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Abstract
Satellite imagery solutions are widely used to study and monitor different regions of the Earth.
However, a single satellite image can cover only a limited area. In cases where a larger area of
interest is studied, several images must be stitched together to create a single larger image, called a
mosaic, that can cover the area. Today, with the increasing number of satellite images available for
commercial use, selecting the images to build the mosaic is challenging, especially when the user
wants to optimize one or more parameters, such as the total cost and the cloud coverage percentage
in the mosaic. More precisely, for this problem the input is an area of interest, several satellite
images intersecting the area, a list of requirements relative to the image and the mosaic, such as
cloud coverage percentage, image resolution, and a list of objectives to optimize. We contribute to
the constraint and mixed integer lineal programming formulation of this new problem, which we call
the satellite image mosaic selection problem, which is a multi-objective extension of the polygon
cover problem. We propose a dataset of realistic and challenging instances, where the images were
captured by the satellite constellations SPOT, Pléiades and Pléiades Neo. We evaluate and compare
the two proposed models and show their efficiency for large instances, up to 200 images.
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23:2 Satellite Image Mosaic Selection Problem

Figure 1 Optimization of the subset of images to make a mosaic of the Tokyo Bay region.

Jedrzej Musial: This work is funded by the FNR—PolLux program under the SERENITY Project,
ref. C22/IS/17395419

1 Introduction

The space industry is continuously growing and is no longer an exclusive market for military
and government applications. According to the most recent report of the European Union
Agency for the Space Programme (EUSPA) [13], the global market for navigation systems
and earth observation (EO) had revenues of around €200 billion in 2022 and is expected to
reach €500 billion by 2031. As access to space has become cheaper, an increasing number
of private companies have entered the space business. Due to advances in satellite design
and high-resolution remote sensors, the number of satellite launches dedicated to EO in 2021
was greater than the sum of launches between 2012 and 2016 [37]. In 2020 more than 100
terabytes of satellite imagery was generated per day [28].

There are several EO-based applications that analyze a vast area of interest (AOI)
that can only be covered by combining several adjacent images into a larger one, called a
mosaic. Mosaics are crucial for applications such as crop classification [21, 14], environmental
monitoring [30, 15], and urban development analysis [38, 32]. The mosaicking of satellite
images is a complicated process that presents challenges, such as color balancing [39] and
image stitching [27].

In this work, we focus on the combinatorial problem of selecting the images to create
the mosaic by optimizing one or several criteria. This problem is an extended version of
the NP-hard problem of finding the minimum axis-parallel rectangle cover of a rectilinear
polygon without holes [11], where the axis-parallel rectangles can be seen as the satellite
images, and the rectilinear polygon as the AOI. In our problem, a cover is the subset of
images that can be used to generate a mosaic. In Figure 1 a particular example of this
problem is shown, where the objective is to build a mosaic using the smaller number of
images. There are 30 images to choose from, and the optimization algorithm finds an optimal
subset of four images.

In this paper, we present a multi-objective approach for this problem that seeks to
optimize four popular parameters of satellite images for mosaic generation: cloud cover,
incidence angle [1], resolution and cost of the images. In general, there might not be an
objective that is more important than the other, which is why we propose a multi-objective
approach, instead of a linear aggregation or lexicographic ordering of the objectives.

As the number of available satellite images has increased significantly, it is becoming
more challenging to select the optimal combination of images to build a mosaic. The number
of images covering one place can reach hundreds. This is even more difficult if the user is
interested in optimizing several parameters. Without a computational approach for this,
users have to select by hand the images they want for the cover. Providing a Pareto front
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from which users can choose a cover is crucial to save money and time, considering that
high-resolution satellite images are expensive.

