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Abstract
Pollutants in the atmosphere, such as nitrogen oxides and particulate matter, pose
a threat to the environment and human health. In addition to natural sources,
anthropogenic emissions contribute significantly to air pollution. Since emission rates
cannot be measured directly, their estimates provided by research institutes and
national environmental agencies are subject to considerable uncertainty. However,
for accurate air quality forecasts using atmospheric chemical transport models such
as the regional European Air pollution Dispersion - Inverse Model (EURAD-IM),
reliable emission data are crucial. To correct the emission data of inventories based on
observations of trace gas and aerosol concentrations in the atmosphere, the EURAD-IM
comprises a four dimensional variational data assimilation system (4D-Var) that allows
for simultaneous optimisation of initial concentrations and species-dependent emission
corrections. In order to improve the knowledge about the sources of air pollution, in
this work, a new approach is developed and implemented in the data assimilation
system of the EURAD-IM to correct emissions individually for source categories such as
road transport, industry and agriculture. For the distinction between the emissions of
different source categories, the new approach exploits the spatial separation of emission
sources of different categories as well as their characteristic diurnal emission profiles
and chemical compositions. Assuming a fixed chemical composition of the emissions
of the source categories within the grid cells, a full correlation between the emission
corrections of the different chemical species is introduced. Furthermore, an anisotropic
diffusion operator is implemented that increases the spatial correlation between the
road traffic emission corrections of the grid cells along roads. To investigate the ability
of the new development to distinguish between emissions of different sectors, two
different types of simulations are performed. In identical twin experiments based on
synthetic observations, scenarios with increased industrial and agricultural emissions
and a simultaneous decrease in road transport emissions are simulated. The data
assimilation system based on the new approach is able to reproduce the emission
changes in the experiments for large parts of the model domain through the determined
sector specific emission corrections. Furthermore, a study is performed in which the
emissions within a two-week period in North Rhine-Westphalia are analysed using
real observation data. It is shown that in this scenario a distinction of industrial and
power plant emissions versus road transport emissions is possible through the sector
specific emission optimisation. Moreover, changes in agricultural emissions can be
specified due to their high NH3 fraction. For all observed species, i.e. O3, NO2, SO2,
PM10 and PM2.5, the agreement of the simulated with the observed concentrations
is comparable to that of a reference simulation using the current EURAD-IM data
assimilation system. An improvement of the results is expected through additional
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observation data, especially of CO and CO2 concentrations.



Kurzzusammenfassung
In der Atmosphäre enthaltene Schadstoffe wie Stickoxide und Feinstaub stellen eine
Gefahr für die Umwelt und die menschliche Gesundheit dar. Neben natürlichen
Quellen tragen anthropogene Emissionen wesentlich zur Luftverschmutzung bei. Da
Emissionsraten nicht direkt gemessen werden können, sind deren Schätzungen, die von
Forschungsinstituten und nationalen Umweltbehörden bereitgestellt werden, mit erhe-
blichen Unsicherheiten verbunden. Für präzise Vorhersagen der Luftqualität mithilfe
von atmosphärischen Chemietransportmodellen wie dem regionalen European Air
pollution Dispersion - Inverse Model (EURAD-IM) sind verlässliche Emissionsdaten
jedoch entscheidend. Zur Korrektur der Emissionsdaten von Inventaren auf Grundlage
von Beobachtungen von Spurengas- und Aerosolkonzentrationen in der Atmosphäre
beinhaltet das EURAD-IM ein vier-dimensionales variationelles (4D-Var) Datenas-
similationssystem, das eine gleichzeitige Optimierung von Anfangskonzentrationen
und speziesabhängigen Emissionskorrekturen ermöglicht. Um die Erkenntnisse über
die Quellen von Luftverschmutzung zu verbessern, wird in dieser Arbeit ein neuer
Ansatz entwickelt und in das Datenassimilierungssystem des EURAD-IM implemen-
tiert, um Emissionen individuell für Quellenkategorien wie Straßenverkehr, Industrie
und Landwirtschaft zu korrigieren. Für die Unterscheidung zwischen den Emissionen
verschiedener Quellenkategorien nutzt der neue Ansatz die räumliche Trennung von
Emissionsquellen verschiedener Kategorien sowie deren charakteristische tageszeitliche
Emissionsprofile und chemische Zusammensetzungen. Unter der Annahme einer festste-
henden chemischen Zusammensetzung der Emissionen der Quellenkategorien innerhalb
der Gitterzellen wird eine vollständige Korrelation zwischen den Emissionskorrekturen
der verschiedenen chemischen Spezies eingeführt. Darüber hinaus ist ein anisotroper
Diffusionsoperator implementiert, der entlang von Straßen die räumliche Korrelation
zwischen den Straßenverkehrs-Emissionskorrekturen der Gitterzellen erhöht. Um
die Fähigkeit der neuen Entwicklung, zwischen Emissionen verschiedener Sektoren
zu unterscheiden, zu untersuchen, werden zwei verschiedene Arten von Simulatio-
nen durchgeführt. In identischen Zwillingsexperimenten auf Basis von synthetischen
Beobachtungen werden Szenarien mit erhöhten industriellen und landwirtschaftlichen
Emissionen bei gleichzeitiger Reduzierung der Straßenverkehrsemissionen simuliert.
Das Datenassimilationssystem auf Basis des neuen Ansatzes ist in der Lage, die Emis-
sionsänderungen in den Experimenten für weite Teile des Modellgebiets durch die
ermittelten sektorspezifischen Emissionskorrekturen wiedergegeben. Zudem wird eine
Studie durchgeführt, in dem die Emissionen innerhalb eines zweiwöchigen Zeitraums
in Nordrhein-Westfalen anhand realer Beobachtungsdaten analysiert werden. Es wird
gezeigt, dass in diesem Szenario eine Unterscheidung von Industrie- und Kraftwerkse-
missionen gegenüber Straßentransportemissionen durch die sektorspezifische Emission-
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soptimierung möglich ist. Zudem können Änderungen landwirtschaftlicher Emissionen
wegen ihres hohen NH3-Anteils spezifiziert werden. Für alle beobachteten Spezies,
das heißt O3, NO2, SO2, PM10 und PM2.5, ist die Übereinstimmung der simulierten
mit den beobachteten Konzentrationen vergleichbar mit der einer Referenzsimula-
tion unter Benutzung des aktuellen Datenassimilationssystems des EURAD-IM. Eine
Verbesserung der Ergebnisse wird durch Einbeziehung zusätzlicher Beobachtungsdaten,
insbesondere von CO und CO2-Konzentrationen, erwartet.
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1. Introduction
Air pollution by particulate matter (PM), nitrogen oxides (NOx), ozone (O3), sulfur
dioxide (SO2), carbon monoxide (CO) and other trace gases is harmful to human
health. Several studies found evidence that these pollutants are associated with
cardiovascular disease, respiratory disease and lung cancer (Chen and Hoek, 2020;
Lee et al., 2020; Orellano et al., 2020; Huangfu and Atkinson, 2020; Zheng et al.,
2021; Orellano et al., 2021). Following Fuller et al. (2022), in 2019, 4.5 million deaths
were associated with outdoor air pollution. The World Health Organisation (WHO)
published a new air quality guideline in 2021, with a recommended annual average
concentration below 15 µg/m3 for particulate matter with a diameter smaller than 10
micrometres (PM10), 5 µg/m3 for particulate matter with a diameter smaller than 2.5
micrometres (PM2.5), and 10 µg/m3 for nitrogen dioxide (NO2). However, 90 % of the
global population is exposed to average annual PM2.5 concentrations above 10 µg/m3,
which is the limit recommended in the WHO guideline of 2006 (Shaddick et al., 2020).

Both natural and anthropogenic emission sources significantly drive air pollution.
Besides biogenic emissions from plants, natural emissions can be caused by wildfires
(Requia et al., 2021) or extreme events like volcanic eruptions (Reikard, 2019). In-
dustrial factories, power plants, road traffic and agriculture are strong anthropogenic
pollution sources. To understand, investigate and forecast the impact of emissions on
air quality, atmospheric Chemistry Transport Models (CTM) are an important tool
to simulate past, present and future scenarios. CTMs predict concentrations of trace
gases and aerosols, using emission data, meteorological data, as well as models for
atmospheric chemistry and aerosol formation.

A crucial input to atmospheric chemistry transport models and at the same time one
of the most important sources of uncertainty in these models are the anthropogenic
and biogenic emission data. These data, in particular the anthropogenic emissions, are
in general collected and composed in emission inventories. Many emission inventories
are based on annual anthropogenic emission data for different chemical species and
polluter groups. Polluter groups denote categories for emission sources, for example
industry, road traffic or agriculture. The annual national emission totals are provided
by research institutes and national environmental agencies, e.g. the Umweltbundesamt
(German Environment Agency) in Germany (Schneider et al., 2016). Following the
studies of Solazzo et al. (2021) about the Emissions Database for Global Atmospheric
Research (EDGAR) and of Andres et al. (2016) about the gridded uncertainty of
emissions caused by fossil fuel combustion in the Carbon Dioxide Information Analysis
Center (CDIAC) emission maps, emission uncertainties have two main sources: The
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1. Introduction

first is the appraisal of annual and national emission totals. This includes assumptions
about the relationship between the activity level and emissions of pollution sources.
For example, the NOx emissions from road vehicles per litre of fuel consumption are
subject to a large uncertainty. The second source of uncertainty is due to the temporal
and spatial distribution of emissions. Emission inventories commonly rely on general
distribution functions, which are based on statistical knowledge and therefore often
deviate from the real emission situation. Hence, to improve the model predictions of
CTMs, there is a need for reducing the uncertainty of their emission input.

Several methods have already been developed to improve emission data for trace
gases and aerosols. In this thesis, a new approach is introduced that allows for a
polluter group specific correction of inventory emissions using observations of pollutant
concentrations. In comparison, many other approaches do not distinguish between
different source categories when correcting inventory emissions. In the following,
different methods for an improvement of emission estimates are discussed, including
polluter group specific and non-polluter group specific approaches.

Methods of emission estimation can be classified into bottom-up and top-down ap-
proaches, as defined in e.g. Cheewaphongphan et al. (2019). Bottom-up approaches
derive emissions from activity data using assumptions about the relationship between
the activity level and emissions of pollution sources. In contrast, top-down approaches
use observed concentrations of trace gases and aerosols for the estimation of emissions.
Top-down approaches can be based on data assimilation methods. These methods
combine model a priori knowledge with the information of observations, as explained
by Kalnay (2002b). With data assimilation, the initial values of a simulation and/or
model parameters can be optimised such that the agreement between model predictions
and observations is improved. In many atmospheric chemistry transport models, data
assimilation systems are implemented that are able to optimise the emissions of trace
gases and aerosols. The advantage of emission optimisation by data assimilation meth-
ods over bottom-up approaches is that assumptions about emission sources described
in the previous paragraph can be avoided.

Several atmospheric chemistry transport models use the four-dimensional variational
data assimilation (4D-Var) technique for a correction of inventory emissions. For
example, it is implemented in the European Air pollution Dispersion-Inverse Model
(EURAD-IM) by Elbern et al. (2007). This was the first approach with a joint optimi-
sation of emissions and initial concentrations for several trace gas and aerosol species.
In a case study, a significant improvement in the prediction of ozone concentrations
was achieved. Other 4D-Var data assimilation systems correct inventory emissions
without performing an optimisation of initial concentrations. For example, Wang et al.
(2021) corrected black carbon (BC) emissions in Northern China in 2016, resulting in
20 to 60 % lower emissions compared to the inventory. Jiang et al. (2015) assimilated
CO concentrations from Measurements of Pollution in the Troposphere (MOPITT)
satellite retrievals. The results suggest a reduction of CO emissions in the tropics
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and the subtropics, but an increase in the extratropics. Qu et al. (2017) developed a
hybrid model which combines the 4D-Var technique with mass balance methods to
determine NOx emissions using satellite observations. A 4D-Var data assimilation for
the correction of NH3 emissions in Europe in 2016 was performed by Cao et al. (2022).
The resulting posterior emissions showed a stronger peak in springtime than the prior
emission estimates, leading to an improvement in the seasonality of the predicted NH3
concentrations.

Another data assimilation method that can be used for the correction of inven-
tory emissions in atmospheric chemistry transport models is the Ensemble Kalman
Filter (EnKF). Application examples are the assimilation of NO2 satellite retrievals
(Miyazaki et al., 2012, 2017) and CO ground observations (Jia et al., 2022) to correct
NOx and CO emissions.

In all models and studies mentioned above, the corrections for the inventory emissions
do not distinguish between different polluter groups. However, such a distinction has
the potential to increase our knowledge about the sources of air pollution. In recent
years, several approaches deriving polluter group specific emissions from observations
of trace gas and aerosol concentrations were developed and discussed.

In many studies, polluter group specific emissions are directly estimated from ob-
servations, mostly from tropospheric columns of trace gases measured by satellite
instruments. For example, Lin et al. (2010) developed a method exploiting the diurnal
cycle of NOx emissions from traffic, industry, power plants and heating in China.
For the polluter group specific emission estimations, NO2 satellite retrievals from
measurements by the Global Ozone Monitoring Experiment-2 (GOME-2) and Ozone
Monitoring Instrument (OMI) (both with a polar orbit) are used, which have different
passing times over China (∼10 a.m. versus ∼2 p.m.). Liu et al. (2016) determined power
plant emissions in China considering plumes of power plants with large capacities.
These approaches have the advantage of a low computing effort compared to data
assimilation methods. On the other hand, some important aspects of the system are
not taken into account, especially concerning the chemical reactions, the transport as
well as wet and dry deposition.

The advantage of data assimilation systems is that they are based on atmospheric
chemistry transport models that include all processes relevant for the evolution of
pollutant concentrations. Yuan et al. (2022) developed an approach based on the
EnKF technique in which inventory emissions of NOx and CO from seven polluter
groups in Beijing are corrected. It assumes a homogeneous spatial distribution of
correction factors. However, as mentioned before, the spatial distribution of emissions
is a significant source of uncertainty of inventories. There are also 4D-Var based
methods developed for a polluter group specific correction of inventory emissions.
Hooghiemstra et al. (2011) corrected global CO emissions with a 4D-Var system for
a period of two years, distinguishing between anthropogenic, natural and biomass
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burning emissions. Meirink et al. (2008) calculated CH4 emission corrections for 11
different source categories in 2003. Both studies are limited to determining emission
corrections for one chemical compound with a long lifetime. Moreover, they do not
include information on the annual cycle of emissions, and the spatial resolution of the
models is too coarse (far above 1 ○ ×1 ○) to resolve local emission sources.

The 4D-Var-based approach developed in the framework of this thesis has the aim for
correcting inventory emissions

• for individual polluter groups (denoted as sectors in the following),

• with a high spatial resolution of up to 1 km × 1 km,

• on the basis of NO2, O3, SO2, CO, PM10 and PM2.5 observations and

• taking (photo-)chemical reactions, aerosol dynamics, transport by advection and
diffusion as well as wet and dry deposition into account.

The existing 4D-Var data assimilation system of the EURAD-IM fulfills all listed
criteria except for the first. For this reason, the new development for sector specific
emission corrections is implemented in the EURAD-IM. The data assimilation system
is extended to split the emission corrections into the sectors included in the emission
data. In the studies of this work, the Gridding Nomenclature for Reporting (GNFR)
categorisation with 12 sectors is used (Granier et al., 2019). To correctly determine
sector specific emission corrections, the data assimilation system needs to exploit the
differences between the sectors. The sectors differ with regard to the spatial distribu-
tion, chemical composition and diurnal profile of emissions. In order to investigate the
ability of the new development to distinguish between emissions from different sectors,
identical twin experiments as well as a real-case study using ground observations are
performed.

This work is structured as follows. In Chapter 2, the principles of data assimila-
tion are explained and different techniques are discussed. Chapter 3 introduces the
current EURAD-IM model, including the forward model and the 4D-Var-based emis-
sion optimisation. In Chapter 4, the approach of this work allowing for a sector specific
optimisation of emissions is presented, emphasising the differences to the current data
assimilation system of the EURAD-IM. Chapter 5 deals with the input data of the
studies in this work. They include the initial and boundary conditions, the meteoro-
logical data, the emission data and the ground station observations. Because of their
special importance for the sector specific emission optimisation, the observational data
in North Rhine-Westphalia and the assumptions about the emissions are discussed
in detail. Identical twin experiments including three different emission scenarios are
the topic of Chapter 6. The performance of the new approach in this idealised case
with synthetic observations is discussed on the basis of the determined sector specific
emission corrections. Chapter 7 presents an experiment in which real ground-based
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observations for a two-week period of in March 2016 are assimilated. The emission
corrections determined by the sector specific emission optimisation as well as the
agreement between simulated and observed pollutant concentrations are investigated
in detail. Furthermore, the results are compared to those of a reference simulation
using the current data assimilation system of the EURAD-IM. At the end of the thesis
(Chapter 8), conclusions concerning the potential and limits of the new approach are
drawn. Moreover, further simulations, studies and improvements are suggested.
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2. Data assimilation
Data assimilation methods have the aim of improving the agreement between simu-
lated and observed quantities of a system (Kalnay, 2002b). In order to improve the
agreement, the initial values of a simulation, in the following referred to as initial
state, and model parameters can be optimised. In atmospheric chemistry transport
models (CTM), the emission rates of trace gases and aerosols are parameters that have
a crucial impact on the simulated concentrations. In addition, the initial state plays
an important role, which denotes the concentrations x0 of pollutants at the beginning
of a simulation. Both the initial state and the emission rates are subject to a high
uncertainty. For this reason, a joint optimisation of the initial state and emission rates
is implemented in the EURAD-IM to improve the simulated pollutant concentrations.

A simple data assimilation approach used in early weather forecast models is the
interpolation of observations to the grid cells to estimate the initial state. However, it
is not suitable for models with high spatial resolution, since the degree of freedom is
orders of magnitude higher than the number of available observations. The degree
of freedom denotes the number of grid cells multiplied by the number of prognostic
variables. In addition, an optimisation of pollutant emissions is not possible with this
approach.

Advanced data assimilation techniques
More advanced data assimilation methods combine observational data with the infor-
mation of model forecasts. They are more appropriate for highly under-determined
problems than the interpolation of observations. On the example of an initial state
optimisation, the general procedure of data assimilation can be described by the
following steps (Kalnay, 2002b):

1. First, a forecast is performed on the basis of a first guess of the initial state x0,B.
This forecast is denoted as the background forecast and x0,B is denoted as the
initial state of the background. In the case of atmospheric chemistry transport
models, x0,B are the initial concentrations of the background. For this, e.g. the
final concentrations of a previous simulation can be used.

2. The observational increments

yO −H(x0,B) (2.1)
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are calculated, indicating the discrepancy between model forecast and obser-
vations. yO is the observation vector containing all selected observations and
is also denoted as the observational state. In the case of chemistry transport
models, measurements of pollutant concentrations, e.g. from ground stations or
satellite instruments, are used as observations. H is the observation operator
used to calculate the model equivalents H(x) of the observations, thus allowing
for a comparison between model results and observations.

3. The initial state is optimised such that the observational increments are reduced.
The resulting initial state is denoted as the initial state x0,A of the analysis. The
optimisation can be described by a weighting operator W:

x0,A = x0,B + W[yO −H(x0,B)] (2.2)

4. On the basis of x0,A, a forecast is performed, which is denoted as the analysis
forecast.

Several techniques were developed for the optimisation of initial states and/or model
parameters, which is partially discussed in the following.

Ensemble-based data assimilation
Some data assimilation methods are ensemble-based. An ensemble consists of a
certain number of forecasts where the initial state x0 (and/or model parameters, e.g.
emissions) of a system is perturbed. Ideally, the ensemble spread induced by the
perturbations reflects the forecast uncertainty. Ensemble-based data assimilation
techniques such as the Ensemble Kalman Filter (EnKF) (Evensen, 1994, 2009; Gillijns
et al., 2006) combine the information of observations with forecast ensembles to
estimate the optimal initial state and/or model parameters. Because of the relatively
simple implementation, ensemble-based data assimilation methods are commonly
used in meteorological models. They contribute significantly to the reduction of the
uncertainties of weather forecasts (Kalnay et al., 2006; Slingo and Palmer, 2011). The
EnKF is also used in several atmospheric chemistry transport models for the correction
of inventory emissions (Jia et al., 2022; Miyazaki et al., 2012, 2017).

Variational data assimilation
In contrast, variational data assimilation approaches estimate the analysis state of a
system by minimising a cost function J (Rabier and Liu, 2003). The cost function is
derived from the Bayes’ Theorem on conditional probability:

P (x∣y) = P (y∣x) ⋅ P (x)
P (y) , (2.3)
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2. Data assimilation

where P (x) is the prior probability distribution for the state of the considered system
and P (y) the probability distribution for the observational state. P (y∣x) and P (x∣y)
denote conditional probabilities. Gaussian distributions are assumed for P (x) and
P (y∣x). Variational data assimilation seeks to find the state x with the highest
probability density of P (x∣y).

