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Aggregate Jump and Volatility Risk 

in the Cross-Section of Stock Returns 

 

 

Abstract 

We examine the pricing of both aggregate jump and volatility risk in the cross-section of stock returns by 

constructing investable option trading strategies that load on one factor but are orthogonal to the other. 

Both aggregate jump and volatility risk help explain variation in expected returns. Consistent with theory, 

stocks with high sensitivities to jump and volatility risk have low expected returns. Both can be measured 

separately and are important economically, with a two-standard deviation increase in jump (volatility) 

factor loadings associated with a 3.5 to 5.1 (2.7 to 2.9) percent drop in expected annual stock returns.  

 

Keywords: cross-sectional asset pricing, aggregate jump risk, aggregate volatility risk, option returns. 
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1. Introduction 

Aggregate stock market volatility varies over time. This has important implications for asset prices in the 

cross-section and is the subject of much recent research, see, among others, Ang, Hodrick, Xing and 

Zhang (2006).
1
 There is also evidence that aggregate jump risk is time varying. For example, Bates 

(1991) shows that out-of-the-money puts became unusually expensive during the year preceding the crash 

of October 1987. His analysis reveals significant time variation in the conditional expectations of jumps 

in aggregate stock market returns. Santa-Clara and Yan (2010) use option prices to calibrate a model in 

which both the volatility of the diffusion shocks and the intensity of the jumps are allowed to change over 

time. They likewise find substantial time variation in the jump intensity process, with aggregate, implied 

jump probabilities ranging from zero to over 99 percent. While they examine the time series relation be-

tween systematic jump risk and expected stock market returns, the question of how aggregate jump risk 

affects the cross-section of expected returns has received less attention. 

The main objective of this paper is to provide a comprehensive empirical investigation of the pricing of 

time varying jump and volatility risk in the cross-section of expected stock returns. In particular, we con-

sider whether aggregate jump and volatility constitute separately priced risk factors. Several papers argue 

that aggregate volatility may be a priced factor in part because assets with high sensitivities to volatility 

risk hedge against the risk of significant market declines (e.g., Ang, Hodrick, Xing and Zhang (2006) and 

Bakshi and Kapadia (2003)). This argument suggests that jump and volatility risk may be similar. In addi-

tion, as markets tend to be more volatile in times of extreme returns, separating jump and volatility risk is 

an empirical challenge. In this paper, we show that they are in fact different: they can be measured sepa-

rately using option returns and they are both important economically. Economic theory provides several 

reasons why aggregate jump and volatility risk should constitute priced risk factors. The importance of 

these risks is now a fundamental premise of the option pricing literature, see, e.g., the reduced-form mod-

                                                      

1
 Considerable research examines the time series relation between aggregate stock market volatility and expected market returns, 

e.g., Bali (2008), Campbell and Hentschel (1992), and Glosten, Jagannathan and Runkle (1993). 
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els in Bates (2000), Pan (2002) and Santa Clara and Yan (2010). General equilibrium models can be used 

to shed light on the economic mechanisms that drive jump and volatility risk premia. Naik and Lee (1990) 

introduce jumps into general equilibrium models, Pham and Touzi (1996) introduce stochastic volatility, 

and Branger, Schlag and Schneider (2007) examine the equilibrium with both jumps and stochastic vola-

tility.  

While these models use standard preferences, Bates (2008) considers investors who are both risk averse 

and crash averse. Jump and diffusive risks are both priced even in the absence of crash aversion, but in-

troducing crash aversion allows for greater divergence between the two risk premia. An important feature 

of the model in Bates (2008) is a representative investor who treats jump and diffusive risks differently, 

which formalizes the intuition that investors can treat extreme events differently than they treat more 

common and frequent ones.
2
  

These models provide a rich framework in which both volatility and jump risk are separately priced. In-

vestors seeking to hedge against changes in investment opportunities will find assets that co-vary posi-

tively with market volatility attractive, requiring lower expected returns. Separately, investors may seek to 

insure themselves against tail events such as the recent financial crisis, i.e., more extreme events that go 

beyond business cycle fluctuations in investment opportunities. As a result, stocks with positive loading 

on jump risk would likewise be attractive and require lower expected returns. 

To examine the cross-sectional pricing of aggregate jump and volatility risk we construct investable op-

tion trading strategies that load on one factor but are orthogonal to the other. Because traded S&P 500 

futures options are highly liquid, their prices encode the ex-ante assessment by market participants of 

expected aggregate jump and volatility risk. These prices should therefore contain forward looking infor-

mation that we expect to be highly relevant for our analysis. The ex-ante jump risk perceived by investors 

may be quite different from ex-post realized jumps in prices because even high-probability jumps may 

fail to materialize in sample (Santa-Clara and Yan (2010)). Therefore, employing options alleviates the 

                                                      

2 Liu, Pan and Wang (2005) examine the equilibrium when stock market jumps can occur and investors are both risk averse and 

averse to model uncertainty with respect to jumps; they obtain similar pricing implications for jump and diffusive risk.    
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“Peso problem” in measuring jump risk from observed stock returns. 

A straddle involves the simultaneous purchase of a call and a put option. Coval and Shumway (2001) 

motivate the use of delta-neutral straddles for studying the effect of stochastic volatility by their high sen-

sitivity to volatility – they have large vegas – and their insensitivity to market returns. However, this only 

holds for small diffusive shocks. In a world with jumps, straddle returns are subject to hedging error due 

to the positive gamma of the options: if the underlying asset experiences a large move in any direction, 

the straddle will not remain delta neutral and will earn a positive return. This implies that straddle returns 

are affected by both volatility and jump risk. More importantly, this observation suggests alternative trad-

ing strategies that allow us to focus on each risk separately. 

A strategy constructed to be market (i.e., delta) neutral and gamma neutral but vega positive is essentially 

insulated from jump risk and thus only subject to volatility risk. Similarly, a strategy that is market neutral 

and vega neutral but gamma positive is ideal to study the effects of jump risk. We show that both strate-

gies can be constructed by setting up long/short strategies involving market neutral straddles. Our result-

ing jump risk factor mimicking portfolio (JUMP) is a market neutral, vega neutral and gamma positive 

strategy involving two at-the-money straddles with different maturities. Similarly, we construct the vola-

tility risk factor mimicking portfolio (VOL) by combining two at-the-money straddles with different ma-

turities into a position that is market neutral, gamma neutral and vega positive. The JUMP and VOL strat-

egies are directly tradable strategies that are constructed to load on one factor while being orthogonal to 

the other. Empirically, we find that the returns on the two strategies are essentially uncorrelated. 

Our approach to finding a premium for bearing volatility and jump risk closely follows Ang, Chen and 

Xing (2006). Specifically, we estimate jump and volatility risk factor loadings at the individual stock 

level using daily returns, sort stocks on the realized factor loadings estimated over a given time period and 

investigate whether stocks with higher volatility and jump betas have lower average returns contempora-

neously (i.e., over the same period). This approach considers both requirements that must be met for any 

factor to be priced in the cross-section of stock returns. First, there must be a contemporaneous pattern 

between factor loadings and average returns. Therefore, our analysis focuses on uncovering contempora-
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neous relations between volatility and jump risk loadings and average stock returns. Second, the pattern 

should be robust to controls for various stock characteristics and other factors known to affect the cross-

section of expected stock returns. Our focus is on uncovering contemporaneous effects because a contem-

poraneous relation between factor loadings and risk premiums is the foundation of a cross-sectional risk-

return relation. In addition, we also investigate whether future jump and volatility risk exposures can be 

predicted (and thus hedged), constructing investable stock portfolios ex ante that have ex post exposure to 

jump and volatility risk. 

Our main result is that both aggregate jump and aggregate volatility are significantly priced risk factors in 

the cross-section of returns. Consistent with theory, we find that stocks with high sensitivities to volatility 

and jump risk have low expected returns, i.e., volatility and jump risk both carry negative market prices of 

risk. Both factors are also important economically. Sorting stocks into quintile portfolios based on their 

contemporaneous jump betas, the long/short portfolio that buys stocks with high jump betas and sells 

stocks with low jump betas has an annual three-factor Fama-French alpha of −9.4% (t-statistic −4.44) for 

value-weighted portfolios. Similarly, using Fama-MacBeth regressions, we find that a two-standard de-

viation increase across stocks in jump factor loadings is associated with a 3.5% drop in expected annual 

returns. Our results on the cross-sectional pricing implications of aggregate jump risk are thus entirely 

consistent with the results in the related time-series literature, which suggest that time varying aggregate 

jump risk has a large effect on aggregate market returns. For example, Santa-Clara and Yan (2010) sum-

marize their empirical results by saying that “compensation for jump risk is on average more than half of 

the total equity premium.” 

We also find large compensation for bearing stock market volatility risk. When we sort stocks into quin-

tiles based on their volatility betas, the long/short portfolio that buys stocks with high volatility betas and 

sells stocks with low volatility betas has an annual value-weighted three-factor alpha of −2.7% (t-statistic 

−2.40). In Fama-MacBeth regressions that control for the Fama-French factors, a two-standard deviation 

increase in jump factor loadings is associated with a 2.9% drop in expected annual returns. Importantly, 

jump risk does not subsume volatility risk, and vice versa, volatility risk does not subsume jump risk.   
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Our results are robust to using both a portfolio approach and Fama-MacBeth regressions, as well as to the 

inclusion of a battery of control variables (including controls for size, downside beta, conditional skew-

ness and kurtosis, idiosyncratic volatility, and idiosyncratic skewness).  After controlling for conditional 

skewness and downside beta (both of which are associated with the notion of jump risk), we observe a 

slight drop in the estimated market price of jump risk. Importantly, however, jump risk is different from 

conditional skewness and downside beta: across all specifications, the reward for bearing jump and vola-

tility risk is always negative, stable, and both economically and statistically significant. 

This paper is related to Ang, Hodrick, Xing and Zhang (2006, henceforth AHXZ). They find that stocks 

with high sensitivities to innovations in aggregate stock market volatility have low average returns, using 

the first difference in the CBOE VIX index as a proxy for innovations in volatility. They note that using 

other measures of aggregate volatility risk (such as sample volatility, extreme value volatility estimates, 

and realized volatility estimates constructed from high frequency data) produces little spread in the cross-

section of average stock returns.  

Because AHXZ do not investigate the pricing of jump risk in the cross section of stock returns, their anal-

ysis does not separate jump risk from diffusion risk. Recent theoretical results in Du and Kapadia (2011) 

and Martin (2012), however, suggest that VIX is a biased measure of diffusion risk in the presence of 

jumps, with the degree of bias related to jump severity. Thus, the effects documented in AHXZ could be 

related to volatility risk, to jump risk, or to a combination of both. In contrast, we employ separate 

measures for jump and volatility risk to disentangle the corresponding asset pricing effects. Another ad-

vantage of our risk factors is that they are based upon a readily tradable option portfolio strategy.  

While the pricing of jump risk has been documented extensively in the option pricing literature, the ques-

tion of how aggregate jump risk affects the cross-section of expected returns has received less attention. 

Chang, Christoffersen and Jacobs (2009) consider market skewness estimated from option data and find a 

negative market price of market skewness. If one views market skewness to be a measure of jump risk, 

then this result seems inconsistent with economic intuition, as it implies a positive market price of jump 

risk. We differ from their study by constructing option-based measures that aim explicitly to proxy for 
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jump risk. Our results are also different because we find evidence of a negative market price of jump risk, 

as suggested by economic theory.  

