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Abstract

We situate a recent theory of non-relativistic torsionful gravity de-
veloped by Meskhidze and Weatherall (2023) within the context of the
broader philosophical and physics literature; we also discuss the philo-
sophical significance of that theory.
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1 Introduction

Newton-Cartan theory (NCT) was developed initially by Cartan (1925) and
Friedrichs (1928) as a curved spacetime model of Newtonian gravity. The the-
ory went through a classical phase of investigation in the 1960s and 70s (see
in particular Dautcourt 1964; Dixon 1975; Havas 1964; Künzle 1972, 1976;
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Trautman 1965), two of the many fruits of which were the Trautman (1965) ge-
ometrisation and recovery theorems, which together establish a precise sense in
which NCT is ‘equivalent’ to standard Newtonian gravity. More recently, NCT
has undergone a renaissance in which it and its torsionful generalizations have
been applied to non-relativistic holography (see e.g. Christensen et al. 2014a,b)
and condensed matter physics, especially the fractional quantum Hall effect (see
e.g. Geracie et al. 2016; Son 2013; Wolf, Read, and Teh 2023).

More recently, philosophers have also begin to study torsion in the classi-
cal spacetime context. Motivated by questions raised by Knox (2011), Read
and Teh (2018) explore the extent to which the mappings between NCT and
ungeometrised, potential-based Newtonian gravity (henceforth NG)—made pre-
cise in Trautman geometrisation/recovery—can be understood exactly as a case
of ‘teleparallelisation’—i.e., the map relating general relativity to its torsionful
equivalent, teleparallel gravity (TPG)—finding an affirmative answer: NG just
is the teleparallel equivalent of NCT, and the gravitational potential of that
former theory can be understood as a (gauge-fixed) ‘mass torsion’, associated
with the mass gauge field which arises once one gauges the Bargmann algebra
(Andringa et al. 2011; Read and Teh 2018; Teh 2018; Wolf, Read, and Teh
2023). Read and Teh (2018) also show that this NCT–NG correspondence is
the non-relativistic limit of the GR–TPG correspondence, when said ‘limit’ is
implemented via null reduction; an alternative non-relativistic limit (now im-
plemented via a 1/c expansion) is undertaken by Schwartz (2023), from which
the same results are obtained. Building on this, Read and Teh (2022) exploit
these connections in order to explore the status of ‘Newtonian equivalence prin-
ciples’; Wolf and Read (2023b) use these results to motivate the construction of
a purely non-metric equivalent to NCT, thereby completing a ‘non-relativistic
geometric trinity’1; and March et al. (2023) identify that the ‘common core’ of
this non-relativistic trinity is Maxwell gravitation (on which see Chen (2023),
Dewar (2018), and March (2023)).2

To this by-now quite mature physics literature, and still-blossoming philo-
sophical literature, Meskhidze and Weatherall (2023) have recently added their
own contribution.3 In their article, they seek to construct a non-relativistic
theory of gravitation which (in some sense) is equivalent to NCT, yet the grav-
itational effects in which are manifestations only of (spatiotemporal) torsion.
This theory is certainly interesting and worthy of study; however, in our view
there remains much to be said about it, especially with respect to the following
questions:

1This of course is the non-relativistic analogue of the ‘relativistic geometric trinity’
(Jiménez et al. 2019), which is a collection of three empirically equivalent gravitational the-
ories which are formulated using different geometric degrees of freedom: curvature for GR,
torsion for TPG, and non-metricity for ‘symmetric teleparallel gravity’ (STGR). See Wolf and
Read (2023a) and Wolf, Sanchioni, et al. (2023) for further philosophical discussion on issues
concerning theory equivalence and underdetermination in this context.

2Here, ‘common core’ is meant in the sense of Le Bihan and Read (2018).
3To be perfectly clear on the chronology: Meskhidze and Weatherall (2023) appeared as

an online preprint a couple of months before March et al. (2023) and Wolf and Read (2023b).
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1. How is the Meskhidze-Weatherall theory best situated with respect to the
existing physics and philosophy literature on non-relativistic torsionful
theories of gravitation: what in particular is lacking in that literature;
where (if anywhere) does that literature go wrong; and what (if anything)
does the Meskhidze-Weatherall theory add to this literature which was
not already known?

