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Abstract

Inventory systems are largely analyzed in the literature under the common assumption of back-
orders due to the complexity of lost sales. In this paper, we consider a two-echelon inventory system
composed of a central warehouse and multiple local warehouses subject to lost sales. The demand
faced by each local warehouse is a Poisson process and the stock in the warehouses is controlled
according to a continuous review base-stock policy. This system has been analyzed in the literature
under deterministic or exponential lead-times at the central warehouse, deterministic lead times at
the local warehouses and approximate performance evaluations have been proposed for two cases:
(1) the demand is lost if no items are available in the local warehouse, the central warehouse, or
in the pipeline in between (i.e., a waiting time threshold for incoming demand equal to the local
warehouse lead time), and (2) when there is a waiting time threshold less than the local warehouse
lead time. Based on a queuing network representation of the system, we extend the performance
analysis of the system in the first case by considering generally distributed lead times both at the
central and local warehouses and by providing the exact closed-form expressions for the inventory
performance measures. In the second case, we provide new approximate solutions under generally
distributed lead times at the central warehouse. We numerically show that our exact and approxi-
mate solutions perform equally or better than those presented in the literature under deterministic
lead times.

Keywords: Inventory, Lost sales, Queueing network, Emergency orders.
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1 Introduction and motivation

The unplanned downtime of a capital asset, such as an MRI-scanner, aircraft, or production line, has
severe consequences for the users and owners of such assets. The quickest way to restore an asset’s
operational condition is to replace the failed component with a spare part. The inventory system
that distributes spare parts to the different locations of assets is essential to mitigate the effects of
unplanned downtime. Unfortunately, spare parts are often expensive, such that holding inventory is
quite costly (Noorwali et al., 2023). When a stock-out causes continued downtime, the consequences
are often severe in terms of the opportunity costs. It is therefore crucial to design an inventory system
that can trade-off the cost of downtime due to inventory shortages with the cost of holding inventories.

Given the high cost of downtime, in multi-echelon inventory systems, advanced technologies, such
as connected sensors and information systems, can be used to track orders in real time between a
central warehouse and local warehouses to reduce the downtime and costs. For instance, when lead-
times are known and constant, under a centralized inventory system, information on the remaining
time until an order arrives at a local warehouse can be used to better manage the flow of orders
and determine the stock levels. Depending on the remaining lead time, it may be possible to place
emergency orders to reduce critical machine downtime. Moreover, under a decentralized inventory
system, the customers at a local warehouse may not be able to wait more than the imposed maximum
time within which it should be delivered, meaning emergency orders to an external supplier should
be placed to quickly react to the system downtime. This maximum acceptable waiting time can be
determined through service agreements between the central warehouse and local warehouses.

This context motivates our study that considers a two-echelon inventory system composed of
a central warehouse and multiple local warehouses in which each local warehouse faces stochastic
demand. Demand that arrives at a local warehouse must be served either immediately from stock,
or within a waiting time threshold by items in the pipeline between the central and local warehouse.
Demand is lost when this cannot be done. We analyze this system by considering a stochastic lead time
at the central warehouse and deterministic or stochastic lead times at local warehouses, depending on
the system settings. In fact, our model only provides an exact solution in the case where w; = [; and
an approximation in the case where w; < ;.

In the last decades, a body of literature has analyzed multi-echelon inventory systems under
stochastic demand, and an overview of the literature is provided by Bijvank et al. (2014). However, the
literature dealing with multi-echelon inventory systems under lost sales is relatively scarce compared
to inventory systems under backorders since the METRIC model of Sherbrooke (1968) has been

developed. The most relevant studies to our work are those of Alvarez and van der Heijden (2014)



and Johansson and Olsson (2018). In particular, Alvarez and van der Heijden (2014) analyze a two-
echelon inventory system where demand is lost if there is no stock available at the local warehouse,
central warehouse, and the pipeline in between. They assume a constant lead time at the local
warehouse and an exponentially distributed lead time at the central warehouse. Based on the age
of the products in the pipeline or in stock, they provide an approximate performance evaluation of
the system when the waiting time threshold is equal to the local warehouse lead time. We refer to
this case as “network lost sales”, which differs from the classic case where lost sales occur if there
is no stock at the local warehouse (i.e., waiting time threshold equal to zero) analyzed in Andersson
and Melchiors (2001). The same inventory system is analyzed in Ozkan et al. (2015) where lost sales
occur if there is no stock at the local warehouse and no possible emergency supply from the central
warehouse. More recently, Johansson and Olsson (2018) analyzed a two-echelon inventory system
where demand is Poisson distributed and all lead times in the inventory system are constant. They
consider the case of a waiting time threshold less than or equal to the local warehouse lead time. They
propose an approximate solution based on the derivation of the age of products in the pipeline or
in stock. We note that these studies provide an approximate analysis of the inventory system under
deterministic lead times at the local warehouses and deterministic or exponential lead times at the
central warehouse. The objective of our paper is (1) to extend the findings of Alvarez and van der
Heijden (2014) to generally distributed lead times at both the central and the local warehouses with
an ezact performance evaluation , and (2) to extend the findings of Johansson and Olsson (2018) to
generally distributed lead times at the central warehouse and improve the approximation accuracy.
In particular, we consider a two-echelon performance evaluation of a two-echelon inventory system
with network lost sales where the inventory in the warehouses is controlled according to a continuous
review base-stock policy. The demand faced by each local warehouse is Poisson distributed. We model
the system as a queuing network and analyze its performance in terms of four performance measures:
the fill rate, the expected stock on-hand, the expected backorders in the local warehouses, and the

expected waiting time. Hence, the contributions of this paper are twofold.

1. We generalize the findings of Alvarez and van der Heijden (2014) by considering generally dis-
tributed lead times at both the central and the local warehouses. Moreover, we provide exact
closed-form expressions for the evaluation of the inventory system in terms of the fill-rate, the
fraction of demand lost, the mean stock on-hand, and the mean waiting time. We observe that
this inventory system can be recast as a special type of queueing network that admits a product
form solution. We also prove that the steady-state probability distribution of the number of

orders in the inventory system depends on the lead time distribution only through its mean,



showing that the steady-state probabilities computed by the method of Alvarez and van der

Heijden (2014) can also be used to obtain closed-form expressions for the performance measures.

2. We model the inventory system considered by Johansson and Olsson (2018), as a network of
loss queues (or tandem queues) with state-dependent arrival rates and generally distributed
lead times at the central warehouse. We propose new approximate solutions that are closer to
the exact simulation model (developed in Rockwell Arena software) compared to Johansson and
Olsson (2018) and Ozkan et al. (2015) under deterministic lead times. The relevance for industry
of this lost sales case is highlighted in Howard et al. (2015) using the example of the Volvo’s

spare parts inventory system.

The remainder of the paper is organized as follows. Section 2 provides an overview of the literature
dealing with multi-echelon inventory systems under a lost sales assumption. We describe in Section
3 the inventory system we consider and the underlying assumptions, presenting the system modelling
using queuing networks in the threshold waiting time cases of being equal to or less than the local
warehouse lead times. In Section 4, we provide the performance analysis and the expressions for the
performance measures in both threshold waiting time cases. Section 5 is dedicated to the numerical
investigation where we assess the performance of our solutions compared to those proposed in the

literature. The conclusions and avenues for future research are presented in Section 6.

2 Literature review

There is a considerable body of literature dealing with multi-echelon inventory models since the 1960s.
This literature can be divided into two streams depending on how the system reacts to excess demand,
i.e., backorders or lost sales. The analysis of multi-echelon inventory systems in the case of backorders
has attracted most attention. This literature stream started with the seminal work of Sherbrooke
(1968) and the well-known METRIC-model, with many of the results consolidated in books e.g.,
Sherbrooke (2004), Muckstadt (2005), and Van Houtum and Kranenburg (2015). Exact performance
evaluation of a system under a base-stock policy is possible with analyses using service measures,
such as truncated waiting times, e.g., Dreyfuss and Giat (2017), Dreyfuss and Giat (2018), Topan
et al. (2017) and Dreyfuss and Giat (2019). The Poisson demand assumption, commonly used in the
METRIC-based literature, has been relaxed, for example in Costantino et al. (2018) by considering a
Zero-Inflated Poisson distribution to deal with irregular demand patterns.

However, the literature dealing with multi-echelon inventory models under lost sales is relatively

scarce. The early study of Nahmias and Smith (1994) analyzes a two-echelon inventory system com-



posed of a central warehouse and multiple retailers where the stock is controlled according to a periodic
order-up-to-level policy. They assume the lead times in the system are equal to zero, and demand at
the retailer is lost when there is no stock in this echelon. Andersson and Melchiors (2001) extend the
analysis with the same inventory system under constant lead times and a base-stock inventory control
policy. The authors propose an approximate solution to derive the cost in each echelon and the total
cost of the system. An overview of the literature dealing with multi-echelon inventory systems under
lost sales is provided in Bijvank and Vis (2011).

More recently, the performance evaluation of multi-echelon inventory systems under lost sales has
attracted the attention of Alvarez and van der Heijden (2014), Ozkan et al. (2015), and Johansson
and Olsson (2018), studies that are highly relevant to our paper. Alvarez and van der Heijden (2014)
consider a two-echelon inventory system with a central warehouse and multiple local warehouses.
The authors assume that demand is lost if there is no stock available at the local warehouse, central
warehouse, and the pipeline in between. The lead time distribution is assumed deterministic at the
local warehouse, and exponential at the central warehouse. Based on the age of the products in
the pipeline or in stock, they provide an approximate performance evaluation of the system when
the waiting time threshold is equal to the local warehouse lead time. They also show that their
approximation leads to better performance compared to that of Andersson and Melchiors (2001).
Ozkan et al. (2015) consider a two-echelon inventory system where demand facing an out-of-stock
situation at the local warehouse is met from the central warehouse through an emergency order. They
propose an iterative procedure to find the fractions of demand satisfied by local and central warehouses
and the external supplier. However, in their model, the pipeline between the local warehouse and the
central warehouse is never used to meet demand even if there are items in the pipeline that are not
yet assigned to any existing backorder. The model we propose in this paper is different from that of
Ozkan et al. (2015) because it takes into account the remaining lead time of pipeline orders through
the modelling of the system with tandem queues. This information can be very useful to reduce the
lost sales because sometimes it is better to wait for an order that arrives from the pipelines in a
threshold time than to place an (expensive) emergency order that might even arrive later. Johansson
and Olsson (2018) analyze the same system as Alvarez and van der Heijden (2014), but assume that
the waiting time threshold at the local warehouse can be less than or equal to the warehouse lead
time. Moreover, they assume that all lead times in the inventory system are constant. They propose
an approximate solution based on the derivation of the age of the products in the pipeline or in stock.
In Ozkan et al. (2015), the emergency lead time can be set equal to the maximum acceptable waiting

time at the local warehouse to find the model setting of Johansson and Olsson (2018). However, to the



best of our knowledge, none of the papers in the literature consider generally distributed lead times at
the central warehouse. Moreover, there are no exact performance evaluation results in the literature
dealing with multi-echelon inventory systems in the network lost sales case.