3D-Var
The three-dimensional variational data assimilation (3D-Var) has the aim of finding
the best fit between the background state and observations at a certain time. The
cost function

J(x) = 1
2 ⋅ (x − xB)T B−1 (x − xB)

+ 1
2 ⋅ (y −H(x) )

T R−1 (y −H(x))
(2.4)

derived from the Bayes’ Theorem is minimised in 3D-Var (Kalnay, 2002a). x denotes
the state, i.e. all simulated variables which are arguments of the cost function.
xB denotes the background state, i.e. the first guess for the state x. B denotes
the background error covariance matrix (Section 3.2) and R the observation error
covariance matrix (Section 5.4). The term

JB =
1
2 ⋅ (x − xB)T B−1 (x − xB) (2.5)

is also referred to as the background costs JB and the term

JO =
1
2 ⋅ (y −H(x) )

T R−1 (y −H(x)) (2.6)

is called the observational costs. 3D-Var data assimilation is used in meteorological
forecast models (Andersson et al., 1998), ocean models (Li et al., 2008) and also in
chemistry transport models, e.g. EURAD-IM, EMEP, MOCAGE and SILAM (Collin,
2020). It has the advantage of a low computational demand compared to EnKF and
4D-Var (described below). A major disadvantage of 3D-Var is that it does not take the
dynamics of a system into account, since only the state at a certain time is considered.
Furthermore, no parameter optimisation is possible. Additional information about the
3D-Var data assimilation method can be found in Kalnay (2002a) and Fisher (2002).

4D-Var
The mentioned disadvantages of 3D-Var can be solved by including the temporal
dimension, i.e. optimising the agreement between model and observations for a whole
time window, the so-called assimilation window. The observational costs JO are
summed over all time steps in the assimilation window. This is the principle of the
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Figure 2.1.: Illustration of the principle of 4D-Var. Observations are depicted as blue
stars, the background forecast as black dotted line and the analysis forecast
as red dotted line. The differences between observations and model forecast
contribute to the observational costs (Eq. 2.6) and are indicated by JO.
In 4D-Var, the initial value (value at time t0) is optimised such that the
observational increments (Eq. 2.1) of the whole assimilation window are
minimised. Thus, in comparison with 3D-Var, 4D-Var takes dynamics of
the system into account. Source: Lahoz and Schneider (2014).

four-dimensional variational data assimilation method (4D-Var) illustrated in Fig. 2.1.
Both meteorological and atmospheric chemistry transport models use this method.
4D-Var data assimilation systems are also implemented in non-atmospheric models, for
example in ocean models (Lee et al., 2018) and solar models (Sacha Brun et al., 2019).
Initial state optimisation with 4D-Var is described by the following cost function
(Bouttier and Courtier, 1999):

J(x0) =
1
2 ⋅ (x0 − x0,B)T B−1 (x0 − x0,B)

+ 1
2 ⋅

N

∑
i=0
(y(ti) −H(ti)x(ti) )T R−1 (y(ti) −H(ti)x(ti)) .

(2.7)

H denotes the tangent linear observation operator. x0 is the initial state and x0,B the
initial state of the background. Compared with the 3D-Var cost function, the major
difference is the summation of the observational increments over all time steps of the
assimilation window. A typical assimilation window in weather prediction models is
6 h (Kalnay, 2002b). In the studies of this work (Chapters 6 and 7), an interval of
24 h is selected to determine daily emission corrections.
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2. Data assimilation

4D-Var data assimilation systems iteratively optimise the initial state and model
parameters. An iteration consists of a forward run of the CTM, an adjoint run and the
minimisation procedure. The adjoint or ”backward” run is of particular importance for
the 4D-Var data assimilation. In this step, the gradient ∇J of the cost function with
respect to the initial values and the model parameters, is calculated. The gradient is
necessary to determine the initial state and model parameters of the next iteration in
the minimisation procedure. The adjoint model contains the equations of the CTM in
adjoint form.

On the one hand, the effort required for the adjoint model is a disadvantage of
the 4D-Var data assimilation technique in comparison with the EnKF. On the other
hand, there is also an important advantage related to the adjoint model: In the 4D-Var
optimisation of the initial state and model parameters, relevant processes such as
chemical reactions and transport of pollutants have a higher influence than in the
EnKF. For this reason, the new approach towards sector specific emission optimisation
presented in this thesis is based on the 4D-Var data assimilation method.
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3. The atmospheric chemistry
transport model EURAD-IM

The European Air pollution Dispersion-Inverse Model (EURAD-IM) (Elbern et al.,
1997, 2007) as a further development of the European Air pollution Dispersion Model
(EURAD) (Hass et al., 1995) is a regional scale Eulerian chemistry transport model,
which predicts concentrations of trace gases and aerosols in the troposphere. Further-
more, 3D-Var and 4D-Var data assimilation systems are implemented. The 4D-Var
data assimilation system allows for a joint optimisation of emissions and initial con-
centrations. The EURAD-IM contributes to the daily air quality forecasts for Europe
(CAMS2_40) of the Copernicus Atmosphere Monitoring Service (Collin, 2020). In
this chapter, the forward model (Section 3.1) and the 4D-Var data assimilation system
(Section 3.2) of the current EURAD-IM are described.

3.1. Forward model
Fig. 3.1 shows a simplified flow chart of the EURAD-IM forward model. The model
input contains information about the meteorological situation, terrestrial data, an-
thropogenic and biogenic emission data as well as initial and boundary values of trace
gas and aerosol concentrations. The input components are topic of Chapter 5. These
input fields are used to calculate the transformation and dispersion of trace gases and
aerosols. For this, advection, diffusion, (photo-)chemical reactions, aerosol dynamics
and dry and wet deposition are taken into account. The output fields include predicted
concentrations of aerosol and trace gas species.

The initial state x(t = 0) is integrated forward in discrete time steps ∆t. At each time
step, the following operator sequence is applied:

x(t +∆t) = ThDhTvDvCDvTvDhTh x(t), (3.1)

where T denotes the vertical (v) and horizontal (h) transport operator, and D the
operator for vertical and horizontal diffusion. C represents all state transformations
due to the (photo-)chemical reactions, aerosol dynamics, emissions as well as dry and
wet deposition processes (Elbern et al., 2007).

Applying the Lambert conformal conic projection, the model domain is horizon-
tally subdivided into squares of equal size. In the studies presented in this thesis, the

11



3. The atmospheric chemistry transport model EURAD-IM

EURAD-IM forward
model

Anthropogenic
and biogenic

emissions

Initial values Boundary values
Meteorological

Input

Chemistry 
mechanism and 
aerosol model

Advection scheme

Diffusion

Predicted concentrations
of aerosol species

Predicted concentrations
of trace gas species

Meteorological fields

Dry & wet deposition

Terrestrial data

Photochemistry

Figure 3.1.: Simplified flow chart of the EURAD-IM forward model. The input fields
(red), processes represented in the model (blue) and output fields (green)
are shown.

horizontal resolution is 1 km× 1 km. The 30 vertical layers are defined on σ-coordinates,
where

σ = p − pT

pS − pT

. (3.2)

Here, p is the pressure of the respective model layer, pT =100 hPa is the pressure at
the top of the domain and pS describes the surface pressure.

3.2. 4D-Var data assimilation system

With the 4D-Var data assimilation system developed by Elbern et al. (2007), emissions
and initial concentrations can be optimised. The emissions are optimised for each
emitted chemical species with the same spatial resolution as the model grid. A data
assimilation cycle starts with background emissions ϵB in the first iteration. In the
following iterations, correction factors e for these emissions are determined. The
emission correction factors are defined as the ratio of the corrected emissions ϵ and

12



3.2. 4D-Var data assimilation system

the background emissions:

e(i, j, k, l) = ϵ(i, j, k, l)
ϵB(i, j, k, l) , (3.3)

where i and j denote the horizontal indices of the grid cells, k the layer of the grid cell
and l the index of the species. Note that e is not a function of time. This means that
the emission correction factors are constant in time for the entire assimilation window.

Cost function and gradient

For a joint optimisation of emission correction factors and initial concentrations, the
following cost function has to be minimised:

J(x0, u) =
1
2 ⋅ (x0 − x0,B)T B−1 (x0 − x0,B)

+ 1
2 ⋅ u

T K−1 u

+ 1
2 ⋅

N

∑
i=0
(y(ti) −H(ti)x(ti) )T R−1 (y(ti) −H(ti)x(ti)) ,

(3.4)

where u denotes the vector of the logarithm of the emission correction factors and K the
emission error covariance matrix. Besides the background costs and the observational
costs, the cost function includes emission correction costs

JK =
1
2 ⋅ u

T K−1 u . (3.5)

Since K and B are high-dimensional, an explicit representation and calculation of
their inverse is not feasible. Therefore, an incremental formulation of the cost function,
following Weaver and Courtier (2001), is used:

J(v, w) = 1
2vT v + 1

2wT w+ 1
2 ⋅

N

∑
i=0
(d(ti)−H(ti) δx(ti) )T R−1 (d(ti)−H(ti) δx(ti)) ,

(3.6)
where δx(ti) = x(ti) − xB(ti) and d is the so-called innovation vector:

d (ti) = yO(ti) − H(ti)xB(ti), (3.7)

and v and w are defined by

v ∶= B−1/2 (x0 − x0,B), w ∶= K−1/2 δu, δu ∶= ln(e) , (3.8)

where e are the emission correction factors. For the calculation of the initial state and
emission correction factors, the gradient of the cost function has to be determined. Its
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3. The atmospheric chemistry transport model EURAD-IM

formula is given by

∇(v,w)T J = (v
w) − (

B1/2 0
0 K1/2) ×

N

∑
i=1

MT (t0, ti)HT R−1 (d(ti) − Hδx(ti)) , (3.9)

where HT is the adjoint of the tangent linear observation operator and MT is the adjoint
of the tangent linear model operator (Elbern et al., 2007). MT (t0, ti) propagates the
observational increments (Eq. 2.1) backward from time ti to t0. For this, an adjoint
model run is performed.

Data assimilation cycle

Initial state (x0,e)
Forward run: 

x0 → x(tE)
Cost function J(x0,e)

Gradient ∇ J(x0,e)

N Iterations

Observations: ground stations, 
zeppelins, satellite instruments

Input of forward model: Initial state (x0,BG), 
boundary conditions, terrestrial / meteorol. 

data, emissions

Optimized initial values & 
emission factors

Analysis forecast:
x0,ANA → xANA (tE) 

Figure 3.2.: Flowchart of the 4D-Var data assimilation cycle implemented in the
EURAD-IM, including the input data (red), process steps (yellow), inter-
mediate results (blue) and output (green). The initial state is denoted as
x0, the state at the end of the assimilation window as x(tE), the adjoint
state as xADJ , the state of the analysis as xANA, the emission correction
factors as e, the cost function as J and the assimilation interval as [t0,tE].

Fig. 3.2 shows a schematic representation of the 4D-Var assimilation cycle, which
consists of several iterations with a forward run, adjoint run and minimisation pro-
cedure. An iteration of the assimilation cycle starts with the initial state and the
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3.2. 4D-Var data assimilation system

emission correction factors determined in the previous iteration. In the case of the
first iteration, the background initial state x0,B and background emission correction
factors eB are used. In the forward run, the model state is integrated from t0 to tE,
containing all processes described in Chapter 3. Furthermore, the cost function is
calculated, following Eq. 3.6. The gradient of the cost function with respect to the
initial state and the emission correction factors (Eq. 3.3) is computed in the adjoint
model run. The adjoint model operator MT is applied, which includes the equations
of the forward model in adjoint form. The initial state and emission correction factors
for the next iteration are calculated in the minimisation procedure. After performing a
certain number of iterations, the iteration with the lowest cost function value (Eq. 3.4)
is selected to determine the optimised initial values and emission correction factors.
This optimised state is used for the analysis forecast.

Minimisation procedure
In the following, the minimisation procedure is described in detail. First, the gradient
with respect to the transformed variables v and w (Eq. 3.8) is determined. In order
to calculate ∇(v,w)T J (Eq. 3.9), B1/2 and K1/2 (described in the following) have to
be applied to the adjoint initial state and emission correction factors. Both the
background error covariance matrix B and the emission error covariance matrix K are
factorised in the following way:

K = Σ C1/2 CT /2 Σ (3.10)

with the diagonal error matrix Σ and the correlation matrix C (Elbern et al., 2007).
In the emission error covariance matrix K, the entries of Σ are species-dependent. For
the background error covariance matrix B, a minimum absolute error for each species
and a relative error increasing with height are defined in Elbern et al. (2007).

The correlation matrix C is defined by

C1/2 = ΛL1/2W−1/2Ω , (3.11)

where L is the diffusion operator, W the geometry matrix, Λ the normalisation matrix
and Ω the emission error correlation matrix. Note that Ω is contained in K, but not
in B. L produces a spatial correlation between the emission correction factors and
initial value corrections, respectively, based on the discrete solution of the diffusion
equation. Assuming an isotropic diffusion, Schwinger (2006) determined the following
formula:

L1/2 = {{I + κv ∆t Dv}{I + κh ∆t Dh}}M/2 . (3.12)
I denotes the unit matrix, ∆t the diffusion time step, M the number of diffusion steps,
κh/v the horizontal/vertical diffusion coefficient and Dh/v the discretised Laplacian.
M and ∆t are calculated such that the stability criteria of the diffusion schemes are
fulfilled. The diffusion coefficients are derived from the following formula (Elbern

15



3. The atmospheric chemistry transport model EURAD-IM

et al., 2007):
Lh/v =

√
2κh/vth/v . (3.13)

Lh/v denote the horizontal and vertical diffusion lengths. In all considered model
versions, Lh is 2.5 km for the surface, 10 km for the planetary boundary layer (PBL)
and 20 km for the model top. Lv are equal to the Eddy diffusion coefficients. Note
that K only contains horizontal diffusion in the first layer. The different heights of the
grid cells due to the σ-coordinates have to be taken into account in the correlation
matrix C. For this, the metric W is introduced. This is a diagonal matrix which
contains the vertical grid elements ∆z of the model grid. The normalisation matrix Λ
is a diagonal matrix with

λl =
1√
tl

, tl = eT
l LW−1el (3.14)

as diagonal entries, where el denote the unit vectors. Λ normalises B and K in such a
way that their effective standard deviations are in accordance with the errors specified
in Σ (Weaver and Courtier, 2001).

Figure 3.3.: Upper triangle of the emission error correlation matrix Ω for the gas phase
species used in the current EURAD-IM. For each combination of emitted
species, a fixed correlation is defined. High correlations are assumed for
combinations of species with a similar origin or if they are chemically
related to each other. Source: Paschalidi (2015)

.
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3.2. 4D-Var data assimilation system

The emission error correlation matrix Ω introduces correlations between the emission
correction factors of the chemical species. For each combination of species, a fixed
correlation between their emission correction factors is defined. The emission error
correlation matrix of the current EURAD-IM model was defined by Paschalidi (2015).
The upper triangle of the matrix for the gas phase species is shown in Fig. 3.3. It
follows the assumption that there is a relatively high correlation between species, if
they have a similar origin or if they are chemically related to each other. This applies,
for example, to combinations of NO, NO2 and SO2 with correlations above 10 %. If
this is not the case, a low correlation is defined for a combination of species. For
example, no correlation is assumed between emissions of NO and isoprene, since no
biogenic source that emits isoprene also emits NO.

The state vector (v, w)k of the current iteration and the gradient ∇(v,w)T J are
input to the minimisation. The cost function is minimised using the Limited-memory
Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS) (Liu and Nocedal, 1989).
The L-BFGS calculates the new state vector ((v, w)k+1). Since the cost function is
minimised with respect to the transformed variables, a back-transformation of v and
w to x0 and u is necessary after the minimisation:

x0 = B1/2 v + x0,B, u = K1/2 w . (3.15)

x0 and e = exp (u) are the initial values and emission correction factors of the next
iteration.
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4. Theory on sector specific
optimisation of emissions

In this chapter, the new approach for a sector specific optimisation of emissions
developed in the framework of this thesis is presented. Sectors denote source categories
such as road traffic, industry or agriculture. There are different categorisations for
emission sources, e.g. the Gridding Nomenclature for Reporting (GNFR) used in the
studies of this work. The approach is also applicable to other categorisations. To
allow for a sector specific optimisation of emissions, the 4D-Var data assimilation
system of the EURAD-IM (Elbern et al., 2007) is extended. In the following sections,
the theoretical basis of this method is introduced (Section 4.1) and two additional
modifications implemented in the data assimilation system are described (Sections 4.2
and 4.3).

4.1. Theoretical basis
To achieve a sector specific optimisation of emissions, the vector of emission correction
factors e is extended so that individual correction factors for different emission sectors
are included. e consists of Ns subvectors es, each representing the emission correction
factors of a sector s, where Ns is the number of sectors considered. The dimension
of each vector es is equal to that of the total vector of emission correction factors e
defined in Elbern et al. (2007): number of grid cells × number of emitted species.

The cost function J of the current 4D-Var data assimilation system in the EURAD-IM
(Eq. 3.4) is extended to

J(x0, u1, u2, ..., uNs) =
1
2 ⋅ (x0 − x0,B)T B−1 (x0 − x0,B)

+ 1
2 ⋅

Ns

∑
s=1

uT
s K−1

s us

+ 1
2 ⋅

N

∑
i=0
(y(ti) −H(ti)x(ti) )T R−1 (y(ti) −H(ti)x(ti))

(4.1)

where us is the vector containing the logarithmic emission correction factors of emission
sector s and Ks is the emission background error covariance matrix for sector s. The
cost function J is extended such that it is a function of the emission correction factors
of individual emission sectors (Eq. 4.1). This enables the 4D-Var data assimilation
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4.1. Theoretical basis

system to correct the emissions of the considered sectors separately.

In the forward model, the total emissions ϵtot in time step ti are calculated as the
sum of the corrected emissions for each sector. For this, the sector specific emission
correction factors are used:

ϵtot(i, j, k, l, ti) =
Ns

∑
s=1

e(i, j, k, l, s) ⋅ ϵB(i, j, k, l, s, ti) , (4.2)

where i and j denote the horizontal indices of the grid cell, k the vertical index of the
grid cell, l the index of the emitted species, s the index of the emission sector, and ϵB

the background emissions.

As in the current EURAD-IM without sector specification (Section 3.2), the ad-
joint model contains the equations of the forward model in adjoint form. In the adjoint
model run, the vectors of the adjoint concentrations, adjoint emission rates (ade) and
adjoint emission correction factors (adef) are calculated. In contrast to the EURAD-
IM without sector specification, the adjoint emission correction factors are sector
specific in the new approach. Accordingly, the vector adef contains Ns subvectors,
each related to an emission sector s. The adjoint emission rates are computed in the
adjoint chemistry and aerosol modules. These are needed to determine the adjoint
emission correction factors. In each adjoint time step ti, an adjoint emission correction
factor (adef(i, j, k, l, s, ti)) is calculated for each grid cell, emitted species and sector
using the following formula:

adef(i, j, k, l, s, ti) = adef(i, j, k, l, s, ti+1) + ade(i, j, k, l, ti) ⋅ ϵB(i, j, k, l, s, ti) . (4.3)

The vector adef is integrated backwards in time from the final time tE to the start
t0 of the assimilation window. adef(t0) corresponds to the gradient ∇Ju of the cost
function with respect to the emission correction factors. Thus, ∇Ju(i,j,k,l,s) reflects the
sensitivity of the observational increments (Chapter 2) to the sector specific emission
correction factor e(i, j, k, l, s). For this reason, the sector specific gradients are investi-
gated in the studies (Chapters 6 and 7).

The formula for the gradient of the cost function (∇(v,w)T J) with respect to the
modified variables v and w is equal to that of the current 4D-Var data assimilation
system of the EURAD-IM (Eq. 3.9). However, the augmentation of the state vector by
sector specific emission correction factors requires changes in the transformed vector
w. Here, it is defined by the increments δus of the sector specific emission correction
factors:

w ∶=
⎛
⎜⎜⎜
⎝

w1
w2
...

wNs

⎞
⎟⎟⎟
⎠

, ws ∶= K−1/2
s δus, (4.4)

19



4. Theory on sector specific optimisation of emissions

with sector specific emission error covariance matrices Ks. The full emission error
covariance matrix K is block diagonal with the matrices Ks as block elements. Without
applying additional modifications (Sections 4.2 and 4.3), all matrices Ks are defined in
the same way as K in the current 4D-Var data assimilation system of the EURAD-IM
(Eq. 3.10).

4.2. Modification of the emission error correlation
matrix

The characteristic chemical composition of emission sectors is crucial for the distinction
between their emissions through the sector specific emission optimisation. According
to the calculation of the adjoint emission correction factors (Eq. 4.3), the sector specific
emission gradient for a species strongly depends on the emission strength of the species
in the sector. This way, the data assimilation system uses the different chemical
composition of the sectors to distinguish between their emissions.

Regarding real emissions, there is a high correlation between the species within
the sectors. The emission correction factors determined in the current EURAD-IM 4D-
Var data assimilation system are species-dependent. In the case of the sector specific
approach, species-dependent emission correction factors would lead to a high variation
of the emission correction factors within a sector, contradicting the assumption of a
high correlation between species. Further, the degree of freedom of the optimisation
algorithm would increase drastically, which might hamper finding the optimum solution.

The modification described in this subsection, which is developed for the approach for
sector specific emission optimisation, is based on two strong assumptions:

• If the (real) emissions of a sector in a grid cell increase or decrease, all species
are equally affected, i.e. the chemical composition does not change.

• The chemical composition of the sectors, which is specific in each grid cell, is
correctly estimated in the emission inventory.

