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ABSTRACT. We present a detailed analysis of Penrose’s gravito-optical analogy between the
focusing effects of particular families of Ricci- and Weyl-curved spacetime regions on the one hand,
and anastigmatic and astigmatic optical lenses on the other. We put the analogy in its historical
context, investigate its underlying assumptions, its range of validity, its proof of concept, and its
application in Penrose’s study of the notion of energy flux in general relativity. Finally, we examine
the analogy within the framework of Norton’s material theory of induction.
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I. SCOPE OF THE PAPER

One of the most beautiful ideas stemming from 20th century physics is that what we feel as the force of
gravity is actually the curvature of spacetime. Thus, the motion of the Earth around the Sun is often
explained by analogy to a spacetime being like a sheet of cloth that is curved by the heaviness of the
Sun, with the much lighter Earth moving on a geodesic of this curved spacetime, which we observe as
the Earth moving on an ellipse around the Sun.
There is, however, a less well-known analogy concerned with spacetime curvature. This analogy was

introduced by Roger Penrose in the 1960s, and it has as its purpose a.) to better understand two
particular types of spacetime curvature, namely Ricci curvature and Weyl curvature, and b.) to come
to grips with the notion of energy flux in the context of general relativity. Penrose imagines a beam
of light rays traversing a region of spacetime, and wonders what effects the presence of Ricci curvature
and Weyl curvature, respectively, will have on the beam. He then compares this with light traversing
different types of elementary lenses in geometrical optics. Penrose’s idea is that there is an analogy
between the effects of Ricci-curved and Weyl-curved regions of spacetime on the one hand, and the
effects of anastigmatic and astigmatic lenses on the other.1 Having established a similarity between
these effects, he uses knowledge from geometrical optics to engineer a new account of energy flux in
general relativity. The analogy thus established, and the thus created ability of thinking about Ricci
curvature in particular as bringing about a positive focusing of light rays, would become a crucial tool
for Penrose, among other things in his first singularity theorem of 1965, and in his argument that mass
must be positive in 1993.
In the current paper, we analyze the details of Penrose’s idea, how exactly his analogy between curved

spacetime regions and optical lenses functions, and how far it goes. In particular, we examine the set
of spacetimes for which the analogy holds, and use these results to investigate how the analogy might
best be understood. Is it just a helpful but limited metaphor like the curved sheet of cloth, at best of
heuristic value, or does it encode something deeper about the very concept of spacetime curvature?2

We will proceed in the following way. In Section II, we put Penrose’s paper [51] on the analogy
between curved spacetime regions and optical lenses in its historical context and introduce prior work
that Penrose relies on. In Section III, we give an overview of the aim and structure of his paper. In
Section IV and Appendices A and B, we introduce the particular mathematical and physical concepts,
formalisms, and tools that Penrose uses and that are relevant for understanding the details of his paper.
Then, in Section V, we proceed with a detailed analysis of the explicit and implicit assumptions Penrose
employs in the construction of his analogy, discuss its strengths and limitations, unpack and extend the
details of his proof of concept, and examine Penrose’s application of the analogy to three different types
of spacetimes. Finally, resting on all this, we show in Section VI that his analogy can be well matched
with the philosophical account of analogy based on Norton’s material theory of induction.

II. HISTORICAL PRELIMINARIES

A. Prehistory

The history of Penrose’s analogy starts with the idea of the geometry of curved surfaces, which in turn
starts with Carl Friedrich Gauss. Gauss developed many of the mathematical tools, most importantly

1 Penrose’s analogy thus connects the influence that gravitational fields have on light according to general relativity to the
influence that optical lenses have on light according to geometrical optics. An even earlier connection between a theory
of gravity and optics predates the connection forged between gravity and spacetime curvature in general relativity.
In Einstein’s 1911 paper on static gravitational fields, which came out two years before his move of identifying the
gravitational potential with the metric tensor, he found that, given the equivalence principle, the speed of light differs
from point to point when light is moving through a static gravitational field. This allowed Einstein to transfer Huygens’
principle from wave optics, where it used to derive the angle at which a beam of light is refracted when it enters an
optical lens, to his nascent gravitational theory, where it enabled him to predict the angle at which a beam of light
passing through the gravitational field of the Sun would be refracted (though the angle he predicted was only half of
what he later predicted with the finalized theory of general relativity in hand); see [13], Section 4. We are grateful to an
anonymous referee for pointing us to this earlier transfer from optics (here wave optics) to gravitational theory, though
it should be noted that in contrast to Penrose, Einstein does not explicitly speak of an analogy between gravitational
fields and optical lenses.

2 In a later paper, we will investigate the roles the analogy played in Penrose’s construction of the first 1965 singularity
theorem in [49], in his investigation of the breakdown of global hyperbolicity of plane wave spacetimes in [50], and in
his proof of a positive mass theorem in [56]. Some of these connections are already hinted at in Penrose’s 1967 Battelle
Lectures [52].
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that of a variable metric tensor, to describe the geometry of curved 2-dimensional surfaces. Gauss’
student Bernhard Riemann extended this work to manifolds of arbitrary dimension, and defined what
we today call the Riemann curvature tensor, generalized from Gauss’ sectional curvature of 2-surfaces.3

However, it is often forgotten that after Riemann the development of these mathematical objects was
embedded in a more general theory of bilinear forms, that went away from geometric interpretations
and focused more on their algebraic and invariance properties. In the 1880s and 1890s, Ricci and Levi-
Civita developed what was long called “Ricci calculus,” and would today be called “tensor calculus,”
emphasizing that Gauss’ and Riemann’s metric tensors are just special cases of a more general bilinear
form. They defined the Riemann curvature tensor via the first- and second-order derivatives of such a
form. Thinking of all these objects in a purely geometric way was therefore thought of as old-fashioned
at best at the time, and nongeneral in the worst cases. Thus, when Einstein and Grossmann embarked
on developing a tensorial theory of gravity in 1913, they did not think of the metric tensor and the
Riemann tensor as being, first and foremost, about the geometry of spacetime but more as tools to
express a classical field theory.4 Although Einstein himself never properly came around to thinking
about general relativity in a predominantly geometrical way, many others in the emerging community
of general relativists soon did, essentially affecting a counter-revolution, especially after Levi-Civita
had introduced the concept of parallel transport in 1917, and after Weyl generalized this concept and
introduced the definition of the Riemann tensor in terms of such parallel transport in the first edition
of his famed book Raum-Zeit-Materie (Space-Time-Matter) in 1918.
Einstein studied both the proofs of the first edition of Raum-Zeit-Materie and the first article in

Weyl’s pursuit of a unified field theory of gravity and electromagnetism [76] in April of 1918.5 The
latter was indeed the very first attempt at a unified field theory, and was the physicist-directed part of
a pair of papers. The mathematician-directed companion part [77], however, not only introduces Weyl
geometry, the mathematical foundation of Weyl’s unified field theory, it also contains his definition
of what would later be called the Weyl tensor,6 and shows how both the Ricci tensor and the Weyl
tensor can be obtained from the Riemann tensor.7 Just a month before receiving the proof of [76],
Einstein had submitted [18], in which he first defines the term “Mach’s principle” as the demand that
the energy-momentum tensor “uniquely determines” the “state of space described by the fundamental
tensor,” namely the metric tensor. It might seem puzzling that Einstein expected the energy-momentum
tensor to determine the metric uniquely given that only the Einstein tensor, which is a combination of
the Ricci tensor, the scalar curvature, and the metric, is determined by the Einstein field equations,
whereas the part of the Riemann tensor that corresponds to the Weyl tensor is left constrained but
not determined by the energy-momentum tensor.8 But Einstein saw the metric as the gravitational
potential, the connection as representative of the gravitational field, and the Einstein tensor as the rate
of change of the gravitational field; he did not associate the rest of the Riemann tensor with gravity.9

And he saw a pseudo-tensor composed of first-order derivatives of the metric as the representative of
gravitational energy (cf. [17]).
We believe that it has not been quite appreciated how much the way of interpreting general relativity

that became prominent from the 1950s onward — and today is so prominent that it is barely seen as
an interpretation anymore but instead as a fact — differs from Einstein’s interpretation. In particular,
in contrast to Einstein’s view, the nonvanishing of the Riemann tensor, i.e., the total curvature tensor,
is now often taken as the necessary and sufficient condition for a gravitational field to be present. J.
L. Synge was arguably the trailblazer of this new focus; in his influential 1960 textbook he wrote:10

If we accept the idea that spacetime is a Riemannian four-space (and if we are relativists
we must), then surely our task is to get the feel of it (...). And the first thing we have to
get the feel of is the Riemann tensor, for it is the gravitational field — if it vanishes, and

3 See the new edition of Riemann’s habilitation thesis [65] edited by Hermann Weyl. For the development of the concept
of a manifold from Riemann onwards see [70].

4 See Reich [61, 62] and Lehmkuhl [37, 38] for details.
5 For details on Einstein’s and Weyl’s correspondence on this see [38].
6 In [19], Einstein explicitly uses the Weyl tensor for the first time and names it thus (also possibly for the first time).
Einstein was skeptical of Weyl geometry and Weyl’s unified field theory as such (see [38] for Einstein’s seven arguments
against Weyl), but in this paper argues for using the Weyl tensor in the context of a theory based entirely on conformal
geometry.

7 Weyl made these developments in the context of Weyl geometry, but the definition of the Weyl tensor is proposed in
connection with what he calls directional curvature (Richtungskrümmung), i.e., the part of the total curvature tensor
of Weyl geometry that coincides with the Riemann tensor of pseudo-Riemannian geometry.

8 See Equation (8) in Section IVA2.
9 See [32], [63], and [46] for details.

10 See [73], pp. VIII–IX.
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only then, there is no field. (...) In Einstein’s theory, either there is a gravitational field or
there is none, according as the Riemann tensor does not or does vanish.

As we shall see in the following subsection, Penrose was one of the proponents of this new way of seeing
general relativity.

B. The Historical Context of Penrose’s Paper

Roger Penrose decided to work on general relativity in early 1958. Until then, he had had a career in pure
mathematics, having just finished his PhD thesis on “Tensor Methods in Algebraic Geometry” at St.
John’s College Cambridge in 1957; a thesis not connected to general relativity.11 However, throughout
his time as a PhD student at Cambridge, he was in close contact with the cosmologist Dennis Sciama,
whom he credits as having “had the greatest influence on the development of my research during this
period [as a PhD student], and for many years later.”12

It was Sciama who encouraged Penrose to attend a lecture by David Finkelstein at King’s College
London in early 1958. Finkelstein’s talk was based on his paper [24] of 1958, in which he, inter alia,
argued that in the Schwarzschild solution of the vacuum Einstein field equations the alleged singularity
at r = 2m was not a “real” singularity but could be transformed away by changing the coordinate
system.13 Many years later, Penrose stated that it was this talk by Finkelstein that planted the seed
of the question that would eventually lead to his first singularity theorem of 1965 (see [49]), and that
it was this event that convinced him to change his research focus to general relativity. In these same
interviews, Penrose also stated that he felt that he needed to approach general relativity in a somewhat
“quirky” way that was not well-trodden by others; and having been impressed by Dirac’s lectures on
spinors in quantum mechanics, he set himself the task of reformulating general relativity in spinorial
form.14

The first conference on general relativity and gravitation that Penrose took part in, but a year
after his starting to work on general relativity, took place in Royaumont, France, from 21 June to
27 June 1959. It was the third conference in a newly introduced series of conferences specifically on
general relativity and gravitation that had started in Berne, Switzerland, in 1955 and was followed
by Chapel Hill, North Carolina, in 1957. The third conference of this series, that would be the seed
from which the International Society of General Relativity and Gravitation grew,15 was hosted by M.
A. Lichnerowicz and M. A. Tonnelat, and as the two predecessor conferences, the Royaumont conference
brought together everybody who was anybody in general relativity and gravitational research. This list
would not normally have had included Penrose, who had only recently graduated on a topic in algebraic
geometry, and did not yet have any publications in the field of general relativity. However, Dennis
Sciama sacrificed half of his slot to make it possible for Penrose to give a talk,16 and so Penrose presented
the first fruits of his spinor reformulation of general relativity, including his spinorial representations of
the Ricci and Weyl curvature tensors, and a spinorial version of the classification of vacuum spacetimes
that had recently been pioneered by Petrov [58] and used ingeniously by Pirani [59] for a new account
of what it is to be a gravitational wave and what it means for such a wave to possess energy.17

Both Petrov and Pirani were present at the Royaumont conference, as was J. L. Synge, who likewise
addressed the question of how gravitational energy ought to be defined. It was likely also the first time

11 Penrose never published his thesis, but it is now available as Document 6 in [54].
12 See Penrose’s short autobiography in Volume 1 of his Collected Works, most likely written in 2010, and the immediately

preceding preface. There, Penrose also notes the influence that Fred Hoyle’s BBC radio talks on cosmology in 1951,
Hermann Bondi’s lectures on general relativity, and Paul Dirac’s lectures on quantum mechanics had on him during
his time as a PhD student, as well as interactions with Felix Pirani, who finished his second PhD thesis at Cambridge
under Hermann Bondi in 1956.

13 Here, r is the Schwarzschild radial coordinate and m is standardly interpreted as the mass of the spherically symmetric
body whose exterior gravitational field the Schwarzschild solution represents. For more on the history of the early
interpretation of the Schwarzschild solution see Eisenstaedt [20–22]; for a first shot of an account that bridges the early
history to the work of Penrose and how it relates to his 1965 singularity theorem see [39].