Before closing this section, we note the literature stream that considers stochastic network rep-
resentations to analyze inventory systems under more complex inventory control policies, demand
processes, and lead times. Such representations often lead to product form solutions (Kouki et al.,
2019, 2020). For example, Song and Zipkin (2009) use a queuing network representation to perform
a closed-form performance analysis of an inventory system with two supply sources facing Poisson
demand under the dual-index policy. This technique is extended to evaluate multi-echelon inventory
networks with dual sourcing (Drent and Arts, 2021), also used when demand is a Markov-modulated
Poisson process in asymptotic regimes of interest (Arts et al., 2016). For networks with emergency
shipments that depend on the state in a complicated way, an exact analysis has also been obtained in
some cases (e.g., Howard et al., 2015), and an approximate analysis in others (e.g., Boucherie et al.,
2018; Ozkan et al., 2015). We use this queuing network representation in our paper to provide an exact
performance evaluation of the inventory system of Alvarez and van der Heijden (2014) under generally
distributed lead times at both the central and the local warehouses. We also use it to propose new
and more accurate approximations for the system of Johansson and Olsson (2018) under generally

distributed lead times at the central warehouse and deterministic lead times at the local warehouses.

3 System description and modelling

In this section, we first describe the inventory system we analyze and then explain the modeling

method used to derive the performance measures.

3.1 System description and assumptions

We consider a two-echelon inventory system composed of a central warehouse and J local warehouses.

Demand at local warehouse j is a Poisson process with rate \; for j € {1,---,J}, and the total arrival
J

rate is Ag = > _Aj. The assumption of a Poisson demand process is appropriate for slow-moving
j=1

items and it is widely used in the inventory control literature for spare parts, as in Howard et al.
(2015), Song and Zipkin (2009) and Johansson and Olsson (2018). In addition, the Poisson arrival
assumption allows us to cast the two-echelon inventory system as a network of queues for which we can
derive the steady state probabilities. The stock at each local warehouse is controlled with a base-stock
inventory policy where the base-stock level at local warehouse j is denoted with S; for j € {1,---,J}.

The central warehouse uses an installation base-stock policy with base-stock level Sy. If an item is



External
supplier

Figure 1: The multi-class loss network

available at warehouse j, demand is immediately met and an order is placed at the central warehouse.
The lead time of the central warehouse is generally distributed with mean ly. We assume that the lead
times at local warehouses are stochastic under the Alvarez and van der Heijden (2014)’s settings and
deterministic under the Johansson and Olsson (2018)’s settings. The deterministic assumption in the
latter case is needed for modelling purposes. We denote the mean lead time by [; for j € {1,---,J}.
When demand arrives at local warehouse j, if it is not met within a threshold waiting time, w; (for
j € {l,---,J}), it is lost. It is worth pointing out that under deterministic lead times at local
warehouses, the condition to accept demand under the Alvarez and van der Heijden (2014) settings
is 7to have an uncommitted item that is available in the local warehouse, the central warehouse, or
the pipeline in between”. This condition is equivalent to "having a waiting time threshold that is
equal to the local warehouse lead time”. Under stochastic lead times, one cannot refer to a waiting
time threshold because customers typically require a guaranteed response time to satisfy their demand
and the true waiting time may exceed the required response time due to the stochastic nature of the
lead times. Consequently, we use in this paper the condition that a demand is lost when there is no
uncommitted inventory in the pipeline to local warehouse j or at the central warehouse. This condition
is independent of the customer waiting time at the local warehouse when there is a stock out. For
simplification purposes, the terminology w; = I; is used to refer to the Alvarez and van der Heijden
(2014) settings for both deterministic and stochastic lead times. The case where w; takes values less
than [; is studied in Johansson and Olsson (2018) for deterministic lead times. Both cases w; = I;
and w; < l; occur in practice, and the case w; = I; does not require that the remaining lead-times of
items in the pipeline can be tracked for practical implementation. Note also that the results of the
case wj = [; are required to analyze the case w; < [;.

Our objective is to determine in both cases, w; = l; and w; < l;, the on-hand stock and the
number of backorders at warehouse j, denoted with Ij+ and [ ; respectively, the fraction of demand

directly satisfied from on-hand at warehouse j, denoted with «;, the fraction of demand that is satisfied



Table 1: Table of notation (i =1,2,---,J)

System parameters

J Total number of local warehouses
Aj Demand rate at local warehouse j
J
Ao Total demand rate, Ao = > \;
=1
S Base stock level at warehouse j
So Base stock level of the central warehouse

St = Sy + E‘]lzl Sj | Maximum number of orders in the pipeline to the central warchouse

1 Lead time from the central warehouse to warehouse j
w; Waiting time of demand at warehouse j
lo (mean) lead time from an external supplier to the central warehouse

State definition and probabilities

n Total number of orders in the pipeline to the central warehouse or the local warehouse
Q(n) Steady-state probability of having n items in transportation from the external supplier to the central warehouse
P(n) Steady-state probability of having n orders in the pipeline to the local warehouse
S State space of number of orders in the pipeline to the central warehouse
Q State space of backorder levels at the central warehouse
Bj(t), Bé Backorder level at the central warehouse at time ¢ and in steady-state associated with local warehouse j, j = 1, ..., J, respectively
N;(t), N; Number of orders in the pipeline to the central warehouse at time ¢ and in steady-state due to warehouse j, j = 1, ..., J, respectively
Dj(ly) Demand during lead time [; at warehouse j, j =1,...,J.
Performance measures
]E[If] Expected inventory level at warehouse j
E[I]] Expected number of backorders at warehouse j
E[W;] Expected waiting time for backordered demand at local warehouse j
o Fraction of demand satisfied without waiting from on-hand inventory at warehouse j
Bj Fraction of demand satisfied but delayed at warehouse j
d0; Fraction of lost demand at warehouse j

after a delay at warehouse j, denoted with j;, and the fraction of lost demand, denoted with d;, for
j=12,---,J. Note that a; + 3; is sometimes referred to as the time window fill-rate where wj is

the length of the time window. In Table 1, we summarize the notation used throughout this paper.

3.2 System modelling

To derive expressions for the performance measures associated with local warehouse j, we need the
steady-state probability P(n), n > 0 of having n orders in the pipeline to local warehouse j (j €
{1,...,J}). Note that P(n), n > 0 depends on the state of the central warehouse, and can be

determined, depending on the central warehouse stock, as follows:

o If the central warehouse has stock on hand, then we can find P(n), n > 0 by viewing the number
of orders in the pipeline between the central warehouse and local warehouse j as a queue with
Poisson arrivals with intensity A;, and a generally distributed service time with mean ;. P(n),
n > 0 can therefore be computed using the well-known steady-state probability of the occupancy
level in an M /G /oo queue in conjunction with the state of the number of orders in the pipeline

to the central warehouse.

o If the central warehouse is out of stock, the steady-state probability P(n), n > 0 depends on the
system settings:
Case 1 (w; = lj): Since the demand is lost when there are no items available at the local

warehouse or in the pipeline in between, P(n), n > 0 depends on the number of backorders Bé



associated with local warehouse j and already waiting in the central warehouse. Note that Bg
cannot exceed S;. We can find P(n), n > 0 by modelling the number of orders in the pipeline
to each local warehouse j as a tandem queue, as shown in Figure 2. The first node in Figure
2 represents the orders in the pipeline to the central warehouse, forming an /G /S™" queue
with an input rate A; that depends on the number of backorders Bg, service rate 1/lp, and total
number of severs S™. The second node is an e/G/oc queue with service rate 1/1;. For this
tandem queue, we show how it can be analyzed exactly, enabling us to derive the steady-state
probability P(n),n > 0, by conditioning on the number of backorders Bg. Although we need
the distribution of Bg to find P(n),n > 0, the opposite is not true. In other words, we can
find the steady-state probability of Bg without knowing P(n), n > 0, since each time demand
arrives, it will always be accepted as long as Bg < S}, regardless of the number of orders in the
pipeline between the central and local warehouses. This result is crucial to derive a closed-form
expression for P(n), n > 0. The steady-state probability of the number of backorders Bg is
derived by analyzing the central warehouse separately, regardless of the number of orders in
the pipeline between the central and local warehouse, in other words, regardless of the state of
orders in the pipeline at queue 2. Once the steady-state probability of Bg is found, we can derive
P(n),n > 0. Note that the model of Ozkan et al. (2015) does not assume a threshold waiting
time at the local warehouses. We approximate the steady-state probability P(n), n > 0 of the

Ozkan et al. (2015) model using our results under w; = 1.

Demand arrival INO

ith rate \; S
with rate A; Yes o/G/St! /G /o

Bl < 8;7 Queue 1 with mean Queue 2 with mean
lead time g lead time ;

Figure 2: Tandem queues of number of orders in the pipeline to local warehouse j when w; = I;

Case 2 (w; < l;): In this case the number of orders in the pipeline to the central warehouse and
local warehouse depend on each other. We model the inventory system by using three queues as
shown in Figure 3. The first queue represents the number of orders being routed to the central
warehouse. The second and third queues represent the number of orders destined for the local
warehouse j with a mean processing lead time [; —w; and wj, respectively. Hence, when demand
arrives, it will be accepted if the number of backorders associated with local warehouse j and
waiting at the central warehouse is strictly less than S; (i.e., Bg < §;), or if the total number
of backorders Bé plus the number of orders to local warehouse j at the second queue is strictly

less than S;. Note that the case w; < [; is hence modelled as a tandem queuing network with



blocking, where demand arrival at the local warehouse is blocked either because Bg = Sj, or
because the number of orders to local warehouse j at the second node is S;. It should also be
noted that a tandem queue with a blocking mechanism at the first queue that depends on the
state of the second queue is difficult to analyze exactly since we need to track all pipeline orders
to the warehouses, i.e., the occupancy level of each node in the tandem queues. In a small setting,
with exponential lead times it is possible to study the dynamics of the network of queues, but in
the general case, such dynamics suffers from the curse of dimensionality and the network analysis
becomes extremely complex. Thus, we find an approximate steady-state probability P(n), n >0
of having n orders in the pipeline to the local warehouse by decomposing the queuing network
into two independent sub-networks: one related to the local warehouse consisting in node 1 only,
the other related to the local warehouse consisting in nodes 2 and 3 together. We will elaborate

more on this in Section 4.2.

Demand arrival NO‘

with rate \; Yes @l—)

Bé < S; and Queue 1: mean Queue 2: Queue 3:
number of orders  lead time lg lead time I; — w; lead time wj;
at queue 2 < 5

Figure 3: Tandem queues of the number of orders in pipeline to local warehouse j when w; < I;

In summary, to compute P(n),n > 0, we should first find the marginal probability density of

the number of backorders associated with local warehouse j and waiting at the central warehouse,

Bg, which requires determining the steady-state probability of having n orders in the pipeline to the

central warehouse, denoted with Q(n), n € {0,...,S%'}. This is the objective of the next section,

where we also express the performance measures.