However, there are cases in which the assumptions do not apply, for example:

• There is a high dependence of NOx emissions from light-duty vehicles on the
outdoor temperature (Grange et al., 2019). This does not apply to the CO emis-
sions. The chemical composition of road transport emissions thus changes with
higher temperature towards a lower NOx/CO ratio. The inventory used for the
studies of this work does not take this into account. However, strong deviations
in the composition are only expected at temperatures above 15 ○C, which did
not occur during the simulation period of the studies (10 to 23 March 2016).

• Applications of waste air purifications, e.g. in industrial facilities and power
plants, have a large impact on the chemical composition of the emissions. This is
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for example the reason for the significant decrease in SO2 emissions from power
plants in the last decades (Smith et al., 2011). Emission inventories represent
such historical trends. However, the efficiency of the applied methods can vary
between facilities even if they belong to the same sector (Asif et al., 2022). This
is a source of uncertainty concerning the estimated chemical composition of
emissions.

Following the assumptions above, for each sector and grid cell, a full correlation
between the emissions of all species is introduced. Consequently, all species in a sector
get the same emission correction factor. This is expected to improve the exploitation
of the chemical composition for the distinction between the sectors by the data assimi-
lation system. Furthermore, the degree of freedom of the emission correction factors
is reduced.

In order to achieve a full correlation, the emission error correlation matrix Ω (Fig. 3.3)
contained in the emission error covariance matrices (Ks) is modified. The new matrix
Ω has the property that Ω ΩT is a matrix in which all entries are equal to 1. This is
necessary because both ΩT and Ω are applied in the minimisation procedure. Following
this definition, the emission correlation matrix Ω has the form

Ω = 1√
N
⋅ O . (4.5)

N is the number of emitted gas phase and aerosol species considered in the data
assimilation and O denotes a matrix with the dimension of N × N . All entries of O
are equal to 1.

4.3. Anisotropic correlation of emission correction
factors along roads

In the current 4D-Var data assimilation system of the EURAD-IM, an isotropic hori-
zontal diffusion operator Lh is applied to the emission correction factors (Eq. 3.12). It
is based on the assumption of an isotropic spatial correlation of emission correction
factors. This assumption applies to all emission correction factors in the same way.
The approach for sector specific emission optimisation includes a modification of the
horizontal diffusion of the road transport emission correction factors. A high spatial
correlation of emission correction factors along roads is assumed for the road transport
sector. In Fig. 4.1, the principle of anisotropic diffusion of emission correction factors
along roads is illustrated and compared to the isotropic diffusion approach of the
current EURAD-IM.
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Figure 4.1.: Illustration of the principle of anisotropic diffusion along roads for emission
correction factors of road transport and their gradient. A case is considered
in which a non-zero cost function gradient with respect to the emission
correction factors for road transport is determined for a grid cell in the
adjoint run (left picture). This grid cell contains a road running in the
x-direction. If isotropic diffusion is applied as in the current EURAD-IM
data assimilation system, all neighbour grid cells in the x-direction and
y-direction receive equal gradients after the diffusion (second picture). In
contrast, the anisotropic diffusion along roads induces a stronger gradient
in the neighbour grid cells in the x-direction than in the neighbour grid
cells in the y-direction (right picture). This means that the gradient is
stretched along the road.

The increased correlation along roads is implemented with a special diffusion op-
erator for the road transport sector Lh,roadtr. Lh,roadtr causes a stronger diffusion in the
direction of roads than perpendicular to those. This means that the emission correction
factors for road transport and the related cost function gradient are stretched along
roads. Perpendicular to the direction of the roads, they are shrunk.

Information about the location of roads within the model domain is taken from
Open Street Map (OSM) (OpenStreetMap, 2023). All roads are considered that are
classified by OSM as motorways, trunk roads, primary roads and secondary roads. For
the approach of anisotropic correlation of emission correction factors along roads, a
road field ρ is introduced in which these roads are aggregated. In the road field, each
grid cell is assigned to the road of the highest category contained in the grid cell. With
the road field, the strength of the stretching along roads is determined, as described
below. It is assumed that the correlation of emission correction factors along roads is
higher for roads of a higher category. For instance, if a car drives on a motorway, it
will pass a larger number of consecutive grid cells than a car driving on a secondary
road. The consequence is a higher anisotropic correlation of road transport emissions
along a motorway than along a secondary road. For this reason, a grid cell containing

22



4.3. Anisotropic correlation of emission correction factors along roads

a motorway is assigned a higher road field value than a grid cell that contains only
secondary roads.

Using OSM information, six categories of grid cells were defined, each assigned
a road field value ρ. For grid cells without motorways, trunk roads, primary roads
and secondary roads (as classified by OSM), the value of the road field is set to
ρ = 0.1. If a grid cell contains a road of the highest defined category, the value is set
to ρ = 15. Between the highest and the lowest category, four categories are defined.
The following road field values are assigned to them: 1, 2, 5 and 10. Note that
these categories deviate from the official classification of roads, e.g. into ”Autobahn”,
”Bundesstraße”, ”Landesstraße” and ”Kreisstraße” in Germany. The road field of the
North Rhine-Westphalian domain is shown in Fig. 4.2.

Figure 4.2.: Road field ρ for the domain in North Rhine-Westphalia with a horizontal
resolution of 1 km × 1 km. The minimum value is 0.1 (white) and
corresponds to grid cells without motorways, trunk roads, primary roads
and secondary roads (as classified by OSM). The maximum value is 15
(red), which corresponds to grid cells that contain at least one road of the
highest defined category.
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In the following, the calculation of the anisotropic diffusion along roads is described.
The road field ρ is used to define the direction and the strength of the stretching of the
emission correction factors. The direction is perpendicular to the two-sided gradient
∇ρ of the road field. Its x-component ∇xρ is calculated by averaging the difference to
the right and left neighbour grid cells:

∇xρ (i, j) = [ρ(i, j) − ρ(i + 1, j) ] + [ρ(i, j) − ρ(i − 1, j) ]
2 , (4.6)

where i and j denote the horizontal indices of the grid cells. Its y-component direction,
∇yρ, is calculated by averaging the difference to the upper and lower neighbour grid
cells:

∇yρ (i, j) = [ρ(i, j) − ρ(i, j + 1) ] + [ρ(i, j) − ρ(i, j − 1) ]
2 . (4.7)

For the grid cells at the edge of the domain, no road field gradients are calculated.

In the following, the stretching angle and stretching factors are defined. These
indicate the direction of the stretching (αstretch), the strength of the stretching along
the road field (S1) and the strength of the shrinking perpendicular to the road field
(S2). The variables αstretch, S1 and S2 can be interpreted as parameters of a diffusion
ellipse, as illustrated in Fig. 4.3. First, the normalised total gradient

∇totρ =
√
(∇xρ)2 + (∇yρ)2

max (
√
(∇xρ)2 + (∇yρ)2 )

(4.8)

is determined for each grid cell. The maximum total gradient in the domain,
max (

√
(∇xρ)2 + (∇yρ)2 ), is used as the normalisation factor. This means that the

gradients ∇totρ are normalised such that the maximum total gradient is equal to 1.
In the next step, the stretching factors in the stretching direction (S1) and in the
shrinking direction (S2) as well as the stretching angle (αstretch) are determined for
each grid cell:

S1 = 1 + ∇totρ ⋅ (Smax − 1) ; S2 =
1
S1

; αstretch = −arccos ( ∇yρ

∇totρ
) . (4.9)

Smax denotes the maximum stretching factor specified in the configuration of the data
assimilation. In the studies in this work, the value of Smax is set to 100. αstretch is
perpendicular to the gradient ∇ρ. The formula for S1 is designed to have a minimum
value of 1 if the total gradient of the road field (∇totρ) is equal to 0. In this case, an
isotropic diffusion is applied. The maximum value Smax is obtained for S1 if ∇totρ is
equal to 1.
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4.3. Anisotropic correlation of emission correction factors along roads

Figure 4.3.: Illustration of the stretching factors S1 and S2 and the stretching angle
αstretch. The anisotropic diffusion along roads can be described by a
diffusion ellipse. The stretching along the road field (S1) corresponds to
the semi-major axis of the diffusion ellipse. The shrinking perpendicular
to the road field (S2) corresponds to the semi-major axis of the ellipse.
The stretching angle αstretch corresponds to the angle of rotation of the
ellipse with respect to the considered coordinate system and determines
the direction of the stretching.

From the geometry of ellipses, three stretching factors in the x-direction, y-direction
and xy-direction are derived so that the stretching is along the road field ρ:

Sx = S1 ⋅ cos(αstretch)2 + S2 ⋅ sin(αstretch)2 (4.10)

Sy = S1 ⋅ sin(αstretch)2 + S2 ⋅ cos(αstretch)2 (4.11)
Sxy = (S1 − S2) ⋅ sin(αstretch) ⋅ cos(αstretch) , (4.12)

following the spherical correlation modelling described by Weaver and Courtier (2001),
and the approach of Schwinger (2006) for an anisotropic diffusion stretched along a
potential vorticity field. The stretching factors (Eq. 4.10, 4.11, 4.12) only apply to the
lowest layer of the model grid. For all layers above the lowest, Sx and Sy are 1 and
Sxy is 0.

The horizontal diffusion operator Lh,roadtr, has the following form (Schwinger, 2006):

Lh,roadtr = I + κh ⋅∆t ⋅ div (S gradh) ; S = ( Sx −Sxy

−Sxy Sy
) . (4.13)

I is the unit matrix, κh the horizontal diffusion coefficient, ∆t the time interval of the
diffusion step and gradh the horizontal gradient operator. Lh,roadtr is applied to the
cost function gradient with respect to the emission correction factors for road transport.
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4. Theory on sector specific optimisation of emissions

As a consequence of the change of the diffusion operator, also a specific normalisation
matrix for the road transport sector (Λroadtr) has to be calculated (Eq. 3.14). Both
matrices, Lh,roadtr and Λroadtr, are part of the emission error covariance matrix for
road transport (Kroadtr).

Although the spatial correlation of road transport emissions along roads is a rea-
sonable assumption, the exact properties of this correlation in the real world, such as
the correlation lengths, are not known. This lack of information contributes to the un-
certainty of the data assimilation results. Nevertheless, an improvement of the results
can be expected from the application of the anisotropic diffusion operator (Lh,roadtr)
compared to the isotropic diffusion operator, since the isotropic diffusion operator does
not contain any information about the spatial correlation of road transport emissions
along roads.
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5. Model input

This chapter describes all model inputs used in the studies, including the initial
and boundary conditions (Section 5.1), the meteorological data (Section 5.2), the
emissions (Section 5.3) and the observations (Section 5.4). The assumptions made
for the emission data are discussed in detail, since they have a crucial impact on
the results of the sector specific optimisation of emissions in the studies of this work
(Chapters 6 and 7).

5.1. Initial and boundary conditions

For predictions of pollutant concentrations and estimations of emission correction
factors with high spatial resolution, nesting is applied. Large model domains, e.g.
containing whole continents, necessarily have a coarse resolution to enable computa-
tionally affordable simulations on supercomputers such as JUWELS (Alvarez, 2021)
and JURECA (Thörnig, 2021). With the nesting technique, high resolution domains
are sequentially embedded in coarse domains. A one-way multiple-nesting has already
been implemented in the EURAD model (Jakobs et al., 1995).

Nesting sequence for the simulations

The following nesting sequence, depicted in Fig. 5.1, is used for the studies presented
in Chapters 6 and 7. The boundary values of the European domain with a horizontal
resolution of 15 km are taken from the European Centre for Medium-Range Weather
Forecasts Atmospheric Composition Reanalysis 4 (EAC4) (Inness et al., 2019) of the
Copernicus Atmosphere Monitoring Service (CAMS). The daughter of the European
domain is the Central European domain with a resolution of 5 km. For both the
15 km and the 5 km domain, analysis data from EURAD-IM simulations are available.
All simulations presented in Chapter 6 and 7 are performed on a domain with 1 km
resolution. The latter is the daughter of the Central European domain and contains
most parts of North Rhine-Westphalia with the river Rhine, which flows through
Cologne and Düsseldorf. The region is selected due to high emissions from industry
and road traffic, which allows for the investigation of the distinction between industrial
and traffic emissions by the approach of this work (Chapter 4).
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5. Model input

Figure 5.1.: Nesting sequence for the simulations discussed in Chapters 6 and 7: the
European domain (15 km× 15 km resolution, black), the Central European
(5 km× 5 km domain resolution, red) and the North Rhine-Westphalian
domain (1 km× 1 km resolution, green).

Spin-up, initial state and background emission correction factors
for the simulations

For all simulations in the 1 km domain (Chapters 6 and 7), the spin-up period is two
days. In this period, model runs without data assimilation are performed. The first day
of the spin-up itself starts with interpolated initial values of the 5 km mother domain.
After the spin-up, daily data assimilation cycles are performed to determine emission
correction factors (Eq. 3.3) for each day of the simulation period. The background
emission correction factors (eB) of the first day of a data assimilation period are equal
to 1 for all species and sectors, i.e. the simulation starts with uncorrected emission
data. For the following days, the data assimilation cycle uses the emission correction
factors of the analysis (eA) of the previous day as background emission correction
factors (eB). The initial state of the background (x0,B) is the analysis state of the
simulation of the previous day at 24 UTC (xtE ,A).

5.2. Meteorological fields

For simulations with the EURAD-IM (Section 3), meteorological input data are
necessary. They are generated by separate forecast runs of the Weather Research
and Forecasting Model (WRF), version 3.7 (Skamarock et al., 2008). The WRF is
a nonhydrostatic mesoscale Eulerian model, using Cumulus parametrisations and
taking into account surface physics, planetary boundary layer physics and atmospheric
radiation physics. Since separate WRF simulations are performed for the EURAD-IM
input, EURAD-IM predictions of the concentrations of atmospheric pollutants, e.g.
aerosols, have no impact on the meteorological fields predicted by the WRF model.
As in the EURAD-IM, a one-way nesting technique is used in the WRF model, with
the same nesting sequence as described in Section 5.1.
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5.3. Emission data

5.3. Emission data
As mentioned in the introduction, emissions are crucial input data for atmospheric
chemistry transport models. In the simulations of this work (Chapters 6 and 7), both
anthropogenic and biogenic emissions are taken into account, which are calculated
separately in the model. Both have a crucial influence on the concentrations of
trace gases and aerosols. Biogenic sources emit mainly non-methane volatile organic
compounds (NMVOCs). However, the observation dataset used in the studies of this
work does not include concentrations of NMVOCs. Therefore, no reliable corrections
for biogenic emissions can be expected in these studies in contrast to anthropogenic
emissions. For this reason, this section mainly focuses on the anthropogenic emission
data used in the simulations (Chapters 6 and 7). In the following, the annual emission
totals, spatial distributions, chemical compositions, height profiles and temporal
distributions of the emissions of the Gridding Nomenclature for Reporting (GNFR)
sectors (Granier et al., 2019) are discussed.

Anthropogenic emissions
In EURAD-IM, the calculation of anthropogenic emissions is based on national emis-
sion totals. They are reported for many different trace gases and aerosols that are
harmful to the climate, the environment and to human health. For the input of
the EURAD-IM, the emission data for five trace gas species (CO, NH3, NOx , SOx ,
NMVOC) and two aerosol species (PM10, PM2.5) are used.

The emissions are broken down into 12 GNFR sectors, listed in Table 5.1. A list of
the processes included in each GNFR sector can be found, for example, in Schneider
et al. (2016). The public power sector contains all processes of power plants for public
electricity and heat production. The industry sector includes all processes that cause
emissions in the manufacturing industry (not only stationary combustion), e.g. in the
steel industry, the chemical industry and the food industry. The main emission sources
of the sector of other stationary combustion are residential combustion plants. The
fugitives sector includes emission sources related to coal mining, fuel exploitation and
solid fuel transformation. The solvents sector contains coating applications, printing
and the use of degreasing agents, chemical products and fungicides. The road transport
sector includes the combustion of fuels by passenger cars, light and heavy duty vehicles
as well as other processes that cause emissions, such as road abrasion, brake and tyre
wear and evaporation of gasoline. The main emission sources of the shipping sector
and the aviation sector are ships and aircraft. The off-road traffic sector includes
off-road vehicles used in agriculture, forestry, manufacturing industries or gardening.
Major emission sources of the waste sector are plants for the incineration of industrial,
clinical and municipal waste. The livestock agriculture sector (also referred to as
agriculture I sector) includes emissions related to livestock farming, e.g. dairy cows
and pigs. The Other agriculture sector (also referred to as non-livestock agriculture
or agriculture II sector) includes agricultural emission sources that are not related
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to livestock farming, but e.g. to farm-level and off-farm transport of agricultural
products.

Table 5.1.: GNFR sectors in the emission inventory used as an input of the EURAD-IM
(Granier et al., 2019).

GNFR category Category name
A Public power
B Industry
C Other stationary combustion
D Fugitives
E Solvents
F Road transport
G Shipping
H Aviation
I Off-road traffic
J Waste
K Livestock agriculture (Agriculture I)
L Other (non-livestock) agriculture (Agriculture II)

For the studies that are discussed in this thesis, gridded data for Germany and
Europe are necessary. This applies to the NRW domain as well as to the mother
domains which are necessary for the boundary conditions. For Germany, the Federal
Environmental Agency (UBA) provides emission data in the resolution of each model
domain. The data are processed by the GRETA tool (Schneider et al., 2016). This tool
extracts the total German emissions from the Central System Emissions of Germany
(ZSE). The emission totals are spatially distributed to point sources (mainly power
plants and industrial factories), line sources (especially for traffic emissions) and area
sources. A detailed description can be found in Schneider et al. (2016). The emission
data for other European countries are based on the inventory of the Copernicus
Atmosphere Monitoring Service (CAMS) (Kuenen et al., 2018). The CAMS dataset
has a resolution of 0.05○ × 0.1○ ≈ 6 km× 6 km in Central Europe. The national emission
sums of European countries, reported to the Centre on Emission Inventories and
Projections (CEIP), are used. Further information about the CAMS dataset can be
found in Kuenen et al. (2018). To apply this data in the EURAD-IM, the EURAD
emission module (EEM) preprocessor (Memmesheimer et al., 1991) projects the CAMS
emissions onto the NRW model grid, using land use and land cover information of
Open Street Map (OpenStreetMap, 2023) and CORINE Land Cover 2012 (Copernicus,
2023a). These data are used for the parts of Belgium and the Netherlands, which are
contained in the NRW domain (Fig. 5.1).
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Figure 5.2.: Annual total emissions per species in the NRW domain and their distri-
bution among the GNFR sectors. NMVOC denotes non-methane volatile
organic compounds.

Fig. 5.2 gives an overview of the total annual emissions of the species for each GNFR
sector in the NRW domain, provided by the emission inventory. Approximately, one
third of the NOx emissions originate from road transport and roughly one third from
the public power sector. In contrast, the industry sector is the dominant anthro-
pogenic source of CO and PM10 within the NRW domain. More than 90 % of the
SOx emissions are from the industry and public power sector. The most important
anthropogenic source of non-methane volatile organic compounds NMVOCs is the sol-
vents sector. About 90 % of the NH3 emissions are attributed to agricultural activities.
The strongest PM2.5 emitters are industry and road transport. Thus, power plants,
industrial factories, road vehicles and agriculture are the main anthropogenic polluters
in NRW according to the emission data.

The chemical composition of the emissions from the public power, industry, road
transport and both agriculture sectors is depicted in Fig. 5.3. The average chemical
composition of the inventory emissions in the NRW domain for the year 2016 is
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considered. Note that the chemical composition is specific in each grid cell and thus
may differ from the average values shown in Fig. 5.3. The sectors differ significantly in
the ratio of SOx/NOx . Compared to the road transport (<0.01) and the agricultural
sectors (0), the industry (1.02) and public power (0.41) sectors have a high SOx/NOx
ratio. The sectors also show large differences in the CO/NOx ratio. The ratio is
highest in the industry sector (6.1), followed by the road transport sector (2.0) and
the public power sector (0.19). The two agricultural sectors, on the other hand, are
characterised by a high NH3 fraction in the total emissions of the inventory. The NH3
fraction is 74% in the livestock agriculture sector and 62% in the agriculture II sector.
The livestock agriculture and non-livestock agriculture sectors differ mainly in the
fractions of NOx (0.3% vs. 20%) and non-methane volatile organic compounds (34%
vs. 2%).

Figure 5.3.: Chemical composition of the emissions from the public power, industry,
road transport and both agriculture sectors. The average chemical com-
position of the inventory emissions in the NRW domain for the year 2016
based on the inventory of the Copernicus Atmosphere Monitoring Service
(CAMS) (Kuenen et al., 2018) and the GRETA tool (Schneider et al.,
2016) of the Federal Environmental Agency (UBA) is depicted for each
sector. Note that the chemical composition in the emission data is specific
in each grid cell and thus may differ from the average values shown in
this figure.
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Figure 5.4.: Spatial distribution of yearly emissions in the NRW domain, depicted in
a logarithmic scale. Left: NOx emissions of the industry sector. Centre:
NOx emissions of the road transport sector. Right: NH3 emissions of the
non-livestock agriculture sector.