14 For all this see Thorne’s interviews with Penrose recorded in 1983 (Thorne uses them in [75]; the complete interviews
are deposited at the Caltech Archives), Lightman’s interview with Penrose in 1989 [53], and Stamp’s and Lehmkuhl’s
interviews with Penrose in 2019.

15 The society was formally founded in 1971, and grew from the International Committee on General Relativity and
Gravitation that was founded in 1957. For the history of these conferences and how they grew from the Berne conference
see Kiefer [35] and Blum et al. [5–7].

16 See Penrose’s editorial note to Document 14 of [54]; this paper is the written version of the talk he gave in Royaumont.
The conference proceedings [40] only came out in 1962, and thus substantially after Penrose’s later written “A Spinor
Approach to General Relativity” [48], which is a much more detailed version of the same paper.

17 We will investigate the development and interpretation of the Petrov–Pirani–Penrose classification in a separate paper.
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that Penrose met Jürgen Ehlers and Rainer (Ray) Sachs, whose work would be a major launchpad for
the paper with whose analysis we will be concerned with. Both Ehlers and Sachs were at the time
members of Pascual Jordan’s general relativity group at the University of Hamburg. Ehlers was 30
years old at the time of the conference, two years older than Penrose, and had finished his PhD with
Jordan two years prior. In his PhD thesis, Ehlers had pioneered new classes of exact solutions to the
Einstein field equations, new methods for finding solutions, as well as general relativistic hydrodynamics
[12]. Sachs was three years younger than Ehlers, had just finished his PhD thesis with Peter Bergmann
at Syracuse University and must have moved to Hamburg to join Jordan’s group mere months before
the Royaumont conference took place.18 Within a year, he published his first single-authored paper,
which, he wrote, was inspired by the “beautiful analogy pointed out by Pirani between electromagnetic
and gravitational null fields” ([67], p. 465).
Penrose’s starting point for everything that follows in his paper on the gravito-optical analogy are

what he calls “Robinson’s and Sachs’ optical scalars,” which constitute the first ingredient, arguably
the all-important seed, from which Penrose would grow his far-reaching analogy between gravitational
and optical systems. Penrose refers to a paper by Robinson [66], one by Jordan, Ehlers, and Sachs [33],
and one by Sachs [68] alone. Robinson’s paper was submitted first (on 9 September 1960), but in it he
is open about using results from Sachs on the optical scalars, though there was as of yet no paper to
be cited. This changed with the paper by Jordan, Ehlers, and Sachs which first introduced the optical
scalars systematically.19 It was submitted 7 weeks after Robinson’s paper, and introduced a variety of
new results and methods on exact solutions to the Einstein field equations. Sachs submitted his own
paper focusing entirely on the use of — and theorems concerning — the optical scalars only four weeks
after the joint paper with Jordan and Ehlers, after he had moved on to Hermann Bondi’s group at
King’s College London. Thus, even though the optical scalars were first mentioned in Robinson’s paper
(with reference to Sachs) and first fully introduced in the paper by Jordan, Ehlers, and Sachs, it seems
plausible that the fact that they soon became known as “Sachs’ optical scalars” is justified.20

Having somewhat settled the question of priority, what are Sachs’ optical scalars, and how did he
interpret them? In the first focused work on this, [68], Sachs introduced the idea of exploring and
indeed defining the properties of a given spacetime through congruences of geodesic null curves, i.e.,
families of curves in spacetime that can be interpreted as bundles of light rays. He then introduced the
optical scalars as the convergence θ, the rotation ω, and the shear σ of said null congruence.21 The
precise definitions and geometrical meanings are presented in our Appendix B; here we will just give
an intuitive picture of the optical scalars as introduced by Sachs that may well have fueled Penrose’s
imagination.22

Imagine sitting in a spherical spaceship that effectively moves, as all material bodies do, on a timelike
curve of that spacetime. You are eager to determine the curvature properties of the spacetime you are
moving through, but you do not know how. Then you enter Earth’s solar system, passing between a
space station with a flat surface on your left, and the Sun on your right. The rays of the Sun will hit
your spherical spaceship, and throw a shadow on the flat surface of the space station. Your eyes widen
because you realize that the shape of that shadow allows you to determine in what way the spacetime
region through which the light rays had moved were curved. If there was no curvature in the intervening
region, then the shadow of your spaceship will just be a circular disk. Sachs’ optical scalars tell you
that depending on the precise curving of the intervening spacetime region, the bundle of light rays that
hit your spaceship, and thus the resulting shadow, can be contracted or expanded (the amount of which
is determined by θ), it can be twisted (determined by ω), and it can be sheared (determined by σ), i.e.,
be deformed from a circular to an elliptic disk. Accordingly, these light rays act as a kind of waywiser
for the curvature distribution in the intervening spacetime region, and the shadow on the flat surface
of the space station is your measurement output.23

18 This assumption is based on the fact that Sachs and Bergmann published a paper in Physical Review [69] that was
received on 12 June 1958, and the affiliation of both of them is named as Syracuse University; yet in the Proceedings
of the Royaumont conference [40], which took place in June 1959, Sachs’ affiliation is given as Hamburg University.

19 This paper by Jordan, Ehlers, and Sachs is the second in a series of papers published in the proceedings of the Mainz
academy. The series of papers soon became known as “the Hamburg bible,” and unfolded an influence well beyond
what had become normal for papers written in German rather than in English.

20 In a cosmological context, Raychaudhuri [60] explicitly defines only the rotation for a congruence of timelike geodesics.
To our knowledge, Sachs was the first to derive all three optical scalars and their evolution equations for geodesic null
congruences.

21 In Jordan, Ehlers, and Sachs [33], they are introduced as Divergenz, Drill, and Verzerrung, respectively. Accordingly,
the more appropriate term for the optical scalar ω would be twist. However, we here stick to Penrose’s nomenclature.

22 The following is a slightly embellished version of what [68], p. 317, calls “the shadow experiment.”
23 For the precise way in which the optical scalars are related to the Riemann tensor see the Sachs equations in Appendix

B.
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We do not know if Penrose had heard the first thoughts on all this at the Royaumont conference; but
it is plausible given that a series of detailed papers introducing and using Sachs’ optical scalars already
came out a year later. Either way, it is clear that Penrose paid apt attention to these publications, now
from his new environment in the United States. For just a few weeks after the Royaumont conference,
Penrose had moved to Princeton as a NATO Research Fellow, to join the burgeoning general relativity
research group of John A. Wheeler.24 As he notes in the first footnote of the gravito-optical paper, this
is where he started to work on the paper in 1960.
It was some time during his two years as a NATO Research Fellow that Penrose first started working

with Ezra Theodore (Ted) Newman — a collaboration that would span more than half a century.
Both Penrose and Newman had given separate spinor reformulations of general relativity, but whereas
Penrose was a geometrical thinker, Newman thought algebraically, and they found that these differences
in approach complemented each other extremely well. They teamed up and created what soon became
known as the Newman–Penrose formalism of general relativity, which combined many of the advantages
of their originally separate approaches. Next to Sachs’ optical scalars, the Newman–Penrose formalism
was the second main ingredient of Penrose’s gravito-optical paper, for it provided the language and
methods of proof in which Penrose would spell out his arguments about the ways in which curved
spacetime regions and optical lenses were analogous to each other.25

Penrose returned from the United States in 1961, and became a Research Fellow at King’s College
London, where Hermann Bondi had started a general relativity group focused on gravitational wave
research in 1955, directly inspired by the aftermath of the 1955 Berne conference. In London, Penrose’s
contact especially with Pirani and Sachs intensified, and it stands to reason that this had an influence
on the further maturing of his paper on the gravito-optical analogy. Indeed, it would take until 1966
for the paper to come out in [29], a Festschrift for Václav Hlavatý edited by Banesh Hoffmann, so that
the later parts of the paper cite many sources that appeared in the meantime, including Penrose’s first
singularity theorem from 1965. Thus, though a major part of the paper was likely written in the early
1960s, Penrose did take advantage of including up to date references shortly before publication.

III. AIM AND STRUCTURE OF PENROSE’S PAPER

The aim and structure of Penrose’s paper are as follows. In his introductory Section 1, “Non-
Locality of Energy,” he first states the main mission of the paper: to clarify “that somewhat elusive
concept — gravitational energy” by drawing on considerations from elementary lens optics. The key idea
that Penrose will exploit is that there is a crucial analogy between how light is influenced by passing
through curved spacetime regions (gravitational fields) on the one hand, and curved glass (optical
lenses) on the other hand. In particular, he will argue that two types of spacetime curvature present
in general relativity — Ricci curvature and Weyl curvature — can act like two types of elementary
lenses in geometrical optics. That is, he will demonstrate that, in the right circumstances, spacetime
regions with nonvanishing Ricci and Weyl curvatures focus light in just the same way as anastigmatic
and astigmatic lenses, respectively, and that the amount of focusing can be used to measure the total
energy-momentum flux associated with that curved spacetime region.
In order to achieve this, Penrose starts, in his Section 2, “Optical Scalars,” by picking out

one particular null geodesic n that belongs to a specifically arranged congruence of null geodesics
in spacetime. Then, he defines Sachs’ optical scalars θ, ω, and σ, which respectively measure the
convergence, rotation, and shear of the null congruence as one traverses spacetime along n, depending
on how curved the respective spacetime regions are.26 In more detail, to trace how the optical scalars
change as one traverses spacetime along the null geodesic n, he first introduces a propagation derivative
D that allows one to determine the change of a quantity along n, and then uses it to specify the Sachs
equations, which describe how all three optical scalars change along n.27 Through the Sachs equations,
he argues that the rate of change of the convergence θ and the rotation ω along n is dominated by Ricci
curvature, while the rate of change of the shear σ along n is dominated by Weyl curvature. Of course,

24 See [64], Section 5, for the role of NATO funding for gravitational physics in these years.
25 See [45] for the original Newman–Penrose paper, and our Appendix A for all the elements of the formalism that are

crucial for the arguments in Penrose’s gravito-optical paper. Note also that at the end of the Newman–Penrose paper,
there is a restatement of Sachs’ peeling theorem in the language of the Newman–Penrose formalism, preparing later
work on the energy of gravitational waves.

26 More precisely, he combines the convergence θ and the rotation ω into one complex number ρ. None of his arguments
depend on this move, however, and we have found it convenient in our reconstruction to stick to the original three
optical scalars.

27 See Equations (24), (25), and (26) in Appendix B.
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only Ricci curvature is directly related to the energy-momentum distribution of matter, radiation, and
nongravitational fields, T ,28 and Penrose uses this fact to argue that imposing what amounts to what
would soon be called the null energy condition on T implies that the Ricci scalar Φ is necessarily
nonnegative, while there is no such inequality for the Weyl scalar Ψ.29

Subsequently, in Section 3, “Lenses,” Penrose constructs a curved spacetime region that most
clearly corresponds to an optical lens. As optical lenses are curved pieces of glass,30 their effects on
light are such that the light is unaffected until it enters the curved glass, and again unaffected once
it leaves the curved glass on the other side. Analogously, Penrose assumes that the curved spacetime
region he seeks is flat before and after the light ray enters the region that is curved in a particular way.
He models this circumstance by setting both the Ricci scalar and the Weyl scalar proportional to Dirac
delta distributions. This then allows him to argue that nonvanishing Ricci curvature in the spike region
accompanied by vanishing Weyl curvature corresponds to one specific type of optical lens well-known
from classical optics, whereas nonvanishing Weyl curvature accompanied by vanishing Ricci curvature
corresponds to another such type of lens. In the first case, a purely Ricci-curved spike, he argues, the
spacetime region in question has an effect on light that corresponds to that of an anastigmatic lens,
i.e., it is like a magnifying lens that focuses the light rays passing through, makes them approach each
other towards a single focal point.31 Penrose then notes that the defining property of the second type
of lens, an astigmatic lens, is that in one plane the positive focusing of light rays having passed through
it is exactly as great as the negative focusing in the perpendicular plane (p. 263).32 This, he says, is
exactly what a purely Weyl-curved spike region of spacetime does. Thus, Penrose argues, while a purely
Ricci-curved spike focuses light like a perfect magnifying glass into a single point, a purely Weyl-curved
spike turns a light beam whose cross section is initially a circle into an ellipse and ultimately into a
line. It is, thus, like a poorly-made magnifying glass that yields a blurry picture.33

Penrose then observes that given all this, Ricci curvature and Weyl curvature “are, in a sense “or-
thogonal” to each other” (p. 264); but he also notes that thus far he had only been concerned with
“first-order” effects of local focusing, and that a complete picture would demand doing justice to the
nonlinearity of the Sachs equations. One might have expected that this is where the analogy breaks
down, given that, as just described, the effect that a single lens has on light is a rather local affair.
But Penrose now turns around and looks for a feature in geometrical optics that corresponds to the
nonlinearity of the Sachs equations. He finds it in the fact that the total focusing power of two anas-
tigmatic lenses is only additive — and hence in a sense linear — if the two lenses are placed directly
against each other. In contrast, their total focusing power becomes more and more nonlinear if they are
placed at an increased distance from each other. Aiming to learn more about the properties of Ricci-
and Weyl-curved spacetime regions by making further use of the analogy, Penrose thus explores the
properties of elementary lenses in more depth.
A major tool used later in his further construction of curved spacetime regions corresponding to

optical lenses originates from what he calls “a classical theorem of elementary optics” (p. 265): that a
system of two thin, anastigmatic lenses is equivalent in the effects it has on light passing through it to
a single thick, anastigmatic lens. More surprisingly, though, and of even more use in his later transfer
to curved spacetime regions, he finds that if two astigmatic lenses are arranged in the right way, then
the resulting focusing power is also as if we had a single thick, anastigmatic lens. The analogous effect
to be used later in the paper is then that in some cases Weyl-curved spacetime regions can be modeled
by Ricci-curved spacetime regions.
Having thus explored some of the properties of systems containing two thin (and convex), either

28 However, we shall show in Section IVA2, especially in and after Equation (8), that Weyl curvature is, though not
uniquely determined, influenced and constrained by T as well.

