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We here provide more details on the evolution of an operator driven by a stochastic Hamiltonian
and the equation of motion for the stochastic operator variance (c.f. Sec. I), dissipative out-of-time-
order correlators (c.f. Sec. II), the bipartite interpretation of matrix products (c.f. Sec. III), the
quantum (c.f. Sec. IV) and classical (c.f. Sec. V) stochastic Lipkin-Meshkov-Glick models, and the
corresponding numerical computations (c.f. Sec. VI).
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I. STOCHASTIC EVOLUTION: DETAILS ON THE MAIN DERIVATION

A. On the Heisenberg picture of an explicitly time-dependent Hamiltonian

We consider an explicitly time-dependent Hamiltonian Ĥt, which in general does not commute with itself at different
times, [Ĥt, Ĥt′ ] 6= 0. It governs the dynamics of a state through the Schrödinger equation

d

dt
|ψt〉 = −iĤt |ψt〉 , (S1)

whose solution |ψt〉 = Ût |ψ0〉 = T←e−i
∫ t
0
Ĥτdτ |ψ0〉 , involves the propagator from time 0 to t, Ût, where T← is the

chronological time-ordering operator [1]. An (explicitly time-independent) operator Â in the Heisenberg picture then
evolves as

Â
(h)
t = Û†t ÂÛt. (S2)
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Differentiating this evolution gives Heisenberg’s equation for the evolution of Ât as

d

dt
Â

(h)
t =

˙̂
U†t ÂÛt + Û†t Â

˙̂
Ut = iÛ†t ĤtÂÛt − iÛ†t ÂĤtÛt = i[Ĥ

(h)
t , Â

(h)
t ], (S3)

where Ĥ
(h)
t = Û†t ĤtÛt 6= Ĥt is the Hamiltonian in the Heisenberg picture with respect to itself, which is not equal

to Ĥt since it does not commute with itself at the different times t′ < t included in Ût. Note that the Heisenberg

equation (S3) is recovered when we introduce the Hamiltonian in the Heisenberg picture with respect to itself Ĥ
(h)
t ,

but that its solution (S2) only requires the bare Hamiltonian Ĥt in the propagator Ût.
We bring attention to the fact that Heisenberg operators evolve “backwards in time”. This can be illustrated by

splitting the evolution over two different times 0 ≤ t1 ≤ t2. The expectation value of any general operator Â then
reads

〈ψ|T→e+i
∫ t1
0 ĤτdτT→e+i

∫ t2
t1
Ĥτdτ ÂT←e−i

∫ t2
t1
ĤτdτT←e−i

∫ t1
0 Ĥτdτ |ψ〉 , (S4)

where T→ denotes anti-chronological time-ordering. While states evolve forwards in time, 0→ t1 → t2, the equivalent
evolution at the level of operators is for them to evolve backwards in time, t2 → t1 → 0. Of course this is just a result
of the Heisenberg representation and does not correspond to a backwards time evolution.

B. Heisenberg evolution with a stochastic Hamiltonian

Adjoint stochastic master equations (SMEs) have been studied in [2, 3] for continuous homodyne detection and
read

dÂt = i[Ĥ, Â]dt+
√
η(ĉ†Ât + Âtĉ)dYt−dt +

∑
m

(
L̂mÂtL̂m −

1

2
{L̂†mL̂m, Ât}

)
dt, (S5)

where we use the backwards differential dÂt ≡ Ât−dt − Ât. η is the efficiency of the detector, ĉ is the measurement

observable, L̂m are the Lindblad operators describing coupling to a general bath, and dYt is the measurement record.
dYt is a stochastic process. Note that this equation does not preserve trace. When dYt represents white noise without
drift, i.e. 〈dYt〉 = 0, the average over the noise recovers the standard adjoint master equation for the average operator

〈Ât〉.
We draw attention to the fact that the measurement record appears as dYt−dt. To apply Itō’s rules, we need to

evaluate the noise at the beginning of the time interval. In the Schrödinger picture, this corresponds to evaluating
the noise at time t in the interval [t, t+ dt]. But since we work in the Heisenberg picture we propagate the operator
in the interval [t− dt, t] and we have to evaluate the noise at t− dt. The propagator over dt thus reads

Ûdt = e−iĤdt−i
√

2γL̂dWt−dt , (S6)

which gives the SME (3) in the main text. Note that this equation is trace preserving. So although in the case
of driftless white noise 〈dYt〉 = 0, the SME’s (3) and (S5) give the same results at the average level, they describe
different dynamics at the level of single trajectories.