2. What is the best interpretation of the Meskhidze-Weatherall theory qua
theory, and how best to eke out its philosophical significance?

Our goal in this discussion note is to undertake a systematic exploration of the
above two questions. Accordingly, the structure of the note is as follows. In
§2, we introduce the technical details of the Meskhidze-Weatherall theory; in
§3 we answer question (1) by situating this theory with respect to the exist-
ing literature; in §4, we answer question (2) by engaging in a thoroughgoing
interpretation of this theory; in §5, we conclude.

2 The Meskhidze-Weatherall theory

Let’s first recall the details of the Meskhidze-Weatherall theory of non-relativistic
torsionful gravitation (henceforth MWT). Kinematical possibilities of this the-
ory are tuples ⟨M, ta, h

ab,∇, ρ⟩, where the first four elements denote a classical
(i.e., non-relativistic) spacetime (assumed to be temporally orientable) in the
sense of (Malament 2012, ch. 4), and ρ is a scalar field denoting the matter
density content. In this theory, ∇ is a derivative operator with torsion (which,
recall, encodes the antisymmetry of the connection—see Wald (1984, p. 53))
generically decomposable as

T a
bc = 2F a

[b tc]; (1)

one can treat this as a kinematical restriction on the content of this theory.
Dynamical possibilities of MWT are picked out by the field equation

δna∇[nF
a
b] = 2πρtb; (2)

gravitating but otherwise force-free test bodies with velocity vectors ξa are sub-
ject to

ξn∇nξ
a = −F a

n ξ
n; (3)

hence, such bodies experience torsion-dependent forces and thereby exhibit non-
geodesic motion. Meskhidze and Weatherall (2023) prove a ‘recovery’ theorem
à la Trautman (1965) relating the models of Newton-Cartan theory (NCT) to
(orbits of) models of MWT—we return to this in §4.
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3 Situating the Meskhidze-Weatherall theory in
the literature

With the technical details of MWT on the table, we now consider and assess
some claims made by Meskhidze and Weatherall (2023) with respect to the exist-
ing physics/philosophy literature on torsion in non-relativistic gravity—claims
which they use to motivate the construction of MWT. There are, in particular,
four claims made with respect to that literature upon which we here focus: (i)
claims regarding the relationship between the existence of torsion and the closed
nature of ta in a(n orientable) classical spacetime model (§3.1); (ii) claims re-
garding the literature’s (supposedly) blinkered attention upon a (supposedly)
restricted form of the connection (§3.2); (iii) a particular terminological choice
regarding ‘spatial torsion’ and ‘temporal torsion’ which clashes with the existing
literature (§3.3); and (iv) claims made regarding the purposes of certain articles
on the non-relativistic limits of relativistic theories (§3.4).

3.1 Does a closed clock form imply vanishing torsion?

Meskhidze and Weatherall (2023) assert that physicists often claim “that taking
∂µtν = 0, where ∂ is a (torsion-free) coordinate derivative operator will always
result in a torsion-free spacetime” (p. 9, emphasis in original). The first thing
to say about this passage is that we don’t find any evidence that the claim is
true, when ∂µtν = 0 is not antisymmetrised (thereby making ta a closed form).
Since all of the important action (as it were) with respect to the above quote
from Meskhidze and Weatherall (2023) concerns the relationship between (a) the
existence of torsion and (b) the closed nature of ta, we’ll focus our considerations
upon said relationship in the remainder of this subsection.

On this relationship, earlier on in their article, Meskhidze and Weatherall
(2023) write that “it is widely claimed that a classical spacetime with torsion
cannot have a temporal metric that is closed [...] this is not true” (p. 2). Denot-
ing schematically all torsion by T , Meskhidze and Weatherall (2023), in other
words, impute to the literature the claim that

T ̸= 0
?

=⇒ dt ̸= 0, (4)

which of course by contraposition is equivalent to the claim that

dt = 0
?