4 Inventory performance analysis

In this section, we derive the the steady state probabilities of having n orders in the system and

we provide the expressions for the performance measures «;, 3, 0;, E[Ij*], E[/ i ] and E[W;]. Note

that calculating the performance measures o; and §; enables the straightforward calculation of the

expected waiting time of demand at local warehouse j using Little’s law as E[W]

E[I;]

= TN To do

so, we calculate in the two cases: w; = [; and w; < l;, the probability of having b; backorders at the

central warehouse associated with local warehouse j, P{Bg = b;}, and the steady-state probability of

having n orders in the pipeline to the central warehouse (i.e., Q(n), n € {0,...,S®!}).
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4.1 Analysis of the case w; = [;
4.1.1 Central warehouse analysis

In this section, we provide a closed-form expression for the steady-state probability of having a total
of n orders in the pipeline to the central warehouse, i.e., Q(n), n € {0, ..., S™"}. Our analysis is built

on the following two observations:
1. The steady-state probability Q)(n) does not depend on [; for j =1,---,J.
2. If n < Sy, then the demand arrival rate at the central warehouse is Ag.

The first observation means that the demand arrival process at the central warehouse generated
from local warehouse j remains stationary as long as the number of backorders at the central warehouse
associated with local warehouse j is less than S;. Indeed, each time demand from local warehouse j
arrives, and the central warehouse has stock on-hand or does not have stock on-hand but the number
of backorders is less than S;, demand will always trigger an order at the central warehouse. This
event is independent of whether the local warehouse has stock or the number of orders in progress
between the central warehouse and local warehouse j. Demand at local warehouse j is lost only when
the number of backorders at the central warehouse associated with local warehouse j reaches S;. This
means that the lead time /; has no impact on the demand arrival process at the central warehouse.
This property does not hold for models such as those of Ozkan et al. (2015) and Johansson and Olsson
(2018) because we need to know the number of orders in progress to the local warehouse to decide
whether to accept or reject an incoming demand. In contrast, in our framework with w; = l;, we
only need information about the number of backorders at the central warehouse associated with local
warehouse j to decide whether to accept or reject an incoming demand.

The second observation means that the number of items on-order between the external supplier
and the central warehouse is distributed as in a loss queue with a Poisson arrival process with rate
Ao, a service time of expected duration [y, and Sy servers. This observation enables us to find the
probability Q(n) for any n < Sy. We will elaborate on this further on in the paper.

To find the probability @(n), n > Sy, we need to know the number of backorders at the central
warehouse associated with local warehouse j. However, the backorder level to local warehouse j held
at the central warehouse depends on the number of orders triggered by local warehouse j and accepted
by the central warehouse. We therefore need to define two random variables, one representing the
number of orders already accepted at the central warehouse, and the other representing the number
of backorders associated with each local warehouse j.

To do so, let N;(t) denote the number of orders in the pipeline to the central warehouse that were

11



triggered by demand at local warehouse j € {1,...,J}. Note that demand at local warehouse j causes
Nj(t) to increase by 1 provided that the waiting time for this item will be less than [;. Moreover, note
that the waiting time wj; is always less than [; as long as the number of backorders in the pipeline to
the central warchouse does not exceed S;. Otherwise, there must be an item in the pipeline between
the central warehouse and local warehouse j that will arrive within /; units of time and can thus be
allocated to incoming demand. Furthermore, after demand acceptance, there must be N;(t) < So+ 5
and Z}']:1 N;(t) < So+ Z]‘-Izl S; at any time ¢t. We denote with N(t) = (Ni(¢),...,Ny(t)) the
stochastic vector of the total number of orders in the pipeline to the central warehouse at time ¢. Its
associated stationary stochastic process is denoted with {IN(t)}. Let N = (Ny,..., Ns) be the random
variable denoting the number of orders in the pipeline in steady-state. The state space of {IN(t)} is

given by S :
J J
S=qn:=(ni,ng,...,n5) | n; <Sj+ S0, j=1,...,J, andanSZSjJrSo . (1)
j=1 j=1

Note also that the dynamics of the process {IN(t)} are not sufficient to determine the steady-
state probability Q(n), n € {0,...,S0 + Z}]:1 S;j}. In fact, since the number of backorders at the
central warchouse cannot exceed Sj, the steady-state of the number of orders in the pipeline to the
central warehouse cannot be determined completely through the vector N in steady-state. Consider
an example of two local warehouses setting the parameters Sy = 3, S; = 1, and So = 2. Assume
that the description of the state of orders in the pipeline to the central warehouse is only via vector
N. Thus, if the orders in the pipeline are N = (2,3), two orders are triggered by local warehouse
1 and three orders by local warehouse 2. The state (2,3) also means there are 2 backorders in the
system. If these two backorders are associated with local warehouse 1, then any demand from local
warehouse 1 should be rejected because the maximum number of backorders due to local warehouse
1 has already been reached. On the other hand, if we ignore the threshold level S; of backorders
associated with warehouse j, we still have N; < Sy + S, and demand at warehouse j is accepted at
the central warehouse, whereas it should not be.

Therefore, to find the steady-state probabilities of the number of orders in the pipeline to the
central warehouse, we need to know the steady-state probabilities of backordered demand at the
central warehouse stemming from all local warehouses, j = 1,...,J. For this purpose, we consider
our second random variable Bé (t) as the number of backorders in the central warehouse associated
with the local warehouse j at time ¢. The state of total backorders at time ¢ is denoted with Bg(t) =

(By(t),...,Bf(t)) and its associated steady-state stochastic process with {Bg(t)} with a finite state
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space 2
Q:{b:: (bl,...,bJ)‘bjSS]’}. (2)

We denote with Bg = (B}, ..., BJ) the vector of all backorders in steady-state. Note that ijl N; <
Sp implies that Bg = 0 for all local warehouses j € {1,...,J}, and for any N € S, Bé < Nj,

je{1,...,J}. Therefore, Z]J:I Bé > 0 only for

J
neSn), Sh) = nES\n:an>So ,

j=1

We now derive the steady-state probability of the vector (b, n), which we denote with w(b,n) as

follows:

m(b,n) =P{Bp=b,N=n} =P{Bg=b|[N=n}P{N=n}, beQneSn) (3)
where
P{Bo = b|N =n} :tlggoP{Bé(t) =b1,...7B()](t) =by|Ny(t) = n1,...,Nj(t) sz}, beQneS(n)

and

P{N:n}:tIi{EOP{Nl(t):nla"'vNJ<t):nJ}7 1’168(71)

The vector (Bg, N) is a reversible process and has a product form solution as shown in Proposition

Proposition 1. The steady-state probability of (b,n) is given by

ni\ (n2 nJy J .
e )\l Uz
ﬂ(b,n):C(bl)(bQ) <b-’)H( W)™ 4y e oun e S(n),
( Jle b/) i1 i
=107
where C' is the normalizing constant.
Proof. See Appendix 1. ]

Proposition 1 allows providing a simple expression for Q(n), n € {0, oS0+ Z}]:l Sj} using the

following corollary.

Corollary 1. The steady-state probability of having n orders in the pipeline of the central warehouse
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s given by

AZ neS HJ (Aj(lo?)nj — (Molo)™ ZfO S n S 507

i=1 ; 1
ni+...+nj=n J vy w

AZ beq, ™ (b, Il) )
bi+...+by=n—>So,
Qn) = SRR (4)

n—50)! 5 1) )
=2 beQ (( 502;()/\;0%) “TIL, @ ({f?!)) ) ifn > S,
bi+...+by=n—Soy

0 otherwise,

where A is the normalizing constant.
Proof. See Appendix 1. |

The result of Corollary 1 also shows that the steady-state probability Q(n), n € {0, o So+ Z;]:l Si}
is insensitive to the lead time distribution, except through its mean I;, ¢ € {1,...,J}. This is in line
with the literature related to Jackson queuing networks where the steady-state probability of the net-
work state is insensitive to the distribution of the processing lead time and depends only on its mean
(see Boucherie and van Dijk (2011)).

A careful inspection of the preceding proposition and the equations in Alvarez and van der Heijden

(2014) will reveal that they are identical, as stated in the following corollary.

Corollary 2. The expression for the steady-state probability derived by Alvarez and van der Heijden

(2014) under constant lead times is exact and given by

K_()\OTIL/!O)TL ,n S 507

KT M(y), n> S,

where

Ao, n <8y
M(n) = . (6)

ijl Aj (1 —P{Bg = Sj|n— S(]}) , m> 98y

K is the normalizing constant and P {Bg = Sjn — So} is computed using a truncated multi-nominal
distribution detailed in Appendiz 2.

Proof. See Appendix 2. |

Corollary 2 expresses the steady-state probability using the method of Alvarez and van der Heijden

(2014). This expression suffers from the curse of dimensionality, which makes the computation of Q(n)
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Figure 4: Network with overflow bypass

numerically tedious when the number of classes J and S;,j = 1,...J increases. Alvarez and van der

Heijden (2014) themselves proposed an approximate method to calculate this probability.

4.1.2 Performance measures

A crucial observation for the purpose of our analysis is also used in Howard et al. (2015). In fact,
consider an alternative system where demand that would be lost in the original system is not lost but
placed with an outside emergency supplier that also has a lead time of [;. Note that the behavior of the
on-hand inventory in this alternative system is identical to the behavior of the original system. Both
systems have identical dynamics for demand filled directly by the system. The on-hand inventory level
in the alternative system can be obtained as follows. Let D;(l;) denote demand during [; at warehouse
Jj, and note that D;(l;) has a Poisson distribution with mean A;l;. Let I; denote the inventory level
at warehouse j in the original system, and I ; the inventory level in the alternative system. The above
observation implies that f]“' =1 ]+ where zt = max(0,z). With this observation, we can determine
the performance measures.

The alternative system described above for a specific local warehouse j can also be seen as follows.
The entire pipeline of products that will be delivered to local warehouse j is depicted in Figure 2 when
there are backorders at the central warehouse. The first station in this Figure 2 corresponds to the
orders in the pipeline to the central warehouse that are destined for location j. The second station
is number of orders in the pipeline between the central warehouse and location j. Unfortunately, the
original network has no known product form solution. The alternative system is depicted in Figure 4.
This network assumes that products that would normally be lost are placed as an order to an outside
supplier with the same lead time as between the central warehouse and local warehouse j. Obviously
the network does not represent our network, but does have a product form solution, as also observed

by Song and Zipkin (2009) and Howard et al. (2015), and can be exploited, as we will do next.
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On-hand stock. Using the observation above, we can write directly that

P{If:x}zp{j;:x}:P{(SJ‘_BSJFDJ'U]‘))J“:%} (7)
ZP{BS+Dj(lj)=Sj—x}=§:P{Bg+Dj(lj)— -_x|30_y}p{33:y}
y=0
> z—y )
_;P{Dj(lj)_sj_x_y}P{Bg_y} Ze“ (S; f:c]fy)lp{Bé:y}

The expected on-hand stock can easily be computed from the distribution as ]E[I;r] = Zfio aP{l; = x}.
However, note that fj_ # I, and 27 = max(0, —z), so that the expected backorders cannot be

determined in similar fashion. We defer this analysis to later.