Fig. 5.4 shows exemplarily the spatial distribution of the industrial, road traffic and
non-livestock agriculture emissions. The industrial emission sources are mostly located
along the Rhine river Cologne and Düsseldorf, as well as in the area west of Dortmund.
A characteristic feature of industrial are the point sources with large emissions, primar-
ily located in the Ruhr area. A large part of the road transport emissions originates
from the motorways and the national highways. They are distributed all over the
NRW domain, but hotspots can be seen in the region between the cities of Cologne,
Düsseldorf and Dortmund. The emission sources of the non-livestock agriculture are
located in non-inhabited areas. Strong agricultural emissions occur in the north of the
NRW domain.

For each sector, a fixed height profile of emissions is assumed in the emission data.
The same distributions as in the CAMS air quality forecasts (Collin, 2020) are used.
The effective emission heights are considered taking into account plume rise and
buoyancy effects described by Briggs (1984). In the public power and the industry
sector, different emission height profiles are assumed for point and area sources. The
relative weights of emissions per model layer in the EURAD-IM are depicted in Fig. 5.5.
Most sectors, such as the road transport sector, only emit below 20 m height and thus
in the two lowest model layers, respectively. The public power sector emits highest
up to ∼1000 m, followed by the waste, the industry and the shipping sector. The
differences between the distributions for the public power, the waste and the industry
sector result mainly from the statistical distributions of the stack heights of power
plants, waste incineration plants and industrial facilities. The emission height profile
for the shipping sector differs from that of other sectors, e.g. the road transport sector,
due to the exhaust height of large ships.
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Figure 5.5.: Distributions of the effective emission heights of the sectors. The x values
indicate the relative weights of the emissions in the respective model layers.
Note that the public power and the industry sector contain area and point
sources to which different emission height profiles are assigned.

The species considered in the emission data for the anthropogenic sectors differ from
the emitted species defined in the EURAD-IM. For this reason, the emissions of NOx ,
NMVOC, SOx , PM10 and PM2.5 have to be distributed among the model species. For
this, the same branching factors are used as in the CAMS forecasts (Collin, 2020).
They are fixed for each emission sector, i.e. they apply to all grid cells and do not
depend on the season or time of day. The NOx emissions consist of NO and NO2. The
ratio of NO2/NOx is 20% for the road transport sector, 10% for the aviation sector,
10% for the off-road traffic sector and 5% for all other sectors. For the SOx emissions,
it is assumed that these consist of 4% H2SO4 and 96% SO2 in all sectors. The NMVOC
emissions of the GNFR sectors are distributed among 25 NMVOC groups defined
by the Global Emissions Initiative (GEIA), described in Huang et al. (2017). Fixed
branching factors for each sector are used. The emissions of the GEIA NMVOC
groups are assigned to the 18 emitted NMVOC species defined in the EURAD-IM (see
e.g. Fig. 3.3). Both the PM10 and PM2.5 emissions are distributed among five aerosol
species. These include elemental carbon, organic carbon, sulphate, sodium and other
minerals, each with a diameter of 2.5-10 µm (PM10) or <2.5 µm (PM2.5), respectively.

The EURAD-IM model requires hourly emission data. In order to calculate these,
annual, weekly and daily emission profiles are used, based on the description of Denier
van der Gon et al. (2011), with a modification made to match the GNFR categories.
These distributions are discussed in the following.
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Figure 5.6.: Monthly emission profiles of the GNFR sectors based on the description of
Denier van der Gon et al. (2011). These are used to calculate the monthly
emissions from the annual emissions. The emissions are normalised to the
average value per month.

The monthly emission profiles are used to calculate the monthly emissions from
the annual emissions. The distributions normalised to the average value per month
are shown in Fig. 5.6. Most GNFR sectors have normalised values between 0.8 and
1.2 for all months, which means that the seasonal variation in their emissions is
small. The agricultural sectors have the strongest variations, with low emissions in
January, November and December (normalised value of 0.5) and a peak in March (2.3).
This reflects the variations in agricultural activity. The sector of other stationary
combustion shows a large difference between the emissions in summer and winter
months with a maximum in January and December (normalised value of 1.7) and a
minimum in July (0.2). This is due to the seasonal heating requirements.

The weekly emission profiles are used to calculate the daily emissions from the
monthly emissions, taking into account differences between the days of the week. The
distributions normalised to the average value per day are shown in Fig. 5.7. Most
sectors are assumed to have the same emissions on all days of the week. Only the
solvent, the road transport, the other stationary combustion and the public power
sectors deviate from a flat distribution with lower emissions on the weekends. This is

35



5. Model input

due to less work-related emissions on weekend days.

Figure 5.7.: Weekly emission profiles of the GNFR sectors based on the description of
Denier van der Gon et al. (2011). These are used to calculate the daily
emissions from the monthly emissions, taking into account differences
between the days of the week. The emissions are normalised to the average
value per day.

The diurnal emission profiles are used to calculate the hourly emissions from the
daily emissions. The distributions normalised to the average value per hour are shown
in see Fig. 5.8. The fugitives, the shipping, the aviation, the off-road traffic and the
waste sector have flat diurnal profiles. The reason for this is a lack of information on
the real diurnal profiles of these sectors. The road transport sector is characterised by
peaks in the rush hours around 8 h and 17 h (normalised values of 1.9 and 2.1) and
negligible emissions between 1 h and 5 h. The sector of other stationary combustion
shows a similar distribution with maximum emissions around 8 h (normalised value
of 1.5). This profile can be explained by reduction of heating at night. Emissions
from solvents and agriculture are also assumed to be significantly higher during the
day than at night, according to typical working hours. In comparison, the diurnal
profiles of the public power and the industry sector are less pronounced than for the
previously mentioned sectors. This is due to night shifts in industrial companies and
the resulting electricity demand during the night.

Note that the sector specific diurnal emission profiles are static in the data assimilation,
i.e. they can not be changed by the sector specific optimisation of emissions described
in Chapter 4. In contrast, the monthly (Fig. 5.6) and weekly (Fig. 5.7) emission profiles
as well as the spatial distribution of emissions (Fig. 5.4) can be corrected for each
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GNFR sector with this approach.

Figure 5.8.: Diurnal emission profiles of the GNFR sectors based on the description of
Denier van der Gon et al. (2011). These are used to calculate the hourly
emissions from the daily emissions. The emissions are normalised to the
average value per hour.

Emissions from natural sources
Biogenic sources are essential for the understanding of atmospheric chemistry, since
they are strong emitters of NMVOCs, which are crucial for the O3 chemistry. In the
EURAD-IM, biogenic emissions are calculated using the Model of Emissions of Gases
and Aerosols from Nature (MEGAN) (Guenther et al., 2012). MEGAN includes 147
compounds - CO and 146 NMVOCs - and estimates the emission rates on the basis of
the leaf area index, solar radiation, soil moisture, temperature and CO2 concentration.
Since biogenic emissions are strongly dependent on these parameters, no fixed monthly
or diurnal emission profiles are applied in MEGAN. The emissions are determined
using activity factors depending on environmental parameters, and emission factors
defined for 16 different vegetation types.

Following a MEGAN simulation for the year 2000 discussed in Guenther et al. (2012),
∼3% of the total global CO emissions originate from biogenic sources. In contrast, the
major part of the global NMVOCs emissions originates from biogenic sources. Isoprene
is estimated to contribute with ∼50% to the global biogenic NMVOC emissions. The
contribution of monoterpenes such as α-pinene, β-pinene and limonene to the global
NMVOC emissions is ∼15% in the simulation for the year 2000 (Guenther et al., 2012).
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Other NMVOC species with high global emissions included in MEGAN are methanol,
acetone, ethanol, acetaldehyde, ethene and propene. More information on MEGAN
can be found in Kaiser et al. (2012).

In addition to biogenic emissions, emissions from wildfires, soils and sea salt are
calculated in the EURAD-IM. These are not described further here because they are
zero or negligible in the NRW domain.

In the studies of this work (Chapters 6 and 7), a biogenic emission sector is consid-
ered in addition to 12 anthropogenic GNFR sectors, which in principle allows for an
optimisation of biogenic emissions. However, no reliable corrections can be expected
for biogenic emissions, as the observational data used in the studies do not include
NMVOC concentrations.

5.4. Ground observations in North Rhine-Westphalia
In the studies of this work (Chapters 6 and 7), ground station observations are
assimilated. For this, validated hourly observational data for the CAMS forecasts
(Collin, 2020) are used. The data were extracted from the European Environment
Information and Observation Network (Eionet) (Copernicus, 2023b) of the European
Environment Agency (EEA) and from the European Monitoring and Evaluation
Programme (EMEP) (Tørseth et al., 2012). Most stations in the NRW domain
are located in the German federal states North Rhine-Westphalia and Rhineland-
Palatinate, where the environmental agencies provide the data of their operational
measurements.

Observation error covariance matrix
For the calculation of the costs J and its gradient, an observation error covariance
matrix R is defined (Eq. 4.1). R has the dimension of N ×N , where N is the number
of observations in the assimilation window. In the case of ground observations, R is a
diagonal matrix. The diagonal elements (Rii) are given by the error variances of the
observations. They are calculated using the following formula:

Rii = σ2
i,meas + σ2

i,repr . (5.1)

σi,meas denotes the measurement error and σi,repr the representativeness error of the
observation i.

The measurement error σmeas is related to the accuracy of the measured concentra-
tions, which depends on the measurement instrument. In the case of the observational
dataset used in the studies of this work, no information is available on the measure-
ment uncertainties of individual ground stations. Consequently, possible differences
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in terms of measurement quality can not be taken into account in the assimilation
of observations. The estimation of the measurement errors (σmeas) in the studies of
this work is based on the quality assessment of observational data by Mohnen (1999).
The estimated values of σmeas depend on the species and the measured concentrations
(yO). For each species, a minimum (σabs, min

meas ) and a relative (σrel) measurement error
are defined so that the formula for σmeas is

σmeas = max(σabs, min
meas , σrel × yO) . (5.2)

The species-dependent values for σabs, min
meas and σrel are given in Table 5.2.

Table 5.2.: Species-dependent values for the minimum absolute error (σabs, min
meas ) and

the relative error (σrel) used for the calculation of the measurement error
(σmeas) of observations (Eq. 5.2), following Mohnen (1999). In this table,
only the species included in the observational dataset for the studies in
this work are listed.

Species σabs, min
meas σrel

NO2 1.5 ppbV 15 %
O3 1.5 ppbV 10 %
SO2 1.5 ppbV 15 %
CO 30 ppbV 15 %
PM10 5 µg m−3 15 %
PM2.5 3 µg m−3 15 %

The representativeness error σrepr is related to the deviation of the average concen-
tration in the grid cell of the observation from the concentration at the location of
the measurement. This deviation is relevant for the comparison of simulated and
observed concentrations. σrepr depends on the observed species, the location of the
ground observation station as well as on the resolution of the model grid (∆x). Each
ground observation station is assigned a location type such as ”urban” or ”rural”,
which characterises the location of the station. For example, ”urban” locations are
characterised by a strong impact of local emissions (e.g. from traffic or industry) on
the pollutant concentrations in contrast to ”rural” locations. For each location type, a
representativeness length (Lrepr) is specified, which can be interpreted as an influence
radius with respect to pollutant concentrations. In addition, a species-dependent
absolute representativeness error (σabs

repr) is specified. σabs
repr is multiplied by the square

root of the ratio between the grid resolution (∆x) and the representativeness length
(Lrepr) to calculate the representativeness error (σrepr) following Elbern et al. (2007):

σrepr =
√

∆x

Lrepr

× σabs
repr . (5.3)
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Table 5.3.: Values for the representativeness length (Lrepr) depending on the location
type of the observation station and for the absolute error (σabs) depending
on the species, both according to Elbern et al. (2007). Both quantities are
used to calculate the representativeness error of the observations (Eq. 5.3).
In this table, only the species included in the observational dataset for the
studies in this work are listed.

Station type Lrepr

Remote 20 km
Rural 10 km
Suburban 4 km
Urban 2 km
Traffic 1 km
Unknown 3 km

Species σabs

NO2 1.8 ppbV
O3 2.0 ppbV
SO2 1.5 ppbV
CO 30 ppbV
PM10 3 µg m−3

PM2.5 2 µg m−3

In the studies of this work, the values for σabs
repr and Lrepr specified in Elbern et al.

(2007) are used, which are listed in Table 5.3.

Locations of the ground observation stations
In total, the NRW domain contains 20 NO2, 17 O3, 7 SO2, one CO, 15 PM10 and 6
PM2.5 observation stations used for the data assimilation in the studies of this work
(also referred to as assimilation stations). The locations of the assimilation stations
are shown in Fig. 5.9. There are also observational data of so-called validation stations
(not depicted in Fig. 5.9) which are not assimilated in the simulations. They are used
for the evaluation of the data assimilation results (Chapter 7). In Table 5.4, the
number of assimilation and validation stations per location type are indicated for each
observed species. NO2, O3 and PM10 are observed by at least 25 stations (Fig. 5.9 and
Table 5.4), whereas significantly fewer ground observation stations measure SO2 and
PM2.5 concentrations. Concentrations of CO, an important component of industrial
emissions, are measured by only one station in the northwest of the domain. Most of
the stations, especially those deploying NO2, O3 and PM10 measurements, are located
in the Rhineland near the cities Düsseldorf and Cologne or in the Ruhr area.
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Figure 5.9.: Ground observation stations in the NRW domain used for the data assim-
ilation in the studies of this work (Chapters 6 and 7). The observational
dataset for the studies also contains data from stations that are not used
for data assimilation, but for the validation of the data assimilation results.
The locations of these stations are not shown in this figure.

Concerning the location type (Table 5.4), most of the NO2, O3 and PM observations are
situated in urban and suburban areas. This corresponds with a low representativeness
length of 2 km and 4 km, respectively. Nevertheless, with a resolution of 1 km,
the representativeness errors are relatively small: e.g. σrepr =1 ppbV in urban and
σrepr =0.7 ppbV in suburban locations for NO2 and smaller for the other observed
species. The high representativeness of observations is an important advantage of the
high horizontal model resolution selected in the studies of this work (Chapters 6 and 7).
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Table 5.4.: Number of ground observation stations per location type that are used
for assimilation (”assim.”) and validation (”valid.”). The stations are
assigned the location types urban, suburban, rural, rural-regional and
rural-nearcity. The location type is related to the representativeness
error of the observations. For example, observations of a station in the
”urban” category are assumed to have a higher representativeness error
than observations of a station in the ”rural” category (Eq. 5.3 and Table
5.3).

Location / type NO2 O3 SO2 CO PM10 PM2.5

Assimilation total 20 17 7 1 15 6
Urban (assim.) 8 8 1 1 5 3

Suburban (assim.) 7 5 2 - 6 2
Rural (assim.) 1 1 2 - 1 -

Rural-regional (assim.) 2 1 - - 1 -
Rural-nearcity (assim.) 2 2 2 - 2 1

Validation total 10 10 1 - 11 6
Urban (valid.) 3 4 - - 4 2

Suburban (valid.) 4 3 1 - 6 4
Rural (valid.) 2 2 - - - -

Rural-regional (valid.) - - - - - -
Rural-nearcity (valid.) 1 1 - - 1 -

Availability of hourly observational data
For most of the stations in the NRW domain, the hourly observational dataset is not
complete. The observed concentration of a chemical species at a certain station at a
certain hour is missing if no measurements were performed at that time or if the data
was rejected according to quality management criteria. The percentage of available
data strongly varies between the ground stations. Table 5.5 contains statistics about
the data availability between 10 March 2016, 0 UTC and 24 March 2016, 0 UTC. This
period corresponds with the simulation period of the study discussed in Chapter 7.
The average percentage of available data is higher than 85 % for NO2, O3, PM10 and
PM2.5 and no station is below 50 %. The data availability is significantly worse for SO2
with a mean of 50.7 % and two stations below 10 %. Furthermore, no CO observations
are available.
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5.4. Ground observations in North Rhine-Westphalia

Table 5.5.: Statistics about the availability of the hourly observational data from the
ground stations between 10 March 2016, 0 UTC and 24 March 2016, 0 UTC.
An availability of 100% means that for each hour in this period an observed
concentration of the respective species is available.

NO2 O3 SO2 CO PM10 PM2.5

Mean of stations 86.1 % 86.1 % 50.7 % 0 % 97.7 % 89.5 %
Standard deviation of stations 5.9 % 4.5 % 27.6 % - 2.9 % 14.3 %

Median of stations 86.8 % 86 % 63.1 % - 98.8 % 96 %
Maximum of stations 100 % 96.1 % 81.5 % - 100 % 100 %
Minimum of stations 67.6 % 74.2 % 5.9 % - 89.9 % 52.4 %

Conclusions with regard to sector specific emission optimisation
With regard to the sector specific emission optimisation (Section 4), the following
aspects of the observational dataset are of particular importance:

• Many O3 observations are available. These can be used by the data assimilation
system to improve the O3 concentrations in the model. Due to the chemical
relationship between O3, NO2 and NO, accurate O3 concentrations in the model
are essential for reliable corrections of NOx emissions.

• Since road transport mainly contributes to the NOx emissions in NRW (Sec-
tion 5.3), observed NO2 concentrations are strongly related to emissions of this
sector. The expectation is that the good observational situation of NO2 leads to
reliable road transport emission corrections.

• Many ground stations observe aerosol concentrations. They are related to
emissions of several emission sectors, where the industry sector is the most
important emitter (Section 5.3). Thus, the aerosol observations can potentially
contribute to emission corrections of several sectors.

• The relatively poor observational situation of SO2 with only 7 assimilation
stations and a large amount of missing data (Table 5.5) may limit the reliability
of emission corrections for the sectors public power, industry and other stationary
combustion.

• CO observations would deliver additional information about the industry sector,
the strongest CO emitter, but are not available.

• No observations are available for non-methane volatile organic compounds emit-
ted mainly from biogenic sources and solvents.

• NH3 concentrations are not observed, which may limit the reliability of emission
corrections for the two agricultural sectors emitting large amounts of NH3.
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6. Case studies based on identical
twin experiments

In the studies presented in this chapter, the sector specific emission optimisation
is applied to artificial emission scenarios with the assumption of zero model and
observation errors. The purpose of this study is to investigate the potential and limits
of the sector specific emission optimisation in distinguishing between emissions of
different sectors under idealised, but realistic, conditions. For this, so-called identical
twin experiments are performed, consisting of nature runs and data assimilation runs.
Nature runs are simple forward runs of a model in which model parameters and/or
initial values are perturbed. In the study of this chapter, the inventory emissions of
different sectors are perturbed. For the investigation of the sector specific emission
optimisation, synthetic observations are extracted from the nature runs. For both
the nature runs and 4D-Var data assimilation runs, the EURAD-IM forward model
described in Section 3.1 and the input fields described in Chapter 5 are used, except
for the emission perturbation in the nature runs. The aim of the assimilation is
to reproduce the perturbed nature run’s emissions using the sector specific 4D-Var
optimisation (Chapter 4). After a description of the experimental setup (Section 6.1),
the resulting emission correction factors are discussed (Section 6.2). Moreover, the
impact of the anisotropic diffusion operator for road transport emission corrections is
investigated (Section 6.3).

6.1. Experimental setup

Selection of the region

The simulations are performed for the North Rhine-Westphalian domain with a
horizontal resolution of 1 km (Section 5.1). The region was selected because of the
high emissions from the road transport sector in large cities as well as on motorways,
and because of the high industrial emissions (Fig. 5.4). Furthermore, agricultural areas
are included with significant emissions (Fig. 5.2 and 5.6). Note that it is important
for the investigation of the sector specific optimisation of emissions that the domain
covers high emissions from several sectors.
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6.1. Experimental setup

Figure 6.1.: Meteorological conditions of the simulation periods, shown for 12 March
2016 (left) and 20 March 2016 (right) as examples. The colour scale
indicates the temperature 2 m above ground. Source: http://www.eurad.
uni-koeln.de/.

Simulation period and meteorological situation

A simulation period from 10 March to 16 March 2016 is selected. For each of the seven
days, consecutive nature runs and data assimilation cycles are performed with an
assimilation window of 24 h. The meteorological conditions are suitable for optimising
emission correction factors as discussed in the following. Furthermore, the year 2016
was predetermined for this study because of its involvement in a larger project. As the
simulation period of the study discussed in Chapter 7 is from 10 to 23 March 2016,
the meteorological situation from 10 to 23 March 2016 is described here. In Fig. 6.1,
the 2 m temperature, the sealevel pressure and the wind fields are shown for 12 March
and 20 March 2016, 12 UTC, as these days are representative for the whole period. On
12 March 2016, the meteorological situation is characterised by a stable anticyclone
covering large parts of central Europe and Scandinavia, moving westward in the
following days. This is accompanied with easterly winds and no precipitation in the
model region. The meteorological situation on 12 March is representative for the
period from 10 March to 17 March 2016. In the following days, the meteorological
situation changed with a cyclone over Scandinavia on 20 March 2016. At this time,
the anticyclone mentioned before was located over the British islands. This led to
NNW wind directions and to moderate local precipitation (> 1 mm per day) in the
NRW domain from 20 March to 23 March 2016. The main reasons for the selection of
the simulation period are the following. Firstly, the average wind speed in the domain
at a height of 10 m did not exceed 6 m/s during the simulation period, except on
16 March. These relatively low wind speeds limit the transport of the gradient of
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6. Case studies based on identical twin experiments

the sector specific emission correction factors (explanation in Section 4.1) outside the
domain. This reduces the loss of information due to transport. The second reason is
the low precipitation in the whole domain, especially between 10 March and 19 March
(< 1 mm per day). Due to this, the wet deposition of aerosols, which is a non-linear
effect and may complicate the interpretation of the simulation results, played a minor
role.

