the LANL meteor impact, we observe similar scalability
curves when varying base dt, with the same plateau at dt = 2, yet
we note that framerates are not interactive enough for virtual re-
ality in the CAVE. The maximum framerate we achieve is about
3-4 fps; we only achieve higher framerates (not included in our
measurements) when zooming out significantly; this points to fu-
ture work on finding different trade-offs between quality and per-
formance other than simply varying dt, or incorporating more so-
phisticated latency hiding techniques. We conclude that framerates
depend largely on the size and complexity of the data set.

© 2023 The Author(s)



Z. Wang & S. Wesner & S. Zellmann / Immersive ExaBrick

(a) Molecular Cloud viewpoint 1 (zoomed-out) (b) Molecular Cloud viewpoint 2 (zoomed-in)

(c) LANL Meteor Impact viewpoint 1 (zoomed-out) (d) LANL Meteor Impact viewpoint 2 (zoomed-in)
Figure 5: Photos taken in the CAVE at the University of Cologne, illustrating the data sets and viewports chosen for the evaluation.

7. Discussion

The research presented in this paper makes several significant con-
tributions to the field of real-time rendering of large AMR data in
VR. Firstly, the developed ExaBrick plugin successfully enables
the real-time visualization and exploration of complex AMR data
sets, leveraging the VR visualization system of COVISE and in-
teractive navigation techniques. The integration of ExaBrick as a
COVISE plugin provides an efficient and scalable framework for
rendering large-scale AMR data in VR environments. Additionally,
the methods to adjust the ray marching step size guarantees a bal-
anced trade-off between rendering speed and visual fidelity. Over-
all, this work offers scientists and researchers a powerful tool for
exploring, analyzing and understanding complex AMR data sets.

While the implemented solution demonstrates promising results,
it is important to acknowledge its limitations. One limitation is the
performance impact when dealing with very large AMR data sets
like the LANL Meteor data set, where further tests and optimization

may be required to maintain real-time rendering performance. Our
observations point to future work.

To overcome limitations with larger data sets, a sensible ap-
proach could be the use of level-of-detail techniques, so the sam-
pling rate is not only chosen based on the local AMR level, but
also on proximity to the viewing position. Other countermeasures
might include latency hiding techniques that generate novel views
from outdated frames while waiting for new frames to be rendered.

Future work may also involve improving the visual fidelity,
though within the constraints that interactivity allows. It would,
e.g., be interesting to incorporate global illumination techniques as
in [ZWS∗22b]; however, as these techniques are notoriously ex-
pensive, would require even more aggressive optimization such as
using Monte Carlo denoising techniques.

We finally note that both the original ExaBrick library, COVISE
and OpenCOVER, as well as our plugin, are open source and pub-

© 2023 The Author(s)



Z. Wang & S. Wesner & S. Zellmann / Immersive ExaBrick

0 1 2 3 4 5
Ray Marching Step Size dt (Molecular Cloud)

5

10

15

20

25

30

35

40

fp
s

Zoomed-out View
Zoomed-in View

(a) Molecular Cloud fps vs. dt.

0 1 2 3 4 5
Ray Marching Step Size dt (Meteor Impact)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

fp
s

Zoomed-out View
Zoomed-in View

(b) LANL Meteor Impact (at t=46,112s) fps vs. dt.

Figure 6: Rendering performance in frames per second (fps) vs.
sampling rate, controlled by the ray marching step size dt.

lished under the links provided above, allowing researchers to use
our software in their own virtual environments.

8. Conclusion

In conclusion, the integration of the ExaBrick framework as a plu-
gin within the COVISE visualization system provides a promis-
ing solution for real-time visualization of large AMR data sets in
VR environments. The plugin demonstrates efficiency in rendering
moderately sized data sets and offers interactive exploration expe-
riences. While challenges with extremely large data sets remain,
further optimizations and advancements in rendering techniques
could enhance the plugin’s capabilities. Overall, the ExaBrick plu-
gin stands as an important tool for immersive scientific visualiza-
tion, with the potential to evolve further as technology progresses.

