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Abstract

Inventory systems are largely analyzed in the literature under the common assumption of back-

orders due to the complexity of lost sales. In this paper, we consider a two-echelon inventory system

composed of a central warehouse and multiple local warehouses subject to lost sales. The demand

faced by each local warehouse is a Poisson process and the stock in the warehouses is controlled

according to a continuous review base-stock policy. This system has been analyzed in the literature

under deterministic or exponential lead-times at the central warehouse, deterministic lead times at

the local warehouses and approximate performance evaluations have been proposed for two cases:

(1) the demand is lost if no items are available in the local warehouse, the central warehouse, or

in the pipeline in between (i.e., a waiting time threshold for incoming demand equal to the local

warehouse lead time), and (2) when there is a waiting time threshold less than the local warehouse

lead time. Based on a queuing network representation of the system, we extend the performance

analysis of the system in the first case by considering generally distributed lead times both at the

central and local warehouses and by providing the exact closed-form expressions for the inventory

performance measures. In the second case, we provide new approximate solutions under generally

distributed lead times at the central warehouse. We numerically show that our exact and approxi-

mate solutions perform equally or better than those presented in the literature under deterministic

lead times.

Keywords: Inventory, Lost sales, Queueing network, Emergency orders.
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1 Introduction and motivation
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nplanned downtime of a capital asset, such as an MRI-scanner, aircraft, or production line, ha

consequences for the users and owners of such assets. The quickest way to restore an asset

tional condition is to replace the failed component with a spare part. The inventory system

istributes spare parts to the different locations of assets is essential to mitigate the effects o

nned downtime. Unfortunately, spare parts are often expensive, such that holding inventory

costly (Noorwali et al., 2023). When a stock-out causes continued downtime, the consequence

ten severe in terms of the opportunity costs. It is therefore crucial to design an inventory system

an trade-off the cost of downtime due to inventory shortages with the cost of holding inventorie

iven the high cost of downtime, in multi-echelon inventory systems, advanced technologies, suc

nected sensors and information systems, can be used to track orders in real time between

l warehouse and local warehouses to reduce the downtime and costs. For instance, when lead

are known and constant, under a centralized inventory system, information on the remainin

until an order arrives at a local warehouse can be used to better manage the flow of order

etermine the stock levels. Depending on the remaining lead time, it may be possible to plac

ency orders to reduce critical machine downtime. Moreover, under a decentralized inventor

, the customers at a local warehouse may not be able to wait more than the imposed maximum

within which it should be delivered, meaning emergency orders to an external supplier shoul

ced to quickly react to the system downtime. This maximum acceptable waiting time can b

ined through service agreements between the central warehouse and local warehouses.

his context motivates our study that considers a two-echelon inventory system composed o

tral warehouse and multiple local warehouses in which each local warehouse faces stochast

nd. Demand that arrives at a local warehouse must be served either immediately from stock

hin a waiting time threshold by items in the pipeline between the central and local warehous

nd is lost when this cannot be done. We analyze this system by considering a stochastic lead tim

central warehouse and deterministic or stochastic lead times at local warehouses, depending o

stem settings. In fact, our model only provides an exact solution in the case where wj = lj an

proximation in the case where wj < lj .

the last decades, a body of literature has analyzed multi-echelon inventory systems unde

astic demand, and an overview of the literature is provided by Bijvank et al. (2014). However, th

ture dealing with multi-echelon inventory systems under lost sales is relatively scarce compare

entory systems under backorders since the METRIC model of Sherbrooke (1968) has bee

ped. The most relevant studies to our work are those of Alvarez and van der Heijden (2014
2
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and Johansson and Olsson (2018). In particular, Alvarez and van der Heijden (2014) analyze a two-

echelon inventory system where demand is lost if there is no stock available at the local warehouse,
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l warehouse, and the pipeline in between. They assume a constant lead time at the loca

ouse and an exponentially distributed lead time at the central warehouse. Based on the ag

products in the pipeline or in stock, they provide an approximate performance evaluation o

stem when the waiting time threshold is equal to the local warehouse lead time. We refer t

ase as “network lost sales”, which differs from the classic case where lost sales occur if ther

stock at the local warehouse (i.e., waiting time threshold equal to zero) analyzed in Andersso

elchiors (2001). The same inventory system is analyzed in Özkan et al. (2015) where lost sale

if there is no stock at the local warehouse and no possible emergency supply from the centra

ouse. More recently, Johansson and Olsson (2018) analyzed a two-echelon inventory system

demand is Poisson distributed and all lead times in the inventory system are constant. The

er the case of a waiting time threshold less than or equal to the local warehouse lead time. The

se an approximate solution based on the derivation of the age of products in the pipeline o

ck. We note that these studies provide an approximate analysis of the inventory system unde

inistic lead times at the local warehouses and deterministic or exponential lead times at th

l warehouse. The objective of our paper is (1) to extend the findings of Alvarez and van de

en (2014) to generally distributed lead times at both the central and the local warehouses wit

act performance evaluation , and (2) to extend the findings of Johansson and Olsson (2018) t

ally distributed lead times at the central warehouse and improve the approximation accurac

rticular, we consider a two-echelon performance evaluation of a two-echelon inventory system

network lost sales where the inventory in the warehouses is controlled according to a continuou

base-stock policy. The demand faced by each local warehouse is Poisson distributed. We mod

stem as a queuing network and analyze its performance in terms of four performance measure

ll rate, the expected stock on-hand, the expected backorders in the local warehouses, and th

ted waiting time. Hence, the contributions of this paper are twofold.

We generalize the findings of Alvarez and van der Heijden (2014) by considering generally di

tributed lead times at both the central and the local warehouses. Moreover, we provide exac

closed-form expressions for the evaluation of the inventory system in terms of the fill-rate, th

fraction of demand lost, the mean stock on-hand, and the mean waiting time. We observe tha

this inventory system can be recast as a special type of queueing network that admits a produc

form solution. We also prove that the steady-state probability distribution of the number o

orders in the inventory system depends on the lead time distribution only through its mean
3
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showing that the steady-state probabilities computed by the method of Alvarez and van der

Heijden (2014) can also be used to obtain closed-form expressions for the performance measures.
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We model the inventory system considered by Johansson and Olsson (2018), as a network o

loss queues (or tandem queues) with state-dependent arrival rates and generally distribute

lead times at the central warehouse. We propose new approximate solutions that are closer t

the exact simulation model (developed in Rockwell Arena software) compared to Johansson an

Olsson (2018) and Özkan et al. (2015) under deterministic lead times. The relevance for industr

of this lost sales case is highlighted in Howard et al. (2015) using the example of the Volvo

spare parts inventory system.

he remainder of the paper is organized as follows. Section 2 provides an overview of the literatur

g with multi-echelon inventory systems under a lost sales assumption. We describe in Sectio

inventory system we consider and the underlying assumptions, presenting the system modellin

queuing networks in the threshold waiting time cases of being equal to or less than the loca

ouse lead times. In Section 4, we provide the performance analysis and the expressions for th

mance measures in both threshold waiting time cases. Section 5 is dedicated to the numerica

igation where we assess the performance of our solutions compared to those proposed in th

ture. The conclusions and avenues for future research are presented in Section 6.

iterature review

is a considerable body of literature dealing with multi-echelon inventory models since the 1960

iterature can be divided into two streams depending on how the system reacts to excess demand

ackorders or lost sales. The analysis of multi-echelon inventory systems in the case of backorder

ttracted most attention. This literature stream started with the seminal work of Sherbrook

) and the well-known METRIC-model, with many of the results consolidated in books e.g

rooke (2004), Muckstadt (2005), and Van Houtum and Kranenburg (2015). Exact performanc

tion of a system under a base-stock policy is possible with analyses using service measure

as truncated waiting times, e.g., Dreyfuss and Giat (2017), Dreyfuss and Giat (2018), Topa

(2017) and Dreyfuss and Giat (2019). The Poisson demand assumption, commonly used in th

RIC-based literature, has been relaxed, for example in Costantino et al. (2018) by considering

Inflated Poisson distribution to deal with irregular demand patterns.

owever, the literature dealing with multi-echelon inventory models under lost sales is relativel

. The early study of Nahmias and Smith (1994) analyzes a two-echelon inventory system com
4
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posed of a central warehouse and multiple retailers where the stock is controlled according to a periodic

order-up-to-level policy. They assume the lead times in the system are equal to zero, and demand at
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tailer is lost when there is no stock in this echelon. Andersson and Melchiors (2001) extend th

sis with the same inventory system under constant lead times and a base-stock inventory contro

. The authors propose an approximate solution to derive the cost in each echelon and the tota

f the system. An overview of the literature dealing with multi-echelon inventory systems unde

ales is provided in Bijvank and Vis (2011).

ore recently, the performance evaluation of multi-echelon inventory systems under lost sales ha

ted the attention of Alvarez and van der Heijden (2014), Özkan et al. (2015), and Johansso

lsson (2018), studies that are highly relevant to our paper. Alvarez and van der Heijden (2014

er a two-echelon inventory system with a central warehouse and multiple local warehouse

uthors assume that demand is lost if there is no stock available at the local warehouse, centra

ouse, and the pipeline in between. The lead time distribution is assumed deterministic at th

warehouse, and exponential at the central warehouse. Based on the age of the products i

ipeline or in stock, they provide an approximate performance evaluation of the system whe

aiting time threshold is equal to the local warehouse lead time. They also show that the

ximation leads to better performance compared to that of Andersson and Melchiors (2001

et al. (2015) consider a two-echelon inventory system where demand facing an out-of-stoc

ion at the local warehouse is met from the central warehouse through an emergency order. The

se an iterative procedure to find the fractions of demand satisfied by local and central warehouse

he external supplier. However, in their model, the pipeline between the local warehouse and th

l warehouse is never used to meet demand even if there are items in the pipeline that are no

signed to any existing backorder. The model we propose in this paper is different from that o

et al. (2015) because it takes into account the remaining lead time of pipeline orders throug

odelling of the system with tandem queues. This information can be very useful to reduce th

ales because sometimes it is better to wait for an order that arrives from the pipelines in

old time than to place an (expensive) emergency order that might even arrive later. Johansso

lsson (2018) analyze the same system as Alvarez and van der Heijden (2014), but assume tha

aiting time threshold at the local warehouse can be less than or equal to the warehouse lea

Moreover, they assume that all lead times in the inventory system are constant. They propos

proximate solution based on the derivation of the age of the products in the pipeline or in stock

kan et al. (2015), the emergency lead time can be set equal to the maximum acceptable waitin

t the local warehouse to find the model setting of Johansson and Olsson (2018). However, to th
5
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best of our knowledge, none of the papers in the literature consider generally distributed lead times at

the central warehouse. Moreover, there are no exact performance evaluation results in the literature
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g with multi-echelon inventory systems in the network lost sales case.

fore closing this section, we note the literature stream that considers stochastic network rep

ations to analyze inventory systems under more complex inventory control policies, deman

sses, and lead times. Such representations often lead to product form solutions (Kouki et al

2020). For example, Song and Zipkin (2009) use a queuing network representation to perform

ed-form performance analysis of an inventory system with two supply sources facing Poisso

nd under the dual-index policy. This technique is extended to evaluate multi-echelon inventor

rks with dual sourcing (Drent and Arts, 2021), also used when demand is a Markov-modulate

n process in asymptotic regimes of interest (Arts et al., 2016). For networks with emergenc

ents that depend on the state in a complicated way, an exact analysis has also been obtained i

cases (e.g., Howard et al., 2015), and an approximate analysis in others (e.g., Boucherie et al

Özkan et al., 2015). We use this queuing network representation in our paper to provide an exac

mance evaluation of the inventory system of Alvarez and van der Heijden (2014) under generall

buted lead times at both the central and the local warehouses. We also use it to propose ne

ore accurate approximations for the system of Johansson and Olsson (2018) under generall

buted lead times at the central warehouse and deterministic lead times at the local warehouse

ystem description and modelling

is section, we first describe the inventory system we analyze and then explain the modelin

d used to derive the performance measures.

