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“Quise ser valiente y aprendí a estudiar.”

— Antonio Escohotado Espinosa (1941 – 2021).

“- Tú dices que la inspiración no existe.”

“- No existe, no... la inspiración no... no soy yo el que dice que no existe.
Era Baudelaire. Cuando le preguntó una señora: "¿Qué es la inspiración,
maestro?". Le contestó: "Señora, la inspiración es trabajar todos los días".
Claro, yo me siento a la mesa de escribir y la inspiración acaba llegando.”

— Camilo José Cela, A Fondo (1989).
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Abstract

Federated learning has been recognized as a promising technology with the poten-

tial to revolutionize the field of Artificial Intelligence (AI). By leveraging its decen-

tralized nature, it has the potential to overcome known barriers to AI, such as data

acquisition and privacy, paving the way for unprecedented advances in AI.

This dissertation argues the benefits of this technology as a catalyst for the irruption

of AI both in the public and private sector. Federated learning promotes cooperation

among otherwise competitive entities by enabling cooperative efforts to achieve a

common goal.

In this dissertation, I investigate the goodness-of-fit of this technology in several

contexts, with a focus on its application in power systems, financial institutions,

and public administrations. The dissertation comprises five papers that investigate

various aspects of federated learning in the aforementioned contexts. In particular,

the first two papers explore promising venues in the energy sector, where federated

learning offers a compelling solution to privately exploit the vast amounts of data

and decentralized ownership of data by consumers. The third paper elaborates on

another paradigmatic example, in which federated learning is used to foster coop-

eration among financial institutions to produce accurate credit risk models. The

fourth paper makes a juxtaposition with the previous ones centered on the private

sector. It elaborates on the use cases of federated learning for public administrations

to reduce barriers to cooperation. Lastly, the fifth and last article acts as a finale of

this dissertation, compiles the earlier work and elaborates on the constraints and

opportunities associated with adopting this technology, as well as a framework for

doing so.





Resumé

L’apprentissage fédéré a été reconnu comme une technologie prometteuse ayant le

potentiel de révolutionner le domaine de l’intelligence artificielle (IA). En exploitant

sa nature décentralisée, il a le potentiel de surmonter les obstacles connus en matière

d’IA tels que l’acquisition de données et la confidentialité, ouvrant la voie à des

avancées sans précédent dans le domaine de l’IA.

Cette thèse défend les avantages de cette technologie en tant que catalyseur de

l’irruption de l’IA tant dans le secteur public que privé. L’apprentissage fédéré fa-

vorise la coopération entre des entités autrement concurrentes en permettant des

efforts coopératifs pour atteindre un objectif commun.

La pertinence de cette technologie est étudiée dans plusieurs contextes, en met-

tant l’accent sur son application dans les systèmes électriques, les institutions finan-

cières et les administrations publiques. La thèse comprend cinc articles qui exami-

nent différents aspects de l’apprentissage fédéré dans les contextes susmentionnés.

En particulier, les deux premiers articles explorent des perspectives prometteuses

dans le secteur de l’énergie, où l’apprentissage fédéré offre une solution intéressante

pour utiliser les vastes quantités de données et la propriété décentralisée des don-

nées par les consommateurs de manière privée. Le troisième article développe un

autre exemple paradigmatique, dans lequel l’apprentissage fédéré est utilisé pour

favoriser la collaboration entre les institutions financières afin de produire des mod-

èles précis de risque de crédit. Le quatrième article établit une juxtaposition avec

les précédents, centrés sur le secteur privé. Il développe les cas d’utilisation de

l’apprentissage fédéré pour les administrations publiques afin de réduire les obsta-

cles à la collaboration. Enfin, le cinquième et ultime article permet de conclure cette

thèse, compilant les travaux antérieurs et développant les contraintes et opportu-

nités associées à l’adoption de cette technologie, ainsi qu’un cadre pour le faire.





Resumen

El aprendizaje federado es reconocido como una tecnología prometedora con el po-

tencial de revolucionar el campo de la Inteligencia Artificial (IA). Al aprovechar su

naturaleza descentralizada, tiene la capacidad de superar barreras conocidas en IA

como son la adquisición de datos y la privacidad, abriendo camino para avances sin

precedentes.

Esta tesis argumenta los beneficios de esta tecnología como catalizador para la irrup-

ción de la IA tanto en el sector público como en el privado. El aprendizaje federado

promueve la cooperación entre entidades que de otra manera serían competidoras,

al permitir esfuerzos cooperativos para alcanzar un objetivo común.

La idoneidad de esta tecnología se investiga en varios contextos, con un enfoque

en su aplicación en el sector eléctrico, instituciones financieras y administraciones

públicas. La tesis consta de cinco artículos que investigan diversos aspectos del

aprendizaje federado en los contextos mencionados. En particular, los primeros dos

artículos exploran oportunidades prometedoras en el sector energético, donde el

aprendizaje federado ofrece una solución optimista para utilizar la gran cantidad de

datos y la propiedad descentralizada de los mismos por parte de los consumidores

de manera privada. El tercer artículo profundiza en otro ejemplo paradigmático,

en el que el aprendizaje federado se utiliza para fomentar la colaboración entre in-

stituciones financieras y producir modelos precisos de riesgo crediticio. El cuarto

artículo realiza una yuxtaposición con los anteriores centrados en el sector privado.

Elabora sobre los casos de uso del aprendizaje federado para las administraciones

públicas con el objetivo de reducir barreras a la colaboración. Por último, el quinto

artículo actúa como una finale de esta tesis, recopila los trabajos anteriores y elabora

sobre las limitaciones y oportunidades asociadas con la adopción de esta tecnología,

así como un marco para hacerlo.
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I Introduction

The exponential growth of connectivity between humans has generated an unprece-
dented amount of raw data. This explosion of data provides significant potential for
businesses to derive valuable insights that can drive innovation and progress. Machine
learning (ML) techniques have appeared as a crucial tool to unlock the potential of data.
ML and by extension Deep Learning (DL) 1 can autonomously learn from large datasets
and find complex relationships and patterns, allowing businesses to make data-driven
decisions (McAfee et al., 2012).

The increasing value of data and its resulting scarcity characterize the modern data
landscape (Attard et al., 2016). Data has become a crucial source of competitive ad-
vantage for companies, allowing them to better estimate the future of their products or
operations (Manyika et al., 2011).

In practice, data-intensive companies can form collaborative alliances to increase their
access to data. These alliances typically resort to using data lakes (Fang, 2015; Giebler
et al., 2019) - shared pools of data where entities can participate and use each other’s
data. Although data lakes can address fundamental challenges, such as data availabil-
ity or reducing management costs, they also raise several concerns, particularly about
the privacy of shared data (Chen et al., 2012; Eder and Shekhovtsov, 2020). This cre-
ates a challenging situation where entities can benefit from the existence of a data lake,
but must invest significant resources to anonymize and ensure the quality of shared
data (Eurich et al., 2010). In addition, entities may choose to selectively disclose low-
quality data to reduce the probability of losing a competitive edge.

1DL is a subfield of ML that focuses on the training of multilayer neural networks. These (deeper)
networks aim to extract meaningful patterns and representations from complex data.
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Chapter I. Introduction

“Unfortunately, the privacy issues due to data sharing remains a missing piece in the data lake
designs” (Chen et al., 2018). Privacy issues, particularly those related to the existence
of highly sensitive and private personal data, can delay the adoption of data lakes. To
overcome these limitations, McMahan et al. (2017) proposed federated learning (FL). FL
is a distributed machine learning paradigm that enables multiple decentralized clients
to collaboratively train a global model. It utilizes each client’s own local training dataset,
without compromising the privacy of the underlying data nor accessing it. FL is coor-
dinated by a central server that acts as a trusted intermediary to prevent malicious or
collusive behavior, according to the general Byzantine problem (Lamport et al., 1982).
Notably, the client’s original datasets remain confidential and inaccessible to both the
coordinator and other clients.

This thesis investigates the potential of FL in three distinct sectors, namely energy, fi-
nance, and public. It examines the advantages and difficulties of applying FL in these
domains and emphasizes the positive impact of FL on overcoming the inherent data
constraints in these sectors. Firstly, this dissertation explores the effects of FL for short-
term load forecasting (STLF) in the energy sector, it utilizes peer-to-peer (P2P) clustering
to reduce variability between households, and develops privacy preserving techniques
such as Differential Privacy (DP) and secure aggregation (SecAgg) to protect individ-
uals. Secondly, this dissertation deepens the potential of FL in the financial sector by
investigating the feasibility of creating distributed credit risk models between financial
institutions. It explores the possibility of small financial institutions collaborating to
develop highly efficient and precise credit risk models. Thirdly and lastly, this disserta-
tion investigates the public sector’s applicability of FL to address the challenges posed
by stringent regulations and improve communication between governments.

2
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RP1: Privacy-preserving federated learning for residential
short-term load forecasting

RP2: Towards a peer-to-peer residential short-term load
forecasting with federated learning

Energy Sector

RP3: Federated Learning for Credit Risk Assessment Financial Sector

RP4: Federated Learning as a Solution for Problems Related
to Intergovernmental Data Sharing

Public Sector

Figure I.1: Structure of the dissertation

This cumulative thesis is compromised by five publications and is structured as follows
(see Figure I.1). Firstly, two publications related to the applications of FL in electric
power systems. That is, RP 1: “Privacy-preserving federated learning for residential short-
term load forecasting ” where we investigate the effects of DP and FL for STLF. The sec-
ond publication in power systems: RP 2: “Towards a peer-to-peer residential short-term load
forecasting with federated learning” explores the possibility of creating a fully decentral-
ized forecasting system. The third publication; RP 3: “Federated Learning for credit risk
assessment” relates to a possible FL model to overcome data limitations in the financial
sector. Later, the fourth publication: RP 4: “Federated Learning as a Solution for Problems
Related to Intergovernmental Data Sharing” explores how the government should use FL
to streamline communication issues. Lastly, a final publication RP 5: “Federated Learning:
Organizational Opportunities, Challenges, and Adoption Strategies” that builds on previous
publications and discusses the implications of FL in information systems research, as
well as the market conditions for the adoption of FL projects.
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II Foundations of Federated
Learning

1 Characterizing Federated Learning

The quality and quantity of data are the main drivers of the effectiveness of AI-based
methods. The gathering of large amounts of data in a single silo is often limited due
principally to competition, strict regulations on data, privacy and security (Kairouz et
al., 2021).

In an era where data volumes have reached unprecedented heights, new approaches are
required to effectively use and handle them. FL was originally proposed as a method
“to train a high quality centralized model while training data remains distributed over a large
number of clients, each with unreliable and relatively slow network connections” (Konečný et
al., 2016).

FL aims to break down data silos by providing an efficient solution for leveraging large
amounts of decentralized data by facilitating collaborative learning without the need
to store data in a central location. In turn, this decentralized approach serves to break
down the barriers to data sharing that may exist between different entities. It enables
knowledge sharing and collaboration without sharing raw data. Since the train resides
on client devices, FL enables organizations to leverage each other’s data without com-
promising privacy or violating regulatory requirements.

5



Chapter II. Foundations of Federated Learning

1.1. Centralized and Federated Learning comparison

In traditional centralized learning architectures, the training process is twofold. On the
one hand, there are cases where the data and the means of processing it are in the same
place. In these situations, the data is kept within their boundaries in preparation for
further injection into the models during training. On the other hand, where the data
is decentralized but the ownership of the exploitation means is centralized, there is an
explicit need to anonymize the data to then share it with any data aggregator such as,
for instance, the so-called data lake that will store them until a centralized model trains
on it.

The training process in FL has fundamental differences from traditional machine learn-
ing. In FL, data is decentralized in the so-called clients. Each client has sole ownership
of its data and thereby is responsible for training its own model. Training of FL models
can be seen as a higher-level abstraction of traditional machine learning training. Both
methods involve training in rounds or epochs, but in FL, the convergence direction is
determined not only by the data of each client, but also by the directions of other clients.
This involves a dual process of local training and collective aggregation that continues
until a desired level of performance is reached.

Figure 1 presents the differences of the two different architectures, centralized and FL.
On the left side (1a) the classic training of a centralized machine learning model is de-
picted as such. First, the clients will share the anonymized data with the data lake or
data aggregator. The data aggregator in step number two will store the data serving as
a silo for the model to train in the third step. In the last step, after the centralized model
has converged, the server will transmit the model trained back to the initial clients when
a predefined performance is achieved. On the right side (1b), the FL process is depicted.
Initially, the central server shares a predefined model with the clients. This step ensures
the same baseline for model training. Second, clients train their own model based on
their own data and share it with the central server in step number three. Fourth, and
last, the central server will aggregate the models (usually by averaging them). This pro-
cess of training, aggregating and sharing repeats until a certain level of performance is
achieved.

6
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Data Lake

(a) Centralized.
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(b) Decentralized/Federated.

Figure II.1: Architectures for machine learning. (c.f. (Fernández et al., 2023a RP 5))

1.2. Canonical Federated Learning algorithms

There are two canonical training algorithms for FL. Both are composed of the same
idea: no raw data is transmitted to any client nor the central server. Instead, the models
are trained locally, shared with the central server, aggregated, and then rerouted to the
clients.

Originally proposed by McMahan et al. (2017), in Federated Stochastic gradient descent
(Fed-SGD), clients send the gradient (direction) of the loss to be followed. The direction
is generated locally on the clients’ own data. Then, it is sent to the server for averaging1

The averaged direction is finally shared back to the clients, who will apply it to move
their own local model towards a lower error rate.

Contrary, in Federated Average (Fed-Avg) clients instead of transmitting the gradients
at every batch they process, they transmit an update of the model to the central server
after each round of the learning algorithm (McMahan et al., 2017).

The relative superiority of Fed-Avg over Fed-SGD is related to accuracy and the number
of communication rounds. Fed-Avg is generally more performant and resilient to dis-
parities in models weights. Moreover, since the model weights are shared and not the

1Typically, simple or weighted averages are used, but a large body of research is exploring different
averaging techniques. See (Sah and Singh, 2022).
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gradient at the end of every batch, communication rounds needed between the central
server and the federated parties is reduced (Fekri et al., 2021; McMahan et al., 2017). The
relatively lower number of communication rounds has positive effects on bandwidth,
the stress put on processing units, and the time required to train a model. As a con-
sequence, it may also reduce energy consumption. Despite the differences mentioned
above, both Fed-SGD and Fed-Avg are an iterative process to gradually reduce the pre-
diction error compared to the ground truth. During these steps, the models take steps
towards a lower error rate.

While the main canonical implementations rely on a central server, new advances have
pave the way for a fully decentralized FL. While this thesis is built upon the original
work of (McMahan et al., 2017) and (McMahan et al., 2018), I encourage the interested
readers to become familiar with serverless implementations of FL (Chang et al., 2018;
Kalra et al., 2023; Shen et al., 2020)

1.3. Federated Learning settings

In the same way there are different training algorithms for FL, there are also variations
depending on how the data is structured. The configurations depend on how the feature
space X , the label space Y , and the identifier space I are organized. Figure II.2 depicts
a visualization of the possible data distributions.

First, Horizontal Federated Learning comprehend the state in which entities that hold
the same data structure but the individual identifiers are different. An example of this
configuration would be the initial approach of (McMahan et al., 2017) or in (Fernández
et al., 2022b RP1, Fernández et al., 2023b RP2, Lee et al., 2023 RP3) where FL is used
to train the Google Keyboard recommender system. There all clients share features,
but they are, indeed, different clients. Second, Vertical Federated Learning represents,
for instance, two companies that hold data from the same individuals, but the feature
set is different. An example of this configuration would be the browser cookies from
different companies, they point to the same user, but they account for differing features
set. Lastly, Federated Transfer Learning aims to increase data availability through the
use of traditional transfer learning between entities that do not share feature or label
space.