=⇒ T = 0. (5)

Now, on the one hand, Meskhidze and Weatherall (2023) are completely correct
that this claim is false (hence our oversetting with ‘?’ above)—one need only
look to the expressions for torsion in terms of exterior derivatives of gauge fields
found given in Andringa et al. (2011, §4.1) to see that dt = 0 does not imply that
all components of the torsion vanish. One can make this point more incisively
by deriving the relationship4

taT
a
bc = (dt)bc, (6)

4See e.g. Bekaert and Morand (2014, proposition 3.2).
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from which we see that, although the torsion T need not vanish when dt = 0,
it is nonetheless severely constrained by this condition: in particular, the upper
(vector) index of T must lie in the kernel of t, and is thus ‘spacelike’. We
note that this general consideration thus constrains the form of the torsion that
Meskhidze and Weatherall introduce.

All of the above is well-known. Thus, although Meskhidze and Weatherall
(2023) are correct that the implication (5) fails, it is not correct to impute to
the physics literature a widespread failure to recognise this.

Perhaps more worrying on this front, though, is an apparent logical error
which occurs when Meskhidze and Weatherall (2023) seek to impute (5) to the
literature. As a way of making their case, Meskhidze and Weatherall (2023)
quote the following passage from a widely-cited physics article on this topic:

The absence of torsion implies that the temporal vielbein τµ corre-
sponds to a closed one-form and that it can be used to define an
absolute time in the space–time [...] TTNC geometry is character-
ized by the fact that the temporal vielbein is hypersurface orthogonal
but not necessarily closed. (Bergshoeff et al. 2014, p. 3)

But note that the content of the first sentence of this passage is the implication

T = 0 =⇒ dt = 0 (7)

—i.e., exactly the converse of the claim which Meskhidze and Weatherall (2023)
impute to the literature! Moreover, (7) is clearly true, as again evident from
e.g. Andringa et al. (2011, §4.1). So, to summarise: Meskhidze and Weatherall
(2023) are (i) correct that (5) is false, but (ii) incorrect to impute (5) to the
literature; moreover (iii) commit an error in reading Bergshoeff et al. (2014) in
this way, for that article asserts only (7), which is true.

3.2 Justifying the form of the connection considered in
the literature

In any case, moving on from the above, Meskhidze and Weatherall (2023) fur-
ther target the form of the connection used in the ‘TTNC’ literature (‘twist-
less torsionful Newton-Cartan theory’—i.e., most recent physics work on this
topic)—i.e., one with coefficients

Γλ
µν = vλ∂(µtν) +

1

2
hλρ (∂ρhνρ + ∂νhµρ − ∂ρhµν) (8)

(Geracie et al. 2015, eq. 2.45)—claiming that the only reason the torsion of
their connection vanishes when the clock form ta is closed is because “they
have adopted such a strict definition for their connection” (p. 10, emphasis in
original).

Taken at face value, this claim is true—but it fails to appreciate the full rea-
sons underlying why physicists in the TTNC community have used a connection
of this form as their starting point. One motivation for using such a connection
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is stated clearly by e.g. Hansen et al. (2020, §2) (cf. Geracie et al. (2015, §4))
when they emphasize that they are specifically concerned with expanding GR
in powers of 1/c. Accordingly, they begin with the Levi-Civita connection of
GR, rewrite it in terms of what they call ‘pre-non-relativistic’ variables (which
are convenient for the subsequent expansion which they perform), and then im-
plement a 1/c expansion in order to find the non-relativistic limit of general
relativity. When one imposes the condition that dt = 0, one arrives at ‘Type I’
NCT (i.e., NCT à la Malament (2012)) or its teleparallel equivalent (Read and
Teh 2018; Schwartz 2023) or its non-metric equivalent (Wolf and Read 2023b);
when one relaxes this condition in favour of the condition t∧dt = 0, one arrives
at the ‘Type II’ NCT found in Hansen et al. (2019a, 2020).5

Both Type I and Type II NCT are interesting in their own rights. Type I
NCT is an empirically equivalent geometric reformulation of Newtonian gravity
in which gravitational effects are manifestations of curvature. Type II NCT
is a novel theory with both curvature and torsion which exhibits a remarkable
overlap with GR in terms of its empirical content, as it can also account for the
strong field gravitational physics of perihelion precession, gravitational redshift,
and the bending of light that was previously thought to be the exclusive purview
of relativistic physics (see e.g. Hansen et al. (2019a,b), Van den Bleeken (2017),
and Wolf, Sanchioni, et al. (2023)).