Finally, our paper is related to the literature on tail risk and rare disasters. Starting with Rietz (1988), re-

searchers have modeled the possibility of rare disasters, such as economic depressions or wars, to resolve 

the equity premium puzzle and related puzzles, e.g., Barro (2006) and Gabaix (2008, 2012). Kelly (2012) 

uses firm-level stock price crashes every month to identify common fluctuations in tail risk across stocks 

and finds that past tail risk predicts future returns in the cross-section. The disasters in the rare disasters 

literature are similar to the jumps we are interested in, but there are some differences: disasters are ex-

tremely rare and they do not match well the short dated options that we use in constructing the JUMP and 

VOL factors.  

The rest of this article is organized as follows. Section 2 presents some theoretical arguments that suggest 

that aggregate jump and volatility risk should be priced in the cross-section. It also describes the construc-

tion of our tradable jump and volatility risk factors. Section 3 describes our data and the empirical design 

used to investigate whether jump and volatility risk are priced. Section 4 presents our main results on the 

pricing of jump and volatility risk in the cross-section of stock returns. Section 5 examines the robustness 

of our results to the inclusion of a battery of control variables. It also examines whether our results on the 

pricing of aggregate jump and volatility risk are robust to the use of alternative non-tradable jump and 

volatility proxies and investigates whether future jump and volatility risk betas can be predicted so as to 

construct investable portfolios with a spread in jump and volatility risk for hedging purposes. Section 6 

concludes. 

2. Aggregate Jump and Volatility Risk 

This section presents theoretical motivation for the pricing of systematic volatility and jump risk in the 

cross-section of stock returns and describes the construction of our jump and volatility risk factor mimick-

ing portfolios. 
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2.1 Theoretical Background 

Economic theory provides several reasons why aggregate jump and volatility risk should constitute priced 

risk factors. The existence of priced aggregate jump and volatility risk has been extensively documented 

in the option pricing literature. Briefly, Bates (2000) extends the Heston (1993) stochastic volatility mod-

el by incorporating jumps. The model features a square root process for the diffusive variance and a jump 

intensity that is proportional to the diffusive variance. In the model, aggregate market returns are affected 

by three factors: diffusive price shocks, diffusive volatility shocks, and price jumps. Using the Bates 

(2000) model, Pan (2002) shows that a substantial premium for time-varying jump risk is required to fit 

the joint time-series of stocks and options.  In Pan (2002) it is somewhat difficult to disentangle the diffu-

sion and jump risks because they are both driven by the same state variable, the diffusive volatility. Santa 

Clara and Yan (2010) propose a quadratic model to better separate jump and volatility risk. They find 

large jump and volatility risk premia.  

These papers use reduced form models that assume a parametric pricing kernel that prices all three 

sources of risk, including the jump and volatility risk. The market prices of the risk factors determine how 

options are priced. While this approach is tailored to the objective of developing option pricing models, it 

does not illuminate the economic mechanism that may be at work. An alternative approach is to derive the 

pricing kernel from economic fundamentals in a general equilibrium framework. For example, in the Lu-

cas (1978) pure exchange economy, consuming the aggregate dividend must be optimal for the repre-

sentative agent, thus the marginal rate of substitution process identifies the equilibrium pricing kernel. 

Naik and Lee (1990) introduce jumps into a continuous-time version of the Lucas (1978) model to price 

options on the aggregate market portfolio. Pham and Touzi (1996) introduce stochastic volatility into the 

model. Branger, Schlag and Schneider (2007) examine the equilibrium with both jumps and stochastic 

volatility.  

Bates (2008) points out that an implication of these models is that, with standard preferences, the relative 

sensitivities of the pricing kernel to diffusive and jump shocks are constrained, which also constrains the 

magnitude of the jump premium. Intuitively this happens because the representative agent treats small and 
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large moves similarly. Bates (2008) considers the equilibrium when agents are both risk averse and crash 

averse. In his model, crash aversion is roughly as important as risk aversion for the equity risk premium 

but significantly more important for the jump risk premium. Liu, Pan and Wang (2005) obtain similar 

pricing implications for jump and diffusive risk when investors are both risk averse and averse to model 

uncertainty with respect to jumps. Large risk premia obtain in equilibrium when the representative inves-

tor treats jump and diffusive risks differently. 

While these papers do not explicitly model the cross-section of stock returns, they feature stochastic dis-

count factors that load on both jump and volatility risk, thus stocks with different sensitivities to these 

factors earn different returns in equilibrium. For example, Yan (2011) considers a model in which stock 

returns and the stochastic discount factor follow correlated jump diffusion processes. He finds that stocks 

with systematic jumps that are more negatively correlated with jumps in the stochastic discount factor 

earn higher returns. 

Regarding volatility risk, Campbell, Giglio, Polk and Turley (2012) and Chen (2002) extend the approxi-

mate closed-form ICAPM framework of Campbell (1993) to allow for stochastic volatility (but not 

jumps). They show that  assets whose returns co-vary positively with a variable that forecasts future mar-

ket volatility have low expected returns in equilibrium, provided that the representative investor is more 

risk averse than log utility. The underlying economic mechanism is that risk-averse investors reduce their 

current consumption in order to increase precautionary savings in the presence of increased uncertainty 

about market returns. Put differently, time-varying market volatility induces changes in the investment 

opportunity set by changing the expectation of future market returns, or by changing the risk-return trade-

off (Campbell (1993, 1996)). Market volatility thus qualifies as a state variable in a traditional multifactor 

asset pricing model (see Merton (1973)): risk-averse agents demand stocks that hedge against the risk of 

deteriorating investment opportunities. This increases the prices of these assets, thereby lowering their 

expected return.  

Concerning jump risk, starting with Rietz (1988) and Barro (2006), a growing body of research examines 

the aggregate effects of rare disaster risk, which is related to the jump risk that we consider. Gabaix 
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(2012) extends this framework to accommodate disasters of time-varying severity. While he does not 

examine the cross-sectional implications of time-varying disaster risk, in his model assets that payoff 

more at times of high disaster risk command lower expected returns. These models provide useful intui-

tion for our work, although there are significant differences between the rare disasters literature and our 

approach of constructing option trading strategies that load on jump risk. In particular, the jumps in the 

option pricing literature happen every few days or months and they affect consumption by relatively 

moderate amounts, whereas the jumps in the rare-disasters literature happen much more rarely, but if they 

do, they are devastating.
3
 Also, rare disasters do not match well the short dated options that we use in 

constructing our jump and volatility factors. 

2.2 Construction of Aggregate Jump and Volatility Risk Factors 

2.2.1 Straddle Returns and Stochastic Volatility 

Delta-neutral at-the-money straddles would appear to be a simple, readily tradable and economically 

meaningful factor mimicking portfolio for volatility risk. Coval and Shumway (2001) argue that while 

delta-neutral straddle returns are not sensitive to market returns, they are sensitive to market volatility: 

when volatility increases straddles have positive returns and when volatility decreases straddles have neg-

ative returns. In other words, straddles have large sensitivities to volatility – they have large positive ve-

gas. That straddle returns are useful in investigating stochastic volatility can be seen through the lens of a 

simple stochastic volatility model. For example, in the Appendix, we show that in the Heston (1993) sto-

chastic volatility model, (excess) straddle returns are locally proportional to innovations in volatility, sug-

gesting that straddle returns are a good proxy for volatility risk. While the result does not depend specifi-

cally on the Heston (1993) model and holds for generic stochastic volatility models, introducing jumps 

renders the link between straddle returns and volatility far more complicated. Intuitively, this happens 

because straddle returns are subject to hedging error due to the gamma of the options: if the underlying 

asset experiences a large move, the straddle will not remain delta neutral and the straddle return will be 

                                                      

3 E.g., the rare disasters in Barro (2006) strike once every 50 years and are associated with a 37% drop in aggregate consumption. 
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positive because of the gamma effect. While this implies that straddle returns are affected by both volatili-

ty and jump risk, it also suggests alternative trading strategies that can be constructed to focus on each 

risk separately, as we now explain. 

2.2.2 Jump and Volatility Risk Mimicking Portfolios 

Straddles have large sensitivities to volatility (large vegas), which makes them a natural proxy for volatili-

ty risk. However, straddles also have large gammas and are therefore also sensitive to jump risk. A strate-

gy constructed to be market neutral and gamma neutral yet vega positive would be essentially insulated 

from jump risk and thus only subject to volatility risk. Similarly, a strategy that is market neutral and vega 

neutral but gamma positive would be ideal to study the effects of jump risk. Because the gamma of an 

option is decreasing in the time to maturity while the vega of an option is increasing in the time to maturi-

ty, both strategies can be constructed by setting up long/short portfolios involving market neutral strad-

dles with different maturities. 

Each zero-beta straddle is constructed by solving the problem 

��� = ��� + �1 − ���� (1) 

�
� + �1 − ��
� = 0, (2) 

where ��� is the market-neutral straddle return, �� is the return on the call, �� is the return on the put, � is 

the weight invested in the call, and 
� and 
� are the market betas of the call and the put options, respec-

tively. To implement the construction of the strategy, we follow Coval and Shumway (2001) and use-

Black-Scholes option sensitivities.
4
 

Our jump risk factor mimicking portfolio (JUMP) is a market neutral, vega neutral and gamma positive 

                                                      

4 Our empirical analysis employs American-style S&P 500 futures options. The implied volatilities are computed using a binomi-

al tree and thus account for the early exercise feature in the options. Early exercise premia are especially small for futures op-

tions, as the underlying futures prices do not necessarily change at dividend dates. For example, Driessen and Maenhout (2012) 

find very small early exercise premia of around 0.2% of the option price for short-maturity futures options. Similarly, Coval and 

Shumway (2001) study European-style and American-style options and do not report significant effects of the early exercise 

feature on their results. If at all, the early exercise feature should add noise to our factor returns and thus should make it more 

difficult for us to find an effect. 
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strategy consisting of (i) a long position in one market neutral at-the-money straddle with maturity T1, and 

(ii) a short position in y market neutral at-the-money straddles with maturity T2, where T2 > T1 and y is 

chosen so as to make the overall portfolio vega neutral, using Black-Scholes option sensitivities. The 

longer dated options have larger vegas, such that the number y of market neutral straddles being sold is 

less than one. Similarly, the volatility risk factor mimicking portfolio (VOL) that we propose is a market 

neutral, gamma neutral and vega positive strategy consisting of (i) a long position in one market neutral 

at-the-money straddle with maturity T2, and (ii) a short position in y market neutral at-the-money straddles 

with maturity T1, where T2 > T1 and y is chosen so as to make the gamma of the overall strategy zero, 

using Black-Scholes option sensitivities. Again, because the shorter dated options have larger gammas, 

the number y of straddles sold is again less than one, and the market-neutral straddles are constructed as 

above.  

The JUMP and VOL strategies are directly tradable, and they are constructed to load on one factor while 

being orthogonal to the other. Empirically, we find that the returns on these two strategies are essentially 

uncorrelated, as we show in Section 3.  

3. Data and Empirical Methodology 

This section describes our data and the empirical design we employ to investigate whether jump and vola-

tility risk are priced in the cross-section of stock returns. 