Acknowledgments

This work was supported by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under grant no. 456842964.
We are grateful to the IT Center Cologne at the University of
Cologne for generously granting us access to the CAVE VR envi-
ronment. Our appreciation extends to the creators of the ExaBrick
framework and COVISE for laying down robust foundations upon
which this work was built.

References
[BC89] BERGER M. J., COLELLA P.: Local Adaptive Mesh Refine-

ment for Shock Hydrodynamics. Journal of Computational Physics 82,
1 (1989), 64–84. 1, 2

[BO84] BERGER M. J., OLIGER J.: Adaptive Mesh Refinement for
Hyperbolic Partial Differential Equations. Journal of Computational
Physics 53, 3 (1984), 484–512. 1, 2

[BWG11] BURSTEDDE C., WILCOX L. C., GHATTAS O.: p4est: Scal-
able Algorithms for Parallel Adaptive Mesh Refinement on Forests of
Octrees. SIAM Journal on Scientific Computing 33, 3 (2011), 1103–
1133. 2

[CGL∗09] COLELLA P., GRAVES D. T., LIGOCKI T., MARTIN D.,
MODIANO D., SERAFINI D., VAN STRAALEN B.: Chombo Soft-
ware Package for AMR Applications Design Document. Available at
the Chombo website: http://seesar. lbl. gov/ANAG/chombo/(September
2008) (2009). 2

[CNSD∗92] CRUZ-NEIRA C., SANDIN D. J., DEFANTI T. A., KENYON
R. V., HART J. C.: The CAVE: Audio Visual Experience Au-
tomatic Virtual Environment. Commun. ACM 35, 6 (jun 1992),
64–72. URL: https://doi.org/10.1145/129888.129892,
doi:10.1145/129888.129892. 1, 2

[GWC∗08] GITTINGS M., WEAVER R., CLOVER M., BETLACH T.,
BYRNE N., COKER R., DENDY E., HUECKSTAEDT R., NEW K.,
OAKES W. R., ET AL.: The RAGE Radiation-Hydrodynamic Code.
Computational Science & Discovery 1, 1 (2008), 015005. 5

[GWN∗16] GIRICHIDIS P., WALCH S., NAAB T., GATTO A., WÜNSCH
R., GLOVER S. C., KLESSEN R. S., CLARK P. C., PETERS T., DERIGS
D., ET AL.: The SILCC (SImulating the LifeCycle of molecular Clouds)
project–II. Dynamical evolution of the supernova-driven ISM and the
launching of outflows. Monthly Notices of the Royal Astronomical Soci-
ety 456, 4 (2016), 3432–3455. 5

[HSM∗18] HORAN B., SEVEDMAHMOUDIAN M., MORTIMER M.,
THIRUNAVUKKARASU G. S., SMILEVSKI S., STOJCEVSKI A.: Feel-
ing Your Way Around a CAVE-Like Reconfigurable VR System. In
2018 11th International Conference on Human System Interaction (HSI)
(2018), pp. 21–27. doi:10.1109/HSI.2018.8431365. 2

[ICC23] IT CENTER COLOGNE I.: CAVE VR Environment at the Uni-
versity of Cologne, 2023. URL: https://rrzk.uni-koeln.de/
en/hpc-projects/visualization/cave. 2

[KHYD22] KOGER C. R., HASSAN S. S., YUAN J., DING Y.: Virtual
Reality for Interactive Medical Analysis. Frontiers in Virtual Reality 3
(2022), 782854. 2

[KK19] KALARAT K., KOOMHIN P.: Real-time volume rendering in-
teraction in Virtual Reality. International Journal of Technology 10, 7
(2019), 1307–1314. 2

[KSH03] KÄHLER R., SIMON M., HEGE H.-C.: Interactive Volume
Rendering of Large Sparse Data Sets Using Adaptive Mesh Refinement
Hierarchies. IEEE Transactions on Visualization and Computer Graph-
ics 9, 3 (2003), 341–351. 2

[KWAH06] KÄHLER R., WISE J., ABEL T., HEGE H.-C.: GPU-assisted
Raycasting for Cosmological Adaptive Mesh Refinement Simulations. In
VG@ SIGGRAPH (2006), pp. 103–110. 2, 3