29 Penrose had introduced the spinor analogues of the familiar Ricci and Weyl tensors; see Appendix A for details. Here
and in the following, when referring to “the Ricci scalar” Φ and “the Weyl scalar” Ψ, we mean the two scalars Φ00 and
Ψ0, as defined in Appendix B, that Penrose obtains from the Ricci spinor and the Weyl spinor, respectively. The Ricci
scalar in this sense needs to be sharply distinguished from what is also often called “the Ricci scalar,” namely the full
trace of the Riemann tensor. We call the latter “scalar curvature” instead to avoid confusion.

30 Of course, strictly speaking, optical lenses can be made of any refractive material, with plastic having recently superseded
glass as the material that most bespectacled people wear; and indeed, Penrose never speaks of any particular material.
Still, for nostalgic reasons we will often refer to optical lenses as curved pieces of glass in the following.

31 The properties of both of anastigmatic and astigmatic lenses will be defined and explained with more precision in
Section IVB.

32 In geometrical optics, the defining property of an astigmatic lens is, in short, the formation of two focal lines behind
the lens, the primary and secondary line images in FIG. 1 in Section IVB.

33 In Section VC, we shall argue that the analogy between Weyl-curved spacetime regions and astigmatic lenses is less
perfect than between Ricci-curved spacetime regions and anastigmatic lenses. However, the consequence that is crucial
for Penrose, namely that both astigmatic lenses and Weyl-curved spacetime regions turn a circular light beam into an
elliptical one, remains true.
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anastigmatic or astigmatic lenses, Penrose makes a crucial step at the beginning of his Section 4,
entitled “Energy Flux as Focusing Power?” He uses the effective additivity of the focusing powers
of two such anastigmatic lenses in cases where the distances involved are small compared to the focal
lengths involved and that locally the net focusing powers of particularly arranged systems of two thin,
astigmatic lenses is zero to argue that in the curved spacetime context something similar happens:
for distances that are small compared to the radii of curvature involved in the Riemann tensor of
the respective spacetime, the total energy-momentum flux is effectively additive and the contribution
of Weyl curvature to the total energy-momentum flux is essentially zero.34 More precisely put, the
analogical correspondence is between the focusing powers of optical lenses on the one hand, and the
focusing powers of curved spacetime regions on the other, resulting in the correspondence between the
focusing powers of lenses and, through Ricci curvature being linked to the energy-momentum tensor via
the Einstein field equations, energy-momentum flux in curved spacetime regions: the focusing power of
the Ricci curvature of a spacetime region is a measure of the local total energy-momentum flux in that
region. However, as Penrose immediately reminds us, in cases where the focusing occurs over larger
distances “nonlinear (or nonlocal) effects must be taken into account” (p. 266).
Using the comparison to systems consisting of two anastigmatic lenses that are not arbitrarily close

to each other,35 Penrose then spends the rest of his Section 4 to put the analogy to work in analyzing
gravitational systems. He sets himself the aim of determining the focusing powers of — and thus the
energy-momentum fluxes in — two different gravitational systems: (approximately) plane gravitational
waves and plane-polarized gravitational wave packets. Both are modeled via particularly arranged series
of the Weyl-curved Dirac delta regions of spacetime that he had first introduced when discussing the
spacetime-counterpart of a single thin, convex, astigmatic lens. In both cases, he makes his life signif-
icantly easier by use of the above-mentioned result from classical optics (or rather of its gravitational
counterpart): he replaces pairs of Weyl-curved Dirac delta patches with single Ricci-curved patches;
the equivalent of replacing two thin, convex, astigmatic lenses, arranged just so, with a single thick,
convex, anastigmatic lens. And it is the total focusing powers of (the series of) such single Ricci-curved
patches that Penrose takes as measures for the total energy-momentum fluxes within said gravitational
systems.
It is quite impressive how far the analogy between curved spacetime regions and optical lenses has

carried Penrose until this point in the paper. However, at this point he himself cautions the reader:
“The preceding arguments all have been concerned with focusing when the effective lenses are in some
sense weak. The connection between energy-momentum flux and focusing power is, perhaps, not so
clear when the lenses are strong” (p. 269). Hence, in his final section of the paper, Section 5, entitled
“Focusing Power of a General System,” he makes a first step towards addressing this problem,
even though he had already noted in Section 1, “Nonlocality of Energy,” that “[w]hether or not this
idea [of connecting energy-momentum flux to focusing power] can be made completely rigorous and
physically acceptable will depend on future developments.” Still, Penrose wants to explore how far the
analogy can be pushed. Indeed, in order to make this push possible, he first solidifies and makes precise
his earlier claim that a Ricci-curved Dirac delta region of spacetime behaves like an anastigmatic lens
and a Weyl-curved Dirac delta region like an astigmatic lens. Then, he aims to take the result beyond
its original domain of single lenses: “The general idea is to find quantities which measure correctly the
focusing power when the system consists of a single lens and to use these same quantities to define the
focusing power of a general system” (p. 269).36

Thus, he begins by splitting the light beam that comprises the null geodesic n into “the incident
beam,” i.e., the beam before it hits the curved spacetime region, and “the emergent beam,” the beam
after it hits the curved region. Then, he uses the Sachs equations to trace the evolution of the optical
scalars of the beam in order to compare the optical scalars of the incident and the emergent beam.
This serves to justify the original idea of Penrose’s analogy: comparing the optical scalars of a light
beam before and after the beam enters the curved spacetime regions provides justification for seeing the
curved region as analogous to an optical lens. For the corresponding solution to the Sachs equations
shows that a light beam entering the curved region is influenced very much like a light beam entering
an optical lens. In more detail, when formulating the Sachs equations, Penrose states, as already noted,
that the evolution of the convergence θ and the rotation ω of the beam would be dominated by the
Ricci scalar Φ, whereas the evolution of the shear σ would be dominated by the Weyl scalar Ψ in the

34 The old puzzle of why and in what sense precisely gravitational energy, in contrast to the energy of matter, is nonlocal,
can thus be linked to the properties of the Weyl tensor in spacetimes where the radii of curvature are not small compared
to the distances under consideration.

35 This will be elaborated in more detail in Section VA.
36 The “general system” he has in mind is a spacetime region that contains the ray n, and is finite in extent along it.
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spacetime region that the light ray traverses. Implicitly assuming there to be no rotation (which is
a necessary condition for general relativistic light rays to behave like light rays as conceptualized in
geometrical optics),37 Penrose gives an explicit solution for the evolution of convergence θ and shear
σ as the light beam passes through the curved spacetime region. Then, he sets himself to calculate
the focal points of the null geodesics that make up the beam, viz., the focal points corresponding to
the solution of θ and σ of the Sachs equations. These are the points where neighboring null geodesics
cross and where either θ or σ tend to infinity. Penrose takes his results as showing that both purely
Ricci-curved Dirac delta regions of spacetime and purely Weyl-curved Dirac delta regions influence
light exactly like anastigmatic lenses and astigmatic lenses, respectively, linking the evolution of the
convergence θ to anastigmatic focusing and the evolution of the shear σ to astigmatic focusing as the
light beam traverses the curved spacetime region.
However, our reconstruction in Section VC proves that his solution to the Sachs equations actually

shows that while it is true that purely Ricci-curved Dirac delta regions influence light exactly like anas-
tigmatic lenses in that a geodesic null congruence converges into exactly one focal point, the influence of
purely Weyl-curved Dirac delta regions is only similar to astigmatic lenses. The reason is the following.
An actual astigmatic lens exhibits two orthogonal focal lines in the domain of the emergent beam. Yet,
we found that Penrose’s solution to the Sachs equations also in this case produces exactly one focal
point behind the lens. But this focal point turns out to be a line segment instead of a point, and even if
there is only one such focal line present, it is this difference that makes the light ray behave similarly to
how it would behave if it were traversing an astigmatic lens: the picture blurs as a circular light beam
is deformed into a focal line instead of a focal point.38

In any event, the main point of Penrose’s Section 5 was to perform the analysis of Dirac delta-
curved spacetime regions in analogy to optical lenses in such a way “that it would be applicable to
more general systems” (p. 270). That is why he then expresses his solution in such a manner that no
explicit knowledge of where in spacetime the light beam might hit upon the Dirac delta-curved region
is presumed, allowing him to motivate a definition of total energy-momentum flux across the beam that
depends only on the optical scalars. In a nutshell, it makes precise the idea that the focusing power
of a general system along — and thus its total energy-momentum flux across — a null geodesic up to
a certain point can be measured by the focusing power of just a single lens evaluated at that point.
Penrose is very open about the fact that he has justified his definition of energy only by appeal to very
specific gravitational systems, but he argues that now not having to rely on knowledge of the position
of the lens anymore allows him to “envisage also using [this definition of total energy-momentum flux
across the beam] in more general situations than that of a single lens” (p. 271). In the remainder of
this final section, Penrose compares the advantages, disadvantages, and relations of his new proposal
for how to measure energy-momentum flux in general relativity with different alternatives, like those
of defining total energy-momentum flux as the modulus or indeed the real part of the quantity he had
found, the possibility of defining it by appeal to asymptotic spacetime structure, the idea of defining
energy-momentum flux as such via energy-momentum flux at infinity, or defining it via Bondi’s news
function.
Doing justice to these comparisons will not be the topic of this article, although it shows that at

the time the notion of energy in general relativity was a subject of intense development. For now, we
only want to get to the bottom of the details of the analogy between gravitational and optical systems
that Penrose observes, and the manifold ways in which he uses and builds on the analogy. Moreover,
we want to understand in what sense the two sets of physical systems are analogous, and how far the
analogy goes. In order to achieve this, we will now, in Section IV, carefully introduce first the different
types of curvature that Penrose draws on, and then the different types of optical lenses that he aims
to link to particular curved spacetime regions. In Section V, we then unravel how precisely Penrose
fashions the spacetime regions that mirror the effects that certain optical lenses have on light. We will
reconstruct and go a bit beyond his analogy between Ricci-curved spacetime regions and anastigmatic
lenses on the one hand, and Weyl-curved spacetime regions and astigmatic lenses on the other. Our
analysis will show that rather than just transferring ideas, methods and results from one domain to the
other, Penrose goes back and forth between gravitational and optical systems. Drawing on the details
of this, in Section VI, we will investigate how Penrose’s analogy fits with the account of analogy Norton
proposed in the context of his material theory of induction. In doing so, we shall see that Penrose’s
analogy not only fits well with Norton’s account, but that using the latter allows us to understand
Penrose’s account at a deeper level than would be possible without it. At the same time, the case

37 See Sections IVB and VA for details.
38 Thus, Penrose’s overall argument is not hindered by this wrinkle. But we will see in Section VI that it teaches us a lot

about how analogies in general, and Penrose’s analogy in particular, can work.
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study allows us to use Norton’s account in such a way that does justice to Penrose’s iterative way of
going back and forth between the gravitational and the optical domains, and to see him along the way
establish more than one “fact of analogy,” and make more than one “analogical inference.”
But one step at a time. Let us turn to the precise definitions and properties of types of curvature

first.

IV. MATHEMATICAL AND PHYSICAL PRELIMINARIES

To be in a position to properly discuss Penrose’s gravito-optical analogy, we first recall the relevant
aspects of the canonical spacetime curvature tensors in general relativity. To be more precise, we recall
their mathematical definitions and properties, the Ricci decomposition that relates these curvature
tensors (and which is the starting point of Penrose’s analysis), constraints on the curvature tensors, and
their geometric interpretations. In doing so, we shall, however, allow ourselves to go slightly beyond the
required scope, in particular in spelling out the interpretational possibilities of the different curvature
tensors and their constraints, as they are so central for Penrose’s analysis. Finally, we give a short
account of the geometrical optics framework and of anastigmatic as well as astigmatic lenses, the other
side of Penrose’s analogy.

A. Spacetime Curvature Tensors

1. The Riemann Tensor and its Contractions

We begin by defining the canonical spacetime curvature tensors used in general relativity, namely
the Riemann tensor, the Ricci tensor, the scalar curvature, and the Weyl tensor.39 To this end, we
let (M, g) be a 4-dimensional Lorentzian manifold and ∇ : Γ(TM) × Γ(TM) → Γ(TM) the Levi-
Civita connection, where Γ(TM) is the space of smooth vector fields on M. The Riemann tensor
R : Γ(TM)× Γ(TM)× Γ(TM) → Γ(TM) is an antisymmetric tensor field of type (1, 3) defined as

R(X,Y )Z := ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z .

