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Abstract

Pollutants in the atmosphere, such as nitrogen oxides and particulate matter, pose
a threat to the environment and human health. In addition to natural sources,
anthropogenic emissions contribute significantly to air pollution. Since emission rates
cannot be measured directly, their estimates provided by research institutes and
national environmental agencies are subject to considerable uncertainty. However,
for accurate air quality forecasts using atmospheric chemical transport models such
as the regional European Air pollution Dispersion - Inverse Model (EURAD-IM),
reliable emission data are crucial. To correct the emission data of inventories based on
observations of trace gas and aerosol concentrations in the atmosphere, the EURAD-IM
comprises a four dimensional variational data assimilation system (4D-Var) that allows
for simultaneous optimisation of initial concentrations and species-dependent emission
corrections. In order to improve the knowledge about the sources of air pollution, in
this work, a new approach is developed and implemented in the data assimilation
system of the EURAD-IM to correct emissions individually for source categories such as
road transport, industry and agriculture. For the distinction between the emissions of
different source categories, the new approach exploits the spatial separation of emission
sources of different categories as well as their characteristic diurnal emission profiles
and chemical compositions. Assuming a fixed chemical composition of the emissions
of the source categories within the grid cells, a full correlation between the emission
corrections of the different chemical species is introduced. Furthermore, an anisotropic
diffusion operator is implemented that increases the spatial correlation between the
road traffic emission corrections of the grid cells along roads. To investigate the ability
of the new development to distinguish between emissions of different sectors, two
different types of simulations are performed. In identical twin experiments based on
synthetic observations, scenarios with increased industrial and agricultural emissions
and a simultaneous decrease in road transport emissions are simulated. The data
assimilation system based on the new approach is able to reproduce the emission
changes in the experiments for large parts of the model domain through the determined
sector specific emission corrections. Furthermore, a study is performed in which the
emissions within a two-week period in North Rhine-Westphalia are analysed using
real observation data. It is shown that in this scenario a distinction of industrial and
power plant emissions versus road transport emissions is possible through the sector
specific emission optimisation. Moreover, changes in agricultural emissions can be
specified due to their high NHj3 fraction. For all observed species, i.e. Oz, NOy, SO,
PM;y and PMs 5, the agreement of the simulated with the observed concentrations
is comparable to that of a reference simulation using the current EURAD-IM data
assimilation system. An improvement of the results is expected through additional
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observation data, especially of CO and CO, concentrations.



Kurzzusammenfassung

In der Atmosphére enthaltene Schadstoffe wie Stickoxide und Feinstaub stellen eine
Gefahr fiir die Umwelt und die menschliche Gesundheit dar. Neben natiirlichen
Quellen tragen anthropogene Emissionen wesentlich zur Luftverschmutzung bei. Da
Emissionsraten nicht direkt gemessen werden kénnen, sind deren Schatzungen, die von
Forschungsinstituten und nationalen Umweltbehorden bereitgestellt werden, mit erhe-
blichen Unsicherheiten verbunden. Fiir prézise Vorhersagen der Luftqualitat mithilfe
von atmosphéarischen Chemietransportmodellen wie dem regionalen European Air
pollution Dispersion - Inverse Model (EURAD-IM) sind verldssliche Emissionsdaten
jedoch entscheidend. Zur Korrektur der Emissionsdaten von Inventaren auf Grundlage
von Beobachtungen von Spurengas- und Aerosolkonzentrationen in der Atmosphére
beinhaltet das EURAD-IM ein vier-dimensionales variationelles (4D-Var) Datenas-
similationssystem, das eine gleichzeitige Optimierung von Anfangskonzentrationen
und speziesabhangigen Emissionskorrekturen erméglicht. Um die Erkenntnisse iiber
die Quellen von Luftverschmutzung zu verbessern, wird in dieser Arbeit ein neuer
Ansatz entwickelt und in das Datenassimilierungssystem des EURAD-IM implemen-
tiert, um Emissionen individuell fiir Quellenkategorien wie Straflenverkehr, Industrie
und Landwirtschaft zu korrigieren. Fiir die Unterscheidung zwischen den Emissionen
verschiedener Quellenkategorien nutzt der neue Ansatz die rdumliche Trennung von
Emissionsquellen verschiedener Kategorien sowie deren charakteristische tageszeitliche
Emissionsprofile und chemische Zusammensetzungen. Unter der Annahme einer festste-
henden chemischen Zusammensetzung der Emissionen der Quellenkategorien innerhalb
der Gitterzellen wird eine vollstdndige Korrelation zwischen den Emissionskorrekturen
der verschiedenen chemischen Spezies eingefiihrt. Dariiber hinaus ist ein anisotroper
Diffusionsoperator implementiert, der entlang von Straflen die rdumliche Korrelation
zwischen den Straflenverkehrs-Emissionskorrekturen der Gitterzellen erhoht. Um
die Fahigkeit der neuen Entwicklung, zwischen Emissionen verschiedener Sektoren
zu unterscheiden, zu untersuchen, werden zwei verschiedene Arten von Simulatio-
nen durchgefiithrt. In identischen Zwillingsexperimenten auf Basis von synthetischen
Beobachtungen werden Szenarien mit erhohten industriellen und landwirtschaftlichen
Emissionen bei gleichzeitiger Reduzierung der Straflenverkehrsemissionen simuliert.
Das Datenassimilationssystem auf Basis des neuen Ansatzes ist in der Lage, die Emis-
sionsdnderungen in den Experimenten fiir weite Teile des Modellgebiets durch die
ermittelten sektorspezifischen Emissionskorrekturen wiedergegeben. Zudem wird eine
Studie durchgefiihrt, in dem die Emissionen innerhalb eines zweiwtchigen Zeitraums
in Nordrhein-Westfalen anhand realer Beobachtungsdaten analysiert werden. Es wird
gezeigt, dass in diesem Szenario eine Unterscheidung von Industrie- und Kraftwerkse-
missionen gegentiber Straflentransportemissionen durch die sektorspezifische Emission-



soptimierung maoglich ist. Zudem konnen Anderungen landwirtschaftlicher Emissionen
wegen ihres hohen NHjs-Anteils spezifiziert werden. Fur alle beobachteten Spezies,
das heifit O3, NO,y, SOy, PM;q und PM, 5, ist die Ubereinstimmung der simulierten
mit den beobachteten Konzentrationen vergleichbar mit der einer Referenzsimula-
tion unter Benutzung des aktuellen Datenassimilationssystems des EURAD-IM. Eine
Verbesserung der Ergebnisse wird durch Einbeziehung zusétzlicher Beobachtungsdaten,
insbesondere von CO und COs-Konzentrationen, erwartet.
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1. Introduction

Air pollution by particulate matter (PM), nitrogen oxides (NO,), ozone (Os), sulfur
dioxide (SO;), carbon monoxide (CO) and other trace gases is harmful to human
health. Several studies found evidence that these pollutants are associated with
cardiovascular disease, respiratory disease and lung cancer (Chen and Hoek, 2020;
Lee et al., 2020; Orellano et al., 2020; Huangfu and Atkinson, 2020; Zheng et al.,
2021; Orellano et al., 2021). Following Fuller et al. (2022), in 2019, 4.5 million deaths
were associated with outdoor air pollution. The World Health Organisation (WHO)
published a new air quality guideline in 2021, with a recommended annual average
concentration below 15pg/m? for particulate matter with a diameter smaller than 10
micrometres (PMyg), 5 pg/m? for particulate matter with a diameter smaller than 2.5
micrometres (PMy ), and 10 pg/m? for nitrogen dioxide (NO,). However, 90 % of the
global population is exposed to average annual PMjy 5 concentrations above 10 pg/m3,
which is the limit recommended in the WHO guideline of 2006 (Shaddick et al., 2020).

Both natural and anthropogenic emission sources significantly drive air pollution.
Besides biogenic emissions from plants, natural emissions can be caused by wildfires
(Requia et al., 2021) or extreme events like volcanic eruptions (Reikard, 2019). In-
dustrial factories, power plants, road traffic and agriculture are strong anthropogenic
pollution sources. To understand, investigate and forecast the impact of emissions on
air quality, atmospheric Chemistry Transport Models (CTM) are an important tool
to simulate past, present and future scenarios. CTMs predict concentrations of trace
gases and aerosols, using emission data, meteorological data, as well as models for
atmospheric chemistry and aerosol formation.

A crucial input to atmospheric chemistry transport models and at the same time one
of the most important sources of uncertainty in these models are the anthropogenic
and biogenic emission data. These data, in particular the anthropogenic emissions, are
in general collected and composed in emission inventories. Many emission inventories
are based on annual anthropogenic emission data for different chemical species and
polluter groups. Polluter groups denote categories for emission sources, for example
industry, road traffic or agriculture. The annual national emission totals are provided
by research institutes and national environmental agencies, e.g. the Umweltbundesamt
(German Environment Agency) in Germany (Schneider et al., 2016). Following the
studies of Solazzo et al. (2021) about the Emissions Database for Global Atmospheric
Research (EDGAR) and of Andres et al. (2016) about the gridded uncertainty of
emissions caused by fossil fuel combustion in the Carbon Dioxide Information Analysis
Center (CDIAC) emission maps, emission uncertainties have two main sources: The



1. Introduction

first is the appraisal of annual and national emission totals. This includes assumptions
about the relationship between the activity level and emissions of pollution sources.
For example, the NO, emissions from road vehicles per litre of fuel consumption are
subject to a large uncertainty. The second source of uncertainty is due to the temporal
and spatial distribution of emissions. Emission inventories commonly rely on general
distribution functions, which are based on statistical knowledge and therefore often
deviate from the real emission situation. Hence, to improve the model predictions of
CTMs, there is a need for reducing the uncertainty of their emission input.

Several methods have already been developed to improve emission data for trace
gases and aerosols. In this thesis, a new approach is introduced that allows for a
polluter group specific correction of inventory emissions using observations of pollutant
concentrations. In comparison, many other approaches do not distinguish between
different source categories when correcting inventory emissions. In the following,
different methods for an improvement of emission estimates are discussed, including
polluter group specific and non-polluter group specific approaches.

Methods of emission estimation can be classified into bottom-up and top-down ap-
proaches, as defined in e.g. Cheewaphongphan et al. (2019). Bottom-up approaches
derive emissions from activity data using assumptions about the relationship between
the activity level and emissions of pollution sources. In contrast, top-down approaches
use observed concentrations of trace gases and aerosols for the estimation of emissions.
Top-down approaches can be based on data assimilation methods. These methods
combine model a priori knowledge with the information of observations, as explained
by Kalnay (2002b). With data assimilation, the initial values of a simulation and/or
model parameters can be optimised such that the agreement between model predictions
and observations is improved. In many atmospheric chemistry transport models, data
assimilation systems are implemented that are able to optimise the emissions of trace
gases and aerosols. The advantage of emission optimisation by data assimilation meth-
ods over bottom-up approaches is that assumptions about emission sources described
in the previous paragraph can be avoided.

Several atmospheric chemistry transport models use the four-dimensional variational
data assimilation (4D-Var) technique for a correction of inventory emissions. For
example, it is implemented in the European Air pollution Dispersion-Inverse Model
(EURAD-IM) by Elbern et al. (2007). This was the first approach with a joint optimi-
sation of emissions and initial concentrations for several trace gas and aerosol species.
In a case study, a significant improvement in the prediction of ozone concentrations
was achieved. Other 4D-Var data assimilation systems correct inventory emissions
without performing an optimisation of initial concentrations. For example, Wang et al.
(2021) corrected black carbon (BC) emissions in Northern China in 2016, resulting in
20 to 60 % lower emissions compared to the inventory. Jiang et al. (2015) assimilated
CO concentrations from Measurements of Pollution in the Troposphere (MOPITT)
satellite retrievals. The results suggest a reduction of CO emissions in the tropics



and the subtropics, but an increase in the extratropics. Qu et al. (2017) developed a
hybrid model which combines the 4D-Var technique with mass balance methods to
determine NO, emissions using satellite observations. A 4D-Var data assimilation for
the correction of NH3 emissions in Europe in 2016 was performed by Cao et al. (2022).
The resulting posterior emissions showed a stronger peak in springtime than the prior
emission estimates, leading to an improvement in the seasonality of the predicted NHj
concentrations.

Another data assimilation method that can be used for the correction of inven-
tory emissions in atmospheric chemistry transport models is the Ensemble Kalman
Filter (EnKF). Application examples are the assimilation of NO, satellite retrievals
(Miyazaki et al., 2012, 2017) and CO ground observations (Jia et al., 2022) to correct
NO, and CO emissions.

In all models and studies mentioned above, the corrections for the inventory emissions
do not distinguish between different polluter groups. However, such a distinction has
the potential to increase our knowledge about the sources of air pollution. In recent
years, several approaches deriving polluter group specific emissions from observations
of trace gas and aerosol concentrations were developed and discussed.