C. Finding the equation of motion for the SOV

The equation of motion for the second stochastic moment simply reads d
dt 〈Â2

t 〉 = L†[〈Â2
t 〉], and that for the first

moment squared reads

d

dt
〈Ât〉2 = L†[〈Ât〉]〈Ât〉+ 〈Ât〉L†[〈Ât〉]. (S7)

In the latter, we want to introduce the term L†[〈Ât〉2] in order to recover L†[∆Â2
t ] through linearity of the Lindbladian

superoperator. The difference reads

d

dt
〈Ât〉2 − L†[〈Ât〉2] = −γ

({
[L̂, [L̂, 〈Ât〉]], 〈Ât〉

}
− [L̂, [L̂, 〈Ât〉2]]

)
= −2γ

(
L̂〈Ât〉2L̂+ 〈Ât〉L̂2〈Ât〉 − L̂〈Ât〉L̂〈Ât〉 − 〈Ât〉L̂〈Ât〉L̂

)
= −2γ[L̂, 〈Ât〉]2, (S8)
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which yields the equation of motion (4) for the SOV given in the main text

d

dt
∆Â2

t = L†[∆Â2
t ]− 2γ[L̂, 〈Ât〉]2. (S9)

D. The SOV uncertainty principle

The theory of positive matrices (see pg. 75 [4]) tells us that given a completely positive unital map, like eL
†t[•], for

all operators Â, B̂, the following matrix is positive semidefinite(
∆Â2

t ∆ÂBt

∆ÂB
†
t ∆B̂2

t

)
≥ 0, (S10)

i.e. the 2N × 2N matrix has to be positive semidefinite. While this statement is powerful, it does not give any
straightforward inequality. For this reason, we take the expectation value of each of the blocks over a certain state ρ,
denoted 〈•〉ρ = Tr(•ρ). This allows recasting the inequality for a 2x2 matrix,(

〈∆Â2
t 〉ρ 〈∆ÂBt〉ρ

〈∆ÂB†t〉ρ 〈∆B̂2
t 〉ρ

)
≥ 0. (S11)

Let us now apply Sylvester’s criterion: a matrix is positive semi-definite if and only if all its principal minors, i.e. the
determinants of the matrix in which we delete the columns and rows with the same index, are non-negative. Doing
so, we can recast the complete positivity condition into

〈∆Â2
t 〉ρ ≥ 0, 〈∆B̂2

t 〉ρ ≥ 0, 〈∆Â2
t 〉ρ〈∆B̂2

t 〉ρ − |〈∆ÂBt〉ρ|2 ≥ 0. (S12)

The two first inequalities above are fulfilled because the SOV is positive semidefinite, the last condition yields an
analog of the Schwarz inequality

〈∆Â2
t 〉ρ〈∆B̂2

t 〉ρ ≥ |〈∆ÂBt〉ρ|2. (S13)

Let us now expand the r.h.s. of the inequality. Writing ÂB̂ = 1
2 ({Â, B̂}+ [Â, B̂]) and B̂Â = 1

2 ({Â, B̂} − [Â, B̂]), we
obtain

|〈∆ÂBt〉ρ|2 = (〈eL†t[ÂB̂]〉ρ − 〈ÂtB̂t〉ρ)(〈eL
†t[B̂Â]〉ρ − 〈B̂tÂt〉ρ)

=
1

4

(
〈eL†t[{Â, B̂}]〉2ρ − 〈eL

†t[[Â, B̂]]〉2ρ − 2〈eL†t[{Â, B̂}]〉ρ〈{Ât, B̂t}〉ρ + 2〈eL†t[[Â, B̂]]〉ρ〈[Ât, B̂t]〉ρ

+ 〈{Ât, B̂t}〉ρ − 〈[Ât, B̂t]〉2ρ
)