In a local coordinate system x on M, the components of the Riemann tensor may be expressed in the
form

Rµ
ναβ = ∂αΓ

µ
βν − ∂βΓ

µ
αν + Γµ

αλΓ
λ
βν − Γµ

βλΓ
λ
αν , (1)

in which

Γµ
να = 1

2 g
µβ (∂αgβν + ∂νgβα − ∂βgνα)

are the usual Christoffel symbols of the second kind. In what follows, we continue to employ local
coordinate representations and drop the term components for reasons of clarity and simplicity. The
Riemann tensor possesses the skew symmetries Rµν(αβ) = 0 = R(µν)αβ as well as the interchange
symmetry Rµναβ = Rαβµν . It furthermore satisfies the first and second Bianchi identities

Rµ[ναβ] = 0 and ∇[λRµν]αβ = 0 , (2)

respectively. The partial traces of the Riemann tensor are either trivial, i.e., Rµ
µαβ = 0 = Rµ

ναµ as a
result of the skew symmetries, or give rise to the symmetric Ricci tensor Rµν = Rα

µαν , which is the
only nontrivial partial trace of the Riemann tensor. The full trace of the Riemann tensor leads to the
scalar curvature R = gµνRµν . Using these quantities, one can directly define the fully trace-free part
of the Riemann tensor, the so-called Weyl tensor, by

Cµναβ = Rµναβ − gµ[α Rβ]ν − gν[β Rα]µ − 1
3 gµ[β gα]ν R . (3)

This curvature tensor naturally satisfies the same symmetries as the Riemann tensor, the first Bianchi
identity in Equation (2), and is per definition fully trace-free (i.e., Cµ

νµβ = 0 and Cµ
µαβ = 0 = Cµ

ναµ

39 There are of course many other curvature tensors, such as the Kretschmann scalar, the Bel–Robinson tensor, and the
Schouten tensor. For the purposes of the present study, however, we focus on the four standard curvature tensors.
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trivially again due to the skew symmetries). Equation (3) may also be viewed as a decomposition of the
Riemann tensor into its irreducible representations under the action of the orthogonal group, coined
the Ricci decomposition, given by

Rµναβ = Cµναβ + Eµναβ + Sµναβ , (4)

in which the tensor

Eµναβ := gµ[α Rβ]ν + gν[β Rα]µ (5)

comprises only Ricci tensor contributions and the tensor

Sµναβ := 1
3 gµ[β gα]ν R (6)

consists of only scalar curvature contributions.40 Similarly to the Weyl tensor, these tensors possess
the same symmetries as the Riemann tensor and satisfy the first Bianchi identity. Furthermore, the
components of this decomposition are orthogonal to each other in the sense that41

CµναβE
µναβ = CµναβS

µναβ = EµναβS
µναβ = 0 .

For more detailed information on the Ricci decomposition see, e.g., [4, Chapter 1] and [72]. We point
out that the Riemann tensor can be decomposed in many useful ways other than the one given by
the Ricci decomposition. A prominent example is the so-called Bel decomposition [3, 42], where the
Riemann tensor is decomposed into three tensors that exhibit properties similar to those of electric
and magnetic fields. For the purpose of the present paper, however, only the Ricci decomposition is
required.

2. Constraints on the Ricci and Weyl Tensors

Within the framework of classical general relativity, one finds both the Ricci tensor and the Weyl tensor
to be constrained by the energy-momentum tensor Tµν . To be more precise, in this framework, the
Ricci tensor can be viewed as being constrained by the Einstein field equations in trace-reversed form

Rµν = Tµν − 1
2 gµνT , (7)

where T = gµνTµν is the trace of the energy-momentum tensor.42 To see how the Weyl tensor is
constrained, we substitute Equation (3) into the second Bianchi identity in Equation (2), yielding (cf.,
e.g., [27, Chapter 4.1])

∇µCµναβ = ∇[αRβ]ν + 1
6 gν[α∇β]R .

Then, using Equation (7), this relation immediately results in

∇µCµναβ = ∇[αTβ]ν + 1
3 gν[α∇β]T . (8)

Consequently, by choosing a specific energy-momentum tensor, this first-order partial differential equa-
tion constrains the allowed functional shapes of the Weyl tensor, whereas the Ricci tensor is fully
determined, as Equation (7) relates it algebraically to the energy-momentum tensor.
Together with the Ricci decomposition, the above constraints on the Ricci and Weyl tensors suggest

the following hierarchical structure of the canonical spacetime curvature tensors within general relativ-
ity: The central mathematical object describing the full gravitational field is the Riemann tensor (1)
that, by definition, satisfies the first and second Bianchi identities, which, however, do not constrain it

40 This representation of the Ricci decomposition is equivalent to Penrose’s formulation given in Equations (1) and (2) on
pages 259 and 260 of [51], respectively.

41 As a consequence, the Kretschmann scalar takes the simple form K = RµναβR
µναβ = CµναβC

µναβ +EµναβE
µναβ +

SµναβS
µναβ .

42 This is actually the original form of the Einstein field equations that Einstein published in late November 1915 [14].
The addition of the trace of the energy-momentum tensor was the all-deciding improvement on the field equations of
Einstein’s first paper of November 1915 [15], which had forced him to presuppose that all matter accounted for by Tµν is
electromagnetic in nature so that T = 0 in the second November paper [16]. With the field equations (7), Einstein could
now claim that his new theory of gravity placed no constraints on the nature of matter, a point he made emphatically
when contrasting his theory with Hilbert’s approach.
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in any way. Via the Ricci decomposition (4), this tensor can be split into the trace-free part (3) and
a part with nonvanishing trace given by (5) and (6). These two parts of the Riemann tensor, which
account for different degrees of freedom of the gravitational field, are not of arbitrary form, but for a
given energy-momentum tensor are subject to the divergence constraint (8) on the one hand, and the
Einstein constraint (7) on the other, leading to a particularly constrained Riemann tensor. The aspect
that the Einstein field equations may be seen only as a constraint on the Ricci tensor, rather than a
separate evolution equation, can be directly motivated by the contracted second Bianchi identity

∇µR
µ
ν = 1

2 ∇νR ,

which is a result of pure Riemannian geometry that does not rely on any input from general relativity.
More precisely, rewriting this identity in the form

∇µ

(
Rµ

ν − 1
2 g

µ
νR

)
= 0

shows that the Einstein tensor Rµ
ν− 1

2 g
µ
νR is divergence-free for all values of ν, and therefore conserved.

Accordingly, this puts a constraint on the Ricci tensor that, in general relativity, is identified with the
right hand side of Equation (7).

3. Geometric Interpretation

Next, we discuss an interpretation of the canonical spacetime curvature tensors that relates to the geo-
metric interpretation of trace functions, and comment on some of the current standard interpretations
of the Weyl tensor. Although most of these views are well-known, our presentation gives rise to a
coherent picture of the canonical spacetime curvature tensors. For different geometrical or physical
interpretations see, e.g., [1, 41] and [23, Lectures 8 and 9].
Firstly, we develop the notions and the geometric understanding of trace functions. For this purpose,

we let V be a finite-dimensional inner product space and H : V → V a linear operator. We denote the
space of all linear operators on V by L(V). Moreover, we define the time evolution operator U : V → V
generated by H, which is a smooth function in time t, via

d

dt
U(t) = HU(t)

U|t=0 = 11V .

(9)

We then consider any measurable set S ⊆ V and let St = U(t)S. Applying Jacobi’s formula together
with Equation (9), and using the fact that the determinant can be interpreted as a relative volume
expansion, we readily find that

d

dt
Vol(St) = Tr(H)Vol(St) ,

where Vol : V → R>0 with Vol(St) = det
(
U(t)

)
is the volume of an dim(V)-parallelotope, and

Tr : L(V) → R with Tr(H) =
∑

k∈I⟨H ek, ek⟩ is the usual trace of the matrix representation of the
linear operator H ∈ L(V) with respect to the inner product ⟨ . , . ⟩ of V for an arbitrary basis (ek)k∈I .
Accordingly, the trace of H can be seen as a measure of the rate of change of the volume of the image
of the set S under U . For a finite-dimensional, multilinear inner product space ⊗m

l=1Vl, m ∈ N, and for
all Hj ∈ L(Vj) and j ∈ {1, ... ,m}, we can generalize this trace to the so-called partial trace over Vj

TrVj
: L

(
⊗m

l=1Vl

)
→ L

(
⊗m

l=1,l ̸=jVl

)
with TrVj

(
⊗m

l=1Hl

)
= Tr(Hj) ⊗m

l=1,l ̸=j Hl

as well as to the full trace

Tr⊗Vl
: L

(
⊗m

l=1Vl

)
→ R with Tr⊗Vl

(
⊗m

l=1Hl

)
= Πm

l=1Tr(Hl) .

These traces may be viewed as measuring, in a sense, Vj-directional and total rates of change of the
volume of the image of a set S ⊆ ⊗m

l=1Vl, respectively, under a generalization of the time evolution
operator U defined in Equation (9).
Now, we are in a position to give geometric accounts of the canonical spacetime curvature tensors.

We begin with the standard geometric interpretation of the Riemann tensor in terms of the concept
of geodesic deviation (see, e.g., [44, Chapter 8.7.]). To this end, we consider a geodesic congruence(
γn(τ)

)
n∈R with points M ∋ xµ = xµ(τ, n), where τ is an affine parameter along — and n a label

for — the geodesics. Furthermore, we let uµ = dxµ/dτ be a tangent vector field to the geodesic
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congruence, and ξµ = dxµ/dn an infinitesimal displacement vector for neighboring geodesics measuring
their separation. Then, the equation of geodesic deviation, which describes the relative acceleration of
neighboring geodesics, reads

uα∇α

(
uβ∇βξ

µ
)
=

(
∂αΓ

µ
βν − ∂βΓ

µ
αν + Γµ

αλΓ
λ
βν − Γµ

βλΓ
λ
αν

)
uνuαξβ .

Defining the Riemann tensor Rµ
ναβ as the expression in the parentheses on the right hand side of

this equation, it can be viewed simply as a measure of the (tidal) gravitational forces producing the
relative acceleration between neighboring geodesics. Within this setting, and using the above geometric
interpretations of the partial and full trace functions, where S is now a subset of the (indefinite) inner
product space ⊗3

l=1Vl = Γ3(TM), and ⊗3
l=1Hl = Rµναβ the multi-linear operator, we can regard

the Ricci tensor and the scalar curvature, which are the nontrivial partial trace and the full trace of
the Riemann tensor with respect to the metric gµν , respectively, as measures of the rates of Γ(TM)-
directional and total changes of volumes of small geodesic parallelotopes propagated along the geodesic
null congruence. The Weyl tensor on the other hand, as the fully trace-free part of the Riemann tensor,
does not contain any information on either directional or total changes of volumes of small geodesic
parallelotopes.
Its current standard interpretation, however, is based on the role it plays for certain vacuum space-

times (see, e.g., [74] or the textbook [10, Appendix VI 3]). More precisely, since for vacuum spacetimes
Tµν = 0 everywhere, it follows from the Einstein field equations (7) that both Rµν = 0 and R = 0.
Hence, the Ricci decomposition (4) yields the simple relation Rµναβ = Cµναβ , which means that for
vacuum spacetimes the Weyl tensor comprises all information about the spacetime curvature.43 More-
over, for vacuum spacetimes, the divergence constraint (8) on the Weyl tensor reduces to ∇µCµναβ = 0,
holding for all four indices of the Weyl tensor due to its symmetries. Combining all this, one may
regard the Weyl tensor as that part of the Riemann tensor which accounts for the curvature gener-
ated either by gravitational radiation traveling through regions of spacetime containing neither matter
nor nongravitational fields, with the just mentioned vacuum divergence constraint as the associated
propagation equation, or by localized, static sources as in the Schwarzschild solution, where the di-
vergence constraint now assumes the role of a flux equation for the Weyl tensor implying that it is
sink- and source-free, similarly to the case of the divergence constraint for the magnetic field in electro-
magnetism.44 This particular view of the Weyl tensor is often expected to be also valid for arbitrary
nonvacuum spacetimes comprising regions where Tµν ̸= 0, which is, however, unfounded as the full
divergence constraint (8) implies that the allowed functional shapes of the Weyl tensor are directly
influenced by the energy-momentum tensor, that is, different nonvanishing energy-momentum tensors
give rise to different constraints on — and thus different admissible functional shapes for — the Weyl
tensor than in the vacuum case. As information on matter and nongravitational fields is encoded into
the Weyl tensor in this particular sense, a physical interpretation that relies only on vacuum contri-
butions to the solutions seems therefore insufficient. We note in passing that since the Weyl tensor
is conformally invariant, i.e., under any conformal mapping of the metric gµν 7→ g′µν = Ω2gµν with

Ω ∈ C2
0 (M,R\{0}) the transformed Weyl tensor is of the form C ′

µναβ = Cµναβ , it can also be viewed as
a measure of the deviation of an arbitrary spacetime with respect to a locally conformally flat spacetime,
for which the Weyl tensor vanishes identically.

B. Geometrical Optics and Optical Lenses

Geometrical optics is a particular short-wavelength approximation of wave optics, in which the wave-
lengths of light are small compared to the sizes of the interaction structures (see, e.g., the standard
textbooks [8, Chapter III] and [71, Chapter 3]). Hence, light propagation may be described in terms of
rays, i.e., curves that are perpendicular to the wavefronts and obey Fermat’s principle, that is, the path
taken by a light ray between two given points is the one for which the traversal time is invariant with
respect to small variations of the path. This approximation entails, however, that optical effects such as
diffraction and interference cannot be accounted for. Nonetheless, geometrical optics may be employed
to properly describe various aspects of imaging systems such as lenses, which are devices inducing a
convergence or divergence of light rays due to refraction. This includes the effect of optical aberration,

43 Here, one assumes the trivial conditions Eµναβ = 0 = Sµναβ . However, it can be easily shown that also the more
general condition Eµναβ = −Sµναβ is satisfied only by the vacuum solution.