System description and assumptions

nsider a two-echelon inventory system composed of a central warehouse and J local warehouse

nd at local warehouse j is a Poisson process with rate λj for j ∈ {1, · · · , J}, and the total arriva

s λ0 =
J∑

j=1
λj . The assumption of a Poisson demand process is appropriate for slow-movin

and it is widely used in the inventory control literature for spare parts, as in Howard et a

), Song and Zipkin (2009) and Johansson and Olsson (2018). In addition, the Poisson arriva

ption allows us to cast the two-echelon inventory system as a network of queues for which we ca

the steady state probabilities. The stock at each local warehouse is controlled with a base-stoc

tory policy where the base-stock level at local warehouse j is denoted with Sj for j ∈ {1, · · · , J}

entral warehouse uses an installation base-stock policy with base-stock level S0. If an item
6
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Figure 1: The multi-class loss network

ble at warehouse j, demand is immediately met and an order is placed at the central warehous

ead time of the central warehouse is generally distributed with mean l0. We assume that the lea

at local warehouses are stochastic under the Alvarez and van der Heijden (2014)’s settings an

inistic under the Johansson and Olsson (2018)’s settings. The deterministic assumption in th

case is needed for modelling purposes. We denote the mean lead time by lj for j ∈ {1, · · · , J}

demand arrives at local warehouse j, if it is not met within a threshold waiting time, wj (fo

1, · · · , J}), it is lost. It is worth pointing out that under deterministic lead times at loca

ouses, the condition to accept demand under the Alvarez and van der Heijden (2014) setting

have an uncommitted item that is available in the local warehouse, the central warehouse, o

ipeline in between”. This condition is equivalent to ”having a waiting time threshold that

to the local warehouse lead time”. Under stochastic lead times, one cannot refer to a waitin

hreshold because customers typically require a guaranteed response time to satisfy their deman

he true waiting time may exceed the required response time due to the stochastic nature of th

imes. Consequently, we use in this paper the condition that a demand is lost when there is n

mitted inventory in the pipeline to local warehouse j or at the central warehouse. This conditio

ependent of the customer waiting time at the local warehouse when there is a stock out. Fo

ification purposes, the terminology wj = lj is used to refer to the Alvarez and van der Heijde

) settings for both deterministic and stochastic lead times. The case where wj takes values les

lj is studied in Johansson and Olsson (2018) for deterministic lead times. Both cases wj =

j < lj occur in practice, and the case wj = lj does not require that the remaining lead-times o

in the pipeline can be tracked for practical implementation. Note also that the results of th

j = lj are required to analyze the case wj < lj .

ur objective is to determine in both cases, wj = lj and wj < lj , the on-hand stock and th

er of backorders at warehouse j, denoted with I+j and I−j respectively, the fraction of deman

ly satisfied from on-hand at warehouse j, denoted with αj , the fraction of demand that is satisfie
7
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Table 1: Table of notation (i = 1, 2, · · · , J)
System parameters

Stot =

B

N

after r

j = 1 is

the le

3.2

To de e

stead ∈

{1, . . e

determ

• r

h

),

y

e

• e

l

j
0

Jo
ur

na
l P

re
-p

ro
of

J Total number of local warehouses

λj Demand rate at local warehouse j

λ0 Total demand rate, λ0 =
J∑

j=1

λj

Sj Base stock level at warehouse j

S0 Base stock level of the central warehouse

S0 +
∑J

j=1 Sj Maximum number of orders in the pipeline to the central warehouse

lj Lead time from the central warehouse to warehouse j

wj Waiting time of demand at warehouse j

l0 (mean) lead time from an external supplier to the central warehouse

State definition and probabilities

n Total number of orders in the pipeline to the central warehouse or the local warehouse

Q(n) Steady-state probability of having n items in transportation from the external supplier to the central warehouse

P (n) Steady-state probability of having n orders in the pipeline to the local warehouse

S State space of number of orders in the pipeline to the central warehouse

Ω State space of backorder levels at the central warehouse
j
0(t), B

j
0 Backorder level at the central warehouse at time t and in steady-state associated with local warehouse j, j = 1, ..., J , respectively

j(t), Nj Number of orders in the pipeline to the central warehouse at time t and in steady-state due to warehouse j, j = 1, ..., J , respectively

Dj(lj) Demand during lead time lj at warehouse j, j = 1, ..., J .

Performance measures

E[I+j ] Expected inventory level at warehouse j

E[I−j ] Expected number of backorders at warehouse j

E[Wj ] Expected waiting time for backordered demand at local warehouse j

αj Fraction of demand satisfied without waiting from on-hand inventory at warehouse j

βj Fraction of demand satisfied but delayed at warehouse j

δj Fraction of lost demand at warehouse j

a delay at warehouse j, denoted with βj , and the fraction of lost demand, denoted with δj , fo

, 2, · · · , J . Note that αj + βj is sometimes referred to as the time window fill-rate where wj

ngth of the time window. In Table 1, we summarize the notation used throughout this paper.

System modelling

rive expressions for the performance measures associated with local warehouse j, we need th

y-state probability P (n), n ≥ 0 of having n orders in the pipeline to local warehouse j (j

. , J}). Note that P (n), n ≥ 0 depends on the state of the central warehouse, and can b

ined, depending on the central warehouse stock, as follows:

If the central warehouse has stock on hand, then we can find P (n), n ≥ 0 by viewing the numbe

of orders in the pipeline between the central warehouse and local warehouse j as a queue wit

Poisson arrivals with intensity λj , and a generally distributed service time with mean lj . P (n

n ≥ 0 can therefore be computed using the well-known steady-state probability of the occupanc

level in an M/G/∞ queue in conjunction with the state of the number of orders in the pipelin

to the central warehouse.

If the central warehouse is out of stock, the steady-state probability P (n), n ≥ 0 depends on th

system settings:

Case 1 (wj = lj): Since the demand is lost when there are no items available at the loca

warehouse or in the pipeline in between, P (n), n ≥ 0 depends on the number of backorders B
8
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associated with local warehouse j and already waiting in the central warehouse. Note that Bj
0

cannot exceed S . We can find P (n), n ≥ 0 by modelling the number of orders in the pipeline
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j

to each local warehouse j as a tandem queue, as shown in Figure 2. The first node in Figur

2 represents the orders in the pipeline to the central warehouse, forming an •/G/Stot queu

with an input rate λj that depends on the number of backorders Bj
0, service rate 1/l0, and tota

number of severs Stot. The second node is an •/G/∞ queue with service rate 1/lj . For th

tandem queue, we show how it can be analyzed exactly, enabling us to derive the steady-stat

probability P (n), n ≥ 0, by conditioning on the number of backorders Bj
0. Although we nee

the distribution of Bj
0 to find P (n), n ≥ 0, the opposite is not true. In other words, we ca

find the steady-state probability of Bj
0 without knowing P (n), n ≥ 0, since each time deman

arrives, it will always be accepted as long as Bj
0 < Sj , regardless of the number of orders in th

pipeline between the central and local warehouses. This result is crucial to derive a closed-form

expression for P (n), n ≥ 0. The steady-state probability of the number of backorders Bj
0

derived by analyzing the central warehouse separately, regardless of the number of orders i

the pipeline between the central and local warehouse, in other words, regardless of the state o

orders in the pipeline at queue 2. Once the steady-state probability of Bj
0 is found, we can deriv

P (n), n ≥ 0. Note that the model of Özkan et al. (2015) does not assume a threshold waitin

time at the local warehouses. We approximate the steady-state probability P (n), n ≥ 0 of th

Özkan et al. (2015) model using our results under wj = lj .

•/G/Stot •/G/∞
Demand arrival
with rate λj

Bj
0 < Sj?

Yes

No

Queue 1 with mean

lead time l0

Queue 2 with mean

lead time lj

ure 2: Tandem queues of number of orders in the pipeline to local warehouse j when wj = lj

Case 2 (wj < lj): In this case the number of orders in the pipeline to the central warehouse an

local warehouse depend on each other. We model the inventory system by using three queues a

shown in Figure 3. The first queue represents the number of orders being routed to the centra

warehouse. The second and third queues represent the number of orders destined for the loca

warehouse j with a mean processing lead time lj−wj and wj , respectively. Hence, when deman

arrives, it will be accepted if the number of backorders associated with local warehouse j an

waiting at the central warehouse is strictly less than Sj (i.e., Bj
0 < Sj), or if the total numbe

of backorders Bj
0 plus the number of orders to local warehouse j at the second queue is strictl

less than Sj . Note that the case wj < lj is hence modelled as a tandem queuing network wit
9
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blocking, where demand arrival at the local warehouse is blocked either because Bj
0 = Sj , or

because the number of orders to local warehouse j at the second node is S . It should also be
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noted that a tandem queue with a blocking mechanism at the first queue that depends on th

state of the second queue is difficult to analyze exactly since we need to track all pipeline order

to the warehouses, i.e., the occupancy level of each node in the tandem queues. In a small setting

with exponential lead times it is possible to study the dynamics of the network of queues, but i

the general case, such dynamics suffers from the curse of dimensionality and the network analys

becomes extremely complex. Thus, we find an approximate steady-state probability P (n), n ≥

of having n orders in the pipeline to the local warehouse by decomposing the queuing networ

into two independent sub-networks: one related to the local warehouse consisting in node 1 onl

the other related to the local warehouse consisting in nodes 2 and 3 together. We will elaborat

more on this in Section 4.2.