In many studies, polluter group specific emissions are directly estimated from ob-
servations, mostly from tropospheric columns of trace gases measured by satellite
instruments. For example, Lin et al. (2010) developed a method exploiting the diurnal
cycle of NO, emissions from traffic, industry, power plants and heating in China.
For the polluter group specific emission estimations, NOy satellite retrievals from
measurements by the Global Ozone Monitoring Experiment-2 (GOME-2) and Ozone
Monitoring Instrument (OMI) (both with a polar orbit) are used, which have different
passing times over China (~10 a.m. versus ~2 p.m.). Liu et al. (2016) determined power
plant emissions in China considering plumes of power plants with large capacities.
These approaches have the advantage of a low computing effort compared to data
assimilation methods. On the other hand, some important aspects of the system are
not taken into account, especially concerning the chemical reactions, the transport as
well as wet and dry deposition.

The advantage of data assimilation systems is that they are based on atmospheric
chemistry transport models that include all processes relevant for the evolution of
pollutant concentrations. Yuan et al. (2022) developed an approach based on the
EnKF technique in which inventory emissions of NO, and CO from seven polluter
groups in Beijing are corrected. It assumes a homogeneous spatial distribution of
correction factors. However, as mentioned before, the spatial distribution of emissions
is a significant source of uncertainty of inventories. There are also 4D-Var based
methods developed for a polluter group specific correction of inventory emissions.
Hooghiemstra et al. (2011) corrected global CO emissions with a 4D-Var system for
a period of two years, distinguishing between anthropogenic, natural and biomass
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burning emissions. Meirink et al. (2008) calculated CH4 emission corrections for 11
different source categories in 2003. Both studies are limited to determining emission
corrections for one chemical compound with a long lifetime. Moreover, they do not
include information on the annual cycle of emissions, and the spatial resolution of the
models is too coarse (far above 1°x1°) to resolve local emission sources.

The 4D-Var-based approach developed in the framework of this thesis has the aim for
correcting inventory emissions

o for individual polluter groups (denoted as sectors in the following),
« with a high spatial resolution of up to 1 km x 1 km,

e on the basis of NOy, O3, SOy, CO, PM;y, and PM, 5 observations and

o taking (photo-)chemical reactions, aerosol dynamics, transport by advection and
diffusion as well as wet and dry deposition into account.

The existing 4D-Var data assimilation system of the EURAD-IM fulfills all listed
criteria except for the first. For this reason, the new development for sector specific
emission corrections is implemented in the EURAD-IM. The data assimilation system
is extended to split the emission corrections into the sectors included in the emission
data. In the studies of this work, the Gridding Nomenclature for Reporting (GNFR)
categorisation with 12 sectors is used (Granier et al., 2019). To correctly determine
sector specific emission corrections, the data assimilation system needs to exploit the
differences between the sectors. The sectors differ with regard to the spatial distribu-
tion, chemical composition and diurnal profile of emissions. In order to investigate the
ability of the new development to distinguish between emissions from different sectors,
identical twin experiments as well as a real-case study using ground observations are
performed.

This work is structured as follows. In Chapter 2, the principles of data assimila-
tion are explained and different techniques are discussed. Chapter 3 introduces the
current EURAD-IM model, including the forward model and the 4D-Var-based emis-
sion optimisation. In Chapter 4, the approach of this work allowing for a sector specific
optimisation of emissions is presented, emphasising the differences to the current data
assimilation system of the EURAD-IM. Chapter 5 deals with the input data of the
studies in this work. They include the initial and boundary conditions, the meteoro-
logical data, the emission data and the ground station observations. Because of their
special importance for the sector specific emission optimisation, the observational data
in North Rhine-Westphalia and the assumptions about the emissions are discussed
in detail. Identical twin experiments including three different emission scenarios are
the topic of Chapter 6. The performance of the new approach in this idealised case
with synthetic observations is discussed on the basis of the determined sector specific
emission corrections. Chapter 7 presents an experiment in which real ground-based



observations for a two-week period of in March 2016 are assimilated. The emission
corrections determined by the sector specific emission optimisation as well as the
agreement between simulated and observed pollutant concentrations are investigated
in detail. Furthermore, the results are compared to those of a reference simulation
using the current data assimilation system of the EURAD-IM. At the end of the thesis
(Chapter 8), conclusions concerning the potential and limits of the new approach are
drawn. Moreover, further simulations, studies and improvements are suggested.



2. Data assimilation

Data assimilation methods have the aim of improving the agreement between simu-
lated and observed quantities of a system (Kalnay, 2002b). In order to improve the
agreement, the initial values of a simulation, in the following referred to as initial
state, and model parameters can be optimised. In atmospheric chemistry transport
models (CTM), the emission rates of trace gases and aerosols are parameters that have
a crucial impact on the simulated concentrations. In addition, the initial state plays
an important role, which denotes the concentrations xq of pollutants at the beginning
of a simulation. Both the initial state and the emission rates are subject to a high
uncertainty. For this reason, a joint optimisation of the initial state and emission rates
is implemented in the EURAD-IM to improve the simulated pollutant concentrations.

A simple data assimilation approach used in early weather forecast models is the
interpolation of observations to the grid cells to estimate the initial state. However, it
is not suitable for models with high spatial resolution, since the degree of freedom is
orders of magnitude higher than the number of available observations. The degree
of freedom denotes the number of grid cells multiplied by the number of prognostic
variables. In addition, an optimisation of pollutant emissions is not possible with this
approach.

Advanced data assimilation techniques

More advanced data assimilation methods combine observational data with the infor-
mation of model forecasts. They are more appropriate for highly under-determined
problems than the interpolation of observations. On the example of an initial state
optimisation, the general procedure of data assimilation can be described by the
following steps (Kalnay, 2002b):

1. First, a forecast is performed on the basis of a first guess of the initial state x; .
This forecast is denoted as the background forecast and x¢ g is denoted as the
initial state of the background. In the case of atmospheric chemistry transport
models, xo p are the initial concentrations of the background. For this, e.g. the
final concentrations of a previous simulation can be used.

2. The observational increments

y? - H(x0,8) (2.1)



are calculated, indicating the discrepancy between model forecast and obser-
vations. y© is the observation vector containing all selected observations and
is also denoted as the observational state. In the case of chemistry transport
models, measurements of pollutant concentrations, e.g. from ground stations or
satellite instruments, are used as observations. H is the observation operator
used to calculate the model equivalents H(x) of the observations, thus allowing
for a comparison between model results and observations.

3. The initial state is optimised such that the observational increments are reduced.
The resulting initial state is denoted as the initial state x( 4 of the analysis. The
optimisation can be described by a weighting operator W:

X0,4 = Xo,B + W[yo _%(XO,B)] (22)

4. On the basis of xq 4, a forecast is performed, which is denoted as the analysis
forecast.

Several techniques were developed for the optimisation of initial states and/or model
parameters, which is partially discussed in the following.

Ensemble-based data assimilation

Some data assimilation methods are ensemble-based. An ensemble consists of a
certain number of forecasts where the initial state xo (and/or model parameters, e.g.
emissions) of a system is perturbed. Ideally, the ensemble spread induced by the
perturbations reflects the forecast uncertainty. Ensemble-based data assimilation
techniques such as the Ensemble Kalman Filter (EnKF) (Evensen, 1994, 2009; Gillijns
et al., 2006) combine the information of observations with forecast ensembles to
estimate the optimal initial state and/or model parameters. Because of the relatively
simple implementation, ensemble-based data assimilation methods are commonly
used in meteorological models. They contribute significantly to the reduction of the
uncertainties of weather forecasts (Kalnay et al., 2006; Slingo and Palmer, 2011). The
EnKF is also used in several atmospheric chemistry transport models for the correction
of inventory emissions (Jia et al., 2022; Miyazaki et al., 2012, 2017).

Variational data assimilation

In contrast, variational data assimilation approaches estimate the analysis state of a
system by minimising a cost function J (Rabier and Liu, 2003). The cost function is
derived from the Bayes’ Theorem on conditional probability:

P(ylx) - P(x)

P(xly) = = s

(2.3)
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where P(x) is the prior probability distribution for the state of the considered system
and P(y) the probability distribution for the observational state. P(y|x) and P(x|y)
denote conditional probabilities. Gaussian distributions are assumed for P(x) and
P(y|x). Variational data assimilation seeks to find the state x with the highest
probability density of P(x|y).

3D-Var

The three-dimensional variational data assimilation (3D-Var) has the aim of finding
the best fit between the background state and observations at a certain time. The
cost function

J(x) =% - (x-xp)' B! (x-xp) 2.4
b3 (= HE))T R (y - H(x)

derived from the Bayes’ Theorem is minimised in 3D-Var (Kalnay, 2002a). x denotes
the state, i.e. all simulated variables which are arguments of the cost function.
xp denotes the background state, i.e. the first guess for the state x. B denotes
the background error covariance matrix (Section 3.2) and R the observation error
covariance matrix (Section 5.4). The term

- (x-x5)'B! (x-x5) (2.5)

DN | —

Jp =

is also referred to as the background costs Jg and the term

(y-HE) R (y-H(x)) (2.6)

[N

Jo =

is called the observational costs. 3D-Var data assimilation is used in meteorological
forecast models (Andersson et al., 1998), ocean models (Li et al., 2008) and also in
chemistry transport models, e.g. EURAD-IM, EMEP, MOCAGE and SILAM (Collin,
2020). It has the advantage of a low computational demand compared to EnKF and
4D-Var (described below). A major disadvantage of 3D-Var is that it does not take the
dynamics of a system into account, since only the state at a certain time is considered.
Furthermore, no parameter optimisation is possible. Additional information about the
3D-Var data assimilation method can be found in Kalnay (2002a) and Fisher (2002).

4D-Var

The mentioned disadvantages of 3D-Var can be solved by including the temporal
dimension, i.e. optimising the agreement between model and observations for a whole
time window, the so-called assimilation window. The observational costs Jo are
summed over all time steps in the assimilation window. This is the principle of the
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Figure 2.1.: Illustration of the principle of 4D-Var. Observations are depicted as blue
stars, the background forecast as black dotted line and the analysis forecast
as red dotted line. The differences between observations and model forecast
contribute to the observational costs (Eq.2.6) and are indicated by Jo.
In 4D-Var, the initial value (value at time ¢,) is optimised such that the
observational increments (Eq.2.1) of the whole assimilation window are
minimised. Thus, in comparison with 3D-Var, 4D-Var takes dynamics of
the system into account. Source: Lahoz and Schneider (2014).

four-dimensional variational data assimilation method (4D-Var) illustrated in Fig. 2.1.
Both meteorological and atmospheric chemistry transport models use this method.
4D-Var data assimilation systems are also implemented in non-atmospheric models, for
example in ocean models (Lee et al., 2018) and solar models (Sacha Brun et al., 2019).
Initial state optimisation with 4D-Var is described by the following cost function
(Bouttier and Courtier, 1999):

J(x0) =% - (%0 - x0,8)" B™ (x0 - X0,)
1 N (27)
t5 ;(Y(tz‘) -H(t) x(t:) )" R (y(t) - H(t:) x(t:)) -

H denotes the tangent linear observation operator. Xy is the initial state and x, p the
initial state of the background. Compared with the 3D-Var cost function, the major
difference is the summation of the observational increments over all time steps of the
assimilation window. A typical assimilation window in weather prediction models is
6 h (Kalnay, 2002b). In the studies of this work (Chapters 6 and 7), an interval of
24 h is selected to determine daily emission corrections.
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4D-Var data assimilation systems iteratively optimise the initial state and model
parameters. An iteration consists of a forward run of the CTM, an adjoint run and the
minimisation procedure. The adjoint or "backward” run is of particular importance for
the 4D-Var data assimilation. In this step, the gradient V.J of the cost function with
respect to the initial values and the model parameters, is calculated. The gradient is
necessary to determine the initial state and model parameters of the next iteration in
the minimisation procedure. The adjoint model contains the equations of the CTM in
adjoint form.

On the one hand, the effort required for the adjoint model is a disadvantage of
the 4D-Var data assimilation technique in comparison with the EnKF. On the other
hand, there is also an important advantage related to the adjoint model: In the 4D-Var
optimisation of the initial state and model parameters, relevant processes such as
chemical reactions and transport of pollutants have a higher influence than in the
EnKF. For this reason, the new approach towards sector specific emission optimisation
presented in this thesis is based on the 4D-Var data assimilation method.