In this paper, we propose a constraint programming (CP) model and a mixed integer linear
programming (MILP) model to solve the problem presented. However, directly modeling this
geometric problem with constraints is challenging, as we would need to encode geometric
operations such as union and intersection of polygons. Instead, we preprocess each instance
by computing a discretization where the intersections of all images are first computed
(Section 2.1). We obtain a set of non-overlapping polygons where each polygon is simply an
integer and the geometric characteristics can be ignored. This problem is a multi-objective
extension of the well-known set covering problem (Section 3).

A unique aspect of this problem is to minimize the cloud coverage of the mosaic, which, in
contrast to other objectives, does not have the same value throughout the image. While any
part of the image has the same resolution, not all parts of the images have the same amount
of clouds, except for images with 0 or 100% of cloud coverage. Because of this particularity
of the problem, it is possible to reduce the cloud coverage percentage in the final mosaic by
choosing a specific combination of images in such a way that cloudy regions of an image are
overlapped by non-cloudy regions of other images.To the best of our knowledge, there is no
work taking this into account to reduce the cloud coverage in the final mosaic. We call this
problem the satellite image mosaic selection problem (SIMS) (Section 2).

The main contribution of this paper is to introduce the SIMS problem and present a
CP model, as well as MILP model that can successfully find solutions to real instances of
up to 200 images (Section 4). The constraint and mixed integer programming approaches
are part of a larger framework where the images are automatically retrieved from different
marketplaces and the solutions found by the solver can be visualized.

Although SIMS can be expressed as a linear problem (Section A), we choose to rely on
constraint programming for two reasons: to ease the formulation of the model—in particular,
it is convenient to use set variables—and because this problem aims to be extended for new
requirements, which can be non-linear. The flexibility of the model is of utmost importance
in this work, which is why constraint programming is our main choice.

2 Satellite Image Mosaic Selection Problem

The input for the SIMS problem is an area of interest (AOI) on Earth and a set of satellite
images that intersect it. Each image has a cost and a list of parameters including the
resolution, incidence angle and cloud coverage. The AOI is represented as a simple closed
polygon without holes, and the images are represented as quadrilaterals. For both the AOI
and satellite images, the corner coordinates are provided. With that information, the AOI
and the images can be represented in the plane.

As clouds are not usually even distributed in the images, having images with a certain
cloud coverage percentage does not guarantee that the final mosaic has less than that cloud
coverage. Depending on the cloud distribution in the images, the final mosaic can have a
lower or higher percentage of cloud coverage as depicted in Figure 2. This is not the case for
the other objectives because they have a unique value along the image. For example, if all
images have a determined resolution, the final mosaic will have the same resolution.

2.1 Preprocessing of the Problem
To make the discretization, we first remove the parts of the images that are outside the AOI,
and then we find all the polygons resulting from the intersection of the images, we find the

CP 2023
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Figure 2 A cloudy region of an image can be covered by a non-cloudy region of another image,
impacting the cloud coverage percentage of the final mosaic.

Table 1 Number of intersections for the instances covering the Tokyo Bay region.

Images Intersections
30 298
50 806
100 3278
150 8079
200 14855

polygons using the GEOS library [17]. The universe is partitioned into a set of polygon
elements, and each of them is assigned to its corresponding images. In Figure 3, we show
an example of this process, where we generate 254 polygons from 30 images. In Table 1,
we show the number of intersections for different cardinality of the images set to cover the
Tokyo Bay region.

The following step is to detect the clouds in the images and add them to the universe
and to the correspondig sets. The objective of doing this is to know whether a region of the
final mosaic, that is represented by one element of the universe, is free of clouds or not. We
consider that a region of the AOI is free of clouds if there is at least one image in the cover
in which that region does not have clouds.

A cloudy region is an element in the universe that is present in all the sets that cover
that region. For the set that represents the image in which the cloud occurred, we make a
distinction and we say that the element is cloudy for that set. In this way, a set is composed
of cloudy elements and non-cloudy elements.