Fraction of demand filled immediately, after waiting time, and lost. Demand in our network
can be either filled immediately from stock on-hand, after a waiting time from stock elsewhere in the
network, or lost entirely. From the steady-state probability Q(n), n < Sy + E}‘le S;, we obtain the

fraction of demand that is lost to the network for each local warehouse, that is §;. Let

Z (k+ > 1,i#j )(/\olo) (Ajlo)® ﬁ M | @

Pi(k)=P{B) =k} =
{ } bieQ; (So+k+zz‘:1,i#j bi)! k! i=1,i#j bi!

be the probability of having k backorders at the central warehouse associated with local warehouse
j, and €); the multidimensional state space that excludes the number of backorders triggered by local

warehouse j:

J J
Q=S = (b1, b1, bbb <S5 i=1,00 Y bi< Y Sip. (9)
i=1,i#j i=1,i#£j

Because Poisson arrivals see time averages (Wolff, 1982), it follows that the fraction of demand lost

by the network at warehouse j, is given by

5; = PI(S)). (10)

Similarly, the fraction of demand that can be filled immediately from the inventory on-hand at

local warehouse j can be computed directly as

So—1 Sitl o e Nty Sz Skl no—X\l;
aj = (Z Q(k)) > 7(”])”! +>> <(M )n! P%k)) . (11)
k=0 n=0 k=0 n=0
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Since o 4+ B + 6; = 1 by definition, we finally obtain
Bj=1—a;—9; (12)

Expected backorders and on-hand inventory for local warehouses. For the expected backo-
rders at local warehouse j, we use Little’s law and the relation of the original system to the alternative
system described at the beginning of this section. Note that I 5 denotes the number of backorders
at local warehouse j as = = max(0,—xz). We follow the idea of Howard et al. (2015). A critical
observation at this point is that I ;= I ;i + X where X is the number of customers with backorders
that will be filled by the outside supplier that delivers after /; time units in the alternative system.
According to Little’s law, we have E[X] = §;\;l;. Therefore, E[T ;] can be determined when E[T ;s

known. Fortunately, this quantity can be found in a similar way to the on-hand stock:

E[I;] = E[(D;(l;) + By — S;)"] = E[D;(l;) + B} — S;] + E[(S; — D;(l;) — B))™] (13)

= \jl; + E[B]] — S; + E[[}]

Here, E[fj’] follows from Equation (7) and E[Bg] can be computed directly from Equation (8). Now

the expected backorders at local warehouse j can be expressed as
E[I;] = E[I;] - E[X] = E[I;] — A;6;1;. (14)

4.2 Analysis of the case w; < ;

In this section, we propose new approximations of two models in the literature. The first concerns
the model that Ozkan et al. (2015) studied. Their work is similar to ours in Subsection 4.1.1 with one
difference: when demand cannot be satisfied with available stock or the central warehouse, it is lost,
while in our first model, demand is satisfied after a waiting time from the regular channel as long as
the number of backorders at the central warehouse does not exceed S;, j € {1,...,J}.

The second model we address is that of Johansson and Olsson (2018) where an emergency replen-
ishment is triggered based on the remaining lead time of orders in the pipeline to each local warehouse
j,J = 1,...,J. Let us denote with w; the maximum waiting time a customer is willing to accept if
no products are available in the local warehouse. According to Johansson and Olsson (2018), when
a customer arrives at the local warehouse, an emergency replenishment is requested from an outside
supplier if the remaining lead time of the orders in the pipeline that have not yet been allocated to

an existing backorder exceeds w;. In the model of Johansson and Olsson (2018), there is a possibility
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that the emergency order cannot be executed, but we relax this assumption by assuming that all
emergency replenishments are performed with probability 1. If we set w; equal to the lead time [,
then Johansson and Olsson (2018)’s model is reduced to ours for deterministic lead times. In this
case, we can analyze such a system exactly. In the case of w; = 0, we refer to the model of Andersson
and Melchiors (2001). The difficulty in providing an exact solution to these two models lies in the fact
that orders to the central warehouse depend on the pipeline between the central warehouse and the
local warehouse, which is not the case in the model studied in Section 4.1.

The approximations we propose are easy to understand. In fact, we use the exact steady-state
probability in the case where w; = [, together with the steady-state probability of the pipeline
between the local warehouse and central warehouse. Under the assumption of the model of Ozkan
et al. (2015), assume (this is an approximation) that the orders in the pipeline between the central
warehouse and local warehouse j form an M/G/S;/S; queue with a Poisson process with arrival rate
Aj and service time with mean [;, thus the steady-state probability of having n products during lead

time [; is simply:

1\
)

p(n,l;) =P{D;(l;) =n} = S

Z:io TR (15)
P(n, ;) = P{D;(lj) <n} =37k p(k,L)).

For the model of Johansson and Olsson (2018), we make a similar assumption related to the arrival
process in the pipeline between the central and local warehouse, i.e., Poisson process with rate A;. In
the observation of Howard et al. (2015), as stated in Section 4.1.2, the pipeline between the central and
local warehouse forms tandem queues M/G/S;/S; — /G /oo, where the first queue has an arrival
rate A; and service rate with mean l; — w;, and the second queue has a mean service rate w;. If
the first queue is full, incoming demand is satisfied by emergency replenishment with a lead time w;
by overflowing the first node and going directly to the second node. We can write the steady-state

probability of having n items during lead time I; with

—Ajwj

min(n,S;) (Aj(lj—w;))™ (Ajw;)"~F
p(n,l;) = ! )F Zm:é Ve =

e
O —wy m (n—k)!

STl Sl (16)
P(n,l;) =P{D;(l;) <n} =3 5_op(k 1))

We are now ready to express the steady-state probability at the central warehouse. For the Ozkan
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et al. (2015) model,

A% for 0 < n < Sy,
n—50)!(Molo)%0 y1J  (Aj(I)"I
Q) =4 A% e (L S R b)) s S (D

0 otherwise,

which is the same steady-state probability of our original model conditioned by probability P(S; —
nj,l;). For Johansson and Olsson (2018), we also need to approximate the arrival rate at the cen-
tral warehouse, since the orders triggered at the central warehouse depend on the stock available at

warehouse j (if any) and on the number of orders in the pipeline during w;.

A% for 0 < n < Sy,

b
Q) =4 AL ben . <<"S°g1[fj,ol<)>s° 1, Q&2 p(s; —p;.1 —wj)> forn> Sy,  (18)
1+...+byj=n—5¢

0 otherwise.
where P(S; — bj,l; —wj) is given by (15) and \g is approximated by

(A _,:U].)Sj

J
_ . _ i
Ao = Z A (1 S (Al =w;)*
j=1 k=0 A

We can now express all the performance metrics we need, but since system downtime is the
most critical factor to assess, we focus on the fraction of demand satisfied directly from available
stock, the fraction satisfied after a waiting time (if any), and the fraction of demand lost. We will
obviously use the same analysis technique as our original model. Evaluating these fractions requires
the probability that there are n orders in the pipeline to local warehouse j, which we denote with
P(n), n € {0,...,5;}. This probability is given by p(n,l;) if the central warehouse has stock on
hand. However, if the central warehouse is out of stock, P(n) should be conditioned on the number of
backorders at the central warehouse. In this case P(n) = Y_p_(P{B{ = k} P{D;(l;) = n — k}. Using
the same notation as in the original model, we can deduce the steady-state probability of having n
orders in the pipeline to local warehouse 7 as follow.

Under the Ozkan et al. (2015) and Johansson and Olsson (2018) models:

So—1
P(n) = (Z Q(k)> p(n, ;)
k=0

min(n,S; 5
Ly (T 0 B0
(So +k + Z%]:Lz';éj bi)t K

b EQ]’ k=0

b;

p(n —k,l;) 4 H (/\Zlio!)

i=1,i%j
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where w; = 0 for Ozkan et al. (2015) and p(n — k,1;) is obtained with Equations (15) and (16) for
the Ozkan et al. (2015) and the Johansson and Olsson (2018) models, respectively. It should be noted
that when using p(n — k,[;) under the Johansson and Olsson (2018) setting, the number of pipeline
orders to the local warehouse waiting at the central warehouse plus those at the second queue with a
mean lead time /; — w; cannot exceed S; .

From Equation 19, we can write for the Ozkan et al. (2015) model

aj = o5 Pn),
8= (2" QW) ) p(Sj. 1), (20)

0j = 1—a; —fj,

and for the Johansson and Olsson (2018) model

a; =L, P(n),
o = (X% QW) ) p(Sy.15)

Sy (1 iy 50)!0l0) ™ (A10)* J Ailo)Pi
Ypieq, (Zkio (kaifjjt’ Liz ,Ob(‘))' : Jk?) p(S; =k, b —wi)) TTizrizg : b?!) P(Si = bi, li — wi)
1=1,i5£75 “t/*°

(21)

Bj=1—0a;—pj,

where p(S; — k,l; —wj) and P(S; — b;, l; — w;) are given by Equation (15). We note that the fraction
of lost demand J; does not take into account the pipeline state during w;. In fact, each lost demand
can be satisfied with an emergency replenishment with lead time w;, which does not influence the
fraction of lost demand in our system. The waiting time w; here plays the role of [; when considering
the Alvarez and van der Heijden (2014) model (i.e., [; = w;). Indeed, lead time /; does not influence
the fraction of lost demand. Furthermore, Equation 21 reduces to the exact steady-state probability
of having n orders in the pipeline to local warehouse ¢, when [; = w;, j € {1,...,J}.

We end this section by first noting that the calculation of E[I f ] and E[I"] can be obtained directly
from the expression of P(n),n > 0 in Equation (19) as E[I;“] = Zii()(Sj — n)P(n) for both models,
and E[I;] = Ziisjﬂ(n — Sj)P(n) — wj\;0; for the Johansson and Olsson (2018) model. We do
not have E[I;"] under Ozkan et al. (2015), since demand is not backordered at local warchouses and,

second, by summarizing the main results in Table 2.
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Table 2: Summary of the main results. Q(n),P(n) represents the steady-state probability of having
n items in the pipeline to the central warehouse and local warehouse, respectively. «;, 3; and §; are
the fraction of demand satisfied immediately from stock at local warehouse, after a delay and lost
respectively. E[If] is the expected stock on hand and E[I;] is the expected backorder level for the
local warehouse j.