=
1

4

(
〈eL†t[{Â, B̂}]〉ρ − 〈{Ât, B̂t}〉ρ

)2

− 1

4

(
〈eL†t[[Â, B̂]]〉ρ − 〈[Ât, B̂t]〉ρ

)2

=
1

4

(
D2

+(Â, B̂)−D2
−(Â, B̂)

)
,

In the last line, we introduced Dη(Â, B̂) = 〈eL†t([Â, B̂]η)〉ρ − 〈[Ât, B̂t]η〉ρ, where [X̂, Ŷ ]η = X̂Ŷ + ηŶ X̂ with η = ±1
is the generalized commutator. Therefore the SOV uncertainty principle reads

Tr(∆Â2
tρ)Tr(∆B̂2

t ρ) ≥ 1

4

(
D2

+(Â, B̂)−D2
−(Â, B̂)

)
. (S14)

II. DISSIPATIVE OUT-OF-TIME-ORDER CORRELATORS

A. Short-time expansion of OTOC

It is insightful to consider the short-time expansion of the OTOC

dtTr(∆Â2
t ) = −2γTr

(
[L̂, Â+ tL†[Â] +O(t2)]2

)
= −2γTr

(
[L̂, Â]2 + 2t[L̂, Â][L̂,L†[Â]]

)
+O(t2). (S15)
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The linear term in t has an oscillatory contribution −4iγtTr([L̂, Â][L̂, [Ĥ0, Â]]) and a dissipative contribution

−C0
t

τD
=

2γ

N
tTr([L̂, Â][L̂, [L̂, [L̂, Â]]]) = −2γ

N
tTr([L̂, [L̂, Â]]2), (S16)

where we used the cyclic property of the trace to write Tr(X̂[Ŷ , Ẑ]) = Tr([X̂, Ŷ ]Ẑ) with X̂ = [L̂, Â], Ŷ = L̂, and

Ẑ = [L̂, [L̂, Â]]. Then the inverse dissipation time, τ−1
D ∝ 2γTr(D[Â]2) = 4(D[Â],D[Â]) ≥ 0 is related to the Hilbert-

Schmidt norm of the dissipator D[•] = −[L̂, [L̂, •]] acting on the initial operator Â. The short-time behavior is then
determined by the exponential

Ct ≈ C0e
−t/τD . (S17)

This approximation is compared to the full OTOC in Fig. 1, where the crossover between the different exponential
regimes of the dissipative OTOC is apparent.
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FIG. 1. Short-time behavior of the OTOC as computed from the SOV-OTOC relation. Full OTOC (solid line)
and short-time expansion (S17) (dashed line). The crossover between the two exponentially decaying regimes is seen around
γt ≈ 0.1.

B. The dissipative OTOC for [Ĥ0, L̂] = 0

In the simple case that [Ĥ0, L̂] = 0, the operators Ĥ0 and L̂ share a common eigenbasis, such that Ĥ0 =
∑
nEn |n〉 〈n|

and L̂ =
∑
n ln |n〉 〈n|. The solution of the adjoint master equation then reads

Ât =
∑
m,n

Amne
i(Em−En)t−γ(lm−ln)2t |m〉 〈n| . (S18)

The behavior of the dissipative OTOC then is simply

Tr([L̂, Ât]
2) =

∑
m,k

(lm − lk)2|Akm(t)|2 =
∑
m,k

(lm − lk)2e−2γ(lm−lk)2t|Akm|2. (S19)

This shows that the short-time dynamics is governed by the two eigenvalues with largest difference maxm,k(lm − lk)2

over which the operator has support, i.e. Amk 6= 0, and the long-time dynamics is governed by the smallest possible
non-zero difference minm,k(lm − lk) 6= 0 over which the initial operator has support.