Figure 3 298 polygons are obtained after preprocessing of 30 images. First the area of the images
outside the AOI is removed and then the polygons resulting from the images intersections are found.
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Figure 4 Possible cases for the integration of the detected clouds to the universe and the
corresponding sets. Set I and II are represented by the rectangles with red and blue borders
respectively.

In real applications, clouds can be detected using cloud detectors [36, 19, 22]. As this
is a problem orthogonal to our work, we do not detect the clouds, but instead randomly
allocate them in the parts of the image. For each image, we have metadata indicating the
cloud coverage percentage of the image. With that information and knowing the elements
that belong to the image, we randomly set one of the elements as cloudy. We repeat this
operation until the cloud coverage percentage of the image is achieved.

In Figure 4a, all possible scenarios of how clouds are converted to elements of the universe
are shown for the general case. To facilitate the understanding of this process, only two
overlapping images are shown, but the procedure is the same when more than two images
overlap. Images I and II are represented as rectangles with red and blue borders, respectively.
The clouds in image I are colored red, and the ones in image II are colored blue. Initially,
both sets have in common its intersection, element 3 (I = {1, 3} and II = {2, 3}). We can see
that both clouds of I are partially covered by II; in one case is because one part of the cloud
is in the intersection, and in the other case is because one part of the cloud is overlapped by
a cloud from II, so it can not be completely covered by a non-cloudy region of II. From the
previous, we can see that three elements are created, 4, 5 and 7. Element 4 are the clouds
that are only present in I, element 5 is the cloudy region of I that is not cloudy in II, i.e.
covered by II, and element 7 is a cloudy region of I that is also cloudy in II. Element 6 is
similar to element 5, is a cloudy area in II that is not cloudy in I. When all the clouds are
detected and incorporate to the universe, the original three elements 1, 2 and 3 are modified
as follows: element 1 is the non-cloudy region of I that is not overlapped by any other image,
element 2 is equivalent to element 1 but for image II, and element 3 is the non-cloudy area
of the intersection between I and II. Finally, the universe has seven elements, and the sets
are I = {1, 3, 4, 5, 6, 7}, II = {2, 3, 5, 6, 7}. In Figure 4b, we show a resulting mosaic after
covering the clouds. Importantly, taking into account the clouds in this way increases the
cardinality of the universe, but the problem itself does not change, which is why we took a
simpler approach to randomly assign clouds to each element.

3 Constraint Model

Let U = {k1, . . . , kn} ⊂ N be a set of n parts of the area of interest, called the universe.
The set U is a polygon partition of the area of interest, i.e. two parts do not overlap and
their union is exactly the area of interest. Each satellite image is represented by a collection
Pi ⊂ U of parts. We write I = {P1, . . . , Pm} the set of all m satellite images. The goal is to

CP 2023
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find a subset T ⊂ {1, . . . , m} of images that covers the area of interest. The parameters of
the model are U and I while T is the main decision variable. The set covering constraint is
captured by the following:⋃

i∈T

Pi = U (1)

A trivial solution to this constraint is to take all the images, but we usually consider
an optimization version where the cardinality of T is minimized. In our case, each image
i ∈ {1, . . . , m} has a cost Wi ∈ N that we seek to minimize:

min
∑
i∈T

Wi (2)

Along with Equation 1, this problem is called weighted set cover. Depending on the user
requirements, we can consider other objectives such as resolution and incidence angle. For
each part k ∈ U , we have its area Ak ∈ N. And for each image i ∈ {1, . . . , m}, we have its
resolution Ri ∈ N and its incidence angle Fi ∈ N. We seek to minimize (the resolution is
given in how many cm2 represents a pixel, the less the better) the best resolution obtained
for each part:

min
∑
k∈U

min{Ri | i ∈ T, k ∈ Pi} (3)

For the incidence angle, we seek to minimize the maximal angle, although other choices
would be possible such as minimizing the average.

min {max {Fi | i ∈ T}} (4)