8
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Figure II.2: Data partitions in Federated Learning

1.4. Privacy-Preserving Federated Learning

Although the first algorithm introduced by (McMahan et al., 2017) sparked a revolution
in how we conceptualize decentralized AI, it has been found to have several drawbacks.
One of the main issues is related to clients’ data privacy as pointed out by (Zhang et al.,
2021). While not sharing the data seems enough to maintain the privacy of users and
their behavioral patterns in FL, research has proven that there are still existing attack
vectors to FL in general and DL models in particular. For instance, Model Inversion (MI)
attacks in which attackers try to recreate the training data used previously (Fredrikson
et al., 2015; Geiping et al., 2020) or poisoning attacks in which an attacker pretends
to be a legitimate client preventing the model from learning or biasing it to produce
inferences that align with the intentions of the attacker (Benmalek et al., 2022).

These attack vectors can be divided into two categories: those related to the nature of
the communication network, where an attacker can intercept information transmitted

9
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between clients and servers, and attacks that exploit the patterns learned by the model
during the training phase.

The issue of transmitting secret information between multiple untrusted parties over
an unprotected channel has gained significance in recent years. One such protocol to
transmit information without a layer of encryption was initially brought by (Shamir,
1979) where a set of separated and untrusted agents can share a secret (information) by
splitting it into multiple shares. In Shamir (1979) the secret is divided in n shares and at
least n-1 shares are needed to aggregate and reconstruct the secret and any allocation of
less than n-1 shares cannot reconstruct the secret.

One such secure multiparty computation (SMPC) protocol is SecAgg (Bonawitz et al.,
2017) that extended the application of this cryptographic primitive to the context of
FL. In SecAgg clients can share their models as if they were shares of a secret with the
central server. The central server can then reconstruct the original message upon recep-
tion of the shares. The main advantage of this protocol is its minimal impact on model
performance, as secret reconstruction does not affect the information as presented in
(Fernández et al., 2022b RP1). However, this approach introduces additional communi-
cation rounds between clients and the server and among clients for the secret-sharing
process.

On the other hand and as mentioned in Bonawitz et al. (2017), despite the advantages
SecAgg offers in securing the communication channel, models trained using SecAgg
still contain latent patterns that might point to certain aspects in the original training
dataset. This issue opens the door for classic MI attacks where an attacker can retrieve
substantial information from the training dataset given a trained model (Bagdasaryan
et al., 2020; Fredrikson et al., 2015; Shejwalkar and Houmansadr, 2021).

The main way to protect individual contributions, and thus the latent patterns of the
in the model is DP. Introduced originally in 2006, Dwork explained DP as a method
to ensure the confidentiality of the data when it is retrieved from a dataset (Dwork,
2006). In other words: “differential privacy addresses the paradox of knowing nothing about
an individual while learning useful information about a population” (Dwork and Roth, 2014).
DP as originally defined by Dwork (2006) provides a rather strict guarantee (Wood et
al., 2018). The original vision DP offered binary privacy, either formally private or not.
These strict guarantees limited the usage due to the low trade-off between privacy and

10
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utility. To alleviate that, Dwork introduced (✏, �)-DP. ✏ represents privacy budget and
determines how much of an individual’s privacy a query may lose and by its use, how
much it reduces the overall privacy of the system. On those terms, low ✏ represents high
levels of privacy (being ✏ = 0 the perfect privacy). On the same page � represents the
probability of information being leaked accidentally.

In formal terms, as defined in Equation II.1, DP is defined as follows: for every pair of
inputs X and Y that differ in one row, for every output in S, an adversary should not
be able to use the output in S to distinguish between any X and Y . Dwork (2006):“[DP]
ensures that for all adjacent X , Y the absolute value of the privacy lost will be bounded by ✏ with
probability at least 1� �”

Pr[M(X) 2 S]  exp(✏) · Pr[M(Y ) 2 S] + � (II.1)

The application of DP involves the addition random noise, typically drawn from a
Gaussian or Laplacian distribution (Dwork and Roth, 2014). In FL, the central server
adds noise to the combined models before transmitting them back to the clients. This
approach allows the specific contributions of the individual clients to be hidden and
dissolved within the overall model, thus safeguarding their privacy.

Assuming that all the clients in FL participate in an equal manner in the training, their
updates should modify the model from the central server in an equal manner. So, to
maintain the different updates within a controlled range, two main clipping strategies
have arisen. The name of clipping comes from the fact that the total gradients or sum of
gradients are clipped to either a fixed value (fixed clipping) or a changing value (adap-
tive clipping). The two methods are explained as follows: On the one hand, fixed clip-
ping, which is derived from the original work of (McMahan et al., 2018) clips the values
of the updates in a certain predefined range. Although this solution performs satisfac-
torily, there is a major limitation with regard to the expected clients. Giving the same
range to all clients, where variations in data and models are present, seemed an over-
simplification of reality. One of the most prominent improvements is adaptive clipping.
This strategy is based on the setting of the clipping value in a quantile of the data dis-
tribution (Andrew et al., 2021). Adaptive clipping requires some extra noise to combat
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the privacy lost in precisely calculating the quantiles 2. Although it will result in more
absolute noise, the performance damage that this will cause is hampered by the rapid
convergence rate of this method and in general terms it is supposed to perform better.
In plain words, the clipping is less restrictive at the beginning of the training where
the majority of the “learning” happens to be more restrictive in the final phases where
the fine-tunning occurs. We tested such hypothesis in (Fernández et al., 2022b RP1) in
which we compared adaptive clipping versus fixed clipping yielding a 9% performance
increase for the former.

Adding noise, regardless of the clipping strategy, has a clear detrimental effect on the
performance of the model (Fernández et al., 2022b RP1). Higher amounts of noise will
result in less performant models and vice-versa. Sometimes, modifying the amount of
noise (z) is not enough to strike a positive balance. The result of having a performant
model may be at the expense of a low privacy guarantee. To overcome such issues, one
option is to reduce the number of clients involved (Q) in every round of training. With
few clients participating, it is easier to obfuscate individual contributions, and thus the
less absolute noise will be needed. This strategy, while simple, can also lead to low-
quality models. A lower value of (Q) challenges the model as it attempts to learn from
a smaller pool of available data (clients). This trade-off is reflected in Figure II.3 where
high noise and low participation ratio affects almost equally overall performance.

In summary, in the context of privacy-preserving techniques for FL, DP and SecAgg are
two widely adopted strategies that form the foundation for securing FL in all its aspects.
DP provides a strong guarantee of privacy by adding random noise to the data before
sharing them with other parties, thus ensuring that the individual’s sensitive informa-
tion is not disclosed. On the other hand, SecAgg provides a secure way of aggregating
the data from multiple parties while ensuring that no individual’s data is compromised.
These two techniques can be used together. On the one hand, SecAgg secures the ag-
gregated the data from multiple parties. On the other hand, DP adds random noise to
the shared secrets, collectively preventing any attacks from both flanks.

2Since data is accessed to compute the aforementioned quantiles, some privacy budget is lost in the
query, thus some additional noise is required to keep these queries private.
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Figure II.3: Illustrative relation between noise (z), ratio of clients per round (Q) and the privacy guarantee
(✏). The darker the color the more performant the model is.

13





III Cooperation amidst competition

1 AI Capabilities: Data is the new gold

The rise in data usage is closely related to the wide adoption of AI, and companies
with more data can take advantage of its positive effects, such as gaining a competitive
advantage (Mikalef and Gupta, 2021).

Data is often considered a precious commodity and its immense value makes it a
highly attractive asset in today’s competitive markets (Ciuriak, 2019; Economist, 2017).
The benefits of accessing and analyzing data enable companies to make more in-
formed (Merendino et al., 2018) decisions, perform predictive analytics (Shmueli and
Koppius, 2011), and personalize their products and services to meet individual con-
sumer service needs (Chen et al., 2012).

Although data is valuable, alone it is not sufficient to provide the insight that busi-
nesses require (Mikalef et al., 2018). Data requires new and sophisticated techniques
to unlock its full potential (Janiesch et al., 2021). These techniques must be able to effi-
ciently process, analyze and interpret large datasets to reveal meaningful patterns and
insights (Manyika et al., 2011). All these techniques fall under the umbrella of AI ca-
pabilities as defined by (Mikalef and Gupta, 2021). AI capabilities are the confluence of
skills required by a company to choose, coordinate, and use its AI-specific resources to
convert data into knowledge, decisions, and actions (Abbasi et al., 2016).
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2 The interplay of cooperation and competition

However, sometimes either all AI capabilities or some of them are not always available
in sufficient quantity or quality within the company boundaries. One of the main rea-
sons could be data acquisition. Data can be expensive and require advanced capabilities
to handle (Aral and Weill, 2007). Another reason may be that access to data is often re-
stricted by organizations for competitive, regulatory, and ethical reasons (Adadi, 2021;
Jordan and Mitchell, 2015).

Therefore, given the limitations mentioned above, competitive market participants (e.g.,
data providers, data aggregators, and public companies) often show reluctance to share
proprietary data out of fear of losing an edge (Abbas et al., 2021; Leiponen, 2002). This is
clear since the models need data to better generalize the models. Higher model general-
ization implies a broader view of reality and thus a better ability to understand new and
unseen events or data. Thus, companies with better access to data have a broader view
of the reality, and a competitive incentive to maintain their data within their boundaries.

For instance, using small and medium-sized enterprises (SMEs) as an example. SMEs
are typically characterized by their limited resources and market presence (Bouncken et
al., 2015). Hence, they often lack the capacity to accumulate and manage large amounts
of data. One potential solution to overcome data limitations is cooperation among
SMEs. SMEs can obtain IT resources by collaborating with other businesses. This co-
operation helps them to reach market presence, establishing a stronger position. In
conclusion, the effect of a cooperation between data-intensive SMEs will alleviate lim-
itations in terms of data ownership and management (Muscio, 2007). In summary, by
sharing knowledge and resources (AI capabilities), organizations can achieve common
goals more efficiently and effectively.

This stress between cooperation and competition can be tracked from the end of the
20th century era. In 1996, Nalebuff et al. (1996) coined the term “Coopetition”1 term. It
relates to “simultaneous cooperation and competition between firms” (Nalebuff et al., 1996).
Coopetition posits that firms can improve their performance by collaborating through
strategic alliances, networks, and other partnerships. By sharing resources, capabili-
ties, and risks, firms can leverage each other’s strengths and mitigate potential weak-

1a portmanteau of cooperation and competition
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nesses (Bouncken et al., 2015; Hoffmann et al., 2018). This approach can create mutual
benefits that lead to greater efficiency, innovation, and competitiveness.

Despite the potential benefits of coopetition, such as increased innovation and market
share, companies in competitive industries may view coopetition as a risky endeavor.
The challenge for these companies is to find the right balance between competition and
cooperation, as “knowledge leakage, opportunistic behavior, lack of commitment, and insta-
bility of interfirm relations” (Hoffmann et al., 2018) are important concerns to establish
coopetitive alliances. Traditional competition scholars have always viewed coopetition
as a form of collusion and therefore resulting in an unappealing behavior (Tirole, 1988).
In turn, recent research has suggested that such cooperations can bring numerous bene-
fits (Shrader, 2001), which challenges this classical view and supports the idea of coope-
tition as a viable strategy for companies.

3 Federated Learning as a coopetition enabler

FL is emerging as a promising solution to effectively address the challenges that arise
from coopetition. FL acts as a significant catalyst and disruptor of the current coopeti-
tive landscape. As the data is not shared within FL models, it mitigates the risks asso-
ciated with leakage of business knowledge. This is one of the main concerns in coope-
tition research (Bouncken et al., 2015). FL can take advantage of isolated training data
while keeping it disconnected and private. This paradigm shift is an attractive option
for companies seeking to balance competition and cooperation. In this way, FL has the
potential to change traditional notions of coopetition, limiting drawbacks such as risk-
ing competitive advantage and allowing firms to benefit from cooperation.

The traditional approach to machine learning involves collecting and centralizing large
amounts of data in one location, which can create significant privacy concerns for in-
dividuals and organizations (Acquisti and Gross, 2006; Dinev et al., 2013). Centralized
data storage also introduces security risks as it represents a single point of failure and
can compromise the entire dataset. FL, on the other hand, enables entities to collaborate
and share knowledge while maintaining data privacy and security.

Although many of the difficulties are not yet fully resolved, FL can improve the way
participating entities interact. The coordinating process among clients and the quality
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assurance of the resulting models are still a subject of interest for the adoption of FL. Re-
garding the issues related with the nature of coopetition; the risk of knowledge leakage
is minimized by design because raw data is not exchanged. Furthermore, similar to the
classic collaborative tradition, there are existing incentive methods (Zhan et al., 2020)
to prevent opportunistic behavior and motivate companies to engage and ultimately
increase commitment. The commitment can be further encouraged by using incentives,
such as monetary compensation on improving model accuracy, to motivate participants
to contribute their data and computing resources. Finally, because the trust of the model
is decentralized and each party retains control over their own data, all players are less
dependent on a centralized third party. This, together with the transparency provided
by a central shared model, helps promote the trust of the participants (Xu et al., 2022).

Organizational 
AI Capabilities

Competition

Strong

Low

HighLow

Industry 
Consortia

Established 
Banks

Public 
Authorities

Data 
Intensive 

SMEs

Type 1 Type 2

Type 3 Type 4

Figure III.1: Conceptualization (with examples) of Federated Learning adoption (c.f. (Fernández et al.,
2023a RP 5))

Furthermore, the willingness to collaborate may be related to the nature of the mar-
kets (Akhter and Robles, 2006). In (Fernández et al., 2023a RP 5), we postulate that
firms with limited AI capabilities, in their attempt to find new prospects, will partic-
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ipate in FL when operating in a competitive market. There, our framework includes
two dimensions, on the one hand, AI capabilities within the firm’s boundaries; these
could be high for firms with established market presence and extensive resources, and
low for small firms with limited access to resources. On the other hand, we model the
market dynamics in which these firms participate. This ranges from low competition to
high competition. In this framework, we argue that FL has the potential to transform
previous competitive dynamics into coopetitive arrangements in which parties can co-
operate and reap the benefits of both competition and cooperation. Thus, the purpose
of this framework is to map organizations based on their probability or likelihood of
adopting FL. There in (Fernández et al., 2023a RP 5) we derived four different types of
organizations depending on their market dynamics and the AI capabilities they hold.

Type 1: Strong AI capabilities in low competitive markets The first corner is formed
by companies with sufficient in-house capabilities that seek to form consortia in order
to achieve a common goal. An example of this is the collaboration between insurance
companies, the Alfa association2. In this case, French insurance companies join forces
to improve their performance in fraud detection. The main distinction between Type 1
and Type 2 organizations lies in the shared objectives that guide the consortium’s goals.
In Type 1 consortia, cooperation is essential, whereas in Type 2, companies have their
own objectives, leading to rivalries and competition. Given the collaborative nature
and the shared goals of the consortia, FL appears to be a natural fit for facilitating the
process. FL has the ability to handle data heterogeneity and distribution across different
organizations. Each organization may have different types of data or data biases, and
FL can effectively leverage this diverse data to improve model performance.

Type 2: Strong AI capabilities in high competitive markets The first category, Type
2, encompasses organizations that possess abundant AI capabilities and operate within
competitive markets. Examples of such organizations include multinational data bro-
kers, financial institutions, and large energy suppliers (Fernández et al., 2022b RP1, Fer-
nández et al., 2023b RP2).

Due to their strong market position and significant capabilities, these organizations are
less inclined to break data silos and share proprietary data. Given their dominance in

2https://www.alfa.asso.fr/
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the market and access to large databases, they do not find it worthwhile to participate
in a FL setting where smaller competitors can benefit from their knowledge and exper-
tise. Instead, they are more inclined to implement FL internally, drawing inspiration
from the original proof-of-concept of FL used in the Google Keyboard (GBboard) to en-
hance predictions across devices (McMahan et al., 2017). This approach allows large
companies to leverage their client data while maintaining their privacy.