10



3. The atmospheric chemistry
transport model EURAD-IM

The European Air pollution Dispersion-Inverse Model (EURAD-IM) (Elbern et al.,
1997, 2007) as a further development of the European Air pollution Dispersion Model
(EURAD) (Hass et al., 1995) is a regional scale Eulerian chemistry transport model,
which predicts concentrations of trace gases and aerosols in the troposphere. Further-
more, 3D-Var and 4D-Var data assimilation systems are implemented. The 4D-Var
data assimilation system allows for a joint optimisation of emissions and initial con-
centrations. The EURAD-IM contributes to the daily air quality forecasts for Europe
(CAMS2_40) of the Copernicus Atmosphere Monitoring Service (Collin, 2020). In
this chapter, the forward model (Section 3.1) and the 4D-Var data assimilation system
(Section 3.2) of the current EURAD-IM are described.

3.1. Forward model

Fig. 3.1 shows a simplified flow chart of the EURAD-IM forward model. The model
input contains information about the meteorological situation, terrestrial data, an-
thropogenic and biogenic emission data as well as initial and boundary values of trace
gas and aerosol concentrations. The input components are topic of Chapter 5. These
input fields are used to calculate the transformation and dispersion of trace gases and
aerosols. For this, advection, diffusion, (photo-)chemical reactions, aerosol dynamics
and dry and wet deposition are taken into account. The output fields include predicted
concentrations of aerosol and trace gas species.

The initial state x(t = 0) is integrated forward in discrete time steps At. At each time
step, the following operator sequence is applied:

X(t + At) = ThDthDUCDUTthTh X(t), (31)

where T' denotes the vertical (v) and horizontal (h) transport operator, and D the
operator for vertical and horizontal diffusion. C' represents all state transformations
due to the (photo-)chemical reactions, aerosol dynamics, emissions as well as dry and
wet deposition processes (Elbern et al., 2007).

Applying the Lambert conformal conic projection, the model domain is horizon-
tally subdivided into squares of equal size. In the studies presented in this thesis, the
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3. The atmospheric chemistry transport model EURAD-IM

Meteorological . i
g Terrestrial data | Anthropogenic "
Input and biogenic Initial values Boundary values

emissions

Advection scheme Chemistry
EURAD-IM forward .
mechanism and

model aerosol model
Diffusion Photochemistry

Dry & wet deposition

. . Predicted concentrations Predicted concentrations
Meteorological fields

of aerosol species of trace gas species

Figure 3.1.: Simplified flow chart of the EURAD-IM forward model. The input fields
(red), processes represented in the model (blue) and output fields (green)
are shown.

horizontal resolution is 1 km x 1 km. The 30 vertical layers are defined on o-coordinates,
where
o= LT (3.2)
Ps — pr
Here, p is the pressure of the respective model layer, pr = 100 hPa is the pressure at
the top of the domain and pg describes the surface pressure.

3.2. 4D-Var data assimilation system

With the 4D-Var data assimilation system developed by Elbern et al. (2007), emissions
and initial concentrations can be optimised. The emissions are optimised for each
emitted chemical species with the same spatial resolution as the model grid. A data
assimilation cycle starts with background emissions eg in the first iteration. In the
following iterations, correction factors e for these emissions are determined. The
emission correction factors are defined as the ratio of the corrected emissions € and
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3.2. 4D-Var data assimilation system

the background emissions:

6(Il7 j? k? l)
EB(Z.ajakal) 7
where 7 and j denote the horizontal indices of the grid cells, £ the layer of the grid cell

and [ the index of the species. Note that e is not a function of time. This means that
the emission correction factors are constant in time for the entire assimilation window.

e(i,j, k1) = (3.3)

Cost function and gradient

For a joint optimisation of emission correction factors and initial concentrations, the
following cost function has to be minimised:

J(x0,1) =% - (%0 - x0,58)" B™ (x0 - X0.)
+% : uTK’lu (34)
5+ 2 () = H() x(1)) R (y(0) - H(1) (1)

where u denotes the vector of the logarithm of the emission correction factors and K the
emission error covariance matrix. Besides the background costs and the observational
costs, the cost function includes emission correction costs

Jg==-u"K'u. (3.5)

1
2
Since K and B are high-dimensional, an explicit representation and calculation of

their inverse is not feasible. Therefore, an incremental formulation of the cost function,
following Weaver and Courtier (2001), is used:

J(v.w) = 2vTv 4 wTw % 35 (d(t) ~ H(1) ax(1) T R (d(t) - H(1) (1)

2 2
(3.6)
where dx(t;) = x(t;) —xp(t;) and d is the so-called innovation vector:
d(t;) = yO(t:) - H(t:)xp(t:), (3.7)
and v and w are defined by
v i= B2 (xg-x05), w = K/26u,0u = In(e) , (3.8)

where e are the emission correction factors. For the calculation of the initial state and
emission correction factors, the gradient of the cost function has to be determined. Its
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3. The atmospheric chemistry transport model EURAD-IM

formula is given by

v B2 0 N T TR-1
V(V7W)TJ = W - 0 K1/2 X Z;M (to,tz)H R (d(tz) - H(SX(tZ)), (39)

where H7 is the adjoint of the tangent linear observation operator and M7 is the adjoint
of the tangent linear model operator (Elbern et al., 2007). M7 (t,t;) propagates the
observational increments (Eq.2.1) backward from time ¢; to to. For this, an adjoint
model run is performed.

Data assimilation cycle

Input of forward model: Initial state (x; g¢),
boundary conditions, terrestrial / meteorol.
data, emissions

Observations: ground stations,
zeppelins, satellite instruments

Initial state (x,e) Cost function J(x,,e)

Gradient V J(x,,e)

Optimized initial values & Analysis forecast:
emission factors Xo.ana = Xana (te)

Figure 3.2.: Flowchart of the 4D-Var data assimilation cycle implemented in the
EURAD-IM, including the input data (red), process steps (yellow), inter-
mediate results (blue) and output (green). The initial state is denoted as
Xg, the state at the end of the assimilation window as x(tg), the adjoint
state as x4py, the state of the analysis as Xy 4, the emission correction
factors as e, the cost function as J and the assimilation interval as [to,tg].

Fig. 3.2 shows a schematic representation of the 4D-Var assimilation cycle, which

consists of several iterations with a forward run, adjoint run and minimisation pro-
cedure. An iteration of the assimilation cycle starts with the initial state and the
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3.2. 4D-Var data assimilation system

emission correction factors determined in the previous iteration. In the case of the
first iteration, the background initial state x¢ p and background emission correction
factors ep are used. In the forward run, the model state is integrated from ¢ty to tg,
containing all processes described in Chapter 3. Furthermore, the cost function is
calculated, following Eq.3.6. The gradient of the cost function with respect to the
initial state and the emission correction factors (Eq. 3.3) is computed in the adjoint
model run. The adjoint model operator M7 is applied, which includes the equations
of the forward model in adjoint form. The initial state and emission correction factors
for the next iteration are calculated in the minimisation procedure. After performing a
certain number of iterations, the iteration with the lowest cost function value (Eq. 3.4)
is selected to determine the optimised initial values and emission correction factors.
This optimised state is used for the analysis forecast.

Minimisation procedure

In the following, the minimisation procedure is described in detail. First, the gradient
with respect to the transformed variables v and w (Eq. 3.8) is determined. In order
to calculate V, wyrJ (Eq.3.9), BY/2 and K/? (described in the following) have to
be applied to the adjoint initial state and emission correction factors. Both the
background error covariance matrix B and the emission error covariance matrix K are
factorised in the following way:

K =XCY2Cc?2y (3.10)

with the diagonal error matrix ¥ and the correlation matrix C (Elbern et al., 2007).
In the emission error covariance matrix K, the entries of 3 are species-dependent. For
the background error covariance matrix B, a minimum absolute error for each species
and a relative error increasing with height are defined in Elbern et al. (2007).

The correlation matrix C is defined by
CY2 = ALY2PW12Q) | (3.11)

where L is the diffusion operator, W the geometry matrix, A the normalisation matrix
and €2 the emission error correlation matrix. Note that €2 is contained in K, but not
in B. L produces a spatial correlation between the emission correction factors and
initial value corrections, respectively, based on the discrete solution of the diffusion
equation. Assuming an isotropic diffusion, Schwinger (2006) determined the following
formula:

LY2 = {{T+ k, AtD, I+ ky AtDy} M2 (3.12)

I denotes the unit matrix, At the diffusion time step, M the number of diffusion steps,
Kn/y the horizontal/vertical diffusion coefficient and Dy, the discretised Laplacian.
M and At are calculated such that the stability criteria of the diffusion schemes are
fulfilled. The diffusion coefficients are derived from the following formula (Elbern
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3. The atmospheric chemistry transport model EURAD-IM

et al., 2007):
Lh/v = \/2/€h/vth/v . (313)

Ly, denote the horizontal and vertical diffusion lengths. In all considered model
versions, Ly, is 2.5 km for the surface, 10 km for the planetary boundary layer (PBL)
and 20 km for the model top. L, are equal to the Eddy diffusion coefficients. Note
that K only contains horizontal diffusion in the first layer. The different heights of the
grid cells due to the o-coordinates have to be taken into account in the correlation
matrix C. For this, the metric W is introduced. This is a diagonal matrix which
contains the vertical grid elements Az of the model grid. The normalisation matrix A
is a diagonal matrix with

M=t = eTW e (3.14)

l \/57 l 1 1 .

as diagonal entries, where e; denote the unit vectors. A normalises B and K in such a
way that their effective standard deviations are in accordance with the errors specified
in 3 (Weaver and Courtier, 2001).

Sulfur dioxide S02 100
Sulfate S04
Nitrogen dioxide NO2
Nitrogen oxide NO
Higher aldehydes ALD
Formaldehyde HCHO
Ammonia NH3
Hydrocarbons | * HC3
Hydrocarbons Il ** HC5
Hydrocarbons III *** HC8
Ethane ETH
Carbon monoxide co
Ethene ETE
Terminal alkenes OoLT
Internal alkenes oLl
Aromatics | ¥*** TOL
Aromatics || ***** XYL
Ketones KET
Isoprene IS0

Anthropogenic dienes DIEN
Acetic acid / higher acids ORA2
Cyclic diene-terpenes LM
Glyoxal GLY
a-pinene AP|

* Alkanes, alcohols, esters & alkynes with OH rate constant less than 3.4 x 1012 cm? s?

** Alkanes, alcohols, esters & alkynes with OH rate constant between 3.4 x 102 and 6.8 x 102 cm® s
*** plkanes, alcohols, esters & alkynes with OH rate constant higher than 6.8 x 1012 cm? s2

**** Toluene & less reactive aromatics

***** Xylene & more reactive aromatics

Figure 3.3.: Upper triangle of the emission error correlation matrix €2 for the gas phase
species used in the current EURAD-IM. For each combination of emitted
species, a fixed correlation is defined. High correlations are assumed for
combinations of species with a similar origin or if they are chemically
related to each other. Source: Paschalidi (2015)
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3.2. 4D-Var data assimilation system

The emission error correlation matrix {2 introduces correlations between the emission
correction factors of the chemical species. For each combination of species, a fixed
correlation between their emission correction factors is defined. The emission error
correlation matrix of the current EURAD-IM model was defined by Paschalidi (2015).
The upper triangle of the matrix for the gas phase species is shown in Fig.3.3. It
follows the assumption that there is a relatively high correlation between species, if
they have a similar origin or if they are chemically related to each other. This applies,
for example, to combinations of NO, NO, and SO, with correlations above 10 %. If
this is not the case, a low correlation is defined for a combination of species. For
example, no correlation is assumed between emissions of NO and isoprene, since no
biogenic source that emits isoprene also emits NO.

The state vector (v,w); of the current iteration and the gradient V(, w)r.J are
input to the minimisation. The cost function is minimised using the Limited-memory
Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS) (Liu and Nocedal, 1989).
The L-BFGS calculates the new state vector ((v,w),,,;). Since the cost function is
minimised with respect to the transformed variables, a back-transformation of v and
w to X¢ and u is necessary after the minimisation:

xo = BY2v + x5, u = K?w . (3.15)

xo and e = exp (u) are the initial values and emission correction factors of the next
iteration.
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4. Theory on sector specific
optimisation of emissions

In this chapter, the new approach for a sector specific optimisation of emissions
developed in the framework of this thesis is presented. Sectors denote source categories
such as road traffic, industry or agriculture. There are different categorisations for
emission sources, e.g. the Gridding Nomenclature for Reporting (GNFR) used in the
studies of this work. The approach is also applicable to other categorisations. To
allow for a sector specific optimisation of emissions, the 4D-Var data assimilation
system of the EURAD-IM (Elbern et al., 2007) is extended. In the following sections,
the theoretical basis of this method is introduced (Section 4.1) and two additional

modifications implemented in the data assimilation system are described (Sections 4.2
and 4.3).

4.1. Theoretical basis

To achieve a sector specific optimisation of emissions, the vector of emission correction
factors e is extended so that individual correction factors for different emission sectors
are included. e consists of N subvectors e, each representing the emission correction
factors of a sector s, where N, is the number of sectors considered. The dimension
of each vector e, is equal to that of the total vector of emission correction factors e
defined in Elbern et al. (2007): number of grid cells x number of emitted species.