A more challenging aspect of this problem is to minimize the area covered by clouds.
To achieve that, we consider that each part is either cloudy or not. We leave the cloud
detection and the splitting of the image into cloudy and non-cloudy parts to a preprocessing
step. Let Ci ⊂ Pi the cloudy parts of the image i. For each part k ∈ U , we define
Dk := {i ∈ {1, . . . , m} | k ∈ Pi \ Ci} the set of all images containing a non-cloudy view of
the part k. For each part k ∈ U , we can now define the Boolean variable Vk to be true when
the part k is cloudy in the cover:

Vk ⇔
∧

i∈Dk

i /∈ T (5)

We can now minimize the area covered by clouds:

min
∑
k∈U

Vk ∗ Ak (6)

This objective can also be turned into a constraint if the user only wants covers with a
certain cloud coverage threshold.

The model introduced is actually linear, as shown in Appendix A, and can be solved
by mixed integer programming solvers. We simply represent the set T by m 0-1 variables
{x1, . . . , xm} such that xi = 1 if we take the image and xi = 0 otherwise. We also use this
representation for constraint programming solvers, because it is not possible to represent the
set covering constraint otherwise—this is due to T having a non-fixed cardinality.
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3.1 Search Strategy Based On Greedy Algorithm
A well-known greedy algorithm for the set covering problem consists in taking the images
covering the most uncovered parts of the universe first [9]. We model this heuristic as a
search strategy within the MiniZinc constraint model. This has the advantage of always
producing a solution that is at least as good as the greedy heuristics—since it is the first
solution found. To achieve that, we reuse an existing search strategy provided by MiniZinc.
A second advantage is that our search strategy can be reused with any constraint solver
compatible with MiniZinc. We select the variable using the anti_first_fail strategy—the
variable with the largest domain is selected first—and we take the highest value in its
domain (indomain_max). The trick is to model a set of variables {G1, . . . , Gm} such that
Gi ∈ {0, . . . , |Pi|} is equal to the number of parts covered by the image i. Actually, in any
solution, we have Gi = |Pi| since the whole universe must be covered. What is interesting is
the value of Gi in partial assignments during the search. The difference between the upper
and lower bounds max(Gi) − min(Gi) is the number of parts that are currently uncovered
by the partial assignment, and that can be covered by the image i. Since the anti-first-fail
strategy selects the largest domain first, it effectively implements the greedy heuristics. We
model Gi as follows:

Gi =
∑
k∈Pi

(
∨
i∈T

k ∈ Pi) (7)

We note that the new variables Gi are fully defined with the parts, and therefore once the
main decision variable T is assigned, the variables Gi must be assigned as well.

3.2 Multi-Objective Constraint Optimization Algorithm
The multi-objective constraint programming algorithm used in this work was pionneered by
Gavanelli [16] and has been frequently used in constraint optimization [23, 33, 18]. The main
idea is to run a satisfaction constraint solver iteratively and add new constraints representing
the Pareto front to ensure the next solution is not dominated by any point in the current
Pareto front. To illustrate this algorithm, suppose a biobjective maximization problem where
x and y are the two variables to optimize. We run the constraint solver which returns a first
satisfiable solution where x = 10 and y = 5. At that point the Pareto front is {(10, 5)}. We
add to the model the constraint x > 10 ∨ y > 5 which guarantees that the next solution
will not be dominated by the current points in the Pareto front. The solver might then
find the solution x = 2 and y = 6 which is incomparable to the previous solution and is
added to the Pareto front {(10, 5), (2, 6)}. The constraint generated from the Pareto front
is now (x > 10 ∨ y > 5) ∧ (x > 2 ∨ y > 6). This process continues until the solver finds an
unsatisfiable solution, in which case we are guaranteed to have found the optimal Pareto
front.

4 Evaluation

4.1 Dataset Description
For each experiment, there is an AOI and a number of images that cover the AOI. The
objective is to find the Pareto front, where each point in the front represents a subset of
images that must cover the AOI and optimize four objectives: cost, resolution, incidence
angle and cloud coverage.