3.1 Empirical Methodology 

Our research design follows Ang, Chen and Xing (2006, henceforth ACX), who themselves follow a long 

tradition in asset pricing in considering the contemporaneous relation between realized factor loadings 

and realized stock returns (e.g., Fama and MacBeth (1973), Fama and French (1993) and Jagannathan and 

Wang (1996), among others). A contemporaneous relation between factor loadings and risk premiums is 

the foundation of a cross-sectional risk-return relation. Like Ang, Liu and Schwarz (2010), we focus on 

individual stocks rather than portfolios as our base assets when testing the pricing of aggregate volatility 

and jump risk using cross-sectional data, as they show that creating portfolios ignores important infor-
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mation (specifically, stocks within particular portfolios having different betas) and leads to larger standard 

errors in cross-sectional risk premia estimates.  

Our tests employ portfolio sorts in which, like ACX, we work at the individual stock level and sort stocks 

directly on their estimated factor loading estimated over a given time period, computing realized average 

returns over the same time period. To investigate the robustness of our findings, we also report the results 

of Fama-MacBeth firm level, second-stage regressions of returns on factor loadings that are estimated in 

first stage regressions.   

For each stock i we estimate factor loadings at the individual stock level using daily returns over rolling 

annual periods from the regression 

��� = 
�� + 
����� ∙ ���� + 
������
� ∙ ������ + 
� 

� ∙ !� + 
� ��
� ∙ !��� + "��, (3) 

where ��� is the excess return over the risk free rate of stock i on day t, MKTt is the excess return on the 

market portfolio (the CRSP value weighted index) on day t and Xt is the return on either the jump or the 

volatility risk factor mimicking portfolio. 

We control for potential issues of infrequent trading by including lagged risk factors (in the spirit of 

Dimson (1979)) and, subsequently, use the sum of the betas estimated for the contemporaneous and the 

one period lagged risk factors. Of course, other factors play a role in the cross-section of returns, e.g., the 

Fama-French factors, and we do not model these effects in estimating the 
��  loadings because doing so 

might add noise to the estimation and also because we want to closely follow AHXZ. We do control for 

the three Fama-French factors when performing our cross-sectional asset pricing tests.  

Like ACX, at the beginning of the year, we sort stocks into quintiles based on their 
��  loadings estimated 

over the next twelve months, as in equation (3), and compute average returns over the same twelve 

months. Since we work in intervals of twelve months but evaluate annual returns at the monthly frequen-

cy, our research design employs overlapping information and this introduces moving average effects. To 
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adjust for this, the reported t-statistics are computed using twelve Newey and West (1987) lags.
5
 To en-

sure that our results are not driven by other factors or firm characteristics known to affect stock returns, 

we calculate abnormal returns (alphas) using the Fama and French (1993) three factor model. The esti-

mated abnormal return in the sorts is the constant # in the regression 

�� = # + 
� ∙ ���� + 
$ ∙ %�&� + 
' ∙ (�)� + "� ,  (4) 

where Rt is the excess return over the risk free rate to a quintile portfolio in year t, MKTt, SMBt and HMLt 

are, respectively, the excess return on the market portfolio and the return on two long/short portfolios that 

capture size and book-to-market effects.  

Similarly, we run Fama-MacBeth regressions of twelve-month excess returns on realized jump and vola-

tility risk betas estimated over the same twelve months. Since the regressions are estimated at a twelve-

month horizon but at a monthly frequency, we again compute the standard errors of the coefficients by 

using twelve Newey-West (1987) lags. We use the results of Shanken (1992) to correct for the estimation 

noise in the first-step factor loading estimates.  

3.2 Data Description 

Our data on S&P 500 futures options originate from the Chicago Mercantile Exchange, where the con-

tracts are traded.
 
We focus on S&P 500 futures options rather than S&P 500 index options, because the 

former are more liquid and have historical data available over a longer sample period. The dataset con-

tains daily settlement prices on all call and put options on S&P 500 futures, along with daily settlement 

prices on the underlying futures contracts. The sample period for our analysis begins in January 1988, 

when the CME started trading one-month serial options on S&P 500 futures contracts, and ends in De-

cember 2011. The options are American, and contracts expire on the third Friday of each month. To filter 

possible data errors, we exclude any option prices that are lower than the immediate early exercise value. 

The stock return data in our cross-sectional tests originate from the Center for Research in Security Prices 

                                                      

5 The theoretical number of lags required is eleven but following Ang, Chen and Xing (2006) we include a 12th lag for robust-

ness.  
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(CRSP). We include all stocks with an average price above one USD during the previous year. 

Using S&P 500 futures options, we construct the jump and volatility risk mimicking portfolios as de-

scribed in Section 2. The at-the-money market-neutral straddle returns that constitute our risk factors are 

computed daily as follows. At the close of trading on a given date, we pick the call and put option pair 

that is closest to being at-the-money among all options that expire in the next calendar month (for the 

short dated options required in the strategies) and the calendar month that follows (for the long dated op-

tions). We hold each position for one trading day, thus picking new option pairs the next day. 

Table 1 presents descriptive statistics on the JUMP and VOL factors. In addition, for comparison with 

prior work on aggregate volatility risk, we also include descriptive statistics on straddle returns (as in 

Coval and Shumway (2001) and Driessen and Maenhout (2012)) and the CBOE VIX index (as in 

AHXZ). Market neutral straddles (STR) are constructed from at-the-money options expiring in the next 

calendar month; the position is rebalanced daily to remain delta neutral.  

Several observations emerge from the results in Table 1. Both the JUMP and VOL factors earn signifi-

cantly negative average returns (significant at the 1% and 10% level, respectively). Because the factors 

bear no market risk, by construction, this is an important result, as it suggests that some other factors are 

priced in option returns, namely stochastic volatility and jump risk. The negative average returns of the 

JUMP and VOL factors are consistent with the prediction from economic theory of negative market pric-

es for both aggregate jump and aggregate volatility risk. The factor returns are volatile, skewed, and lep-

tokurtic.
6
 Table 1 also highlights the fact that the gamma of the JUMP factor and the vega of the VOL 

factor are not constant over time. Much of this time variation is mechanical: it is driven by changes in the 

level of the S&P 500 index and changes in volatility and removing these effects leaves little residual vari-

ation.  

Consistent with prior work (e.g., Coval and Shumway (2001) and Bakshi and Kapadia (2003)), we find 

                                                      

6
 In untabulated results, we investigate how the JUMP and VOL factors covary with realized variance and higher moment 

measures estimated from high-frequency returns. VOL is significantly correlated with realized semi-variance (correlation of 0.28) 

and realized skewness (-0.24). JUMP shows expected correlations with realized skewness (-0.03) and kurtosis (0.07). While these 

correlations are small in magnitude, they are still significantly different from zero. 
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that straddles earn negative average returns. The Sharpe ratios of the straddles are more negative than 

those of the JUMP and VOL factors, which suggests that the straddles are subject to both volatility and 

jump risk. The correlations in Panel B provide additional evidence in this regard. While the jump and 

volatility risk factors are essentially uncorrelated, with a correlation of just 0.09, straddle returns have 

large positive correlations with both factors.  

Innovations in the CBOE VIX index (∆VIX) are also positively correlated with both the JUMP and VOL 

factors. This is consistent with recent theoretical results in Du and Kapadia (2011) and Martin (2012) that 

suggest that VIX is a biased measure of diffusion risk in the presence of jumps, with the degree of bias 

related to jump severity.
7
 

Figure 1 shows the time-series of daily returns of the JUMP factor. The vertical lines indicate realized 

jumps in the S&P 500 index according to the Lee and Mykland (2008) nonparametric jump test. The 

JUMP strategy is constructed such that it has a positive return if the market’s expectation of a jump in the 

S&P 500 increases. If the market’s expectations correspond to realized jumps, we expect to see large 

positive JUMP factor returns when the Lee-Mykland test indicates a jump. This is precisely what we find 

in Figure 1. 

Similarly, Figure 2 shows the time-series of daily returns of the VOL factor. In this case, the vertical lines 

indicate the 50 largest increases in daily realized standard deviation estimated from 5-minute returns. The 

VOL strategy is constructed such that positive returns capture increases in the market’s expectation of 

future market volatility. Thus, we expect to see that positive returns tend to align well with vertical lines. 

Inspection of Figure 2 confirms this expectation. 

Figure 1 and Figure 2, however, are quite noisy, as they show daily factor returns. Figure 3, in contrast, 

                                                      

7 The standard interpretation of VIX is that it is a model-free measure of implied volatility. This follows from a series of papers, 

including Britten-Jones and Neuberger (2000), Carr and Madan (1998), Demeterfi et al. (1999), and Neuberger (1994), that de-

rive a model-free implied volatility that equals the expected sum of squared returns under the risk-neutral measure, under few 

assumptions regarding the underlying stochastic process, except that there are no jumps. The dependence of VIX on higher mo-

ments is also discussed in Carr and Lee (2009). In reference to the financial crisis of 2008 they write that “dealers learned the 

hard way that the standard theory […] is not nearly as model free as previously supposed […] In particular, sharp moves in the 

underlying highlighted exposures to cubed and higher order daily returns.” 
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shows monthly returns of the VOL and JUMP factors. It re-emphasizes several of the observations drawn 

from the summary statistics: the two factors are quite distinct and the jump risk factor is more volatile. 

Finally, Figure 4 shows cumulative returns over the sample period. Most importantly, it illustrates the 

negative average returns of both strategies. As the cumulative returns of the JUMP factor converge quick-

ly to -100%, we also show these returns in more detail for sub-periods in Panel B (January 2000 to De-

cember 2006) and Panel C (January 2007 to December 2011).  

The cumulative return graphs help identify aggregate time trends in jump and volatility risk. We observe 

extended periods of time during which these factors perform well (e.g, the end of the tech boom for the 

JUMP factor). We also find extended periods of time with consistently negative returns (and correspond-

ing negative trends in the cumulative returns) for both risk factors (e.g., the period 2004 until 2007 or the 

years after the recent financial crisis). These are periods of time during which the market assessment of 

jump and volatility risk decreased. 

4. The Pricing of Jump and Volatility Risk 

This section describes our main results on the pricing of jump and volatility risk in the cross-section of 

stock returns. We first present summary statistics on jump and volatility risk betas. We then discuss the 

results of portfolio sorts. Finally, we consider Fama-MacBeth regressions. 

4.1 Summary Statistics of Jump and Volatility Betas 

For each stock we estimate factor loadings at the individual stock level using daily returns over rolling 

annual horizons, as in regression (6). Panel A of Table 2 presents descriptive statistics on these factor 

loadings. Jump and volatility betas βJump and βVol are close to zero on average and strongly leptokurtic 

(positive excess kurtosis). In the case of βVol, however, we observe more than twice as much cross-

sectional variation than for βJump. 

Panel B shows the pairwise correlations of the factor loadings. Like the factors themselves, the jump and 

volatility factor loadings are almost uncorrelated, with a correlation of -0.029. In contrast, market neutral 
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straddle betas and ∆VIX betas are positively correlated with both jump and volatility factor loadings, 

consistent with the view that straddle and ∆VIX betas reflect sensitivity to both jump and volatility risk. 

4.2 Portfolio Sorts 

In this section, we investigate whether aggregate jump and volatility risk are priced risk factors in the 

cross-section of stock returns through portfolio sorts. At the beginning of each twelve month period, we 

sort stocks into quintiles based on their realized betas with respect to the JUMP or the VOL factor over 

the next twelve months and compute average portfolio characteristics over the same twelve months (i.e., 

contemporaneously). While we focus on the results from value-weighted portfolios presented in Table 3, 

for robustness Table 4 reports the results of equally-weighted portfolios.  