So yes: the particular form of the connection is responsible for the vanish-
ing of torsion when we have a closed clock; however, this is simply because the
Levi-Civita connection is a very special object. These physicists are (of course!)
aware of the fact that it is possible to write down connections that are more
general than the Levi-Civita connection and manifest all different kinds of ge-
ometric qualities (see e.g. Geracie et al. (2015, eq. 2.27)). Within the physics
literature, however, these authors are interested primarily in the particular re-
lationship between general relativity and theories which can be understood as
its non-relativistic limit. Put another way: there are two ‘ingredients’ which
together can justify focusing on a connection of the form (8): (a) the non-
relativistic limit of the Levi-Civita connection of GR, and (b) a closed clock
form, i.e. dt = 0. Of course, there are more general connections which manifest
torsion while still being compatible with a closed clock form, but those will be
ones for which (a) does not obtain.

3.3 The meaning of ‘temporal torsion’ and ‘spatial tor-
sion’

Our next point pertains to a discrepancy between the use of the terms ‘temporal
torsion’ and ‘spatial torsion’ in the hands of Meskhidze and Weatherall (2023)
when compared with the rest of the existing literature. Typically in the physics
literature, Newtonian theories are treated as gauge theories of the Bargmann
algebra, with generators {M,H,P,G, J}, and associated torsions and curvatures

5Indeed, this condition is derived in those latter works as part of the expansion; it need
not be imposed ‘by hand’.
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given by the Cartan equations:

(f)µν := Tµν (M) = 2∂[µmν] − 2ω a
[µ eν]a, (9)

Tµν (H) = 2∂[µtν], (10)

T a
µν (P ) = 2∂[µe

a
ν] − 2ω ab

[µ eν]b − 2ω a
[µ tν], (11)

R a
µν (G) = 2∂[µω

a
ν] − 2ω ab

[µ ων]b, (12)

R ab
µν (J) = 2∂[µω

ab
ν] . (13)

(For a thorough review of this material, see Andringa et al. (2011).) One then
defines (now suppressing indices) T (H) (i.e., the torsion associated with time
translations) as the ‘temporal torsion’, and T (P ) (i.e., the torsion associated
with spatial translations) as ‘spatial torsion’. Together with the ‘mass torsion’
f , one then defines the ‘extended torsion’ (T (H), T (P ),f).

This terminology is different from that of Meskhidze and Weatherall (2023),
who use ‘vanishing spatial torsion’ to refer to the condition T abc = 0 (Meskhidze
and Weatherall 2023, p. 6). This is not equivalent to the requirement that
T (P ) = 0, but rather that T (P )|S = 0 for any spacelike hypersurface S.
Meskhidze and Weatherall also assume that ta is closed, from which it follows
(along with metric compatibility) that T (H) = 0. So in the more usual Car-
tan terminology, (a) MWT has no temporal torsion, and (b) MWT has spatial
torsion, but such that it vanishes when restricted to any spacelike hypersurface.

3.4 The aims of Schwartz

Our final point in this section is not major, but is perhaps nevertheless one worth
making; it regards the purposes of Schwartz (2023). On this article, Meskhidze
and Weatherall (2023) write:

A cursory review suggests that the theory described in [(Schwartz
2023)] differs from what we describe here, but since there is not
sufficient time before the submission deadline, we leave an analysis
of the relationship to future work. (Meskhidze and Weatherall 2023,
p. 1)

This might imply that Schwartz is in the business of building a torsionful equiv-
alent to NCT. In a sense, this is true, but in fact his main aim is to take the
non-relativistic limit of TPG via a 1/c expansion (as discussed in the intro-
duction to this paper); that he obtains a torsionful theory is in some sense a
corollary of this. Moreover, the theory which Schwartz (2023) obtains is in fact
standard Newtonian gravity—i.e. a theory without spacetime torsion (but still
with mass torsion—see again Read and Teh (2018)). We will clarify in §4.2 how
this theory relates to MWT.

There is one final—more positive—point to be made here. As Schwartz
(2023, p. 20) writes, after taking a 1/c expansion of TPG, one must ‘gauge fix’
the connection to vanishing spatial torsion in order to obtain NGT. However,
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Meskhidze (2023) considers the convergence of derivative operators in the non-
relativistic limit and argues that this result thereby follows automatically. If
correct, we agree that this is a genuine and helpful contribution to the literature
on non-relativistic limits of physical theories.