The cost function J of the current 4D-Var data assimilation system in the EURAD-IM
(Eq.3.4) is extended to

J(x0,uy, Uy, ..., uy,) =% - (x0 - x0.8)" B™ (x0 - X0.5)
+% . Zungl u, (4.1)
+5 - 2 ((8) HE)x(0))T R (y(1) - H(1) x(1)

where u, is the vector containing the logarithmic emission correction factors of emission
sector s and K is the emission background error covariance matrix for sector s. The
cost function J is extended such that it is a function of the emission correction factors
of individual emission sectors (Eq.4.1). This enables the 4D-Var data assimilation
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4.1. Theoretical basis

system to correct the emissions of the considered sectors separately.

In the forward model, the total emissions €, in time step t; are calculated as the
sum of the corrected emissions for each sector. For this, the sector specific emission
correction factors are used:

N

Etot(iaj7kal7ti) = Z@(i,j,k‘,l,S) : EB(iﬂjvkaLSati) 9 (42)

s=1

where ¢ and j denote the horizontal indices of the grid cell, k& the vertical index of the
grid cell, [ the index of the emitted species, s the index of the emission sector, and eg
the background emissions.

As in the current EURAD-IM without sector specification (Section 3.2), the ad-
joint model contains the equations of the forward model in adjoint form. In the adjoint
model run, the vectors of the adjoint concentrations, adjoint emission rates (ade) and
adjoint emission correction factors (adef) are calculated. In contrast to the EURAD-
IM without sector specification, the adjoint emission correction factors are sector
specific in the new approach. Accordingly, the vector adef contains IV, subvectors,
each related to an emission sector s. The adjoint emission rates are computed in the
adjoint chemistry and aerosol modules. These are needed to determine the adjoint
emission correction factors. In each adjoint time step ¢;, an adjoint emission correction
factor (adef(i,j,k,1,s,t;)) is calculated for each grid cell, emitted species and sector
using the following formula:

adef(i,7,k,l,s,t;) =adef(i,j,k,1,s,tis1) +ade(i,j, k,1,t;) - eg(i,j, k,1,s,t;) . (4.3)

The vector adef is integrated backwards in time from the final time ¢g to the start
to of the assimilation window. adef(ty) corresponds to the gradient V.J, of the cost
function with respect to the emission correction factors. Thus, V.Jy( k) reflects the
sensitivity of the observational increments (Chapter 2) to the sector specific emission
correction factor e(i, j, k, [, s). For this reason, the sector specific gradients are investi-
gated in the studies (Chapters 6 and 7).

The formula for the gradient of the cost function (V(ywyrJ) with respect to the
modified variables v and w is equal to that of the current 4D-Var data assimilation
system of the EURAD-IM (Eq. 3.9). However, the augmentation of the state vector by
sector specific emission correction factors requires changes in the transformed vector
w. Here, it is defined by the increments dug of the sector specific emission correction
factors:
Wi
we=| V2|, w, = K;Y?6u,, (4.4)

W,

£
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4. Theory on sector specific optimisation of emissions

with sector specific emission error covariance matrices K,. The full emission error
covariance matrix K is block diagonal with the matrices Ky as block elements. Without
applying additional modifications (Sections 4.2 and 4.3), all matrices K are defined in
the same way as K in the current 4D-Var data assimilation system of the EURAD-IM
(Eq. 3.10).

4.2. Modification of the emission error correlation
matrix

The characteristic chemical composition of emission sectors is crucial for the distinction
between their emissions through the sector specific emission optimisation. According
to the calculation of the adjoint emission correction factors (Eq.4.3), the sector specific
emission gradient for a species strongly depends on the emission strength of the species
in the sector. This way, the data assimilation system uses the different chemical
composition of the sectors to distinguish between their emissions.

Regarding real emissions, there is a high correlation between the species within
the sectors. The emission correction factors determined in the current EURAD-IM 4D-
Var data assimilation system are species-dependent. In the case of the sector specific
approach, species-dependent emission correction factors would lead to a high variation
of the emission correction factors within a sector, contradicting the assumption of a
high correlation between species. Further, the degree of freedom of the optimisation
algorithm would increase drastically, which might hamper finding the optimum solution.

The modification described in this subsection, which is developed for the approach for
sector specific emission optimisation, is based on two strong assumptions:

o If the (real) emissions of a sector in a grid cell increase or decrease, all species
are equally affected, i.e. the chemical composition does not change.

e The chemical composition of the sectors, which is specific in each grid cell, is
correctly estimated in the emission inventory.

However, there are cases in which the assumptions do not apply, for example:

e There is a high dependence of NO, emissions from light-duty vehicles on the
outdoor temperature (Grange et al., 2019). This does not apply to the CO emis-
sions. The chemical composition of road transport emissions thus changes with
higher temperature towards a lower NO, /CO ratio. The inventory used for the
studies of this work does not take this into account. However, strong deviations
in the composition are only expected at temperatures above 15 °C, which did
not occur during the simulation period of the studies (10 to 23 March 2016).

o Applications of waste air purifications, e.g. in industrial facilities and power
plants, have a large impact on the chemical composition of the emissions. This is
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4.3. Anisotropic correlation of emission correction factors along roads

for example the reason for the significant decrease in SO, emissions from power
plants in the last decades (Smith et al., 2011). Emission inventories represent
such historical trends. However, the efficiency of the applied methods can vary
between facilities even if they belong to the same sector (Asif et al., 2022). This
is a source of uncertainty concerning the estimated chemical composition of
emissions.

Following the assumptions above, for each sector and grid cell, a full correlation
between the emissions of all species is introduced. Consequently, all species in a sector
get the same emission correction factor. This is expected to improve the exploitation
of the chemical composition for the distinction between the sectors by the data assimi-
lation system. Furthermore, the degree of freedom of the emission correction factors
is reduced.

In order to achieve a full correlation, the emission error correlation matrix € (Fig. 3.3)
contained in the emission error covariance matrices (K;) is modified. The new matrix
Q has the property that Q Q7 is a matrix in which all entries are equal to 1. This is
necessary because both Q7 and © are applied in the minimisation procedure. Following
this definition, the emission correlation matrix €2 has the form

1
Q:ﬁ.o_ (4.5)

N is the number of emitted gas phase and aerosol species considered in the data
assimilation and O denotes a matrix with the dimension of NV x N. All entries of O
are equal to 1.

4.3. Anisotropic correlation of emission correction
factors along roads

In the current 4D-Var data assimilation system of the EURAD-IM, an isotropic hori-
zontal diffusion operator Ly, is applied to the emission correction factors (Eq.3.12). It
is based on the assumption of an isotropic spatial correlation of emission correction
factors. This assumption applies to all emission correction factors in the same way.
The approach for sector specific emission optimisation includes a modification of the
horizontal diffusion of the road transport emission correction factors. A high spatial
correlation of emission correction factors along roads is assumed for the road transport
sector. In Fig. 4.1, the principle of anisotropic diffusion of emission correction factors
along roads is illustrated and compared to the isotropic diffusion approach of the
current EURAD-IM.
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Before Diffusion Isotropic Diffusion Anisotropic Diffusion

Road . Gradi(?nt roa'd
-------- transport in a grid cell

Figure 4.1.: Tllustration of the principle of anisotropic diffusion along roads for emission
correction factors of road transport and their gradient. A case is considered
in which a non-zero cost function gradient with respect to the emission
correction factors for road transport is determined for a grid cell in the
adjoint run (left picture). This grid cell contains a road running in the
z-direction. If isotropic diffusion is applied as in the current EURAD-IM
data assimilation system, all neighbour grid cells in the z-direction and
y-direction receive equal gradients after the diffusion (second picture). In
contrast, the anisotropic diffusion along roads induces a stronger gradient
in the neighbour grid cells in the z-direction than in the neighbour grid
cells in the y-direction (right picture). This means that the gradient is
stretched along the road.

The increased correlation along roads is implemented with a special diffusion op-
erator for the road transport sector Ly, yoadtr- Linroadrr causes a stronger diffusion in the
direction of roads than perpendicular to those. This means that the emission correction
factors for road transport and the related cost function gradient are stretched along
roads. Perpendicular to the direction of the roads, they are shrunk.

Information about the location of roads within the model domain is taken from
Open Street Map (OSM) (OpenStreetMap, 2023). All roads are considered that are
classified by OSM as motorways, trunk roads, primary roads and secondary roads. For
the approach of anisotropic correlation of emission correction factors along roads, a
road field p is introduced in which these roads are aggregated. In the road field, each
grid cell is assigned to the road of the highest category contained in the grid cell. With
the road field, the strength of the stretching along roads is determined, as described
below. It is assumed that the correlation of emission correction factors along roads is
higher for roads of a higher category. For instance, if a car drives on a motorway, it
will pass a larger number of consecutive grid cells than a car driving on a secondary
road. The consequence is a higher anisotropic correlation of road transport emissions
along a motorway than along a secondary road. For this reason, a grid cell containing
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4.3. Anisotropic correlation of emission correction factors along roads

a motorway is assigned a higher road field value than a grid cell that contains only
secondary roads.

Using OSM information, six categories of grid cells were defined, each assigned
a road field value p. For grid cells without motorways, trunk roads, primary roads
and secondary roads (as classified by OSM), the value of the road field is set to
p=0.1. If a grid cell contains a road of the highest defined category, the value is set
to p = 15. Between the highest and the lowest category, four categories are defined.
The following road field values are assigned to them: 1, 2, 5 and 10. Note that
these categories deviate from the official classification of roads, e.g. into ”Autobahn”,
"Bundesstrafle”, "Landesstrafie” and "Kreisstrale” in Germany. The road field of the
North Rhine-Westphalian domain is shown in Fig. 4.2.

Road field

Road field value

i'll-' F‘-i

b
‘1 ..‘I'F*

fa v "I-;-lr o) N iy,
Y AR

) '!".-.

-I..q- - -'."'.l.."l"

Figure 4.2.: Road field p for the domain in North Rhine-Westphalia with a horizontal
resolution of 1 km x 1 km. The minimum value is 0.1 (white) and
corresponds to grid cells without motorways, trunk roads, primary roads
and secondary roads (as classified by OSM). The maximum value is 15
(red), which corresponds to grid cells that contain at least one road of the
highest defined category.

23



4. Theory on sector specific optimisation of emissions

In the following, the calculation of the anisotropic diffusion along roads is described.
The road field p is used to define the direction and the strength of the stretching of the
emission correction factors. The direction is perpendicular to the two-sided gradient
Vp of the road field. Its xz-component V,p is calculated by averaging the difference to
the right and left neighbour grid cells:

. PZJ _pi+17j + P%] _Pi_Lj

Tapti ) = LOD LD+ [0o0) = p(6=19)] o)
where 7 and 7 denote the horizontal indices of the grid cells. Its y-component direction,
Vyp, is calculated by averaging the difference to the upper and lower neighbour grid

cells:

For the grid cells at the edge of the domain, no road field gradients are calculated.

In the following, the stretching angle and stretching factors are defined. These
indicate the direction of the stretching (avgpeten), the strength of the stretching along
the road field (S;) and the strength of the shrinking perpendicular to the road field
(S2). The variables agpreten, S1 and Sy can be interpreted as parameters of a diffusion
ellipse, as illustrated in Fig.4.3. First, the normalised total gradient

V (Vap)? + (Vyp)?
max (/ (Vzp)? + (Vyp)?)

is determined for each grid cell. The maximum total gradient in the domain,

max (/ (Vzp)? + (V,p)?), is used as the normalisation factor. This means that the
gradients V;up are normalised such that the maximum total gradient is equal to 1.
In the next step, the stretching factors in the stretching direction (S7) and in the
shrinking direction (S3) as well as the stretching angle (assreten) are determined for
each grid cell:

Viotp = (4.8)

Sl =1 +vtotp' (Smaoc - 1) ) SZ =

v
; Qstreteh = —au"CCOS(v yi))- (4.9)
tot

1
Sh
Smaz denotes the maximum stretching factor specified in the configuration of the data
assimilation. In the studies in this work, the value of S, is set to 100. Qgireten 1S
perpendicular to the gradient Vp. The formula for S is designed to have a minimum
value of 1 if the total gradient of the road field (V4 p) is equal to 0. In this case, an
isotropic diffusion is applied. The maximum value S,,,, is obtained for Sy if Vup is
equal to 1.
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Stretching
direction

Figure 4.3.: Illustration of the stretching factors S; and Sy and the stretching angle
Qstreteh- The anisotropic diffusion along roads can be described by a
diffusion ellipse. The stretching along the road field (S7) corresponds to
the semi-major axis of the diffusion ellipse. The shrinking perpendicular
to the road field (Ss) corresponds to the semi-major axis of the ellipse.
The stretching angle aeten, corresponds to the angle of rotation of the
ellipse with respect to the considered coordinate system and determines
the direction of the stretching.