CP 2023



23:8 Satellite Image Mosaic Selection Problem

To carry out this research, we developed a framework capable of retrieving image metadata
from different satellite marketplaces, preprocessing it (discretization and cloud integration to
the universe), calling a CP or a MILP solver, and visualizing the solutions from the Pareto
front.

We selected five AOIs from around the world: Mexico City (Mexico), Rio de Janeiro
(Brazil), Paris (France), Lagos (Nigeria), and Tokyo Bay (Japan). For each AOI, we obtained
all available images that were captured from 01-01-2021 to 01-01-2023 by the following
satellite constellations SPOT [4], Pléiades [2] and Pléiades Neo [3]. We opted for those
satellite constellations as they have all the metadata used in the experiments; other satellite
constellations lacked some parameters such as cloud coverage or incidence angle.

Five instances were generated for all AOIs, except Lagos. Each of these instances differs
from each other by the number of images given to cover the AOIs. The number of images for
the instances were 30, 50, 100, 150 and 200. For Lagos, the total number of images available
for the specified date range was 145, so the number of images for the Lagos instances were
30, 50, 100 and 145.

4.2 Experimental Setup
Each instance was solved using the CP model and the MILP model. We run the CP model
with two solvers, OR-tools [31] and Gecode 6.3.0 [34]. For each of these solvers, we run the
experiments twice; one with the default solver search strategy, and the other one with the
greedy search strategy proposed in Section 3.1. The MILP model was implemented using
the Gurobi solver [20]. We will refer to these five approaches as OR-tools default, OR-tools
greedy, Gecode default, Gecode greedy and Gurobi

For the MILP model, the algorithm used to obtain the exact Pareto front was SAUG-
MENCON [40] which is based on the AUGMECON [25, 26] algorithm and on the well-known
ϵ-constraint method. In the ϵ-constraint methods, one objective is optimized, and the others
are added as constraints to the model. The right-hand side of the objective constraints
gradually changes from the less restrictive values of the objectives to the most restricted
ones. This process continues until all combinations of values for the constraint objectives
have been explored. The SAUGMENCON method introduces two acceleration mechanisms
to improve the computational efficiency of the front generation.

The experiments were run on an AMD Epyc ROME 7H12 processor (64 cores, 280W).
All the solvers were configured to run in parallel with 8 cores and 16 threads. The running
time for each experiment was 1 hour.

4.3 Experimental Results
To compare the results, we used the hypervolume of the Pareto front, which is a standard
metric for comparing fronts in multiobjective optimization. For each instance, we score the
strategies, calculating how worst they are compared to the best. For example, a score of 1
means that the strategy has the same hypervolume value as the best one, and a score of 0.5
means that the hypervolume of the strategy is half of the best hypervolume for that instance.

In Table 2 from Appendix C we can see the hypervolume values for each strategy for all
instances.

For only one instance, the complete Pareto front was found in the running time, the
strategies that found the complete front were OR-tools default, OR-tools greedy and Gurobi.
For the rest of the instances, the whole Pareto front was not found, and the hypervolume
corresponds to the partial front found during the running time. For 3 of the 4 instances with
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Figure 6 Average score for each approach.

200 images, the CP strategies could not find any point of the front; the entire running time
was employed by the FlatZinc submodule of Minizinc, to flatten the model with the data file.
However, Gurobi for 3 of these instances could find one point of the Pareto front. For the
rest of the instances, all the strategies could find at least one point of the Pareto front, and
generally the CP approaches obtained superior results compared to MILP.

As we can see in Figures 5 and 6a, for these experiments, the best approach was OR-tools
default, being the best for 13 out of 24 instances and with a score average of 0.847. The
second and third best strategies were OR-tools greedy and Gurobi, with a similar performance.
The fourth and fifth places were occupied by Gecode default and greedy, being really close.