Performance | Alvarez and van der Heijden (2014) setting | Johansson and Olsson (2018) setting | Ozkan et al. (2015) setting
measure w; = 1; w; <lj wj =0
Q(n) Equation 4 Equation 18 Equation 17
P(n) Equation 7 Equation 19 Equation 19
a; Equation 11 Equation 21 Equation 20
Bj Equation 12 Equation 21 Equation 20
0j Equation 10 Equation 21 Equation 20
E[I}] SLoaP {1 =) Sio(Sj — n)P(n) SLo(S; = m)P(n)
E[I;] Equation 13 Zko';sj+1(n — Sj)P(n) — w;A;6; Does not apply

5 Numerical investigation

In this section, we compare our model to the two models considered and to an exact simulation model
built in Rockwell Arena software. The numerical investigation is first conducted under deterministic
lead times to enable the comparison with the benchmark models. Second, we conduct an experiment
where stochastic lead times at the central warehouse are considered.

We start by comparing the CPU time to compute the steady-state probability of central warehouse
Q(n) with that of Alvarez and van der Heijden (2014), (i.e., Corollary 2) and our method (i.e., Corollary
1). Next, we compare our model to Ozkan et al. (2015)’s model where there is no waiting time at
the local warehouse. We then focus on evaluating the performance of our model and compare it to
the Johansson and Olsson (2018) model. Waiting time is evaluated as a fraction of the minimum lead
time of all local warehouses. Note that Johansson and Olsson (2018) only consider symmetric values,
i.e., all local warehouses have the same parameters. We study a similar setting but also consider the
non-symmetric case where values differ among the local warehouses.

We consider the case of two warehouses with the following input parameters: Iy € {2,20}, {l1,l2} €
{1,5}, Sp € {1,5}, {S1,S2} € {1,2}, A\ =0.1, A2 € {0.2,0.5,1} and w € {0.25,50,0.75} x min(ly, ).
Note that we have included other values of the parameters considered in Johansson and Olsson (2018)
and Ozkan et al. (2015), since — as will be shown — for the new values, the performance of these two
models can be lower than that under the values presented in their papers. In fact, when we choose
values where the lead times of the local warehouses vary by a factor of two or more, we are able
to evaluate the similarities and differences in the performance measures of the two models and our
model against the simulation. In line with the Ozkan et al. (2015) model, we rely on the fraction of
satisfied demand from the system and the fraction of lost demand as the main performance measures

for comparison. For ease of reading, we denote with JO the model of Johansson and Olsson (2018)
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and OV S the model of Ozkan et al. (2015).

Our setting enables us to make a comparison with the OV'S model of 32 (48) instances in the
symmetric (asymmetric) case. For the comparison with the JO model, we have 64 (192) symmetric
(asymmetric) instances. The relevant results showing the performance of the different models are
reported in Tables 3-6.

The computation time of Q(n) using the method of Alvarez and van der Heijden (2014) and our
method is reported in Table 3. The computational experiments are realized on a PC with Intel Core
i7-11800H running at 2.3 GHz. The CPU used by our model is very reasonable compared to that of
Alvarez and van der Heijden (2014). Indeed, their method suffers from the curse of dimensionality, as
the computation time increases exponentially when S;, j € {1,...,J} increases or when the number

of local warehouses increases.

Table 3: CPU time required for Q(n) using the Alvarez and van der Heijden (2014) model and our
model

S, CPU time in seconds in CPU time in seconds in
j=1,...,. J Alvarez and van der Heijden (2014) model our model

T 0 0

2 0.1 0

3 0.5 0

4 2.3 0.1

5 7.3 0.2

6 14.7 0.5

7 40.1 1.1

8 101 2.3

9 197.2 4.2

10 334.8 7.3

So=3,10=2 J=h,and N, =Lj=1,.., .

In the following, we start by reporting in Table 4 the comparative results of the different models
in the symmetric case (i.e., identical local warehouses) for w; < 0.5. The results for w; > 0.75 are
reported in Table 8 in Appendix 2 since the conclusions drawn from Table 4 also hold for Table 8.
We mark in bold the cases where the difference in o, j = 1,2 or 6, j = 1,2 for the JO and OV'S
models is higher than 3% compared to the simulation. We believe that a minimum difference of 3% is a
reasonable choice to compare the models. In the asymmetric case (i.e., non-identical local warehouses),
the results when our model is compared to the simulation and the JO model are reported in Table 5.
The comparison to the OV'S model is reported in Table 6. Note that in Tables 5-6 to limit the length
of the tables for presentation purposes and facilitate further the interpretation of the results, we only
report the instances where the difference in the simulation is significant, exceeding 3%.

Considering identical warehouses, under the JO setting, we find 7 instances out of 64 where the
difference, to the simulation model, exceeds 3%. Five of these 7 cases are listed in Table 4 (and 2
are listed in Table 8). Under OV'S model setting, Table 4 shows that there are only 5 instances (7
instances) with a difference above 3% in our model (in the OV'S model), which shows the accuracy of
our model compared to the two benchmark models. Furthermore, the results in Table 4, show that
the performance of our model is higher than that of OV'S (i.e closer to simulation) especially when the

central warehouse lead time [y is high compared to the local warehouse lead time I;, j € {1,...,J}.
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Table 4: Comparison under symmetric instances

Input Comparison with JO model Comparison with OV S model

parameters Simulation Model Our Model JO Model Simulation Model Our Model OV'S Model
lo L So 5/5 M/ w (%) 01(%) a1(%) 61(%) | a1(%)  6:1(%) | a1 (%) 01(%) a1 (%) 01(%) | a1(%) 61(%)
2 1 1 1 0.1 0 88.87 11.14 88.56 11.44 | 88.58 11.42 | 88.85 1.71 88.40 6.15 | 88.23 6.15
2 5 1 2 0.1 0 91.69 8.31 91.51 8.49 91.52 8.48 91.66 2.61 91.47 5.19 91.48 5.19
20 1 1 1 0.1 0 47.39 52.57 47.33  52.67 | 50.30 49.70 | 47.34 0.07 47.07  0.55 | 52.93 0.74
20 5 1 2 0.1 0 63.88 36.14 63.80 36.20 | 64.93 35.07 | 63.86 0.09 63.71 030 | 65.72  0.39
2 1 5 1 0.1 0 90.93 9.11 90.91  9.09 | 90.91 9.09 90.91 9.05 90.91  9.09 | 90.91  9.09
2 5 5 2 0.1 0 92.27 7.66 92.31  7.69 | 92.31 7.69 | 92.30 7.68 9231 7.69 | 9231  7.69
20 1 5 1 0.1 0 85.19 14.77 84.73 15.27 | 84.42 15.57 | 84.36 4.79 83.68 6.32 | 82,57  6.27
20 5 5 2 0.1 0 89.27 10.70 88.88 11.12 | 88.78 11.22 | 88.93 3.29 88.42 5.15 | 88.26  5.08
2 1 1 1 0.1 0.25 | 88.55 9.22 88.28 9.48 88.31 9.45
20 1 1 1 0.1 0.25 | 46.63 52.20 46.58 52.24 | 49.59 49.16
2 1 5 1 0.1 0.25 | 90.73 6.98 90.73  6.98 | 90.73  6.98
20 1 5 1 0.1 0.25 | 84.49 13.33 84.13 13.74 | 83.83 14.05
2 1 1 1 0.1 0.5 88.22 7.22 88.05 7.43 88.08 7.40
20 1 1 1 0.1 0.5 | 45.90 51.77 45.85 51.80 | 48.89 48.60
2 1 5 1 0.1 0.5 | 90.60 4.76 90.59  4.76 | 90.59  4.76
20 1 5 1 0.1 0.5 83.84 11.87 83.55 12.17 | 83.24 12.49
2 1 1 1 0.2 0 78.03 22.00 7742 2258 | TT.57 2243 | 77.80 2.71 76.86 7.95 | 76.48 7.96
2 5 1 2 0.2 0 78.04 21.99 77.63 2237 | T7.66 22.34 | 77.85 5.64 77.35 9.50 | 77.27 9.49
20 1 1 1 0.2 0 28.65 71.32 28.67 71.33 | 32.00 68.00 | 28.65 0.05 28.50 0.26 | 37.72 0.50
20 5 1 2 0.2 0 40.12 59.89 40.10  59.90 | 41.61 58.39 | 40.06 0.07 40.02 0.15 | 43.89 0.31
2 1 5 1 0.2 0 83.35 16.67 83.33 16.67 | 83.33 16.67 | 83.31 16.56 83.33 16.64 | 83.33 16.64
2 5 5 2 0.2 0 79.97 20.01 80.00 20.00 | 80.00 20.00 | 80.03 19.90 80.00 19.97 | 80.00 19.97
20 1 5 1 0.2 0 61.85 38.15 61.35 38.64 | 62.25 37.75 | 60.40 2.89 59.09 4.86 | 60.24 5.26
20 5 5 2 0.2 0 66.31 33.67 65.79 3421 | 66.21 33.79 | 65.33 2.88 64.20 4.95 | 63.66 5.22
2 1 1 1 0.2  0.25 | 76.90 19.11 76.44  19.64 | 76.61 19.46
20 1 1 1 0.2  0.25 | 27.56 71.02 27.55 71.04 | 30.87 67.55
2 1 5 1 0.2 0.25 | 82.69 13.02 82.71 13.05 | 82.71 13.05
20 1 5 1 0.2 0.25| 59.82 37.15 59.42 3753 | 60.49 36.41
2 1 1 1 0.2 0.5 | 75.91 16.08 75.58 16.47 | 75.77  16.26
20 1 1 1 0.2 0.5 | 26.46 70.72 26.48 70.74 | 29.78 67.08
2 1 5 1 0.2 0.5 | 82.26 9.08 82.25  9.10 | 82.25 9.10
20 1 5 1 0.2 0.5 | 57.79 36.19 57.54 36.41 | 58.78  35.04

In addition to these observations, we find that when our performance decreases under a small lead
time [y, it also decreases for the OV'S model. Even in this latter case, our model leads to a higher
performance compared to OV'S. We observe similar performance under the JO model setting, in
several cases, especially when the lead time of the central warehouse is high, while our model leads
to almost the same performance as the simulation. This negative effect of the central warehouse lead
time on the performance in both JO and OV'S models is due to their modeling approach. In fact, both
models rely on estimating a common waiting time for backordered demands at the central warehouse
to calculate the fractions of accepted or lost demand and they do not differentiate this waiting time
for the different demand levels experienced at the local warehouses. Therefore, considering the same
waiting time for all local warehouses has a negative impact on the performance, especially when the
lead time increases. This also increases the backorders, which affects the accepted or lost demand
fractions. In contrast, in our approach, we do not rely on the waiting time at the central warehouse,
and we are able to derive the accepted or lost demand fractions in a distinct way because we rely
on the backorder levels at the central warehouse, Bg. The backorder levels are obviously different
for non-identical local warehouses, which explains why the performance of JO and OV'S is poor in
this specific case. Our model is thus a good alternative to the two benchmark models, and at least
equivalent or better than the OV S and JO models in most cases.