However, these companies can also utilize their knowledge and resources to further
solidify their dominance, potentially pushing smaller players out of the market and
leading to the formation of oligopolies. In such scenarios, a small number of large
companies dominate the market and utilize their collective power to restrict compe-
tition (Osarenkhoe, 2010). This situation can be detrimental to both competition and
innovation as it hampers the ability of new and smaller companies to enter the market
and challenge established players.

In summary, the adoption of FL by Type 2 companies depends on the specific circum-
stances. Ethical and benevolent companies are likely to implement FL internally to
promote data sharing and improve operational efficiency. On the other hand, malicious
actors may exploit the privacy-preserving aspects of FL to collude in the market and
gain complete dominance, potentially leading to harmful consequences for competition
and innovation.

Type 3: Low AI capabilities in low competitive markets The third corner represents
Type 3 organizations whose AI capabilities are limited and which operate in collabora-
tive or low-competitive markets. These organizations typically possess large amounts
of data but lack the necessary AI capabilities to effectively manage and train high-
performing models with this data. An example of such organizations could be pub-
lic authorities that lack in-house capabilities to utilize their data and face challenges
in externalizing these capabilities due to privacy constraints. Research evidence sug-
gests that a significant proportion of local authorities are hesitant to externalize their
processes (Entwistle, 2005).

Furthermore, these organizations may face difficulties in accessing data from other in-
stitutions due to privacy concerns, which limits their ability to have a diverse range
of data. Collaboration between public bodies is hindered by a lack of optimization
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and communication, which in turn restricts the sharing of information among network
nodes and impedes the flow of information between public bodies (Voskob and Punin,
2003).

In this context, FL offers significant added value. FL allows non-competing entities to
leverage their communication flow while minimizing risks, as data remain localized
within each organization’s silo (Sprenkamp et al., 2023 RP 4). This approach enables
organizations to collaborate and learn from each other’s data without compromising
privacy or data security.

Type 4: Low AI capabilities in high competitive markets The fourth quadrant refers
to organizations operating in competitive markets with limited AI capabilities. Ex-
amples of such organizations include neo-banks, FinTech startups, and data-intensive
SMEs. These entities can overcome their limitations by seeking external sources to ac-
quire the necessary AI capabilities (Winter et al., 2014). FL presents an opportunity for
these companies to combine their resources and knowledge, enhancing their AI capa-
bilities and improving their competitiveness in the market. Through coopetition, these
organizations will balance their competitive nature with the benefits of collaboration
to leverage the collective expertise and data of other participants, enabling them to de-
velop and refine their own AI models without risking their own knowledge.

Participating in FL alliances allows these Type 4 companies to access new AI capabilities
or monetize their existing ones. This collaborative effort is particularly advantageous
for small sized companies with limited capabilities, as it provides them with the crit-
ical mass of data and resources needed to level the playing field and compete more
effectively against larger and well-established companies. Therefore, Type 4 companies
serve as a prime example of the use of FL.

These companies are characterized by their small size, limited capabilities, and agility
to adapt to disruptive digital innovations (Chan et al., 2019). By leveraging FL, they can
overcome their limitations and harness the power of collective intelligence to enhance
their AI capabilities and remain competitive in the market as presented in (Lee et al.,
2023 RP 3) in which small financial institution leverage their knowledge to reach the
precision levels of established institutions.
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In summary, Type 4 companies operating in competitive markets with limited AI capa-
bilities can take advantage of FL as a means to collaborate, compete, and enhance their
AI capabilities. By joining FL alliances, these organizations can access new AI capabil-
ities, leverage their own resources, and effectively compete with larger players in the
industry.

Although the risk of data leakage or knowledge is mitigated by using privacy-
preserving techniques in conjunction with FL, the mere use of such technology implies
the blending and interchanging of AI models. Thus, organizations involved in these
partnerships are bound to sacrifice some of their edge.

Loss in
 Competitive Edge

Type 2 Type 4 Type 1 Type 3

Figure III.2: Graphical representation of loss in the competitive edge.

However, the loss in competitive edge against competitors is not flat (Figure III.2). Ob-
viously, the more competitive the market, the more protected the information is, and
thus the more dangerous the disclosure of information. This is evidenced in the work
done in (Lee et al., 2023 RP 3) in which Type 2 financial institutions put their expertise
at risk by accepting low compensation compared to the increase in the effectiveness of
the model. In contrast, small and agile banks (Type 4) take calculated risks to achieve
significant gains.
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FL can be highly valuable in competitive markets, as it allows entities operating in such
markets to join and utilize FL depending on their specific circumstances. However,
there are some limitations to using FL, and the following sections examine its suitability
in three contrasting scenarios.

Firstly, Section IV.1 investigates the case of large energy suppliers1 with large AI capa-
bilities under high competitive markets. In such cases, energy suppliers, due to the fact
that their data is decentralized, may resort in using FL internally. This is particularly
relevant in cases where clients are often physically and logically separated but can ben-
efit from the shared knowledge that FL facilitates. Since their customers are distributed
across the energy grid and storing all the data in a central silo might see limitations in
terms of data privacy (Eibl et al., 2015), large energy suppliers can leverage consumer
patterns to create more precise load forecasts without the need to move and store the
data to a central location.

Secondly, Section IV.2 examines the benefits of collaborative modeling in the competi-
tive financial sector and explores the potential of FL to develop accurate decentralized
models. The primary objective of this approach is to enable small financial institutions
to join forces and achieve market momentum while maintaining the privacy of cus-
tomer data. Due to stringent regulations such as the General Data Protection Regulation
(GDPR), sharing customer data is limited. However, FL can provide a solution to this
problem by allowing Type 2 and primarily Type 4 companies to access a more diverse
dataset without sharing the actual data. This can lead to improved model performance
and a competitive advantage. On the other hand, larger financial institutions (Type 2

1Type 2 organizations according to (Fernández et al., 2023a RP 5)
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companies) may not derive significant benefits from FL due to their size and existing
infrastructure.

Finally, the last Section IV.3 deviates from the focus of the previous two use cases on the
private sector by examining the benefits of FL for public administration (Type 3). There,
as in the previous cases, privacy assumes a pivotal role in data sharing. Frequently,
governments or public institutions face constraints in sharing data and are limited in
their capabilities to capitalize on their AI potential. In such situations, the adoption
of FL can serve to mitigate issues related to cross-institutional or cross-governmental
communication.
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1 Federated Learning in the Energy Sector

As the share of renewables increases in the energy mix, so does the price and volatility
of energy. This volatility provokes variations in production and consumption, resulting
in higher imbalance prices. This is particularly problematic for energy suppliers, as the
imbalance prices are multiplied by the imbalance of their entire portfolio, increasing
the overall costs. For energy suppliers, errors in their day-ahead forecasts mean more
payments to transmission system operators (TSOs) for their imbalances.

Load forecasting and particularly short-term load forecasting (STLF), which aims to
forecast the load within a particular short time frame, typically ranging between 1 to
168 hours (Muñoz et al., 2010) is critical for TSOs and energy suppliers. These entities
use it to reduce the overall imbalance of their portfolio, thus reducing the imbalance
costs. In particular, TSOs are responsible for balancing generation (supply) and load
(demand) and must ensure the correct balance between the two. For energy suppliers,
a similar operation is required, as they need to meet their day-ahead schedules during
their next-day operations. STLF has become especially important at a time when tradi-
tional and easily predictable energy sources are scarce and are being replaced by vari-
able renewable energy sources (VRES) that are harder to predict. VRES such as wind or
photovoltaic panels introduce higher levels of volatility and imbalances (Muñoz et al.,
2010). As a result, high-accuracy load forecasting models have become more important
than ever for both energy suppliers and TSOs.

In early 2009, the European Union (EU) implemented the 2009/72/EC (The European
Commission, 2009) directive to regulate the installation of smart meter devices through-
out Europe. With this regulation, the EU planned to reduce the power system imbalance
thanks to a more detailed understanding of household consumption. Furthermore, it of-
fers intelligent and data-driven dynamic pricing for clients that increase the efficiency of
the European energy market. The use of smart metering devices has greatly improved
the performance of STLF methods by providing more detailed and real-time consump-
tion data. However, the high data granularity obtained with smart meters also raised
concerns in terms of accuracy, decentralization and privacy leaked from such detailed
energy load profiles (Radovanovic et al., 2022).
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The following sections delve into these key concerns. The first Subsection 1.1. focuses
on the development of highly accurate forecasting models. Second, Subsection 1.2.
presents how FL can leverage the decentralized energy grid. Third, Subsection 1.3. ex-
plores centralized and decentralized clustering techniques to address the variability in
load profiles and how these clusters can enhance the performance of FL. Lastly, Sub-
section 1.4. explores and advances the current state-of-the art on privacy preserving
techniques for load profiles. As precision and granularity increase, the more reveal-
ing and identifiable consumption patterns become, the greater the threat to customer
privacy.

1.1. Short-Term Load Forecasting in Power Systems

The challenge of developing accurate forecasting models is exacerbated by the prolif-
eration of smart meters in households. This new availability of data has changed the
way forecasting is done. Traditional “top-down” involves creating an aggregate profile
based on profiles with presumably similar behavior. This approach was fully utilized
in times when the cost of imbalance was low. However, as the share of VRES in the
energy mix increases, so do the imbalance costs, requiring more accurate energy fore-
casting. Furthermore, during periods of scarcity of energy resources (such as electricity,
oil, and gas), the accuracy of forecasts becomes critical for suppliers. In turn, “bottom-
up” approaches such as STLF rely on the granularity provided by smart meters and
produce individual profile forecasts. The current STLF methods rely on statistical met-
rics such as moving averages, linear models such as Autoregressive integrated moving
average (ARIMA), or in some cases simply comparing load to the previous day.

Recently, to accommodate the extensive data generated by smart meters, new methods
have emerged, mostly based on ML such as XGBoost (Bollenbach et al., 2022) or DL, to
more accurately predict load curves taking into account the new patterns (Hippert et al.,
2001; Nassif et al., 2021; Nti et al., 2020). Although there has been an increase in both us-
age and research interest in DL techniques, a perfect solution to effectively handle all of
the above variations in load profiles has not yet been developed. In particular, research
has focused on models that can more accurately identify nonlinear and latent patterns
in the data, as opposed to models such as ARIMA, which have limiting assumptions
such as linearity or seasonality that hinder their performance.
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In (Fernández et al., 2022b RP 1) we reviewed a large body of research on load fore-
casting models. Our results there suggested that DL models have become deeper likely
to capture the nonlinearities in the data. The neural network (NN) layer design found
has maintained constant over time with a majority of Fully Connected layers (FCL),
Long Short-term Memory (LSTM) Layers (Hochreiter and Schmidhuber, 1997) and con-
volutional layers. Moreover, looking at the architectures, we found a large utilization
of autoencoder architectures. Autoencoders aim to learn a compressed representation
of the input data, called a latent space. The bidirectional encoding-decoding phase al-
lows the autoencoder to learn an efficient, data-specific reduction of the input data,
where similar inputs will have similar representations in the latent space. This low-
dimensional representation helps autoencoders to accurately predict such diverse load
profiles. Furthermore, in recent times, more and more "alternative" architectures, such
as Attention mechanisms (Sehovac and Grolinger, 2020) or hybrid models (Yan et al.,
2018), have been included, deviating from the classic AI tradition of using LSTM for
time-series-related problems.

1.2. Federated Learning for Short-Term Load Forecasting

With the increasing penetration of smart metering data in European households, en-
ergy suppliers have tried to aggregate them into central forecasting systems. Although
forecasting systems have the potential for highly accurate predictions, they face two
significant challenges. First, as mentioned above, smart meter data can be linked to in-
dividuals, thereby presenting significant privacy concerns. The level of detail captured
by smart meters can enable the identification of specific customers. Secondly, there are
substantial regulatory disparities that make it difficult to determine data ownership,
particularly for smart meter data, since there are no specific regulations in place (Euro-
pean Commission, Directorate-General for Energy et al., (2020); Haney et al., 2009). For
instance, under some regulations, data ownership remains with the customer; in other
regulations, the energy supplier is the owner. This uncertainty often makes centralized
data lake approaches, such as Atrias in Belgium (Atrias, 2021), or Elhub in Norway
(Elhub, 2021), less desirable.

FL emerges as a highly suitable solution in scenarios where decentralization is already
present, such as the energy grid, where the ownership of smart metering data is dis-
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tributed across households, offering a promising approach to address the challenges
posed by centralized forecasting systems. The underlying principle revolves around
treating each household as an independent client within the FL framework, along with a
central server, typically represented by the energy supplier. By adopting this approach,
individual households can train their own models based on their unique consumption
profiles. Subsequently, these households transmitted their model weights to the cen-
tral server. Performing as a central server, the energy supplier undertakes the crucial
task of aggregating and averaging the received models while incorporating privacy-
preserving techniques (see Section 1.4.) to protect sensitive information. This integra-
tion of privacy measures ensures that the consumption patterns of other households
remain concealed from both the energy supplier and other participants. After perform-
ing the necessary calculations, the energy supplier returns the updated models to their
respective households. Through this iterative process, FL guarantees a collaborative,
yet privacy-conscious environment, allowing accurate load forecasting without com-
promising individual privacy or exposing consumption details to unauthorized entities.

The core of both articles (Fernández et al., 2022b RP1, Fernández et al., 2023b RP2)rely
on this argumentation.

Despite its effectiveness, this approach has some limitations that should be taken into
account. First, there is a clear trade-off between privacy and accuracy. The empirical
findings of our research indicate an average performance decrease of 20% to 40% (Fer-
nández et al., 2022b RP 1). Secondly, inherent variability among households and their
load profiles can introduce conflicts during the training phase. If households possess
load profiles that push models learning in opposing directions, it can have a detrimen-
tal impact on the overall performance of the aggregated model. The diversity of con-
sumption patterns among households can lead to inconsistencies and discrepancies in
the training process, which requires careful consideration and mitigation strategies to
ensure the effectiveness of the FL framework.

To overcome these challenges, ongoing research aims to develop innovative techniques
that strike a better balance between privacy preservation and model accuracy (see Sec-
tion 1.4.). Additionally, exploring methods to cluster conflicting load profiles within the
FL framework holds promise to improve overall performance in decentralized energy
grids (see Section 1.3.).
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1.3. Clustering load profiles

Clustering households by those with similar characteristics is a technique that can re-
duce the overall inherent variability of households, thereby leading to improved predic-
tion accuracy (McLoughlin et al., 2015). This reduced variability can ease the learning
of the models (Syed et al., 2021). By doing so, similar load profiles (households) can be
grouped together, improving the accuracy of forecasting algorithms.

As mentioned above, within FL this problem is particularly important, as the diver-
sity in load profiles can impede the overall learning of the models (Fernández et al.,
2022b RP1). Previous studies have confirmed the effectiveness of centralized cluster-
ing before training FL models to cope with the variability. Nonetheless, as pointed out
by (Saxena et al., 2017), load profile clustering typically necessitates global data access,
which entails a centralized framework. This global access contradicts the decentralized
nature of FL. As a result, the clustering techniques and FL encounters incompatibilities,
as in (Han et al., 2020; He et al., 2021; Savi and Olivadese, 2021) and (Fernández et al.,
2022b RP1).

Ideally, these clusters will be generated ad-hoc by the clients as time progresses to adapt
to the changing load profiles of customers (e.g. someone buying an Electric vehicle).

In (Fernández et al., 2023b RP 2) we proposed a decentralized P2P clustering approach
for households utilizing Agent Based Modeling (ABM) principles. Our goal is to gen-
erate clusters in a decentralized P2P manner, eliminating the need for a central server.
In this approach, agents, represented by their load profiles, have the freedom to select
the most similar agents and form clusters. By creating these clusters, we can reduce
variance across households, improving thereby the performance of load forecasting.