Emission scenarios
Three identical twin experiments with different emission scenarios are discussed in
this chapter. In Fig. 6.2, the total emissions of the species and GNFR sectors in the
NRW domain for the simulation period are depicted for the emission inventory and
for the three experiments. The experiments are described below:

1. In experiment I, the emissions of the industry sector are increased by a factor of
2, whereas the road transport emissions are decreased by a factor of 0.5 compared
to the emission inventory. The road transport sector is characterised by high
NOx emissions, while the industry sector is the main emitter of SOx , CO and
PM10 in the NRW domain (Fig. 6.2).

2. In experiment II, the non-livestock agricultural emissions are increased by a
factor of 2, whereas the road transport emissions are decreased by a factor of
0.5 compared to the emission inventory. The non-livestock agriculture sector is
characterised by large emissions in March (Fig. 5.6). They contain a significant
amount of NOx and nearly half of the NH3 emissions in the domain (Fig. 6.2).
It is important to note that NH3 is not directly observed, but takes part in the
formation of secondary aerosols. Thus, NH3 emissions impact the concentrations
of observed species.

3. In experiment III, the non-livestock agricultural emissions are increased by a
factor of 1.3 and the road transport emissions are decreased by a factor of
0.5 compared to the emission inventory. With this scenario, the sensitivity of
the sector specific emission correction to moderate emission perturbations is
investigated.

The mentioned emission perturbations are applied in the nature runs of the respective
experiments on all seven days of the simulation period.
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6.1. Experimental setup

Figure 6.2.: Bar charts of the NOx , SOx , CO, NH3, PM10 and PM2.5 emissions during
the period from 10 March to 16 March 2016 in the NRW domain. The
emissions of the industry, road transport (”road tr.”) and non-livestock
agricultural (”agric. II”) sectors as well as the emission sum of the other
anthropogenic GNFR sectors (Table 5.1) and the emission sum of all
GNFR sectors (”TOT”) are shown. For each sector and sector group, the
inventory emissions are depicted as first bar, the perturbated emissions in
experiment I as second bar, the perturbated emissions in experiment II as
third bar and the perturbated emissions in experiment III as fourth bar.

Configuration of the model and data assimilation system
The data assimilation system is configured such that emission correction factors are
determined for each GNFR sector (Table 5.1) and for a sector of natural emissions. Both
the full correlation between the emission correction factors of all species (Section 4.2)
and the anisotropic diffusion of road transport emission correction factors (Section 4.3)
are applied in the experiments, unless otherwise stated. The emission errors in the
emission error covariance matrix K (Eq. 3.10) are set to ΣE = 8.3. The value of ΣE

is the same for all trace gas and aerosol species in order to achieve equal emission
correction factors for all species within the sectors and grid cells. The maximum
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number of iterations per data assimilation cycle is set to 15. Besides the aspects
mentioned in this paragraph, the configuration of the model and data assimilation
system follows the descriptions in the previous chapters.

Observations and observation operator
The locations of the synthetic observations correspond to those of the assimilation
stations shown in Fig. 5.9. From the nature runs, hourly synthetic observational data
are extracted for each station. Note that this represents an idealised observation
situation. For real observations, the availability of hourly observation data is less than
100% (Table 5.5). The observation operator H(t) interpolates the model concentrations
to the location of the ground observation stations.

6.2. Emission corrections and cost reduction
The resulting emission correction factors for all experiments are shown in two types of
figures. In Fig. 6.3, the time evolution of the spatially averaged emission correction
factors during the simulation period is depicted for each GNFR sector (Table 5.1).
The spatial distributions of the emission correction factors for the road transport,
industry, non-livestock agriculture, off-road, aviation and fugitives sectors averaged
over the simulation period are shown in Fig. 6.4, 6.5 and 6.6. Due to the full correlation
of species, the emission correction factors apply to all species. In the following, the
behaviour of the emission corrections is discussed for each GNFR sector.

Considering the road transport sector, it is noticeable that in all experiments the
emissions are decreased, which is in accordance with the emission perturbation of this
sector. However, on average the corrections are significantly weaker than the emission
perturbation factor of 0.5 in the nature runs. As indicated in Fig. 6.3, the minimum
correction factor is 0.65 on 13 March 2016 in experiment III. The correction factors
on the other days and for the other experiments are higher, with up to 0.78. One
reason for average emission correction factors significantly above 0.5 is the observation
situation: As indicated by the spatial distribution of the road transport sector, the
corrections are small in parts of the southeast of the domain where no observations
are available (Fig. 5.9). In addition, emission perturbations of other sectors partially
affect the emission correction of the road transport sector, especially in experiment II.
Fig. 6.5 shows that the strong positive emission perturbation of the agriculture sector
can affect the corrections of the road transport emissions. For example, in areas north
of Dortmund and east of Cologne, positive emission corrections for the road transport
sector are determined.
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6.2. Emission corrections and cost reduction

Figure 6.3.: Spatially averaged emission correction factors in experiment I, experiment
II and experiment III for each day of the simulation period. The true
emission correction factors according to the emission perturbation in the
nature runs in experiment I are 2 for the industry, 0.5 for the road transport
and 1 for all other sectors. The true correction factors in experiment II
are 2 for the non-livestock agriculture, 0.5 for the road transport and 1
for all other sectors. The true correction factors in experiment III are 1.3
for the non-livestock agriculture, 0.5 for the road transport and 1 for all
other sectors.
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Figure 6.4.: Spatial distribution of emission correction factors averaged over the simula-
tion period in experiment I. The true emission correction factors according
to the perturbation in the nature runs in experiment I are 2 for the
industry, 0.5 for the road transport and 1 for all other sectors. Areas
with white colour mean either an emission correction factor of 1 or no
emissions.

Figure 6.5.: Spatial distribution of emission correction factors averaged over the sim-
ulation period in experiment II. The true emission correction factors
according to the perturbation in the nature runs in experiment II are 2
for the non-livestock agriculture, 0.5 for the road transport and 1 for all
other sectors. Areas with white colour mean either an emission correction
factor of 1 or no emissions.
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Figure 6.6.: Spatial distribution of emission correction factors averaged over the sim-
ulation period in experiment III. The true emission correction factors
according to the perturbation in the nature runs in experiment III are 1.3
for the non-livestock agriculture, 0.5 for the road transport and 1 for all
other sectors. Areas with white colour mean either an emission correction
factor of 1 or no emissions.

The negative emission perturbations of the road transport sector also affect the emis-
sion correction of sectors with low NOx emissions. Fig. 6.4, 6.5 and 6.6 show that
this applies to the off-road traffic, aviation and fugitives sectors. The reason for
this is that sources of these sectors are located near roads where the emissions are
reduced due to the perturbation. This reduction is wrongly attributed also to the
off-road traffic, aviation and fugitives sectors by the data assimilation system. The
aviation sector is the most affected sector due to the spatial proximity of important
airports (Cologne-Bonn and Düsseldorf) with large local NOx emissions and strong
road transport emissions. As indicated in Fig. 6.3, in all experiments, the average
correction factor for the aviation sector is below 0.8 from 14 March to 16 March.
In the case of the fugitives sector, the emission corrections are affected by reduced
aerosol emissions of the road transport sector. In an area north of Düsseldorf (Fig. 6.4,
6.5 and 6.6), this leads to negative emission corrections of this sector in all experiments.

With regard to the industry sector, Fig. 6.4 and 6.3 show that the data assimila-
tion system is able to reflect perturbations of industrial emissions. In experiment I,
emission correction factors above 1 for the industry sector are determined in the area
between the cities Cologne, Düsseldorf and Dortmund. In this area, also strong road
transport emissions occur (Fig. 5.4) which are reduced in experiment I. This means
that the model is able to distinguish between emission perturbations of the industry
and the road transport sector. This is due to the ability of the model to exploit the
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6. Case studies based on identical twin experiments

different chemical compositions of the sectors. The industry sector is the dominant
SOx and aerosol emitter in the domain, whereas the road transport emissions contain
less aerosols and nearly no SOx . As a consequence, observational increments (Eq. 2.1)
of SO2, PM10 and PM2.5 are correctly attributed to the industry sector. However, the
average emission correction factor for the industry sector is only 1.06 on 10 March
(Fig. 6.3), which is small compared to the (true) perturbation factor of 2 for this sector.
It is increased successively by the data assimilation system to reach the maximum
of 1.23 on 15 March 2016. The slow increase of the emission correction factors for
the industry sector can be explained by the relatively small sensitivity of the costs
(Eq. 4.1) to SOx and aerosol emissions compared to NOx emissions. Since the emission
correction factors for the industry sector are mainly related to the relatively small
observational increments (Eq. 2.1) of SO2, PM10 and PM2.5, the emission correction
factors for this sector are only increased slowly. In comparison, the emission correction
factors for the road transport sector are mainly related to observational increments of
NO2 and O3, which are very sensitive to NOx emissions. This leads to strong emission
corrections for the road transport sector already on 10 March.

Perturbations of non-livestock agricultural emissions can affect corrections for the
industry sector. In experiment II with a perturbation factor of 2 for the non-livestock
agricultural sector, emission correction factors of up to 1.06 on average are determined
for the industry sector. The reasons for this are the NOx emissions of the non-livestock
agriculture sector (Fig. 5.3) and the relatively flat diurnal emission cycle of both sectors
(Fig. 5.8).

The data assimilation system is also able to reflect perturbations of the non-livestock
agriculture sector. In experiment II with an emission perturbation factor of 2 for
the non-livestock agriculture sector, the agricultural emissions are increased by the
optimisation. This applies also to areas in the proximity to large cities like Cologne
and Düsseldorf with high emissions of other sectors (Fig. 6.5). In experiment III with
a perturbation factor of only 1.3 for the non-livestock sector, emission increases on
spatial average are determined for this sector. A maximum emission correction factor
of 1.08 is reached on 15 March (Fig. 6.3). Like for the industrial emission corrections
in experiment I, the agriculture emission corrections in experiments II and III are
successively increased during the simulation period (Fig. 6.3). In experiment II, a
maximum of 1.3 is reached, whereas the highest value in experiment III is 1.08. The
main reason for the slow increase of the emission corrections for the non-livestock
agriculture sector is the relatively low sensitivity of the costs (Eq. 4.1) to NH3 emissions
caused by the agricultural sectors.

The ability of the model to separate between the road transport and the non-livestock
agriculture sector has two main reasons. Firstly, the large NH3 emissions of the non-
livestock agriculture sector cause increased aerosol concentrations, which are indirectly
observed as enhanced PM10 and PM2.5 concentrations. The adjoint model is able to
project the resulting observation - model discrepancy to the main cause, which is the
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NH3 emissions. Furthermore, the difference between the diurnal emission profile of
the agriculture and the road traffic assumed by the inventory is exploited. In contrast
to the road transport sector, the agriculture sector has significant emissions at night
(Fig. 5.8). Thus, in experiments II and III, the observed NO2 concentrations between
0 UTC and 5 UTC are higher than the simulated NO2 concentrations, which leads
to observational increments (Eq. 2.1) at night. These observational increments are
correctly attributed to emissions from the non-livestock agriculture sector by the data
assimilation system.

The corrections for the livestock agriculture and shipping sectors are affected by
the perturbation of the non-livestock agriculture emissions in experiments II and
III. The emission corrections for the livestock agriculture sector have the highest
correlation with the corrections for the non-livestock agriculture sector. The maximum
spatially averaged emission correction factor for the livestock agriculture sector is 1.18
in experiment II and 1.06 in experiment III (Fig. 6.3). The reasons are that both
sectors emit a high amount of NH3 (Fig. 5.2) and that there is no spatial separation
between the sectors.

The spatially averaged emission correction factors for the sector of other station-
ary combustion are up to 1.05 in experiment I and up to 1.03 in experiment II
(Fig. 6.3), although the emissions were not perturbed. For this sector, the data as-
similation system determines moderate local emission increases and decreases in all
experiments (not shown in the figures). This is also valid for the public power sector.
This shows that the emission corrections for both the public power sector and the
other stationary combustion sector can be affected by perturbations of road transport,
industry and non-livestock agriculture emissions.

Small corrections are determined for the solvents and waste sectors, to which also no
emission perturbations are applied in the experiments. The spatially averaged emission
correction factors of these sectors are between 0.98 and 1.02 for all experiments on all
days of the simulation period (Fig. 6.3). The reason for this is that both sectors have
only low emissions of observed species in the NRW domain. Solvents emit a large
amount of non-methane NMVOCs which are not included in the synthetic observations.
In contrast, the contribution of the solvents sector to the total emissions of NOx , CO,
SOx , NH3, PM10 and PM2.5 in the domain is less than 10% (Fig. 5.2). The contribution
of the waste sector to the total emissions in the domain is less than 1% for NOx , CO,
SOx , NMVOC and NH3, about 5% for PM10 and about 10% for PM2.5 (Fig. 5.2).

Fig. 6.7 shows the observational costs (Eq. 3.4) of the background and the analy-
sis during the simulation period for each measured species. The background costs
before the optimisation as well as the analysis costs after the optimisation are depicted.
A reduction of the analysis costs compared to the background costs corresponds to an
improvement of the agreement between simulated and observed concentrations by the
sector specific emission optimisation. NO2 and O3 are the species with the highest
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Figure 6.7.: Observational costs (Eq. 2.6) of the observed species during the simulation
period in experiment I with emission perturbation factors of 2 for the
industry and 0.5 for the road transport sector. Analysis costs are depicted
as solid lines, background costs as dashed lines. If the analysis costs
are lower than the background costs of a species, the sector specific
optimisation of emissions has improved the agreement between simulated
and observed concentrations of this species.

background costs. This reflects the perturbation of the NOx emissions in this experi-
ment, which causes changes in the NO2 and O3 concentrations. In addition, the good
observational situation for both species leads to high observational costs. Compared
to the effect of the perturbed NOx emissions on the NO2 and O3 concentrations, the
impact of the perturbed aerosol emissions on the PM10 and PM2.5 concentrations is
lower and thus causes lower observational costs. The SO2 costs are low due to the
observational situation (Section 5.4).

In most cases, the analysis costs are lower than the background costs (Fig. 6.7),
which means that the costs are reduced by the sector specific emission optimisation.
The NO2 costs are decreased by 90% on the first day, due to the strong emission correc-
tions in the road transport sector. In contrast, the PM10 and PM2.5 costs on 10 March
are increased by the emission optimisation. The reason for this is that the total aerosol
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transport sector

emissions are decreased by the optimisation, whereas the emission perturbations in
the nature run lead to an increase in total aerosol emissions (Fig. 6.2). This is due
to a weak increase in industrial emissions by the emission optimisation on 10 March
(average emission correction factor of 1.06), while the road transport emissions are
strongly reduced to an average emission correction factor of 0.73 (Fig. 6.3). The O3
and SO2 costs are reduced, but less than the NO2 costs. The weaker cost reduction
can be explained by the weak corrections of the industrial emissions on 10 March
(Fig. 6.3). The average emission correction factor increases until 14 March 2016, as
discussed before. The optimisation leads to a cost reduction, i.e. lower analysis than
background costs, for all species from 11 March to 15 March 2016. This corresponds
to an improvement of the simulated concentrations. An exception with no difference
between background and analysis costs is the 16 March 2016. Note that the variations
in the cost reduction also depend on the meteorological conditions, especially on the
wind direction and wind speed. In experiments II and III, the observational costs
behave similarly (Fig. A.1 and A.2 in the appendix).

6.3. Impact of the anisotropic diffusion operator on the
corrections of the road transport sector

In the previously discussed one-week simulation, the anisotropic diffusion operator
(Section 4.3) was applied to the emission correction factors for the road transport
sector and to the related cost function gradient (∇w, roadJ). In order to investigate the
effect of the anisotropic diffusion, a second data assimilation cycle was performed for
the 10 March 2016 without using the anisotropic diffusion operator. Fig. 6.8 shows the
gradient ∇w, roadJ of the first iteration for both data assimilation runs. The emission
correction factors of the analysis iteration are depicted in Fig. 6.9. Note that the
gradient in general dictates the strength and direction of emission corrections and
that a negative gradient is related to positive emission corrections.

The maximum of the gradient (∇w, roadJ) in the domain is similar in both data
assimilation runs with a value of about 8. This is a consequence of the normalisation
by the matrix Λ or Λroadtr., respectively (Sections 3.2 and 4.3). But the spatial spread
is increased by the anisotropic diffusion. In the experiment with isotropic diffusion,
the gradient field around Cologne and Dortmund contains clear lines and spots along
large roads and highways and at observation stations. In contrast, when selecting the
anisotropic diffusion along roads, a strong gradient stretches across large parts of the
southern Rhineland and of the eastern Ruhr area. The spatial distributions of the
analysis emission correction factors behave similarly in both experiments, but with a
significantly weaker decrease in maximum when applying the anisotropic diffusion. The
total emission correction for road transport is stronger when the anisotropic diffusion
operator is applied. The spatially averaged emission correction factors are 0.73 in the
experiment with application of anisotropic diffusion and 0.76 in the experiment without
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Figure 6.8.: Gradient with respect to the emission corrections for the road transport
sector (∇w, roadJ) without (left) and with (right) anisotropic diffusion
along roads (Section 4.3) in experiment I on 10 March 2016. The emission
perturbation factors in the nature run of this experiment are 2 for the
industry sector and 0.5 for the road transport sector.

Figure 6.9.: Emission correction factors of the road transport sector without (left) and
with (right) anisotropic diffusion along roads (Section 4.3) in experiment
I on 10 March 2016. The emission perturbation factors in the nature
run of this experiment are 2 for the industry sector and 0.5 for the road
transport sector. The area shown in Fig. 6.10 is marked as a red rectangle
in this figure.
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application of anisotropic diffusion. In contrast, the minimum emission correction
factor in the domain is lower in the experiment without application of anisotropic
diffusion (0.22) than in the experiment with application of anisotropic diffusion (0.29).

Figure 6.10.: Emission correction factors of the road transport sector without (left)
and with (right) anisotropic diffusion along roads on 10 March 2016. In
addition, the road field used for the anisotropic diffusion along roads
(Section 4.3) is depicted. A 45 km × 40 km area in the NRW domain is
shown, which is marked in Fig. 6.9. The emission perturbation factors in
the nature run of this experiment are 2 for the industry sector and 0.5
for the road transport sector.

Fig. 6.10 shows the emission correction factors for road transport and the road field ρ
(Section 4.3) for a 45 km × 40 km area contained in the NRW domain and located
northwest of Dortmund. The area is marked in Fig. 6.9. The road density in this area
is relatively low, e.g. compared to the area between the cities Cologne, Düsseldorf
and Dortmund. In contrast to areas with a high road density, structures of the road
field can be partially identified in the emission correction factors for the area depicted
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in Fig. 6.10. One example is the road between Marl and Haltern with a road field
value of 15, where the emission corrections are significantly stronger in the experiment
with application of anisotropic diffusion than in the experiment without application
of anisotropic diffusion. Another example is a road north of Haltern running in
western direction, where emission corrections can be observed in the experiment with
anisotropic diffusion, but not in the experiment without anisotropic diffusion.

To conclude, in regions with a dense road network such as between the cities Cologne,
Düsseldorf and Dortmund, the main impact of the anisotropic diffusion operator is a
wider distribution of the road transport emission corrections. In the case of this study,
this leads to a slightly higher total emission correction in the model domain. Only
in regions characterised by a low road density, structures of the road field used for
the anisotropic diffusion along roads can be observed in the spatial distribution of the
emission correction factors.

6.4. Conclusions of the identical twin experiments
In the scenarios of the identical twin experiments, the new approach for sector specific
emission optimisation implemented in the EURAD-IM (Chapter 4) is able to reflect
emission changes of individual GNFR sectors. Distinction between sectors is possible,
if there is a spatial separation between their sources or if there are substantial differ-
ences between the diurnal cycle or the chemical composition of their emissions. As an
additional condition, a high emission strength of the sectors is necessary. Furthermore,
the pollutants emitted from the sources need to be transported to an observation
station, which is a general requirement for emission corrections and depends on both
the observational situation and the wind direction. In the experiments in this chapter,
a distinction between decreased road transport and increased industrial emissions is
achieved for large parts of the NRW domain. There is also an efficient distinction
between non-livestock agricultural and road transport emissions, especially in the case
of a high emission perturbation. With the optimisation of the emission correction fac-
tors, also the observational costs, especially of NO2 and O3, are strongly reduced. The
cost reduction reflects a substantial improvement of the simulated concentrations by
the sector specific emission optimisation. An additional simulation shows an effective
increase of the spatial correlation of road transport emission corrections through the
application of the anisotropic diffusion operator, which is part of the new development
(Section 4).

Overall, the experiments demonstrate the ability of the presented approach for sector
specific emission optimisation. The method of identical twin experiments is suitible
for this purpose, since it allows for a comparison between the emission corrections
determined in the optimisation and the emission perturbations applied in the nature
runs. Another aspect of the presented identical twin experiments is the idealised condi-
tions with zero model and observation uncertainties. In the following, three important

58



6.4. Conclusions of the identical twin experiments

sources of uncertainty in the sector specific emission corrections are described that are
not included in the identical twin experiments:

• The synthetic observations in experiments I, II and III are ”perfect”. In contrast,
real observations of trace gases and aerosols contain statistical and systematic
measurement errors, as described in Section 5.4. In addition, real observations
are not fully representative of the grid cell of the model domain.