[MWUP20] MORRICAL N., WALD I., USHER W., PASCUCCI V.: Ac-
celerating Unstructured Mesh Point Location With RT Cores. IEEE
Transactions on Visualization and Computer Graphics PP (12 2020),
1–1. doi:10.1109/TVCG.2020.3042930. 2

[NASN23] NAM J. W., ABRAM G. D., SAMSEL F., NAVRÁTIL
P. A.: Immersive OSPRay: Enabling VR Experiences with
OSPRay. In PEARC: Practice and Experience in Ad-
vanced Research Computing (PEARC 2023) (2023). preprint.
URL: https://jungwhonam.github.io/images/
publications/PEARC2023_Immersive-OSPRay.pdf,
doi:10.1145/3569951.3597579. 2

[PBD∗10] PARKER S. G., BIGLER J., DIETRICH A., FRIEDRICH H.,
HOBEROCK J., LUEBKE D., MCALLISTER D., MCGUIRE M., MOR-
LEY K., ROBISON A., ET AL.: Optix: A General Purpose Ray Tracing
Engine. Acm transactions on graphics (tog) 29, 4 (2010), 1–13. 2

[PD09] PERRET J., DOMINJON L.: The INCA 6D: A Commercial
Stringed Haptic System Suitable for Industrial Applications. 2

© 2023 The Author(s)

https://doi.org/10.1145/129888.129892
https://doi.org/10.1145/129888.129892
https://doi.org/10.1109/HSI.2018.8431365
https://rrzk.uni-koeln.de/en/hpc-projects/visualization/cave
https://rrzk.uni-koeln.de/en/hpc-projects/visualization/cave
https://doi.org/10.1109/TVCG.2020.3042930
https://jungwhonam.github.io/images/publications/PEARC2023_Immersive-OSPRay.pdf
https://jungwhonam.github.io/images/publications/PEARC2023_Immersive-OSPRay.pdf
https://doi.org/10.1145/3569951.3597579


Z. Wang & S. Wesner & S. Zellmann / Immersive ExaBrick

[PST∗16] PATCHETT J., SAMSEL F., TSAI K. C., GISLER G. R.,
ROGERS D. H., ABRAM G. D., TURTON T. L.: Visualization and Anal-
ysis of Threats from Asteroid Ocean Impacts. Los Alamos National Lab-
oratory (2016). 5

[RFL∗98] RANTZAU D., FRANK K., LANG U., RAINER D., WÖSSNER
U.: COVISE in the CUBE: an Environment for Analyzing Large and
Complex Simulation Data. In Proceedings of the 2nd Workshop on Im-
mersive Projection Technology (1998), vol. 2001. 3

[RLL∗96] RANTZAU D., LANG U., LANG R., NEBEL H., WIERSE A.,
RUEHLE R.: Collaborative and Interactive Visualization in a Distributed
High Performance Software Environment. In High Performance Com-
puting for Computer Graphics and Visualisation: Proceedings of the In-
ternational Workshop on High Performance Computing for Computer
Graphics and Visualisation, Swansea 3–4 July 1995 (1996), Springer,
pp. 207–216. 3

[SC03] SHERMAN W. R., CRAIG A. B.: Understanding Virtual Reality:
Interface, Application, and Design. Wiley, 2003. 2

[SCRL20] SARTON J., COURILLEAU N., REMION Y., LUCAS L.: In-
teractive Visualization and On-Demand Processing of Large Volume
Data: A Fully GPU-Based Out-of-Core Approach. IEEE Transactions
on Visualization and Computer Graphics 26, 10 (2020), 3008–3021.
doi:10.1109/TVCG.2019.2912752. 2

[SDWWL01] SCHULZE-DÖBOLD J., WÖSSNER U., WALZ S. P., LANG
U.: Volume rendering in a virtual environment. In Immersive Projec-
tion Technology and Virtual Environments 2001: Proceedings of the Eu-
rographics Workshop in Stuttgart, Germany, May 16–18, 2001 (2001),
Springer, pp. 187–198. 3