Later, these groups will eventually form federations in which FL can train with re-
duced variability, thus increasing the performance of the model. Calculating the simi-
larity or distance between load profiles is a fundamental requirement for any clustering
technique. Classic clustering techniques, such as K-means, use Euclidean distances as
their way to calculate the similarity. However, clustering load profiles is not a trivial
task(Fernández et al., 2022b RP1, Fernández et al., 2023b RP2). Issues with alignment
can occur on multiple occasions, modifying the overall similarity between two load
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profiles and consequently impacting the assigned clusters. Traditional metrics such as
Euclidean distances struggle to solve these alignment issues.

Euclidean distances compare time-series point-to-point, ignoring misalignments or
shifts. This means that if two time-series are in-phase, the Euclidean measurement fails
to capture the distinctive characteristics of each individual time-series (Fernández et al.,
2023b RP2). In such cases, more advanced metrics like Dynamic time warping (DTW)
prove to be effective in mitigating alignment issues. DTW aligns the sequences to iden-
tify the optimal match between them, even if they exhibit variations in length, speed, or
non-linear behavior. Although DTW is a powerful technique, it is also computationally
expensive, on the order of computational complexity O(n2).

dtw(i, j) =

8
>>>>>>>>>><

>>>>>>>>>>:

1 if i = 0 or j = 0

0 if i = j = 0

kXi, Yjk2 +min

8
>>><

>>>:

dtw(i� 1, j)

dtw(i, j � 1)

dtw(i� 1, j � 1)

i = 1, ..., n X 2 Rn

j = 1, ...,m Y 2 Rm

(IV.1)

d(X, Y ) =

vuut
nX

i=1

(Xi � Yi)2 (IV.2)

Equations IV.1 and IV.22 represent the disparity in complexity mentioned above. On
the other hand, Figure IV.1, displays the visual differences between the DTW and Eu-
clidean distances for the same two household load profiles over 48 hours. DTW finds
alignments across the spikes between t = 15 and t = 20, however, Euclidean does not,
as demonstrated at t = 42, where the spike in the above profile is measured against a
valley in the below profile.

However, it remains unclear whether the use of advanced distance metrics such as
DTW, despite being computationally intensive, yields superior results compared to
simpler and easier-to-calculate metrics such as Euclidean distances. Our experiments
revealed that DTW required significantly more time for the calculations without sub-

2Assuming that X,Y 2 Rn
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Figure IV.1: Comparison of Dynamic time warping (left) and Euclidean (right) distance over 48h for two
residential load profiles. (c.f. (Fernández et al., 2023b RP 2))

stantial performance improvements (Fernández et al., 2023b RP2). The marginal impact
of performance associated with this approach can be attributed to the inherent charac-
teristics of the models employed. Once outliers are effectively isolated, these models
gain a sufficient understanding of consumption patterns, reducing the need for highly
accurate clusters provided by DTW. In (Fernández et al., 2022b RP 1) we could already
foresee a similar behavior in which, by simpler Pearson correlations between house-
holds, we could improve the overall forecast performance more than 15% on average.

Based on our findings, we reached the conclusion that when combined with a P2P clus-
tering approach, Euclidean distances can effectively generate clusters suitable for FL,
enabling accurate and efficient learning of load patterns without the need for complex
alignment operations required by DTW. Furthermore, this approach eliminates the re-
quirement of aggregating data in a central repository, fostering a more decentralized
and privacy-preserving framework.

1.4. Privacy-preserving federated learning for short-term load

forecasting

The more detailed the available data, the more likely specific characteristics of the
households will emerge, making them identifiable (Radovanovic et al., 2022). Privacy
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concerns have arisen with the availability of high-resolution smart meter data, as it
provides insight into customer behavior (Fan et al., 2013; Kim et al., 2011; Kolter and
Jaakkola, 2012; Wang, 2020). Studies have successfully used load profiles to detect hol-
idays (Eibl et al., 2019) using 15-minute resolution load profiles from Upper Austria.
Although determining the occupancy status of a household may seem straightforward,
research has progressed to identify specific characteristics of households, such as de-
tecting swimming pools (Burkhart et al., 2018; Ferner et al., 2019) or the presence of
air conditioners (Pathak et al., 2018). These efforts highlight ongoing efforts to uncover
unique attributes and behaviors within load profiles for a deeper understanding of cus-
tomer usage patterns.

In FL, although raw data is not shared, models are continuously exchanged. Therefore,
privacy has become a crucial issue, particularly when forecasting future load consump-
tion can reveal individual characteristics. DP has emerged as a prominent method in
FL to ensure privacy preservation, as mentioned in Section 1.4.. However, determining
the appropriate level of noise to achieve privacy protection remains an open research
question (Hsu et al., 2014; Kohli and Laskowski, 2018; Lee and Clifton, 2011), and so
does in the context of STLF.

Simply adding noise to the data does not guarantee that privacy requirements will be
met in all scenarios and vice versa. Privacy requirements in domains such as health data
are fundamentally different from other privacy standards, and require much stronger
privacy guarantees to avoid catastrophic outcomes (Kaissis et al., 2021). Although the
privacy requirements for load data are not as high (Eibl et al., 2018), they should not be
ignored, as they contain personal information that must be protected.

Due to the fragility and sensitivity of STLF models to noise perturbations, there is a fine
line between privacy and performance, making it essential for STLF models to deter-
mine the right level of noise (Fernández et al., 2022b RP 1). Normally, more privacy
means more noise, which is bad for performance and vice versa. The performance will
increase with less noise, but there will be less privacy.

In (Fernández et al., 2022b RP 1) we aim to find the optimal DP noise level for STLF
within a FL application. There, we try to find the balance between maximizing the noise
level and minimizing its impact on the performance of the forecasting model. Thus, we
performed a grid-search on the privacy hyperparameter spaces to train different models
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under a large range of different differential privacy requirements (see Figure II.3). There,
the aim is to obtain the most private model possible given the performance benchmark.
In turn, this approach may add more noise than necessary to ensure the privacy of
individuals. It is thus likely that a less private model may still be sufficient to defend
the model against attackers.

From the work performed in (Fernández et al., 2022b RP 1) we can extract some design
principles to successfully train federated STLF models using DP. First, the retraining of
private models. The idea of this retraining lies in its simplicity. Models trained with
DP can be difficult to fit under such compromising constraints; sometimes the opti-
mizations mentioned above produce either not enough privacy, not enough performing
models, or there are not enough clients to converge. One way to deal with this is to
retrain the DP model for each of the respective clients. Since the DP models are private,
retraining for a specific client will still maintain privacy with respect to itself. The re-
sults of the analysis show a significant improvement in the accuracy of the prediction
with minimal performance compromise.

Second, it also proposes some guidelines for the model architecture to properly deal
with noise. The sensitivity of predictive models to noise depends not only on the
amount of noise or its optimization, but also on their internal architecture. In gen-
eral, STLF neural architectures tend to rely heavily on autoencoders (Khan et al., 2020;
Marino et al., 2016; Sehovac and Grolinger, 2020) and (Fernández et al., 2022b RP 1).
Autoencoders are well suited for FL because they can adapt to the variability in data
between different clients. However, our research has shown that these models are more
sensitive to noise than traditional stacked LSTM networks. This increased sensitivity
may be due to the fact that autoencoders compress information from high-dimensional
spaces into a lower-dimensional representation. Following the work of (McMahan et
al., 2018), noise is added to the model weights after aggregation. There, we found evi-
dence that the noise added to the latent space perturbs the mapping between inputs and
outputs. This perturbation amplifies the effect of the noise because the model cannot
find the connection between the encoded and decoded features during the decoding
phase, preventing the model from learning any of the patterns.

Lastly, as mentioned in (Fernández et al., 2022b RP 1) the use of SecAgg appears to cover
the gaps left by DP. Although models can be attacked using MI attacks (Bagdasaryan et
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al., 2020; Fredrikson et al., 2015; Shejwalkar and Houmansadr, 2021), SecAgg as it is
built on SMPC protocols offers strong privacy guarantees to share model weights or
gradients efficiently and securely.

Although the original work pursued in (Fernández et al., 2022b RP 1) aimed to find
optimal levels of noise to ensure high performance private forecasting models. We did
not study whether such privacy constraints will protect the households from attacks or
whether lower levels of privacy are enough to protect individuals without hampering
the training.

Herewith, the articles (Fernández et al., 2022b RP1, Fernández et al., 2023b RP2) aim to
close ties with the utility of this data in a decentralized manner, offering methods and a
self-sufficient technological stack to produce accurate yet private forecasts. On the one
hand, providing methods to mitigate attack vectors on load profiles while maintaining
the trade-off between privacy and accuracy. On the other hand, to propose new P2P
mechanisms that allow households to form groups with individuals who share simi-
lar characteristics to mitigate the significant variability introduced by smart metering
devices.
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2 Federated Learning in the Financial Sector

Financial institutions regularly assess the creditworthiness of individuals and entities
seeking loans or credit. This process is crucial to determining an institution’s expo-
sure to risk. Through the gathering and analysis of both quantitative and qualitative
data, financial institutions are able to make informed predictions about a borrower’s
ability to fulfill their financial obligations in the future. Traditional methods rely on
principles of induction to make mathematical and statistical inferences from curated
data. These inferences are limited by assumptions such as linearity, independence, and
normality. To overcome those limitations, modern intelligent approaches use computa-
tional methods that rely on patterns extracted from data and thus decouple them from
the mentioned assumptions (Chen et al., 2016; Galindo and Tamayo, 2000). Therefore,
credit risk models created from intelligent methods perform better in many cases by
generalizing complex real-world data where noise, non-linearity, and idiosyncrasies are
observed regularly.

Previous empirical studies have shown that modern credit risk models sometimes per-
form better than those created by traditional methods, but even such credit risk models
are constrained by the same limitations. The performance of credit risk models depends
not only on the methodology used but also on the data input (Altman, 2002; Heitfield,
2009).

Access to data is crucial for the effectiveness of intelligent methods, as they require
large amounts of data to be accurate and reliable in uncertain situations. In particular,
in the mortgage market, where data on credit risk and, by extension, mortgage risk, are
costly, scarce (Jha et al., 2012) and subject to stringent regulations such as, for example,
General Data Protection Regulation (GDPR) in Europe, which limits the general usabil-
ity of the data. Consequently, having data generally offers a competitive advantage to
its holder (Lee et al., 2023 RP 3) (Bansal et al., 1993; Walczak, 2001). Furthermore, the
quantity and quality of these data can significantly affect the performance of credit risk
models (Bansal et al., 1993; Walczak, 2001).

The efforts to increase data availability and increase performance of these models
are impeded by data privacy issues and restrictions on data sharing and collabora-
tion (Borgman, 2012; Ekbia et al., 2015). Concerns about data privacy are pronounced
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when the sharing of data in question is sensitive, valuable, and across silos as data
allows for precise identification of individuals. On the other hand, data also require
investment to produce and maintain as a corporation. The competitive landscape pres-
sures corporations to be reluctant to openly share data.

Data availability and privacy are two significant challenges that can limit the effective-
ness of credit risk models. To overcome these limitations, an approach is to use FL
to form cross-organizational agreements that provide access to new AI capabilities or
enable the monetization of existing capabilities (Fernández et al., 2023a RP 5).

“Financial institutions would not need to reveal their data as they gain insights from its pro-
cessing, allowing every participating Financial Institution to benefit from the use of each other’s
information” (Lee et al., 2023 RP 3). By employing FL, financial institutions can create
joint credit risk models without sharing raw data. For example, small financial insti-
tutions, such as FinTech startups and neobanks that need to purchase data from exter-
nal sources to stay competitive, can leverage the knowledge of others, broadening the
scope of their models. As a result, these small financial institutions can lower its inter-
nal bias and better accommodate new customers, improving their overall performance
on credit-related tasks.

This is particularly important for smaller financial institutions, such as FinTech startups
or neobanks, who need to acquire data from external sources to remain competitive. In
(Lee et al., 2023 RP 3) we explored different scenarios to analyze the performance and
utility of FL and credit risk assessment. To evaluate the suitability of this model for
financial institutions, we collected data on American mortgages over a three-year pe-
riod. The original dataset comes from Freddie Mac’s Single Family Loan-Level dataset
(SFLD) (Freddie Mac, 2021) that contains up to 9M mortgage observations. An obser-
vation is defined by the state in which a mortgage is. Given a month, we have access to
the internal state of all active loans under their management.

What makes this data set particularly interesting is that not all banks had the same
amount of mortgage under management, allowing us to test both the hypothesis of
knowledge sharing between small financial institutions to acquire AI capacities to bet-
ter compete (Bouncken et al., 2015) and the importance of large financial institutions
relative to the small ones in a model sharing relationship.
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To evaluate our initial assumptions, we built a list of scenarios. Initially, we evaluated
the performance of financial institutions just by estimating their risk based on their own
data; this scenario serves as a realistic baseline for future comparisons. Second, we have
a hypothetical scenario formed by a large data lake with all the mortgages. Third, there
is an FL scenario where all banks participate equally in this form of coopetition. Fourth,
and to evaluate the hypothesis where we posit that small financial institutions have
an incentive join FL, we model two more scenarios where the most prominent bank
in America and the second most prominent banks are excluded from FL. With these
scenarios, we sought to evaluate the importance of the largest mortgage transactor with
respect to the knowledge that a smaller version of these alliances might have.

Our simulations suggested that first, when all financial institutions join a data lake, the
evaluation metrics were close to 100%. This initial result seems intuitive but imprac-
tical. There, we assume that all financial institutions within a jurisdiction will openly
share their data with a central entity for future training. Second, we tested the main
hypothesis of the article, is it enough for small financial institutions to just collaborate be-
tween themselves? As previously stated, we validated this hypothesis by training two
distinct and independent FL models, one of which excludes the top financial institu-
tion while the second one, building on the previous, also excludes the second largest
financial institution. Our findings reveal that the results of both models are in pair with
the performance obtained in the scenario where all financial institutions participate and
even in the initial data lake scenario where all the data are aggregated in a silo.

Furthermore, our simulations revealed that by collaboration financial institutions can
not only better estimate the risk of default of a mortgage, but also anticipate unforeseen
events of the mortgage. In Figure IV.2, we explore the probability of default estimated
by any of the banks and FL for a particular loan. In this case, we can visualize how
the smallest financial institution in the dataset (Metlife Bank) reacts late, while at the
end of 2012 the rest of the financial institutions (and FL) gave this loan a high default
rate, Metlife Bank needed at least one extra year to realize that the likelihood of this
mortgage to be paid-off was minimal. As seen, our experiments suggest that small
financial institutions can profit from FL in two ways: Firstly, better anticipating unseen
events and secondly, having a higher accuracy when estimating the default likelihood
of a mortgage.
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This behavior can be attributed to the fact that the credit risk data are tailored to both
the issuer and the financial institutions, and thus have a limited scope for estimating the
overall risk. The data they have is not sufficient for a robust assessment of the overall
risk distribution (Taleb, 2020).

Figure IV.2: Reaction capacity between financial institutions

In summary, the case of financial institutions in the context of credit risk assessment is
clear, as a relatively small financial institution could benefit significantly from collab-
oration with others through FL. This particular case might be because every financial
institution holds data for a specific market niche. Collaboration allows smaller compa-
nies to combine their resources and expertise to access new markets and gain access to
knowledge that would otherwise be reserved for larger institutions. This can lead to
increased competitiveness and growth for smaller companies.

In addition to the empirical benefits that this technology can bring to the financial sec-
tor, there are also counterparts to take into account. One of them could be the formation
of alliances or oligopolies. These oligopolies are usually formed by competitive entities
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in which they find significant benefits by collaborating rather than competing. Securing
their marked dominance by doing so (Goyal and Joshi, 2003). For example, consider
an alliance of top financial institutions that collaborate to develop FL models for more
accurate loan calculations. In this scenario, smaller financial institutions are consid-
ered insignificant and excluded, whereas larger financial institutions end up dominat-
ing the market. This type of environment is conducive to the formation of data cartels
and oligopolies, as only large organizations can form strategic alliances with each other
based on their significant contributions (Goyal and Joshi, 2003).
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3 Federated Learning in the Public Sector

Governments are currently not prepared to harness the potential of the rapidly growing
field of AI (Wirtz et al., 2020). This new technology-driven wave has been primarily
driven by the private sector. However, practices that are effective in the private sector
may not be applicable in the public sector due to differences in priorities. While the
private sector often prioritizes competitive advantage, the public sector is more con-
cerned with maximizing public value (Fatima et al., 2020; Zuiderwijk et al., 2021). Con-
sequently, there is less AI knowledge and expertise within the public sector compared
to the private sector.