In the case of non-identical local warehouses, for the comparison to the JO model, out of the 192
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Table 5: Comparison of our model, the Johansson and Olsson (2018) model, and the simulation under
asymmetric instances

Input parameters Simulation Our model JO Model
lo i I So S1 S A1 A2 w m("o) Ozz(oo) (51(00) 52(00) 051(00) az(uo) 51(00) 62(00) Ot1(%) (12(00) 51(00) (52(00)
20 1.1 1 1 1 01 02 0| 44.87 30.32 55.13 69.68 | 44.92 30.27 55.08 69.73 | 47.87 33.81 52.13 66.19
2 1 1 1 1 1 01 05 0] 86.18 60.64 13.82 39.36 | 86.39 57.24 13.61 42.76 | 86.56 57.61 13.44 42.39
2 5 1 1 2 1 01 05 0] 90.66 60.51 9.34 39.48 | 90.80 57.19 9.20 42.81 | 90.85 57.54 9.15  42.46
20 1.1 1 1 1 01 05 0| 4281 1444 57.19 85.56 | 43.04 14.37 56.95 85.63 | 4558 17.46 54.42 82.54
2 1 1 1 1 1 0.1 1 0| 84.56 42.27 15.44 57.73 | 85.39 38.77 14.61 61.22 | 88.32 11.17 11.68 55.31
2 5 1 1 2 1 01 1 0] 90.34 42.18 9.66 57.82 | 90.47 38.73 9.53 61.27 | 91.43 11.41 8.57 55.44
20 1.1 1 1 1 01 1 0| 4241 7.66 57.59 92.34 | 42.37 7.64 57.63 92.36 | 47.34 7.18 52.66 88.21
20 5 1 1 2 1 01 1 0] 62.10 7.30  37.90 92.70 | 62.07 726 3793 92.74 | 64.50 7.05 3550 89.59
2 1 1 5 1 1 01 1 0] 90.97 49.94 9.03 50.05 | 90.89  49.95 9.11 50.05| 90.91 0.00 9.09  50.00
2 5 1 5 2 1 01 1 0] 9222 4994 7.78 50.05 | 92.30 49.95 7.70 50.05| 9231 0.00 7.69  50.00
20 11 5 1 1 01 1 0| 67.13 21.88 32.87 7812 | 67.00 21.51 33.00 78.49 | 89.67 1.15 10.33 51.59
20 5 1 5 2 1 0.1 1 0| 80.76 21.14 19.24 78.86 | 80.46 20.82 19.54 79.18 | 91.68 1.27 8.32 51.77
20 11 1 1 1 01 02 025] 4410 29.29 54.83 69.26 | 44.15 29.13 54.73 69.38 | 47.11 32.68 51.69 65.65
20 5 1 1 2 1 01 02 025] 628 2792 36.13 70.67 | 62.93 27.88 36.09 70.69 | 64.38 30.82 34.66 67.60
2 1 1 1 1 1 01 05 025] 8.9 56.79 1225 3571 | 85.90 54.08 11.92 38.72 | 86.10 54.51 11.72 38.23
2 5 1 1 2 1 01 05 025] 9041 56.71 8.75 35.73 | 90.53 54.05 8.67 38.75 | 90.59 54.46 8.61 38.29
20 11 1 1 1 01 05 025] 4215 12.84 56.80 85.41 | 4227 12.85 56.66 85.44 | 44.74 1580 54.13 82.10
20 11 5 1 1 01 05 025| 6941 3538 2886 59.89 | 69.36 34.77 28.89 60.60 | 63.94 30.70 34.44 65.21
2 1 1 1 1 1 0.1 1 0.25| 8391 3542 13.95 5447 | 84.75 33.01 13.11 57.61 | 87.82 10.41 9.95 50.10
2 5 1 1 2 1 01 1 025| 89.71 3537 9.44 5454 | 90.14 3299 9.04 57.64| 91.16 10.53 8.05 50.20
20 11 1 1 1 01 1 0.25| 41.38 6.05 57.53 92.24 | 41.60 6.03 57.35 92.26 | 46.47 5.76 52.35 87.58
20 5 1 1 2 1 01 1 0.25| 61.29 5.73  37.69 92.64 | 61.39 5.73 37.63 92.64 | 63.79 5.63 3524 89.08
2 1 1 5 1 1 01 1 0.25| 90.75 44.49 6.96 42.87 | 90.69 44.42 7.01 4296 | 90.73  0.00 6.98 42.86
2 5 1 5 2 1 01 1 0.25| 92.28 4447  7.02 4290 | 92.13 44.42 712 4296 | 92.14  0.00 7.10 42.86
20 1.1 5 1 1 01 1 025 6531 17.35 33.07 77.70 | 6545 17.15 3290 77.98 | 89.26 1.10 8.48 45.07
20 5 1 5 2 1 01 1 025| 7981 16.77 19.20 7847 | 79.58 16.61 19.47 7868 | 91.44 1.14 7.79 45.16
20 1.1 1 1 1 01 02 05| 4346 28.10 54.35 68.90 | 43.40 28.03 54.38 69.03 | 46.37 31.59 51.25 65.09
20 5 1 1 2 1 01 02 05| 6255 2695 3549 70.29 | 6228 26.84 35.77 70.33| 63.74 29.80 34.34 67.07
20 1 1 1 1 1 01 05 05| 41.54 11.54 56.41 85.21 | 41.51 11.49 56.36 85.24 | 43.91 14.32 53.84 81.62
20 5 11 2 1 01 05 05| 61.24 1092 36.74 8594 | 61.13 1095 3691 8594 | 62.30 13.33 3576 82.88
20 11 5 1 1 01 05 05| 67.86 31.85 28.66 59.13| 67.88 31.47 28.64 59.59 | 55.73 21.26 41.41 72.70
20 5 15 2 1 01 05 05| 8101 3090 17.17 60.34 | 80.69 30.67 17.47 60.62 | 77.12 27.47 21.01 64.73
2 1 1 1 1 1 01 1 05| 8357 29.79 1229 50.88 | 84.08 2830 11.61 53.35| 87.28 9.91 8.24 43.64
2 5 1 1 2 1 01 1 05| 89.62 29.73 8.76 50.93 | 89.81 28.29 8.57 53.36 | 90.88 9.95 7.56 43.68
20 1.1 1 1 1 01 1 05| 40.83 4.73 5711 92.14 | 40.84 4.76 57.06 92.16 | 45.61 4.62 52.05 86.81
20 5 1 1 2 1 01 1 05| 60.63 4.54 3736 9252 | 60.71 4.53 3732 92,53 | 63.09 4.51 3498 88.46
2 1 1 5 1 1 01 1 05| 90.59 4047  4.72 3337 | 90.53 40.29  4.82 33.57 | 90.59  0.00 4.76  33.33
2 5 1 5 2 1 01 1 05| 92.00 40.41 6.56 33.37 | 91.96 40.30 6.54 33.56 | 91.98  0.00 6.53  33.33
20 11 5 1 1 01 1 05| 6383 13.75 3292 7731 | 6390 13.66 32.82 7748 | 88.80 1.09 6.65 36.57
20 5 1 5 2 1 01 1 05| 7895 13.31 19.18 78.02| 78.69 13.23 1941 7818 | 91.19 1.06 7.29 36.44
20 11 1 1 1 01 02 0.75]| 42,57 27.08 54.09 68.56 | 42.66 26.97 54.02 68.66 | 45.64 30.55 50.80 64.50
20 5 11 2 1 01 02 075] 61.71 2589 35.34 69.91 | 61.63 2585 3545 69.97 | 63.11 28.82 34.02 66.51
20 11 1 1 1 01 05 0.75] 40.50 10.27 56.26 85.02 | 40.76 10.28 56.06 85.05 | 43.07 13.00 53.58 81.09
20 5 1 1 2 1 01 05 0.75] 60.43 9.78 36.55 85.75 | 60.46 9.80 36.60 85.75| 61.59 12.10 3552 82.40
20 11 5 1 1 01 05 0.75| 66.60 28.61 2831 58.36 | 66.40 28.47 2843 58.58 | 49.84 15.32 46.28 77.71
20 5 1 5 2 1 01 05 075| 79.80 27.79 1733 59.49 | 79.84 27.76 17.39 59.61 | 71.72 18.36 25.36 73.28
2 1 1 1 1 1 01 1 0.75| 83.03 25.09 10.34 46.84 | 83.38 2444 10.13 48.27 | 86.67 9.68 6.58 35.46
2 5 1 1 2 1 01 1 0.75| 89.30 25.04 8.27 46.83 | 89.46 24.44 8.12 48.26 | 90.57 9.65 7.12 35.42
20 1 1 1 1 1 0.1 1 0.75 | 40.10 3.75  56.79 92.05 | 40.10 3.76  56.77  92.05 | 44.74 3.72 51.78 85.81
20 5 1 1 2 1 01 1 0.75 | 60.10 3.68 36.90 92.44 | 60.04 3.58 37.02 9243 | 62.38 3.62 34.74 87.65
2 1 1 5 1 1 01 1 075 90.29 37.72 2.50 20.11 | 90.40 37.51 2.56 20.58 | 90.51  0.00 2.44  20.00
2 5 1 5 2 1 01 1 075 | 91.73 37.76 6.03 20.11 | 91.80 37.52 599 20.57 | 91.84 0.00 5.96  20.00
20 1.1 5 1 1 01 1 0.75| 6230 10.88 32.78 76.94| 62.39 10.87 32.76 76.99 | 88.22 1.14 4.91 25.10
20 5 1 5 2 1 01 1 075 | 77.79 10.56 19.27 77.64 | 77.81 10.53 19.34 77.70 | 90.91 1.01 6.84 24.48
20 5 5 5 2 2 01 1 3.75| 70.33 1.00 15.80 73.94 | 70.58 1.03 15.76 73.98 | 58.59 0.49 27.06 84.63

cases, Table 5 shows that there are about 27% of cases (i.e., 52 instances) where the JO model shows
a difference in «aj, j = 1,2 or in 6;, j = 1,2 higher than 3% compared to the simulation (cases marked
in bold font), whereas in our model, only 4% (i.e., 8 instances) of cases have a difference greater than
3%. Note that under JO model, the difference to the simulation can reach 53% for the fraction of
demand lost. Similarly, when comparing our model with that of OV'S, the results in Table 6 reveal
that for the OVS’s model, about 50% of the cases (i.e., 28 instances) have a difference in o, j = 1,2
or in §;, j = 1,2 higher than 3%, whereas in our model, we find only 8 cases where the difference
exceeds 3%. This demonstrates that our approximations of a; and J; are very close to the simulation

model. It should be noted however that our model and OV S underestimate the fraction of demand
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Table 6: Comparison of our model, Ozkan et al. (2015)’s model, and the simulation under asymmetric