If we do not consider the 3 instances in which the CP strategies could not find a solution,
the score averages change; see Figure 6b. OR-tools default has an average score very close
to 1, and OR-tools greedy has a much better average score than Gurobi, which for these
instances is the worst strategy on average. The difference in the average score between both
Gecode strategies remains very close.

It is interesting to note that Gurobi showed excellent performance for small instances
comprising 30 and 50 images. However, its performance was not as impressive for larger
instances. This could be related to the way solutions are discovered and added to the front.
For future research, it could be interesting to compare the hypervolume anytime behavior
for different approaches used for CP and MILP to get the exact Pareto front.

5 Related Work

Geometric set covering problems can be divided into two categories based on the requirements
of the covering shapes. In one category, the covering shapes do not have a fixed position

CP 2023



23:10 Satellite Image Mosaic Selection Problem

in the plane, for example, covering a polygonal region with the minimum amount of fixed
sized rectangles [24] or with a set of known rectangles that can freely move on the plane [35].
The other category is where the covering shapes have a fixed size and position, for example,
covering a polygonal region with discs with a fixed size and position on the plane [10]. SIMS,
belongs to the second category as the satellite images represent a fixed region on the Earth.

Considering the cloud coverage percentage in the final mosaic makes SIMS problem
different from polygon cover and other geometrical cover problems, where the covering shapes
only have to cover the polygon or the universe of points in the space. In this problem, the
covering shapes, besides covering the polygon, should also cover certain regions (clouds) that
are present in the shapes. Interestingly, this can be seen as solving two weighted set covering
problems; in one, the AOI must be covered and in the other, the clouds.

The main approaches to solving geometric set covering problems are local search [6, 12, 5]
and linear programming (LP) [7, 8]. In most of the papers, opposite to SIMS, the universe
is a set of points instead of a region. In [10], they provide an exact algorithm for the case
where the universe is a set of regions, and the covering objects are discs. The algorithm is
effective when the minimum number of discs to cover the space is low.

In [29], set covering problem is tackled using constraint programming. There, the authors
propose a way to prune the domain of possible solution using a lower and upper bound
for the objective value. The lower bound consists of determining the minimum number of
sets that can cover the space. This is equivalent to answering the following NP-complete
problem: does a cover of the universe exist with K sets. They propose a new strategy to
get an approximation of this lower bound and compare it against two other well-known
lower-bound values: the value of the LP relaxation problem and a greedy algorithm. The
proposed prune strategy is good for problems where the size of the sets is small, for bigger
subsets, they recommend alternating between the LP relaxation and the greedy algorithm.

6 Conclusion

In this paper, we introduce a novel geometrical NP-hard problem, SIMS, inspired by the
selection of satellite images for mosaic generation. CP and MILP models are provided for this
problem, together with a search strategy for the CP model, based on the well-known greedy
algorithm used for set covering problems. In the experiments performed, the CP solved
with OR-tools got the best result, evidencing the power of this solver. Our proposed search
strategy could not outperform the default search strategies, but in the case of the Gecode
solver, it produced similar results. Generally, the CP model outperformed the MILP model.
This could be related to the method used to generate the Pareto front. For future work, it
will be interesting to compare different approaches to generate the exact Pareto front for
the CP and MILP models, based on the metric anytime behavior for the hypervolume. We
also plan to propose heuristics to tackle larger instances and to evaluate their performance
against the proposed CP and MILP models.
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A Linear Programming Model

For the mixed integer linear programming, we use the same nomenclature as for the constraint
model. We just add the necessary variables to linearize the model.