This new technological wave describes the increasing use of disruptive information
communication technologies (ICTs) such as AI in governments. The so-called e-
Government 3.0 aims to use AI techniques to solve societal problems (Sprenkamp et
al., 2023 RP 4).

However, obtaining the necessary data for this initiative is not easy. The government
technological infrastructure is limited and there is a shortage of AI expertise in-house
among public administrations (Ojo and Millard, 2017). Additionally, government data
may have explicit privacy concerns (Isaak and Hanna, 2018), which makes data acqui-
sition even more challenging.

An option for governments is to acquire their IT and AI capabilities through intergov-
ernmental data sharing (Sprenkamp et al., 2023 RP 4). This approach is similar to how
companies seek the necessary capabilities beyond their organizational boundaries (Win-
ter et al., 2014), where companies without the necessary IT capabilities to run projects
in-house look for services outside the limits of their own company.

Addressing the data hunger of AI models and resolving the obstacles faced by inter-
governmental alliances can be achieved through the sharing of data by (Thiebes et al.,
2021). However, several challenges arise in the context of such alliances. These in-
clude resistance from organizations to data sharing (Gupta, 2019; Sun and Medaglia,
2019), handling data with special privacy rights, such as personal information (Isaak
and Hanna, 2018) or the consequences of sharing data in a field where there is no shared
legal framework.

40



Chapter IV. Application of Federated learning

In (Sprenkamp et al., 2023 RP 4) we focused on the practical issues of intergovernmental
data sharing and the potential role of FL in addressing them. FL offers a promising
solution for governments that require large amounts of data, but face constraints in
terms of financial incentives. Allows for decentralized model training without the need
to aggregate or share data centrally. This approach has the potential to address privacy
concerns and facilitate data sharing between governments, especially in contexts where
data protection laws are stringent or negotiating data sharing agreements is challenging.

Explicitly, these practical issues are mentioned by the Organization for Economic Coop-
eration and Development (OECD) in OECD (2019). First, those related to the conflict of
interest between the parties involved in a data sharing agreement, to this end, FL can
offer security and privacy towards raw data, as well as inherent protection against vio-
lation of intellectual property. Second, thus with regard to the trust and re-use of data
across societies. These mentioned topics involve supporting communities and building
standards with a particular focus on data quality. These issues are solved by FL since
although the technology is recent, there are already methods to deal with data qual-
ity (Passerat-Palmbach et al., 2020) or system heterogeneity (Zhang et al., 2021) . The
last problem mentioned by the OECD relates to misaligned incentives and limited data
sharing business models. In this case, FL is prone to opening new business possibili-
ties. For example, the work of (Kang et al., 2019; Yu et al., 2020) delineates the possible
incentive mechanisms of FL. On the same page (Balta et al., 2021) propose the business
model “which gives entities an incentive to take part in intergovernmental projects.” (Olson,
1965) This helps to overcome the disincentives that arise from "free riding" and collec-
tive action problems, which can lead to inefficiencies in data sharing (Sprenkamp et al.,
2023 RP 4).
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4 Positioning the applications

In (Fernández et al., 2023a RP 5), we presented a framework that allows us to analyze
how companies position themselves based on their vision of FL. Similarly, as presented
in Figure IV.3, the papers included in this dissertation can also be classified within this
framework.

Competition HighLow

Type 1 Type 2

Type 3 Type 4

RP1RP2

RP3

RP4

Organizational 
AI Capabilities

Strong

Low

Figure IV.3: Placement of all research papers within the (Fernández et al., 2023a RP 5) framework.

The proposed framework can initially be divided into four quadrants, in which exam-
ples of Type 2, Type 3 and partially Type 4 companies are predominant in this dis-
sertation. The first quadrant that collects the majority of the articles is the top right,
Type 2 companies describe situations where companies that typically have enough ca-
pabilities within their boundaries, coupled with a highly competitive market. These
companies will seek to deploy FL in-house. The work conducted in energy sector
around household load profiles done in (Fernández et al., 2022b RP1, Fernández et
al., 2023b RP2) falls within the quadrant.

The use cases presented in both papers involve energy suppliers with abundant AI ca-
pabilities but who do not own the data of their customers. The customers themselves
are the sole owners of their data consumption. This, together with the dispersion across
the energy grid, difficulties the creation of centralized models. Energy suppliers can

42



Chapter IV. Application of Federated learning

utilize FL to take advantage of the distributed data ownership to create more precise
load forecasts without the need to move, store or purchase the data.

The second predominant quadrant is the one related to entities with low capabilities
and low competition regimes. Type 3 companies, such as public bodies, can use FL to
streamline processes and share technological advances. The work done in (Sprenkamp
et al., 2023 RP 4) refers to such a scenario. There, we evaluated the potential fit of FL
within the public sector. By using it, governments can take advantage of technology to
streamline their processes. The governance literature has previously identified limita-
tions in the IT and AI capabilities of public institutions, due to the limited knowledge of
machine learning among personnel and the high financial cost of complex infrastructure
projects (Ojo and Millard, 2017). For example, building a sophisticated technological in-
frastructure to store and collect data would require significant investment (Wirtz et al.,
2020). However, the use of FL can help overcome these challenges by reducing the need
for complex infrastructure, as the amount of data required to store data and models is
minimized with the use of FL technology.

Lastly, the work performed in (Lee et al., 2023 RP 3) can be categorized into Type 2 and
Type 4 companies. This article explores the potential collaboration among financial in-
stitutions that have traditionally been competitors in the mortgage market, with the aim
of enhancing their credit risk models and overall performance. It is important to note
that large financial institutions (Type 2) possessing substantial capabilities are impacted
differently compared to small fintech startups or neo-banks (Type 4). The former may
develop oligopolies through cooperation, while the latter may gain market presence
through coopetition.

As mentioned above, the paper explores both scenarios. Type 2 banks, which have an
extensive network of loans under management, do not derive significant benefits from
FL. On the other hand, Type 4 banks, although smaller in size, have the opportunity
to join forces, leverage their knowledge and data, and effectively compete with larger
entities. This highlights the potential for smaller banks to utilize cooperative strategies
and collaborative models to enhance their competitiveness in the market.
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V Conclusions

1 Challenges and limitations

Although “All that glisters is not gold” (Shakespeare, 1598), the benefits of FL for compa-
nies with stringent data requirements are obvious. With the benefits come the limita-
tions. First and foremost, as with any AI model, FL models are data hungry; FL models
require large amounts of data to train, and while standard centralized ML models col-
lect all of this data from a single location, the inherent decentralization brings with it
some challenges related to the various data sources from which the data is derived. The
presence of different data sources inherently creates heterogeneity, which can be char-
acterized not only by differences in data structure, but also by differences in cleaning,
labeling, and the inherent stability of the client’s network.

In addition to the technical challenges of FL, there are also limitations to the adoption of
FL. As mentioned throughout this dissertation, FL appears to be a catalyst for coopeti-
tion, where competing firms collaborate to increase their access to data and thus increase
their efficiency in data-driven decision making. Although the benefits for small firms in
the search for data are obvious, the outcome for large firms is different, as there is a sig-
nificant risk of collusion in the interplay between cooperation and competition, forming
cartels and oligopolies and thus excluding smaller competitors.

The success of this technology is closely related with its adoption and is intrinsically
linked to the cost-benefit of participating in such efforts. In other words, for FL to
be adopted, participants’ contributions must be fairly compensated through incentive
mechanisms.
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The accountability of the models to ensure contribution share becomes even more criti-
cal when all participants aim to optimize the model for their individual benefit in FL. In
collaborative environments, two key problems related to incentives stand out. Firstly,
self-interested participants like free-riders and biased individuals can jeopardize collab-
oration’s success. They benefit from the shared model without making valuable contri-
butions, either by not adding novel data, fabricating data, or providing false informa-
tion.

The second problem pertains to the fact that the long-term success of the FL environ-
ment is contingent on the continued participation of the data owners in the model train-
ing (Bi et al., 2023). As their gradual contributions are used to build a shared model
which in turn generates utility, there is a temporal mismatch between training of mod-
els (contribution) and commercialization (rewards).

In addition, FL has the potential to obscure the workings of a conventional AI sys-
tem. While privacy-preserving techniques and the federated nature are advantageous
from a coopetitive market perspective, increased privatization of inputs have detrimen-
tal effects on auditability, and thus on the accountability of the model challenging fair
compensations.

2 Contributions and outlook

FL proves to be an effective technology for overcoming data constraints. FL offers new
alternatives to share knowledge between companies without the need to share raw data
between them. This feature opens the door to unlimited coopetitive relationships be-
tween companies from which they all benefit.

RP 1 aims to thoughtfully explore the positive aspects that FL can bring to energy sup-
pliers in their current day-to-day business. The flood of smart metering devices in
households has brought unlimited amounts of data. Although beneficial, there are still
nudges to tackle such as privacy of individuals or hard-to-forecast profiles.

From this paper we can expand several design principles for FL in the context of Short-
Term load forecasting. For instance, due to the high risk of overfitting, it first rec-
ommends a shallow prediction architecture. Second, it advises against using autoen-
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coders because DP-FedAvg breaks the connection between inputs and outputs. Third,
it encourages the use of Adaptive-DP for both usability and performance reasons. Fi-
nally, because of its low performance impact, it emphasizes the use of SecAgg to secure
the communication channel between clients and server. In general terms, FL seems to
be successful in electric power systems enabling “high level of information sharing while
ensuring privacy of both the processed load data and forecasting models” (Fernández et al.,
2022b RP 1).

RP 2 extends RP 1. In RP 1, among other questions, we introduce problems in learning
short-term prediction models in highly volatile scenarios. These scenarios arise because
all smart meter data is treated the same, and thus different types of customers (electric
vehicle users or people in rural areas) are not taken into account. In this paper, we inves-
tigated clustering algorithms for FL. First, we analyzed the need for complex distance
metrics, such as DTW, to create adequate time series clusters for FL, and second, the
suitability of P2P clustering algorithms. Our results suggest several design principles
in this context. First, there is a performance gain when clustering is done before train-
ing. Second, it is advisable not to use DTW, since simpler Euclidean metrics outperform
it both in terms of computation time and performance. Third, peer-to-peer algorithms
seem to be a suitable solution for short-term FL prediction in cases where decentraliza-
tion is needed, since both the performance and computational overhead trade-offs are
negligible. More pointedly: “Our results reveal the possibility of using P2P clustering along
with simple Euclidean distances and FL to obtain highly performant load forecasting models in
a fully decentralized setting.” (Fernández et al., 2023b RP 2).

RP 3 examines the performance of credit risk assessment based on FL. In this paper,
financial institutions have the ability to estimate credit risk using information not only
from individually sourced data, but also from information derived from data from other
financial institutions without explicit access to the data itself. Two conclusions can be
drawn from this paper. On the one hand, the fruitful cooperation among financial insti-
tutions in building credit risk models can increase the accuracy of the models almost to
perfection. secondly, the models still perform well even if the largest mortgage holders
are excluded from the training and only small financial institutions participate. In other
words: “smaller financial institutions can expect a significant performance increase in their
credit risk assessment models by using collaborative machine learning” (Lee et al., 2023 RP 3).
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RP 4 explores the difficulties associated with data sharing between governments and
proposes the use of FL as a potential solution to these challenges. Our findings suggest
that FL could partially or fully overcome many of the problems outlined by the OECD,
making it a promising avenue for future research in the public sector. Furthermore, in
cases where data sharing regulations are “fragmented regulatory landscape” (Sprenkamp
et al., 2023 RP 4), FL appears to alleviate data sharing tensions.

RP 5 de-facto summarizes the previous work of this dissertation. In this paper, we focus
primarily on the transfer of knowledge from computer science to information systems
and the limitations to the adoption of this technology, in particular on “how, beyond the
technical realm, there are barriers to adoption.” (Fernández et al., 2023a RP 5). To achieve
this, we reviewed the current literature to draw conclusions and limitations for the ap-
plication of FL in an intra- and cross-organizational context. By studying the impli-
cations of FL in two different contexts, namely organizational and environmental, we
draw a conceptualization model to understand the situation that entities will be entitled
to when adopting FL. In addition, we propose a concise research agenda at the intersec-
tion of FL research and information systems to promote the adoption of the technology.

In summary, this dissertation extends and investigates the challenges and potential so-
lutions in various domains. It explores the application of FL in energy systems, em-
phasizing its ability to facilitate information sharing while ensuring privacy. This dis-
sertation proposes design principles for FL, including the use of shallow prediction ar-
chitectures and privacy-preserving techniques such as differential privacy and secure
aggregation attempting to strike a balance between accurate load forecasting and pre-
serving individual privacy rights. These methods minimize the risk of reidentification
or unauthorized access by ensuring that sensitive data used in the forecasting process
remain anonymous and secure. In addition, the thesis explores the benefits of FL clus-
tering algorithms in volatile electric load forecasting scenarios. It suggests that peer-
to-peer algorithms are suitable for FL environments, providing high performance with
minimal computational overhead.

Furthermore, this dissertation provides valuable insights into the applications and de-
sign principles of FL in different domains, namely the financial and public sectors. It
highlights the potential of FL to overcome data limitations, ensure privacy, and improve
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performance by demonstrating the benefits of collaboration and promoting data shar-
ing.

This research contributes to the advancement of FL technology and provides a founda-
tion for further exploration and its adoption in relevant industries.
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A. Publication Overview

This section describes the portfolio of publications from this dissertation. This compro-
mises the publications included in the dissertation as in A.1.. Furthermore, the individ-
ual contribution of each of the papers is also disclosed in B.. The full text of the included
articles is attached in Appendix C.

A.1. Included publications

The following research papers (RP) included in the dissertation follow journal the per-
centile on the 2022 Scopus ranking 1, while the conferences follow the 2021 GII-GRIN-
SCIE (GGS) 2.

• (Fernández et al., 2022b RP 1): J. D. Fernández, S. P. Menci, C. M. Lee, A. Rieger,
and G. Fridgen (2022b). “Privacy-preserving federated learning for residential
short-term load forecasting”. In: Applied Energy 326, p. 119915. ISSN: 0306-2619.
DOI: https://doi.org/10.1016/j.apenergy.2022.119915. URL: https://www.scienc
edirect.com/science/article/pii/S0306261922011722.

Scopus: 99%.

• (Fernández et al., 2023b RP 2): J. D. Fernández, S. P. Menci, and I. Pavic (2023b).
“Towards a peer-to-peer residential short-term load forecasting with federated
learning”. In: pp. 1–6. DOI: 10.1109/PowerTech55446.2023.10202782.

GGS: B.
1See www.scopus.com
2See scie.lcc.uma.es
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Fridgen (2023). “Federated Learning for Credit Risk Assessment”. In: Proceedings
of the 56th Hawaii International Conference on System Sciences, p. 10. DOI: https://h
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of Baseline Models for Rolling Price Forecasts in the German Continuous Intraday
Electricity Market”. In.

– Forthcoming in the 15th International Conference in Applied Energy,
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B. Individual Contributions

The papers on this dissertation and the individual contribution of each of the authors
are in CRediT roles:

RP 1: Privacy-preserving federated learning for residential short-term load forecast-
ing:

• Joaquín Delgado Fernández - lead co-authorship: Conceptualization, Methodol-
ogy, Data curation, Writing – original draft, Software, Writing – review & editing,
Visualization.