From the geometry of ellipses, three stretching factors in the z-direction, y-direction
and xy-direction are derived so that the stretching is along the road field p:

Sx = Sl ' Cos(astretch)z + 52 : Sin(ozstretch)2 (410)
Sy = Sl : Sin(O[stretch)2 + SQ : COS(Ozstretch)2 (411)
Sxy = (Sl - S2) : Sin(astretch) : Cos(astretch)a (412)

following the spherical correlation modelling described by Weaver and Courtier (2001),
and the approach of Schwinger (2006) for an anisotropic diffusion stretched along a
potential vorticity field. The stretching factors (Eq.4.10, 4.11, 4.12) only apply to the
lowest layer of the model grid. For all layers above the lowest, S, and S, are 1 and
Szy 1s 0.

The horizontal diffusion operator Ly, ;oqatr, has the following form (Schwinger, 2006):

Lisoadir = 1+ k- At-div (Sgrady); S = ( Sa _S””y) ) (4.13)
’ Sy Sy

I is the unit matrix, x; the horizontal diffusion coefficient, At the time interval of the

diffusion step and grady, the horizontal gradient operator. Ly, ;oqa:r is applied to the
cost function gradient with respect to the emission correction factors for road transport.
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4. Theory on sector specific optimisation of emissions

As a consequence of the change of the diffusion operator, also a specific normalisation
matrix for the road transport sector (A,oqq) has to be calculated (Eq.3.14). Both
matrices, Ly, roaarr and Ajoudir, are part of the emission error covariance matrix for
road transport (K, oqatr)-

Although the spatial correlation of road transport emissions along roads is a rea-
sonable assumption, the exact properties of this correlation in the real world, such as
the correlation lengths, are not known. This lack of information contributes to the un-
certainty of the data assimilation results. Nevertheless, an improvement of the results
can be expected from the application of the anisotropic diffusion operator (Ly, roqdtr)
compared to the isotropic diffusion operator, since the isotropic diffusion operator does
not contain any information about the spatial correlation of road transport emissions
along roads.
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5. Model input

This chapter describes all model inputs used in the studies, including the initial
and boundary conditions (Section 5.1), the meteorological data (Section 5.2), the
emissions (Section 5.3) and the observations (Section 5.4). The assumptions made
for the emission data are discussed in detail, since they have a crucial impact on
the results of the sector specific optimisation of emissions in the studies of this work
(Chapters 6 and 7).

5.1. Initial and boundary conditions

For predictions of pollutant concentrations and estimations of emission correction
factors with high spatial resolution, nesting is applied. Large model domains, e.g.
containing whole continents, necessarily have a coarse resolution to enable computa-
tionally affordable simulations on supercomputers such as JUWELS (Alvarez, 2021)
and JURECA (Thornig, 2021). With the nesting technique, high resolution domains
are sequentially embedded in coarse domains. A one-way multiple-nesting has already
been implemented in the EURAD model (Jakobs et al., 1995).

Nesting sequence for the simulations

The following nesting sequence, depicted in Fig. 5.1, is used for the studies presented
in Chapters 6 and 7. The boundary values of the European domain with a horizontal
resolution of 15 km are taken from the European Centre for Medium-Range Weather
Forecasts Atmospheric Composition Reanalysis 4 (EAC4) (Inness et al., 2019) of the
Copernicus Atmosphere Monitoring Service (CAMS). The daughter of the European
domain is the Central European domain with a resolution of 5 km. For both the
15 km and the 5 km domain, analysis data from EURAD-IM simulations are available.
All simulations presented in Chapter 6 and 7 are performed on a domain with 1 km
resolution. The latter is the daughter of the Central European domain and contains
most parts of North Rhine-Westphalia with the river Rhine, which flows through
Cologne and Diisseldorf. The region is selected due to high emissions from industry
and road traffic, which allows for the investigation of the distinction between industrial
and traffic emissions by the approach of this work (Chapter 4).
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Figure 5.1.: Nesting sequence for the simulations discussed in Chapters 6 and 7: the
European domain (15 km x 15 km resolution, black), the Central European
(5 km x5 km domain resolution, red) and the North Rhine-Westphalian
domain (1 km x 1 km resolution, green).

Spin-up, initial state and background emission correction factors
for the simulations

For all simulations in the 1 km domain (Chapters 6 and 7), the spin-up period is two
days. In this period, model runs without data assimilation are performed. The first day
of the spin-up itself starts with interpolated initial values of the 5 km mother domain.
After the spin-up, daily data assimilation cycles are performed to determine emission
correction factors (Eq.3.3) for each day of the simulation period. The background
emission correction factors (ep) of the first day of a data assimilation period are equal
to 1 for all species and sectors, i.e. the simulation starts with uncorrected emission
data. For the following days, the data assimilation cycle uses the emission correction
factors of the analysis (e4) of the previous day as background emission correction
factors (ep). The initial state of the background (xg p) is the analysis state of the
simulation of the previous day at 24 UTC (x¢,, 4).

5.2. Meteorological fields

For simulations with the EURAD-IM (Section 3), meteorological input data are
necessary. They are generated by separate forecast runs of the Weather Research
and Forecasting Model (WRF), version 3.7 (Skamarock et al., 2008). The WRF is
a nonhydrostatic mesoscale Eulerian model, using Cumulus parametrisations and
taking into account surface physics, planetary boundary layer physics and atmospheric
radiation physics. Since separate WRF simulations are performed for the EURAD-IM
input, EURAD-IM predictions of the concentrations of atmospheric pollutants, e.g.
aerosols, have no impact on the meteorological fields predicted by the WRF model.
As in the EURAD-IM, a one-way nesting technique is used in the WRF model, with
the same nesting sequence as described in Section 5.1.
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5.3. Emission data

As mentioned in the introduction, emissions are crucial input data for atmospheric
chemistry transport models. In the simulations of this work (Chapters 6 and 7), both
anthropogenic and biogenic emissions are taken into account, which are calculated
separately in the model. Both have a crucial influence on the concentrations of
trace gases and aerosols. Biogenic sources emit mainly non-methane volatile organic
compounds (NMVOCs). However, the observation dataset used in the studies of this
work does not include concentrations of NMVOCs. Therefore, no reliable corrections
for biogenic emissions can be expected in these studies in contrast to anthropogenic
emissions. For this reason, this section mainly focuses on the anthropogenic emission
data used in the simulations (Chapters 6 and 7). In the following, the annual emission
totals, spatial distributions, chemical compositions, height profiles and temporal
distributions of the emissions of the Gridding Nomenclature for Reporting (GNFR)
sectors (Granier et al., 2019) are discussed.

Anthropogenic emissions

In EURAD-IM, the calculation of anthropogenic emissions is based on national emis-
sion totals. They are reported for many different trace gases and aerosols that are
harmful to the climate, the environment and to human health. For the input of
the EURAD-IM, the emission data for five trace gas species (CO, NH3, NO,, SO,,
NMVOC) and two aerosol species (PM;g, PMy 5) are used.

The emissions are broken down into 12 GNFR sectors, listed in Table 5.1. A list of
the processes included in each GNFR sector can be found, for example, in Schneider
et al. (2016). The public power sector contains all processes of power plants for public
electricity and heat production. The industry sector includes all processes that cause
emissions in the manufacturing industry (not only stationary combustion), e.g. in the
steel industry, the chemical industry and the food industry. The main emission sources
of the sector of other stationary combustion are residential combustion plants. The
fugitives sector includes emission sources related to coal mining, fuel exploitation and
solid fuel transformation. The solvents sector contains coating applications, printing
and the use of degreasing agents, chemical products and fungicides. The road transport
sector includes the combustion of fuels by passenger cars, light and heavy duty vehicles
as well as other processes that cause emissions, such as road abrasion, brake and tyre
wear and evaporation of gasoline. The main emission sources of the shipping sector
and the aviation sector are ships and aircraft. The off-road traffic sector includes
off-road vehicles used in agriculture, forestry, manufacturing industries or gardening.
Major emission sources of the waste sector are plants for the incineration of industrial,
clinical and municipal waste. The livestock agriculture sector (also referred to as
agriculture I sector) includes emissions related to livestock farming, e.g. dairy cows
and pigs. The Other agriculture sector (also referred to as non-livestock agriculture
or agriculture II sector) includes agricultural emission sources that are not related
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to livestock farming, but e.g. to farm-level and off-farm transport of agricultural
products.

Table 5.1.: GNFR sectors in the emission inventory used as an input of the EURAD-IM
(Granier et al., 2019).

GNFR category | Category name

A Public power

Industry

Other stationary combustion

Fugitives

Solvents

Road transport

Shipping

Aviation
Off-road traffic
Waste

Livestock agriculture (Agriculture I)

ElR|l— = EBQHE0 QW

Other (non-livestock) agriculture (Agriculture II)

For the studies that are discussed in this thesis, gridded data for Germany and
Europe are necessary. This applies to the NRW domain as well as to the mother
domains which are necessary for the boundary conditions. For Germany, the Federal
Environmental Agency (UBA) provides emission data in the resolution of each model
domain. The data are processed by the GRETA tool (Schneider et al., 2016). This tool
extracts the total German emissions from the Central System Emissions of Germany
(ZSE). The emission totals are spatially distributed to point sources (mainly power
plants and industrial factories), line sources (especially for traffic emissions) and area
sources. A detailed description can be found in Schneider et al. (2016). The emission
data for other European countries are based on the inventory of the Copernicus
Atmosphere Monitoring Service (CAMS) (Kuenen et al., 2018). The CAMS dataset
has a resolution of 0.05° x 0.1° ~6 km x 6 km in Central Europe. The national emission
sums of European countries, reported to the Centre on Emission Inventories and
Projections (CEIP), are used. Further information about the CAMS dataset can be
found in Kuenen et al. (2018). To apply this data in the EURAD-IM, the EURAD
emission module (EEM) preprocessor (Memmesheimer et al., 1991) projects the CAMS
emissions onto the NRW model grid, using land use and land cover information of
Open Street Map (OpenStreetMap, 2023) and CORINE Land Cover 2012 (Copernicus,
2023a). These data are used for the parts of Belgium and the Netherlands, which are
contained in the NRW domain (Fig. 5.1).
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CO, total: 617678 t NOy, total: 270285 t NMVOC, total: 152065 t

SOy, total: 95898 t NH3s, total: 66775 t
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Figure 5.2.: Annual total emissions per species in the NRW domain and their distri-
bution among the GNFR sectors. NMVOC denotes non-methane volatile
organic compounds.

Fig. 5.2 gives an overview of the total annual emissions of the species for each GNFR
sector in the NRW domain, provided by the emission inventory. Approximately, one
third of the NO, emissions originate from road transport and roughly one third from
the public power sector. In contrast, the industry sector is the dominant anthro-
pogenic source of CO and PM;y within the NRW domain. More than 90 % of the
SO, emissions are from the industry and public power sector. The most important
anthropogenic source of non-methane volatile organic compounds NMVOCs is the sol-
vents sector. About 90 % of the NH3 emissions are attributed to agricultural activities.
The strongest PMs 5 emitters are industry and road transport. Thus, power plants,
industrial factories, road vehicles and agriculture are the main anthropogenic polluters
in NRW according to the emission data.

The chemical composition of the emissions from the public power, industry, road

transport and both agriculture sectors is depicted in Fig. 5.3. The average chemical
composition of the inventory emissions in the NRW domain for the year 2016 is
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considered. Note that the chemical composition is specific in each grid cell and thus
may differ from the average values shown in Fig. 5.3. The sectors differ significantly in
the ratio of SO,/NO,. Compared to the road transport (<0.01) and the agricultural
sectors (0), the industry (1.02) and public power (0.41) sectors have a high SO,/NO,
ratio. The sectors also show large differences in the CO/NO,, ratio. The ratio is
highest in the industry sector (6.1), followed by the road transport sector (2.0) and
the public power sector (0.19). The two agricultural sectors, on the other hand, are
characterised by a high NHj fraction in the total emissions of the inventory. The NHj
fraction is 74% in the livestock agriculture sector and 62% in the agriculture II sector.
The livestock agriculture and non-livestock agriculture sectors differ mainly in the
fractions of NO, (0.3% vs. 20%) and non-methane volatile organic compounds (34%
vs. 2%).

Public power Industry Road transport

»PON

co

NO,
NMVOC
SOy
NHs
PM1,
PM3; 5

Livestock agriculture Agriculture Il

6

Figure 5.3.: Chemical composition of the emissions from the public power, industry,
road transport and both agriculture sectors. The average chemical com-
position of the inventory emissions in the NRW domain for the year 2016
based on the inventory of the Copernicus Atmosphere Monitoring Service
(CAMS) (Kuenen et al., 2018) and the GRETA tool (Schneider et al.,
2016) of the Federal Environmental Agency (UBA) is depicted for each
sector. Note that the chemical composition in the emission data is specific
in each grid cell and thus may differ from the average values shown in
this figure.
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Figure 5.4.: Spatial distribution of yearly emissions in the NRW domain, depicted in
a logarithmic scale. Left: NO, emissions of the industry sector. Centre:
NO, emissions of the road transport sector. Right: NHj3 emissions of the
non-livestock agriculture sector.