[SZD∗23] SARTON J., ZELLMANN S., DEMIRCI S., GÜDÜKBAY U.,
ALEXANDRE-BARFF W., LUCAS L., DISCHLER J.-M., WESNER S.,
WALD I.: State-of-the-art in Large-Scale Volume Visualization Beyond
Structured Data. 2

[WBUK17] WALD I., BROWNLEE C., USHER W., KNOLL A.: CPU
Volume Rendering of Adaptive Mesh Refinement Data. In SIGGRAPH
Asia 2017 Symposium on Visualization (2017), pp. 1–8. 2, 3

[WCM12] WEBER G. H., CHILDS H., MEREDITH J. S.: Efficient Par-
allel Extraction of Crack-Free Isosurfaces from Adaptive Mesh Refine-
ment (AMR) Data. In IEEE Symposium on Large Data Analysis and
Visualization (LDAV) (2012), IEEE, pp. 31–38. 2

[WMHL65] WOODCOCK E., MURPHY T., HEMMINGS P., LONG-
WORTH S.: Techniques used in the GEM Code for Monte Carlo Neutron-
ics Calculations in Reactors and Other Systems of Complex Geometry.
In Proc. Conf. Applications of Computing Methods to Reactor Problems
(1965), vol. 557, Argonne National Laboratory. 2

[WML∗22] WALD I., MORRICAL N., LACEWELL D., PISHA L., AM-
STUTZ J., ZELLMANN S.: OWL: A Node Graph "Wrapper" Library for
OptiX 7, 2022. 3

[WQ10] WANG R., QIAN X.: OpenSceneGraph 3.0: Beginner’s Guide.
Packt Publishing, 2010. 3

[WWW∗19] WANG F., WALD I., WU Q., USHER W., JOHNSON C. R.:
CPU Isosurface Ray Tracing of Adaptive Mesh Refinement Data. IEEE
Transactions on Visualization and Computer Graphics (2019). 2

[WZU∗21] WALD I., ZELLMANN S., USHER W., MORRICAL N.,
LANG U., PASCUCCI V.: Ray Tracing Structured AMR Data Using
ExaBricks. IEEE Transactions on Visualization and Computer Graphics
27, 2 (2021), 625–634. 1, 2, 3, 4, 5

[Zel14] ZELLMANN S.: Interactive high-performance volume rendering.
PhD thesis, University of Cologne, Aug. 2014. 4, 5

[ZSM∗22] ZELLMANN S., SEIFRIED D., MORRICAL N., WALD I.,
USHER W., LAW-SMITH J., WALCH-GASSNER S., HINKENJANN A.:
Point Containment Queries on Ray Tracing Cores for AMR Flow Vi-
sualization. Computing in Science Engineering (2022), 1–1. doi:
10.1109/MCSE.2022.3153677. 2

[ZWL17] ZELLMANN S., WICKEROTH D., LANG U.: Vision-
aray: A Cross-Platform Ray Tracing Template Library. In 2017

IEEE 10th Workshop on Software Engineering and Architectures
for Realtime Interactive Systems (SEARIS) (2017), pp. 1–8. URL:
https://ieeexplore.ieee.org/document/9183547,
doi:10.1109/SEARIS41720.2017.9183547. 3

[ZWS∗22a] ZELLMANN S., WALD I., SAHISTAN A., HELLMANN M.,
USHER W.: Design and Evaluation of a GPU Streaming Framework for
Visualizing Time-varying AMR Data. In Eurographics Symposium on
Parallel Graphics and Visualization (2022). 2

[ZWS∗22b] ZELLMANN S., WU Q., SAHISTAN A., MA K.-L., WALD
I.: Beyond ExaBricks: GPU Volume Path Tracing of AMR Data, 2022.
arXiv:2211.09997. 2, 6

© 2023 The Author(s)

https://doi.org/10.1109/TVCG.2019.2912752
https://doi.org/10.1109/MCSE.2022.3153677
https://doi.org/10.1109/MCSE.2022.3153677
https://ieeexplore.ieee.org/document/9183547
https://doi.org/10.1109/SEARIS41720.2017.9183547
http://arxiv.org/abs/2211.09997