To linearize the cover constraint (1) it is necessary to associate each image Pi with a
decision variable xi that is equal to 1 if the image i is selected, otherwise it is 0. We rewrite
the constraint as follows:

∑
i:k∈Pi

xi ≥ 1, for all k ∈ U (8)

The previous constraint guarantees that all the parts are covered by at least one image.
To linearize the cost constraint (2) it is necessary to associate each image Pi with an

auxiliary variable wi that represents the cost of the image. The linear constraint can be
written as:

min
∑
Pi∈I

xiwi (9)

The constraints (8) and (9) are the classical constraints used for set covering problems.
The resolution objective is a min-min problem, where the objective is to minimize the sum

of the min resolution of each part. The min resolution of a part is the minimum resolution
of the images that contain them and belong to a cover. We need to add an auxiliary decision
variable rk representing the best resolution of the part k and a big constant B, bigger than the
maximum image resolution. Also, we need to add an auxiliary binary decision variables zkj

for each image Pj that contains k. For each part k, we define Lk := {i ∈ {1, . . . , m} | k ∈ Pi}
as the set of all images containing the part k. For each part k we can now define a constraint
for the values that can take the variables zkj

.

|Lk|∑
k=1

zkj
= |Lk| − 1 (10)

The constraint expressed above states that only one of the zkj
variables can be 0, the

rest have to be 1. We define the minimum resolution of a part as rk. With the following two
constraints, we can linearize (3).
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rk ≥ (xjRj + B(1 − xi)) − 2Bzkj for all j ∈ Lk (11)

min
∑
k∈U

rk (12)

The first term on the right-hand side of (11) affects how the part k perceives the resolution
of the images to which it belongs. If the image is in a cover, the resolution is equal to Rj .
If the image is not in a cover, then the resolution is equal to the big constant B. As we
minimize rk, the lower this first term, the better. This term forced the images with lower
resolution to be in a cover. The second term on the right-hand side of (11) is used to force rk

equal to the minimum value of the resolution of the images that contain the part k and are
in the cover. When zkj = 1 the right-hand side is negative and when 0 the value is positive,
and it is the value that rk takes.

To linearize the incidence angle objective, we need to minimize an auxiliary variable
maxf that represents the maximum incidence angle of the images in the cover.

min maxf ≥ xiFi, for all i = 1, . . . , m (13)

To minimize the area of the clouds, we can model this as a partial set cover problem,
where the universe C = {1, . . . c} is formed by all the clouds, and the sets are the images
that can cover the clouds. For example, if we have the following set P2c = {c1, c2, c5} it
means that image 2 can cover clouds 1, 2 and 5, i.e. parts 1, 2 and 5 are not cloudy in image
2. For each cloud ci we have a variable yi that is 1 if the cloud is covered or 0 otherwise and
Ac indicating the area of the cloud. To maximize the covering of the cloudy areas, we will
minimize the following expression:

min −
∑
c∈C

ycAc (14)

Subject to the following constraint, which forces yc to be 0 if any of the images that cover
it is selected to cover the AOI.

∑
i:c∈Pic

xi ≥ yc, for all c ∈ C (15)

B MiniZinc Model

We describe the full MiniZinc constraint model implementing the mathematical model given
in Section 2.
int: num_images ;
int: universe ;
int: max_cloud_area ;

set of int: IMAGES = 1.. num_images ;
set of int: UNIVERSE = 1.. universe ;
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array [ IMAGES ] of set of int: images ;
array [ IMAGES ] of set of int: clouds ;
array [ IMAGES ] of int: costs;
array [ UNIVERSE ] of int: areas;
array [ IMAGES ] of int: resolution ;
array [ IMAGES ] of int: incidence_angle ;

array [ IMAGES ] of var bool: taken;

% Which images have a universe ‘u‘ without cloud?
% That is , uclear [u] = {i1 , i2 , ..} means that the images numbered i1 , i2

, ... contains ‘u‘ without clouds .
array [ UNIVERSE ] of set of int: uclear = [{ i | i in IMAGES where not (u

in clouds [i]) /\ u in images [i] } | u in UNIVERSE ];

% Set covering constraint .
constraint forall (u in UNIVERSE )(

exists (i in IMAGES )(taken[i] /\ u in images [i]));