Fig. 5.4 shows exemplarily the spatial distribution of the industrial, road traffic and
non-livestock agriculture emissions. The industrial emission sources are mostly located
along the Rhine river Cologne and Diisseldorf, as well as in the area west of Dortmund.
A characteristic feature of industrial are the point sources with large emissions, primar-
ily located in the Ruhr area. A large part of the road transport emissions originates
from the motorways and the national highways. They are distributed all over the
NRW domain, but hotspots can be seen in the region between the cities of Cologne,
Diisseldorf and Dortmund. The emission sources of the non-livestock agriculture are
located in non-inhabited areas. Strong agricultural emissions occur in the north of the
NRW domain.

For each sector, a fixed height profile of emissions is assumed in the emission data.
The same distributions as in the CAMS air quality forecasts (Collin, 2020) are used.
The effective emission heights are considered taking into account plume rise and
buoyancy effects described by Briggs (1984). In the public power and the industry
sector, different emission height profiles are assumed for point and area sources. The
relative weights of emissions per model layer in the EURAD-IM are depicted in Fig. 5.5.
Most sectors, such as the road transport sector, only emit below 20 m height and thus
in the two lowest model layers, respectively. The public power sector emits highest
up to ~1000 m, followed by the waste, the industry and the shipping sector. The
differences between the distributions for the public power, the waste and the industry
sector result mainly from the statistical distributions of the stack heights of power
plants, waste incineration plants and industrial facilities. The emission height profile
for the shipping sector differs from that of other sectors, e.g. the road transport sector,
due to the exhaust height of large ships.
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Figure 5.5.: Distributions of the effective emission heights of the sectors. The x values
indicate the relative weights of the emissions in the respective model layers.
Note that the public power and the industry sector contain area and point
sources to which different emission height profiles are assigned.

The species considered in the emission data for the anthropogenic sectors differ from
the emitted species defined in the EURAD-IM. For this reason, the emissions of NO,,
NMVOC, SO,, PM;g and PMs 5 have to be distributed among the model species. For
this, the same branching factors are used as in the CAMS forecasts (Collin, 2020).
They are fixed for each emission sector, i.e. they apply to all grid cells and do not
depend on the season or time of day. The NO, emissions consist of NO and NO,. The
ratio of NOy/NO, is 20% for the road transport sector, 10% for the aviation sector,
10% for the off-road traffic sector and 5% for all other sectors. For the SO, emissions,
it is assumed that these consist of 4% H5SO4 and 96% SO, in all sectors. The NMVOC
emissions of the GNFR sectors are distributed among 25 NMVOC groups defined
by the Global Emissions Initiative (GEIA), described in Huang et al. (2017). Fixed
branching factors for each sector are used. The emissions of the GEIA NMVOC
groups are assigned to the 18 emitted NMVOC species defined in the EURAD-IM (see
e.g. Fig.3.3). Both the PM;y and PM, 5 emissions are distributed among five aerosol
species. These include elemental carbon, organic carbon, sulphate, sodium and other
minerals, each with a diameter of 2.5-10 pm (PM;) or <2.5 pm (PMs5), respectively.

The EURAD-IM model requires hourly emission data. In order to calculate these,
annual, weekly and daily emission profiles are used, based on the description of Denier
van der Gon et al. (2011), with a modification made to match the GNFR categories.
These distributions are discussed in the following.
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Figure 5.6.: Monthly emission profiles of the GNFR sectors based on the description of
Denier van der Gon et al. (2011). These are used to calculate the monthly
emissions from the annual emissions. The emissions are normalised to the
average value per month.

The monthly emission profiles are used to calculate the monthly emissions from
the annual emissions. The distributions normalised to the average value per month
are shown in Fig.5.6. Most GNFR sectors have normalised values between 0.8 and
1.2 for all months, which means that the seasonal variation in their emissions is
small. The agricultural sectors have the strongest variations, with low emissions in
January, November and December (normalised value of 0.5) and a peak in March (2.3).
This reflects the variations in agricultural activity. The sector of other stationary
combustion shows a large difference between the emissions in summer and winter
months with a maximum in January and December (normalised value of 1.7) and a
minimum in July (0.2). This is due to the seasonal heating requirements.

The weekly emission profiles are used to calculate the daily emissions from the
monthly emissions, taking into account differences between the days of the week. The
distributions normalised to the average value per day are shown in Fig.5.7. Most
sectors are assumed to have the same emissions on all days of the week. Only the
solvent, the road transport, the other stationary combustion and the public power
sectors deviate from a flat distribution with lower emissions on the weekends. This is
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due to less work-related emissions on weekend days.
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Figure 5.7.: Weekly emission profiles of the GNFR sectors based on the description of
Denier van der Gon et al. (2011). These are used to calculate the daily
emissions from the monthly emissions, taking into account differences
between the days of the week. The emissions are normalised to the average
value per day.

The diurnal emission profiles are used to calculate the hourly emissions from the
daily emissions. The distributions normalised to the average value per hour are shown
in see Fig.5.8. The fugitives, the shipping, the aviation, the off-road traffic and the
waste sector have flat diurnal profiles. The reason for this is a lack of information on
the real diurnal profiles of these sectors. The road transport sector is characterised by
peaks in the rush hours around 8 h and 17 h (normalised values of 1.9 and 2.1) and
negligible emissions between 1 h and 5 h. The sector of other stationary combustion
shows a similar distribution with maximum emissions around 8 h (normalised value
of 1.5). This profile can be explained by reduction of heating at night. Emissions
from solvents and agriculture are also assumed to be significantly higher during the
day than at night, according to typical working hours. In comparison, the diurnal
profiles of the public power and the industry sector are less pronounced than for the
previously mentioned sectors. This is due to night shifts in industrial companies and
the resulting electricity demand during the night.

Note that the sector specific diurnal emission profiles are static in the data assimilation,
i.e. they can not be changed by the sector specific optimisation of emissions described
in Chapter 4. In contrast, the monthly (Fig.5.6) and weekly (Fig.5.7) emission profiles
as well as the spatial distribution of emissions (Fig.5.4) can be corrected for each
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GNFR sector with this approach.
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Figure 5.8.: Diurnal emission profiles of the GNFR sectors based on the description of
Denier van der Gon et al. (2011). These are used to calculate the hourly
emissions from the daily emissions. The emissions are normalised to the
average value per hour.

Emissions from natural sources

Biogenic sources are essential for the understanding of atmospheric chemistry, since
they are strong emitters of NMVOCs, which are crucial for the O3 chemistry. In the
EURAD-IM, biogenic emissions are calculated using the Model of Emissions of Gases
and Aerosols from Nature (MEGAN) (Guenther et al., 2012). MEGAN includes 147
compounds - CO and 146 NMVOCs - and estimates the emission rates on the basis of
the leaf area index, solar radiation, soil moisture, temperature and CO, concentration.
Since biogenic emissions are strongly dependent on these parameters, no fixed monthly
or diurnal emission profiles are applied in MEGAN. The emissions are determined
using activity factors depending on environmental parameters, and emission factors
defined for 16 different vegetation types.

Following a MEGAN simulation for the year 2000 discussed in Guenther et al. (2012),
~3% of the total global CO emissions originate from biogenic sources. In contrast, the
major part of the global NMVOCs emissions originates from biogenic sources. Isoprene
is estimated to contribute with ~50% to the global biogenic NMVOC emissions. The
contribution of monoterpenes such as a-pinene, 5-pinene and limonene to the global
NMVOC emissions is ~15% in the simulation for the year 2000 (Guenther et al., 2012).
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Other NMVOC species with high global emissions included in MEGAN are methanol,
acetone, ethanol, acetaldehyde, ethene and propene. More information on MEGAN
can be found in Kaiser et al. (2012).

In addition to biogenic emissions, emissions from wildfires, soils and sea salt are
calculated in the EURAD-IM. These are not described further here because they are
zero or negligible in the NRW domain.

In the studies of this work (Chapters 6 and 7), a biogenic emission sector is consid-
ered in addition to 12 anthropogenic GNFR sectors, which in principle allows for an
optimisation of biogenic emissions. However, no reliable corrections can be expected
for biogenic emissions, as the observational data used in the studies do not include
NMVOC concentrations.

5.4. Ground observations in North Rhine-Westphalia

In the studies of this work (Chapters 6 and 7), ground station observations are
assimilated. For this, validated hourly observational data for the CAMS forecasts
(Collin, 2020) are used. The data were extracted from the European Environment
Information and Observation Network (Eionet) (Copernicus, 2023b) of the European
Environment Agency (EEA) and from the European Monitoring and Evaluation
Programme (EMEP) (Torseth et al., 2012). Most stations in the NRW domain
are located in the German federal states North Rhine-Westphalia and Rhineland-
Palatinate, where the environmental agencies provide the data of their operational
measurements.

Observation error covariance matrix

For the calculation of the costs J and its gradient, an observation error covariance
matrix R is defined (Eq.4.1). R has the dimension of N x N, where N is the number
of observations in the assimilation window. In the case of ground observations, R is a
diagonal matrix. The diagonal elements (R;;) are given by the error variances of the
observations. They are calculated using the following formula:

Rii = Ui2,meas + Ui2,repr . (51)
Oimeas denotes the measurement error and o ., the representativeness error of the
observation 1.

The measurement error o,,.qs is related to the accuracy of the measured concentra-
tions, which depends on the measurement instrument. In the case of the observational
dataset used in the studies of this work, no information is available on the measure-
ment uncertainties of individual ground stations. Consequently, possible differences
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in terms of measurement quality can not be taken into account in the assimilation

of observations. The estimation of the measurement errors (0,,eqs) in the studies of

this work is based on the quality assessment of observational data by Mohnen (1999).

The estimated values of 7,,..s depend on the species and the measured concentrations
o . . abs, min : rel

(y?). For each species, a minimum (opmeas ) and a relative (67¢) measurement error

are defined so that the formula for 0,,.,, is

Omeas = maX(O—gr?eSz;gmn7 arel x yO) . (52)

. bs. mi . .
The species-dependent values for opege " and o7 are given in Table 5.2.

Table 5.2.: Species-dependent values for the minimum absolute error (a%ﬁ&?m) and

the relative error (o7¢) used for the calculation of the measurement error
(Omeas) Of observations (Eq.5.2), following Mohnen (1999). In this table,
only the species included in the observational dataset for the studies in
this work are listed.

Species | gl min orel
NO, 1.5 ppbV | 15%
O3 1.5 ppbV | 10%

SO, 1.5 ppbV | 15 %
CO 30 ppbV | 15%
PMyy, |5pgm™3 | 15%
PMys |3 pgm™2 | 15%

The representativeness error o, is related to the deviation of the average concen-
tration in the grid cell of the observation from the concentration at the location of
the measurement. This deviation is relevant for the comparison of simulated and
observed concentrations. oy, depends on the observed species, the location of the
ground observation station as well as on the resolution of the model grid (Az). Each
ground observation station is assigned a location type such as "urban” or "rural”,
which characterises the location of the station. For example, "urban” locations are
characterised by a strong impact of local emissions (e.g. from traffic or industry) on
the pollutant concentrations in contrast to "rural” locations. For each location type, a
representativeness length (L,.,,) is specified, which can be interpreted as an influence
radius with respect to pollutant concentrations. In addition, a species-dependent
absolute representativeness error (o@s.) is specified. o is multiplied by the square
root of the ratio between the grid resolution (Az) and the representativeness length
(Lyepr) to calculate the representativeness error (o,.,,) following Elbern et al. (2007):

Az

Lrepr

x gabs (5.3)

repr

Orepr =

39



5. Model input

Table 5.3.: Values for the representativeness length (L) depending on the location
type of the observation station and for the absolute error (o) depending
on the species, both according to Elbern et al. (2007). Both quantities are
used to calculate the representativeness error of the observations (Eq. 5.3).
In this table, only the species included in the observational dataset for the
studies in this work are listed.

Station type | Lyepr Species | o@bs

Remote 20 km NO, 1.8 ppbV
Rural 10 km O3 2.0 ppbV
Suburban 4 km SO, 1.5 ppbV
Urban 2 km CcO 30 ppbV
Traffic 1 km PMig 3 pugm3
Unknown 3 km PMys | 2 pgm™3

In the studies of this work, the values for o and L, specified in Elbern et al.

(2007) are used, which are listed in Table 5.3.