III. PRODUCT OF OPERATORS AS A DOUBLED HILBERT SPACE OPERATION

The standard product between operators in a Hilbert space H with closure relation 1̂H =
∑
n |n〉 〈n| reads

X̂Ŷ =
∑
n,m,k

〈n|X̂|k〉 〈k|Ŷ |m〉 |n〉 〈m| . (S20)
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In turn, the tensor product of the operators over a doubled Hilbert space H = H1 ⊗ H2 with closure relation
1 = 1H1

⊗ 1H2
=
∑
n1,n2

|n1, n2〉 〈n1, n2| where |n1, n2〉 = |n1〉 ⊗ |n2〉 reads

X̂ ⊗ Ŷ =
∑

n1,m1,n2,m2

〈n1|X̂|m1〉 〈n2|Ŷ |m2〉 |n1, n2〉 〈m1,m2| . (S21)

Thus, applying the swap operator, defined from S |n1〉 ⊗ |n2〉 = |n2〉 ⊗ |n1〉, yields

(X̂ ⊗ Ŷ )S =
∑

n1,m1,n2,m2

〈n1|X̂|m1〉 〈n2|Ŷ |m2〉 |n1, n2〉 〈m2,m1| . (S22)

The partial trace over the second Hilbert space TrH2(•) =
∑
n2
〈n2| • |n2〉 gives

TrH2

(
(X̂ ⊗ Ŷ )S

)
=

∑
n1,m1,m2

〈n1|X̂|m1〉 〈m1|Ŷ |m2〉 |n1〉 〈m2| = X̂Ŷ .

IV. QUANTUM STOCHASTIC LIPKIN MESHKOV GLICK MODEL

A. Transport in quantum sLMG

In the main text, we presented the eigenvalues of the SOV and their transport analog in the sLMG for [Ĥ0, L̂] = 0,

see Fig. 2(a). The case in which [Ĥ0, L̂] 6= 0 shows a richer phenomenology, even for the simple sLMG model. The
eigenvalues of the SOV are shown in Fig. 2. The smallest eigenvalue first evolves ballistically, Λ0(t) ∼ t2, then turns
into superdiffusive Λ0(t) ∼ t3/2 before changing further to a slower growth tα with α < 1, to ballistic again Λ0(t) ∼ t2
and then saturates. Another interesting feature is that at long times all eigenvalues saturate to the same value, a
feature not present in the case [Ĥ0, L̂] = 0.

FIG. 2. Eigenvalues of the SOV as a function of time for noncommuting Hamiltonian and Jump operator [Ĥ0, L̂] 6= 0 (red,

colorscale shows order of the eigenvalues k) and the expectation value over the minimum SOV state 〈Ψ|∆Â2
t |Ψ〉 (black dash-

dotted). The parameters are γ = 2,Ω = 1, S = 20, Â = (Ŝx + Ŝy + Ŝz)/
√

3 and L̂ = Ŝx.

B. Visualizing the quantum stochastic operator variance

The SOV ∆Â2
t that we introduced is an operator over the Hilbert space. We illustrate this quantity for the case

of the quantum sLMG model. In general, this operator is d dimensional, and it has non-zero components over all
the elements of the considered operator basis. However, since the sLMG is a mean-field description, we are mainly
interested in its projection over the subspace spanned by {1, Ŝx, Ŝy, Ŝz}. We would like to have these elements be
orthonormal with each other. For this reason, we choose the Hilbert-Schmidt inner product

(Â, B̂) =
1

S(S + 1)(2S + 1)/3
Tr(Â†B̂), (S23)
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where the normalization has been chosen such that (Ŝi, Ŝj) = δij and comes from Tr(Ŝ2
z ) =

∑2S
j=0(S − j)2 =

S(S + 1)(2S + 1)/3. Note that this normalization leads to (1,1) = 3
S(S+1) 6= 1.

We further introduce a notion of Stochastic Operator Standard Deviation (SOSD) as the matrix square root of the

SOV, ∆Ât =

√
∆Â2

t . The SOV and its deviation are thus illustrated in Fig. 3.
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0
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s 1
(t
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s z
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FIG. 3. Visualization for the evolution of the stochastic operator variance and its standard deviation for the
quantum sLMG model. (a) Projection over the different spin operators of the noise averaged observable (〈Ât〉, Ŝj) (solid

line) and the SOSD (∆Ât, Ŝj) (error bar), with the flow of time indicated by the color scale and the red arrow. (b) Projections

of the noise-averaged observable (black line) (〈Ât〉, X̂) and the SOV (∆Â2
t , X̂) (error bar) over X̂ ∈ {1̂, Ŝ}. The initial operator

is Â = (Ŝx + Ŝy + Ŝz)/
√

3. The parameters are S = 20 and Ω = 1.5, with γ = 0.1 (upper) or γ = 2 (lower). The times for
which the error bar vanishes correspond to the SOV being orthogonal to the projected operator.