•/G/Stot •/D/Sj/Sj •/D/∞
emand arrival
with rate λj

Bj
0 < Sj and

number of orders

at queue 2 < Sj

Yes

No

Queue 1: mean

lead time l0

Queue 2:

lead time lj − wj

Queue 3:

lead time wj

ure 3: Tandem queues of the number of orders in pipeline to local warehouse j when wj < lj

summary, to compute P (n), n ≥ 0, we should first find the marginal probability density o

umber of backorders associated with local warehouse j and waiting at the central warehous

hich requires determining the steady-state probability of having n orders in the pipeline to th

l warehouse, denoted with Q(n), n ∈ {0, . . . , Stot}. This is the objective of the next section

we also express the performance measures.

nventory performance analysis

is section, we derive the the steady state probabilities of having n orders in the system an

ovide the expressions for the performance measures αj , βj , δj , E[I+j ], E[I−j ] and E[Wj ]. Not

alculating the performance measures αj and βj enables the straightforward calculation of th

ted waiting time of demand at local warehouse j using Little’s law as E[Wj ] =
E[I−j ]

(αj+βj)λj
. To d

calculate in the two cases: wj = lj and wj < lj , the probability of having bj backorders at th

l warehouse associated with local warehouse j, P{Bj
0 = bj}, and the steady-state probability o

g n orders in the pipeline to the central warehouse (i.e., Q(n), n ∈ {0, . . . , Stot}).
10
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4.1 Analysis of the case wj = lj
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Central warehouse analysis

s section, we provide a closed-form expression for the steady-state probability of having a tota

rders in the pipeline to the central warehouse, i.e., Q(n), n ∈ {0, . . . , Stot}. Our analysis is bui

e following two observations:

The steady-state probability Q(n) does not depend on lj for j = 1, · · · , J .

If n < S0, then the demand arrival rate at the central warehouse is λ0.

he first observation means that the demand arrival process at the central warehouse generate

local warehouse j remains stationary as long as the number of backorders at the central warehous

ated with local warehouse j is less than Sj . Indeed, each time demand from local warehouse

s, and the central warehouse has stock on-hand or does not have stock on-hand but the numbe

ckorders is less than Sj , demand will always trigger an order at the central warehouse. Th

is independent of whether the local warehouse has stock or the number of orders in progres

en the central warehouse and local warehouse j. Demand at local warehouse j is lost only whe

mber of backorders at the central warehouse associated with local warehouse j reaches Sj . Th

s that the lead time lj has no impact on the demand arrival process at the central warehous

roperty does not hold for models such as those of Özkan et al. (2015) and Johansson and Olsso

) because we need to know the number of orders in progress to the local warehouse to decid

er to accept or reject an incoming demand. In contrast, in our framework with wj = lj , w

eed information about the number of backorders at the central warehouse associated with loca

ouse j to decide whether to accept or reject an incoming demand.

he second observation means that the number of items on-order between the external supplie

he central warehouse is distributed as in a loss queue with a Poisson arrival process with rat

service time of expected duration l0, and S0 servers. This observation enables us to find th

bility Q(n) for any n ≤ S0. We will elaborate on this further on in the paper.

find the probability Q(n), n > S0, we need to know the number of backorders at the centra

ouse associated with local warehouse j. However, the backorder level to local warehouse j hel

central warehouse depends on the number of orders triggered by local warehouse j and accepte

e central warehouse. We therefore need to define two random variables, one representing th

er of orders already accepted at the central warehouse, and the other representing the numbe

korders associated with each local warehouse j.

do so, let Nj(t) denote the number of orders in the pipeline to the central warehouse that wer
11
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triggered by demand at local warehouse j ∈ {1, . . . , J}. Note that demand at local warehouse j causes

Nj(t) to increase by 1 provided that the waiting time for this item will be less than l . Moreover, note

that t o
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he waiting time wj is always less than lj as long as the number of backorders in the pipeline t

ntral warehouse does not exceed Sj . Otherwise, there must be an item in the pipeline betwee

ntral warehouse and local warehouse j that will arrive within lj units of time and can thus b

ted to incoming demand. Furthermore, after demand acceptance, there must be Nj(t) ≤ S0+S

J
j=1Nj(t) ≤ S0 +

∑J
j=1 Sj at any time t. We denote with N(t) = (N1(t), . . . , NJ(t)) th

astic vector of the total number of orders in the pipeline to the central warehouse at time t. It

ated stationary stochastic process is denoted with {N(t)}. Let N = (N1, . . . , NJ) be the random

le denoting the number of orders in the pipeline in steady-state. The state space of {N(t)}

by S :

S =



n := (n1, n2, . . . , nJ) | nj ≤ Sj + S0, j = 1, . . . , J, and

J∑

j=1

nj ≤
J∑

j=1

Sj + S0



 . (1

ote also that the dynamics of the process {N(t)} are not sufficient to determine the steady

probability Q(n), n ∈ {0, . . . , S0 +
∑J

j=1 Sj}. In fact, since the number of backorders at th

l warehouse cannot exceed Sj , the steady-state of the number of orders in the pipeline to th

l warehouse cannot be determined completely through the vector N in steady-state. Conside

ample of two local warehouses setting the parameters S0 = 3, S1 = 1, and S2 = 2. Assum

he description of the state of orders in the pipeline to the central warehouse is only via vecto

hus, if the orders in the pipeline are N = (2, 3), two orders are triggered by local warehous

three orders by local warehouse 2. The state (2, 3) also means there are 2 backorders in th

. If these two backorders are associated with local warehouse 1, then any demand from loca

ouse 1 should be rejected because the maximum number of backorders due to local warehous

already been reached. On the other hand, if we ignore the threshold level Sj of backorder

ated with warehouse j, we still have Nj ≤ S0 + Sj , and demand at warehouse j is accepted a

ntral warehouse, whereas it should not be.

herefore, to find the steady-state probabilities of the number of orders in the pipeline to th

l warehouse, we need to know the steady-state probabilities of backordered demand at th

l warehouse stemming from all local warehouses, j = 1, . . . , J . For this purpose, we conside

cond random variable Bj
0(t) as the number of backorders in the central warehouse associate

the local warehouse j at time t. The state of total backorders at time t is denoted with B0(t) =

), . . . , BJ
0 (t)) and its associated steady-state stochastic process with {B0(t)} with a finite stat
12
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space Ω

)
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S0 im j ,

j ∈ {1
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Ω = {b := (b1, . . . , bJ)|bj ≤ Sj} . (2

note with B0 = (B1
0 , . . . , B

J
0 ) the vector of all backorders in steady-state. Note that

∑J
j=1Nj ≤

plies that Bj
0 = 0 for all local warehouses j ∈ {1, . . . , J}, and for any N ∈ S, Bj

0 ≤ N

, . . . , J}. Therefore, ∑J
j=1B

j
0 > 0 only for

n ∈ S(n), S(n) =



n ∈ S | n =

J∑

j=1

nj > S0



 ,

e now derive the steady-state probability of the vector (b,n), which we denote with π(b,n) a

s:

π(b,n) = P {B0 = b,N = n} = P {B0 = b|N = n}P {N = n} , b ∈ Ω,n ∈ S(n) (3

= b|N = n} = lim
t→∞

P
{
B1

0(t) = b1, . . . , B
J
0 (t) = bJ |N1(t) = n1, . . . , NJ(t) = nJ

}
, b ∈ Ω,n ∈

P {N = n} = lim
t→∞

P {N1(t) = n1, . . . , NJ(t) = nJ} , n ∈ S(n)

he vector (B0,N) is a reversible process and has a product form solution as shown in Propositio

osition 1. The steady-state probability of (b,n) is given by

π(b,n) = C

(
n1

b1

)(
n2

b2

)
. . .
(
nJ
bJ

)

(∑J
j=1 nj∑J
j=1 bj

)
J∏

i=1

(λil0)
ni

ni!
, b ∈ Ω,n ∈ S(n),

C is the normalizing constant.

. See Appendix 1. ■

oposition 1 allows providing a simple expression for Q(n), n ∈
{
0, . . . , S0 +

∑J
j=1 Sj

}
using th

ing corollary.

llary 1. The steady-state probability of having n orders in the pipeline of the central warehous
13
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is given by
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Q(n) =




A
∑

n∈S
n1+...+nJ=n

∏J
j=1

(λj(l0))
nj

nj !
= (λ0l0)n

n! if 0 ≤ n ≤ S0,

A
∑

b∈Ω,
b1+...+bJ=n−S0,

n∈S(n)

π (b,n) ,

=
∑

b∈Ω
b1+...+bJ=n−S0

(
(n−S0)!(λ0l0)S0

(n)!

∏J
i=1

(λi(l0))
bi

bi!

)
if n > S0,

0 otherwise,

(4

A is the normalizing constant.

. See Appendix 1. ■

he result of Corollary 1 also shows that the steady-state probabilityQ(n), n ∈
{
0, . . . , S0 +

∑J
i=1

nsitive to the lead time distribution, except through its mean li, i ∈ {1, . . . , J}. This is in lin

he literature related to Jackson queuing networks where the steady-state probability of the ne

state is insensitive to the distribution of the processing lead time and depends only on its mea

oucherie and van Dijk (2011)).

careful inspection of the preceding proposition and the equations in Alvarez and van der Heijde

) will reveal that they are identical, as stated in the following corollary.

llary 2. The expression for the steady-state probability derived by Alvarez and van der Heijde

) under constant lead times is exact and given by

Q(n) =





K (λ0L0)
n

n! , n ≤ S0,

K (l0)
n

(n)!

∏n−1
y=0 M(y), n > S0,

(5

M(n) =





λ0, n ≤ S0

∑J
j=1 λj

(
1− P

{
Bj

0 = Sj |n− S0

})
, n > S0

. (6

the normalizing constant and P
{
Bj

0 = Sj |n− S0

}
is computed using a truncated multi-nomina

bution detailed in Appendix 2.

. See Appendix 2. ■

orollary 2 expresses the steady-state probability using the method of Alvarez and van der Heijde

). This expression suffers from the curse of dimensionality, which makes the computation of Q(n
14
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Bj
0 < Sj? Node 1 with mean

lead time l0

Node 2 with mean

lead time lj

Figure 4: Network with overflow bypass

rically tedious when the number of classes J and Sj , j = 1, ...J increases. Alvarez and van de

en (2014) themselves proposed an approximate method to calculate this probability.