4 Analysing the Meskhidze-Weatherall theory

Having completed our discussion of the claims made by Meskhidze and Weather-
all (2023) regarding the existing literature on torsional non-relativistic gravity,
we turn now to an analysis of MWT itself. Our focus in this section will be
threefold: (i) the relationship between the models of MWT and NCT (§4.1); (ii)
the role of torsion in MWT, particularly with reference to claims in Meskhidze
and Weatherall (2023) that this differs significantly from the situation in exist-
ing theories of torsional non-relativistic gravity (§4.2); and (iii) whether MWT
is empirically equivalent to NCT/NGT (§4.3).

4.1 Geometrisation and recovery

Meskhidze and Weatherall (2023) prove a ‘recovery’ theorem to the effect that
any (compatible, torsion-free) non-relativistic spacetime ⟨M, ta, h

ab, ∇̃, ρ⟩ which
satisfies R̃ab

cd = 0 and R̃ab = 4πρtatb (i.e., NCT without explict commitment

to the ‘Newtonian’ curvature condition R̃a c
b d = R̃c a

d b) gives rise, non-uniquely,
to a model of MWT (Meskhidze and Weatherall 2023, theorem 1). However,
they do not similarly prove a ‘geometrisation’ theorem linking models of MWT
to models of (this version of) NCT. In the absence of such a theorem, the
relationship between MWT and NCT remains somewhat unclear, so we begin
by filling in this gap on Meskhidze and Weatherall’s behalf:

Proposition 1. Let ⟨M, ta, h
ab,∇, ρ⟩ be a model of MWT such that Fn

mFm
n =

0. Then there exists a unique torsion-free derivative operator ∇̃ compatible with
the metrics such that R̃ab

cd = 0, R̃ab = 4πρtatb, and for all unit timelike vector

fields on M , ξn∇̃nξ
a = 0 ⇔ ξn∇nξ

a = −F a
nξ

n.

Proof. Let ∇̃ = (∇,−F a
btc). We claim that it satisfies the required con-

ditions. First, note that ∇̃ is compatible with the metrics since ∇̃ah
bc =

∇ah
bc + F b

atnh
nc + F c

atnh
bn = 0 and ∇̃atb = ∇atb − Fn

atbtn = 0, where
we have used that ∇ is compatible and F a

b is spacelike in the a index. ∇̃ is also
torsion-free since −2F a

[btc] = T̃ a
bc − T a

bc = T̃ a
bc − 2F a

[btc] ⇔ T̃ a
bc = 0. Fur-

thermore, if ξa is a unit timelike vector field on M such that ξn∇nξ
a = −F a

nξ
n

then ξn∇̃nξ
a = ξn∇nξ

a + F a
ntmξnξm = 0 (conversely, if ξa is geodesic with

respect to ∇̃ then ξn∇nξ
a = −F a

nξ
n). ∇̃ is clearly unique in this regard, since

an arbitrary derivative operator (∇, Ca
bc) will satisfy the above condition just

in case Ca
nmξnξm = −F a

nξ
n for any unit timelike vector field ξa, from which

it follows that Ca
bc = −F a

btc.
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It remains to verify that R̃ab
cd = 0 and R̃ab = 4πρtatb. First, using the

expression relating two Riemann tensors

R̃a
bcd = Ra

bcd − 2∇[cF
a
d]tb + 2tbF

n
[cF

a
d]tn + 2Fn

[ctd]F
a
ntb

= −2∇[cF
a
d]tb + 2Fn

[ctd]F
a
ntb,

where we have used that ∇ is flat and again that F a
b is spacelike in the a index.

It follows immediately that R̃ab
cd = 0 since ∇ is compatible. Meanwhile, using

(2) and that F a
b is spacelike in the a index we have

R̃ab = −2δnm∇[bF
m

n]ta + 2δnmF r
[btn]F

m
rta

= 2δnm∇[nF
m

b]ta − F r
nF

n
rtatb

= 4πρtatb − F r
nF

n
rtatb

= 4πρtatb,

where we have used that the last equality holds just in case Fn
mFm

n = 0.