44 There exist, however, some cases, such as exact vacuum solutions of the Einstein field equations with both azimuthal
and axial symmetries, for which this interpretation fails [30].
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FIG. 1: Schematic representation of an astigmatic lens and its effects. The cone of light rays, which is represented
by two of its sections, emanating from an off-axis object point P is refracted by the lens. After the refraction, all
light rays intersect a horizontal line, the primary image, and subsequently a vertical line, the secondary image.

where light rays emerging from any given point on the imaging object do not converge at a single point
in the image plane after transmission through the imaging system, causing the formation of blurred
and/or distorted images.
The particular optical imaging systems on which Penrose builds his study of the concept of energy in

general relativity (cf. Section VD) — and therefore to which he applies his gravito-optical analogy —
are systems consisting of certain arrangements of two thin, convex, either anastigmatic or astigmatic
lenses. In more detail, every thin, convex lens, for which the thickness is negligible compared to the
curvature radius of the lens surface and which causes parallel-propagating light rays to converge, may
exhibit the effects of optical aberration (which is of course also true for thick, convex lenses). The
particular form of optical aberration considered by Penrose is the so-called astigmatic aberration,45 in
which light rays that emerge from an object point not located on the optical axis and that lie either, e.g.,
in the meridional or the sagittal plane46 are refracted by the lens to different degrees. As a consequence,
instead of producing one focused image point, both sets of light rays intersect the chief ray at different
meridional or sagittal image points that extend as sharp, elongated line images oriented in the direction
of the respective other plane, where the image formed in the meridional plane precedes the image formed
in the sagittal plane. For light rays that are not contained in the meridional or sagittal planes, the
image points coincide with the meridional and sagittal image points (for a schematic representation of
the general setup see FIG. 1). Accordingly, for lenses exhibiting astigmatic aberration, the image is
spread in the direction along the optical axis, where the best focus is found at the circle of least confusion
located between the meridional or sagittal image points. Lenses that do not suffer from astigmatism,
that is, lenses for which the sagittal and meridional image points are in alignment, are simply called
anastigmatic. Now, placing two thin, convex, anastigmatic lenses with respective focusing powers p1
and p2 at a relative distance w ≥ 0 to each other, the focusing power of the combined system becomes

p = p1 + p2 − p1p2w . (10)

Such a combined system effectively behaves like a single thick, convex, anastigmatic lens, which is

45 For other forms of optical aberration such as spherical aberration, coma, or distortion see [8, Chapter V] or [71, Chapter
5].

46 The meridional plane is the plane defined by the object point and the optical axis, whereas the sagittal plane is
perpendicular to the meridional plane and intersects the chief ray, that is, the ray connecting the object point and the
center of the lens.
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characterized by its focal length L = p−1 as well as by the distance between its two principal planes,47

here given by

k = −p1p2
p

w2 .

Lens systems of this kind serve as the fundamental building block in Penrose’s effective construction of
the more complex systems consisting of two thin, convex, astigmatic lenses (cf. Conditions (O2)–(O4)
in Section VA).

V. PENROSE’S GRAVITO-OPTICAL ANALOGY

A. Outline and Assumptions

As discussed in detail in Section III, Penrose’s gravito-optical analogy first arises in one of his many
studies of the concept of energy in general relativity, namely in [51], where he presents a novel view
on the topic suggesting that the resultant focusing power of spacetime curvature along certain geodesic
null congruences is a suitable measure of the total energy-momentum flux, which also includes the
energy-momentum flux of gravitation. To make this idea more precise, he considers a particular class of
spacetimes with Ricci andWeyl tensors modeled by Dirac delta distributions, and uses the optical scalars
associated with said geodesic null congruences as well as the Sachs equations expressed in the 2-spinor
representation of the Newman–Penrose formalism (cf. Appendices A and B) to draw a connection to the
focusing power of certain elementary types of optical lenses within the geometrical optics framework.
This allows him to show that the focusing effect of the (trace-free part of the) Ricci tensor is like that
of a convex, anastigmatic lens, whereas the focusing effect of the Weyl tensor is like that of a convex,
astigmatic lens. Although Penrose expects this behavior to hold for rather general spacetimes, he shows
that it is definitely correct only in a certain limiting sense.
To analyze this in more detail, we first state Penrose’s conditions on gravitational systems:

(G1) The focusing power of spacetime curvature is measured only along geodesic null congruences [page
261, line 7].

(G2) The geodesic null congruences are devoid of any rotation, i.e., ω vanishes identically [page 263,
lines 1–5].

(G3) The geodesic null congruences are nondispersive [page 263, lines 11–12].

(G4) The propagation equations for the convergence θ and the shear σ along geodesic null congru-
ences are the Sachs equations, in which the Ricci and Weyl scalars Φ and Ψ are the dominant
contributions [page 261, Equations (10) and (11); page 263, lines 14–15].

(G5) The Ricci scalar Φ is nonnegative, which amounts to imposing the null energy condition [page
262, lines 6–7].

(G6) The Ricci and Weyl scalars are modeled as

Φ = Φδδ(r − r0) and Ψ = Ψδδ(r − r0) , (11)

respectively, where Φδ ∈ R>0 and Ψδ ∈ C are constants and δ( . ) is the usual Dirac delta distribu-
tion with r ∈ R being an affine parameter along the geodesic null congruence [page 263, Equation
(18)].

He notes that as a consequence of Condition (G2), the geodesic null congruences are hypersurface-
orthogonal, making them generators for systems of null hypersurfaces that can be seen as representing
wave front sets for zero rest mass radiation. And together with Condition (G3), these wave front
sets behave like beams of rays, which can be described with a theory similar to geometrical optics.
Furthermore, Conditions (G5) and (G6) impose restrictions allowing only for gravitational systems that
resemble thin, convex lenses embedded in flat spacetimes. We also point out that Penrose seems to see
Condition (G4) more as a fact rather than an extra constraint on the nature of gravitational systems

47 The principal planes are hypothetical planes in a thick lens or a lens system that are perpendicular to the optical axis
and contain all refraction loci. They are thus the planes of maximal focusing power.
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[page 263, beginning of Section 3]. This view is, however, unfounded, as the assumption that the
dominant contributions in the Sachs equations are the Ricci and Weyl scalars Φ and Ψ does not hold
for arbitrary spacetimes, even if one just considers rotation-free geodesic null congruences. Accordingly,
it is true only for a limited set of spacetimes, rendering it an imposed condition rather than a pure fact.
In addition to these conditions on gravitational systems, Penrose imposes the following conditions on

optical lens systems:

(O1) Over distances that are small compared to the focal length, the focusing powers of the constituents
of a system consisting of two thin, convex, anastigmatic lenses are effectively additive, i.e., locally
the mixed term in the total focusing power (10) can be neglected [page 265, lines 42–43]. For
focusing over larger distances, the mixed term has to be taken into account [page 266, lines 6–10].

(O2) Systems consisting of two thin, convex, astigmatic lenses are restricted to those having identical
and parallel-oriented constituents that are rotated through a right angle relative to each other in
the plane of the lenses [page 265, lines 17–21].

(O3) Systems of two thin, convex, astigmatic lenses are described effectively by only the behavior of
their principal planes [page 265, lines 21–23].

(O4) As the orthogonally-projected positions of the principal planes of systems of two thin, convex,
astigmatic lenses on the meridional plane vary over a certain distance, a sufficiently large scale
ε ≫ k/p is considered [page 265, lines 30–37].

As Penrose remarks, placing the lenses in Condition (O2) directly against each other yields a zero
total focusing power, whereas placing them so that they have a relative distance w > 0, one may use
Equation (10) for the total focusing power in each principal plane. Moreover, due to Condition (O4),
the principal planes appear to be flat. Thus, with Conditions (O2)–(O4), the focusing effect of the
more complicated case of a system consisting of two thin, convex, astigmatic lenses can be treated in
essentially the same way as the focusing effect of an ordinary single thick, convex, anastigmatic lens.
Taken together, the above conditions on optical lens systems translate into the following condition

for their gravitational counterparts:

(G7) Over distances much smaller than the radii of curvature involved in the Riemann tensor, the
focusing powers exerted by the curvatures of two gravitational lenses as specified by Conditions
(G4)–(G6) along geodesic null congruences can be treated as effectively additive, with the contri-
bution of the Weyl tensor being essentially zero [page 265, lines 45–46; page 266, lines 1–2]. For
larger distances, the nonlinearity of the Sachs equations has to be taken into account [page 266,
second paragraph].

Thus, the total focusing power of said system over distances much smaller than the radii of curvature
involved in the Riemann tensor is measured only by the Ricci scalar Φ, being equal to the local energy-
momentum flux Tµν l

µlν across the null geodesics under consideration, where the vector field lµ is
everywhere tangent to the geodesic null congruence. Focusing effects over larger distances, however,
which include both the Ricci scalar Φ and the Weyl scalar Ψ, may be captured by the inclusion of a
mixed term similar to the mixed term in the total focusing power (10) (see Condition (O1)).

B. Range of Validity

We are now in a position to discuss the limitations of Penrose’s gravito-optical analogy, and thus to
comment on its range of validity. For the sake of clarity, we here specify and discuss the limitations in
form of a list:

(L1) Considering spacetimes allowing for geodesic null congruences that exhibit nonvanishing rotations
and/or dispersions, bundles of light may not behave like simple beams of rays, which is, however,
required for the applicability of geometrical optics methods [(G1), (G2), and (G3)].

(L2) The interpretation of the (trace-free part of the) Ricci tensor as an anastigmatic lens and that of
the Weyl tensor as an astigmatic lens are direct consequences of the particular modeling of both
the Ricci and Weyl scalars Φ and Ψ by means of Dirac delta distributions (which can be viewed
as local gravitational lenses embedded in an otherwise flat spacetime) on the one hand, and of
the assumption that these scalars are the dominant contributions in the Sachs equations on the
other. However, since for arbitrary spacetimes the functional shapes of Φ and Ψ in general differ
from simple Dirac delta distributions, and since they do not constitute the dominant parts of the
Sachs equations, this specific modeling (and direct extensions thereof) precludes the analysis of
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the effects of entirely different forms of spacetime curvature with deviating focusing properties.
Accordingly, the above interpretations are not sustainable in general [(G4), (G5), and (G6)].

(L3) Only the Ricci and Weyl scalars Φ and Ψ, which do not account for the entire Ricci and Weyl
tensors but merely certain components thereof (see Appendix A), are shown to exhibit, in the
above limiting sense, the behaviors of anastigmatic and astigmatic lenses, respectively. Since the
functional shapes of the remaining Ricci and Weyl scalars are left unspecified, the gravito-optical
analogy cannot be employed for the full Ricci and Weyl tensors without further analysis [(G4)].

(L4) For spacetimes violating the null energy condition, which is, e.g., the case for Kerr–Vaidya black
hole spacetimes [11], a positive overall focusing via the Ricci scalar Φ is not possible [(G5)].

(L5) By only taking into account systems consisting of two thin, convex, astigmatic lenses that are
parallel and of equal strengths, orthogonally-oriented, and described effectively on suitable scales,
the analysis is restricted to those spacetimes where the focusing effect of the Weyl scalar Ψ is
essentially like that of a single thick, convex, anastigmatic lens, which corresponds to a Ricci-
curved spacetime region [(O2)–(O4)].

Accordingly, as Penrose himself acknowledges [page 259], the range of validity of the gravito-optical
analogy as it stands is, strictly speaking, limited to the particular class of spacetimes that behave like
Dirac delta distributional gravitational lenses, comprise optical scalars satisfying the Sachs equations
with the Ricci and Weyl scalars Φ and Ψ being the leading contributions (where the former dominates
the latter on scales much smaller than the radii of curvature involved in the Riemann tensor), obey the
null energy condition, and allow for nondispersive, rotation-free geodesic null congruences. Hence, in its
current form, the analogy is not general, and therefore does not directly apply to arbitrary spacetimes.
We point out, however, that this does not imply that Penrose’s original notion of energy cannot be
suitably extended to hold for more general spacetimes. It simply means that the analogy between Ricci-
curved and Weyl-curved spacetime regions on the one hand, and anastigmatic and astigmatic lenses on
the other, has thus far been established to hold only under very specific circumstances. Therefore, the
extent to which the above limitations can or cannot be relaxed determines whether the analogy can be
considered beyond its given scope, as Penrose said he hoped it would be.

C. Proof of Concept

In order to specify in what sense the focusing of curved spacetime regions and of optical lenses are
analogous, we discuss Penrose’s proof of concept of his observation that purely Ricci-curved Dirac delta
regions of spacetime have an anastigmatic focusing effect on beams of light rays and purely Weyl-curved
Dirac delta regions an astigmatic focusing effect [page 270]. For clarity, however, we here give a more
detailed account of the proof. In the process, we also show that Penrose’s gravito-optical analogy has
to be revised and weakened to the statement that purely Ricci-curved Dirac delta regions of spacetime
influence light exactly like anastigmatic lenses, as he had originally argued, but that purely Weyl-curved
Dirac delta regions act on light only similarly to — and not exactly like — astigmatic lenses.
We begin by rewriting the two nontrivial rotation-free Sachs equations (24) and (26) (see Appendix

B) in the form of a system

DP = P 2 +Q ,

with

P =

(
ρ σ
σ ρ

)
and Q =

(
Φ Ψ
Ψ Φ

)
.

Employing the ansatz

P = −(DX)X−1 , (12)

this first-order, nonlinear, inhomogeneous system of ordinary differential equations in P transforms into
the second-order, linear, homogeneous system in X given by

D2X = −QX .