For the jump risk factor, Panel A of Table 3 reports average returns, Fama-French three factor alphas and 

Sharpe ratios for value-weighted quintile portfolios and for a hedge portfolio that is long stocks with 

highest 20% (i.e., positive) loadings and short stocks with lowest 20% (i.e., negative) loadings, i.e., going 

long quintile 5 and short quintile 1. Several conclusions can be drawn from these results. First, stocks 

whose returns are more positively related to aggregate jump risk earn lower returns, consistent with our 

expectation that the market price of aggregate jump risk is negative. A negative market price of risk im-

plies that stocks with high sensitivities to innovations in aggregate market jump risk should earn low re-

turns. This makes sense economically, as such stocks provide useful hedging opportunities for risk-averse 

investors, who dislike high systematic jump risk.  

Second, this empirical result is quite robust: the portfolio sorts show a monotonically decreasing pattern 

for all three performance measures and the differences between quintile portfolios 5 and 1 are statistically 

significant at the 1% level in each case. Third, jump risk appears to be important economically: the value-

weighted long-short portfolio earns an average return of -8.9% per year (t-statistic -4.89); controlling for 

the three Fama-French factors results in an even larger average return of -9.4% per year (t-statistic -4.44). 

Fourth, the estimated annual market price of jump risk is quite close to the annualized time-series average 

of the JUMP factor return, as should be the case since the factor is tradable. Specifically, the estimated 
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market price of jump risk in Table 3 is -8.9%/0.252 = -35.3%, which is quite close to the annualized mean 

JUMP factor return in Table 1 (-0.001568×250 = -39.2%).  

Panel B of Table 3 presents the evidence for value-weighted portfolios of stocks sorted by their exposure 

to the aggregate volatility factor. Similarly to the results regarding jump risk, we find significant differ-

ences between quintile portfolios 5 and 1. Consistent with the negative market price of risk found in 

AHXZ and in the option pricing literature (e.g., Bakshi, Cao and Chen (2000), Pan (2002), and Eraker, 

Johannes and Polson (2003), among others), stocks with high sensitivities to innovations in aggregate 

market volatility earn low returns. The rationale is again that such stocks provide useful hedging opportu-

nities for risk-averse investors, who dislike high systematic volatility. The value-weighted long-short 

portfolio earns a raw return of -4.6% per year (t-statistic -4.37) and a risk-adjusted return of -2.7% per 

year (t-statistic -2.40). The estimated annual market price of volatility risk (-4.6%/0.525=-8.8%) is quite 

close to the annualized time-series average of the VOL factor return (-0.000320×250 = -8.0%). The return 

patterns across quintiles are monotonically decreasing for risk-adjusted returns, but not for raw returns 

and Sharpe ratios. In general, the results of the portfolio sorts suggest that aggregate volatility risk is 

priced in the cross-section but in a somewhat weaker way than jump risk. 

Of course, showing that there is a relation between aggregate jump risk exposure and average returns does 

not rule out the possibility that the pattern is driven by other known cross-sectional determinants of ex-

pected returns. In addition to the performance measures, Table 3 also reports the contemporaneous risk 

exposure of the portfolios with respect to the Fama-French risk factors. Although we do not observe 

strictly monotonic patterns across quintile portfolios for these betas, we do find statistically significant 

spreads between the most extreme quintiles. Thus it is important to control for sensitivities to these risk 

factors in a multivariate framework. We use Fama-MacBeth regressions for this purpose and discuss the 

corresponding results in the next section. 

Finally, the portfolio sorts show that sorting on sensitivities to jump risk is very different from sorting on 

sensitivities to volatility risk. This is not surprising given the low correlations between the original risk 

factors JUMP and VOL and between betas with respect to these factors. For example, if we sort on jump 
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risk betas, the spread in volatility risk betas between the top quintile portfolio and the bottom quintile 

portfolio is only -0.010 and statistically not significant. For comparison, the corresponding spread in vola-

tility risk betas if we sort on these betas themselves is 0.525. 

So far, we have only discussed the results based on value-weighted portfolios. In a factor risk based 

framework, a relationship between factor sensitivities and average returns should hold for both the aver-

age dollar and the average stock. In Table 4 we therefore examine the robustness of our results to forming 

equal-weighted rather than value-weighted portfolios. The evidence in Table 4 is consistent with, and 

very similar to, the results based on value-weighted portfolios. 

Table 5 further investigates the relation between JUMP betas and VOL betas by performing independent 

double sorts. Panel A of Table 5 shows the mean number of firms in each of the 25 corresponding portfo-

lios. While the distribution of firms is relatively homogenous in general, portfolios in the corners and in 

the center of the matrix tend to have more firms on average. Panel B reports average raw returns for val-

ue-weighted portfolios. The corresponding 5-1 long-short portfolios show significant negative returns in 

all cases and, as expected with their low correlations, no strong patterns or interactions between volatility 

and jump risk exposures. The equal-weighted results in Panel C are again similar. Thus jump risk does 

not subsume volatility risk, and vice versa, volatility risk does not subsume jump risk  

4.3 Fama-MacBeth Regressions 

The portfolio sorts present strong evidence that jump and volatility risk exposures are related to contem-

poraneous average stock returns. In addition, the average returns of the long-short portfolios further sug-

gest negative market prices of risk for both jump and volatility risk, consistent with asset pricing theory. 

The portfolio sorts also reveal interactions between jump and volatility betas and the traditional Fama-

French betas. These interactions are potentially important: while a factor based model implies that there 

should be a contemporaneous pattern between factor loadings and average returns, making a case for a 

factor risk explanation also requires that the pattern be robust to other, known determinants of returns. In 

this section we begin to address this issue by looking at the results from multivariate analyses, using 
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Fama-MacBeth regressions and the Fama-French factors. We consider additional factors and characteris-

tics in Section 5 when we investigate the robustness of our findings. 

In the Fama-MacBeth analysis, we run two-step regressions of individual stock excess returns on realized 

betas with respect to the jump factor and the volatility factor. We continue to work with annual returns 

that we regress on the contemporaneously realized betas (which were obtained for each stock using daily 

data and estimated using the regression in equation (3)). As before, we are interested in contemporaneous 

effects. 

The first two columns of Table 6 show results from cross-sectional regressions of excess stock returns on 

the JUMP factor loading, βJUMP, controlling only for the market return in Specification 1 and for the three 

Fama-French factors in Specification 2.  

Several important implications emerge from this analysis. First, the Fama-MacBeth regressions confirm 

that jump risk is priced in the cross-section of returns and the market price of jump risk is negative. Sec-

ond, this empirical result is robust across both regression specifications and consistent with the results 

from portfolio sorts. Third, the effect is economically important. To gauge the economic significance, we 

use the time-series mean of the cross-sectional standard deviations of βJump reported in Panel A of Table 2, 

namely 0.155. Together with the estimated market risk premium of -0.166, this implies that a two-

standard deviation increase across stocks in βJump is associated with a 5.1% drop in expected rate of return 

per annum (-0.166×2×0.155 = -0.051). The magnitude of this effect drops to -3.5% if we control for the 

Fama-French factors in the Fama-MacBeth regressions.  

Specifications 3 and 4 analyze whether aggregate volatility risk is priced in the cross-section of stock 

returns. Consistent with the sorts, we again find that stocks with high sensitivities to innovations in ag-

gregate market volatility earn low returns. To gauge the economic importance of aggregate volatility risk, 

we calculate the drop in expected rate of return that is associated with a two-standard deviation increase 

across stocks in βVol. Given the time-series average of the cross-sectional standard deviation of βVOL of 

0.335 reported in Panel A of Table 2, the corresponding decrease in expected returns is 2.7%. This effect 

remains essentially unchanged if we control for the Fama-French factors in the Fama-MacBeth regres-
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sions. 

An interesting byproduct of this analysis is that it enables us to estimate the economic effects of jump and 

volatility risk controlling for both types of risk at the same time. Specifications 5 and 6 report the corre-

sponding results. We find that the estimated market risk premiums are very similar to those estimated in 

specifications 1 to 4. This is important because it suggests that aggregate jump and volatility risk are 

priced separately in the cross-section and that our proxies successfully distinguish between these different 

types of risk. 

Overall, the evidence that we uncover on the pricing of jump and volatility risk in the cross-section of 

stock returns suggests that both sources of risk are important. Comparing the economic magnitudes of the 

estimated market risk premiums and the performance of the long-short portfolios, we find that systematic 

jump exposure matters as much as, if not more than, aggregate volatility exposure. Thus, our results on 

the cross-sectional pricing of aggregate jump risk are in line with the results in the related time-series 

literature, which suggests that time varying aggregate jump risk has a substantial effect on aggregate mar-

ket returns (e.g., Santa-Clara and Yan, 2010). 

5. Extensions 

This section describes several extensions of our basic analysis in Section 4. First, we consider a battery of 

robustness tests including controls for size, book-to-market, illiquidity, downside and upside beta, condi-

tional skewness and kurtosis, idiosyncratic volatility, idiosyncratic skewness, the variance risk premium, 

realized standard deviation, and risk-neutral skewness and kurtosis. Second, we examine whether our 

results on the pricing of aggregate jump and volatility risk are robust to the use of alternative non-tradable 

but theoretically motivated jump and volatility proxies, as well as to using market-neutral straddle returns 

and changes in VIX as alternative volatility proxies. Third, we investigate whether we can predict future 

jump and volatility risk betas.  
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5.1 Robustness of the Pricing of Jump and Volatility Risk 

In this subsection, we investigate whether the contemporaneous relation between jump and volatility risk 

loadings and returns is robust to the inclusion of several control variables. The control variables that we 

consider are factor loadings with respect to momentum, firm size, book-to-market, illiquidity (as in Ami-

hud, 2002), downside beta (as in Ang, Chen and Xing, 2006), conditional skewness (as in Harvey and 

Siddique, 2000) and conditional kurtosis (as in Dittmar, 2002), idiosyncratic volatility (as in Ang, Ho-

drick, Xing and Zhang, 2006), idiosyncratic skewness (as in Boyer, Mitton and Vorkink, 2010), the vari-

ance risk premium (as in Bollerslev, Tauchen and Zhou, 2009), realized standard deviation, and risk-

neutral skewness and kurtosis (as in Bakshi, Kapadia and Madan, 2003, and Duan and Wei, 2009).  

The momentum factor is taken from Ken French’s website and firm betas are estimated using daily re-

turns over rolling annual periods, following equation (3). Book equity is calculated at the quarterly fre-

quency using Compustat. It is defined as stockholders’ equity plus deferred taxes and investment tax cred-

it minus preferred capital. If this calculation yields a missing value, we replace it with the difference be-

tween total assets and total liabilities. The illiquidity measure corresponds to the Amihud ratio and is cal-

culated at the daily frequency as the ratio of absolute return to trading volume. We compute downside 

beta as the sample counterpart of the measure introduced in Bawa and Lindenberg (1977), namely 


�� = cov���� ,����|���� < /����
var�����|���� < /���� , (5) 

where µ
MKT

 is the sample average market return. We calculate conditional skewness as the sample coun-

terpart of the measure  

2%�34 = E67��� − /�8 ∙ ����� − /����$9
:var����� ∙ var������

, 

where µ
i
 is the average excess return on the stock. Conditional kurtosis is defined analogously. We com-

pute idiosyncratic volatility and idiosyncratic skewness relative to the Fama-French three factor model, 

defining them as the standard deviation and skewness of "� in the regression 
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The variance risk premium is defined as the difference between VIX and realized variance. We also con-

sider the ex-post variance risk premium which uses lagged VIX. Daily estimates of realized standard de-

viation of the S&P 500 are downloaded from the data library of the Oxford-Man Institute of Quantitative 

Finance for the sample period starting in January 2000. For earlier years, we estimate realized standard 

deviation ourselves using 5-minute returns obtained from Tick Data, Inc. Finally, risk-neutral skewness 

and kurtosis are estimated from the cross-section of option prices at the daily frequency (see section 5.2 

for more details on the estimation). 