• Sergio Potenciano Menci - subordinate co-authorship: Conceptualization,
Methodology, Data curation, Writing – original draft, Writing – review & editing,
Visualization.

• Chul Min Lee - subordinate co-authorship: Conceptualization, Methodology,
Writing – original draft, Writing – review & editing.

• Alexander Rieger - subordinate co-authorship: Writing – review & editing, Su-
pervision.

• Gilbert Fridgen - subordinate co-authorship: Writing – review & editing, Super-
vision, Funding acquisition.

Specifically, I contributed to the development of the paper’s concept and created the
initial draft. Additionally, I wrote all the code for the simulations and created the origi-
nal visualization. Furthermore, I was responsible for extracting and pre-processing the
dataset. Finally, I participated in the internal review process of the paper and also the
needed edits based on the feedback we received during the journal editing stage.

RP 2: Towards a peer-to-peer residential short-term load forecasting with federated
learning:

• Joaquín Delgado Fernández - lead co-authorship: Conceptualization, Methodol-
ogy, Data curation, Writing – original draft, Software, Writing – review & editing,
Visualization.
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• Sergio Potenciano Menci - subordinate co-authorship: Conceptualization,
Methodology, Data curation, Writing – original draft, Writing – review & editing,
Visualization.

• Ivan Pavić - subordinate co-authorship: Writing – review & editing, Supervision.

I specifically contributed to the concept formulation of the paper and wrote the first
draft. In addition, I coded all the programming and designed the original visualization.
Furthermore, I was in charge of extracting and pre-processing the dataset. Finally, I
participated in the internal review process of the article as well as revising based on
input gathered during the conference editing stage.

RP 3: Federated Learning for Credit Risk Assessment:

• Chul Min Lee - equal co-authorship: Conceptualization, Methodology, Data cu-
ration, Writing – original draft, Writing – review & editing.
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ology, Data curation, Writing – original draft, Software, Writing – review & edit-
ing, Visualization.
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Methodology, Writing – original draft, Writing – review & editing.

• Alexander Rieger - subordinate co-authorship: Writing – review & editing, Su-
pervision.

• Gilbert Fridgen - subordinate co-authorship: Writing – review & editing, Super-
vision, Funding acquisition.

In particular, I helped develop the paper’s concept and wrote the first draft with my
co-authors. In addition, while my co-author found and managed to obtain the dataset, I
wrote all the code responsible for extracting and preprocessing it. I was also responsible
for building entirely the prototype. Finally, I participated in the internal review process
of the article and also in the editing based on the feedback that we received during the
conference editing stage.
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RP 4: Federated Learning as a Solution for Problems Related to Intergovernmental
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• Kilian Sprenkamp- lead co-authorship: Conceptualization, Methodology, Writ-
ing – original draft, Writing – review & editing, Visualization.
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Principally, I contributed to the development of the concept of the paper and prepared
the initial draft along with the design of the figures and tables. I was responsible for
the analysis of the relevant literature, as well as the analysis of the relevant findings on
the adoption of FL. Finally, I participated in the internal review process of the paper
and also in the necessary revisions based on the feedback that we received during the
journal editing stage.
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Abstract

With high levels of intermittent power generation and dynamic demand patterns, ac-
curate forecasts for residential loads have become essential. Smart meters can play
an important role when making these forecasts as they provide detailed load data.
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However, using smart meter data for load forecasting is challenging due to data pri-
vacy requirements. This paper investigates how these requirements can be addressed
through a combination of federated learning and privacy preserving techniques such
as differential privacy and secure aggregation. For our analysis, we employ a large set
of residential load data and simulate how different federated learning models and pri-
vacy preserving techniques affect performance and privacy. Our simulations reveal that
combining federated learning and privacy preserving techniques can secure both high
forecasting accuracy and near-complete privacy. Specifically, we find that such combi-
nations enable a high level of information sharing while ensuring privacy of both the
processed load data and forecasting models. Moreover, we identify and discuss chal-
lenges of applying federated learning, differential privacy and secure aggregation for
residential short-term load forecasting.

1 Introduction

As the supply from intermittent and difficult-to-forecast renewable power sources in-
creases, load forecasting – and especially residential short-term load forecasting (STLF)
- is becoming ever more crucial for the reliability of modern power systems (Nti et al.,
2020; Petropoulos et al., 2022). Residential STLF covers forecasting windows from a
few minutes to a week ahead (ENTSO-E, 2021; Petropoulos et al., 2022). It plays an
important role for many operational processes in the power system, such as planning,
operating, and scheduling (Lusis et al., 2017; Muñoz et al., (2010)). For instance, it en-
ables energy providers to identify gaps between supply and demand in their customer
portfolios. These gaps typically lead to high imbalance costs and ultimately to higher
electricity prices for residential customers (Commission for Regulation of Utilities, 2017;
Specht and Madlener, 2019).

Traditionally, residential STLF has relied on aggregated load data and reference load
profiles (Lusis et al., 2017; Maltais and Gosselin, 2021; Wang et al., 2019). Yet, aggrega-
tion and reference profiles are often ill-suited for power systems with a high share of
distributed generation and active demand-side management (Lusis et al., 2017; Maltais
and Gosselin, 2021). Moreover, they have become less reliable with residential heating
and mobility being increasingly electric (International Energy Agency, 2021; Kerami-
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das et al., 2020) and consumption patterns growing more dynamic, for instance, due
to fluctuating levels of remote work (Bielecki et al., 2021). These trends make accurate
forecasting of individual residential loads an important priority.

There are various traditional methods for more granular STLF, but most build on lim-
iting linearity assumptions (correlation between values and past values) even though
residential load patterns are often highly dynamic (Lusis et al., 2017). Examples include
time series models that rely on seasonal autoregressive integrated moving averages
(ARIMA) (Kaur and Ahuja, 2017; Lusis et al., 2017), exponential smoothing, or linear
transfer functions. Residential STFL is thus increasingly relying on methods that can
work with non-linear dependencies, such as many Artificial Intelligence (AI) models
(Alfares and Nazeeruddin, 2002; Ardabili et al., 2019; Hippert et al., 2001; Kalimoldayev
et al., 2020; Khan et al., 2020).

A core challenge for any of these methods is the availability of granular data (Negnevit-
sky et al., 2009). In many countries, this ’data scarcity’ problem is tackled by pushing for
advanced metering infrastructure (AMI), which substantially increases the resolution of
residential load data (Rashed Mohassel et al., 2014). STLF methods can make use of this
data using either ’centralized’ or ’decentralized’ approaches. Centralized approaches
transfer smart meter data to a central forecasting system. While these forecasting sys-
tems promise very accurate results, they face a twofold problem. First, they are subject
to substantial privacy challenges because smart meter data are often easily attributable
to natural persons. That is, data collected from smart meters can be detailed enough to
permit the identification of specific customers (Hinterstocker et al., 2017). The transfer
and aggregation of smart meter data is thus typically subject to data privacy regulations
such as the European Union’s General Data Protection Regulation (GDPR) and its obli-
gations and requirements for processing personal data (Kowarik et al., 2016; McKenna
et al., 2012). Second, there are considerable regulatory uncertainties. In particular, it is
often unclear how device ownership (who owns the smart meter) and aggregation im-
pact data ownership. Moreover, specific regulations for smart meter data are typically
absent (European Commission, Directorate-General for Energy et al., (2020); Haney et
al., 2009). These regulatory uncertainties often mean that centralized approaches such
as Belgium’s Atrias (Atrias, 2021), or Norway’s Elhub (Elhub, 2021), which provide so-
called data lakes, may not be desirable.
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Decentralized approaches aim to tackle some of these issues by processing smart meter
data locally. A particularly promising of these decentralized approaches is Federated
Learning (FL) (Konečný et al., 2016; McMahan et al., 2017). Federated Learning is a ma-
chine learning technique that offers a collaboration framework for clients. In a so-called
’federation’ clients jointly train and share prediction models instead of training data.
Although FL cannot guarantee privacy by itself (Geiping et al., 2020; Zhu et al., 2019), it
can be combined with privacy-preserving techniques such as differential privacy (DP)
and secure aggregation (SecAgg).

Even though such a combination could substantially benefit residential STLF, academic
attention to FL has been limited so far (Biswal et al., 2021; Briggs et al., 2021a; Fekri et
al., 2021; He et al., 2021; Husnoo et al., 2022; Khalil et al., 2021; Li et al., 2020a; Lin et al.,
2022; Savi and Olivadese, 2021; Shi and Xu, 2022; Taïk and Cherkaoui, 2020; Xu et al.,
2021) and the two components have mostly been considered mostly in isolation (Bar-
bosa et al., 2016; Chhachhi and Teng, 2021; Eibl and Engel, 2017b). With this paper, we
seek to close several gaps in the literature on FL-based STLF: Firstly, we aim to deepen
the understanding of FL-based STLF by examining the effects of clustering based on
Pearson correlation and the effects of architectural complexity. Secondly, we analyze
the privacy and performance effects of adding privacy-preserving techniques (DP and
SecAgg) to FL. Third, we identify key challenges associated with using a combination
of FL and privacy-preserving techniques.

To do so, we conduct the following analysis: Initially, we identify promising NN ar-
chitectures from a review of the recent FL literature. Subsequently, we select the most
effective of these architectures and investigate six scenarios using real-world historical
data. In a first scenario, we evaluate the performance of the selected architecture in
a ’centralized’ setting to establish a performance benchmark for the remaining five FL
scenarios. In the second scenario, we investigate the performance and computational
cost effects of moving from a centralized setting to a FL setting. In a third scenario,
we then examine the effects of using correlated training data based on Pearson correla-
tion and socio-economic factors. Correlation is typically avoided in non-federated ML
models to increase data variability. Yet, for FL models, correlated data may increase
forecasting accuracy (Taïk and Cherkaoui, 2020) and mitigate problems with non-IID
(non-independent and non-identically distributed) data. In the fourth scenario, we re-
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flect on the trend to work with ever more complex models and explore the effects of
increasing the complexity of the NN’s architecture. In scenarios 5 and 6, we study how
privacy-preserving techniques affect the training and performance of federated mod-
els. Specifically, we investigate the effect of different DP implementations (i.e., clipping
techniques) and SecAgg on accuracy, privacy, and computational costs.

The remainder of the paper is structured as follows. Section 2 provides an overview of
related work on the use of NNs for STLF, FL, and privacy-preserving techniques. Sec-
tion 3 covers our evaluation method, including the simulation environment, dataset and
evaluation metrics. Section 4 describes our evaluation design. It covers the selection of
the baseline NN architecture, the specification of the analyzed differential privacy and
secure aggregation techniques, the training process for the federated learning models,
and the design of six evaluation scenarios. Section 5 presents the evaluation results for
the six scenarios. Finally, section 6 provides a synthesis of our results and points out
directions for further research.

2 Related work

2.1 Federated learning

In most fields, AI-based methods have already proven their value. However, their per-
formance is highly dependent on the quantity and quality of available training data.
Generally speaking, AI-based methods are typically limited by data fragmentation and
isolation – mostly due to competitive pressure and tight regulatory frameworks (related
to data privacy and security). To address these challenges, McMahan et al. proposed a
new technique, FL (Konečný et al., 2016; McMahan et al., 2017). The main idea of FL is
to collaboratively train machine learning models between multiple independent clients
without moving or revealing the training data. In other words, FL allows competing
participants to leverage each others’ datasets without revealing their own individual
datasets. In doing so, models trained with FL enable more accurate forecasts than mod-
els that were independently trained by each client. To date, there are two canonical
training algorithms for FL and four different configurations for the distribution of data
and errors.
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The two canonical training algorithms are: federated stochastic gradient descent (Fed-
SGD) and federated averaging (Fed-Avg) (McMahan et al., 2017). Fed-SGD works by
averaging the client’s gradients after every pass through a local data batch. More specif-
ically, Fed-SGD clients compute gradients of their ’loss’ for a sub-set of their data. The
loss is a non-parametric function that penalizes bad predictions and to minimize it, the
clients need to move toward the empirical minimum by taking steps in the opposite
direction of the gradient. Clients subsequently send their locally computed gradients to
a central server. The central server aggregates and averages them - either equally or in a
weighted manner - to update the model weights. These updated weights are again sent
to the clients and each client trains their local model with the updated weights. Training
continues in an iterative manner until a pre-defined number of so called communication
rounds have been reached or a common goal is achieved. In Fed-SGD, a communication
round represents a full pass through all batches.

In Fed-Avg, the clients send their model weights instead of their gradients.Once the
central server has received the weights, it aggregates and averages them to arrive at a
new ’consensus’ that will be sent back to the clients for the next training round. Unlike
Fed-SGD, Fed-Avg does not split the training data into batches, which has two effects:
the number of communication rounds is reduced substantially (only once per epoch)
and an improvement in forecasting accuracy (Fekri et al., 2021; McMahan et al., 2017).
As in Fed-SGD, the training process continues until the pre-defined number of epochs
has been reached or a common goal is achieved.

Besides different algorithms, FL applications can also differ in their configurations.
These configurations depend on how the data is structured. More specifically, they
depend on the configuration of the feature space X , the label space Y , and the space
formed by the identifiers I. Different setups of the triplet (X ,Y , I) can be classified
as Horizontal, Vertical, Transfer and Assisted Federated Learning (Yang et al., 2019a).
Take for instance two clients i and j.

• Horizontal Federated Learning is when i and j share the same feature space such
that Xi = Xj but their label spaces Y are different so that Yi 6= Yj . In our resi-
dential STLF example, Horizontal FL would be applicable when the model is to
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be trained on smart meter data from a range of clients with the same feature set
(consumption, weather profile, etc.) and the data is held by different companies.

• Vertical Federated Learning is when Ii = Ij , but Xi 6= Xj and Yi 6= Yj . This would
be the case, for instance, when two companies have access to the same client but
each of them holds a different feature set regarding the client.

• Federated Transfer Learning happens when Xi 6= Xj , Yi 6= Yj , Ii 6= Ij, 8Di,Dj, i 6=
j. Federated Transfer Learning can be used, for instance, when two companies
have different clients and feature sets but want to nevertheless collaboratively
train a model.

• Assisted Learning (AL) is done through collided data between clients. Xian et al.
(Xian et al., 2020) define collision as when clients with the same data entries of a
dataset D have different feature spaces Ii = Ij,Xi 6= Xi 8Di,Dj, i 6= j. One client
may use the errors of another for their own benefit by increasing their training
performance.

Regardless of the chosen algorithm and configuration, FL is vulnerable to moral haz-
ard (Kairouz et al., 2021) or so-called ’soft’ attacks on the contextual integrity of the
shared data. Moral hazard arises because FL is by nature collaborative (McMahan et al.,
2016). Multiple clients must work together to train models iteratively using the respec-
tive data at their disposal. If one or several of these clients manipulate the joint training
process, it does not work. In effect, federated learning requires trust between the clients
involved.

2.2 FL-based short term Load forecasting

Short-term load forecasting is a complex, multivariate time series problem. Its com-
plexity is high because residential load data is often replete with irregularities, missing
or inaccurate values, and seasonality. Petropoulus et al. (Petropoulos et al., 2022) pro-
vide an in-depth overview of these challenges. Yet, they also point out the increasing
importance and momentum that STLF has gained over recent years. STLF is crucial
because system operators require it for unit commitment and optimal power flow cal-
culations (Li, 2020; Muñoz et al., (2010); Petropoulos et al., 2022). Moreover, it enables
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utilities, energy suppliers, and distribution grid operators (DSOs) to optimize their cus-
tomer portfolios, design tariffs, and strategically adapt flexibility offerings (Muñoz et
al., (2010); Petropoulos et al., 2022).

STLF typically build on three groups of methods: traditional methods, AI-based
methods, and hybrid methods that integrate traditional and AI-based components
(Petropoulos et al., 2022). Traditional methods such as ARIMA can capture seasonal
trends but fall short when it comes to non-linear patterns and non-aggregated data. At
the same time, they are simple to use and have light computational costs (Petropoulos
et al., 2022). AI-based methods, in turn, are well suited to identifying non-linear pat-
terns and work well with individual (i.e., residential level) and aggregated data (i.e.,
substation level) (Lusis et al., 2017; Vos et al., 2018).