Now, considering the case introduced in Condition (G6), namely that of an idealized Dirac delta distri-
butional gravitational lens, i.e.,

Q = Qδ δ(r) with Qδ :=

(
Φδ Ψδ

Ψδ Φδ

)
, (13)
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and using D = ∂r, the general solution of this system reads

X(r) +X(0) rQδH(r) = C0 +C1r ,

where

H(r) :=

{
0 for r < 0

1 for r ≥ 0

is the usual Heaviside step function. The initial conditions X(0) = 112×2 and DX(0) = −P (0) = −Qδ

give rise to the constants C0 = 112×2 and C1 = 0, and thus to the particular solution

X = 112×2 − rQδH(r) . (14)

Substituting this particular solution into the ansatz (12), we find that it corresponds to the optical
scalars

P = QδH(r)
(
112×2 − rQδH(r)

)−1
.

In order to determine the focal points of a congruence of null geodesics described by such a solution of
the Sachs equations, that is, the points where neighboring null geodesics cross and where the convergence
or the shear tends to infinity, we may compute the zeros of the area of the cross section of the null
congruence

a = π det(X) . (15)

Since these focal points can be interpreted as focal points of a (thin) gravitational lens of the form (13),
they provide information on the particular nature of focusing induced by the Ricci and Weyl tensors,
respectively. Hence, substituting (14) into (15), we obtain the area

a = π
[
1− r

(
Φδ − |Ψδ|

)
H(r)

][
1− r

(
Φδ + |Ψδ|

)
H(r)

]
(16)

with the associated zero set

a−1(0) =
{
Φδ ± |Ψδ| = r−1

∣∣ r > 0
}
.

The form of this zero set shows that in case of both nonvanishing pure Ricci curvature with Φδ > 0 and
|Ψδ| = 0 as well as nonvanishing pure Weyl curvature with Φδ = 0 and |Ψδ| > 0, there is exactly one
focal point behind the lens. The geometric nature of the respective focal points is, however, different,
which can be seen directly from Equation (16). To be more precise, since for the case of pure Ricci
curvature both bracketed factors vanish at the focal point, it represents an actual point. In the case
of pure Weyl curvature, only the first factor vanishes, and as a consequence the corresponding focal
point is a line segment. Accordingly, Penrose’s gravito-optical analogy is exact for purely Ricci-curved
spacetime regions, viz., they focus exactly like anastigmatic lenses with one focal point. In contrast,
for purely Weyl-curved spacetime regions the analogy has to be weakened to being only similar to —
and not exactly like — astigmatic lenses in the sense that instead of having two focal lines they have
only one (cf. Section IVB). This aspect is, however, not of paramount importance because the effect
of astigmatism is nonetheless present. We point out, though, that for the mixed case where both the
Ricci curvature and the Weyl curvature do not vanish and Φδ > |Ψδ|, there exist two line-spread focal
points behind the lens. All this indicates that Penrose’s motivation for the gravito-optical analogy may
have originated in an analysis of the optical scalars and the Sachs equations relating the changes of the
optical scalars to the Ricci and Weyl curvatures, where the convergence tending to infinity focuses the
congruence of null geodesics into a point and the shear tending to infinity focuses it into a line (see
FIG. 2 in Appendix B), yet making no connection to the actual number of focal points. This will be
further elaborated in Section VI.

D. Application to the Notion of Energy Flux in General Relativity

After imposing Conditions (G1)–(G6) on gravitational systems, Conditions (O1)–(O4) on optical lens
systems, and applying the gravito-optical analogy in the form of Condition (G7), Penrose studies his
new concept of energy-momentum flux, which relates to the focusing power of spacetime curvature, in
detail for three different physically relevant examples that he calls “(approximately) plane gravitational
waves,” “plane-polarized gravitational wave packets,” and “arbitrary systems.”
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In the first example of “(approximately) plane gravitational waves,” for which only the Weyl curvature
is nonvanishing, he assumes two gravitational waves of short duration, both consisting of a nonoscillatory
pulse of equal strength but opposite orientation (in the sense of Condition (O2)), which are located at
fixed positions and separated by an affine distance w on the null geodesic under consideration [page
266, third paragraph]. For w → 0, the effects of the pulses cancel out and no energy is intercepted by
the geodesic null congruence. However, for 0 < wp ≪ 1, where p is the total focusing power of the
two gravitational pulses, their effects — and hence their energy — appear to be essentially the same as
that of a single “matter pulse” with total focusing strength p = p20w, p0 denoting the focusing strength
of each of the gravitational pulses, for which only the Ricci curvature is nonvanishing. This result is
a direct consequence of the link between the particular optical system consisting of two thin, convex,
astigmatic lenses and a single thick, convex, anastigmatic lens [page 264, last paragraph; page 266, up
to Section 4] in combination with the gravito-optical analogy where the Weyl curvature is related to
astigmatic lenses and the Ricci curvature to anastigmatic lenses [page 263, paragraph below Equation
(19)].
In the second example, Penrose moves on to the more general case of a “plane-polarized gravitational

wave packet,”48 which he models as a series of 2N nonoscillatory pulses, with N ∈ N, intercepted
by a geodesic null congruence [page 267, second paragraph]. Each of these pulses is again of equal
strength, opposite to the preceding one, and separated by the same affine distance w along the geodesic
null congruence. Combining these particular pulses into pairs allows him to regard each pair as a
single thick, convex, anastigmatic lens instead of two separate thin, convex, astigmatic lenses. Then,
considering scales for which w

√
N |Ψδ| ≪ 1, where Ψδ is again the focusing strength of each pulse,

so that the gravitational wave packet is sufficiently weak as well as locally confined, the total focusing
power of the gravitational wave packet — and hence its total energy-momentum flux across the geodesic
null congruence — can be obtained by simply summing up the focusing powers of all pairs resulting in
p ∼ Nw |Ψδ|2.
Finally, to define the focusing power of a “general system,” which he regards as an arbitrary system

of finite extent along the geodesic null congruence, i.e., the Ricci and Weyl scalars Φ and Ψ vanish for
values of the affine parameter outside of a certain finite range, he simply uses the same quantities as
in the analysis of the focusing power of a system that can effectively be described by a single thick,
convex, anastigmatic lens [page 269, second paragraph]. More precisely, by assuming that the Ricci
scalar Φ is the dominant quantity in gravitational focusing, he defines the total energy-momentum flux
across a geodesic null congruence up to some point P by the focusing strength Φδ.

49

VI. PENROSE’S GRAVITO-OPTICAL ANALOGY IN LIGHT OF NORTON’S MATERIAL
THEORY OF INDUCTION

We have done some quite heavy lifting by now. After Sections II and III gave a historical account of
the context and argumentative structure of Penrose’s gravito-optical paper, Sections IV and V gave a
fine-grained physical/mathematical analysis of the gravitational and optical systems Penrose analyzed,
linked to each other, and used to provide a new way of defining energy-momentum flow in general
relativity. Among other things, we amended Penrose’s analogy to the result that Ricci-curved spacetime
regions influence light passing through them exactly like anastigmatic lenses, whereas Weyl-curved
spacetime regions influence light only similarly to astigmatic lenses.50

This result already points to the possibility that the analogy is quite subtle: it is not enough to call
it a perfect or an imperfect analogy, because it is perfect for one kind of spacetime curvature/lens and
less perfect for the other. Furthermore, contrary to what many philosophical accounts of analogy would
have you believe, in the details of how Penrose progresses there is no completely clear-cut distinction
between a well-known source system on the one hand from which knowledge is transferred to a less
well-known target system on the other. To be sure, at first sight Penrose clearly wants to transfer
results from the domain of geometrical lens optics to the domain of gravitational systems as described
in general relativity. But as we shall see in the following when analyzing the details of how Penrose
progresses, he goes back and forth between both sides of the analogy, taking inspiration from either
side of the analogical divide to decide what he should do next on the other side.

48 He likewise conducts studies of electromagnetic as well as of zero-mass Dirac wave packets, which lead to similar results
as in this case (except for a spin-related functional dependency of the affine distance in the total focusing power).

49 This quantity corresponds to the expression ρξ + ση in Penrose’s Equation (48) on page 271, which can be easily seen
from his Equations (37) and (43) on pages 269 and 270, respectively.

50 See the end of Section III and all of Section VC.
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In reconstructing this back and forth, we shall use Norton’s account of analogy as embedded in his
material theory of induction. This will help us get closer to the bottom of Penrose’s analogy, to better
understand in what sense some curved spacetime regions and some optical lenses are analogous, why
they are analogous, and how the analogy can be used to derive new results. In order to do this properly,
we first need to know a bit about Norton’s material theory of induction.51

In general, inductive inference may be construed in contrast to deductive inference. Whereas in the
latter, true premises securely imply a true conclusion, this is not so for inductive inferences; here, the
premises at best strongly support the conclusion.52 The big question is how exactly this supporting
works, and how one can distinguish between a successful/reliable inductive inference and an unsuccessful
one.
This is what Norton’s account wants to answer in the analysis of particular historical case studies.

In the preface of [47], p. 7, Norton points out that his account of induction rests on two core principles.
Firstly, “[a]ll induction is local,” meaning that all inductive inferences are restricted to a certain domain,
and that the reliability of inductive inferences in that domain depends on the facts that have been
established about this domain. Secondly, “[t]here are no universal rules for inductive inference,” i.e.,
there is no general inductive logic akin to deductive logic whose rules of inference apply to all domains
equally. Instead, Norton argues, each domain of investigation will feature certain warranting facts, and
whether or not we tend to make reliable inductive inferences in said domains depends on whether we
have a good handle on these warranting facts, which fuel successful inductive inferences.

Two case studies that Norton discusses in detail are Marie Curie’s inference towards the crystalline
structure of radium, and Galileo’s inference that the patterns he saw on the Moon when looking through
a telescope were mountains throwing shadows. With regard to the Curie case, Norton notes that it
would be all too easy to see what Curie did as a special case of the inference schema “Some samples of
radium have been found to have certain chemical properties. Thus, all samples of radium have these
properties,” and based on that “Some samples of radium have been found to have chemical properties
similar to those of barium. Barium has this particular crystalline structure. Thus, all samples of
radium will have a very similar crystalline structure.” Put like this, it looks like fallacious deductive
reasoning or very naive inductive reasoning, prone to fail in a heartbeat. Norton’s point is that analyzing
Curie’s reasoning in this way is just not doing her justice, and that her actual reasoning rests on long-
established facts that drive her analysis and warrant the inductive inference that eventually got her
the Nobel Prize for Chemistry in 1911 for the discovery and analysis of radium and polonium.53 In a
nutshell, the fact that had been established in chemistry research of the late 18th and early 19th century
was that “Generally, salts that have similar chemical properties have similar crystalline structure.”54 It
is the strength of evidence that has been found for this general rule — which does allow for exceptions
— that fuels Curie’s analysis and allows her to make a successful inductive inference.
The Galileo case, however, is much closer to our own example. Norton argues that Galileo made an

inference by analogy, which he takes to be a special case of an inductive inference. Referring to Mill
[43] and Joyce [34], he notes that there has been a long tradition of formalizing analogical inferences
as inferences of the form “A is P . B resembles A in being M . Thus, B is P .” Norton regards this
one-fits-all way of formalizing analogical inferences as problematic; but he also points out that Joyce
noted that the reliability of the inference depends on there being a “causal connection” between P and
M , which is much more in the direction in which he develops his own account. In the latter, Norton
replaces Joyce’s demand by the requirement for there to be a factual connection, a “warranting fact to
authorize” the analogical inference ([47], p. 120). And if such a fact of analogy has been conjectured,
or even explored or established empirically, then this “warrants an analogical inference, the passing of
particular properties from the source system to the target” (p. 131). Norton emphasizes that it is crucial
to distinguish the original “fact of analogy” on the one hand, and the “analogical inference warranted
by a fact of analogy on the other.” The former is a crucial premise that needs to be established before
any analogical inference can be made, for it to then serve as an (often implicit) premise in the inductive
argument. In contrast, the latter is the inference itself that leads to a particular conclusion about the
target system.

51 It would also be interesting to attempt a reconstruction using the accounts of analogy of Hesse [28] and Bartha [2];
however, we found Norton’s account particularly pliable in analyzing Penrose’s analogy.

52 Eliminative induction can do better, but this special case of inductive reasoning does not seem to apply to the inferences
discussed below.

53 Of course, Curie had already been awarded the Nobel Prize in Physics for the development of a theory of radioactivity
in 1903, making her the only person who ever won the Nobel Prize in two distinct scientific fields. For an analysis of
Curie’s work on radium in the context of the material theory of induction see [47], Section 1.9.

54 This is a slightly different way of putting it than Norton does on p. 46 of [47]; he speaks of salts being “chemically
analogous” instead of them having “similar chemical properties.”
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All this plays out well in Norton’s analysis of Galileo’s inference to there being mountains on the
Moon, reported in Galileo’s 1610 “Siderius Nuncius.” Norton argues that when observing the Moon
with the then novel telescope, Galileo did not see mountains on the Moon directly, but instead inferred
their existence from what he did see:55

He tracked the advancing division between light and dark on the waxing Moon. His telescope
showed that its edge was not a smooth curve but an “uneven, rough and very wavy line.”
More important was the way it changed over time. As it slowly advanced, bright points of
light would appear ahead of it. They would grow and soon join up with the advancing edge.
Galileo found the analogy to the illumination of mountains on Earth irresistible.