Panels A and B of Table 7 show the distribution of these control variables across value-weighted quintile 

portfolios of stocks sorted by βJump (Panel A) and βVol (Panel B).
8
 As before, we sort stocks into quintiles 

based on their realized betas with respect to the JUMP or the VOL factor over the next twelve months and 

then compute averages of the control variables over the same twelve months. In the case of portfolio sorts 

based on jump risk betas, we find monotonic patterns across these portfolios for momentum beta (de-

creasing), illiquidity (decreasing), upside beta (increasing), conditional skewness (increasing), variance 

risk premium beta (decreasing), realized standard deviation beta (increasing) and risk-neutral skewness 

beta (increasing). In the case of portfolio sorts based on volatility risk betas we observe monotonic pat-

terns for variance risk premium beta (decreasing), realized standard deviation beta (increasing) and risk-

neutral skewness beta (increasing).  

In both panels, however, we find significant 5-1 spreads for several control variables. Overall, the portfo-

lio sorts suggest interesting cross-sectional interactions between jump and volatility risk and these control 

variables. Because these effects may be at play in the results of Section 4, it is important to verify that 

jump and volatility risk are also priced in the cross-section of stock returns when we control for these 

additional risk factors in a multivariate framework. 

                                                      

8 Results of equal-weighted portfolios are not reported for reasons of brevity and are available from the authors upon request. 

These results are very similar to the ones for value-weighted portfolios. 
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Panel C of Table 7 reports the results from Fama-MacBeth regressions. To keep the table tractable we 

focus on the estimated market risk premiums associated with jump and volatility risk. All specifications 

include the three Fama-French factors. The evidence shows that our results on the pricing of aggregate 

jump and volatility risk are remarkably robust: the estimated market prices of volatility and jump risk are 

very stable across the various specifications and all the Shanken (1992) t-statistics remain significant. 

Only in the specifications in which we control for downside beta and conditional skewness we observe a 

slight drop in the market risk premium of jump risk. This is perhaps not too surprising, as downside beta 

and conditional skewness are both associated, to some extent, with the notion of jump risk. Nevertheless, 

our jump beta risk is different from both downside beta risk and conditional skewness.
9
 The consistent 

message from the regressions in Table 7 is that reward for bearing jump risk and volatility risk is always 

negative, remarkably stable, and statistically significant.  

5.2 Alternative Proxies for Jump and Volatility Risk 

Next, we investigate whether our results on the pricing of aggregate jump and volatility risk are robust to 

the use of alternative non-tradable but theoretically motivated jump and volatility proxies. Two theoretical 

results guide our empirical design. 

First, in a continuous time jump diffusion model, Yan (2011) proposes the change in the slope of the im-

plied volatility smirk as the right proxy for jump risk, as the smirk is approximately proportional to the 

product of the jump intensity parameter and the jump size in his model. Thus our smirk measure (∆IV-

Smirk) is the difference between the implied volatility of an out-of-the-money put option (0.95 strike-to-

spot ratio) and an at-the-money call option.
10

  

Second, Du and Kapadia (2011) show that VIX is a biased estimator of volatility in the presence of price 

discontinuities, which makes it difficult to accurately distinguish between volatility and jump risk. The 

                                                      

9
 As an additional robustness test, we regress our factors on the Harvey and Siddique (2000) skewness factor to strip out skew-

ness and on up- and down-market returns to strip out asymmetric beta. Completely removing these effects from our factors leaves 

the results largely unchanged: we observe slightly smaller market prices of risk in absolute terms and negligible reductions in 

significance levels. 
10 There is evidence that volatility smirks become more pronounced around large jumps, e.g., Bates (1991). Du (2011) shows 

within an option pricing model that time varying investor risk aversion due to jumps is the driving force behind volatility smirks. 
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key insight in Du and Kapadia (2011) is that the bias in VIX is proportional to the jump intensity. Be-

cause time variation in jump intensity determines time variation in jump risk, a jump index can be con-

structed based upon the degree to which VIX inaccurately measures volatility. Of course, this requires 

that a more accurate measure of volatility be constructed. Du and Kapadia (2011) show that while both 

VIX and the Bakshi, Kapadia and Madan (2003) measure of the variance of the holding period return are 

biased for general classes of jump diffusions, the bias in VIX is much larger. Following Du and Kapadia 

(2011), we therefore construct a jump index as the difference between the Bakshi, Kapadia and Madan 

(2003) measure of volatility and the VIX measure.
11

 We then use the jump index (∆JumpIndex) along 

with the Bakshi, Kapadia and Madan (2003) volatility measure (∆VolBKMV) in the asset pricing tests.  

The evidence in Panel A of Table 8 shows that our results on the pricing of volatility and jump risk are 

quite robust to the use of these alternative non-tradable measures. The volatility risk measure 

∆VolBKMV and the jump risk measure ∆IV-Smirk carry a negative and statistically significant market 

price of risk (see models 1 and 5). Only in the case of the jump index ∆JumpIndex is its estimated nega-

tive market risk premium statistically insignificant (model 3). This lack of statistical significance may be 

due to estimation noise induced by the discrete approximation of a continuum of strike prices. Overall, we 

conclude that these results are similar to, but weaker than, our main results, which are based on readily 

tradable option strategies to capture jump and volatility risk. 

If we run a horse race between these alternative proxies and our main factors we find several interesting 

results. The effect of ∆VolBKMV exposures, an alternative measure of sensitivity to volatility risk, be-

comes insignificant once we also control for JUMP and VOL betas (see model 2). This is not surprising 

and confirms that our main factors do a good job of capturing volatility risk. The sensitivities to ∆IV-

                                                      

11 The construction of both the VIX index and the Bakshi, Kapadia and Madan (2003) volatility measure requires a continuum of 

strike prices. Following Du and Kapadia (2011) and Jiang and Tian (2005) we interpolate the implied volatilities across the range 

of observed option prices using a cubic spline and assume the smirk to be flat beyond this range. We then compute 1001 option 

prices using the interpolated curve over a range of zero to three times the underlying futures price. We follow this procedure for 

options that expire in the current month and in the next month, thus constructing two curves, and then create a 30-day implied 

volatility curve by linear interpolation across the two near month implied volatility curves.  
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Smirk are marginally significant if we control for JUMP and VOL betas (model 6). Thus, it seems that 

∆IV-Smirk captures a different, potentially more asymmetric, aspect of jump risk.  

Finally, for comparison with prior work on aggregate volatility risk, we also include the results of Fama-

MacBeth regressions using sensitivities with respect to standard market-neutral straddle returns (STR) 

and simple changes in VIX (∆VIX). Results are presented in Panel B of Table 8. In both cases we find 

negative prices of risk that are highly significant and economically large (models 1 and 3). Those betas, 

however, are more difficult to interpret because the underlying proxies are affected by both jump and 

volatility risk. As we argue in Section 2, market-neutral straddle returns are sensitive to both volatility and 

jump risk. Similarly, Du and Kapadia (2011) show that VIX is a biased estimator of volatility in the pres-

ence of price discontinuities, which makes it difficult to accurately distinguish between volatility and 

jump risk using VIX. 

We find strong evidence that market-neutral straddles capture both volatility and jump risk in model 2, 

where we include STR together with JUMP and VOL, which renders all three risk factors insignificant. 

Model 4 suggests the same but to a lesser extent for ∆VIX, which becomes insignificant when JUMP and 

VOL are included as well, with JUMP remaining statistically significant but VOL also becoming insignif-

icant (model 4). 

5.3 Predicting Future Jump and Volatility Risk 

The results we discuss so far focus on contemporaneous relations between aggregate jump and volatility 

risk loadings and firm returns. While we find strong evidence that jump and volatility risk are priced in 

the cross-section of stock returns, this contemporaneous analysis may be of limited practical use, as it 

does not reflect an ex ante implementable strategy that can be followed to construct hedge portfolios. 

Thus, we study whether future jump and volatility risk loadings can be predicted in this section. 

As a first step, we examine whether simply sorting stocks on past jump/volatility risk loadings provides 

enough variation in future jump/volatility risk to produce spreads in future returns. For this purpose, we 

sort stocks into quintiles based on their realized betas with respect to the JUMP or the VOL factor over 
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the past twelve months (t-11, t) and then compute average returns over the next twelve months (t+1, 

t+12). Table 9 reports the results.  

For portfolios sorted on volatility risk, we find results that are consistent with the contemporaneous sorts. 

Focusing on value-weighted portfolios again, we find a nearly monotonically decreasing pattern of returns 

with a significantly negative average return for the 5-1 hedge portfolio. Although the negative returns are 

smaller than those found for contemporaneous sorts, they are still significant. 

In contrast, in the case of portfolios sorted on jump risk, we observe a surprisingly strong return reversal: 

the average return and the Fama-French three factor alpha of a long-short portfolio that buys the top-

quintile portfolio and shorts the bottom-quintile portfolio are significantly positive. This indicates that the 

jump risk loadings are strongly time-varying, such that simply using past loadings does not result in con-

sistent exposures to jump risk. In response, we test if we can construct investable portfolios with a spread 

in jump risk loadings by using past information to explicitly predict future jump risk betas. Specifically, 

we run Fama-MacBeth regressions in which we regress jump risk betas estimated over (t+1, t+12) on a 

set of firm characteristics including size, the Fama-French betas, and other risk controls
12

 known at time t. 

Table 10 summarizes the corresponding results.  

In univariate specifications, jump risk betas have statistically significant but economically small positive 

autocorrelations. This confirms that simply using past jump betas to predict future jump betas is difficult 

because past jump betas are poor predictors of future jump betas, consistent with our finding in Table 9 

that a naïve strategy of sorting stocks on past jump betas alone is not effective. Furthermore, size, upside 

beta, conditional skewness, conditional kurtosis, idiosyncratic skewness and realized standard deviation 

beta all predict future jump risk betas with statistically significant positive coefficients; illiquidity, idio-

syncratic volatility and variance risk premium betas receive significantly negative coefficients. Table 10 

also reports a kitchen-sink regression in which we include all the lagged firm characteristics at the same 

                                                      

12 We consider all variables included in the robustness tests except for the ex-post variance risk premium. The reason is that we 

cannot include both the variance risk premium and the ex-post variance risk premium in the multivariate specification due to 

multicollinearity issues. 
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time. The results are broadly consistent with the observations from the univariate specifications, although 

some coefficients lose significance. Overall, it seems that firm size, asymmetric market betas, conditional 

skewness, idiosyncratic volatility and realized standard deviation betas robustly predict future jump risk 

loadings. 

These lead-lag relations between firm characteristics and jump risk betas, however, do not necessarily 

imply that investors could use the predicted values to construct hedge portfolios in a successful way. In 

order to address this issue we evaluate portfolio sorts in which we sort stocks with respect to predicted 

jump risk betas. We use the kitchen-sink regression (i.e., the column labeled “Multivariate Model” in 

Panel A of Table 10) to compute the predicted jump risk loading for each firm. Panel B of Table 10 

shows realized future jump risk betas, raw returns and Sharpe ratios of quintile portfolios based on these 

predicted jump risk loadings, as well as of a long-short portfolio that buys stocks in quintile 5 and shorts 

stocks in quintile 1. Consistent with the contemporaneous results, we find a strong negative and monoton-

ic relation between predicted jump risk betas and average returns. The average annualized value-weighted 

return of the long-short portfolio is -6.4% with a Newey-West adjusted t-statistic of -3.13. The Fama-

French risk-adjusted return is smaller but remains significant. As one would expect, realized future jump 

risk betas of these portfolios increase monotonically resulting in a significant 5-1 spread of 0.028. We 

find similar results for equal-weighted portfolios. 