Within the larger group of AI-based methods, FL is a relatively new but increasingly
popular method for STLF. Our following overview of these FL studies which follows is
based on a search in Semantic Scholar using the following search terms: short-term load
forecasting neural networks and Federated Learning for Residential Short Term Load Forecast-
ing.

The first group of studies employ Fed-SGD (He et al., 2021; Lin et al., 2022). He et al.
(He et al., 2021) additionally use k-means clustering and compare performance between
six scenarios with a different number of clusters in each scenario. Their results suggest
that grouping data based on comparable load patterns substantially improves the per-
formance of FL models. Lin et al. (Lin et al., 2022), in turn, focus on limiting the high
computational cost of Fed-SGD. To this end, they introduce an asynchronous stochas-
tic gradient descent algorithm with delay computation (ASGD-DC). Specifically, their
algorithm uses a Taylor expansion to compensate for the delay of clients with lower
computational power.

The second and substantially larger group of studies employ Fed-Avg. Similar to He et
al. (He et al., 2021), Briggs et al. (Briggs et al., 2021a), Savi et al. (Savi and Olivadese,
2021), Afaf et al. (Taïk and Cherkaoui, 2020), and Biswal et al. (Biswal et al., 2021) inves-
tigate different forms of clustering for Fed-Avg. Their findings suggests that clustering
based on k-means and socio-economic factors can also substantially improve the per-
formance of Fed-Avg. With certain caveats, their findings also suggest that its possible
to train good models with a small number of clients. Li et al. (Li et al., 2020a), in turn,
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use Fed-Avg to compare the effects of different federation sizes, ranging the number of
clients from 2, to 4, and 6. They also vary the number of training rounds (epochs) from 5
to 15. Their results suggest performance is increased by increasing the number of clients
and training rounds.

Xu et al. (Xu et al., 2021) as well as Husnoo et al. (Husnoo et al., 2022) investigate
the effect of increasing the number of clients participating in the training rounds. Their
results show a considerably drop in performance for the higher participation cases. This
drop appears to be the result of non-IDD consumption data between the clients.

Khalil et al. in (Khalil et al., 2021) use Fed-Avg to train a FL model for building control,
replicating the use of FL for household training. They consider six floors of a seven-
story building as clients. They later personalize the global FL model for the 7th floor -
not used in the FL training - by running locally five additional rounds (epochs) and not
sharing the data with the global model. Their results suggest that even the personal-
ized FL model can help a smart building controller reduce total electricity consumption
using FL.

In terms of relative performance, Fekri et al. (Fekri et al., 2021) find that Fed-Avg pro-
vides more accurate results for STLF than Fed-SGD. Shi et al. (Shi and Xu, 2022),in turn,
look beyond canonical FL and use a multiple kernel variant of maximum mean discrep-
ancies (MK-MMD) to fine-tune the central server model (global). They train for several
rounds using transfer learning to adapt the global model to specific customers. Their
results indicate better performance than a canonical Fed-avg implementation.

The works of (Biswal et al., 2021; Briggs et al., 2021a; Fekri et al., 2021; He et al., 2021;
Husnoo et al., 2022; Khalil et al., 2021; Li et al., 2020a; Lin et al., 2022; Savi and Olivadese,
2021; Shi and Xu, 2022; Taïk and Cherkaoui, 2020; Xu et al., 2021) provide important
stepping-stones in FL-based STLF. In particular, they clearly indicate the prospect of us-
ing collaborative training to create accurate forecasting models. However, they provide
only limited insights into the challenges of using FL. In particular, it is not yet clear if
different but simpler clustering techniques such as Pearson correlation are also effective.
Also, prior literature has not yet looked at the effect of architectural complexity. More-
over, existing studies do not or only in a very limited way account for matters of privacy.
Thus, this paper aims to provide a better understanding of clustering and architectural
complexity and explores the addition of different privacy preserving techniques.
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2.3 NN architectures for FL-based short term Load forecasting

The studies presented on FL-based STLF use a range of different NN architectures (Table
1). Overall, the architectures have become deeper (i.e., multi-layered) over time as depth
is typically associated with more accurate results (Vos et al., 2018). In terms of layer
design, we found Fully Connected layers (FCL), Long Short-term Memory (LSTM) Lay-
ers (Hochreiter and Schmidhuber, 1997) and Convolutional Neural Networks (CNN).
LSTMs have feedback connections which understand the dependence between items
in a sequence and which make them suitable for temporal pattern recognition. CNN
layers emulate human retinas and can capture the spatial distribution of graphic pat-
terns. Moreover, we found Encoder-Decoder or autoencoder architectures (Marino et
al., 2016). In these architectures, the NN is provided with a sequence (a vector) as an in-
put and maps this sequence to another sequence. Encoder-Decoder architectures reduce
the effects of outliers because they transpose the original input space into a differently
encoded space (Cho et al., 2014; Sutskever et al., 2014). Sehovac et al. (Sehovac and
Grolinger, 2020) present a particular interesting example of a Seq2Seq architecture that
includes an attention mechanism to help the decoder extract additional information.

Aside from different layer designs, we also identified hybrid designs. For instance,
Kim et al. (Kim and Cho, 2019b) use CNN with LSTM layers to find both spatial and
temporal patterns. Building on their work, Tuong et al. (Le et al., app9204237) add a
bi-directional LSTM layer to identify temporal trends both forward and backwards in
time. Similarly, Zulfiqar Ahmad et al. (Khan et al., 2020) combine Seq2Seq from (Marino
et al., 2016) with a CNN layer design. This combination allows for the capture of both
temporal and spatial patterns and offers protection against outliers. Shi et al. (Shi et
al., 2018) take a different path by clustering and pooling the training data to increase
variability and reduce overfitting.

2.4 Privacy preserving techniques for federated learning

Privacy-preserving techniques can support the design of forecasting systems that com-
ply with privacy requirements and regulations (Bennett, 2018; Li et al., 2021; McKenna
et al., 2012). From an organizational perspective, these techniques allow competing
agents like energy providers to cooperate and integrate with utilities and DSOs (Ben-
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Table 1: Neural network architectures for FL-based and non FL-based STLF.

Method Dataset Neural Network Architecture Year

(Marino et al.,
2016)

UCI - Individual household elec-
tric power consumption

LSTM + Repeat vector + LSTM
+ 2x FCL 2016

(Kong et al.,
2019)

Australia SGDS Smart Grid
Dataset Stacked LSTM + FCL 2017

(Li et al., 2017) Fremont, CA 15min Retail building
electricity load

Missing or incomplete archi-
tecture description 2017

(Shi et al., 2018) Irish CBTs - Residential and SMEs Stacked LSTM + Pooling
mechanism 2018

(Yan et al., 2018) UK-DALE Domestic Appliance-
Level Electricity dataset 2x Conv + 1x LSTM + FCL 2018

(Kim and Cho,
2019a)

UCI - Individual household elec-
tric power consumption

Missing or incomplete archi-
tecture description 2019

(Kim and Cho,
2019b)

UCI - Individual household elec-
tric power consumption 2x Conv + LSTM + 2x FCL 2019

(Le et al.,
app9204237)

UCI - Individual household elec-
tric power consumption 2x Conv + Bi + LSTM + 2x FCL 2019

(Khan et al.,
2020)

UCI - Individual household elec-
tric power consumption

2x Conv + 2x LSTM (Encoder)
+ 2x LSTM (Decoder) + 2x FCL 2020

(Taïk and
Cherkaoui,
2020)

Pecan Street Research Institute 2x LSTM (same size) + FCL 2020

(Sehovac and
Grolinger, 2020) Non-disclosed or private data Sequence to Sequence with at-

tention 2020

(Li et al., 2020a) Global Energy Forecasting Compe-
tition 2012

Missing or incomplete archi-
tecture description 2020

(Xu et al., 2021) Pecan Street Research Institute Missing or incomplete archi-
tecture description 2021

(Briggs et al.,
2021b) Low Carbon London Dataset 2x LSTM (same size) + FCL 2021

(He et al., 2021) Australia SGDS Smart Grid
Dataset 2x LSTM (same size) + FCL 2021

(Savi and Oli-
vadese, 2021) Low Carbon London Dataset LSTM (64) + LSTM (32) + FCL 2021

(Zhao et al., 2021) Pecan Street Research Institute 2x LSTM (same size) + FCL 2021
(Biswal et al.,
2021)

Commission for Energy Regula-
tion (CER)

Missing or incomplete archi-
tecture description 2021

(Khalil et al.,
2021)

CU-BEMS, smart building electric-
ity consumption and indoor envi-
ronmental sensor datasets

Missing or incomplete archi-
tecture description 2021

(Shi and Xu,
2022) Low Carbon London Dataset Missing or incomplete archi-

tecture description 2022

(Lin et al., 2022) Commission for Energy Regula-
tion (CER)

Missing or incomplete archi-
tecture description 2022

(Husnoo et al.,
2022)

Solar Home Electricity Data from
Eastern Australia

LSTM (256) + LSTM (128) +
FCL 2022
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nett, 2018; Kowarik et al., 2016). Furthermore, their use might facilitate the creation of
local markets that support the energy transition (Pressmair et al., 2021).

Privacy-preserving techniques are especially relevant for FL. Although FL offers con-
siderable improvements over centralized ML methods, it does not guarantee privacy.
Firstly, the shared data (gradients or model weights) may allow inadvertent attribution,
and secondly, privacy can be compromised through the communication between clients
and the central server. For instance, Zhu et al. found a way to use gradient updates to
reconstruct the training data of a client (Zhu et al., 2019). This effectively means that
gradient updates are to be treated as personal data and that FL requires additional mea-
sures when data privacy is required. In the following, we describe two such measures:
DP as a way to anonymize training data and SecAgg as a mechanism to enable privacy-
sensitive communication between clients and the central server.

Dwork (Dwork, 2006) introduces DP as a technique to guarantee privacy when retriev-
ing information from a dataset. As described in (Dwork and Roth, 2014), "differential
privacy addresses the paradox of knowing nothing about an individual while learn-
ing useful information about a population." DP hides individual data trends by using
additive noise. In more technical terms, Dwork (Dwork, 2006) introduced epsilon dif-
ferential privacy (✏-DP) as follows: "For every pair of inputs x and y that differ in one row, for
every output in S, an adversary should not be able to use the output in S to distinguish between
any x and y". The privacy budget (✏) determines how much of an individual’s privacy a
query may use, or to what extent it may increase the risk of breaching an individual’s
privacy. A value of ✏ = 0 represents perfect privacy, which means that privacy cannot
be compromised through any analysis on a dataset in question (Wood et al., 2018). Ja-
yaraman et al. (Jayaraman and Evans, 2019) extended the concept of (✏-DP) to (✏, �-DP)
where � is the failure probability to better control for the tails of the privacy budget.

DP is typically implemented by adding random noise to data queries. This noise is
usually sampled from a Laplacian or Gaussian distribution (Dwork and Roth, 2014).
Finding an adequate noise level is crucial but not trivial - especially for FL. Too much
noise can not only hide patterns in the data but also complicate convergence of the local
models due to the random updates of the patterns during training. Simply speaking,
more noise means more privacy, but more noise also means less accuracy.
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An alternative to adding noise to the training process or the data is using secure multi-
party computation (SMPC) protocols, which enable privacy-preserving communication.
One such protocol is SecAgg (Bonawitz et al., 2017). SecAgg uses cryptographic primi-
tives that prevent the central server from reconstructing each client’s involvement and
contribution. In more technical terms, SecAgg allows a set of distributed, unknown
clients to aggregate a value x without revealing the value to the other clients. The back-
bone of SecAgg is Shamir’s t-out-of-n Secret Sharing. It enables a user to split a secret s
into n shares (Shamir, 1979). To reconstruct the secret, more than t�1 shares are needed
to retrieve the original secret s. Any allocation with less than t � 1 shares will provide
no information about the original secret. SecAgg implies two main algorithms: sharing
and reconstruction. The sharing algorithm transforms a secret into a set of shares of the
secret that are each associated with a client. Following (Shamir, 1979), these shares are
constructed in such a way that collusion between t � 1 participants (t being the total
number of participants) is insufficient to disclose other clients’ private information. The
reconstruction algorithm works in the opposite direction. It takes the mentioned shares
from the clients and reconstructs the shared secret.

Of the two privacy-preserving techniques, only DP has so far been examined in the
context of residential STLF. Chhachhi et all. (Chhachhi and Teng, 2021), Eibl et al. (Eibl
and Engel, 2017a), and Zhao et al. (Zhao et al., 2014) use DP to train a ’centralized’
machine learning model. More specifically, they perturb the datasets by adding noise
drawn from either a Gaussian or Laplacian distribution before each training round of
the model. To the best of our knowledge, Zhao et al. (Zhao et al., 2021) are the first
to combine FL and DP for STLF. Specifically, they include DP in the training process of
a Fed-Avg model. However, they do not systematically analyze different DP parame-
ters. Moreover, they do not look at secure multi-party computation protocols, such as
SecAgg.

3 Method

3.1 Simulation environment

The evaluations in this paper are based on simulations we ran on the IRIS Cluster of the
high performance computer (HPC) facilities of the University of Luxembourg (Varrette
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et al., 2014). The simulations ran in an environment with 32 Intel Skylake cores and two
NVIDIA Tesla V100 with 16GB or 32GV depending on the allocation. We programmed
the federation code in Python and based it on the machine learning framework provided
by Tensorflow-Federated 3 (TFF). The DL models are written in Keras (Chollet et al.,
2015).

3.2 Dataset

For our simulations, we used a large dataset from the Low Carbon London project,
which was conducted by UK Power Networks between November 2011 and February
2014 in London, United Kingdom (herein LCL dataset) (D., 2019). It contains the elec-
trical consumption [kWh] data from 5567 households in a half-an hour resolution. The
LCL dataset also contains a socio-technical classification of the households following the
ACORN scheme (CACI, 2014) and is divided into individual household entries known
as LCLid (Low Carbon London id).

To make the dataset ready for our simulations, we treated it in a 4-step procedure. First,
we reduced the resolution of the LCL dataset to hourly values. The down-scaled values
in the treated data set are the sum of two subsequent half-hour values in the original
data set. This treatment significantly reduced the computational burden of our simu-
lations. Secondly, we trimmed outliers or null values. Thirdly, we scaled all variables
to have the same range using a Min-Max scaler. This re-scaling was necessary to ease
the FL learning process as all values have to be in a known range, in our case: 0 to 1.
Fourthly and finally, we split the dataset into a training and validation dataset. The
training dataset (75%) contains electrical consumption data from January to Decem-
ber 2013 and the validation set (25%) covers data from January 2014 to March 2014.
In Figure 1, we provide an example of the processed data. It visualizes the electric-
ity consumption [kWh] of 5 randomly selected households for a 2 day period using 1h
timestamps.

3https://github.com/tensorflow/federated
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Figure 1: Energy consumption (kWh/h) of 4 LCLIds from 01 January 2013 to 03 January 2013.

3.3 Evaluation metrics

Evaluation metrics offer an important means for the training and testing of forecasting
models. However, the use of certain metrics can lead to undesirable results because
FL models are known to converge to a middle point (Li et al., 2020b). More specifically,
FL models optimize the error of prediction with respect to the ground truth. In a dis-
tributed environment where there are many such truths, the models tend to minimize the
mean of the loss across datasets. This tendency can provoke FL models to predict the
average of each of the datasets and hence offer promising mean squared errors (MSE,
Equation 1) and mean absolute errors (MAE, Equation 2). Such predictions, however,
mean that the FL model did not learn local patterns in the data.