So MWT, as presented in Meskhidze andWeatherall (2023), is not equivalent
to NCT without the Newtonian condition; however, this may straightforwardly
be rectified with the additional assumption that Fn

mFm
n = 0. Since this

condition also holds with respect to the recovered models of MWT considered
in Meskhidze and Weatherall’s theorem 1, we will assume it in what follows.

4.2 Torsion in the Meskhidze-Weatherall theory

With the relationship between MWT and NCT on a firmer footing, we turn
now to the analysis of torsion in MWT. After introducing MWT, Meskhidze
and Weatherall (2023) note that there already exists discussion of teleparal-
lellisation in the Newtonian context, such as the proposal developed in Read
and Teh (2018). These theories, naturally understood as gauge theories of the
Bargmann algebra, feature a mass torsion term f (see (9)) which plays the role
of the Newtonian gravitational potential. However, such proposals are almost
immediately dismissed with the claim that

[MWT], insofar as it features spacetime torsion instead of mass
torsion, is a stronger analog to a classical TPG. (Meskhidze and
Weatherall 2023, p. 10, emphasis in original)

One can distinguish here two (closely related) claims:

1. MWT features spacetime torsion, whereas other torsional theories of non-
relativistic gravity do not.

2. MWT does not feature mass torsion, whereas other torsional theories of
non-relativistic gravity do.
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Our aim in this section is to (a) isolate precisely what sort of torsion features in
MWT, and thereby (b) assess the above two claims—viz., whether MWT is rel-
evantly different to previous torsionful reformulations of Newtonian gravitation
such as those of Read and Teh (2018) and Schwartz (2023) in this respect.

We have already seen that the central object in MWT is a tensor F a
b which is

supposed to “play the role of a torsional force term” (Meskhidze and Weatherall
2023, p. 8). In particular, F a

b encodes the difference between their torsional
connection ∇ and curvature-based connection ∇̃ via ∇ = (∇̃, F a

btc). However,
Meskhidze and Weatherall are not explicit about how their tensor F a

b relates
to those standardly considered in the literature, where the difference tensor
between two such connections is encoded in the (spatiotemporal) contorsion
and a 2-form Ωab, via ∇ = (∇̃, 1/2(T a

bc + T a
b c + T a

c b ) + t(bΩc)
a) (see e.g.

Bekaert and Morand (2014)).6 To bridge this gap, we note the following points:

• Given the assumptions that ta is closed and T abc = 0, choosing a difference
tensor of the form F a

btc is equivalent to imposing the requirement tbΩ
ac =

2T
[a c]
b .

• It follows that F a
b = 1/2(T a

bn + T a
b n + T a

n b )ξ
n + t(bΩn)

aξn, where ξa is
an arbitrary unit timelike vector field.

• In particular, F a
b is related to Ωab via Ωa

b = −2hanF[nb].

On (1), as Meskhidze and Weatherall (2023, theorem 1) in fact show, we are
always free to ‘gauge fix’ F a

b so that the spatiotemporal torsion vanishes in the
recovered models of MWT. In this respect, MWT is precisely analogous to the
theories considered by Read and Teh (2018) and Schwartz (2023), in which the
spatiotemporal torsion is generically non-vanishing, but nevertheless can always
consistently be chosen to vanish via a suitable gauge fixing of the torsion and
frame.

So much for the situation regarding (1); what of the situation regarding
(2)? This is complicated somewhat by the fact that Meskhidze and Weatherall
(2023) do not impose the Newtonian condition in their analysis; however, if
one does impose this condition, then ∇̃ is the unique extended torsion-free
connection for some Bargmann structure, fixed up to U(1) gauge symmetry (for
details, see e.g. Geracie et al. (2015) and Schwartz (2023)). Given that choice of
Bargmann structure, for a model of MWT with vanishing spacetime torsion, the
components of the 2-form Ωab appearing in the difference tensor are coextensive
with the components of the mass torsion f in ungeometrised NG, on which see
Read and Teh (2018).