Performance measures

cial observation for the purpose of our analysis is also used in Howard et al. (2015). In fac

er an alternative system where demand that would be lost in the original system is not lost bu

with an outside emergency supplier that also has a lead time of lj . Note that the behavior of th

nd inventory in this alternative system is identical to the behavior of the original system. Bot

s have identical dynamics for demand filled directly by the system. The on-hand inventory lev

alternative system can be obtained as follows. Let Dj(lj) denote demand during lj at warehous

note that Dj(lj) has a Poisson distribution with mean λjlj . Let Ij denote the inventory lev

rehouse j in the original system, and Ĩj the inventory level in the alternative system. The abov

vation implies that Ĩ+j = I+j where x+ = max(0, x). With this observation, we can determin

erformance measures.

he alternative system described above for a specific local warehouse j can also be seen as follow

ntire pipeline of products that will be delivered to local warehouse j is depicted in Figure 2 whe

are backorders at the central warehouse. The first station in this Figure 2 corresponds to th

s in the pipeline to the central warehouse that are destined for location j. The second statio

ber of orders in the pipeline between the central warehouse and location j. Unfortunately, th

al network has no known product form solution. The alternative system is depicted in Figure 4

etwork assumes that products that would normally be lost are placed as an order to an outsid

ier with the same lead time as between the central warehouse and local warehouse j. Obviousl

etwork does not represent our network, but does have a product form solution, as also observe

ng and Zipkin (2009) and Howard et al. (2015), and can be exploited, as we will do next.
15
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On-hand stock. Using the observation above, we can write directly that
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I+j = x
}
= P

{
Ĩ+j = x

}
= P

{
(Sj −Bj

0 +Dj(lj))
+ = x

}
(7

= P
{
Bj

0 +Dj(lj) = Sj − x
}
=

Sj∑

y=0

P
{
Bj

0 +Dj(lj) = Sj − x | Bj
0 = y

}
P
{
Bj

0 = y
}

=

Sj∑

y=0

P {Dj(lj) = Sj − x− y}P
{
Bj

0 = y
}
=

Sj∑

y=0

eλj lj
(λjlj)

Sj−x−y

(Sj − x− y)!
P
{
Bj

0 = y
}

xpected on-hand stock can easily be computed from the distribution as E[I+j ] =
∑Sj

x=0 xP {Ij = x

owever, note that Ĩ−j ̸= I−j and x− = max(0,−x), so that the expected backorders cannot b

ined in similar fashion. We defer this analysis to later.

ion of demand filled immediately, after waiting time, and lost. Demand in our networ

e either filled immediately from stock on-hand, after a waiting time from stock elsewhere in th

rk, or lost entirely. From the steady-state probability Q(n), n ≤ S0 +
∑J

j=1 Sj , we obtain th

on of demand that is lost to the network for each local warehouse, that is δj . Let

P j(k) = P
{
Bj

0 = k
}
=
∑

bj∈Ωj


(k +

∑J
i=1,i ̸=j bi)!(λ0l0)

S0

(S0 + k +
∑J

i=1,i ̸=j bi)!

(λjl0)
k

k!

J∏

i=1,i ̸=j

(λil0)
bi

bi!


 , (8

e probability of having k backorders at the central warehouse associated with local warehous

Ωj the multidimensional state space that excludes the number of backorders triggered by loca

ouse j:

Ωj =



bj = (b1, . . . , bj−1, bj+1 . . . , bJ)|bj ≤ Sj , j = 1, . . . , J,

J∑

i=1,i ̸=j

bi ≤
J∑

i=1,i ̸=j

Si



 . (9

se Poisson arrivals see time averages (Wolff, 1982), it follows that the fraction of demand los

e network at warehouse j, is given by

δj = P j(Sj). (10

milarly, the fraction of demand that can be filled immediately from the inventory on-hand a

warehouse j can be computed directly as

αj =

(
S0−1∑

k=0

Q(k)

) Sj−1∑

n=0

(λjlj)
ne−λj lj

n!
+

Sj−1∑

k=0

Sj−k−1∑

n=0

(
(λilj)

ne−λj lj

n!
P j(k)

)
. (11
16
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βj = 1− αj − δj . (12

cted backorders and on-hand inventory for local warehouses. For the expected backo

at local warehouse j, we use Little’s law and the relation of the original system to the alternativ

described at the beginning of this section. Note that I−j denotes the number of backorder

al warehouse j as x− = max(0,−x). We follow the idea of Howard et al. (2015). A critica

vation at this point is that Ĩ−j = I−j + X̃ where X̃ is the number of customers with backorder

ill be filled by the outside supplier that delivers after lj time units in the alternative system

ding to Little’s law, we have E[X̃] = δjλjlj . Therefore, E[I−j ] can be determined when E[Ĩ−j ]

n. Fortunately, this quantity can be found in a similar way to the on-hand stock:

E[Ĩ−j ] = E[(Dj(lj) +Bj
0 − Sj)

+] = E[Dj(lj) +Bj
0 − Sj ] + E[(Sj −Dj(lj)−Bj

0)
+] (13

= λjlj + E[Bj
0]− Sj + E[Ĩ+j ]

E[Ĩ+j ] follows from Equation (7) and E[Bj
0] can be computed directly from Equation (8). No

pected backorders at local warehouse j can be expressed as

E[I−j ] = E[Ĩ−j ]− E[X̃] = E[Ĩ−j ]− λjδjlj . (14

Analysis of the case wj < lj

s section, we propose new approximations of two models in the literature. The first concern

odel that Özkan et al. (2015) studied. Their work is similar to ours in Subsection 4.1.1 with on

nce: when demand cannot be satisfied with available stock or the central warehouse, it is los

in our first model, demand is satisfied after a waiting time from the regular channel as long a

mber of backorders at the central warehouse does not exceed Sj , j ∈ {1, . . . , J}.

he second model we address is that of Johansson and Olsson (2018) where an emergency replen

nt is triggered based on the remaining lead time of orders in the pipeline to each local warehous

1, ..., J . Let us denote with wj the maximum waiting time a customer is willing to accept

oducts are available in the local warehouse. According to Johansson and Olsson (2018), whe

omer arrives at the local warehouse, an emergency replenishment is requested from an outsid

ier if the remaining lead time of the orders in the pipeline that have not yet been allocated t

isting backorder exceeds wj . In the model of Johansson and Olsson (2018), there is a possibilit
17
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that the emergency order cannot be executed, but we relax this assumption by assuming that all

emergency replenishments are performed with probability 1. If we set w equal to the lead time lj ,
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j

Johansson and Olsson (2018)’s model is reduced to ours for deterministic lead times. In th

we can analyze such a system exactly. In the case of wj = 0, we refer to the model of Andersso

elchiors (2001). The difficulty in providing an exact solution to these two models lies in the fac

rders to the central warehouse depend on the pipeline between the central warehouse and th

warehouse, which is not the case in the model studied in Section 4.1.

he approximations we propose are easy to understand. In fact, we use the exact steady-stat

bility in the case where wj = lj , together with the steady-state probability of the pipelin

en the local warehouse and central warehouse. Under the assumption of the model of Özka

(2015), assume (this is an approximation) that the orders in the pipeline between the centra

ouse and local warehouse j form an M/G/Sj/Sj queue with a Poisson process with arrival rat

d service time with mean lj , thus the steady-state probability of having n products during lea

lj is simply:





p(n, lj) = P {Dj(lj) = n} =
(λjlj)

n

n!
∑Sj

k=0

(λjlj)
k

k!

,

P (n, lj) = P {Dj(lj) ≤ n} =
∑n

k=0 p(k, lj).

(15

r the model of Johansson and Olsson (2018), we make a similar assumption related to the arriva

ss in the pipeline between the central and local warehouse, i.e., Poisson process with rate λj . I

servation of Howard et al. (2015), as stated in Section 4.1.2, the pipeline between the central an

warehouse forms tandem queues M/G/Sj/Sj → •/G/∞, where the first queue has an arriva

j and service rate with mean lj − wj , and the second queue has a mean service rate wj .

rst queue is full, incoming demand is satisfied by emergency replenishment with a lead time w

erflowing the first node and going directly to the second node. We can write the steady-stat

bility of having n items during lead time lj with





p(n, lj) =
1

∑Sj
k=0

(λj(lj−wj))
k

k!

∑min(n,Sj)
m=0

(λj(lj−wj))
m

m
(λjwj)

n−k

(n−k)! e−λjwj ,

P (n, lj) = P {Dj(lj) ≤ n} =
∑n

k=0 p(k, lj).

(16

e are now ready to express the steady-state probability at the central warehouse. For the Özka
18



Journal Pre-proof

et al. (2015) model,
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

)

which

nj , lj) -

tral w t

wareh

Q(n) 8)

where

W e

most le

stock, ll

obvio s

the p h

P (n), n

hand. f

backo g

the sa n

order

U

P (n) (19)
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n) =




A (λ0l0)n

n! for 0 ≤ n ≤ S0,

A
∑

b∈Ω,
b1+...+bJ=n−S0

(
(n−S0)!(λ0l0)S0

(n)!

∏J
j=1

(λj(l0))
nj

bj !
P (Sj − bj , lj)

)
for n > S0,

0 otherwise,

(17

is the same steady-state probability of our original model conditioned by probability P (Sj −

. For Johansson and Olsson (2018), we also need to approximate the arrival rate at the cen

arehouse, since the orders triggered at the central warehouse depend on the stock available a

ouse j (if any) and on the number of orders in the pipeline during wj .

=





A (λ0l0)n

n! for 0 ≤ n ≤ S0,

A
∑

b∈Ω,
b1+...+bJ=n−S0

(
(n−S0)!(λ0l0)S0

(n)!

∏J
j=1

(λj(l0))
bj

bi!
P (Sj − bj , lj − wj)

)
for n > S0,

0 otherwise.

(1

P (Sj − bj , lj − wj) is given by (15) and λ0 is approximated by

λ0 =

J∑

j=1

λj


1−

(λj(lj−wj)
Sj

Sj !∑Sj

k=0
(λj(lj−wj))k

k!


 .

e can now express all the performance metrics we need, but since system downtime is th

critical factor to assess, we focus on the fraction of demand satisfied directly from availab

the fraction satisfied after a waiting time (if any), and the fraction of demand lost. We wi

usly use the same analysis technique as our original model. Evaluating these fractions require

robability that there are n orders in the pipeline to local warehouse j, which we denote wit

n ∈ {0, . . . , Sj}. This probability is given by p(n, lj) if the central warehouse has stock o

However, if the central warehouse is out of stock, P (n) should be conditioned on the number o

rders at the central warehouse. In this case P (n) =
∑n

k=0 P
{
Bi

0 = k
}
P {Di(li) = n− k}. Usin

me notation as in the original model, we can deduce the steady-state probability of having

s in the pipeline to local warehouse i as follow.

nder the Özkan et al. (2015) and Johansson and Olsson (2018) models:

=

(
S0−1∑

k=0

Q(k)

)
p(n, lj)

+
∑

bj∈Ωj




min(n,Sj)∑

k=0

(k +
∑J

i=1,i ̸=j bi)!(λ0l0)
S0

(S0 + k +
∑J

i=1,i ̸=j bi)!

(λjl0)
k

k!
p(n− k, lj)

J∏

i=1,i ̸=j

(λil0)
bi

bi!
P (Si − bi, li −
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where wi = 0 for Özkan et al. (2015) and p(n − k, lj) is obtained with Equations (15) and (16) for

the Özkan et al. (2015) and the Johansson and Olsson (2018) models, respectively. It should be noted

that w e

order a

mean

Fr

)

an





αj =

δj =

∑
b

βj =

(21)

where n

of los d

can b e

fracti g

the A e

the fr y

of hav

W y

from s,
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not h ,

secon
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hen using p(n − k, lj) under the Johansson and Olsson (2018) setting, the number of pipelin

s to the local warehouse waiting at the central warehouse plus those at the second queue with

lead time lj − wj cannot exceed Sj .

om Equation 19, we can write for the Özkan et al. (2015) model





αj =
∑Sj−1

n=0 P (n),

βj =
(∑S0−1

k=0 Q(k)
)
p(Sj , lj),

δj = 1− αj − βj ,

(20

d for the Johansson and Olsson (2018) model

∑Sj−1
n=0 P (n),

(∑S0−1
k=0 Q(k)

)
p(Sj , lj)

j∈Ωj

(∑Sj

k=0

(k+
∑J

i=1,i ̸=j bi)!(λ0l0)
S0

(S0+k+
∑J

i=1,i ̸=j bi)!