Locations of the ground observation stations

In total, the NRW domain contains 20 NO,, 17 O3, 7 SO, one CO, 15 PM;y and 6
PM, 5 observation stations used for the data assimilation in the studies of this work
(also referred to as assimilation stations). The locations of the assimilation stations
are shown in Fig.5.9. There are also observational data of so-called validation stations
(not depicted in Fig.5.9) which are not assimilated in the simulations. They are used
for the evaluation of the data assimilation results (Chapter 7). In Table 5.4, the
number of assimilation and validation stations per location type are indicated for each
observed species. NOy, O3 and PM;, are observed by at least 25 stations (Fig. 5.9 and
Table 5.4), whereas significantly fewer ground observation stations measure SOy and
PMs 5 concentrations. Concentrations of CO, an important component of industrial
emissions, are measured by only one station in the northwest of the domain. Most of
the stations, especially those deploying NOy, O3 and PM;q measurements, are located
in the Rhineland near the cities Diisseldorf and Cologne or in the Ruhr area.
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Figure 5.9.: Ground observation stations in the NRW domain used for the data assim-
ilation in the studies of this work (Chapters 6 and 7). The observational
dataset for the studies also contains data from stations that are not used
for data assimilation, but for the validation of the data assimilation results.
The locations of these stations are not shown in this figure.

Concerning the location type (Table 5.4), most of the NOg, O3 and PM observations are
situated in urban and suburban areas. This corresponds with a low representativeness
length of 2 km and 4 km, respectively. Nevertheless, with a resolution of 1 km,
the representativeness errors are relatively small: e.g. 0,cp =1 ppbV in urban and
Orepr =0.7 ppbV in suburban locations for NOy and smaller for the other observed
species. The high representativeness of observations is an important advantage of the
high horizontal model resolution selected in the studies of this work (Chapters 6 and 7).
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Table 5.4.: Number of ground observation stations per location type that are used
for assimilation (“assim.”) and validation ("valid.”). The stations are
assigned the location types urban, suburban, rural, rural-regional and
rural-nearcity. The location type is related to the representativeness
error of the observations. For example, observations of a station in the
"urban” category are assumed to have a higher representativeness error
than observations of a station in the "rural” category (Eq.5.3 and Table

5.3).
Location / type NOs | O3 | SO, | CO | PM; | PMy5
Assimilation total 20 |17 | 7 1 15 6
Urban (assim.) 8 8 1 1 5 3
Suburban (assim.) 7 5 2 - 6 2
Rural (assim.) 1 1 2 - 1 -
Rural-regional (assim.) | 2 1 - - 1 -
Rural-nearcity (assim.) | 2 2 2 - 2 1
Validation total 10 | 10 1 - 11 6
Urban (valid.) 3 - - 2
Suburban (valid.) 4 3 1 - 4
Rural (valid.) 2 - - - -
Rural-regional (valid.) - - - - - -
Rural-nearcity (valid.) 1 1 - - 1 -

Availability of hourly observational data

For most of the stations in the NRW domain, the hourly observational dataset is not
complete. The observed concentration of a chemical species at a certain station at a
certain hour is missing if no measurements were performed at that time or if the data
was rejected according to quality management criteria. The percentage of available
data strongly varies between the ground stations. Table 5.5 contains statistics about
the data availability between 10 March 2016, 0 UTC and 24 March 2016, 0 UTC. This
period corresponds with the simulation period of the study discussed in Chapter 7.
The average percentage of available data is higher than 85 % for NO,, Oz, PM;y and
PM, 5 and no station is below 50 %. The data availability is significantly worse for SO,
with a mean of 50.7% and two stations below 10 %. Furthermore, no CO observations
are available.
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5.4. Ground observations in North Rhine-Westphalia

Table 5.5.: Statistics about the availability of the hourly observational data from the

ground stations between 10 March 2016, 0 UTC and 24 March 2016, 0 UTC.
An availability of 100% means that for each hour in this period an observed
concentration of the respective species is available.

NO, O3 SO, | CO | PMg | PMy;5

Mean of stations 86.1% | 86.1% | 50.7% | 0% | 97.7% | 89.5%

Standard deviation of stations | 5.9% | 45% | 27.6% | - | 29% | 14.3%
Median of stations 86.8% | 86% |63.1% | - |988% | 96%
Maximum of stations 100% | 96.1% | 81.5% | - | 100% | 100 %

Minimum of stations 67.6% | 742% | 5.9% - 189.9% | 52.4%

Conclusions with regard to sector specific emission optimisation

With regard to the sector specific emission optimisation (Section 4), the following
aspects of the observational dataset are of particular importance:

Many Oz observations are available. These can be used by the data assimilation
system to improve the O3 concentrations in the model. Due to the chemical
relationship between O3, NO, and NO, accurate O3z concentrations in the model
are essential for reliable corrections of NO, emissions.

Since road transport mainly contributes to the NO, emissions in NRW (Sec-
tion 5.3), observed NO, concentrations are strongly related to emissions of this
sector. The expectation is that the good observational situation of NO, leads to
reliable road transport emission corrections.

Many ground stations observe aerosol concentrations. They are related to
emissions of several emission sectors, where the industry sector is the most
important emitter (Section 5.3). Thus, the aerosol observations can potentially
contribute to emission corrections of several sectors.

The relatively poor observational situation of SO, with only 7 assimilation
stations and a large amount of missing data (Table 5.5) may limit the reliability
of emission corrections for the sectors public power, industry and other stationary
combustion.

CO observations would deliver additional information about the industry sector,
the strongest CO emitter, but are not available.

No observations are available for non-methane volatile organic compounds emit-
ted mainly from biogenic sources and solvents.

NHj concentrations are not observed, which may limit the reliability of emission
corrections for the two agricultural sectors emitting large amounts of NHj.
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6. Case studies based on identical
twin experiments

In the studies presented in this chapter, the sector specific emission optimisation
is applied to artificial emission scenarios with the assumption of zero model and
observation errors. The purpose of this study is to investigate the potential and limits
of the sector specific emission optimisation in distinguishing between emissions of
different sectors under idealised, but realistic, conditions. For this, so-called identical
twin experiments are performed, consisting of nature runs and data assimilation runs.
Nature runs are simple forward runs of a model in which model parameters and/or
initial values are perturbed. In the study of this chapter, the inventory emissions of
different sectors are perturbed. For the investigation of the sector specific emission
optimisation, synthetic observations are extracted from the nature runs. For both
the nature runs and 4D-Var data assimilation runs, the EURAD-IM forward model
described in Section 3.1 and the input fields described in Chapter 5 are used, except
for the emission perturbation in the nature runs. The aim of the assimilation is
to reproduce the perturbed nature run’s emissions using the sector specific 4D-Var
optimisation (Chapter 4). After a description of the experimental setup (Section 6.1),
the resulting emission correction factors are discussed (Section 6.2). Moreover, the
impact of the anisotropic diffusion operator for road transport emission corrections is
investigated (Section 6.3).

6.1. Experimental setup

Selection of the region

The simulations are performed for the North Rhine-Westphalian domain with a
horizontal resolution of 1 km (Section 5.1). The region was selected because of the
high emissions from the road transport sector in large cities as well as on motorways,
and because of the high industrial emissions (Fig. 5.4). Furthermore, agricultural areas
are included with significant emissions (Fig. 5.2 and 5.6). Note that it is important
for the investigation of the sector specific optimisation of emissions that the domain
covers high emissions from several sectors.
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6.1. Experimental setup

2m Temperature (C) 12.03.2016 12 UTC (F+12) 2m Temperature (C) 20.03.2016 12 UTC (F+12)
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Figure 6.1.: Meteorological conditions of the simulation periods, shown for 12 March
2016 (left) and 20 March 2016 (right) as examples. The colour scale
indicates the temperature 2 m above ground. Source: http://www.eurad.
uni-koeln.de/.

Simulation period and meteorological situation

A simulation period from 10 March to 16 March 2016 is selected. For each of the seven
days, consecutive nature runs and data assimilation cycles are performed with an
assimilation window of 24 h. The meteorological conditions are suitable for optimising
emission correction factors as discussed in the following. Furthermore, the year 2016
was predetermined for this study because of its involvement in a larger project. As the
simulation period of the study discussed in Chapter 7 is from 10 to 23 March 2016,
the meteorological situation from 10 to 23 March 2016 is described here. In Fig. 6.1,
the 2 m temperature, the sealevel pressure and the wind fields are shown for 12 March
and 20 March 2016, 12 UTC, as these days are representative for the whole period. On
12 March 2016, the meteorological situation is characterised by a stable anticyclone
covering large parts of central Europe and Scandinavia, moving westward in the
following days. This is accompanied with easterly winds and no precipitation in the
model region. The meteorological situation on 12 March is representative for the
period from 10 March to 17 March 2016. In the following days, the meteorological
situation changed with a cyclone over Scandinavia on 20 March 2016. At this time,
the anticyclone mentioned before was located over the British islands. This led to
NNW wind directions and to moderate local precipitation (>1 mm per day) in the
NRW domain from 20 March to 23 March 2016. The main reasons for the selection of
the simulation period are the following. Firstly, the average wind speed in the domain
at a height of 10 m did not exceed 6 m/s during the simulation period, except on
16 March. These relatively low wind speeds limit the transport of the gradient of
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6. Case studies based on identical twin experiments

the sector specific emission correction factors (explanation in Section 4.1) outside the
domain. This reduces the loss of information due to transport. The second reason is
the low precipitation in the whole domain, especially between 10 March and 19 March
(< 1 mm per day). Due to this, the wet deposition of aerosols, which is a non-linear
effect and may complicate the interpretation of the simulation results, played a minor
role.

Emission scenarios

Three identical twin experiments with different emission scenarios are discussed in
this chapter. In Fig. 6.2, the total emissions of the species and GNFR sectors in the
NRW domain for the simulation period are depicted for the emission inventory and
for the three experiments. The experiments are described below:

1. In experiment I, the emissions of the industry sector are increased by a factor of
2, whereas the road transport emissions are decreased by a factor of 0.5 compared
to the emission inventory. The road transport sector is characterised by high
NO, emissions, while the industry sector is the main emitter of SO,, CO and
PMj in the NRW domain (Fig.6.2).

2. In experiment II, the non-livestock agricultural emissions are increased by a
factor of 2, whereas the road transport emissions are decreased by a factor of
0.5 compared to the emission inventory. The non-livestock agriculture sector is
characterised by large emissions in March (Fig.5.6). They contain a significant
amount of NO, and nearly half of the NHj3 emissions in the domain (Fig.6.2).
It is important to note that NHs is not directly observed, but takes part in the
formation of secondary aerosols. Thus, NH3 emissions impact the concentrations
of observed species.

3. In experiment III, the non-livestock agricultural emissions are increased by a
factor of 1.3 and the road transport emissions are decreased by a factor of
0.5 compared to the emission inventory. With this scenario, the sensitivity of
the sector specific emission correction to moderate emission perturbations is
investigated.

The mentioned emission perturbations are applied in the nature runs of the respective
experiments on all seven days of the simulation period.
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Figure 6.2.: Bar charts of the NO,, SO,, CO, NH;3, PM;q and PM; 5 emissions during
the period from 10 March to 16 March 2016 in the NRW domain. The
emissions of the industry, road transport ("road tr.”) and non-livestock
agricultural ("agric. I1”) sectors as well as the emission sum of the other
anthropogenic GNFR sectors (Table 5.1) and the emission sum of all
GNEFR sectors ("TOT?”) are shown. For each sector and sector group, the
inventory emissions are depicted as first bar, the perturbated emissions in
experiment I as second bar, the perturbated emissions in experiment II as

third bar and the perturbated emissions in experiment III as fourth bar.

Configuration of the model and data assimilation system

The data assimilation system is configured such that emission correction factors are
determined for each GNFR sector (Table 5.1) and for a sector of natural emissions. Both
the full correlation between the emission correction factors of all species (Section 4.2)
and the anisotropic diffusion of road transport emission correction factors (Section 4.3)
are applied in the experiments, unless otherwise stated. The emission errors in the
emission error covariance matrix K (Eq.3.10) are set to ¥ = 8.3. The value of Xg
is the same for all trace gas and aerosol species in order to achieve equal emission
correction factors for all species within the sectors and grid cells. The maximum
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6. Case studies based on identical twin experiments

number of iterations per data assimilation cycle is set to 15. Besides the aspects
mentioned in this paragraph, the configuration of the model and data assimilation
system follows the descriptions in the previous chapters.

Observations and observation operator

The locations of the synthetic observations correspond to those of the assimilation
stations shown in Fig.5.9. From the nature runs, hourly synthetic observational data
are extracted for each station. Note that this represents an idealised observation
situation. For real observations, the availability of hourly observation data is less than
100% (Table 5.5). The observation operator H(t) interpolates the model concentrations
to the location of the ground observation stations.