V. CLASSICAL STOCHASTIC LMG MODEL

A. Classical limit of the LMG Hamiltonian

Let us introduce the SU(2) coherent states as [5]

|ζ〉 =
eζŜ+

(1 + |ζ|2)S
|S,−S〉 , (S24)

where Ŝ+ = Ŝx + iŜy is the raising operator and |S,−S〉 is the eigenstate of Ŝ2 and Ŝz with smallest z com-

ponent of the spin, namely Ŝ2 |S,−S〉 = S(S + 1) |S,−S〉 and Ŝz |S,−S〉 = −S |S,−S〉. The coherent states
|ζ〉 represent a wavepacket with the minimum width allowed by the uncertainty principle localized around n =
(sin θ cosφ, sin θ sinφ, cos θ) where ζ = − tan θ

2e
−iφ and corresponds to a stereographic projection. Following [6], we

define the classical Hamiltonian Hlmg as

Hlmg = lim
S→∞

1

S
〈ζ|Ĥlmg|ζ〉 , (S25)

where S = N/2. The expectation value of the relevant spin operators between coherent SU(2) states is [5]

〈n|Ŝz|n〉 = −S cos θ, 〈n|Ŝ2
x|n〉 = S(S − 1

2 ) sin2 θ cos2 φ+ S
2 . (S26)
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The classical LMG Hamiltonian then reads

Hlmg = −Ω cos θ − sin2 θ cos2 φ+O(S−1). (S27)

We then introduce the canonical variables Q, P as

ζ =
Q− iP√

4− (Q2 + P 2)
= − tan

θ

2
e−iφ, (S28)

that yield the relations

Q√
4−Q2 − P 2

= − tan
θ

2
cosφ,

P√
4−Q2 − P 2

= − tan
θ

2
sinφ. (S29)

Inverting theses equations gives

tanφ =
P

Q
, tan2 θ

2
=

Q2 + P 2

4− (Q2 + P 2)
, (S30)

that can be substituted in (S27) and yield

Hlmg =
Ω

2
(Q2 + P 2)− Ω− 1

4
(4Q2 −Q2P 2 −Q4). (S31)

This corresponds to the classical Hamiltonian given in the main text, up to a constant shift in energy.

B. Heuristic reason for stabilization of sLMG

FIG. 4. Visualization of the stochastic LMG model. (a) Histogram of the Gaussian white noise. The standard deviation√
2γ is indicated by the horizontal blue line and the vertical dotted line delimits the sign flip of (1+

√
2γξt). LMG Hamiltonian

in the double well (b;c) and single well (d;e) phases multiplied by a negative (b;d) and positive (c;e) number corresponding to
(1 +

√
2γξt).
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The stabilization we discussed in the main text can be understood in terms of the energy landscape associated with
the stochastic Hamiltonian, illustrated in Fig. 4. In the limit that

√
2γ � 1, most realizations are as in the noiseless

LMG. The behavior is then close to that of the deterministic model, with the double well (DW) phase showing an
unstable point and the single well (SW) phase being stable. In the opposite limit,

√
2γ � 1, almost half of the

realizations flip the Hamiltonian since (1+
√

2γξt) < 0, as shown in Fig. 4 (a). This brings a major difference between
the DW and SW phases. In the SW phase, all points in phase space (Q,P ) either gain (d)→(e) or lose (e)→(d)
energy. In the DW phase, however, when going from (b)→(c), the points inside the wells lose energy while the points
outside the wells gain it, and viceversa for (c)→(b). This difference between the points of phase space provides a
rationale for the stochastic stabilization seen for the DW phase—blue region in Fig. 3(b) of the main text.