(λj l0)
k

k! p(Sj − k, lj − wj))
∏J

i=1,i ̸=j
(λil0)

bi

bi!
P (Si − bi, li − wi)

)

1− αj − βj ,

p(Sj − k, lj −wj) and P (Si − bi, li −wi) are given by Equation (15). We note that the fractio

t demand δj does not take into account the pipeline state during wj . In fact, each lost deman

e satisfied with an emergency replenishment with lead time wj , which does not influence th

on of lost demand in our system. The waiting time wj here plays the role of lj when considerin

lvarez and van der Heijden (2014) model (i.e., lj = wj). Indeed, lead time lj does not influenc

action of lost demand. Furthermore, Equation 21 reduces to the exact steady-state probabilit

ing n orders in the pipeline to local warehouse i, when lj = wj , j ∈ {1, . . . , J}.

e end this section by first noting that the calculation of E[I+j ] and E[I−j ] can be obtained directl

the expression of P (n), n ≥ 0 in Equation (19) as E[I+j ] =
∑Sj

k=0(Sj − n)P (n) for both model

[I−j ] =
∑∞

k=Sj+1(n − Sj)P (n) − wjλjδj for the Johansson and Olsson (2018) model. We d

ave E[I−j ] under Özkan et al. (2015), since demand is not backordered at local warehouses and

d, by summarizing the main results in Table 2.
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Table 2: Summary of the main results. Q(n),P (n) represents the steady-state probability of having
n items in the pipeline to the central warehouse and local warehouse, respectively. αj , βj and δj are
the fr t
respec e
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action of demand satisfied immediately from stock at local warehouse, after a delay and los
tively. E[I+j ] is the expected stock on hand and E[I−j ] is the expected backorder level for th
warehouse j.

rmance Alvarez and van der Heijden (2014) setting Johansson and Olsson (2018) setting Özkan et al. (20
asure wj = lj wj < lj wj =

(n) Equation 4 Equation 18 Equation
(n) Equation 7 Equation 19 Equation
αj Equation 11 Equation 21 Equation
βj Equation 12 Equation 21 Equation
δj Equation 10 Equation 21 Equation

[I+j ]
∑Sj

x=0 xP {Ij = x} ∑Sj

k=0(Sj − n)P (n)
∑Sj

k=0(Sj −
[I−j ] Equation 13

∑∞
k=Sj+1(n− Sj)P (n)− wjλjδj Does not a

umerical investigation

s section, we compare our model to the two models considered and to an exact simulation mod

in Rockwell Arena software. The numerical investigation is first conducted under determinist

imes to enable the comparison with the benchmark models. Second, we conduct an experimen

stochastic lead times at the central warehouse are considered.

e start by comparing the CPU time to compute the steady-state probability of central warehous

with that of Alvarez and van der Heijden (2014), (i.e., Corollary 2) and our method (i.e., Corollar

ext, we compare our model to Özkan et al. (2015)’s model where there is no waiting time a

cal warehouse. We then focus on evaluating the performance of our model and compare it t

hansson and Olsson (2018) model. Waiting time is evaluated as a fraction of the minimum lea

of all local warehouses. Note that Johansson and Olsson (2018) only consider symmetric value

ll local warehouses have the same parameters. We study a similar setting but also consider th

ymmetric case where values differ among the local warehouses.

e consider the case of two warehouses with the following input parameters: l0 ∈ {2, 20}, {l1, l2}

, S0 ∈ {1, 5}, {S1, S2} ∈ {1, 2}, λ1 = 0.1, λ2 ∈ {0.2, 0.5, 1} and w ∈ {0.25, 50, 0.75} ×min(l1, l2

that we have included other values of the parameters considered in Johansson and Olsson (2018

zkan et al. (2015), since – as will be shown – for the new values, the performance of these tw

ls can be lower than that under the values presented in their papers. In fact, when we choos

where the lead times of the local warehouses vary by a factor of two or more, we are ab

luate the similarities and differences in the performance measures of the two models and ou

l against the simulation. In line with the Özkan et al. (2015) model, we rely on the fraction o

ed demand from the system and the fraction of lost demand as the main performance measure

mparison. For ease of reading, we denote with JO the model of Johansson and Olsson (2018
21
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and OV S the model of Özkan et al. (2015).

Our setting enables us to make a comparison with the OV S model of 32 (48) instances in the
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etric (asymmetric) case. For the comparison with the JO model, we have 64 (192) symmetr

metric) instances. The relevant results showing the performance of the different models ar

ted in Tables 3–6.

he computation time of Q(n) using the method of Alvarez and van der Heijden (2014) and ou

d is reported in Table 3. The computational experiments are realized on a PC with Intel Cor

00H running at 2.3 GHz. The CPU used by our model is very reasonable compared to that o

ez and van der Heijden (2014). Indeed, their method suffers from the curse of dimensionality, a

mputation time increases exponentially when Sj , j ∈ {1, . . . , J} increases or when the numbe

al warehouses increases.

3: CPU time required for Q(n) using the Alvarez and van der Heijden (2014) model and ou
l

Sj , CPU time in seconds in CPU time in seconds in
j = 1, . . . , J Alvarez and van der Heijden (2014) model our model

1 0 0
2 0.1 0
3 0.5 0
4 2.3 0.1
5 7.3 0.2
6 14.7 0.5
7 40.1 1.1
8 101 2.3
9 197.2 4.2
10 334.8 7.3

S0 = 3, l0=2, J=5, and λj = 1, j = 1, . . . , J.

the following, we start by reporting in Table 4 the comparative results of the different mode

symmetric case (i.e., identical local warehouses) for wj ≤ 0.5. The results for wj ≥ 0.75 ar

ted in Table 8 in Appendix 2 since the conclusions drawn from Table 4 also hold for Table 8

ark in bold the cases where the difference in αj , j = 1, 2 or δj , j = 1, 2 for the JO and OV

ls is higher than 3% compared to the simulation. We believe that a minimum difference of 3% is

able choice to compare the models. In the asymmetric case (i.e., non-identical local warehouses

sults when our model is compared to the simulation and the JO model are reported in Table 5

omparison to the OV S model is reported in Table 6. Note that in Tables 5-6 to limit the lengt

tables for presentation purposes and facilitate further the interpretation of the results, we onl

t the instances where the difference in the simulation is significant, exceeding 3%.

onsidering identical warehouses, under the JO setting, we find 7 instances out of 64 where th

nce, to the simulation model, exceeds 3%. Five of these 7 cases are listed in Table 4 (and

sted in Table 8). Under OV S model setting, Table 4 shows that there are only 5 instances (

ces) with a difference above 3% in our model (in the OV S model), which shows the accuracy o

odel compared to the two benchmark models. Furthermore, the results in Table 4, show tha

rformance of our model is higher than that of OV S (i.e closer to simulation) especially when th

l warehouse lead time l0 is high compared to the local warehouse lead time lj , j ∈ {1, . . . , J}
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Table 4: Comparison under symmetric instances

odel
l0 l1 δ1(%)
2 1 6.15
2 5 5.19
20 1 0.74
20 5 0.39
2 1 9.09
2 5 7.69
20 1 6.27
20 5 5.08
2 1
20 1
2 1
20 1
2 1
20 1
2 1
20 1
2 1 7.96
2 5 9.49
20 1 0.50
20 5 0.31
2 1 16.64
2 5 19.97
20 1 5.26
20 5 5.22
2 1
20 1
2 1
20 1
2 1
20 1
2 1
20 1
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Input Comparison with JO model Comparison with OV S model
parameters Simulation Model Our Model JO Model Simulation Model Our Model OV S M

S0 S1/S2 λ1/λ2 w α1(%) δ1(%) α1(%) δ1(%) α1(%) δ1(%) α1(%) δ1(%) α1(%) δ1(%) α1(%)
1 1 0.1 0 88.87 11.14 88.56 11.44 88.58 11.42 88.85 1.71 88.40 6.15 88.23
1 2 0.1 0 91.69 8.31 91.51 8.49 91.52 8.48 91.66 2.61 91.47 5.19 91.48
1 1 0.1 0 47.39 52.57 47.33 52.67 50.30 49.70 47.34 0.07 47.07 0.55 52.93
1 2 0.1 0 63.88 36.14 63.80 36.20 64.93 35.07 63.86 0.09 63.71 0.30 65.72
5 1 0.1 0 90.93 9.11 90.91 9.09 90.91 9.09 90.91 9.05 90.91 9.09 90.91
5 2 0.1 0 92.27 7.66 92.31 7.69 92.31 7.69 92.30 7.68 92.31 7.69 92.31
5 1 0.1 0 85.19 14.77 84.73 15.27 84.42 15.57 84.36 4.79 83.68 6.32 82.57
5 2 0.1 0 89.27 10.70 88.88 11.12 88.78 11.22 88.93 3.29 88.42 5.15 88.26
1 1 0.1 0.25 88.55 9.22 88.28 9.48 88.31 9.45
1 1 0.1 0.25 46.63 52.20 46.58 52.24 49.59 49.16
5 1 0.1 0.25 90.73 6.98 90.73 6.98 90.73 6.98
5 1 0.1 0.25 84.49 13.33 84.13 13.74 83.83 14.05
1 1 0.1 0.5 88.22 7.22 88.05 7.43 88.08 7.40
1 1 0.1 0.5 45.90 51.77 45.85 51.80 48.89 48.60
5 1 0.1 0.5 90.60 4.76 90.59 4.76 90.59 4.76
5 1 0.1 0.5 83.84 11.87 83.55 12.17 83.24 12.49
1 1 0.2 0 78.03 22.00 77.42 22.58 77.57 22.43 77.80 2.71 76.86 7.95 76.48
1 2 0.2 0 78.04 21.99 77.63 22.37 77.66 22.34 77.85 5.64 77.35 9.50 77.27
1 1 0.2 0 28.65 71.32 28.67 71.33 32.00 68.00 28.65 0.05 28.50 0.26 37.72
1 2 0.2 0 40.12 59.89 40.10 59.90 41.61 58.39 40.06 0.07 40.02 0.15 43.89
5 1 0.2 0 83.35 16.67 83.33 16.67 83.33 16.67 83.31 16.56 83.33 16.64 83.33
5 2 0.2 0 79.97 20.01 80.00 20.00 80.00 20.00 80.03 19.90 80.00 19.97 80.00
5 1 0.2 0 61.85 38.15 61.35 38.64 62.25 37.75 60.40 2.89 59.09 4.86 60.24
5 2 0.2 0 66.31 33.67 65.79 34.21 66.21 33.79 65.33 2.88 64.20 4.95 63.66
1 1 0.2 0.25 76.90 19.11 76.44 19.64 76.61 19.46
1 1 0.2 0.25 27.56 71.02 27.55 71.04 30.87 67.55
5 1 0.2 0.25 82.69 13.02 82.71 13.05 82.71 13.05
5 1 0.2 0.25 59.82 37.15 59.42 37.53 60.49 36.41
1 1 0.2 0.5 75.91 16.08 75.58 16.47 75.77 16.26
1 1 0.2 0.5 26.46 70.72 26.48 70.74 29.78 67.08
5 1 0.2 0.5 82.26 9.08 82.25 9.10 82.25 9.10
5 1 0.2 0.5 57.79 36.19 57.54 36.41 58.78 35.04