4.3 Empirical equivalence

Our final point has to do with empirical equivalence. Meskhidze and Weatherall
(2023) motivate the construction of MWT as follows:

6We remind the reader that one must be very careful raising and lowering indices in the
context of non-relativistic spacetime theories, since the degenerate spatial metric hab does not
have a unique inverse.
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[T]o better understand the forces of TPG, a natural place to begin is
another gravitational theory that employs forces, namely, Newtonian
Gravity. Newtonian Gravity, however, is a non-relativistic theory
and gravitational force does not involve torsion. A classical theory
of gravity with torsional forces will prove to be a more informative
comparison. (Meskhidze and Weatherall 2023, p. 2)

(Here, let us set aside what we have noted already above: that the gravitational
potential of Newtonian gravity admits an interpretation in terms of mass tor-
sion.) One might imagine, from reading this passage, that a necessary condition
for MWT to fulfil the above-stated aims would be that it is empirically equiva-
lent to standard Newtonian gravity, if Meskhidze and Weatherall are hoping to
use MWT to draw morals from our understanding of forces in standard New-
tonian gravity into the teleparallel context. However, MWT is not empirically
equivalent to ‘standard’ Newtonian gravity.

To understand this, note that the version of NCT for which Meskhidze and
Weatherall (2023) prove their recovery theorem is actually a slightly generalised
version of standard NCT, which drops the Newtonian condition. It is well known
that the Newtonian condition is equivalent to the requirement that there ex-
ists, at least locally, a unit timelike vector field which is geodesic and twist-
free, thereby ensuring that there always exist non-rotating inertial observers
(Malament 2012, propositions 4.3.3, 4.3.7). By contrast, if one drops the New-
tonian condition, then there will be models in which all inertial trajectories are
twisted, which amounts to the gravitational field having a non-vanishing curl.
This means that MWT cannot be empirically equivalent to NCT with the New-
tonian condition imposed—although MWT can still be empirically equivalent
to a version of Newtonian gravity without the assumption of conservative forces
(e.g., ungeometrised NG with a gravitational field Ga, as presented by Dewar
(2018)).

5 Close

When should a given physical theory be of interest, whether that be to physicists
or to philosophers (or both)? To answer this question, let us distinguish between
what we might call ‘theoretical interest’ in a theory from ‘practical interest’:

Theoretical interest: A theory fits into a known ‘web’ of theories, and can
shed light on that web.7

Practical interest: A theory has application to furthering our understanding
of certain empirical phenomena.

The question to be considered here is: does MWT have either theoretical or
practical interest?

7Presumably, it is principally (although perhaps not exclusively) theoretical interest which
underlies Lehmkuhl’s (2017) call for philosophers to explore the “space of spacetime theories”.
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On the former: a theory can satisfy this criterion in many ways—e.g., by
being the (non-relativistic) limit of some other known theory, or by being the ge-
ometrised/recovered version (where the empirical content is retained!), etc. For
example, both physics and philosophy communities have had substantial histori-
cal and current interest in exploring the geometric languages (curvature, torsion,
and non-metricity) in which both Newtonian gravity and general relativity can
be expressed. Such reformulated theories, indeed, invite questions concerning
fundamental ontology, the interpretation of theoretical constructs, underdeter-
mination, conventionalism, etc. Moreover, these theories are all interconnected
in the sense that the non-relativistic versions of the relativistic theories can all
be understood straightforwardly to proceed from their relativistic counterparts
in the appropriate limits. Investigating these relationships sheds light on and
increases understanding of the natures of the theories involved—see e.g. Jiménez
et al. (2019), March et al. (2023), and Wolf and Read (2023b).

By contrast, MWT neither retains the empirical content of the paradigmatic
non-relativistic spacetime theories which are Newtonian gravity and NCT (§4.3),
nor is the non-relativistic limit of any known relativistic theory. For these
reasons, it doesn’t seem to us (at least at present!) that MWT has a great deal
of theoretical interest, at least in the above sense.

Now on the latter (i.e., practical interest): consider e.g. that the differ-
ent relativistic theories in the ‘geometric trinity’ (Jiménez et al. 2019) actually
have practical relevance in terms of their calculation facility,8 in addition to
suggesting potentially different routes towards quantisation, while some of the
non-relativistic theories considered here have found important applications in
condensed matter systems and non-relativistic holography, as recapped in the
introduction. When it comes MWT, again by contrast, we don’t yet see any
application of this theory—although of course we would welcome such applica-
tions, were they to be identified.
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