C. Analytical determination of the Lyapunov exponent for the sLMG model

We consider a vector variable ut subject to deterministic and fluctuating external perturbations, Ad and As(t),
respectively. Its equation of motion is described by the stochastic differential equations

u̇t = [Ad +
√

2γAs(t)]ut. (S32)

Following van Kampen [7], we go in the interaction picture with respect to the deterministic evolution and consider
vt = e−Adtut. In second-order of

√
γ, the average with fixed initial conditions evolves as

〈vt〉 = v0 + 2γ

∫ t

0

dt1

∫ t1

0

dτe−t1Ad〈As(t1)eτAdAs(t1 − τ)〉e(t1−τ)Adv0, (S33)

valid for
√

2γt� 1. We recognize the solution to order γ of the linear differential equation, also known as Bourett’s
integral equation, written back in the original representation as

∂t〈ut〉 =
[
Ad + 2γ

∫ t

0

〈As(t)eAdtAs(t− τ)〉e−Adτdτ
]
〈ut〉. (S34)

This equation is derived assuming the standard rules of calculus, and thus assumes Stratonovich formalism. The

latter defines the stochastic integral as
∫ t

0
δ(t− τ)f(τ)dτ = 1

2f(t). So in the case that Ad and As commute, and for
As(t) = ξtAs fluctuating with Gaussian white noise, Eq. (S34) simplifies to

∂

∂t
〈ut〉 =

(
Ad − 2γA2

d

∫ t

0

〈ξtξτ ′〉dτ ′
)
〈ut〉 =

(
Ad − γA2

d

)
〈ut〉,

where the change of integration variable τ ′ = t− τ brings the minus sign. In systems exhibiting chaos, the Lyapunov
gives the exponential divergence of the trajectory. We interpret this as the maximum eigenvalue of Ad − γA2

d.

The LMG at the origin, Q = P = 0, can be linearized into the harmonic oscillator H = 1
2 [ΩP 2 + (Ω − 2)Q2].

Hamilton’s equation of motion gives Q̇t and Ṗt, from which we can compute the evolution of the quadratic terms as
[8]

d

dt

(
Q2
t

P 2
t

QtPt

)
=

(
0 0 Ω
0 0 −(Ω−2)

−Ω−2
2

Ω
2 0

)(
Q2
t

P 2
t

QtPt

)
≡ Adut. (S35)

The maximum eigenvalue of this matrix is λlmg =
√

2Ω− Ω2, which recovers the Lyapunov exponent at the origin in
the noiseless LMG model [6]. For the sLMG, we add noise in the energy scale and consider an evolution dictated by

u̇t = Ad(1 +
√

2γξt)ut, (S36)

where ξt is Gaussian white noise. The maximum eigenvalue of Ad− γA2
d thus gives the average Lyapunov exponent as

λ =
√

2Ω− Ω2 − γ(2Ω− Ω2). (S37)
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VI. DETAILS ON THE NUMERICAL SOLUTIONS

A. Vectorization

The formal solution to the master equation reads 〈Ât〉 = eL
†t[Â], where L†[•] is the adjoint Liouvillian superoperator.

To numerically solve it, we apply vectorization by which operators Ât become vectors in a larger Hilbert space |Ât).
Superoperators become operators over this larger Hilbert space through the mapping

X̂ÂtŶ → (X̂ ⊗ Ŷ T )|Ât), (S38)

therefore the vectorized Lindbladian reads

L†[•]→ iĤ0 ⊗ 1− i1⊗ ĤT
0 + γ(2L̂⊗ L̂T − L̂2 ⊗ 1− 1⊗ (L̂2)T ). (S39)

B. Solver of Stochastic Differential Equations

We solve the SDE using the explicit order 1.0 strong scheme [9], which briefly consists of the following. Consider a
Itō SDE of the form

dXt = a(Xt)dt+ b(Xt)dWt, (S40)

where X0 is the initial condition. Let Yn be the solution at time tn = nδ, where δ is the time-step. We first set the
initial condition Y0 = X0 and compute recursively the solution as

Yn+1 =Yn + anδ + bn∆Wn +
1

2
√
δ

(b(Υn)− bn)((∆Wn)2 − δ), (S41)

where Υn = Yn+anδ+bn
√
δ, an = a(Yn), bn = b(Yn), and ∆Wn = Wn+1−Wn are independent identically distributed

normal random variables with zero average and variance δ.
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