instances
Input parameters Simulation Model Our Model OV S model
lh it I So i S1 M A]a(h) ) 0% 0% [a(®) a:(%) 60(%) 6(%) | (%) a2(%) 6(%) 6(%)
2 1 1 1 1 1 0.1 0.2] 8792 79.11 1048 17.94| 8748 78.04 7.38 12.52 | 87.35 77.53 7.52 13.04
2 1 5 1 1 2 0.1 02| 87.85 7846 10.56 15.26 | 87.46 77.85 7.40 10.85 | 87.20 77.78 7.67 10.93
2 5 1 1 2 1 0.1 0.2] 91.33 79.06 6.29 17.99 | 91.17 78.02 449 12.57 | 91.18 77.29 4.48 13.32
2 5 5 1 2 2 01 02 91.35 7841 6.29 1532 | 91.16 77.84 450 10.89 | 91.18 77.76 449 10.97
20 1 1 1 1 1 01 0.2 44.85 30.32 55.11 69.60 | 44.70 30.02 55.04 69.50 | 53.54 36.56 46.02 62.65
20 1 5 1 1 2 01 02| 4290 4227 57.06 57.58 | 42.83 42.16 56.98 57.43 | 47.48 46.93 52.20 52.38
20 5 1 1 2 1 0.1 0.2] 6357 2898 36.37 70.96| 63.48 28.76 36.34 70.86 | 68.52 30.82 31.18 68.54
20 5 5 1 2 2 01 02] 6214 41.31 37.82 5857 | 62.12 41.18 37.76 5850 | 65.51 43.58 34.28 55.87
20 1 1 5 1 1 01 02| 7809 66.89 19.27 28.08| 77.20 65.40 18.69 27.06 | 77.67 63.49 18.15 28.84
20 1 5 5 1 2 01 02| 77.01 70.62 2047 24.10| 7591 69.19 20.20 22.25| 73.78 68.75 2232 22.65
20 5 1 5 2 1 0.1 0.2] 8611 6584 12.09 29.31 | 85.52 64.43 11.12 28.29 | 86.12 58.74 10.51 33.96
2 1 1 1 1 1 01 05| 86.14 57.98 12,58 37.07 | 85.71 55.82 10.99 32.09 | 85.84 54.81 10.83 33.01
2 1 5 1 1 2 01 05| 8.17 50.04 1250 38.16| 85.80 4896 10.83 33.56 | 85.55 48.73 11.08 33.78
2 5 1 1 2 1 0.1 05| 90.72 57.92 7.48 37.16 | 90.58  55.79 6.64 32.17 | 90.62 54.03 6.59 33.87
2 5 5 1 2 2 01 05| 90.77 49.99 7.40 3822 | 90.61 48.95 6.55 33.63 | 90.63 48.67 6.53 33.90
20 1 1 1 1 1 01 05| 4297 14.35 57.01 85.57 | 42.87 14.18 57.05 85.52 | 54.60 19.39 45.21 79.94
20 1 5 1 1 2 01 05| 41.22 19.85 5877 80.00 | 41.16 19.75 58.78 79.96 | 48.11 23.50 51.76 75.86
20 5 1 1 2 1 01 05| 6247 13.66 37.50 86.28 | 62.39 13.53 37.55 86.23 | 68.61 15.17 31.26 84.26
20 5 5 1 2 2 01 05| 61.11 1933 38.87 80.55 | 61.07 19.25 38.89 80.53 | 65.60 21.09 34.32 78.39
20 1 1 5 1 1 01 05| 69.39 3709 29.84 59.67 | 68.61 3530 29.88 59.16 | 73.12 35.23 25.09 58.18
20 5 1 5 2 1 01 05| 8181 36.06 17.52 60.88 | 81.31 34.38 17.48 60.40 | 83.29 30.07 15.28 63.72
2 5 1 1 2 1 0.1 1| 90.28 38.75 8.46 55.54 | 90.13  36.66 8.22 52.60 | 90.21 34.88 8.08  54.04
20 1 1 1 1 1 0.1 1] 42.24 7.59 57.75 9234 | 42.23 7.51 57.74 92.32 | 55.29 11.00 44.62 88.49
20 1 5 1 1 2 0.1 1] 40.72 10.41 59.27 89.46 | 40.66 10.37 59.32 89.46 | 48.45 12.74 51.49 86.80
20 5 1 1 2 1 01 1| 62.00 7.23 3798 92.72 | 62.00 7.16 37.98 92.70 | 68.70 8.24 31.23 91.32
20 5 5 1 2 2 01 1| 60.74 10.13 39.25 89.77 | 60.74 10.10 39.24 89.76 | 65.68 11.26 34.27 88.36
20 1 1 5 1 1 0.1 1] 65.56 20.31 34.13 7766 | 65.06 19.19 34.33 7746 | 71.70 20.22 27.44 75.05
20 5 1 5 2 1 01 1| 7987 19.66 19.79 7845 | 79.57 18.62 19.95 7826 | 82.23 16.45 17.07 79.03

lost for all instances considered. This underestimation is much larger in the OV'S model than in ours.
This can be explained by an overestimation of the fraction of the demand satisfied from the central
warehouse 3 (since 3; = 1 — oj — d;). This overestimation is due to the Poisson assumption arrival
for the orders in the pipeline between the central warehouse and local warehouse. In fact, such an
assumption is valid if the central warehouse has an infinite stock, which is not always true, making
the arrival rate less than A; and consequently a higher ;. Moreover, our model outperforms the
OV'S model in estimating the fraction of demand satisfied with stock on hand. Hence, our model
offers a better alternative to the two models developed in the literature, and the results show that our
approximations are very close to the simulation.

To conclude the numerical investigation, we conduct an experiment where we consider an inventory
system composed of two local warehouses with stochastic lead times at the central warehouse. To
analyze the sensitivity to the lead time distribution, we focus on the case where the waiting time
threshold is less than the local warehouse lead time. We assume that the central warehouse lead time
follows an Erlang distribution with a shape parameter k£ and a scale parameter k/l;. Erlangian lead
times have been considered in the inventory literature (Johansen, 2005). The Erlang distribution is
characterized with a high modelling flexibility, since for k& = 1, it is equivalent to the exponential
distribution and when k increases the distribution becomes less variable, and it tends toward the
deterministic distribution for very high values of k. For the purpose of the numerical analysis, we
consider a shape parameter k € {2,4,8,16,32,64,128,256,512}. For the other parameters, we use

the same values of the 192 instances presented earlier in this paper, i.e., A\; = 0.1, Ay € {0.2,0.5,1} ,
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{lh,12} € {1,5}, lp € {2,20} and w € {0.25,50,0.75} x min(l1,l2). This gives a total of 1728 instances.
The percent difference of the performance measures obtained with our model and the simulation are
reported in Table 7. A negative value means that our model underestimates the result obtained with
the simulation. We report for each value of k£, the minimum, the maximum and the average value
of the percent difference of a; and J; (j = 1,2) obtained over the 192 instances. From Table 7, it
is clear that our model works very well for a stochastic central warehouse lead time. The error on
the percent difference of o; and ¢; with respect to simulation does not exceed 3.5%, regardless of the
shape parameter k of the Erlang distribution of the lead time. Thus, the results obtained under a

deterministic lead time are also valid for a stochastic lead time.

Table 7: percent difference of the performance obtained with our model and the simulation under
Erlang distributed lead times with shape k

a asz 01 2

k| min (%) average (%) max (%) | min (%) average (%) max (%) | min (%) average (%) max (%) | min (%) average (%) max (%)
2 -0.43 0.0T 0.57 -0.21 0.27 1.79 -0.57 -0.02 0.47 -1.79 -0.37 0.1T
4 -0.56 0.01 0.61 -0.32 0.31 2.16 -0.64 -0.02 0.49 -2.16 -0.44 0.11
8 -0.56 0.01 0.82 -0.39 0.34 2.57 -0.78 -0.01 0.54 -2.57 -0.48 0.11
16 -0.59 0.02 0.87 -0.42 0.38 2.90 -0.87 -0.03 0.58 -2.90 -0.52 0.11
32 -0.72 0.02 1.09 -0.40 0.40 3.12 -1.09 -0.03 0.74 -3.12 -0.55 0.11
64 -0.72 0.03 1.02 -0.39 0.42 3.31 -1.02 -0.03 0.72 -3.31 0.58 0.11
128 -0.69 0.04 1.03 0.39 0.43 3.42 -1.03 -0.04 0.70 -3.42 0.60 0.11
256 -0.77 0.04 1.11 0.39 0.43 3.44 -1.10 -0.05 0.77 -3.44 0.61 0.11
512 -0.79 0.05 1.04 0.34 0.45 3.44 -1.04 -0.05 0.76 -3.44 0.61 0.11

The results in Table 7 show that our model performs very well compared to the simulation model in
most of the cases. The average error on the percent difference of a; and J; increases as the variability of
the lead time decreases and these deviations over the 1728 cases does not exceed 1%. For the maximum
and minimum observed values, there are few cases where the absolute deviation value reaches 3.5%.

This shows that the approximation proposed in our model is of a high quality.

6 Conclusion

We have provided an exact analysis of a two-echelon inventory with general lead times and Poisson
demand with network lost sales in the case of waiting time at the local warehouse equal to the lead
time between the central and local warehouses. We have found exact expressions for the steady-
state distribution of the number of orders in the pipeline to the central warehouse, using this result
to find the fraction of demand satisfied directly from local warehouses and the expected number of
backorders and on-hand inventory at each local warehouse. We have shown that the steady-state
probability of having n orders in the pipeline to the central warehouse is insensitive to the lead time
distribution, except through its mean, implying that the expression of the steady-state probability
derived in Alvarez and van der Heijden (2014) under constant lead times is exact for any lead time
distribution.

When the waiting time is less than the lead time between the central and local warehouse, we
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derive an approximate expression for the different performance measures and show that our models
are a good alternative to the two benchmark models in the literature. Our results fit within the
broader literature using stochastic network representations to study complex inventory systems. We
have used different techniques from this literature to illustrate the course of the analyses.

Our numerical results show that our model’s performance measures are very close to the simulation
in the majority of instances considered. In particular, when waiting time at the local warehouse is
less than the lead time from the central warehouse, our model outperforms the benchmark models in
most cases.

The findings of this work provide some insights to managers into the impact of the lead times’
uncertainty on inventory systems under lost sales. Since there is an empirical evidence that replen-
ishment lead times are uncertain in real inventory systems due to supply and transportation issues
(Boute et al., 2007; Jaksi¢ et al., 2011; Babai et al., 2022), managers can use our models and perfor-
mance evaluation solutions with any lead time distribution. Moreover, most of the findings of this
paper show that, regardless of the relationship between the waiting time threshold and the lead time,
the inventory levels are not very sensitive to the lead time’s uncertainty and therefore, managers can
rely on the deterministic assumption to set the base stock level. Finally, in the particular case where
lead times at local warehouses are less than the waiting time threshold, managers should benefit from
our proposed approximation solutions, especially when the lead times differ much between local ware-
houses (i.e. the case of asymmetric inventories at the local warehouses). In fact, we show that in this
case the performance can be improved considerably and the benefit can reach 53% for the fraction of
demand lost compared to solutions provided in the literature.