dition to these observations, we find that when our performance decreases under a small lea

l0, it also decreases for the OV S model. Even in this latter case, our model leads to a highe

mance compared to OV S. We observe similar performance under the JO model setting, i

l cases, especially when the lead time of the central warehouse is high, while our model lead

ost the same performance as the simulation. This negative effect of the central warehouse lea

n the performance in both JO and OV S models is due to their modeling approach. In fact, bot

ls rely on estimating a common waiting time for backordered demands at the central warehous

culate the fractions of accepted or lost demand and they do not differentiate this waiting tim

e different demand levels experienced at the local warehouses. Therefore, considering the sam

g time for all local warehouses has a negative impact on the performance, especially when th

ime increases. This also increases the backorders, which affects the accepted or lost deman

ons. In contrast, in our approach, we do not rely on the waiting time at the central warehous

e are able to derive the accepted or lost demand fractions in a distinct way because we rel

e backorder levels at the central warehouse, Bj
0. The backorder levels are obviously differen

n-identical local warehouses, which explains why the performance of JO and OV S is poor i

pecific case. Our model is thus a good alternative to the two benchmark models, and at leas

alent or better than the OV S and JO models in most cases.

the case of non-identical local warehouses, for the comparison to the JO model, out of the 19
23
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Table 5: Comparison of our model, the Johansson and Olsson (2018) model, and the simulation under
asymmetric instances

l0 l1 δ2(%)
20 1 6.19
2 1 2.39
2 5 42.46

20 1 2.54
2 1 55.31
2 5 55.44

20 1 8.21
20 5 9.59
2 1 50.00
2 5 50.00

20 1 1.59
20 5 1.77
20 1 5.65
20 5 7.60
2 1 38.23
2 5 38.29

20 1 2.10
20 1 5.21
2 1 0.10
2 5 0.20

20 1 7.58
20 5 9.08
2 1 42.86
2 5 42.86

20 1 5.07
20 5 5.16
20 1 5.09
20 5 7.07
20 1 1.62
20 5 2.88
20 1 2.70
20 5 4.73
2 1 3.64
2 5 3.68

20 1 6.81
20 5 8.46
2 1 33.33
2 5 33.33

20 1 6.57
20 5 6.44
20 1 4.50
20 5 6.51
20 1 1.09
20 5 2.40
20 1 7.71
20 5 3.28
2 1 5.46
2 5 5.42

20 1 5.81
20 5 7.65
2 1 20.00
2 5 20.00

20 1 5.10
20 5 4.48
20 5 4.63
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Input parameters Simulation Our model JO Model
l2 S0 S1 S2 λ1 λ2 w α1(%) α2(%) δ1(%) δ2(%) α1(%) α2(%) δ1(%) δ2(%) α1(%) α2(%) δ1(%)
1 1 1 1 0.1 0.2 0 44.87 30.32 55.13 69.68 44.92 30.27 55.08 69.73 47.87 33.81 52.13 6
1 1 1 1 0.1 0.5 0 86.18 60.64 13.82 39.36 86.39 57.24 13.61 42.76 86.56 57.61 13.44 4
1 1 2 1 0.1 0.5 0 90.66 60.51 9.34 39.48 90.80 57.19 9.20 42.81 90.85 57.54 9.15
1 1 1 1 0.1 0.5 0 42.81 14.44 57.19 85.56 43.04 14.37 56.95 85.63 45.58 17.46 54.42 8
1 1 1 1 0.1 1 0 84.56 42.27 15.44 57.73 85.39 38.77 14.61 61.22 88.32 11.17 11.68
1 1 2 1 0.1 1 0 90.34 42.18 9.66 57.82 90.47 38.73 9.53 61.27 91.43 11.41 8.57
1 1 1 1 0.1 1 0 42.41 7.66 57.59 92.34 42.37 7.64 57.63 92.36 47.34 7.18 52.66 8
1 1 2 1 0.1 1 0 62.10 7.30 37.90 92.70 62.07 7.26 37.93 92.74 64.50 7.05 35.50 8
1 5 1 1 0.1 1 0 90.97 49.94 9.03 50.05 90.89 49.95 9.11 50.05 90.91 0.00 9.09
1 5 2 1 0.1 1 0 92.22 49.94 7.78 50.05 92.30 49.95 7.70 50.05 92.31 0.00 7.69
1 5 1 1 0.1 1 0 67.13 21.88 32.87 78.12 67.00 21.51 33.00 78.49 89.67 1.15 10.33 5
1 5 2 1 0.1 1 0 80.76 21.14 19.24 78.86 80.46 20.82 19.54 79.18 91.68 1.27 8.32 5
1 1 1 1 0.1 0.2 0.25 44.10 29.29 54.83 69.26 44.15 29.13 54.73 69.38 47.11 32.68 51.69 6
1 1 2 1 0.1 0.2 0.25 62.85 27.92 36.13 70.67 62.93 27.88 36.09 70.69 64.38 30.82 34.66 6
1 1 1 1 0.1 0.5 0.25 85.59 56.79 12.25 35.71 85.90 54.08 11.92 38.72 86.10 54.51 11.72
1 1 2 1 0.1 0.5 0.25 90.41 56.71 8.75 35.73 90.53 54.05 8.67 38.75 90.59 54.46 8.61
1 1 1 1 0.1 0.5 0.25 42.15 12.84 56.80 85.41 42.27 12.85 56.66 85.44 44.74 15.80 54.13 8
1 5 1 1 0.1 0.5 0.25 69.41 35.38 28.86 59.89 69.36 34.77 28.89 60.60 63.94 30.70 34.44 6
1 1 1 1 0.1 1 0.25 83.91 35.42 13.95 54.47 84.75 33.01 13.11 57.61 87.82 10.41 9.95 5
1 1 2 1 0.1 1 0.25 89.71 35.37 9.44 54.54 90.14 32.99 9.04 57.64 91.16 10.53 8.05 5
1 1 1 1 0.1 1 0.25 41.38 6.05 57.53 92.24 41.60 6.03 57.35 92.26 46.47 5.76 52.35 8
1 1 2 1 0.1 1 0.25 61.29 5.73 37.69 92.64 61.39 5.73 37.63 92.64 63.79 5.63 35.24 8
1 5 1 1 0.1 1 0.25 90.75 44.49 6.96 42.87 90.69 44.42 7.01 42.96 90.73 0.00 6.98
1 5 2 1 0.1 1 0.25 92.28 44.47 7.02 42.90 92.13 44.42 7.12 42.96 92.14 0.00 7.10
1 5 1 1 0.1 1 0.25 65.31 17.35 33.07 77.70 65.45 17.15 32.90 77.98 89.26 1.10 8.48 4
1 5 2 1 0.1 1 0.25 79.81 16.77 19.20 78.47 79.58 16.61 19.47 78.68 91.44 1.14 7.79 4
1 1 1 1 0.1 0.2 0.5 43.46 28.10 54.35 68.90 43.40 28.03 54.38 69.03 46.37 31.59 51.25 6
1 1 2 1 0.1 0.2 0.5 62.55 26.95 35.49 70.29 62.28 26.84 35.77 70.33 63.74 29.80 34.34 6
1 1 1 1 0.1 0.5 0.5 41.54 11.54 56.41 85.21 41.51 11.49 56.36 85.24 43.91 14.32 53.84 8
1 1 2 1 0.1 0.5 0.5 61.24 10.92 36.74 85.94 61.13 10.95 36.91 85.94 62.30 13.33 35.76 8
1 5 1 1 0.1 0.5 0.5 67.86 31.85 28.66 59.13 67.88 31.47 28.64 59.59 55.73 21.26 41.41 7
1 5 2 1 0.1 0.5 0.5 81.01 30.90 17.17 60.34 80.69 30.67 17.47 60.62 77.12 27.47 21.01 6
1 1 1 1 0.1 1 0.5 83.57 29.79 12.29 50.88 84.08 28.30 11.61 53.35 87.28 9.91 8.24 4
1 1 2 1 0.1 1 0.5 89.62 29.73 8.76 50.93 89.81 28.29 8.57 53.36 90.88 9.95 7.56 4
1 1 1 1 0.1 1 0.5 40.83 4.73 57.11 92.14 40.84 4.76 57.06 92.16 45.61 4.62 52.05 8
1 1 2 1 0.1 1 0.5 60.63 4.54 37.36 92.52 60.71 4.53 37.32 92.53 63.09 4.51 34.98 8
1 5 1 1 0.1 1 0.5 90.59 40.47 4.72 33.37 90.53 40.29 4.82 33.57 90.59 0.00 4.76
1 5 2 1 0.1 1 0.5 92.00 40.41 6.56 33.37 91.96 40.30 6.54 33.56 91.98 0.00 6.53
1 5 1 1 0.1 1 0.5 63.83 13.75 32.92 77.31 63.90 13.66 32.82 77.48 88.80 1.09 6.65 3
1 5 2 1 0.1 1 0.5 78.95 13.31 19.18 78.02 78.69 13.23 19.41 78.18 91.19 1.06 7.29 3
1 1 1 1 0.1 0.2 0.75 42.57 27.08 54.09 68.56 42.66 26.97 54.02 68.66 45.64 30.55 50.80 6
1 1 2 1 0.1 0.2 0.75 61.71 25.89 35.34 69.91 61.63 25.85 35.45 69.97 63.11 28.82 34.02 6
1 1 1 1 0.1 0.5 0.75 40.50 10.27 56.26 85.02 40.76 10.28 56.06 85.05 43.07 13.00 53.58 8
1 1 2 1 0.1 0.5 0.75 60.43 9.78 36.55 85.75 60.46 9.80 36.60 85.75 61.59 12.10 35.52 8
1 5 1 1 0.1 0.5 0.75 66.60 28.61 28.31 58.36 66.40 28.47 28.43 58.58 49.84 15.32 46.28 7
1 5 2 1 0.1 0.5 0.75 79.80 27.79 17.33 59.49 79.84 27.76 17.39 59.61 71.72 18.36 25.36 7
1 1 1 1 0.1 1 0.75 83.03 25.09 10.34 46.84 83.38 24.44 10.13 48.27 86.67 9.68 6.58 3
1 1 2 1 0.1 1 0.75 89.30 25.04 8.27 46.83 89.46 24.44 8.12 48.26 90.57 9.65 7.12 3
1 1 1 1 0.1 1 0.75 40.10 3.75 56.79 92.05 40.10 3.76 56.77 92.05 44.74 3.72 51.78 8
1 1 2 1 0.1 1 0.75 60.10 3.58 36.90 92.44 60.04 3.58 37.02 92.43 62.38 3.62 34.74 8
1 5 1 1 0.1 1 0.75 90.29 37.72 2.50 20.11 90.40 37.51 2.56 20.58 90.51 0.00 2.44
1 5 2 1 0.1 1 0.75 91.73 37.76 6.03 20.11 91.80 37.52 5.99 20.57 91.84 0.00 5.96
1 5 1 1 0.1 1 0.75 62.30 10.88 32.78 76.94 62.39 10.87 32.76 76.99 88.22 1.14 4.91 2
1 5 2 1 0.1 1 0.75 77.79 10.56 19.27 77.64 77.81 10.53 19.34 77.70 90.91 1.01 6.84 2
5 5 2 2 0.1 1 3.75 70.33 1.00 15.80 73.94 70.58 1.03 15.76 73.98 58.59 0.49 27.06 8