% cloudy [u] is true iff no image containing a version of ‘u‘ without
clouds is taken.

array [ UNIVERSE ] of var bool: cloudy ;
array [ UNIVERSE ] of var int: num_clear_images ;
constraint forall (u in UNIVERSE )(

num_clear_images [u] = sum(i in uclear [u])(taken[i])
);
constraint forall (u in UNIVERSE )( cloudy [u] = ( num_clear_images [u] == 0));

var int: cloudy_area = sum(u in UNIVERSE )( cloudy [u] * areas[u]);

var int: total_cost = sum(i in IMAGES )(costs[i] * taken[i]);
var int: max_resolution = sum(u in UNIVERSE )(min(i in IMAGES where u in

images [i] /\ taken[i])( resolution [i]));
var int: max_incidence = max(i in IMAGES )(taken[i] * incidence_angle [i]);

array [1..4] of var int: objs;
constraint objs [1] = total_cost ;
constraint objs [2] = cloudy_area ;
constraint objs [3] = max_resolution ;
constraint objs [4] = max_incidence ;

CP 2023



23:16 Satellite Image Mosaic Selection Problem

C Experimental results detailed

Table 2 Hypervolume values for all the experiments.

Instance OR-tools default OR-tools greedy Gecode default Gecode greedy Gurobi
lagos_nigeria_30 5.46E+33 5.21E+33 4.89E+32 4.91E+33 4.87E+33
mexico_city_30 4.83E+32 4.82E+33 4.62E+33 4.59E+32 4.83E+33
paris_30 1.95E+34 1.95E+34 1.59E+34 1.58E+34 1.95E+33
rio_de_janeiro_30 5.76E+33 5.65E+33 5.65E+33 5.65E+33 5.76E+33
tokyo_bay_30 6.35E+33 6.33E+33 6.05E+33 6.05E+33 6.30E+33
lagos_nigeria_50 3.26E+34 3.15E+34 2.19E+34 2.18E+34 2.77E+34
mexico_city_50 2.88E+33 2.92E+34 2.63E+34 2.57E+34 2.71E+34
paris_50 9.02E+34 8.85E+34 7.12E+34 7.24E+34 7.85E+34
rio_de_janeiro_50 3.94E+33 3.87E+34 3.05E+34 3.04E+34 3.83E+34
tokyo_bay_50 3.32E+34 3.22E+34 1.65E+34 1.78E+34 1.98E+34
lagos_nigeria_100 1.86E+35 1.87E+35 1.68E+35 1.68E+35 8.55E+34
mexico_city_100 1.98E+35 1.97E+35 2.11E+35 2.03E+35 1.58E+35
paris_100 4.73E+35 3.13E+34 4.32E+35 2.91E+35 4.32E+35
rio_de_janeiro_100 4.76E+35 4.14E+35 2.28E+35 1.83E+35 3.39E+35
tokyo_bay_100 1.23E+35 1.23E+35 1.89E+35 1.89E+35 2.77E+35
lagos_nigeria_145 2.98E+36 3.78E+36 2.32E+36 2.32E+36 9.30E+35
mexico_city_150 1.52E+36 1.11E+36 2.27E+36 2.28E+36 3.42E+35
paris_150 2.60E+36 2.83E+36 1.11E+36 1.11E+36 2.87E+36
rio_de_janeiro_150 6.59E+35 4.81E+34 4.00E+35 4.00E+35 4.61E+34
tokyo_bay_150 1.16E+36 8.68E+35 8.36E+35 8.36E+35 1.12E+36
mexico_city_200 2.66E+36 2.05E+35 4.28E+36 4.28E+36 1.06E+36
paris_200 0.00E+00 0.00E+00 0.00E+00 0.00E+00 1.60E+36
rio_de_janeiro_200 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00
tokyo_bay_200 0.00E+00 0.00E+00 0.00E+00 0.00E+00 2.46E+35
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