The analysis in this paper has been performed under the assumption of Poisson demand. It would
be interesting to extend this analysis to the case of compound Poisson demand, since demand for
spare parts is often characterized by lumpiness that is better modeled with a compound Poisson
process rather than a Poisson process (Lengu et al., 2014; Turrini and Meissner, 2019). The steady-
state probability of the number of orders in the pipeline to the central warehouse is still valid under
compound Poisson demand. The challenge, however, comes from finding the steady-state probability of
the backorders at the central warehouse. This steady-state probability is no longer a hypergeometric
distribution because demand arrives in batches. This is therefore an interesting avenue for future

research.
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7 Appendix

7.1 Appendix 1: Proof of Proposition 1

Proof. An order from local warehouse j,j € {1,..., J} cannot be admitted in the pipeline if the total
number of backorders already outstanding reaches S;. As the maximum number of outstanding orders
in the pipeline of the central warehouse that are associated with local warehouse j € {1, ..., J} cannot
exceed So + S, the number of orders in the pipeline to the central warehouse can be viewed as a
queue shared by J customer classes. Each class arrives according to a Poisson process with a rate A;,
je{l1,...,J}. If we let each warehouse correspond to a class, than one way to observe the system is
to say that each class j has S; dedicated servers and shares with all other classes the remaining Sp
servers. Therefore, in Theorem 1 of Kaufman (1981), the steady-state probability of being in state
n € S is given by:

Jim BV = na, Na 0 =m0 [] X900 pes, (22)

i=1 i

where C' is the normalizing constant. An example of the transition in the state space S in the case
of two local warehouses where L follows an exponential distribution with mean Iy = 1/ is given in

Figure 5

N; (Pipeline due to warchouse 2)

Ny =Sp+ S,

% S md N (Pipeline due to warehouse 1)
Ny =50+ 51

Figure 5: Markov chain transition between states of S under two local warehouses with Sp = 1; 51 =1
and Sy =2

Remaining to be found is the conditional probability of having b;,j € {1, ..., J} in a given pipeline
n € S(n),n > Sp. To do so, we consider for simplicity two local warehouses and assume that the
system state is (n1,ng),n1 + ng > Sp, in the steady-state, the probability of server 1 processing class

1is ny1/(n1 + n2) and class 2 ny/(n; + n2). The allocation of server 1 will influence the type of class
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that the subsequent servers will handle. For example, if server 1 processes class 1, server 2 will process
class 1 with probability (ny — 1)/(n1 + ne — 1) and class 2 with probability na/(n1 + ns — 1), and so
forth, up to server nj +mno — Sp. This is a form of sampling without replacement. The probability that
exactly b; backorders of a particular type are in service when there are n; and ny orders in the central
warehouse pipeline is given by the probability mass function of the hypergeometric distribution. Note
that this approach is similar to the binomial desegregation introduced in Simon (1971). Furthermore,
a hypergeometric desegregation of backorders is also reported in Boucherie et al. (2018) modeling
a two-echelon spare parts network with lateral and emergency shipment by a queuing network with
overflow by-passes similar to Song and Zipkin (2009). They observe the conditional probability that
the number of backorders at the central warehouse when the local warehouse is out of stock follows a
hypergeometric distribution. Moreover, a similar result is found in multi-class discrete-time queuing
systems under the FCFS service discipline and in M /M /s with time varying arrival and service rates
(see, De Clercq et al. (2013) and Ingolfsson (2005)). Finally, Lefevre (1982) finds that the number
of backorders in a two echelon inventory system with a state dependent-arrival rate also forms a

hypergeometric distribution.
Using the multivariate hypergeometric distribution, we can write

GG Gy)
P{bln} = lim n»{B},(t) =by,..., BI() =by | Ny(t) = n1,. .., Ny(t) = nJ} = L Z’? J beQ, neSn) (23)
S T n
(Z}Izl ".7')
Therefore, the steady-state joint probability is given by
P{By = b, N =n} ::tgn;c]P{Bé(t):bl ,,,,, BI() =by, Ni(t) = n1, ..., NJ(z):n,,},
so that
niy(m2) (T J eyng
W(Bgzb,N:n):P{Bé:bl ,,,,, B, Ny =n1,..., NJ:nJ} (bl)(bv‘i) <bJ)cH (A"lov)
(Ejzl "j) i=1 g
Ti1b
which completes the proof. |

7.2 Appendix 2: Proof of Corollary 1

Proof. Let n = 37

j—1mnj and n — So = Zj:l b;, thenZ;—]:1 n; —b; = Sp, so with Proposition 1, we
have

Qn) = b P{Bg =b1,..., By =by,N1=n1,..., Ny =n;}, (24)
Tf_ibj=n—S0,5]_; nj—b;=So
_ o Soin! T Nlo) L (Alg)™i b .
= . > -1 7" (25)
(So+n)!t 7 i=1 bi! —1 (ng —b)!
Sy bj=n—80,5/_1nj—bj=S0 "’ i
_ o Sotn! T (Ailo) L (Ailg)™i P
T T (Sotn)! 2 Ul b;! P 2 Ul (ni —bi)!
Zj=y bj=n—"50, "= Zj=1 mj—bj=50"T
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J o (lo)miTbi_ (Aglg)S0
But ZZ;’:lnjfbj:So | bt T therefore,

Soln!  (Aglg)S0

Q) = C(So +mn)!  So!

T (A;lo)bi
b H( Oy bay. by) € Q(n). (26)

ZJJ:1 bj=n="50,"=

-

for (b1, ...,bs) such that Y7, b; < 37, S; and b; < S;.

Note that Equations 24 and 26 link the number of backorders, By, to the number of orders in the
pipeline to the central warehouse n. In addition to the steady-state probability @Q(n),n > 0, these
equations also provide the number of backorders Bg in the pipeline to the central warehouse. The
convolution of all Bg,j =1,...,J is sufficient to find Q(n),n > 0, independently of the number of

orders in the pipeline n. [ ]

7.3 Appendix 3: Proof of Corollary 2

Proof. We wish to compute the steady-state probability of having n backorders at the central ware-
house using the method of Alvarez and van der Heijden (2014). To do so, we first need to com-
pute the steady-state probability of the Markov chain plotted in their Figure 2. We denote with
Bg, j=1,....J, the random variables that represent the number of backorders at the central ware-

house that are associated with local warehouse j in steady-state. Alvarez and van der Heijden (2014)

assume that the vector (Bé, RN B(‘)] ) has a truncated multinomial distribution with mass parameter n
and probability vector (i—é, ceey i{—g) Let the vector (Si,...,S7) be a set of integers representing the

maximum number of backorders associated with local warehouse j,j =1,...,J.
According to Alvarez and van der Heijden (2014), the steady-state probability Q(n) of backorders
is

(A%Jﬁ, n < So,
Q(n) = (27)

- I1;2¢ M(w), n > So,

where

Ao, n < Sp
M(n) = . (28)
STo1 A (lfP{B{J:SJmeQ}), n> So

To compute Q(n),n > Sp, we need to express P {Bg = Sjln — So,n > SO} in a closed form. Hence-

forth, we express this probability in a simpler form. Since (B},..., By) has the multinomial distribu-
tion with mass parameter n and probability vector (i—é, ceey %)7 Alvarez and van der Heijden (2014)
show that

30



]P’{Bé Sml,...,Bé<xj,.,.,B(']7§1J|n—SO} ]P{Bégxl,.u,Bégm_j—l,,..,Bb]ng\n—So}

P{Bl =a;ln— Sy} = - (29)
{ / O} P{Bégsl,m,Bg)gsj,“.,Bbfgsﬂn—so} ]P{B(%SSL,,,H,B(])SSJ-,”.,Bb]SSJ‘TL—S(J}
and we can thus write
7 . S o NE{BS <, By <8, -1, B] SIJ\nfso}
M) =S 2 (1-p{Bl =5, |n-5}) =2 (30)
J; J( { o= }) IP{Bg)gsl,,...,ngsj BJ<SJ\n75‘o}

It is however complex to use this formula to compute Q(n) for very high J. We next simplify the

expression @Q(n). From Frey (2009), we can write:

1 2 J & & A N AAY
P’{Bugzl,Bong,,..,BUSthL—SO}:(TL—SO)!Z S H_—J(E) I(EJ {j=n—S0)’ (31)
i1=0i5=0 ij=0j=1"" g=1"J 0

where

1, 23] 145 =n—2"5
1(23-]:1 ij:’rl*So) = (32)

0, otherwise

is the indicator function. Since n — Sy = Zf]

) ] .
iopdjand Ao = D771 Ai, we can write

S1 S

)\OP{BéSsly-»-ngS5j7---736]§5J|"—50} (n — So)! Z Z ZHZ 1 (,\0) jl(Zf:ﬂj:n—So) (33)

=01i2=0 i;=0j=

and )\OIP’{B& <S,.. .,Bg <8j,...,BJ < 8yln— So} can be simplified to

S1 Sy J i
AP{Bl < Sy,....,Bl < S, ...,B <S;n—S5 — So)! ( ) 1 34
0 { 0 <51 o =5 0o <Syln 0} (n — So)! 71201220 UZUJHl ;! \X0 (2= ij=n—50) G4

51 S2 S5 J
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“Xon—Se-1DIS S S —2 () (2 iy=neso)
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S1 Sz S5 J

ST e /A ij
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J Sk 1 Ab [ Ak \ik—1 51 Sy J 1/
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i1=0 i7=0j=1,j#k "3’ J

SCCRE BRIl (b (DRl Do o | SRt ) KAV |

i1=0  iy=0j=1,j#k "I

J
1 j J
:Z)\J]P’{BOgzl,.,.,Bg,gS_,vfl,,.u,BO Szﬂ'nfsnfl}.
i=1

Therefore, for n > Sy, we have

n So n—1 n n—1
( 0) H M) [I M) = (X0)0 (Lo) I ™

1
y=50 (n)! y=50

Q()—
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But Hy 5o M (y) = Xo Hy 5911 M (y), allowing us to simplify M(n),n > Sp to

/\UP’{BO<51 AAAAA Bl < Sj,..., B <S]\n750+1}
M(n) =
[P{Blgsl ..... B) < Sj, ..., BJ<SJ\n750}
Then
R nI:[l ) N AOP{ngsl,.“,ngsJ,m B <SJ\2} >\0]P’{30<Sl ,,,,, ngsj,u.,B({gs”a}
0 Y = 0 - -
y=So+1 [P{B(l)gsl,..,,ngsj ,,,,, BJ<sJ\1} ]P’{B1<Sl ..... BJ<Sj,..., ngsJ|2}
A 111’{131 <Ss B} <S; Bl <s A"’SOIP B} < Bl <58, B <
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X n
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Therefore,
S1 Sz
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IS_I (y) =( )! (Ele 1,j:n—50)
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7.4 Appendix 2: Comparison under symmetric instances for w; > 0.75
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Highlights

We consider a two-echelon inventory system facing a Poisson demand
We analyze the inventory system in the case of network lost sales

We model the system using a queuing network representation

We generalize the findings of earlier research for general lead times

We propose more accurate solutions than those proposed in earlier research