6. Conclusion 

This paper introduces measures of jump and volatility risk that are constructed from index options to ex-

amine the pricing of aggregate jump and volatility risk in the cross-section of stock returns. The jump and 

volatility factor mimicking portfolios are directly tradable strategies that we construct explicitly so as to 

load on one factor while being orthogonal to the other.  

Using our jump risk factor, we find strong evidence that aggregate stock market jump risk is priced in the 

cross-section. Aggregate market jump risk is important economically: a two-standard deviation increase 

across stocks in jump factor loadings is associated with a 3.5% to 5.1% drop in expected annual returns 
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(with and without correcting for market, size and BM loadings, respectively). We find that the compensa-

tion for bearing stock market volatility risk is similar albeit a bit smaller. A two-standard deviation in-

crease across stocks in volatility factor loadings is associated with a 2.7% to 2.9% drop in expected annu-

al returns (again with and without correcting for market, size and BM loadings, respectively). These re-

sults are robust to various additional risk controls and alternative proxies for volatility and jump risk.  

Several important implications emerge from our analysis. First, the cross-sectional evidence is in line with 

the results in the related time-series literature, which suggest that time varying aggregate jump risk has a 

large effect on aggregate market returns. Second, jump and volatility risk are separately priced sources of 

risk. Third, jump risk and volatility risk betas are nearly uncorrelated. This implies that the firm character-

istics that make firms good hedges against jump risk are different from the characteristics that make firms 

good hedges against volatility risk. Fourth, jump and volatility risk betas are time-varying. Nevertheless, 

both future jump and volatility risk betas can be predicted and, thus, implementable strategies to hedge 

against these sources of risk can be found. 
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7. Appendix 

In this appendix we show that instantaneous excess straddle returns are proportional to innovations in 

volatility in the Heston (1993) stochastic volatility model. Assume that the asset price St at time t and its 

variance Vt follow the diffusions 

<%� = �/ − =�%�<> + %�?@�<A�� (7) 

<@� = B�� − @��<> + C?@�<A$� , (8) 

where Z1t and Z2t are P-Brownian motions with correlation ρ and δ is the dividend yield.  

Heston (1993) shows that the value of any derivative D�%�, @�, >� must satisfy the PDE 

1
2@�%�$ F$D

F%$ + GC@�%� F$D
F%F@ + 1

2C$@� F
$D

F@$ + �� − =�%� FDF%  

+HB�� − @�� − I�%�, @�, >�J FDF@ + FD
F> = �D, 

(9) 

which is equation (6) in Heston (1993). Here I�%� , @�, >� is the market price of volatility risk. 

By Ito’s Lemma, 

<D = K12@�%�$ F$D
F%$ + GC@�%� F$D

F%F@ + 1
2C$@� F

$D
F@$ + FD

F> L <> +
FD
F@ <@� + FD

F% <%�. (10) 

Inserting the PDE into the drift gives 

<D = �D<> − �� − =�%� FDF% <> − HB�� − @�� − I�%�, @�, >�J FDF@ <> + FD
F@ <@� + FD

F% <%�

= �D<> + FD
F% H<%� − �� − =�%�<>J + FD

F@ H<@� − HB�� − @�� − I�%� , @�, >�J<>J. 

(11) 

Therefore instantaneous option returns satisfy 

<D
D = �<> + FD

F% ∙ %�D M<%�%� − �� − =�<>N + FD
F@ ∙ 1D H<@� − HB�� − @�� − I�%�, @�, >�J<>J. (12) 
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Let STR denote the price of a delta-neutral straddle, it follows that instantaneous straddle returns satisfy 

<%��
%�� = �<> + F%��

F@ ∙ 1
%�� <@� − F%��

F@ ∙ 1
%�� HB�� − @�� − I�%�, @�, >�J<>, (13) 

such that 

<%��
%�� = �<> + F%��

F@ ∙ 1
%�� 7<@� − 3�OH<@�J8, (14) 

where Q is the equivalent martingale measure, which implies that (excess) straddle returns are locally 

proportional to innovations in volatility. 
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Table 1. Summary Statistics of Volatility and Jump Risk Proxies 

This table shows descriptive statistics (Panel A) and pairwise correlations (Panel B) for our volatility and 

jump risk factors at the daily frequency. The sample extends from January 1988 to December 2011. The 

JUMP risk factor is the return on a market neutral, vega neutral but gamma positive calendar spread op-

tion strategy. The VOL risk factor is the return on a market neutral, gamma neutral but vega positive cal-

endar spread option strategy. Alternative proxies for volatility risk are STR (the market neutral at-the-

money straddle return following Coval and Shumway (2001)) and ∆VIX (the first difference in the CBOE 

VIX index following Ang et al. (2006)).  

 

Panel A: Descriptive Statistics 

 

Annualized 

Mean 

Annualized 

SD 

Annualized  

Sharpe Ratio 

Daily  

Median 
Skewness Kurtosis 

VOL -0.0801 0.2394 -0.483 -0.0008 2.64 47.18 

VOL Vega 180.01 88.155  181.87 0.24 2.06 

JUMP -0.3919 0.4796 -0.891 -0.0053 5.15 86.23 

JUMP Gamma 0.0124 0.0089  0.0078 0.83 2.26 

STR -0.9021 1.0061 -0.932 -0.0143 8.30 181.43 

∆VIX -0.6628 27.867  -0.0400 0.10 25.09 

  

 

Panel B. Pairwise Correlations 

 VOL JUMP STR ∆VIX 

VOL 1.00    

JUMP 0.09 1.00   

STR 0.51 0.88 1.00  

∆VIX 0.49 0.37 0.56 1.00 
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Table 2. Summary Statistics of Volatility and Jump Risk Betas 

This table shows time-series means of cross-sectional statistics (Panel A) and time-series means of pair 

wise correlations (Panel B) for firm betas. The sample extends from January 1988 to December 2011. 

Betas are estimated at the monthly frequency using daily data from the previous 12 months. The JUMP 

risk factor is the return on a market neutral, vega neutral but gamma positive calendar spread option strat-

egy. The VOL risk factor is the return on a market neutral, gamma neutral but vega positive calendar 

spread option strategy. Alternative proxies for volatility risk are STR (the market neutral at-the-money 

straddle return following Coval and Shumway (2001)) and ∆VIX (the first difference in the CBOE VIX 

index following Ang et al. (2006)).  

Panel A: Descriptive Statistics 

 Mean SD Skewness Kurtosis 

βVOL 0.001 0.335 0.879 35.459 

βJUMP -0.014 0.155 0.146 27.926 

βSTR -0.006 0.081 0.418 23.138 

β∆VIX 0.001 0.005 0.410 25.736 

  

 

Panel B. Pairwise Correlations 

 βVOL βJUMP βSTR β∆VIX 

βVOL 1.000    

βJUMP -0.029 1.000   

βSTR 0.347 0.833 1.000  

β∆VIX 0.346 0.434 0.612 1.000 
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Table 3. Contemporaneous Characteristics of Value-Weighted Portfolios 

Every month we create value-weighted portfolios by sorting stocks into quintiles based on their realized 

jump risk betas (βJUMP; Panel A) and volatility risk betas (βVOL; Panel B). The sample extends from Janu-

ary 1988 to December 2011. Betas are estimated over the previous 12 months. All reported portfolio 

characteristics are contemporaneous with the betas used to construct the portfolio and correspond to an-

nual numbers. The portfolio characteristics are average returns, Fama-French 3 factor alphas, Sharpe rati-

os and betas with respect to jump risk, volatility risk, and the Fama-French factors. Because we use over-

lapping returns and beta estimates we adjust standard errors accordingly using 12 Newey-West lags. 

 

Panel A. Characteristics of Portfolios Sorted by βJUMP 

Portfolio Return FF3-ALpha Sharpe Ratio βJUMP βVOL βMKT βSMB βHML 

1 Low βJUMP 0.253 0.133 0.983 -0.135 -0.001 1.082 0.357 -0.207 

2 0.203 0.099 0.981 -0.054 -0.007 0.927 0.013 -0.013 

3 0.189 0.090 0.957 -0.009 -0.011 0.913 -0.086 0.023 

4 0.190 0.081 0.859 0.036 -0.008 0.991 -0.010 0.038 

5 High βJUMP 0.164 0.038 0.532 0.116 -0.011 1.249 0.077 -0.071 

High-Low -0.089 -0.094 -0.517 0.252 -0.010 0.167 -0.280 0.136 

t-stat -4.89 -4.44  23.84 -0.74 3.05 -3.73 1.33 

 

Panel B. Characteristics of Portfolios Sorted by βVol 

Portfolio Return FF3-ALpha Sharpe Ratio βJUMP βVOL βMKT βSMB βHML 

1 Low βVOL 0.239 0.104 0.895 0.005 -0.264 1.122 0.171 -0.046 

2 0.203 0.097 1.004 0.002 -0.101 0.939 -0.090 0.045 

3 0.183 0.084 0.905 0.002 -0.008 0.921 -0.117 0.044 

4 0.185 0.084 0.827 -0.001 0.087 0.984 -0.045 -0.014 

5 High βVOL 0.193 0.077 0.668 0.002 0.260 1.012 0.230 -0.262 

High-Low -0.046 -0.027 -0.263 -0.003 0.525 0.101 0.059 -0.215 

t-stat -4.37 -2.40  -0.46 24.70 2.93 1.26 -2.27 
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Table 4. Contemporaneous Characteristics of Equal-Weighted Portfolios 

Every month we create equal-weighted portfolios by sorting stocks into quintiles based on their realized 

jump risk betas (βJUMP; Panel A) and volatility risk betas (βVOL; Panel B). The sample extends from Janu-

ary 1988 to December 2011. Betas are estimated over the previous 12 months. All reported portfolio 

characteristics are contemporaneous with the betas used to construct the portfolio and correspond to an-

nual numbers. The portfolio characteristics are average returns, Fama-French 3 factor alphas, Sharpe rati-

os and betas with respect to jump risk, volatility risk, and the Fama-French factors. Because we use over-

lapping returns and beta estimates we adjust standard errors accordingly using 12 Newey-West lags. 