6.2. Emission corrections and cost reduction

The resulting emission correction factors for all experiments are shown in two types of
figures. In Fig. 6.3, the time evolution of the spatially averaged emission correction
factors during the simulation period is depicted for each GNFR sector (Table 5.1).
The spatial distributions of the emission correction factors for the road transport,
industry, non-livestock agriculture, off-road, aviation and fugitives sectors averaged
over the simulation period are shown in Fig. 6.4, 6.5 and 6.6. Due to the full correlation
of species, the emission correction factors apply to all species. In the following, the
behaviour of the emission corrections is discussed for each GNFR sector.

Considering the road transport sector, it is noticeable that in all experiments the
emissions are decreased, which is in accordance with the emission perturbation of this
sector. However, on average the corrections are significantly weaker than the emission
perturbation factor of 0.5 in the nature runs. As indicated in Fig. 6.3, the minimum
correction factor is 0.65 on 13 March 2016 in experiment III. The correction factors
on the other days and for the other experiments are higher, with up to 0.78. One
reason for average emission correction factors significantly above 0.5 is the observation
situation: As indicated by the spatial distribution of the road transport sector, the
corrections are small in parts of the southeast of the domain where no observations
are available (Fig.5.9). In addition, emission perturbations of other sectors partially
affect the emission correction of the road transport sector, especially in experiment II.
Fig. 6.5 shows that the strong positive emission perturbation of the agriculture sector
can affect the corrections of the road transport emissions. For example, in areas north
of Dortmund and east of Cologne, positive emission corrections for the road transport
sector are determined.
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Figure 6.3.: Spatially averaged emission correction factors in experiment I, experiment
IT and experiment III for each day of the simulation period. The true
emission correction factors according to the emission perturbation in the
nature runs in experiment I are 2 for the industry, 0.5 for the road transport
and 1 for all other sectors. The true correction factors in experiment II
are 2 for the non-livestock agriculture, 0.5 for the road transport and 1
for all other sectors. The true correction factors in experiment III are 1.3
for the non-livestock agriculture, 0.5 for the road transport and 1 for all

other sectors.
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6. Case studies based on identical twin experiments

Figure 6.4.:

Figure 6.5.: Spatial distribution of emission correction factors averaged over the sim-
ulation period in experiment II. The true emission correction factors
according to the perturbation in the nature runs in experiment II are 2
for the non-livestock agriculture, 0.5 for the road transport and 1 for all
other sectors. Areas with white colour mean either an emission correction
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Figure 6.6.: Spatial distribution of emission correction factors averaged over the sim-
ulation period in experiment III. The true emission correction factors
according to the perturbation in the nature runs in experiment III are 1.3
for the non-livestock agriculture, 0.5 for the road transport and 1 for all
other sectors. Areas with white colour mean either an emission correction
factor of 1 or no emissions.

The negative emission perturbations of the road transport sector also affect the emis-
sion correction of sectors with low NO, emissions. Fig.6.4, 6.5 and 6.6 show that
this applies to the off-road traffic, aviation and fugitives sectors. The reason for
this is that sources of these sectors are located near roads where the emissions are
reduced due to the perturbation. This reduction is wrongly attributed also to the
off-road traffic, aviation and fugitives sectors by the data assimilation system. The
aviation sector is the most affected sector due to the spatial proximity of important
airports (Cologne-Bonn and Diisseldorf) with large local NO, emissions and strong
road transport emissions. As indicated in Fig. 6.3, in all experiments, the average
correction factor for the aviation sector is below 0.8 from 14 March to 16 March.
In the case of the fugitives sector, the emission corrections are affected by reduced
aerosol emissions of the road transport sector. In an area north of Diisseldorf (Fig. 6.4,
6.5 and 6.6), this leads to negative emission corrections of this sector in all experiments.

With regard to the industry sector, Fig.6.4 and 6.3 show that the data assimila-
tion system is able to reflect perturbations of industrial emissions. In experiment I,
emission correction factors above 1 for the industry sector are determined in the area
between the cities Cologne, Diisseldorf and Dortmund. In this area, also strong road
transport emissions occur (Fig.5.4) which are reduced in experiment I. This means
that the model is able to distinguish between emission perturbations of the industry
and the road transport sector. This is due to the ability of the model to exploit the
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6. Case studies based on identical twin experiments

different chemical compositions of the sectors. The industry sector is the dominant
SO, and aerosol emitter in the domain, whereas the road transport emissions contain
less aerosols and nearly no SO,. As a consequence, observational increments (Eq.2.1)
of SOy, PMyg and PMs 5 are correctly attributed to the industry sector. However, the
average emission correction factor for the industry sector is only 1.06 on 10 March
(Fig. 6.3), which is small compared to the (true) perturbation factor of 2 for this sector.
It is increased successively by the data assimilation system to reach the maximum
of 1.23 on 15 March 2016. The slow increase of the emission correction factors for
the industry sector can be explained by the relatively small sensitivity of the costs
(Eq.4.1) to SO, and aerosol emissions compared to NO,, emissions. Since the emission
correction factors for the industry sector are mainly related to the relatively small
observational increments (Eq.2.1) of SOy, PMjo and PMs 5, the emission correction
factors for this sector are only increased slowly. In comparison, the emission correction
factors for the road transport sector are mainly related to observational increments of
NO, and Oz, which are very sensitive to NO, emissions. This leads to strong emission
corrections for the road transport sector already on 10 March.

Perturbations of non-livestock agricultural emissions can affect corrections for the
industry sector. In experiment II with a perturbation factor of 2 for the non-livestock
agricultural sector, emission correction factors of up to 1.06 on average are determined
for the industry sector. The reasons for this are the NO, emissions of the non-livestock
agriculture sector (Fig.5.3) and the relatively flat diurnal emission cycle of both sectors
(Fig.5.8).

The data assimilation system is also able to reflect perturbations of the non-livestock
agriculture sector. In experiment II with an emission perturbation factor of 2 for
the non-livestock agriculture sector, the agricultural emissions are increased by the
optimisation. This applies also to areas in the proximity to large cities like Cologne
and Diisseldorf with high emissions of other sectors (Fig.6.5). In experiment III with
a perturbation factor of only 1.3 for the non-livestock sector, emission increases on
spatial average are determined for this sector. A maximum emission correction factor
of 1.08 is reached on 15 March (Fig.6.3). Like for the industrial emission corrections
in experiment I, the agriculture emission corrections in experiments II and III are
successively increased during the simulation period (Fig.6.3). In experiment II, a
maximum of 1.3 is reached, whereas the highest value in experiment III is 1.08. The
main reason for the slow increase of the emission corrections for the non-livestock
agriculture sector is the relatively low sensitivity of the costs (Eq.4.1) to NH3 emissions
caused by the agricultural sectors.

The ability of the model to separate between the road transport and the non-livestock
agriculture sector has two main reasons. Firstly, the large NH3 emissions of the non-
livestock agriculture sector cause increased aerosol concentrations, which are indirectly
observed as enhanced PM;y, and PMs 5 concentrations. The adjoint model is able to
project the resulting observation - model discrepancy to the main cause, which is the
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NHj3 emissions. Furthermore, the difference between the diurnal emission profile of
the agriculture and the road traffic assumed by the inventory is exploited. In contrast
to the road transport sector, the agriculture sector has significant emissions at night
(Fig.5.8). Thus, in experiments II and III, the observed NOs concentrations between
0 UTC and 5 UTC are higher than the simulated NOy concentrations, which leads
to observational increments (Eq.2.1) at night. These observational increments are
correctly attributed to emissions from the non-livestock agriculture sector by the data
assimilation system.

The corrections for the livestock agriculture and shipping sectors are affected by
the perturbation of the non-livestock agriculture emissions in experiments II and
ITII. The emission corrections for the livestock agriculture sector have the highest
correlation with the corrections for the non-livestock agriculture sector. The maximum
spatially averaged emission correction factor for the livestock agriculture sector is 1.18
in experiment II and 1.06 in experiment III (Fig.6.3). The reasons are that both
sectors emit a high amount of NH3 (Fig.5.2) and that there is no spatial separation
between the sectors.

The spatially averaged emission correction factors for the sector of other station-
ary combustion are up to 1.05 in experiment I and up to 1.03 in experiment II
(Fig.6.3), although the emissions were not perturbed. For this sector, the data as-
similation system determines moderate local emission increases and decreases in all
experiments (not shown in the figures). This is also valid for the public power sector.
This shows that the emission corrections for both the public power sector and the
other stationary combustion sector can be affected by perturbations of road transport,
industry and non-livestock agriculture emissions.

Small corrections are determined for the solvents and waste sectors, to which also no
emission perturbations are applied in the experiments. The spatially averaged emission
correction factors of these sectors are between 0.98 and 1.02 for all experiments on all
days of the simulation period (Fig.6.3). The reason for this is that both sectors have
only low emissions of observed species in the NRW domain. Solvents emit a large
amount of non-methane NMVOCs which are not included in the synthetic observations.
In contrast, the contribution of the solvents sector to the total emissions of NO,, CO,
SO, NHs3, PM;y and PM, 5 in the domain is less than 10% (Fig. 5.2). The contribution
of the waste sector to the total emissions in the domain is less than 1% for NO,, CO,

SO,, NMVOC and NHj, about 5% for PM;, and about 10% for PM, 5 (Fig.5.2).

Fig. 6.7 shows the observational costs (Eq.3.4) of the background and the analy-
sis during the simulation period for each measured species. The background costs
before the optimisation as well as the analysis costs after the optimisation are depicted.
A reduction of the analysis costs compared to the background costs corresponds to an
improvement of the agreement between simulated and observed concentrations by the
sector specific emission optimisation. NO, and Os are the species with the highest
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Figure 6.7.: Observational costs (Eq.2.6) of the observed species during the simulation
period in experiment I with emission perturbation factors of 2 for the
industry and 0.5 for the road transport sector. Analysis costs are depicted
as solid lines, background costs as dashed lines. If the analysis costs
are lower than the background costs of a species, the sector specific
optimisation of emissions has improved the agreement between simulated
and observed concentrations of this species.

background costs. This reflects the perturbation of the NO, emissions in this experi-
ment, which causes changes in the NO, and O3 concentrations. In addition, the good
observational situation for both species leads to high observational costs. Compared
to the effect of the perturbed NO, emissions on the NOy and O3 concentrations, the
impact of the perturbed aerosol emissions on the PM;y, and PMs 5 concentrations is
lower and thus causes lower observational costs. The SO, costs are low due to the
observational situation (Section 5.4).

In most cases, the analysis costs are lower than the background costs (Fig.6.7),
which means that the costs are reduced by the sector specific emission optimisation.
The NO, costs are decreased by 90% on the first day, due to the strong emission correc-
tions in the road transport sector. In contrast, the PM;q and PMs 5 costs on 10 March
are increased by the emission optimisation. The reason for this is that the total aerosol
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6.3. Impact of the anisotropic diffusion operator on the corrections of the road
transport sector

emissions are decreased by the optimisation, whereas the emission perturbations in
the nature run lead to an increase in total aerosol emissions (Fig.6.2). This is due
to a weak increase in industrial emissions by the emission optimisation on 10 March
(average emission correction factor of 1.06), while the road transport emissions are
strongly reduced to an average emission correction factor of 0.73 (Fig.6.3). The Oj
and SO, costs are reduced, but less than the NOy costs. The weaker cost reduction
can be explained by the weak corrections of the industrial emissions on 10 March
(Fig.6.3). The average emission correction factor increases until 14 March 2016, as
discussed before. The optimisation leads to a cost reduction, i.e. lower analysis than
background costs, for all species from 11 March to 15 March 2016. This corresponds
to an improvement of the simulated concentrations. An exception with no difference
between background and analysis costs is the 16 March 2016. Note that the variations
in the cost reduction also depend on the meteorological conditions, especially on the
wind direction and wind speed. In experiments II and III, the observational costs
behave similarly (Fig. A.1 and A.2 in the appendix).

6.3. Impact of the anisotropic diffusion operator on the
corrections of the road transport sector

In the previously discussed one-week simulation, the anisotropic diffusion operator
(Section 4.3) was applied to the emission correction factors for the road transport
sector and to the related cost function gradient (V. reaq/). In order to investigate the
effect of the anisotropic diffusion, a second data assimilation cycle was performed for
the 10 March 2016 without using the anisotropic diffusion operator. Fig. 6.8 shows the
gradient Vy ,oqq of the first iteration for both data assimilation runs. The emission
correction factors of the analysis iteration are depicted in Fig.6.9. Note that the
gradient in general dictates the strength and direction of emission corrections and
that a negative gradient is related to positive emission corrections.

The maximum of the gradient (Vw,reeq/) in the domain is similar in both data
assimilation runs with a value of about 8. This is a consequence of the normalisation
by the matrix A or A,oua-, respectively (Sections 3.2 and 4.3). But the spatial spread
is increased by the anisotropic diffusion. In the experiment with isotropic diffusion,
the gradient field around Cologne and Dortmund c<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>