• Predictions of atmospheric chemistry transport models contain uncertainties
e.g. due to their incomplete chemistry mechanism, their aerosol model, their
diffusion model and their meteorological input data (Section 5.2). In identical
twin experiments, these model uncertainties are not included since the synthetic
observations are based on the same model as the data assimilation. However, in
an assimilation of real observations, they might play an important role.

• In the presented experiments, the sector specific diurnal profiles and chemical
compositions in the emission data (Section 5.3) are assumed to be valid. Real
emissions can significantly deviate from these assumptions. This source of
uncertainty is of particular importance for the separation between the sectors.

All these aspects affect the sector specific emission optimisation in the case of real
observations. Thus, also studies based on real observations, as presented in the next
chapter, are necessary to investigate the behaviour, potential and limits in presence of
the uncertainties mentioned above.
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observations in North
Rhine-Westphalia

The following chapter presents a simulation in which real observations of ground
stations in NRW are assimilated. As described in the last chapter, the aim is to
consider a real emission scenario where all sources of uncertainties are included.
The uncertainties are due to the observations, the model and its input as well as
the assumptions on the height profiles and diurnal cycles of the emissions from the
Gridding Nomenclature for Reporting (GNFR) sectors. In contrast to the identical twin
experiments discussed in Chapter 6, the true emission corrections for the sectors are
unknown. Thus, the studies in the two chapters should be regarded as complementary.
This chapter includes a brief description of the simulation configuration (Section 7.1),
an investigation of the sector specific emission corrections and the related cost function
gradients (Section 7.2) as well as of the agreement between observed and simulated
concentrations (Section 7.3), and ends with conclusions from the results (Section 7.4).

7.1. Configuration of the simulation
The configuration of this simulation is similar to the identical twin experiments except
for the usage of real ground observations, described in Section 5.4. Furthermore,
the simulation period is two weeks instead of one week, in order to investigate the
behaviour of the sector specific data assimilation under two different meteorological
conditions. The change in wind direction from 17 March (between east and northeast)
to 18 March 2016 (between north and northwest) has a crucial impact on the transport
of atmospheric pollutants (Section 6.1).

Regarding the configuration of the data assimilation system in this study, both
the emission correction factors and the initial concentrations of the pollutants are
optimised in contrast to the studies discussed in Chapter 6. In addition, a limit value
for emission correction factors is set for all grid cells and sectors: e ≤ 15. This avoids
unrealistically high emission corrections.

The results of the sector specific emission optimisation (Chapter 4) are compared
to a reference simulation using the current 4D-Var data assimilation system of the
EURAD-IM (Section 3.2), also referred to as ”4D-VarREF” in this chapter. The
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4D-VarREF simulation is performed for the same period and region and uses the same
input data. The differences of the two simulations in the emission correction factors
and in the time series of the simulated concentrations will be discussed in the following
sections.

7.2. Emission correction factors and gradients
As mentioned in Section 3.2, emission correction factors determined by 4D-Var data
assimilation are a consequence of the cost function gradient with respect to the emis-
sion correction factors (∇wJ). In the sector specific 4D-Var data assimilation, a
gradient field for each GNFR sector (Table 5.1) exists. The gradients of the species
are fully correlated within the sectors in the minimisation procedure (Section 4.2).
Therefore, the gradients after minimisation contain no information about the single
species. In contrast, the gradients in the adjoint run, which is performed before the
minimisation procedure (Fig. 3.2), are species-dependent. For this reason, the sector-
and species-dependent gradients after the first adjoint run of the assimilation cycle
are discussed in the following.

Figure 7.1 displays the relative contributions of NO, NO2, SO2, NH3 and aerosols with
a diameter between 2.5 and 10 µm (PMcoarse) to the total gradient of each sector for
the simulation period. For each combination of species l and sector s, the absolute
values of the respective gradient are summed up over the grid cells and the days of
the simulation period. The share Sl,s of species l to the total gradient of a sector s is
determined using the following formula:

Sl,s =
∑i,j,d ∣∇Ju(i,j,l,s,d)∣

∑i,j,d,l ∣∇Ju(i,j,l,s,d)∣
. (7.1)

Ju is the cost function gradient after the first adjoint run of the assimilation cycle
with respect to the emission correction factors. i and j denote the horizontal indices of
a grid cell and d denotes the index of the day. For road transport, shipping, aviation
and off-road traffic, the NO gradient is most important, followed by the NO2 gradient.
The reason for this is that the observational increments (Eq. 2.1) of NO2 are mostly
traced back to NO emissions. The gradients of other species have only a small impact
on the emission corrections. The gradients of the public power, the industry and
the stationary combustion sectors are also dominated by NO. For public power and
industry, SO2 plays a minor role, despite their high SOx emissions. This is due to
the low number of SO2 observations compared to the number of NO2 observations.
This leads to a low sensitivity of the cost function value (J) to SOx emissions in this
simulation. NH3 is the most important emitted species for emission corrections of
the livestock agriculture sector, although no NH3 observations are assimilated. The
reason for this is that NH3 takes part in the formation of secondary aerosols. Thus,
NH3 emissions have an impact on the aerosol concentrations observed in the NRW
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Figure 7.1.: Contributions of the NO, NO2, SO2, NH3 and PMcoarse (aerosols with a
diameter between 2.5 and 10 µm) gradients to the total gradient of the
GNFR sectors. The absolute values of the sectors’ and species’ gradients
after the first adjoint model run are summed up over all grid cells of the
model domain and over all days of the simulation period. The values are
normalised such that the sum of the gradients of all species is 1 for each
sector (Eq. 7.1).

domain. In the case of the non-livestock agriculture sector, both NO and NH3 have
an impact on the gradient. The PMcoarse gradient is only important for the sectors of
the fugitives and the solvents, due to the low gradient of the other species. Overall,
Fig. 7.1 indicates a dominant impact of NO2 observations on the determined emission
corrections in this simulation.
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Figure 7.2.: Bar charts of the NOx , SOx , CO, NH3, PM10 and PM2.5 emissions in the
NRW domain for the simulation period. The inventory emissions for each
GNFR sector (Table 5.1) are depicted as first bar, the corrected emissions
as second bar.
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The total emissions of CO, NOx , SOx , NH3, non-methane volatile organic compounds
(NMVOC), PM10 and PM2.5 from each GNFR sector (Table 5.1) during the simulation
period are shown in Fig. 7.2. Both the inventory emissions and the corrected emissions
after the sector specific optimisation are depicted. The total emission corrections
for the species in the NRW domain for the whole simulation period are relatively
small. The relative emission correction summed over all sectors is strongest for CO
with an enhancement of 9%. The main contributors to the increase of CO emissions
are the public power sector with 13%, the road transport sector with 11% and the
other stationary combustion sector with 20% relative increase. The NOx emissions are
increased by 5%, with the highest increases in the road transport sector (+14%) and
the non-livestock agriculture sector (16%). The SOx emissions are decreased by 4%,
with a slight increase in the public power sector (+4%) and a moderate decrease in the
industry sector (-11%). The NH3 emissions are increased by 9% due to the emission
corrections in the non-livestock agriculture sector (+17% NH3). The solvents sector
(-4% NMVOC) contributes to a slight decrease of the total NMVOC emissions by 1%.
Both the total PM10 and PM2.5 emissions are increased by 4%, which is mainly caused
by the emission corrections for other stationary combustion (+22% PM10 and PM2.5)
and road transport (+13% PM10 and PM2.5).

Figure 7.3.: Time evolution of the spatially averaged sector specific emission correction
factors for the GNFR sectors (Table 5.1) during the simulation period.

The time evolution of the spatially averaged sector specific emission correction factors
is shown in Fig. 7.3. For this, the ratio of the total optimised emissions and the total
inventory emissions in the domain is calculated for each sector and each day of the
simulation period.
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Until the 18 March 2016, the road transport emissions are increased with a maximum
correction factor of 1.5 on 18 March, but strongly decrease after the change of the
main wind direction and reach a minimum value of 0.75 on 20 March. A change
in wind direction generally results in an impact of other emission sources on the
observed concentrations at the ground observation stations. In this case, this means
that the data assimilation system tends to increase the inventory emissions east of
the observation stations, while it tends to decrease the emissions west of the stations
due to the observed concentrations. The emission corrections for the road transport
sector are mainly driven by observational increments of NO2 because of the high NOx
emissions from road transport. The shipping sector shows a similar behaviour, but
the average emission correction factors are around 1.0 until 18 March and are strongly
decreased below 0.6 from 20 to 23 March.

For the aviation sector, the emission corrections are strongly increased during the
first four days of the simulation period. A maximum emission correction factor of
4.2 is reached on 15 March, which is by far higher than that of the other sectors. A
probable reason for this is that increased NOx emissions from road transport affect
the correction of aviation emissions near Cologne/Bonn Airport. A similar behaviour
could be observed in the identical twin experiments in which the aviation emissions
were decreased by the data assimilation system although they were not perturbed
(Fig. 6.3). Corresponding figures depicting the emission correction factors, gradients
and NO2 time series from 11 March to 13 March in the vicinity of the airport can be
found in the appendix (Section B.4). After the change of the main wind direction on
18 March, the emission correction factors show values below 1.

The power, other stationary combustion and non-livestock agriculture sector show a
slow, but relatively continuous increase of emission corrections during the simulation
period, with maximum values between 1.2 and 1.4 on 23 March. In contrast to the
other sectors, the values do not decrease on 18 March and 19 March.

The average emission correction factor for the industry sector is 0.9 on the first
day of the simulation period. The value slightly increases until it reaches a maxi-
mum on 15 March (1.1) and decreases from 18 March to 20 March to a minimum (0.85).

The emissions of fugitives are continuously decreased by the sector specific opti-
misation to a value of 0.9 on 23 March. The fugitives sector mainly emits NMVOCs,
which are not observed, and aerosols (Fig. 5.2). Hence, the decrease of the emissions
from the fugitives sector is corresponds to a general decrease of PM10 and PM2.5
emissions in this simulation. The reason for this decrease are the observed aerosol
concentrations, which are mostly above the simulated aerosol concentrations. This is
further discussed in Subsection 7.3.3.

The emissions of the other sectors are only slightly corrected on spatial average.
Their average correction factors are between 0.8 and 1.2 on each day of the simulation
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7. Simulation using ground station observations in North Rhine-Westphalia

period. In the case of the waste and the off-road sector, this is due to relatively low
emissions of all species compared to the emissions of other sectors. In contrast, the
solvents sector is the strongest anthropogenic NMVOC emitter. However, no NMVOC
observations are assimilated, so that there are only small corrections for the solvents
sector. The emission corrections for the livestock agriculture sector are approximately 1
on spatial average, but moderate local emission increases and decreases are determined
for this sector (Fig. 7.5).

Figure 7.4.: Comparison of the time evolution of the emission correction factors for
NOx , SOx , CO, NH3, PM10 and PM2.5, averaged over the model domain
and the sectors. The sector specific optimisation (Chapter 4) is represented
by solid lines, the optimisation by the current data assimilation system of
the EURAD-IM (Section 3.2) by dashed lines.

The temporal evolution of the spatially averaged emission correction factors for
NOx , SOx , CO, NH3, PM10 and PM2.5, averaged over the emission sectors, is shown in
Fig. 7.4. The sector specific optimisation (Chapter 4) is compared to the optimisation
by the current data assimilation system of the EURAD-IM (Section 3.2), denoted as
”4D-VarREF” in the following. The total emission correction factors eL of the species
(Fig. 7.4) are calculated using the following formula:

eL =
∑i,j,k,l,s ei,j,l,s × ϵi,j,k,l,s

∑i,j,k,l,s ϵi,j,k,l,s

(7.2)

where ϵ are the daily emissions of the inventory, e the emission correction factors
determined by the 4D-Var data assimilation. i and j denote the horizontal indices
of the grid cells, k the layer of the grid cell, l the index of the species in the lumped
species L and s the index of the sector. Note that in the 4D-VarREF data assimilation,
e does not depend on the sector and in the sector specific data assimilation, e does
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not depend on the species.

As expected, the emission corrections determined by the sector specific optimisa-
tion show large correlations between the species, with the exception of NMVOC
with low corrections and NH3 from agricultural activities. The time evolution of the
emission corrections for CO, NOx , PM10 and PM2.5 are similar to that of the road trans-
port sector (Fig. 7.3 and 7.4). This is due to the dominance of this sector in the domain.

The largest differences between the sector specific optimisation and the 4D-VarREF
optimisation can be seen in the SOx corrections. The 4D-VarREF optimisation de-
creases the SOx emissions by up to 60%. This reflects the large difference between the
simulated and observed concentrations. In contrast, the sector specific optimisation
decreases the SOx emissions by only ∼10 % from 10 March to 13 March and from
19 March to 23 March. In between these periods, the emissions are slightly increased
by the sector specific optimisation with a maximum of 1.05 on 15 March. The dif-
ferent emission corrections determined by the 4D-VarREF and the sector specific
optimisation are a result of the full correlation between all species within the GNFR
sectors (Section 4.2), which is only applied in the sector specific optimisation. The SOx
corrections in the sector specific optimisation are mainly driven by the NO gradient,
as further discussed in Subsection 7.3.2. For all species except NMVOC, the sector
specific optimisation determines higher emission corrections than the 4D-VarREF
optimisation. For the species CO, PM10 and PM2.5, this is a consequence of the full
correlation between the corrections of all species within the sectors (Section 4.2) in
the sector specific optimisation. Especially the positive emission corrections for road
transport and other stationary combustion contribute to the positive overall emission
corrections for NOx , CO, PM10 and PM2.5 in the sector specific optimisation (Fig. 7.2).
As previously discussed, the corrections for both sectors are mainly driven by observa-
tional increments of NO2. The positive NH3 emission corrections determined by the
sector specific optimisation correspond to the relatively high emission corrections for
the non-livestock agriculture sector.

The spatial distribution of the total absolute emission corrections in the simula-
tion period determined by the sector specific optimisation is depicted for each GNFR
sector (Table 5.1) in Fig. 7.5. The absolute emission corrections are defined by

eci,j,L,s = ∑
k,l,d

( ei,j,s,d − 1 ) × ϵi,j,k,l,s,d , (7.3)

where ec is the absolute emission correction in kg, ϵ the daily emissions of the inventory
and e the emission correction factor. i and j denote the horizontal indices of the grid
cell, k the vertical grid cell and d the index of the day.

The spatial distribution of emission corrections for the road transport sector is hetero-
geneous. Road transport emissions are increased by the sector specific optimisation
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in the southeast of the domain and decreased in the area between the cities Cologne,
Düsseldorf and Dortmund. As previously discussed, the emission corrections for the
road transport sector are driven by observational increments (Eq. 2.1) of NO2. The
concentrations at the ground stations are influenced by different emission sources
in the periods before and after the change in the main wind direction from east to
west from 18 March 2016 to 19 March 2016. Positive emission corrections for the
road transport sector in the southeast of the domain are related to observed NO2
concentrations above the simulated concentrations from 10 March to 18 March. This is
particularly the case at the three ground stations near Cologne (Fig. 5.9). In contrast,
the concentrations at the three ground stations near Cologne are below the simulated
concentrations from 19 March to 23 March. For this reason, the data assimilation
system determines negative emission corrections for road transport for the area west of
Cologne. Thus, the change in meteorological conditions during the simulation period
is beneficial for determining reliable emission corrections in most areas of the domain.

The spatial distributions of emission corrections for other stationary combustion,
shipping, aviation and off-road traffic show similarities to that for road transport.
Examples are the negative emission corrections for the shipping sector on the Rhine
north of Düsseldorf and the positive corrections for other stationary combustion and
off-road traffic emissions east of Cologne as well as southeast of Dortmund. Also,
emissions from aviation southeast of Cologne are strongly increased by the sector
specific optimisation. It should be noted that the corrections for the sectors of other
stationary combustion, shipping, aviation and off-road traffic are subject to large
uncertainty. The results of the identical twin experiments (Chapter 6) indicate that
emission changes in the road transport sector can affect the emission corrections for
these sectors (Fig. 6.3).

For the public power sector, positive emission corrections are determined in most parts
of the domain. This also applies to the Rhine area, where strong negative corrections
for the road transport sector are obtained by the sector specific optimisation. Negative
emission corrections for public power are only determined west of Cologne and in a
small area northwest of Dortmund. This means that the data assimilation system
distinguishes between increased emissions from public power and decreased emissions
from road transport in the area between Cologne, Düsseldorf and Dortmund. For
the distinction between the two sectors, the different diurnal emission profile is ex-
ploited, which is flatter for the public power sector than for the road transport sector
(Fig. 5.8). Observational increments (Eq. 2.1) of NO2 between 0 h and 6 h local time
are attributed to emission changes in the public power sector rather than to emission
changes in the road transport sector in the sector specific optimisation.

The industry sector displays a similar distribution of emission corrections as the
road transport sector. However, the distribution also shows characteristic features,
for example the positive emission corrections east of Düsseldorf. For this area, the
sector specific optimisation distinguishes between increased industrial and decreased
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Figure 7.5.: Spatial distribution of the absolute emission corrections for the simulation
period for each GNFR sector (Table 5.1). If a sector has moderate or high
NOx emissions, the emission corrections for NOx are shown. For each of
the four sectors with low or zero NOx emissions, the emission corrections
are depicted for a species that is characteristic for the respective sector.
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road transport emissions. Due to the flatter diurnal profile of industrial emissions,
positive observational increments at night are not attributed to emission increases in
the road transport sector, but in the industry sector (and in the public power sector,
refer to the previous paragraph). This is discussed for the period from 11 March to
14 March 2016 in the appendix (Section B.6).

The spatial distributions of the emission corrections for the agricultural sectors are
also heterogeneous. Both agricultural sectors are strong NH3 sources (Fig. 5.2). The
emission corrections for livestock agriculture are mainly related to observational
increments of species that are chemically coupled to NH3. For the corrections of non-
livestock agriculture emissions, also observational increments of NO2 are important
due to the NOx emissions from this sector (Fig. 5.2). This leads to differences in
the spatial distribution of the emission corrections for the two agricultural sectors,
especially in an area east of Cologne. In this area, high positive emission correc-
tions are determined for the non-livestock agriculture sector, similar as for the road
transport sector. A probable reason for this is that the emission corrections for the
non-livestock agriculture sector are affected by high road transport emissions in this
area. A further discussion of this behaviour can be found in the appendix (Section B.5).

The emission corrections for fugitives, solvents and waste are zero or negative in
the entire domain. This has the following reason: The three sectors emit a significant
amount of aerosols, but a low amount of NOx (Fig. 5.2). Hence, aerosol observations
have a significant impact on the emission corrections for fugitives and solvents. In the
entire domain, most aerosol observations are below the simulated concentrations. This
leads to negative emission corrections for the fugitives, the solvents and the waste
sector. In the case of the waste sector, PM10 emission corrections above 10 kg per
grid cell during the simulation period are only determined for some grid cells north of
Duesseldorf. This is due to the low emissions from the waste sector in all other parts
of the domain, resulting in small absolute emission corrections for this sector.

A comparison of the spatial distributions of the NOx emission corrections summed
over all sectors determined by the sector specific and the 4D-VarREF optimisation
can be found in the appendix (Fig. B.1). In the 4D-VarREF optimisation, only small
corrections are obtained for the area between the cities Cologne, Düsseldorf and
Dortmund and for the southeast of the NRW domain in contrast to the corrections
determined by the sector specific optimisation. The main reason for this is the large
emission corrections for the road transport sector in the sector specific optimisation
(Fig. 7.5).
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7.3. Agreement between simulated and observed
concentrations

The aim of optimising the initial values and emission correction factors is to reduce
the discrepancy between model and observations. As previously described (Chapter 2),
the final step of a data assimilation cycle is the analysis forecast (also referred to
as ”analysis” in this section) using the optimised initial concentrations and emission
corrections. In this section, the agreement between observed and simulated pollutant
concentrations is investigated. The time series of the NO2, O3, SO2 and PM10
concentrations averaged for all validation stations are depicted and discussed in the
following subsections. The observed concentrations are compared to the simulated
concentrations of the analysis of the sector specific optimisation, of the analysis of the
4D-VarREF optimisation and of a reference run without optimisation of emissions and
initial concentrations. In addition, the following statistics are included in the figures
shown in this section:

• The correlation coefficient of observed and simulated concentrations (”Corr”)
defined by ∑N

k=1(xi−x) (yi−y)√
∑N

k=1(xi−x)2 (yi−y)2
with the simulated concentrations xi, the mean x

of the simulated concentrations, the observed concentrations yi, the mean y of
the observed concentrations and N the number of observations,

• the bias in µg/m3 as the difference of the mean of simulated and observed
concentrations defined by ∑N

k=1 xi−yi

N ,

• the unbiased root mean squared error (”RMSE”) in µg/m3 defined by√
1
N ∑

N
k=1[(xi − x)(yi − y)]2,

• the normalised mean bias (”NMB”) defined by ∑N
k=1 xi−yi

∑N
k=1 yi

and

• the normalised mean error (”NME”) defined by ∑N
k=1 ∣xi−yi∣
∑N

k=1 yi
.