But what was the “fact of analogy” that fueled Galileo’s inference? Norton argues that it is the
previously established fact that the Moon is the same kind of object as the Earth, and that light hitting
elevations on the Moon would react in just the same way (analogously) as it reacts when it hits an
elevation on Earth: it is reflected when the elevation is solid, and bent and refracted on the edges of
the object. In a word: light will make the elevation on the Moon throw a shadow, just as it does on
Earth.56 On the basis of this fact and using the laws of optics, Galileo could then deductively show how
the advancing division between light and dark would move if they were actually shadows thrown by
mountains, and he could even calculate the height of these mountains. Crucially, the fact of analogy that
fuels the inference is not some brute similarity between the Earth and the Moon as such, but that they
are both specific examples of objects with uneven surfaces that turn while being under unidirectional
light and thus throw shadows, and that the laws of optics (or simply shadow casting) apply to both
Earth and Moon in the same way.
We believe that Penrose’s analogy between curved spacetime regions and optical lenses functions in

a very similar way. The similarity is less obvious than “mountains here interact with light the same
way as mountains there.” But the comparison between Galileo’s analogy and Penrose’s analogy allows
us to see a (meta-)similarity: When it comes down to it, both curved spacetime regions and optical
lenses are examples of transparent media through which light moves, and in which its path is influenced
by the curvature of the medium.57 Of course, it could have been that a curved spacetime region is
curved in a very different way from a curved optical lens. In fact, Penrose has not established that for
every way that spacetime can be curved there is a corresponding optical lens that is curved just so it
would influence a light beam passing through in the same way as the curved spacetime region. Instead,
he did something much more specific. Most likely being inspired by Sachs’ invention of the optical
scalars in general relativity,58 Penrose likely saw that nonvanishing convergence θ influences geodesic
null congruences quite similarly to how anastigmatic lenses focus light rays, and that nonvanishing shear
σ influences these congruences very much like astigmatic lenses affect light.

But in order to see how far this analogy could be pushed, Penrose needed to look for gravitational
systems that behave like anastigmatic and astigmatic lenses as much as possible: in Norton’s words,
he needed to find or construct systems that would allow nailing down the analogical fact that would
authorize analogical inferences about gravitational systems. For as he himself stated in his introduction,
that was his aim: infer something new about gravitational systems, and especially about gravitational
energy, by comparing gravitational systems to optical lenses.
Compared to Galileo, this was a much harder task. Galileo inferred that mountains on the Moon exist,

just like mountains on Earth exist — but almost everything else followed after that: Moon mountains
interact with light the same way as Earth mountains; they are made from essentially the same material,
or so it was plausible to assume. In Penrose’s case, the material of the medium through which light
moves is not the same: in one case the material is glass (or plastic), in the other curved spacetime.
However, Penrose clearly thought that it was worthwhile to look for spacetimes that treat light just
like optical lenses do; Penrose was searching for the analogical fact that would warrant the analogical
inferences he hoped to make.

55 Cf. [47], p. 134.
56 We said above that the fact of analogy could have been established or merely conjectured. It is fair to say that in

Galileo’s case it was merely conjectured, and that indeed such a conjecture was very bold and unusual at the time. For
since Plato and Aristotle at least it had instead been conjectured that the heavenly bodies, including the Moon, were
made of an entirely different element than the Earth and the objects on Earth, and that they behaved according to a
separate set of laws of nature.

57 Of course, this does not mean that there are no important differences between curved spacetime regions on the one
hand, and optical lenses on the other, even when it comes to them acting as media for light. For example, optical lenses
are in general homogeneous media that do not vary in their density, whereas curved spacetime regions do not have a
density in the same sense; and yet, the curvature of a spacetime region can influence light in ways akin to the curvature
of an optical lens.

58 See Section II for the historical reconstruction and context, and Appendix B for the mathematically precise account.
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As we saw in Section III, Penrose starts out by introducing Sachs’ optical scalars, convergence θ,
rotation ω, and shear σ in his Section 2, “Optical Scalars.” Having gone through the whole paper itself,
and the parts of general relativity and lens optics it implicitly refers to, it now seems plausible that
this is also the origin of what was likely initially only a hunch that there might be an analogy between
certain gravitational systems and certain optical systems. Indeed, from Figure 1 in Penrose’s paper
(reproduced as FIG. 2 in our Appendix B), which visualizes his interpretation of the optical scalars,
one might get the idea that the convergence θ focuses a null congruence perfectly like an anastigmatic
lens focuses a beam of light rays, and that the shear σ blurs a null congruence in a way quite similar to
what an astigmatic lens does to a beam of light rays.59

But as so often, a hunch is not enough, especially if you want to use an analogy as a warranting
fact on the basis of which to make inferences. In the following, we shall use Norton’s terminology to
show that Penrose’s paper can be understood as his first conjecturing, then establishing, and finally
rendering more precisely a fact of analogy between gravitational and optical systems. We shall also
see that Penrose is using an iterative process to do so, going back and forth between gravitational and
optical systems in his construction, in a way buttressing the analogy on both sides of the fence.
The endeavor starts shortly before his Section 3, “Lenses,”60 with his establishing what we called

Conditions (G1)–(G3) in our Section VA. These three conditions that Penrose imposes on the gravita-
tional systems have the aim of making the null congruences to be investigated very much like beams of
light rays in geometrical optics. Condition (G1) restricts the measurement of focusing power of curved
spacetime regions to along geodesic null congruences, just like the focusing power of optical lenses is
measured along light rays. Condition (G2) restricts the null congruences to be investigated to those
that have vanishing rotation ω, for the light rays of geometrical optics cannot twist. Condition (G3),
finally, demands that the null congruences are nondispersive, for the optical phenomenon of dispersion
cannot be handled in geometrical optics, ray optics, but only in wave optics.
So far so good; but in order to connect the convergence and shear of a geodesic, rotation-free,

nondispersive null congruence to the Ricci and Weyl curvatures of the spacetime the congruence moves
through, Penrose needed to take a closer look at the Sachs equations (24) and (26) that describe their
development through spacetime. Having previously derived the Ricci and Weyl scalars in his work
with Newman [45], Penrose could now at the beginning of his Section 3 argue that the convergence θ
is dominated by the Ricci scalar Φ, whereas the shear σ is dominated by the Weyl scalar Ψ. Further
restricting the set of null congruences to those for which this is the case is done by our Condition
(G4). Thus, a spacetime region which makes a null congruence primarily converge must be mostly
Ricci-curved, whereas a spacetime region that primarily produces shear in a null congruence must be
mostly Weyl-curved. In the case of a Ricci-curved region, demanding that it makes the null geodesics
converge to a single point like an ideal magnifying glass requires also imposing the null energy condition,
Condition (G5), on the Ricci tensor.
Thus far, the conditions imposed on gravitational systems have not yet brought about a counterpart

to optical lenses. Penrose models the corresponding spacetime regions by imposing Condition (G6), the
condition that specifies the Ricci and Weyl scalars in the spacetime region as Dirac delta distributions;
so all the curvature that is felt by the null congruence is concentrated at a 3-dimensional hypersurface
that intersects the path of the null congruence through spacetime, just like the optical lens intersects
the path of the light ray through space.
Imposing Conditions (G1)–(G6) has then specified two types of spacetime regions (purely Ricci-curved

Dirac delta regions and purely Weyl-curved Dirac delta regions) that act on geodesic, rotation-free,
nondispersive null congruences very much like anastigmatic and astigmatic lenses, respectively, act on
beams of light rays. While Galileo could assume that mountains on the Moon react to light in the same
way as mountains on Earth do because they are made of the same material, Penrose had to find, or
even build, those gravitational systems in the solution space of the Einstein field equations that would
react to light akin to these two types of optical lenses. Having found these systems, he thus established
a fact of analogy between particular gravitational systems and particular optical lenses. At this point in
the construction, it is an established fact, as Penrose himself also states at the beginning of his Section
3, that beams of light rays (from now on identified with geodesic null congruences) passing through a
spacetime region governed by Conditions (G1)–(G6) are influenced in a way analogous to light passing
through anastigmatic and astigmatic lenses.

59 Our conjecture of the temporal order of hunches, ideas, and developed reasoning is further strengthened by Penrose’s
1967 Battelle Lectures. In [52], pp. 166–168, Penrose first reproduces the same figure of the optical scalars, and then
argues that the part of the Sachs equations governing convergence θ and shear σ can be interpreted as showing the
analogy between Ricci-curved regions of spacetime to anastigmatic lenses and of Weyl-curved regions to astigmatic
lenses, respectively. Thus, his order of presentation corresponds to our reconstructed order of discovery/reasoning.

60 Recall our short summary of this section in our Section III.
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Now that Penrose has well-defined gravitational systems, he can explore their properties indepen-
dently of the analogy that motivated the conditions that gave rise to them. It is as if Galileo had
teamed up with the crew of Apollo 11 and asked them to check whether the mountains on the Moon
are really made from the same stuff as the mountains on Earth. But to really get to the bottom of this
question, Armstrong, Aldrin, and Collins would have had to bring back rock samples from the Moon
and compare them to rock samples from Earth.
Likewise, the sought-after gravitational systems in hand, and having investigated their properties

further, Penrose now turns around and checks whether certain properties he found in the gravitational
domain could be associated with corresponding properties in the optical domain. Thus, Penrose not only
imposes conditions on the spacetime regions in question but also does the same to the optical systems
under consideration, supposed to be analogous. Indeed, Condition (O1) from our Section VA makes
sure that the analogy is restricted just as much in the optical domain, and not only to anastigmatic
and astigmatic lenses as such, but to those subsets of these two classes of lenses that feature properties
corresponding to the gravitational systems previously identified.61 In particular, Penrose looks for an
optical counterpart to the nonlinear features of his gravitational systems exhibited by the nonlinearity
of the Sachs equations, finds it in the nonlinear contribution to the total focusing power of optical
systems consisting of two thin, convex, anastigmatic lenses, and then turns around yet again to transfer
this to the associated gravitational systems (see again Condition (O1) and Condition (G7)).

We will come back to this in a moment; but let us first note that this type of iterative process, this
going back and forth and transferring properties both from the source system to the target system and
vice versa in an iterative fashion, is not present in Norton’s analysis of Galileo (or Curie). But we
believe it is not atypical for the use of analogies in physics. The iterative process allows one to make
the analogy ever more precise. It is just like an artist painting a portrait: the artist is primarily in
the business of creating a picture, her target, that corresponds to a source, the model. But in between
painting different parts of the model, she might focus on particular aspects of the model, inspired by
her own act of painting, aspects that she would not have focused on otherwise.
Similarly, Penrose clearly wants to find a certain set of spacetime regions/gravitational systems —

that is his target. But while searching and investigating and then polishing the target of his labors,
he occasionally looks back at the source system, the optical lenses, and zooms in on particular aspects,
inspired by what he might next need for the gravitational domain.
Having imposed Condition (O1) on the optical systems (and for reasons of mathematical simplicity

Conditions (O2)–(O4)), all in light of Conditions (G1)–(G6), Penrose then turns around yet again and
returns to the gravitational systems. He finds that the newly imposed conditions (O1)–(O4) force
him to set one more condition on the gravitational systems: Condition (G7). This is the strongest
transfer yet, as it allows him to carry the concept “focusing power” over from the domain of optical
lenses (subject to Conditions (O1)–(O4)) to the domain of gravitational systems (subject to Conditions
(G1)–(G6)). And not only that, learning from lens optics he is able to delineate precisely under which
conditions the focusing power of gravitational systems is additive and when it is not. This then brings
us, at the beginning of Penrose’s Section 4, to the controlling fact of the analogy, the core or the
correspondence relationship that Penrose was seeking. Having found that spacetime regions that are
curved in a particular way influence light rays analogously to two particular types of optical lenses,
Penrose finally turns to a fact that had been established way before and that would enable him to
close the bridge between gravitational and optical systems: the Einstein field equations. As he had
identified total focusing power locally with Ricci curvature, and given that the Einstein field equations
in their trace-reversed form (7) identify Ricci curvature with energy-momentum, he could finally identify
the total focusing power, due to Ricci and/or Weyl curvature, of a spacetime region with the energy-
momentum flux through that region. This, then, is the controlling fact for all analogical inferences
that follow: that under certain conditions the energy-momentum flux through a spacetime region can
be obtained from its focusing power, i.e., its influence on null congruences. Based on this, Penrose
can now use the fact of analogy to authorize analogical inferences, and thus make predictions about
gravitational waves and energy-momentum flux in his Section 4. Just like in Galileo’s case and unlike
in Curie’s case,62 Penrose’s analogy is what Norton called one of these rare cases in which “inductive
inferences may turn out to have been deductive inferences all along, once we make the background
facts explicit [...] an extreme and relatively rare case;” though the background facts will still have been

61 At this point, we are still within our initial summary of Penrose’s Section 3, given in our Section III on p. 7.
62 See [47], Chapter 1, p. 40, for Curie and Chapter 4, p. 134, for Galileo in this regard. Note that in the case of Curie, her

predecessor Huay had developed the theory of crystals in such a way that after the warranting fact had been established,
things proceeded deductively from there. However, in this case this was too restrictive and ultimately unsuccessful (cf.
[47], p. 42), so that Curie’s fully inductive account superseded Huay’s.
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established inductively [47], p. 51. Our expectation is that in the realm of physics, such cases may
not be all that rare; and as Norton points out in a footnote to the above quote, there is still plenty of
inductive risk in the establishment of the facts of analogy that serve as a premise in the subsequent
deductive arguments.
Just like the iterative process described above, Penrose’s Section 5 is something that does not appear

in Norton’s discussion of Galileo and Curie, but which is nonetheless compatible with Norton’s account.
Having first conjectured and then established a (series of) fact(s) of analogy between specific curved
spacetime regions and specific optical lenses, Penrose now wants to see how far the analogy can be
pushed, whether it can be extended to more general spacetime regions. In order to do this, he has
to generalize and also to make more precise his original argument for the correspondence, and in our
reconstruction of the generalized argument (see Section VC for the proof of the original argument and
the end of Section VD for the generalized argument), one finds not only the precise range of validity
for both of Penrose’s arguments (cf. Section VB), but that already within the range of the original
argument, there is an interesting wrinkle in the analogy. It is not simply that the analogy is not perfect
— it is perfect for Ricci-curved Dirac delta regions and anastigmatic lenses but imperfect for Weyl-
curved Dirac delta regions and astigmatic lenses. To say it one more time: Ricci-curved Dirac delta
regions behave exactly like anastigmatic lenses, whereas Weyl-curved Dirac delta regions only behave
similarly to astigmatic lenses. Furthermore, the link between focusing power and energy-momentum
flux really works only for how Ricci-curved spacetime regions influence null congruences; the link works
only for those Weyl-curved regions that can be modeled by Ricci-curved regions.63