 

Panel A. Characteristics of Portfolios Sorted by βJUMP 

Portfolio Return FF3-ALpha Sharpe Ratio βJUMP βVOL βMKT βSMB βHML 

1 Low βJUMP 0.152 0.017 0.555 -0.164 0.011 0.981 0.902 -0.250 

2 0.149 0.025 0.668 -0.056 -0.004 0.809 0.581 -0.082 

3 0.141 0.018 0.635 -0.001 -0.009 0.773 0.479 -0.035 

4 0.130 0.002 0.528 0.037 -0.011 0.831 0.496 -0.041 

5 High βJUMP 0.093 -0.048 0.247 0.141 -0.012 1.044 0.726 -0.216 

High-Low -0.060 -0.065 -0.598 0.305 -0.023 0.063 -0.175 0.034 

t-stat -5.43 -4.85  25.48 -1.43 1.99 -3.50 0.54 

 

Panel B. Characteristics of Portfolios Sorted by βVol 

Portfolio Return FF3-ALpha Sharpe Ratio βJUMP βVOL βMKT βSMB βHML 

1 Low βVOL 0.143 0.004 0.492 -0.006 -0.323 0.986 0.806 -0.182 

2 0.147 0.021 0.646 -0.007 -0.105 0.811 0.525 -0.038 

3 0.138 0.017 0.625 -0.008 -0.008 0.776 0.476 -0.032 

4 0.131 0.005 0.544 -0.011 0.090 0.831 0.549 -0.082 

5 High βVOL 0.106 -0.033 0.324 -0.019 0.322 1.034 0.828 -0.291 

High-Low -0.037 -0.036 -0.492 -0.013 0.645 0.049 0.022 -0.110 

t-stat -4.64 -4.43  -1.76 24.54 2.43 0.79 -2.09 
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Table 5. Average Returns of Stocks Sorted Independently by Realized Jump and Volatility Betas 

Every month we create value-weighted (Panel B) and equal-weighted (Panel C) portfolios by inde-

pendently sorting stocks into quintiles based on their realized jump risk betas (βJUMP) and volatility risk 

betas (βVOL). The sample extends from January 1988 to December 2011. Betas are estimated over the 

previous 12 months. All reported portfolio characteristics are contemporaneous with the betas used to 

construct the portfolio and correspond to annual numbers. Panel A reports the average number of firms in 

each portfolio. Panel B and C summarize contemporaneous average portfolio returns. Because we use 

overlapping returns and beta estimates we adjust standard errors accordingly using 12 Newey-West lags.  

 

Panel A. Average Number of Firms 

 1 Low βVOL 2 3 4 5 High βVOL 

1 Low βJUMP 183 124 114 133 206 

2 134 160 164 162 140 

3 121 170 186 168 115 

4 132 169 173 164 123 

5 High βJUMP 190 137 123 133 176 

 

Panel B. Average Returns of Value-Weighted Portfolios 

 1 Low βVOL 2 3 4 5 High βVOL High-Low t-stat 

1 Low βJUMP 0.281 0.275 0.249 0.239 0.237 -0.044 -2.05 

2 0.260 0.210 0.192 0.198 0.205 -0.054 -2.47 

3 0.231 0.196 0.189 0.185 0.187 -0.043 -2.11 

4 0.242 0.204 0.178 0.168 0.194 -0.048 -2.36 

5 High βJUMP 0.211 0.173 0.141 0.160 0.174 -0.037 -1.88 

High-Low -0.070 -0.102 -0.108 -0.079 -0.063   

t-stat -3.69 -4.67 -5.69 -4.05 -3.02   
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Panel C. Average Returns of Equal-Weighted Portfolios 

 1 Low βVOL 2 3 4 5 High βVOL High-Low t-stat 

1 Low βJUMP 0.162 0.169 0.161 0.153 0.130 -0.032 -3.72 

2 0.167 0.158 0.149 0.143 0.126 -0.041 -4.68 

3 0.163 0.150 0.141 0.134 0.115 -0.048 -5.91 

4 0.145 0.143 0.132 0.122 0.107 -0.038 -4.39 

5 High βJUMP 0.096 0.110 0.103 0.100 0.067 -0.029 -3.23 

High-Low -0.066 -0.059 -0.058 -0.054 -0.063   

t-stat -6.37 -5.75 -5.54 -4.58 -4.88   
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Table 6. Fama-MacBeth Regressions 

This table investigates the cross-sectional pricing of aggregate jump and volatility risk. The sample period 

is from January 1988 until December 2011. We run Fama-MacBeth regressions of twelve month excess 

returns on contemporaneous realized betas. Observations are at the monthly frequency and we adjust 

standard errors accordingly using 12 Newey-West lags. The t-statistics are also adjusted according to 

Shanken (1992) because betas are estimated. The JUMP factor is the return on a market neutral, vega 

neutral but gamma positive calendar spread option strategy. The VOL factor is the return on a market 

neutral, gamma neutral but vega positive calendar spread option strategy.  

 

 

Model 1 2 3 4 5 6 

JUMP 
-0.166 

[-3.80] 

-0.112 

[-2.78] 
  

-0.170 

[-4.24] 

-0.121 

[-3.19] 

VOL   
-0.041 

[-2.33] 

-0.043 

[-2.96] 

-0.043 

[-2.13] 

-0.042 

[-2.37] 

MKT 
0.105 

[3.09] 

0.103 

[3.66] 

0.105 

[3.67] 

0.102 

[4.59] 

0.105 

[3.06] 

0.103 

[3.63] 

SMB  
0.018 

[0.93] 
 

0.019 

[1.24] 

 0.017 

[0.90] 

HML  
0.011 

[0.98] 
 

0.009 

[1.07] 

 0.009 

[0.82] 

Intercept 
0.074 

[3.66] 

0.072 

[4.13] 

0.075 

[3.72] 

0.073 

[4.17] 

0.073 

[3.64] 

0.072 

[4.12] 
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Table 7. Robustness Tests  

This table investigates the robustness of the cross-sectional pricing of aggregate jump and volatility risk. 

The sample period is from January 1988 until December 2011. Panel A and B report results from portfo-

lio sorts. Every month we create value-weighted portfolios by sorting stocks into quintiles based on their 

realized jump risk betas (βJUMP; Panel A) and volatility risk betas (βVOL; Panel B). Betas are estimated 

over the previous 12 months. All reported portfolio characteristics are contemporaneous with the betas 

used to construct the portfolio. In Panel C we estimate Fama-MacBeth regressions of twelve month ex-

cess returns on contemporaneous realized betas and firm characteristics. More specifically, we repeat 

specifications 2, 4 and 6 from Table 6 but add a battery of robustness variables. For readability reasons 

the table only reports estimates of jump and volatility market risk premia. The additional controls includ-

ed in Panel A-C are sensitivity to momentum (MOM), market capitalization (MC), book-to-market 

(B/M), illiquidity (ILLIQ, the Amihud measure multiplied by 1000), downside and upside beta (Asym. 

Beta), conditional skewness, conditional kurtosis, idiosyncratic volatility (Idio. Vola), idiosyncratic 

skewness (Idio. Skew), variance risk premium (spread between implied volatility and realized volatility), 

ex-post variance risk premium (the spread between lagged implied volatility and realized volatility), real-

ized standard deviation, risk-neutral skewness and risk-neutral kurtosis. Observations are at the monthly 

frequency and we adjust standard errors accordingly using 12 Newey-West lags. The t-statistics in Panel 

C are also adjusted according to Shanken (1992). 

 

Panel A. Robustness Characteristics of Portfolios Sorted by βJump 

Portfolio 
1 

Low βJUMP 
2 3 4 

5 

High βJUMP 
High-Low t-stat 

βMOM 0.065 0.016 -0.008 -0.003 -0.172 -0.237 -3.89 

MC 3.440 5.170 5.570 5.570 4.020 0.580 1.33 

B/M 0.483 0.503 0.465 0.509 0.496 0.013 0.56 

ILLIQ 0.606 0.534 0.406 0.319 0.318 -0.288 -1.96 

βMKT- 1.241 0.998 0.928 0.942 1.072 -0.167 -2.93 

βMKT+ 0.789 0.835 0.925 1.087 1.418 0.629 11.99 

Cond-Skew -0.213 -0.176 -0.133 -0.088 -0.036 0.177 15.29 

Cond-Kurt 2.219 2.469 2.564 2.604 2.444 0.225 2.24 

Idio-Vola 0.023 0.017 0.015 0.016 0.021 -0.002 -2.87 

Idio-Skew -0.255 -0.225 -0.178 -0.181 -0.287 -0.033 -0.93 

VRP 0.013 0.003 -0.002 -0.007 -0.020 -0.032 -4.72 

VRP-Post 0.018 0.006 -0.001 -0.008 -0.025 -0.044 -5.81 

Realized SD -0.028 -0.011 0.000 0.011 0.036 0.064 7.97 

RN-Skew -0.007 -0.004 -0.002 0.001 0.008 0.016 2.71 

RN-Kurt 0.002 0.001 0.000 0.000 -0.002 -0.003 -2.64 
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Panel B. Robustness Characteristics of Portfolios Sorted by βVol 

Portfolio 
1  

Low βVOL 
2 3 4 

5  

High βVOL 
High-Low t-stat 

βMOM 0.012 0.021 -0.020 -0.028 -0.059 -0.071 -1.04 

MC 3.450 5.270 6.030 5.540 3.650 0.200 0.52 

B/M 0.466 0.497 0.473 0.496 0.534 0.069 1.14 

ILLIQ 0.635 0.355 0.361 0.382 0.362 -0.273 -2.08 

βMKT- 1.126 0.943 0.918 0.973 1.176 0.050 1.52 

βMKT+ 1.066 0.962 0.968 1.017 1.193 0.127 3.56 

Cond-Skew -0.131 -0.134 -0.122 -0.114 -0.100 0.032 2.71 

Cond-Kurt 2.351 2.570 2.620 2.508 2.275 -0.076 -1.01 

Idio-Vola 0.021 0.016 0.015 0.016 0.022 0.001 1.89 

Idio-Skew -0.314 -0.235 -0.195 -0.169 -0.190 0.124 3.26 

VRP 0.001 -0.003 -0.004 -0.005 -0.008 -0.010 -1.99 

VRP-Post 0.005 -0.001 -0.003 -0.006 -0.014 -0.019 -3.82 

Realized SD -0.002 0.001 0.003 0.005 0.015 0.017 3.15 

RN-Skew -0.004 -0.003 -0.001 0.000 0.005 0.009 2.26 

RN-Kurt 0.002 0.001 0.000 0.000 -0.002 -0.003 -3.63 

 

Panel C. FM Regressions Including Additional Controls 

Robustness Variable  
added 

Added to 

Model 2, Table 6 

Added to 

Model 4, Table 6 

Added to 

Model 6, Table 6 

βJUMP βVOL βJUMP βVOL 

Coeff. t-stat Coeff. t-stat Coeff. t-stat Coeff. t-stat 

MOM -0.091 -2.34 -0.032 -2.30 -0.094 -2.54 -0.032 -1.81 

MC -0.114 -2.79 -0.042 -2.88 -0.122 -3.19 -0.040 -2.29 

B/M -0.112 -2.46 -0.042 -2.48 -0.149 -3.60 -0.033 -1.84 

ILLIQ -0.118 -2.49 -0.040 -2.22 -0.156 -3.81 -0.035 -2.00 

Asym. Beta -0.073 -1.80 -0.040 -2.81 -0.082 -2.14 -0.038 -2.11 

Cond. Skew + Cond. Kurt. -0.073 -1.96 -0.034 -2.46 -0.083 -2.35 -0.032 -1.77 

Idio. Vola -0.115 -3.03 -0.039 -2.95 -0.126 -3.55 -0.037 -2.35 

Idio. Skew -0.093 -2.57 -0.038 -3.01 -0.100 -2.87 -0.037 -2.33 

VRP -0.146 -3.21 -0.037 -2.20 -0.166 -3.96 -0.035 -2.08 

VRP-Post -0.148 -3.26 -0.036 -2.12 -0.169 -4.19 -0.037 -2.11 

Realized SD -0.089 -2.01 -0.032 -1.93 -0.114 -2.79 -0.031 -1.80 

RN-Skew + RN-Kurt -0.101 -1.99 -0.037 -1.97 -0.139 -3.27 -0.036 -1.87 
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Table 8. Results of FM Regressions using Alternative Risk Proxies 

This table reports results from Fama-MacBeth regressions using alternative proxies for volatility risk and jump risk. The sample period is from 

January 1988 until December 2011. We run Fama-MacBeth regressions of twelve month excess returns on contemporaneous realized betas. Ob-

servations are at the monthly frequency and we adjust standard errors accordingly using 12 Newey-West lags. The JUMP factor is the return on a 

market neutral, vega neutral but gamma positive calendar spread option strategy. The VOL factor is the return on a market neutral, gamma neutral 

but vega positive calendar spread option strategy. In Panel A, the alternative jump risk proxies are ∆IV-Smirk (daily change of the implied volatili-

ty smirk following Yan (2011)) and ∆JumpIndex (daily changes of the tailindex defined in Du and Kapadia (2011)). The alternative proxy for 

volatility risk is ∆Vol-BKM (the change in the Bakshi, Kapadia and Madan (2003) measure of volatility). Panel B shows results using market-

neutral at-the-money straddle returns (STR; following Coval and Shumway (2001)) and changes in VIX (∆VIX; following Ang et al. (2006)). 