Table 5 shows that there are about 27% of cases (i.e., 52 instances) where the JO model show

rence in αj , j = 1, 2 or in δj , j = 1, 2 higher than 3% compared to the simulation (cases marke

d font), whereas in our model, only 4% (i.e., 8 instances) of cases have a difference greater tha

ote that under JO model, the difference to the simulation can reach 53% for the fraction o

nd lost. Similarly, when comparing our model with that of OV S, the results in Table 6 revea

or the OVS’s model, about 50% of the cases (i.e., 28 instances) have a difference in αj , j = 1,

δj , j = 1, 2 higher than 3%, whereas in our model, we find only 8 cases where the differenc

ds 3%. This demonstrates that our approximations of αj and δj are very close to the simulatio

l. It should be noted however that our model and OV S underestimate the fraction of deman
24
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Table 6: Comparison of our model, Özkan et al. (2015)’s model, and the simulation under asymmetric
instances
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Input parameters Simulation Model Our Model OV S model

1 l2 S0 S1 S1 λ1 λ2 α1(%) α2(%) δ1(%) δ1(%) α1(%) α2(%) δ1(%) δ1(%) α1(%) α2(%) δ1(%) δ1(%)
1 1 1 1 1 0.1 0.2 87.92 79.11 10.48 17.94 87.48 78.04 7.38 12.52 87.35 77.53 7.52 13.04
1 5 1 1 2 0.1 0.2 87.85 78.46 10.56 15.26 87.46 77.85 7.40 10.85 87.20 77.78 7.67 10.93
5 1 1 2 1 0.1 0.2 91.33 79.06 6.29 17.99 91.17 78.02 4.49 12.57 91.18 77.29 4.48 13.32
5 5 1 2 2 0.1 0.2 91.35 78.41 6.29 15.32 91.16 77.84 4.50 10.89 91.18 77.76 4.49 10.97
1 1 1 1 1 0.1 0.2 44.85 30.32 55.11 69.60 44.70 30.02 55.04 69.50 53.54 36.56 46.02 62.65
1 5 1 1 2 0.1 0.2 42.90 42.27 57.06 57.58 42.83 42.16 56.98 57.43 47.48 46.93 52.20 52.38
5 1 1 2 1 0.1 0.2 63.57 28.98 36.37 70.96 63.48 28.76 36.34 70.86 68.52 30.82 31.18 68.54
5 5 1 2 2 0.1 0.2 62.14 41.31 37.82 58.57 62.12 41.18 37.76 58.50 65.51 43.58 34.28 55.87
1 1 5 1 1 0.1 0.2 78.09 66.89 19.27 28.08 77.20 65.40 18.69 27.06 77.67 63.49 18.15 28.84
1 5 5 1 2 0.1 0.2 77.01 70.62 20.47 24.10 75.91 69.19 20.20 22.25 73.78 68.75 22.32 22.65
5 1 5 2 1 0.1 0.2 86.11 65.84 12.09 29.31 85.52 64.43 11.12 28.29 86.12 58.74 10.51 33.96
1 1 1 1 1 0.1 0.5 86.14 57.98 12.58 37.07 85.71 55.82 10.99 32.09 85.84 54.81 10.83 33.01
1 5 1 1 2 0.1 0.5 86.17 50.04 12.50 38.16 85.80 48.96 10.83 33.56 85.55 48.73 11.08 33.78
5 1 1 2 1 0.1 0.5 90.72 57.92 7.48 37.16 90.58 55.79 6.64 32.17 90.62 54.03 6.59 33.87
5 5 1 2 2 0.1 0.5 90.77 49.99 7.40 38.22 90.61 48.95 6.55 33.63 90.63 48.67 6.53 33.90
1 1 1 1 1 0.1 0.5 42.97 14.35 57.01 85.57 42.87 14.18 57.05 85.52 54.60 19.39 45.21 79.94
1 5 1 1 2 0.1 0.5 41.22 19.85 58.77 80.00 41.16 19.75 58.78 79.96 48.11 23.50 51.76 75.86
5 1 1 2 1 0.1 0.5 62.47 13.66 37.50 86.28 62.39 13.53 37.55 86.23 68.61 15.17 31.26 84.26
5 5 1 2 2 0.1 0.5 61.11 19.33 38.87 80.55 61.07 19.25 38.89 80.53 65.60 21.09 34.32 78.39
1 1 5 1 1 0.1 0.5 69.39 37.09 29.84 59.67 68.61 35.30 29.88 59.16 73.12 35.23 25.09 58.18
5 1 5 2 1 0.1 0.5 81.81 36.06 17.52 60.88 81.31 34.38 17.48 60.40 83.29 30.07 15.28 63.72
5 1 1 2 1 0.1 1 90.28 38.75 8.46 55.54 90.13 36.66 8.22 52.60 90.21 34.88 8.08 54.04
1 1 1 1 1 0.1 1 42.24 7.59 57.75 92.34 42.23 7.51 57.74 92.32 55.29 11.00 44.62 88.49
1 5 1 1 2 0.1 1 40.72 10.41 59.27 89.46 40.66 10.37 59.32 89.46 48.45 12.74 51.49 86.80
5 1 1 2 1 0.1 1 62.00 7.23 37.98 92.72 62.00 7.16 37.98 92.70 68.70 8.24 31.23 91.32
5 5 1 2 2 0.1 1 60.74 10.13 39.25 89.77 60.74 10.10 39.24 89.76 65.68 11.26 34.27 88.36
1 1 5 1 1 0.1 1 65.56 20.31 34.13 77.66 65.06 19.19 34.33 77.46 71.70 20.22 27.44 75.05
5 1 5 2 1 0.1 1 79.87 19.66 19.79 78.45 79.57 18.62 19.95 78.26 82.23 16.45 17.07 79.03

r all instances considered. This underestimation is much larger in the OV S model than in our

can be explained by an overestimation of the fraction of the demand satisfied from the centra

ouse βj (since βj = 1 − αj − δj). This overestimation is due to the Poisson assumption arriva

e orders in the pipeline between the central warehouse and local warehouse. In fact, such a

ption is valid if the central warehouse has an infinite stock, which is not always true, makin

rrival rate less than λj and consequently a higher βj . Moreover, our model outperforms th

model in estimating the fraction of demand satisfied with stock on hand. Hence, our mod

a better alternative to the two models developed in the literature, and the results show that ou

ximations are very close to the simulation.

conclude the numerical investigation, we conduct an experiment where we consider an inventor

composed of two local warehouses with stochastic lead times at the central warehouse. T

ze the sensitivity to the lead time distribution, we focus on the case where the waiting tim

old is less than the local warehouse lead time. We assume that the central warehouse lead tim

s an Erlang distribution with a shape parameter k and a scale parameter k/lj . Erlangian lea

have been considered in the inventory literature (Johansen, 2005). The Erlang distribution

cterized with a high modelling flexibility, since for k = 1, it is equivalent to the exponentia

bution and when k increases the distribution becomes less variable, and it tends toward th

inistic distribution for very high values of k. For the purpose of the numerical analysis, w

er a shape parameter k ∈ {2, 4, 8, 16, 32, 64, 128, 256, 512}. For the other parameters, we us

me values of the 192 instances presented earlier in this paper, i.e., λ1 = 0.1, λ2 ∈ {0.2, 0.5, 1}
25
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{l1, l2} ∈ {1, 5}, l0 ∈ {2, 20} and w ∈ {0.25, 50, 0.75}×min(l1, l2). This gives a total of 1728 instances.

The percent difference of the performance measures obtained with our model and the simulation are
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ted in Table 7. A negative value means that our model underestimates the result obtained wit

mulation. We report for each value of k, the minimum, the maximum and the average valu

percent difference of αj and δj (j = 1, 2) obtained over the 192 instances. From Table 7,

r that our model works very well for a stochastic central warehouse lead time. The error o

ercent difference of αj and δj with respect to simulation does not exceed 3.5%, regardless of th

parameter k of the Erlang distribution of the lead time. Thus, the results obtained under

inistic lead time are also valid for a stochastic lead time.

7: percent difference of the performance obtained with our model and the simulation unde
g distributed lead times with shape k

α1 α2 δ1 δ2
min (%) average (%) max (%) min (%) average (%) max (%) min (%) average (%) max (%) min (%) average (%) max (
-0.43 0.01 0.57 -0.21 0.27 1.79 -0.57 -0.02 0.47 -1.79 -0.37 0.11
-0.56 0.01 0.61 -0.32 0.31 2.16 -0.64 -0.02 0.49 -2.16 -0.44 0.11
-0.56 0.01 0.82 -0.39 0.34 2.57 -0.78 -0.01 0.54 -2.57 -0.48 0.11
-0.59 0.02 0.87 -0.42 0.38 2.90 -0.87 -0.03 0.58 -2.90 -0.52 0.11
-0.72 0.02 1.09 -0.40 0.40 3.12 -1.09 -0.03 0.74 -3.12 -0.55 0.11
-0.72 0.03 1.02 -0.39 0.42 3.31 -1.02 -0.03 0.72 -3.31 -0.58 0.11
-0.69 0.04 1.03 -0.39 0.43 3.42 -1.03 -0.04 0.70 -3.42 -0.60 0.11
-0.77 0.04 1.11 -0.39 0.43 3.44 -1.10 -0.05 0.77 -3.44 -0.61 0.11
-0.79 0.05 1.04 -0.34 0.45 3.44 -1.04 -0.05 0.76 -3.44 -0.61 0.11

he results in Table 7 show that our model performs very well compared to the simulation model i

of the cases. The average error on the percent difference of αj and δj increases as the variability o

ad time decreases and these deviations over the 1728 cases does not exceed 1%. For the maximum

inimum observed values, there are few cases where the absolute deviation value reaches 3.5%

shows that the approximation proposed in our model is of a high quality.