In our opinion, though, this only makes the analogy conceptually more intriguing. For the question
Penrose asked at the beginning of his paper still stands to this day: how far can the analogy be extended,
to an analogy between other optical lenses and otherwise curved spacetime regions? Even as it stands,
it seems clear to us that the predictive potential of the analogy has not yet been exhausted. The fact
of analogy that Penrose conjectured, established, generalized, and made more precise than it originally
was may well authorize a whole plethora of analogical inferences that are yet to be made. And what
type of analogical inferences would they be?
Let us take stock. At the beginning of our paper, we asked whether Penrose’s analogy was a metaphor

of only heuristic value, maybe even just a visual and quite possibly misleading aid, or whether it encoded
something deeper about general relativity as such and the nature of spacetime curvature in particular.
We can now say with conviction that it is indeed more than the metaphor of a curved sheet of cloth —
much more. It does not only allow one to visualize particularly curved spacetime regions as optical lenses
of a certain kind; it allows one to derive new and hitherto unfathomed results about such spacetime
regions, and even to bring about a new — and well-defined — notion of energy in general relativity.
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Appendix A: Newman–Penrose Formalism and Spinors

We give a short account of all the aspects of the Newman–Penrose formalism [45] required for Penrose’s
gravito-optical analogy, which includes its 2-spinor representation. To this end, we first recall the more
general tetrad formalism. We again let (M, g) be a Lorentzian 4-manifold endowed with the Levi-Civita
connection ∇. Furthermore, we introduce two types of dual pairs of bases for the tangent and cotangent
spaces TpM and T ⋆

pM at each point p ∈ M, namely dual pairs of coordinate bases (eµ) and (eµ) as well

as dual pairs of tetrad bases (e(a)) and (e(a)) consisting of frame fields, i.e., four locally defined, linearly
independent, orthonormal or null vector fields, and their unique metric duals. Here, Greek letters label

63 See Section VB.
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the tensor indices and Latin letters enclosed in parentheses label tetrad indices. Fixing a dual pair of
coordinate bases, a dual pair of tetrad bases can be expressed as

e(a) = e µ
(a) eµ and e(a) = e(a)µ e

µ ,

where e µ
(a) : TM → TM are linear mappings with e µ

(a) e
(b)

µ = δ
(b)
(a) and e µ

(a) e
(a)

ν = δµν . These basis

vectors are usually chosen in such a way that the inner product

g(e(a), e(b)) = e µ
(a) e(b)µ = η(a) (b)

yields a specified nondegenerate, constant, symmetric matrix η ∈ Sym4(M), which serves as the metric
in the tetrad formalism. Moreover, one has the freedom to perform both local Lorentz transformations

Λ
(a)

(a′)(x
µ) ∈ O(1, 3) as well as general coordinate transformations ∂µx

µ′ ∈ Cov(M), where Cov(M)

denotes the covariance group of M, that is, a (pseudo-)subgroup of Diff1(M), the group of all C1-
diffeomorphisms of M to itself. The Riemann tensor in this framework is defined via the (torsion-free)
Maurer–Cartan equations of structure

de(a) + ω
(a)

(b) ∧ e(b) = 0

dω
(a)

(b) + ω
(a)

(c) ∧ ω
(c)

(b) =
1
2 R

(a)
(b) (c) (d) e

(c) ∧ e(d) ,

in which the spin connection 1-forms

ω
(a)

(b) =
(
e(a)ν e

λ
(b) Γν

µλ − e λ
(b) ∂µe

(a)
λ

)
dxµ

are the tetrad formalism representation of the Christoffel symbols Γν
µλ.

Now, the Newman–Penrose formalism is a specific tetrad formalism, in which the local tetrad bases
consist of two real-valued null vectors, l = e(0) and n = e(1), as well as a complex-conjugate pair of null

vectors, m = e(2) and m = e(3), satisfying the null, orthogonality, and cross-normalization conditions

l · l = n · n = m ·m = m ·m = 0

l ·m = l ·m = n ·m = n ·m = 0

l · n = −m ·m = 1 .

The metric in this formalism reads

η = l⊗ n+ n⊗ l−m⊗m−m⊗m .

Moreover, the spin connection is represented by the spin coefficients

κ = γ(2) (0) (0) ϱ = γ(2) (0) (3) ϵ = 1
2 (γ(1) (0) (0) + γ(2) (3) (0))

σ = γ(2) (0) (2) µ = γ(1) (3) (2) γ = 1
2 (γ(1) (0) (1) + γ(2) (3) (1))

λ = γ(1) (3) (3) τ = γ(2) (0) (1) α = 1
2 (γ(1) (0) (3) + γ(2) (3) (3))

ν = γ(1) (3) (1) π = γ(1) (3) (0) β = 1
2 (γ(1) (0) (2) + γ(2) (3) (2)) ,

where the symbols γ(a)(b)(c) are the so-called Ricci rotation coefficients defined by

γ
(a)

(b)(c)e
(c) = e (a)

µ

[
deµ(b) + ωµ

(b)(c)e
(c)

]
.

The two central quantities in Penrose’s analogy, namely the Ricci tensor R(a)(b) and the Weyl tensor
C(a)(b)(c)(d), are expressed through the four real-valued scalars

Φ00 = − 1
2 R(0)(0) = − 1

2 Rµν l
µlν (17)

Φ11 = − 1
4 (R(0)(1) +R(2)(3)) = − 1

4 Rµν (l
µnν +mµmν)

Φ22 = − 1
2 R(1)(1) = − 1

2 Rµν n
µnν

Λ = 1
12 (R(0)(1) −R(2)(3)) =

1
12 Rµν (l

µnν −mµmν)
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and the three complex scalars

Φ01 = − 1
2 R(0)(2) = − 1

2 Rµν l
µmν

Φ02 = − 1
2 R(2)(2) = − 1

2 Rµν m
µmν

Φ12 = − 1
2 R(1)(2) = − 1

2 Rµν n
µmν

on the one hand, and through the five complex scalars

Ψ0 = −C(0)(2)(0)(2) = −Cµναβ l
µ mν lα mβ (18)

Ψ1 = −C(0)(1)(0)(2) = −Cµναβ l
µ nν lα mβ

Ψ2 = −C(0)(2)(3)(1) = −Cµναβ l
µ mν mα nβ

Ψ3 = −C(0)(1)(3)(1) = −Cµναβ l
µ nν mα nβ

Ψ4 = −C(1)(3)(1)(3) = −Cµναβ n
µ mν nα mβ

on the other hand. Further details on the tetrad formalism and the Newman–Penrose formalism can
be found in, e.g., the textbook [9, Chapters 1.7. and 1.8.].
We next present a compact representation theoretic/geometric account of spinors and the 2-spinor rep-

resentation of the Newman–Penrose formalism (see, e.g., [25, 55] and [36, Chapter 2]). Working within
the framework of general relativity, we may consider the group SL(2,C) ∼= Spin(1, 3) → SO+(1, 3,R) as
the local spinor group acting on the 2-dimensional complex vector space C2 and preserving its natural 2-
dimensional nondegenerate skew-symmetric 2-form ϵ, which is defined by the 2-dimensional Levi-Civita
symbol. Hence, we regard (C2, ϵ) as our spinor space and elements ξ ∈ C2 as spinors. For each spinor
ξ there exists a dual with respect to ϵ, namely a mapping C2 → (C2)⋆ with ξA 7→ ξA = ϵBAξ

B , where
A,B ∈ {0, 1}. Additionally, since C2 is naturally endowed with a conjugacy operation, we can define a
complex conjugate and a complex conjugate dual (denoted by a bar over the symbol with simultaneous
priming of sub- and superscript letters). Then, in order to set up the 2-spinor representation of the
Newman–Penrose formalism, we introduce a local dyad basis (ζ(k)), k ∈ {1, 2}, for the spinor space

(C2, ϵ) and a local dyad co-basis (ζ(k)) with respect to the 2-dimensional Levi-Civita symbol ϵ for its
dual. Projecting the spinor ξ onto this dyad basis and the dual spinor onto the dyad co-basis yields

ξ(k) = ζ A
(k) ξA and ξ(k) = ζ

(k)
AξA ,

where ζ
(k)

A : TC2 → TC2 are linear mappings with ζ
(k)

A ζ A
(l) = δ

(k)
(l) and ζ

(k)
A ζ B

(k) = −δBA . Employing

the notation ζ A
(0) = oA and ζ A

(1) = ιA, we may express the Newman–Penrose tetrad basis vectors in

the dyad spinor representation

lµ = σµ
AB′ o

A oB
′

nµ = σµ
AB′ o

A ιB
′

mµ = σµ
AB′ ι

A oB
′

mµ = σµ
AB′ ι

A ιB
′
,

where

σµ
AB′ = 1√

2

(
lµ mµ

mµ nµ

)
are the Infeld–van der Waerden symbols [31], a generalization of the usual Pauli matrices.

Appendix B: Optical Scalars and Sachs Equations

We define Sachs’ optical scalars, the key quantities in Penrose’s gravito-optical analogy, and their prop-
agation equations within the Newman–Penrose formalism. For this purpose, following [9, Introduction
to Chapter 1.9. and Chapter 1.9.(a)], we first examine the parallel transport of the Newman–Penrose
basis vectors l, n, and m along the direction of l. Thus, considering a first-order change in a general
basis vector e(a) experiencing an infinitesimal displacement χ, we obtain the relation

δe(a)µ = [∇νe(a)µ]χ
ν = −γ(a)(b)(c) e

(b)
µ χ

(c) . (19)
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FIG. 2: Geometrical representations of Sachs’ optical scalars in terms of the effects of parallel transport of a
small perpendicularly oriented circle along the geodesic null congruence.

This relation yields the change in e(a) per unit displacement along the direction c

δe(a)(c) = [∇νe(a)] e
ν

(c) = −γ(a)(b)(c) e
(b) , (20)

and in particular for the associated changes in l, n, and m along l

δl(0) = 2Re(ε l− κm) (21)

δn(0) = 2Re(−εn+ πm) (22)

δm(0) = π l− κn+ 2i Im(ε)m . (23)

Substituting the relation δl(0) = [∇νl] l
ν , which also can be readily found from Equation (20) for

a = 0 = c, into Equation (21), one immediately sees that for κ = 0 the basis vector l forms a
congruence of null geodesics, i.e., a 3-parameter family of geodesic null curves located in a specific
region of spacetime, where each point is intersected by exactly one of these curves. Moreover, for ε = 0,
this congruence is affinely parameterized. Without changing these values of κ and ε, one can arrange
for π to vanish as well using a specific class III local Lorentz transformation. (For more details on tetrad
transformations see [9, Chapter 1.8.(g)].) Then, similarly to l, the basis vectors n and m also remain
unchanged as they are parallel transported along the general direction of l, which is a direct result of
Equations (22) and (23).
From Equation (20) for a = 0, one furthermore obtains the equation

∇ν lµ = γ(b)(0)(c) e
(b)

µ e
(c)

ν .

For κ = 0 = ε, i.e., for an affinely parameterized geodesic null congruence, this equation can be used to
define Sachs’ optical scalars [33, 68], namely the convergence θ, the rotation ω, and the shear σ, as

θ := −Re(ρ) = 1
2 ∇µl

µ

ω2 := Im2(ρ) = 1
2 ∇[ν lµ] ∇ν lµ

|σ|2 = 1
2 ∇(ν lµ) ∇ν lµ − 1

4 [∇µl
µ]2 .

The geometrical meaning of the optical scalars can be illustrated by drawing a small circle which has
its center at a point p on one of the geodesics of the null congruence formed by l and lies in the 2-plane
spanned by m and m, and then following the geodesics intersecting the circle along the future null
direction (cf., e.g., [26, Chapter 2.1.3]). In doing so, the circle may become expanded or contracted,
twisted, and/or sheared into an ellipse, which is measured by θ, ω, and σ, respectively (see FIG. 2).
The propagation equations of the optical scalars determining their changes along the geodesic null
congruence are given by the corresponding spin coefficient equations (see [9, Chapter 1.8.(d)])

Dθ = ω2 − θ2 − |σ|2 − Φ00 (24)

Dω = −2θω (25)

Dσ = −2θσ +Ψ0 , (26)

where D = lµ∇µ and the Ricci and Weyl scalars Φ00 and Ψ0 are specified in Equations (17) and (18).
These propagation equations are commonly referred to as the Sachs equations (for example in [57]).
Finally, the local dyad spinor representations of the optical scalars and the above Ricci and Weyl scalars
read

(−θ + iω)oA = oB oC′∇AC′
oB and σoA

′
= oB oC∇CA′

oB
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as well as

Φ00 = ΦABC′D′ oA oB oC
′
oD

′
and Ψ0 = ΨABCD oA oB oC oD .
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