Observations are at the monthly frequency and we adjust standard errors accordingly using 12 Newey-West lags. The t-statistics of coefficients 

from Fama-MacBeth regressions are also adjusted according to Shanken (1992). 

 

Panel A. Alternative Jump and Volatility Risk Proxies 

Model 1 2 3 4 5 6 

∆VolBKM 
-3.595 

[-2.35] 

-2.108 

[-0.92] 
    

∆Jump Index   
-0.109 

[-1.05] 

-0.129 

[-0.85] 
  

∆IV-Smirk     
-0.008 

[-2.34] 

-0.009 

[-1.92] 

JUMP  
-0.138 

[-3.11] 
 

-0.140 

[-3.18] 
 

-0.143 

[-3.05] 

VOL  
-0.035 

[-1.80] 
 

-0.036 

[-1.85] 
 

-0.038 

[-1.75] 

MKT 
0.102 

[4.55] 

0.105 

[3.37] 

0.102 

[4.67] 

0.105 

[3.41] 

0.102 

[4.23] 

0.104 

[3.08] 

SMB 
0.019 

[1.24] 

0.017 

[0.81] 

0.020 

[1.28] 

0.018 

[0.84] 

0.023 

[1.42] 

0.022 

[0.97] 

HML 
0.010 

[1.17] 

0.006 

[0.53] 

0.011 

[1.22] 

0.007 

[0.55] 

0.013 

[1.36] 

0.009 

[0.71] 

Intercept 
0.073 

[4.18] 

0.081 

[4.75] 

0.073 

[4.18] 

0.080 

[4.72] 

0.085 

[4.65] 

0.091 

[5.13] 
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Panel B. Using Straddle Returns and Changes in VIX 

 

Model 1 2 3 4 

STR 
-0.280 

[-3.36] 

-0.180 

[-0.54] 
  

∆VIX   
-2.815 

[-3.34] 

-1.032 

[-0.67] 

JUMP  
-0.045 

[-0.30] 
 

-0.126 

[-2.78] 

VOL  
-0.011 

[-0.32] 
 

-0.034 

[-1.58] 

MKT 
0.103 

[3.51] 

0.102 

[2.57] 

0.102 

[4.69] 

0.104 

[3.37] 

SMB 
0.018 

[0.88] 

0.017 

[0.64] 

0.020 

[1.40] 

0.017 

[0.85] 

HML 
0.010 

[0.85] 

0.007 

[0.48] 

0.010 

[1.20] 

0.007 

[0.62] 

Intercept 
0.072 

[4.12] 

0.080 

[4.72] 

0.073 

[4.17] 

0.080 

[4.71] 
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Table 9. Average Returns of Stocks Sorted by Past Jump and Volatility Betas 

Every month we create equal-weighted (EW) and value-weighted (VW) portfolios by sorting stocks into 

quintiles based on their realized jump risk betas (βJUMP) and volatility risk betas (βVOL). The sample period 

is from January 1988 until December 2011. Betas are estimated over the previous 12 months. Then we 

calculate portfolio returns over the following 12 months and report average future returns and Sharpe 

ratios for these quintile portfolios and for a 5-1 long-short portfolio. We also include Fama-French alphas 

for the 5-1 portfolios. Because we use overlapping returns we adjust all standard errors accordingly using 

12 Newey-West lags.  

 

 JUMP Betas βJUMP Volatility Betas βVOL 

 EW VW EW VW 

Portfolio Returns 
Sharpe 

Ratios 
Returns 

Sharpe 

Ratios 
Returns 

Sharpe 

Ratios 
Returns 

Sharpe 

Ratios 

1 Low β(t-12) 0.086 0.332 0.075 0.240 0.096 0.403 0.099 0.380 

2 0.101 0.460 0.080 0.308 0.108 0.498 0.099 0.414 

3 0.107 0.510 0.096 0.412 0.106 0.494 0.092 0.372 

4 0.108 0.498 0.096 0.374 0.103 0.471 0.093 0.357 

5 High β(t-12) 0.100 0.421 0.100 0.329 0.088 0.356 0.085 0.257 

High-Low 
0.014 

[4.57] 
0.274 

0.025 
[3.34] 

0.200 
-0.008 
[-3.14] 

-0.189 
-0.013 
[-1.83] 

-0.110 

High-Low 

FF3-Alpha 

0.011 

[3.59] 
 

0.017 
[2.33] 

 
-0.005 
[-1.65] 

 
-0.009 
[-1.83] 
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Table 10. Predicting Future Jump Risk Loadings 

Panel A summarizes results of Fama-MacBeth regressions in which we regress jump risk betas estimated 

over (t+1, t+12) on firm characteristics known at time t. The sample period is from January 1988 until 

December 2011. Firm characteristics include jump risk beta, volatility risk beta, Fama-French SMB and 

HML beta, momentum beta, market capitalization, book-to-market (B/M), illiquidity (ILLIQ, the Amihud 

measure multiplied by 1000), downside beta, upside beta, conditional skewness, conditional kurtosis, 

idiosyncratic volatility, idiosyncratic skewness, variance risk premium (spread between implied volatility 

and realized volatility, realized standard deviation, risk-neutral skewness and risk-neutral kurtosis. The 

column labeled “Univariate Models” contains coefficient estimates of regressions, in which we include 

each firm characteristic individually or pair-wise (in the case of down- and up-side beta, conditional 

skewness and kurtosis, and risk-neutral skewness and kurtosis). The last column reports coefficient esti-

mates in a specification in which we control for all characteristics simultaneously. Panel B reports results 

from portfolio sorts. Every month we create equal-weighted (EW) and value-weighted (VW) portfolios by 

sorting stocks into quintiles based on their predicted jump risk betas (using the multivariate specification 

of Panel A). Then we report average future returns and average future, realized jump risk betas for these 

quintile portfolios and for a 5-1 long-short portfolio. We also include Fama-French alphas for the 5-1 

portfolios. Because we use overlapping returns we adjust all standard errors accordingly using 12 Newey-

West lags. 
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Panel A. FM Regressions Predicting βJUMP 
 

Model 
Univariate  

Models 

Multivariate  

Model 

βJump (t-12) 
0.027 

[4.29] 

0.003 

[0.59] 

βVol (t-12) 
-0.001 

[-0.32] 

0.001 

[0.26] 

βSMB (t-12) 
0.097 

[0.42] 

-0.546 

[-2.37] 

βHML (t-12) 
-0.255 

[-1.24] 

-0.144 

[-0.91] 

βMOM (t-12) 
-0.151 

[-0.48] 

0.681 

[2.16] 

MC (t-12) 
0.000 

[6.79] 

0.000 

[3.44] 

B/M (t-12) 
-0.001 

[-0.71] 

0.001 

[0.84] 

ILLIQ (t-12) 
-0.540 

[-2.32] 

0.152 

[0.94] 

βMKT- (t-12) 
0.013 

[0.07] 

0.772 

[4.46] 

βMKT+ (t-12) 
1.059 

[4.41] 

0.705 

[2.39] 

Cond. Skew. (t-12) 
0.021 

[3.88] 

0.012 

[2.12] 

Cond. Kurt. (t-12) 
0.010 

[5.77] 

-0.001 

[-0.41] 

Idio. Vola (t-12) 
-0.335 

[-2.92] 

-0.596 

[-8.33] 

Idio. Skew (t-12) 
0.001 

[2.82] 

0.000 

[1.05] 

VRP (t-12) 
-0.071 

[-3.59] 

0.006 

[0.74] 

Realized SD (t-12) 
0.063 

[4.95] 

0.034 

[4.07] 

RN-Skew (t-12) 
0.069 

[1.34] 

-0.025 

[-0.65] 

RN-Kurt (t-12) 
0.045 

[0.13] 

-0.285 

[-1.08] 
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Panel B. Portfolio Sorts based on Predicted Jump Risk Loadings 

 

 Future Realized βJUMP Future Avg. Returns Future Sharpe Ratios 

Portfolio EW VW EW VW EW VW 

1 Low predicted β -0.018 -0.021 0.129 0.196 0.446 0.714 

2 -0.013 -0.017 0.126 0.184 0.483 0.786 

3 -0.008 -0.010 0.120 0.163 0.476 0.776 

4 -0.005 -0.006 0.115 0.152 0.459 0.804 

5 High predicted β 0.006 0.007 0.096 0.131 0.330 0.585 

High-Low 
0.024 

[6.08] 

0.028 

[7.03] 

-0.033 

[-2.41] 

-0.064 

[-3.13] 
-0.280 -0.352 

High-Low 

FF3-Alpha 
  

-0.014 

[-1.93] 

-0.018 

[-2.02] 
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Figure 1. Time-Series of Daily Returns on the JUMP Factor 

The figure shows the time-series of daily returns on the JUMP factor, which is the return on a market neutral, vega neutral but gamma positive 

calendar spread option strategy. Vertical, dashed lines include realized jumps of the underlying S&P 500 index according to Lee and Mykland 

(2008). The sample period is from January 1988 until December 2011. 
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Figure 2. Time-Series of Daily Returns on the VOL Factor 

The figure shows the time-series of daily returns on the VOL factor, which is the return on a market neutral, gamma neutral but vega positive cal-

endar spread option strategy. Vertical, dashed lines represent the 50 largest daily increases in realized volatility measured daily from 5-minute 

returns. The sample period is from January 1988 until December 2011. 
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Figure 3. Monthly Returns on VOL and JUMP Factors  

The figure shows the time-series of monthly returns on the VOL (black line) and the JUMP (red line) 

factors. The VOL factor is the return on a market neutral, gamma neutral but vega positive calendar 

spread option strategy. The JUMP factor is the return on a market neutral, vega neutral but gamma posi-

tive calendar spread option strategy. The sample period is from January 1988 until December 2011. 
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Figure 4. Cumulative Daily Returns on the VOL and JUMP Factors 

The figure shows cumulative daily returns on the VOL (black line) and the JUMP (red line) factors. The 

VOL factor is the return on a market neutral, gamma neutral but vega positive calendar spread option 

strategy. The JUMP factor is the return on a market neutral, vega neutral but gamma positive calendar 

spread option strategy. The sample period is from January 1988 until December 2011. 

 

Panel A. Full Sample 
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Panel B. January 2000 to December 2006 
 

 
 

Panel C. January 2007 to December 2011 

 

 
 

 