7.3.1. NO2 and O3

The averaged time series of the NO2 concentrations at the validation stations are shown
in Fig. 7.6. The bias is negative for the analysis of the sector specific optimisation with
-0.9 µg/m3 and -2 µg/m3 for the reference run without optimisation. In contrast, a
positive bias is calculated for the analysis of the 4D-VarREF optimisation (2 µg/m3).
It is paradoxical that the sector specific optimisation determines higher NOx emissions
(Fig. 7.4) and at the same time leads to lower analysis concentrations for NO2 at the
validation stations than the 4D-VarREF optimisation. The major reason for this
is a stronger negative correction of initial NO2 concentrations by the sector specific
optimisation than by the 4D-VarREF optimisation, particularly on 19 March and
20 March. The initial value corrections for both simulations on both days are shown
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Figure 7.6.: Time series of NO2 concentrations averaged over all validation stations.
The observations are depicted as red crosses, the reference run without
data assimilation as green solid line, the analysis of the sector specific
optimisation as blue solid line and the analysis of the 4D-VarREF optimi-
sation as blue dashed line. The correlation (”Corr”), the bias in µg/m3,
the unbiased root mean squared error (”RMSE”) in µg/m3, the normalised
mean bias (”NMB”) and the normalised mean error (”NME”) - each with
respect to the observations - are given for the time series of the three
simulations.

in the appendix (Section B.2, Fig. B.2, B.3 and B.4). Compared to the reference simu-
lation without optimisation, the correlation between model and observations is higher
and the unbiased root mean squared error is lower for the analyses of both the sector
specific and the 4D-VarREF optimisation. The improvement of the simulated NO2
concentrations by the sector specific optimisation results in a correlation coefficient of
81%. In comparison, for the analysis of the 4D-VarREF optimisation, the correlation
coefficient is significantly lower with a value of 73%. The differences between the
analyses of the sector specific optimisation and the 4D-VarREF optimisation are most
remarkable on 19 March and 20 March. On 20 March, around 0 UTC, the NO2
concentrations of the analysis of the 4D-VarREF optimisation and of the reference
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simulation without optimisation show a peak with a value of 50 µg/m3, while the
observed concentrations are lower than 10 µg/m3. In contrast, the NO2 concentrations
of the analysis of the sector specific optimisation are much lower with a maximum
value of 18 µg/m3 at that time, which is more consistent with the observations. As
mentioned in the previous paragraph, this difference is due to a stronger initial value
correction in the sector specific optimisation than in the 4D-VarREF optimisation
(Fig. B.2 and B.3 in the appendix). The better agreement with the observed concen-
trations on 19 March and 20 March leads to a lower unbiased root mean squared error
for the analysis of the sector specific optimisation (1.6 µg/m3) than for the analysis of
the 4D-VarREF optimisation (1.9 µg/m3).

The comparison of the averaged O3 time series at the validation stations displayed in
Fig. 7.7 reveals similar characteristics as the time series for NO2. A major reason for
this is that NO2 and O3 concentrations are strongly coupled by their photostationary
state. The bias for the analysis of the sector specific optimisation (3.8 µg/m3) is higher
than that for the reference simulation without optimisation (2.9 µg/m3). In contrast,
the bias for the analysis of the 4D-VarREF optimisation (2.7 µg/m3) is slightly lower
than for the reference simulation. The improvement of the correlation and the unbi-
ased RMSE is greater for the sector specific optimisation than for the 4D-VarREF
optimisation (91 % vs. 88 % correlation and 1.8 µg/m3 vs. 2 µg/m3 unbiased RMSE).
The differences in the bias and unbiased RMSE between the analysis of the sector
specific optimisation and the analysis of the 4D-VarREF optimisation are mainly
due to the discrepancy between their time series on 19 March and 20 March. On
both days, the analysis of the sector specific optimisation is more consistent with the
observed O3 concentrations than the analysis of the 4D-VarREF optimisation. The
reason for the difference between the two analyses is a strong positive correction of the
initial O3 concentrations on 19 March and 20 March in the sector specific optimisation.
A comparison of the initial value corrections for O3 by the sector specific and the
4D-VarREF optimisation can be found in the appendix (Fig. B.4).

To conclude, the improvement of the agreement between simulated and observed
NO2 and O3 concentrations by the sector specific optimisation is comparable to that
of the 4D-VarREF optimisation. The differences on 19 and 20 March are mainly
due a stronger initial value correction by the sector specific optimisation than by the
4D-VarREF optimisation. This is not characteristic for the sector specific optimisation,
since the strength of initial value corrections can be adjusted in the configuration of
both data assimilation systems.
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Figure 7.7.: Time series of O3 concentrations averaged over all validation stations. The
observations are depicted as red crosses, the reference run without data
assimilation as green solid line, the analysis of the sector specific optimi-
sation as blue solid line and the analysis of the 4D-VarREF optimisation
as blue dashed line. The correlation (”Corr”), the bias in µg/m3, the
unbiased root mean squared error (”RMSE”) in µg/m3, the normalised
mean bias (”NMB”) and the normalised mean error (”NME”) - each with
respect to the observations - are given for the time series of the three
simulations.

7.3.2. SO2

The time series of SO2 concentrations at the validation station are shown in Fig. 7.8.
In contrast to NO2 and O3, for the SO2 concentrations, there is a large discrepancy
between each of the three simulations and the observations. This is reflected by high
values for the normalised mean bias (NMB) and the normalised mean error (NME) as
well as by low correlation coefficients for all simulations. The bias for the reference
simulation without data assimilation is 6 µg/m3. The bias for the 4D-VarREF optimi-
sation (2.4 µg/m3) and the sector specific optimisation (3.3 µg/m3) is lower compared
to the reference simulation. The discrepancy between simulated and observed SO2
concentrations suggest that the SOx emissions are strongly overestimated in the emis-

74



7.3. Agreement between simulated and observed concentrations

Figure 7.8.: Time series of SO2 concentrations at the validation station. The ob-
servations are depicted as red crosses, the reference run without data
assimilation as green solid line, the analysis of the sector specific optimi-
sation as blue solid line and the analysis of the 4D-VarREF optimisation
as blue dashed line. The correlation (”Corr”), the bias in µg/m3, the
unbiased root mean squared error (”RMSE”) in µg/m3, the normalised
mean bias (”NMB”) and the normalised mean error (”NME”) - each with
respect to the observations - are given for the time series of the three
simulations. Note that there is only 1 validation station for SO2 and that
the hourly observational dataset for this station is incomplete (Table 5.5).

sion inventory. Another reason for the bias could be incorrect assumptions about the
vertical profile of emissions (Fig. 5.5) from the public power and the industry sector.
If the effective emission height assumed in the inventory is too low, the simulated
SO2 concentrations are higher than the observed SO2 concentrations, particularly in
the vicinity of emission sources. The 4D-VarREF optimisation reduces the bias by
a strong decrease of the total daily SOx emissions by up to 60% (Fig. 7.4). In the
sector specific optimisation, the emission corrections for SOx are much weaker than
in the 4D-VarREF optimisation. Nevertheless, the bias of the SO2 concentrations is
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significantly smaller for the analysis of the sector specific optimisation than for the
reference simulation without data assimilation.

Figure 7.9.: Development of the observational costs (Eq. 2.6) of the analysis during
the simulation period from 10 March to 23 March. The background costs
are depicted as dashed lines, the analysis costs as solid lines.

Regarding the statistical values (Fig. 7.8), the agreement between simulated and
observed concentrations is worse for SO2 than for NO2 and O3. This also applies to
both simulations using data assimilation. The reason for this is the low observational
costs of SO2 in comparison to all other observed species (Fig. 7.9). The low costs
are due to the small number of observations and a high relative observation error
assumed in the model (Tables 5.2, 5.3 and Fig. 5.9). In order to minimise the total
costs, the 4D-Var data assimilation system tends to optimise the species with the
highest observational costs more strongly. The bias is larger for the analysis of the
sector specific optimisation than for the analysis of the 4D-VarREF simulation because
of the weaker SOx emission corrections obtained in the sector specific optimisation.
As discussed in Section 7.2, this is a consequence of the full correlation between the
SOx and the NOx emission corrections within the sectors (Section 4.2).

After 19 March, the SO2 concentrations are lower with an average of approximately
5 µg/m3 and less fluctuating. The discrepancy on these days is strongly reduced by
both the sector specific and the 4D-VarREF optimisation compared to the reference
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simulation without data assimilation. In order to investigate the reason for this in
the case of the sector specific optimisation, a closer look is taken at the SOx emission
corrections from 18 to 20 March.

Figure 7.10.: Absolute SOx emission corrections for the public power and the industry
sector from 18 March to 20 March obtained in the sector specific opti-
misation. The sum of the emissions corrections over all model layers is
plotted. A 51 km × 51 km part of the NRW domain is shown, with the
SO2 validation station (green cross) in the center. The wind direction at
12 UTC is displayed as a grey arrow.

The public power, industry and stationary combustion sectors are the only GNFR
sectors with moderate or high SOx emissions in NRW (Fig. 5.2). Fig. 7.10 shows the
absolute SOx emission corrections from 18 to 20 March for the public power and the
industry sector in the area around the validation station obtained in the sector specific
optimisation. The emission corrections for the sector of other stationary combustion
are negligible in the investigated area and period and are therefore not shown in
Fig. 7.10. The emission corrections for the public power sector are mostly positive
with two exceptions in the areas north of Duisburg and north of Essen and are similar
for all three days. In contrast, the emission corrections for the industry sector decrease
during the three days. The strong emission increase north of Duisburg on 18 March
change to a strong emission decrease on 19 March. This applies also to the corrections
northwest of Essen. The wind direction changes from west-northwest on 18 March
to north-northwest on 19 and 20 March. Thus, on 19 and 20 March, emissions from
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industrial sources near Duisburg impact the SO2 concentrations observed at the val-
idation station. On 18 March, west of the validation station, the power sector has
positive and the industry sector has negative corrections. The result is a low total
SOx emission correction in this area. Therefore, the reduction of the simulated SO2
concentrations is small. In contrast, on 19 and 20 March, strong negative emission
corrections for the industry sector north of the validation station reduce the simulated
SO2 concentrations at the validation station. The consequence is a better agreement
between the simulated and observed concentrations on 19 and 20 March for the analysis
of the sector specific optimisation compared to the reference simulation without data
assimilation.

Figure 7.11.: SO2 and NO emission gradient of the industry sector from 18 to 20 March
after the first adjoint run. Note that a negative gradient corresponds
to emission increases and vise-versa. A part of the NRW domain with
51 km × 51 km is shown, containing the SO2 validation station (green
cross), three NO2 assimilation stations (brown crosses) and one SO2
assimilation station (orange cross). The wind direction at 12 UTC is
displayed as a grey arrow.

The corrections for the industry sector are a consequence of the NO and SO2 emission
gradients for this sector, which are depicted in Fig. 7.11. In this figure, the gradient
after the first adjoint model run is shown. Note that most grid cells have negligible
gradients since there are low or zero industrial emissions. For 18 March, a slightly
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positive SO2 gradient is calculated for some grid cells. The maximum value is 2.3 in the
investigated area. However, the negative NO gradient is stronger than with a minimum
value of -5 in the depicted area. The correlation of both species in the sector specific
optimisation (Section 4.2) leads to positive emission corrections for the industry sector.
On 19 March, the SO2 gradient decreases, but the NO gradient changes its sign from
negative to positive. On 20 March, the NO gradient increases further. Consequently,
negative emission corrections for the industry sector are determined on both days,
which strongly decreases the simulated SO2 concentrations at the validation station.
Thus, the investigated case illustrates the dominant impact of the NO gradient and
the minor impact of the SO2 gradient on the emission corrections for the industry sector.

To conclude, the agreement between simulated and observed SO2 concentrations
is strongly improved by the sector specific optimisation in comparison to the reference
simulation without data assimilation. However, a significant positive bias remains after
the optimisation. The main reason for this is the low sensitivity of the cost function
value to the SOx emissions compared to its sensitivity to NOx emissions. A possible
approach to further improve the simulated SO2 concentrations in future developments
could be to determine separate correction factors for SOx emissions and emissions of
other species in the case of the industry and the public power sector. This can be
achieved by modifications of the emission error correlation matrices of the two sectors
(Section 4.2).

7.3.3. Aerosols
The time series of the PM10 concentrations averaged over all validation stations are
shown in Fig. 7.12. On average, the simulated PM10 concentrations are higher than
the observations. The bias for the reference simulation without data assimilation is
1.9 µg/m3. It is larger for the analysis of the sector specific optimisation (3 µg/m3)
and for the analysis of the 4D-VarREF optimisation (2.6 µg/m3). The correlation
between the simulated and observed concentrations is high for all simulations with
values of 93-94%. Both the unbiased root mean squared error and the normalised
mean error (NME) are slightly worse for both simulations using data assimilation than
for the reference run without data assimilation.

The main reason for the higher bias in the simulations with data assimilation in
comparison to the reference run is the strong positive initial value corrections of
aerosols. This can be illustrated by average diurnal cycles at three assimilation sta-
tions as examples (Fig. 7.13). From 0 to 8 UTC, the concentrations of the analyses
of both the sector specific and the 4D-VarREF optimisation are higher than that of
the reference simulation without data assimilation. This indicates high initial value
corrections of PM10 at the three stations, also in the case that the observed values are
lower than the results of the reference simulation.

The following statements can be made about the impact of the aerosol emission
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Figure 7.12.: Time series of PM10 concentrations averaged over all validation stations.
The observations are depicted as red crosses, the reference run without
data assimilation as green solid line, the analysis of the sector specific
optimisation as blue solid line and the analysis of the 4D-VarREF op-
timisation as blue dashed line. The correlation (”Corr”), the bias in
µg/m3, the unbiased root mean squared error (”RMSE”) in µg/m3, the
normalised mean bias (”NMB”) and the normalised mean error (”NME”)
- each with respect to the observations - are given for the time series of
the three simulations.

corrections. Despite the high observational costs for PM10 (Fig. 7.9), the aerosol
gradients are small in both the sector specific and the 4D-VarREF optimisation. As
a consequence, only small corrections for aerosol emissions are determined by the
4D-VarREF optimisation (Fig. 7.4), which have a minor influence on the simulated
concentrations. In the sector specific optimisation, the total aerosol emissions of the
simulation period are increased due to the full correlation between the aerosol and
the NOx emission corrections within the sectors (Section 4.2). This leads to a slightly
higher bias for the analysis of the sector specific optimisation than for the analysis of
the 4D-VarREF optimisation.
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Figure 7.13.: Average diurnal cycle of simulated and observed PM10 concentrations
during the simulation period at three assimilation stations. The observa-
tions are depicted as red crosses, the reference run as green solid line,
the analysis of the sector specific optimisation as blue solid line and the
analysis of the 4D-VarREF optimisation as blue dashed line.

The time series of PM2.5 concentrations show similar characteristics as the time
series for PM10. They are displayed in the appendix (Fig. B.5).

To conclude, the agreement between simulated and observed PM10 concentrations is
already high in the reference simulation of the EURAD-IM without data assimilation.
Neither the sector specific nor the 4D-VarREF optimisation can improve the simulated
concentrations. This is mainly due to incorrect initial value corrections for aerosols,
which can also be observed in other simulations of the EURAD-IM. The reason for
this should be investigated, which is beyond the scope of this work.

7.4. Conclusions of the simulation using ground
observations

In this Chapter, the behaviour, potential and limits of the approach developed in the
framework of this thesis have been investigated on the basis of a simulation using real
ground observations. In this study, the sector specific emission optimisation is able to
significantly improve the agreement between simulated and observed NO2, O3 and SO2
concentrations compared to a simulation without data assimilation. However, there is
no substantial difference to the concentrations obtained in a reference simulation using
the current data assimilation system of the EURAD-IM. The major advantage of the
new development is the gain of information on the emission strengths of individual
polluter groups. The sector specific emission optimisation is able to distinguish
between agricultural and road transport emissions using the high NH3 emissions from
agriculture. Furthermore, the data assimilation system determines positive emission
corrections for the public power sector in large parts of the domain, where negative
emission corrections for the road transport sector are obtained at the same time.
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7. Simulation using ground station observations in North Rhine-Westphalia

For the distinction between the emissions from the two sectors, the different diurnal
emission profile of the two sectors is efficiently exploited by the data assimilation system.
Similar statements can be made for the distinction between the emissions from the
road transport and the industry sector. In this study, the emission corrections for the
public power, industry and road transport sectors are mainly driven by observational
increments of NO2 and O3, which are mostly attributed to NOx emissions. The
additional use of observations of other species, e.g. CO and CO2, could also enable the
data assimilation system to distinguish between the emissions of the three sectors on
the basis of their chemical composition. This should be investigated in future studies.
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8. Conclusion and outlook
In the framework of this thesis, a new data assimilation approach was developed that
allows for the correction of emission data of trace gases and aerosols for individual
source categories. The main purpose of this development is to obtain information on
the contribution of individual source categories such as road transport and industry to
air pollution. In comparison to other approaches for sector specific emission correction,
e.g. Meirink et al. (2008) and Hooghiemstra et al. (2011), the development of this
work is suitable for the assimilation of observations of NO2 and O3 concentrations
with a high sensitivity to regional emissions.

The new approach was implemented in the complex 4D-Var data assimilation system
of the EURAD-IM. The new data assimilation system includes individual emission
correction factors for the Gridding Nomenclature for Reporting (GNFR) sectors and
the calculation of adjoint sector specific emission correction factors in the adjoint
model run. In addition, two modifications are introduced to improve the results of
the sector specific optimisation. The first is based on the assumption of a constant
chemical composition of the emissions from the sectors. This leads to equal emission
correction factors for all species within the sectors and aims to reduce the degree of
freedom of the emission correction factors. The second modification increases the
spatial correlation of the emission corrections for the road transport sector along roads.
This corresponds to the assumption of a high correlation of real traffic emissions along
roads of a high category such as motorways.

The studies discussed in this thesis have the purpose of investigating the ability
of the new approach to distinguish between emissions from different GNFR sectors.
The domain selected for the studies covers large parts of North Rhine-Westphalia.
In this area, emissions from the industry, public power and road transport sectors
are predominant. The simulation period in March 2016 was characterised by high
agricultural emissions. Two types of studies were performed that should be regarded
as complementary. In the identical twin experiments, artificial emission scenarios with
emission changes in the road transport, industry and non-livestock agriculture sectors
were simulated. Synthetic observations were generated in simulations with these
emission scenarios as input for the data assimilation. The advantage of these studies
is that the true emission changes are known. Hence, the emission corrections deter-
mined in the sector specific optimisation can be compared with the true corrections to
evaluate the performance of the new method. Another aspect of the identical twin
experiments is that no sources of uncertainty related to the model and the observations
are included in the simulated scenarios. However, these uncertainty sources are not
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negligible if real observations are assimilated. For this reason, a two-week simulation
using ground observations was performed in addition to the identical twin experiments.

All studies discussed in this thesis demonstrate the ability of the new data assimila-
tion approach to distinguish between emissions from different sectors that contribute
substantially to air pollution. In an identical twin experiment, an emission scenario
with an increase in industrial emissions and a simultaneous decrease in road transport
emissions is correctly reflected by the data assimilation system. In another identical
twin experiment, increased non-livestock agriculture emissions are distinguished from
decreased road transport emissions. In the simulation assimilating real ground obser-
vations, positive emission corrections are determined for the public power sector in
a large area of the model domain, where negative corrections are obtained for road
transport emissions. For the distinction between the agriculture sectors and other
sectors, the high agricultural NH3 emissions are exploited by the data assimilation
system. Public power and industrial emissions are distinguished from road transport
emissions mainly on the basis of the different diurnal emission profiles. For road
transport, low emissions between 0 h and 6 h local time are assumed in the emission
data, while industrial and public power emissions are characterised by a flat diurnal
profile. Therefore, differences between observed and simulated concentrations at night
are mainly attributed to emission changes in the industry and the public power sector.

Although there are substantial differences in the chemical composition of the emissions
from road transport, industry and public power, the data assimilation system cannot
efficiently exploit them in the simulations. High SOx emissions are characteristic of
the industry and the public power sector, in contrast to the road transport sector.
However, the sensitivity of the data assimilation system to SOx emissions is low due
to the small number of SO2 observations in the dataset compared to NO2 and O3
observations. Both the industry and the road transport sector emit high amounts
of CO, in contrast to the public power sector. This difference cannot be exploited
for a distinction, since no CO observations are assimilated. With the observational
dataset used in the simulations, NO2 and O3 observations, which are sensitive to NOx
emissions, have a dominant impact on the emission corrections. This hampers the
data assimilation system to distinguish between emissions from different sectors on
the basis of their chemical composition.

In the following, suggestions for next steps to further develop and investigate the sector
specific emission optimisation are described. Future improvements should aim at a
more efficient exploitation of the chemical composition of the emissions of the sectors
by the data assimilation system. An enhanced impact of SO2 and aerosol observations
on the determined emission corrections might be beneficial in particular for the dis-
tinction between industry, public power and road transport emissions. This could be
achieved by applying species-dependent scaling factors to the emission gradients. The
setting of such scaling factors could be sector-dependent, e.g. based on the chemical
composition of the sectors. In addition, exceptions to the full correlation between all

84



species within the sectors could be introduced in the emission error correlation matrix.
For example, a low correlation between SOx and all other emitted species could be
specified in the matrix, which would enable a separate optimisation of SOx emissions
within the sectors. This would probably improve the agreement between simulated
and observed SO2 concentrations.