onclusion

ave provided an exact analysis of a two-echelon inventory with general lead times and Poisso

nd with network lost sales in the case of waiting time at the local warehouse equal to the lea

between the central and local warehouses. We have found exact expressions for the steady

distribution of the number of orders in the pipeline to the central warehouse, using this resu

d the fraction of demand satisfied directly from local warehouses and the expected number o

rders and on-hand inventory at each local warehouse. We have shown that the steady-stat

bility of having n orders in the pipeline to the central warehouse is insensitive to the lead tim

bution, except through its mean, implying that the expression of the steady-state probabilit

d in Alvarez and van der Heijden (2014) under constant lead times is exact for any lead tim

bution.

hen the waiting time is less than the lead time between the central and local warehouse, w
26
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derive an approximate expression for the different performance measures and show that our models

are a good alternative to the two benchmark models in the literature. Our results fit within the
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er literature using stochastic network representations to study complex inventory systems. W

used different techniques from this literature to illustrate the course of the analyses.

ur numerical results show that our model’s performance measures are very close to the simulatio

majority of instances considered. In particular, when waiting time at the local warehouse

an the lead time from the central warehouse, our model outperforms the benchmark models i

cases.

he findings of this work provide some insights to managers into the impact of the lead time

tainty on inventory systems under lost sales. Since there is an empirical evidence that replen

nt lead times are uncertain in real inventory systems due to supply and transportation issue

e et al., 2007; Jakšič et al., 2011; Babai et al., 2022), managers can use our models and perfo

e evaluation solutions with any lead time distribution. Moreover, most of the findings of th

show that, regardless of the relationship between the waiting time threshold and the lead tim

ventory levels are not very sensitive to the lead time’s uncertainty and therefore, managers ca

n the deterministic assumption to set the base stock level. Finally, in the particular case wher

imes at local warehouses are less than the waiting time threshold, managers should benefit from

roposed approximation solutions, especially when the lead times differ much between local ware

s (i.e. the case of asymmetric inventories at the local warehouses). In fact, we show that in th

he performance can be improved considerably and the benefit can reach 53% for the fraction o

nd lost compared to solutions provided in the literature.

he analysis in this paper has been performed under the assumption of Poisson demand. It woul

teresting to extend this analysis to the case of compound Poisson demand, since demand fo

parts is often characterized by lumpiness that is better modeled with a compound Poisso

ss rather than a Poisson process (Lengu et al., 2014; Turrini and Meissner, 2019). The steady

probability of the number of orders in the pipeline to the central warehouse is still valid unde

ound Poisson demand. The challenge, however, comes from finding the steady-state probability o

ackorders at the central warehouse. This steady-state probability is no longer a hypergeometr

bution because demand arrives in batches. This is therefore an interesting avenue for futur

ch.
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Appendix 1: Proof of Proposition 1

. An order from local warehouse j, j ∈ {1, ..., J} cannot be admitted in the pipeline if the tota

er of backorders already outstanding reaches Sj . As the maximum number of outstanding order

pipeline of the central warehouse that are associated with local warehouse j ∈ {1, ..., J} canno

d S0 + Sj , the number of orders in the pipeline to the central warehouse can be viewed as

shared by J customer classes. Each class arrives according to a Poisson process with a rate λ

, . . . , J}. If we let each warehouse correspond to a class, than one way to observe the system

that each class j has Sj dedicated servers and shares with all other classes the remaining S

s. Therefore, in Theorem 1 of Kaufman (1981), the steady-state probability of being in stat

is given by:

lim
t→∞

P(N1(t) = n1, . . . , NJ (t) = nJ ) = C
J∏

i=1

(λil0)
ni

ni!
, n ∈ S, (2

e C is the normalizing constant. An example of the transition in the state space S in the cas

local warehouses where L follows an exponential distribution with mean l0 = 1/µ is given i

e 5

0,0

1,0

2,0

0,1 0,2 0,3

1,1

2,1

1,2

2,2

1,3

λ1 λ1 λ1

3µ2µµ

λ2

λ2 2µ

µ λ2

λ2 2µ

µ λ2

λ2 2µ

µ

λ1 λ1 λ1

µµµ

λ1 λ1

µµ

λ2 µ

N1 = S0 + S1

N2 = S0 + S2

N 1
+
N 2

=
S 0
+
S 1
+
S 2

N1 (Pipeline due to warehouse 1)

N2 (Pipeline due to warehouse 2)

e 5: Markov chain transition between states of S under two local warehouses with S0 = 1; S1 =

2 = 2

emaining to be found is the conditional probability of having bj , j ∈ {1, ..., J} in a given pipelin

(n), n > S0. To do so, we consider for simplicity two local warehouses and assume that th

state is (n1, n2), n1 + n2 > S0, in the steady-state, the probability of server 1 processing clas

1/(n1 + n2) and class 2 n2/(n1 + n2). The allocation of server 1 will influence the type of clas
28
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that the subsequent servers will handle. For example, if server 1 processes class 1, server 2 will process

class 1 with probability (n − 1)/(n + n − 1) and class 2 with probability n /(n + n − 1), and so

forth, t
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1 1 2 2 1 2

up to server n1+n2−S0. This is a form of sampling without replacement. The probability tha

ly bj backorders of a particular type are in service when there are n1 and n2 orders in the centra

ouse pipeline is given by the probability mass function of the hypergeometric distribution. Not

his approach is similar to the binomial desegregation introduced in Simon (1971). Furthermor

ergeometric desegregation of backorders is also reported in Boucherie et al. (2018) modelin

-echelon spare parts network with lateral and emergency shipment by a queuing network wit

ow by-passes similar to Song and Zipkin (2009). They observe the conditional probability tha

mber of backorders at the central warehouse when the local warehouse is out of stock follows

geometric distribution. Moreover, a similar result is found in multi-class discrete-time queuin

s under the FCFS service discipline and in M/M/s with time varying arrival and service rate

De Clercq et al. (2013) and Ingolfsson (2005)). Finally, Lefèvre (1982) finds that the numbe

ckorders in a two echelon inventory system with a state dependent-arrival rate also forms

geometric distribution.
sing the multivariate hypergeometric distribution, we can write

P {b|n} = lim
t→∞

P
{
B

1
0(t) = b1, . . . , B

J
0 (t) = bJ | N1(t) = n1, . . . , NJ (t) = nJ

}
=

(
n1
b1

)(
n2
b2

)
. . .

(
nJ
bJ

)

(∑J
j=1

nj
∑J

j=1
bj

) , b ∈ Ω, n ∈ S(n) (2

herefore, the steady-state joint probability is given by

P {B0 = b, N = n} := lim
t→∞

P
{
B

1
0(t) = b1, . . . , B

J
0 (t) = bJ , N1(t) = n1, . . . , NJ (t) = nJ

}
,

at

π(B0 = b, N = n) = P
{
B

1
0 = b1, . . . , B

J
0 , N1 = n1, . . . , NJ = nJ

}
=

(
n1
b1

)(
n2
b2

)
. . .

(
nJ
bJ

)

(∑J
j=1

nj
∑J

j=1
bj

) C
J∏

i=1

(λil0)
ni

ni!
,

h completes the proof. ■

Appendix 2: Proof of Corollary 1

. Let n =
∑J

j=1 nj and n − S0 =
∑J

j=1 bj , then
∑J

j=1 nj − bj = S0, so with Proposition 1, w

Q(n) =
∑

∑J
j=1

bj=n−S0,
∑J

j=1
nj−bj=S0

P
{
B

1
0 = b1, . . . , B

J
0 = bJ , N1 = n1, . . . , NJ = nj

}
, (2

= C
S0!n!

(S0 + n)!

∑
∑J

j=1
bj=n−S0,

∑J
j=1

nj−bj=S0

J∏

i=1

(λil0)
bi

bi!

J∏

i=1

(λil0)
ni−bi

(ni − bi)!
, (2

= C
S0!n!

(S0 + n)!

∑
∑J

j=1
bj=n−S0,

J∏

i=1

(λil0)
bi

bi!

∑
∑J

j=1
nj−bj=S0

J∏

i=1

(λil0)
ni−bi

(ni − bi)!
.
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But
∑∑J

j=1 nj−bj=S0

∏J
i=1

(λil0)
ni−bi

(ni−bi)!
= (λ0l0)S0

S0!
, therefore,
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Q(n) = C
S0!n!

(S0 + n)!

(λ0l0)
S0

S0!

∑
∑J

j=1
bj=n−S0,

J∏

i=1

(λil0)
bi

bi!
, (b1, b2, . . . , bJ ) ∈ Ω(n). (2

1, . . . , bJ) such that
∑J

j=1 bj ≤
∑J

j=1 Sj and bj ≤ Sj .

ote that Equations 24 and 26 link the number of backorders, B0, to the number of orders in th

ne to the central warehouse n. In addition to the steady-state probability Q(n), n ≥ 0, thes

ions also provide the number of backorders Bj
0 in the pipeline to the central warehouse. Th

lution of all Bj
0, j = 1, . . . , J is sufficient to find Q(n), n ≥ 0, independently of the number o

s in the pipeline n. ■

Appendix 3: Proof of Corollary 2

. We wish to compute the steady-state probability of having n backorders at the central ware

using the method of Alvarez and van der Heijden (2014). To do so, we first need to com

the steady-state probability of the Markov chain plotted in their Figure 2. We denote wit

= 1, . . . , J, the random variables that represent the number of backorders at the central ware

that are associated with local warehouse j in steady-state. Alvarez and van der Heijden (2014

e that the vector (B1
0 , . . . , B

J
0 ) has a truncated multinomial distribution with mass parameter

robability vector
(
λ1
λ0
, . . . , λJ

λ0

)
. Let the vector (S1, . . . , SJ) be a set of integers representing th

um number of backorders associated with local warehouse j, j = 1, ..., J .

ccording to Alvarez and van der Heijden (2014), the steady-state probability Q(n) of backorder

Q(n) =





(λ0L0)n

n!
, n ≤ S0,

(L0)n

(n)!

∏n−1
y=0 M(y), n > S0,

(2

e

M(n) =





λ0, n ≤ S0

∑J
j=1 λj

(
1 − P

{
B

j
0 = Sj |n − S0

})
, n > S0

. (2

compute Q(n), n > S0, we need to express P
{
Bj

0 = Sj |n− S0, n > S0

}
in a closed form. Hence

we express this probability in a simpler form. Since (B1
0 , . . . , B

J
0 ) has the multinomial distribu

ith mass parameter n and probability vector
(
λ1
λ0
, . . . , λJ

λ0

)
, Alvarez and van der Heijden (2014

that
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is however complex to use this formula to compute Q(n) for very high J . We next simplify th

ssion Q(n). From Frey (2009), we can write:
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Appendix 2: Comparison under symmetric instances for wj ≥ 0.75
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adv

Johan d

erla s

of t

Johan h

em

Kaufm -

tion

Kouk k

inv s,

209

Kouk le

inv ,

287

Lefèv n
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Highlights

• We consider a two-echelon inventory system facing a Poisson demand

• We analyze the inventory system in the case of network lost sales

• We model the system using a queuing network representation

• We generalize the findings of earlier research for general lead times

• We propose more accurate solutions than those proposed in earlier research
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