As previously discussed, the observational dataset used for the data assimilation
has a crucial impact on the performance of the sector specific emission optimisation.
The ground observations in NRW are well suited for the correction of road transport
emissions due to the high number of NO2 observations and the high sensitivity to
ground level emissions. CO observations could be beneficial for the distinction between
road transport and public power emissions, since the CO/NOx ratio is significantly
higher for road transport than for public power emissions. Also the assimilation of
CO2 observations might improve the results. In addition, observations from zeppelin
campaigns could be advantageous, as a high fraction of public power and industrial
emissions occurs at the flight altitudes of zeppelins.

In future studies, the performance and behaviour of the sector specific emission
optimisation under different conditions should be investigated. Meteorological pa-
rameters such as wind speed, precipitation and cloud cover have a crucial impact on
atmospheric chemistry and thus affect the data assimilation results. Therefore, simu-
lations under different meteorological conditions, e.g. with a comparison between the
seasons, should be performed. Further studies for different regions would be beneficial
to study the distinction between the sectors by the data assimilation system in different
emission situations. The domain of Lower Saxony would be suitable for such a study.
Compared to North Rhine-Westphalia, the agricultural activity in Lower Saxony
is significantly higher, while industrial emissions are negligible in many areas. Fur-
thermore, the sensitivity to a coarser resolution of the model grid could be investigated.

In summary, the studies presented in this thesis showed the ability of the new de-
velopment for sector specific emission optimisation to effectively distinguish between
emissions of different source categories. This applies in particular to the sectors of
public power, industry, road transport and agriculture. A further improvement of the
performance could be achieved by using additional observational data, e.g. of CO and
CO2.
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A. Appendix: Supplements to the
identical twin experiments

Figure A.1.: Observational costs (Eq. 2.6) of the observed species during the simulation
period in experiment II with emission perturbation factors of 2 for the
non-livestock agriculture and 0.5 for the road transport sector. Analysis
costs are depicted as solid lines, background costs as dashed lines. If the
analysis costs are lower than the background costs of a species, the sector
specific optimisation of emissions has improved the agreement between
simulated and observed concentrations of this species.

88



Figure A.2.: Observational costs (Eq. 2.6) of the observed species during the simulation
period in experiment III with emission perturbation factors of 1.3 for the
non-livestock agriculture and 0.5 for the road transport sector. Analysis
costs are depicted as solid lines, background costs as dashed lines. If the
analysis costs are lower than the background costs of a species, the sector
specific optimisation of emissions has improved the agreement between
simulated and observed concentrations of this species.

89



B. Appendix: Supplements to the
simulation using real observations

B.1. Spatial distribution of emission corrections

Figure B.1.: Absolute NOx emission corrections for the whole simulation period from 10
to 23 March 2016 of the 4D-VarREF and the sector specific optimisation.
The sum over all sectors is shown. In addition, the difference between
the two optimisations, denoted as ”SSP - 4D-VarREF”, is depicted. The
locations of the NO2 assimilation stations are depicted as brown crosses.
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B.2. Initial value corrections of NO2

As stated in Subsection 7.3.1, on 19 March and 20 March, the NO2 and O3 con-
centrations of the analysis of the sector specific optimisation agree better with the
observations than the concentrations of the analysis of the 4D-VarREF optimisation.
The main reason for this is the initial value corrections, which are stronger in the
sector specific optimisation than in the 4D-VarREF optimisation.

Fig. B.2 shows the initial NO2 mixing ratios of the background (Section 2) and
the analysis of the sector specific and the 4D-VarREF optimisation and their difference
on 19 March 2016. The difference between analysis and background concentrations
(”ANA-BG”) corresponds to the correction of the initial mixing ratios. The figure high-
lights the different behaviour of the sector specific and the 4D-VarREF optimisation
concerning the initial value corrections. The NO2 concentrations on 19 March, 0 UTC,
show a high heterogeneity, which is characteristic for a compound with a short lifetime.
In large parts of the north of the domain, the mixing ratios are below 3 ppb, while they
exceed a value of 20 ppb south of Cologne characterised by high NOx emissions. The
initial mixing ratios of the background are different for the two simulations. They are
lower in the Rhine area south of Cologne and higher in some other areas, e.g. east of
Cologne, in the simulation using the sector specific optimisation than in the simulation
using the 4D-VarREF optimisation. This is a result of the differences between the
emission corrections for the previous day determined by the sector specific and the
4D-VarREF optimisation. The initial value corrections of NO2 are mostly negative
for both simulations. The initial value corrections determined by the sector specific
optimisation are strongest between Cologne and Düsseldorf, while they are less than
4 ppb for the 4D-VarREF optimisation in the same area. Overall, the initial value
corrections on 19 March and 20 March (Fig. B.3) are significantly stronger in the
sector specific optimisation than in the 4D-VarREF optimisation. This also applies
to the initial O3 maxing ratios, which are strongly increased by the sector specific
optimisation. This is shown in Fig. B.4.

To conclude, the better agreement between simulated and observed concentrations of
NO2 and O3 concentrations for the analysis of the sector specific optimisation than
for the analysis of the 4D-VarREF optimisation on 19 March and 20 March is due
to stronger initial value corrections in the simulations. The strength of the initial
value correction is not characteristic for the sector specific optimisation, as it can be
adjusted in the configuration of the data assimilation system (e.g. by changing the
errors specified in the background error covariance matrix B, see Eq. 3.10).
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Figure B.2.: Simulated initial NO2 mixing ratios in the lowest model layer on
19 March 2016 in ppb. They are shown for the background (BG) and the
analysis (ANA) of the 4D-VarREF and the sector specific (SSP) optimisa-
tion. ANA-BG denotes the difference between analysis and background,
which corresponds to the initial value correction. SSP - 4D-VarREF
denotes the difference between the SSP and the 4D-VarREF simulation.
”SSP-normal” denotes the difference between the simulation using the
sector specific optimisation and the simulation using the current data
assimilation system of the EURAD-IM (4D-VarREF). The locations of
the stations in Solingen and Düsseldorf-Lörick are depicted as gold and
silver stars.
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Figure B.3.: Simulated initial NO2 mixing ratios in the lowest model layer on
20 March 2016 in ppb. They are shown for the background (BG) and the
analysis (ANA) of the 4D-VarREF and the sector specific (SSP) optimi-
sation. ANA-BG means the difference between analysis and background,
which corresponds to the initial value correction. ”SSP-normal” denotes
the difference between the simulation using the sector specific optimisa-
tion and the simulation using the current data assimilation system of the
EURAD-IM (4D-VarREF).
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Figure B.4.: Simulated initial O3 mixing ratios in the lowest model layer on
19 March 2016 in ppb. They are shown for the background (BG) and the
analysis (ANA) of the 4D-VarREF and the sector specific (SSP) optimi-
sation. ANA-BG means the difference between analysis and background,
which corresponds to the initial value correction. ”SSP-normal” denotes
the difference between the simulation using the sector specific optimisa-
tion and the simulation using the current data assimilation system of the
EURAD-IM (4D-VarREF).
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B.3. Time series of PM2.5

Figure B.5.: Time series of PM2.5 concentrations averaged over all validation stations.
The observations are depicted as red crosses, the reference run without
data assimilation as green solid line, the analysis of the sector specific
optimisation as blue solid line and the analysis of the 4D-VarREF op-
timisation as blue dashed line. The correlation (”Corr”), the bias in
µg/m3, the unbiased root mean squared error (”RMSE”) in µg/m3, the
normalised mean bias (”NMB”) and the normalised mean error (”NME”)
- each with respect to the observations - are given for the time series of
the three simulations.
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B.4. High emission corrections of the aviation sector

Figure B.6.: Emission correction factors of the aviation sector from 11 to 13 March. A
51 km × 51 km part of the NRW domain is shown, with Cologne/Bonn
Airport in the centre. The wind direction at 3 UTC is depicted as a green
arrow, the NO2 assimilation stations as a brown cross.
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Figure B.7.: First iteration NO gradient of the aviation sector from 11 to 13 March.
A 51 km × 51 km part of the NRW domain is shown, with Cologne/Bonn
Airport in the centre. The wind direction at 3 UTC is depicted as a green
arrow, the NO2 assimilation stations as a brown cross.

Figure B.8.: Time series of NO2 concentrations from 11 to 13 March at two assimi-
lation stations ∼10 km north north-west of Cologne and in Bonn. The
observations are depicted as red crosses, the reference simulation without
data assimilation in green, the background in black, the SSP analysis as
blue solid line and the 4D-VarREF as blue dashed line. The dashed blue
line shows the 4D-VarREF concentrations.
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B.5. Enhancement of agriculture II emissions
As stated in Section 7.2, large emission enhancements for the agriculture II sector
in an area northeast of Cologne are determined by the sector specific optimisation.
Furthermore, the spatially averaged emission correction factor for the domain of up to
1.4 does not decrease after 18 March 2016, in contrast to many other sectors (Fig. 7.4).
In the following discussion, the evolution of the emission correction factors from
13 March to 16 March is investigated. A 51 km × 51 km area northeast of Cologne
is considered. This area contains 5 NO2 and 3 PM10 assimilation stations. Wind
directions from east prevail during this period, so that the emissions are transported
from the investigated source region mainly to the observation stations in Chorweiler
and Leverkusen north of Cologne.

Fig. B.9 shows the emissions of the agriculture II and road transport sectors on
14 March as an representative example for the simulation period. The emissions from
the agriculture II sector are homogeneously distributed in areas with low population.

Figure B.9.: NOx emissions on 14 March shown for the agriculture II and the road
transport. A part of the NRW domain with a high agricultural emission
correction is displayed. This cut-out includes 51 km × 51 km. The wind
directions at 3, 9, 15 and 21 UTC are depicted as a arrows. The locations
of the stations in Chorweiler and Leverkusen are depicted as stars. The
locations of the other NO2 assimilation stations are depicted as brown
crosses, the locations of PM10 assimilation as grey crosses.

In Fig. B.10, the time evolution of the emission correction factors are depicted. The
emission correction factors of the agriculture II sector strongly increase from 13 March
to 16 March 2016. The emission corrections of the road transport are characterised
by strong reductions in the western and enhancements in the eastern part of the
investigated area. The emission reduction north of Cologne weakens from 13 March to
14 March. The enhancement of road transport emissions in the eastern part decreases
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Figure B.10.: Emission correction factors for the agriculture II and the road trans-
port sector from 13 March to 16 March. A part of the NRW domain
with a high agricultural emission correction is displayed. This cut-out
includes 51 km × 51 km. The wind directions at 3, 9, 15 and 21 UTC
are displayed as arrows. The locations of observation the stations in
Chorweiler and Leverkusen are depicted as stars, the locations of the
other NO2 assimilation stations as brown crosses and the locations of
PM10 assimilation as grey crosses.

from 13 March to 14 March, but strongly increases from 14 March to 15 March.

The NO2 concentrations at the stations in Chorweiler and Leverkusen are shown
in Fig. B.11. The locations of the stations are depicted in Fig. B.10. At the station in
Chorweiler, on 14 March from 5 UTC to 17 UTC, on 15 March from 7 UTC to 13 UTC
and on 16 March from 7 UTC to 14 UTC, the concentrations of all simulations are
below the observations. From 14 March, 21 UTC to 15 March, 5 UTC, the simulated
concentrations are above the observed concentrations. The simulated concentrations
deviate significantly from each other in the last hours of 14 March. At that time,
the deviation from the observations is higher for the 4D-VarREF simulation with
up to 35 µg/m3 than that of the SSP concentrations with up to 14 µg/m3. Also at
the station in Leverkusen, the difference between observed and simulated concentra-
tions is large. On 14 March from 1 UTC to 8 UTC and on 16 March from 22 to
23 UTC, the concentrations of the analysis of the sector specific optimisation are up
to 43 µg/m3 lower than the observations. The NO2 deviations between model and
observations are related to a high overprediction of O3 concentrations at the same
time. This discrepancy could be caused by unrepresented ozone-consuming chemical
reactions with VOCs. Another possible reason could be a high representativeness error
due to the location of the observation station approximately 400 m west of a motorway.
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Figure B.11.: Time series of NO2 concentrations from 14 March to 16 March at the
observation stations in Chorweiler and Leverkusen. The observations are
depicted as red crosses and the reference run as green dashed line. The
dashed blue line shows the concentrations of the 4D-VarREF analysis,
while the analysis of the sector specific optimisation is shown as a solid
blue line.

The NO gradient fields of the agriculture II and the road transport sector as well
as the NH3 gradient fields of the agriculture II sector are depicted in Fig. B.12. On
15 March and 16 March, a slightly positive NH3 gradient can be seen in the center
of the considered area, while it is negligible on 14 March. Thus, the NH3 gradient
does not cause the increase of the emission corrections of the agriculture II sector.
The negative NO gradient is significantly stronger than the positive NH3 gradient,
especially on 15 March and 16 March. It is a consequence of the deviation between ob-
served and simulated NO2 concentrations at the stations in Chorweiler and Leverkusen,
mentioned above. As a result, positive emission corrections for the agriculture II sector
are obtained by the sector specific optimisation. The NO gradient for road transport
is also mostly negative. It is particularly strong near the negative NO gradient for
the agriculture II sector. The NO gradient for the road transport sector is strongest
on 15 March due to the east-northeast wind, which transports the emissions of the
investigated area to the considered observation stations. The gradient decrease on
16 March is caused by the changed wind direction from east-northeast at 3 UTC to east
at 9 UTC. In contrast, the gradient of the agriculture II sector does not significantly
decrease on that day. This can be explained by the different diurnal emission cycles of
the agriculture II and the road transport sector. Low traffic emissions are assumed
around 3 UTC (Fig. 5.8), when the east-northeast wind transports the emissions from
the investigated source area to the station in Leverkusen. The agriculture II sector
has a flatter diurnal emission profile than the road transport sector and thus emits
a moderate amount of NOx at that time. As a consequence, the NO gradient with
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Figure B.12.: First iteration NO and NH3 gradients of the agriculture II and the road
transport sector from 14 March to 16 March. A part of the NRW domain
with a high agricultural emission correction is displayed. This cut-out
includes 51 km × 51 km. The wind directions at 3, 9, 15 and 21 UTC
are displayed as arrows. The locations of the observation stations in
Chorweiler and Leverkusen are depicted as stars, the locations of the
other NO2 assimilation stations as brown crosses and the locations of
PM10 assimilation stations as grey crosses.

respect to the road transport sector is lower on 16 March than on 15 March in contrast
to that of the agriculture II sector.

This section revealed two reasons for the strong corrections of agricultural emis-
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sions. The first is the generally large difference between observed and simulated
NO2 concentrations at the stations in Chorweiler and Leverkusen. The second is the
particularly large discrepancy between observed and simulated NO2 concentrations in
the first hours of 16 March. These increments are attributed to agricultural emissions
by the data assimilation. This demonstrates the ability of the sector specific data
assimilation to exploit the different diurnal profiles of the sectors. However, the
emission corrections for the agriculture II sector probably compensate for incorrect
assumptions in the model or input or for observation uncertainty. For example, the
diurnal profile of the sectors could deviate from real emissions, e.g. the night-time
traffic emissions could be underestimated. Another reason for the difference between
model and observations could be unrepresented chemical processes in the EURAD-IM
model with an impact on the simulated NO2 concentrations. In addition, the repre-
sentativeness error at the observation station in Leverkusen could play an important
role. Note that all these uncertainty sources also apply to emission optimisations with
the current data assimilation system of the EURAD-IM (Section 3.2) and with data
assimilation systems of other models.

Similar statements can be made about the reasons for the large emission correc-
tions for the aviation sector at the airport Cologne/Bonn. The corresponding figures
can be found in Section B.4.

102



B.6. Distinction between road transport and industrial emissions

B.6. Distinction between road transport and industrial
emissions

In NRW, the road transport and the industry sector are two strong pollution sources,
with different properties. In the identical twin experiments (Chapter 6), it is shown
that the sector specific optimisation is able to effectively distinguish between increasing
industrial and decreasing traffic emissions. In this section, this is further investigated
for the real-case study (Chapter 7). A 51 km× 71 km part of the domain around
Cologne and Düsseldorf is considered in the period from 11 March to 14 March. This
part contains 8 NO2 observation stations. Winds from northeasterly directions prevail.
In the selected part of the NRW domain and during the selected period, emission
increases for the industry sector and at the same time emission decreases for the road
transport sector are obtained by the sector specific optimisation.

Figure B.13.: Emission correction factors of the industry and the road transport sector
from 11 March to 14 March. A part of the NRW domain with 51 km ×
71 km is shown. The wind directions at 3, 9, 15 and 21 UTC are displayed
as arrows. The locations of the observation stations in Leverkusen and
Solingen are depicted as violet and gold stars, the locations of the other
NO2 assimilation stations as brown crosses, area 1 as a violet and area
2 as a green circle.

Fig. B.13 displays the emission correction factors obtained by the sector specific
optimisation. On average, the industrial emissions in the considered part are enhanced
by the sector specific optimisation. There are three areas where the corrections signifi-
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Figure B.14.: Time series of NO2 concentrations at the observation stations in Lev-
erkusen and Solingen from 12 March to 14 March. The observations
are depicted as red crosses and the reference run as green dashed line.
The dashed blue line shows the concentrations of the analysis of the
4D-VarREF optimisation, while the analysis of the sector specific opti-
misation is shown as solid line.

cantly increase during the investigated period, especially from 13 March to 14 March.
West of the Rhine river and in the northern part, the emissions are decreasing. The
distribution of the emission corrections for the road transport sector are more variable
in time than those for the industry sector. Most notable are the changes north of
Cologne from emission increases on 11 March to strong emission decreases on the
following three days. This means that there are areas in the investigated part of the
NRW domain, where emissions of the industry sector are increased from 11 March to
14 March and at the same time emissions of the road transport sector are decreased.
In the following, two areas with this behaviour are discussed.

One area (”area 1”) is located north of the NO2 observation station in Leverkusen,
and the second area (”area 2”) approximately 20 km north-east of the observation
station in Solingen. The locations of both areas and observation stations are depicted
in Fig. B.13. The stations are selected so that the emissions in area 1 and area 2 have
a significant impact on the NO2 concentrations observed at the stations. The time
series of the observed concentrations at both stations are shown in Fig. B.14. At the
station in Leverkusen, the concentrations of the reference simulation without data
assimilation are significantly below the observed concentrations on average. Examples
are the lower simulated concentrations from 12 March, 18 UTC to 13 March, 0 UTC
(up to 25 µg/m3) and from 13 March, 19 UTC to 14 March, 7 UTC (up to 35 µg/m3).
The analysis concentrations of the sector specific optimisation are slightly higher
than those of the reference simulation without data assimilation. The time series at
the station in Solingen show that the concentrations of the reference simulation are
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significantly lower than the observations on 12 March from 6 UTC to 8 UTC and from
16 UTC to 19 UTC (up to 12 µg/m3 in both intervals) and on 14 March from 5 UTC
to 15 UTC (up to 36 µg/m3). In all three intervals, the simulated concentrations
are significantly higher in the analysis of the sector specific optimisation than in the
reference simulation without data assimilation.

Figure B.15.: First iteration NO gradients of the industry and the road transport
sectors from 12 March to 14 March. A part of the NRW domain with
51 km × 71 km is shown. The wind directions at 3, 9, 15 and 21 UTC are
displayed as arrows. The locations of the observation stations Leverkusen
and Solingen are depicted as violet and gold stars, the locations of the
other NO2 assimilation stations as brown crosses, area 1 as a violet and
area 2 as a green circle.

The NO gradients of both sectors after the first adjoint run are shown in Fig. B.15. As
discussed in previous sections, the gradient of other species play a minor role. In area 1,
the road traffic gradient is slightly negative on 12 March and 14 March and slightly
positive on 13 March. The gradient of the industry sector is negative from 12 March to
14 March, but strongest on 14 March, resulting in an emission enhancement in area 1.
This reflects the difference of up to 35 µg/m3 between observed and Ref concentrations
in Leverkusen in the first hours on 14 March. In comparison, the negative gradient of
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the road transport sector in area 1 is significantly weaker on that day. This is due to
the assumed diurnal emission cycles of the sectors. While low traffic emissions are
assumed from 1 UTC to 6 UTC, the industry sector is characterised by a flatter diurnal
emission profile in comparison to the road transport sector (Fig. 5.8). In area 2, on
12 March and 13 March, the gradients of both sectors are positive, with higher values
on 12 March. On 14 March, the road transport gradient is negligible. Nevertheless,
the road transport emissions are significantly decreased after the first iteration. The
reason for this is that the gradient changes its sign in the following iterations. In
contrast, there is a significant negative gradient. As a consequence, the industrial
emissions are increased in area 2.

To conclude, in the sector specific data assimilation, the spatial separation of the
industrial and the traffic emission sources is effectively exploited. In addition, there
are areas with positive emission corrections for the industry sector and at the same
time negative emission corrections for the road transport sector. The investigated
case demonstrates the ability of the data assimilation system to exploit the different
diurnal emission profiles of the road transport and the industry sector. The same
applies to the distinction between emissions from road transport and public power.
The chemical composition of the emissions plays a minor role, due to the lack of CO
observations and weak SO2 and PM10 gradients. The assimilation of CO and CO2
observations could improve the distinction between road transport, public power and
industrial emissions.
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