Therefore, MSE and MAE are typically not enough to evaluate the performance of a FL
model and additional metrics, such as mean absolute percentage error (MAPE, Equa-
tion 3) and root mean square error (RMSE, Equation 4), are needed to quantify devia-
tions of model predictions from the ground truths. The formal equations for these four
metrics are as follows:
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4 Evaluation

4.1 Selection of a baseline neural network architecture

One crucial aspect for any AI method and specifically FL is the selection of the under-
lying NN architecture. To pick an architecture for our evaluation, we compared those
in Table 1 that had a clear ‘implementation guide’ we could replicate. For this compar-
ison, we used the metrics described in subsection 3.3, trained the architectures with a
maximum of 300 epochs on the training dataset and evaluated them on the evaluation
dataset. We used the authors’ codes where available and otherwise implemented the
architecture ourselves. To limit computational costs, we used an early stopping mech-
anism for the training, that ended the training when the evaluation metrics did not
improve over 10 epochs.

In Figure 2, we illustrate the evaluation results for the twelve architectures we could
replicate. Some architectures behaved worse on our dataset than on the dataset used
by the respective authors. One possible reason for these differences could be scaling.
Kim et al. (Kim and Cho, 2019b; Le et al., app9204237), for instance, worked with a
non-scaled dataset. This means that depending on the standard deviation of the dataset
�, the error metrics can differ substantially. For instance, the MSE scales proportionally
with the standard deviation: MSEscaled = MSEnon�scaled ⇤�. To avoid this scaling effect,
we calculated all metrics using standardized data (section 5).

Overall, the architectures in (He et al., 2021; Husnoo et al., 2022; Kong et al., 2019;
Marino et al., 2016; Savi and Olivadese, 2021; Yan et al., 2018; Zhao et al., 2021) had the
lowest MAPE, from 6.7 to 7.1. From these, we selected Marino et al.’s (Marino et al.,
2016) autoencoder architecture. Autoencoders are known to perform well even with
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non-idd data, so we selected the most performant autoencoder architecture among our
shortlist of architecures. Marino et al.’s (Marino et al., 2016) architecture uses a 50-
neuron encoder layer, a 12-neuron latent space, a 50-neurons decoder layer, and two
final layers with 100 and 1 neurons respectively.

For our investigation of the effects of architectural complexity, we selected Khan et al.’s
(Khan et al., 2020) architecture as it performed best among the more complex architec-
tures in our sample. Khan et al.’s (Khan et al., 2020) architecture is different from Marino
et al.’s (Marino et al., 2016) in that it uses convolutional layers and LSTM.

Figure 2: RMSE, MSE, MAE, MAPE of the current literature applied to this paper’s dataset.

4.2 FL, differential privacy and secure aggregation set-up

For our simulations, we selected Fed-Avg over Fed-SGD as it requires fewer communi-
cation rounds and has better performance (Fekri et al., 2021; Yang et al., 2019b). More-
over, we used a horizontal FL configuration as our clients represent different LCLIds
but share the same feature space.
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To implement DP, we followed the steps proposed by McMahan et al. (McMahan et al.,
2018) rather than those of Chhachhi et al. (Chhachhi and Teng, 2021) and Lu et al. (Lu
et al., 2019), in which noise is added to the dataset before the training. McMahan et
al. (McMahan et al., 2018) propose the central server to add noise after aggregating the
updates of the model weights at every training round (in Fed-Avg). In other words, it
differs from canonical Fed-Avg, which aggregates model weights.

The process proposed by McMahan et al. requires the definition of a query function
sensitivity (S) and a clipping strategy. The sensitivity of the query function determines
the actuation range of the added noise. It represents the Euclidean distance between two
datasets (C) differing in at most one element k: S(f̃) = maxC,k

���f̃(C [ {k})� f̃(c)
���
2

(Dwork and Roth, 2014). Considering McMahan et al.’s first lemma (McMahan et al.,
2018) and assuming all clients are equally weighted, the sensitivity S is bounded as
S(f̃(c))  S/n, with n being the number of clients. The vectors in �k include the differ-
ent model updates computed among the clients.

To bound the sensitivity of the query function, we needed to maintain the models’ up-
dates in a known range. One approach to ensure this range control is clipping model
updates by a defined value before averaging. There are two strategies to clip the values
of a neural network: ’per layer clipping’, which applies clipping on a layer basis or ’flat
clipping’ which applies a clipping value to all the network parameters. Both clipping
strategies project the values of the updates into a l2 sphere with the norm determined
by the clipping value.

For both, per layer and flat clipping, there are two sub-strategies. One is to clip values
using a fixed norm, known as fixed clipping. The second sub-strategy is called adaptive
clipping (Andrew et al., 2021). It adapts the clipping norm based on a target quantile
(i.e., 0.5) of the data distribution (Andrew et al., 2021).

For the sake of simplicity, we used flat clipping as �0
k = ⇡(�k, S) with S being the

overall clipping value for the model updates. At the same time, we implemented both
fixed and adaptive flat clipping strategies.

Once we had defined the query sensitivity and applied a flat clipping strategy, we eval-
uated how noise levels scale with the query sensitivity to obtain the minimum level of
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noise with a privacy guarantee. We added Gaussian noise as defined by: N(0, �2) for
� = z · S, where z is the noise scale and S is the sensitivity of the query.

The addition of noise determines the overall privacy protection (✏) provided by DP. ✏
varies depending on the amount of noise added and the ratio of clients involved in the
training (Q). Q is the ratio of clients selected out of the total which will participate in
the next round of training. More noise naturally means more privacy and a lower ✏. A
higher Q, in turn, means less privacy and a higher ✏ (Abadi et al., 2016).

To compute the privacy protection after a query, that is, each training round of
our model, we used the privacy accountant provided by Renyi Differential Privacy
(RDP) (Mironov, 2017) as it provides a more detailed analysis of the privacy budget
than the one created by (McMahan et al., 2018).

For SecAgg, we used the implementation provided by Bonawitz et al. (Bonawitz et al.,
2017). Their SecAgg implementation works as a plug-and-play algorithm that does not
require any modification. We used SecAgg to ensure privacy-preserving communica-
tion between the central server and the clients. By using SecAgg in FL, clients can share
their model weights without the central server or another client being able to reconstruct
their weights (Shamir, 1979).

4.3 Model operation

In this subsection, we describe how we trained the FL models. For this training, we
used 6 steps. We illustrate these steps as well as the additional step that FL-DP requires
in Figure 3. FL-SecAgg requires a different additional step, namely the initial sharing
of public keys between the clients and central server. Figure 3 does not illustrate this
additional public key sharing.

In step 1, the central server initializes the model using Glorot initialization (Glorot and
Bengio, 2010). In step two, the central server shares the model with the participating
clients. In step three, a subset of clients are selected based on the ratio (Q). Each of these
clients in this sub-set then trains the received model on its data. In step four, clients
send their model updates to the central server. In step five, the central server averages
the aggregated updates and adds noise drawn from a Gaussian distribution in the case
of DP (5’ in Figure 3). In step six, the central server returns the averaged updates to the

93



Chapter VI. Research Paper 1 – Privacy-preserving federated learning for residential short-term load forecasting

clients. The central server and the clients repeated steps 2 to 6 until they reached 300
epochs.

Differential Privacy

Secure Aggregation

Client 1

Client 2

Client n
Central Server

4 6

3

2

1

5'

5

Figure 3: Visual representation of our implementation of Federated Learning with privacy-preserving
techniques.

4.4 Scenario design

Overall, we designed a set of six scenarios for our evaluation. Scenario 0 represents
a hypothetical scenario in which all clients share their training data with the central
server. This ’centralized setting’ serves as a benchmark for the other scenarios. In Sce-
nario A, we study the effects of moving from a centralized to a FL setting. In scenario
B, we analyze the performance effect of clustering clients based on Pearson correlation.
In scenario C, we evaluate the effect of a more complex NN architecture. Lastly, in Sce-
narios D and E, we study the effects of adding DP and SecAgg to the FL model. We
summarize the specifications of the six scenarios in Table 2.

For scenarios 0, A, B, C and E, we ran eight simulations. These simulations evaluate the
models’ performance with a growing number of clients (federation size). We used the
following eight federation sizes: 2, 5, 8, 11, 14, 17, 20, and 23 clients. Each of these clients
worked with data from one LCLid. We had to limit the maximum number of clients to
23 to control for computational cost as we simulated all clients and the communication
between them in one virtual environment. In effect, every additional client did not add
computational power but computational overhead.
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We provide an overview of the hyperparameters for scenarios 0, A, B, C and E in Table
2. Table 4 provides the hyperparameters for the DP implementation in Scenario D.

Table 2: Scenarios considered.

Scenario Privacy-Preserving Technique NN Architecture Imposed Correlation

0 - Marino et al. (Marino et al., 2016) %

A - Marino et al. (Marino et al., 2016) %

B - Marino et al. (Marino et al., 2016) !

C - Khan et al. (Khan et al., 2020) %

D Differential Privacy He et al. (He et al., 2021) %

E Secure Aggregation Marino et al. (Marino et al., 2016) %

Table 3: Hyperparameters for scenarios A,B,C and E. Those marked with * the ones used in scenario 0.

Parameter Value

Number of internal rounds before averaging 5
NN architecture Marino et al. (Marino et al.,

2016) * and Khan et al. (Khan
et al., 2020)

Ratio of clients involved per round (Q) 1
Total number of clients (w) Subject to federation size
Optimizer Adam *
Optimizer learning rate (Lr) 0.01 *
Batch size 256 *
Number of communication rounds 300 *
Number of internal epochs after training Not applicable

Table 4: Hyperparameters for scenario D.

Parameter Value

Number of internal rounds before averaging 5
NN Architecture He et al. (He et al., 2021)
Ratio of clients involved per round (Q) 0.1
Total number of clients (w) 100
Optimizer Adam
Optimizer learning rate (Lr) 0.01
Batch size 64
Number of communication rounds 100
Number of internal epochs after training 1

95



Chapter VI. Research Paper 1 – Privacy-preserving federated learning for residential short-term load forecasting

5 Evaluation results

5.1 Scenario 0: Centralized setting

Scenario 0 analyzes the performance of a centralized setting, in which the clients send
their data to a central server that trains a single model on the aggregated data. Scenario
0 uses the NN architecture presented by Marino et al. (Marino et al., 2016). Similar
to the architecture selection process, we employed an early stopper for Scenario 0 that
terminated the training when there was no improvement in the validation metrics for
more than 10 epochs.

In Table 5, we collect the simulation results for scenario 0. The MSEs, RMSEs and MAEs
are expressed in absolute values, the MAPEs in percentage points, and the average
training time per epoch in second [s]

Table 5: Validation error metrics and computation time for one-hour-ahead prediction: Scenario 0.

Central dataset size MSE RMSE MAE MAPE Time per epoch [s]

2 0.00013 0.01158 0.00468 29.046 1.85
5 0.00012 0.01113 0.00308 9.068 6.01
8 0.00042 0.02067 0.00611 9.734 6.19
11 0.00028 0.01681 0.00437 8.561 8.18
14 0.00022 0.01514 0.00390 7.500 10.52
17 0.00023 0.01519 0.00383 6.850 12.56
20 0.00022 0.01498 0.00387 9.017 14.59
23 0.00019 0.01388 0.00330 7.144 16.82

Table 5 highlights that the overall performance of the centralized setting is very good,
and that it remains almost constant for more than five clients with no evident variation
in any of the metrics. The poor results in the two-client case could be the result of
substantially different consumption patterns.

5.2 Scenario A: standard federated learning setting

We designed Scenario A to compare the ’centralized setting’ in Scenario 0 with a FL set-
ting, and to obtain a reference point for the other FL scenarios. Scenario A uses the NN
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architecture presented in (Marino et al., 2016) and does not apply privacy-preserving
techniques. Furthermore, we did not impose data correlation among the clients.

Table 6 presents the simulation results for Scenario A. The error metrics are expressed
in absolute values and the average training time per epoch is expressed in seconds [s].

Table 6: Validation error metrics and computation time for one-hour-ahead prediction: Scenario A.

Federation size MSE RMSE MAE MAPE Time per round [s]

2 0.00015 0.01240 0.00516 30.1461 3.13
5 0.00022 0.01496 0.00468 16.2269 11.54
8 0.00058 0.02407 0.00745 11.9892 10.72

11 0.00042 0.02049 0.00538 10.1082 13.39
14 0.00035 0.01872 0.00542 10.1077 18.58
17 0.00032 0.01787 0.00469 8.5392 21.05
20 0.00031 0.01775 0.00479 11.2933 25.10
23 0.00028 0.01701 0.00478 10.8257 29.39

Table 6 highlights that performance of FL models varies depending on the federation
size. While MSEs, MAEs and RMSEs remain almost constant, there is a clear improve-
ment in MAPEs. These results are in line with those by Savi et al. (Savi and Olivadese,
2021) and Fekri et al. (Fekri et al., 2021) and indicate that larger federation sizes lead to
more accurate FL models.

To better illustrate this effect, we plot how the MAPEs evolved for the eight federation
sizes along the training rounds in Figure 4. Overall, we can observe a quasi-exponential
decrease over the 300 rounds, approaching final values between 6.8 and 29, which indi-
cate reasonably good forecasts (Lewis, 1982).

In comparison to Scenario 0, we can observe an average performance decrease between
20% to 40%. FL appears to perform significantly worse than a ’centralized’ setting,
which is in line with other comparable studies (Briggs et al., 2021a; Husnoo et al., 2022;
Lin et al., 2022).
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Figure 4: Validation Mean Absolute Percentage Error (MAPE) per federation size in terms of training
rounds for scenario A.

Table 6 also highlights a trade-off between accuracy and computational time for federa-
tion size. As the number of clients increases, so does performance, but also computation
time. This trade-off can present an important limitation for the use of FL.

5.3 Scenario B: standard federated learning setting with imposed

correlation

In scenario B, we analyzed the performance of a standard FL setting with imposed cor-
relation among the clients in the federation. We followed Lee et al. (Lee and Wu, 2020)
and used Pearson correlation to identify and bundle clients (or LCLids) by correlated
data. This way of bundling differs differs from the dominant k-means approach in prior
literature and offers a more direct and simple view of the correlation between clients.
More specifically, we pre-filtered our dataset for specific ACORNs (H and L). For these
ACORNS, we then calculated all possible non-repeated combinations and calculated
their correlations. For each federation size, we selected those combinations of clients
with the highest correlations.

98



Chapter VI. Research Paper 1 – Privacy-preserving federated learning for residential short-term load forecasting

We present the simulation results for Scenario B in Table 7. The error metrics and the
correlation rate are both expressed in absolute values. We omit the computation time
because it was basically the same as in scenario A (5.2).

Table 7: Validation error metrics and correlation rates for one-hour-ahead prediction: scenario B.

Federation size MSE RMSE MAE MAPE Correlation rate

2 0.00002 0.00463 0.00170 4.54 0.62
5 0.00015 0.01238 0.00373 9.77 0.51
8 0.00022 0.01513 0.00426 8.91 0.49

11 0.00021 0.01465 0.00402 8.23 0.45
14 0.00020 0.01429 0.00390 8.66 0.42
17 0.00032 0.01805 0.00465 8.22 0.37
20 0.00029 0.01726 0.00428 8.38 0.34
23 0.00026 0.01640 0.00432 9.95 0.31

FL with imposed correlation performed better in almost every metric than FL without
imposed correlation (Scenario A). The MSEs decreased by an average 35.87%; RMSEs
by 21.81%; MAEs by 25.57% and the MAPEs by 27.61%. They nevertheless still trail
Scenario 0 by 6.35% on average. Moreover, these values are subject to some caveats.
Our model with two clients had a correlation rate of 0.62, which led to a 75% better
performance than the two-client case in Scenario A. Moreover, the performance of the
model with 17 clients was worse than the same model in Scenario A, and 45% of the
error metrics in Scenario B were better than those in scenario 0.

These results align well with similar studies, such as (Biswal et al., 2021; Fekri et al.,
2021; He et al., 2021) or (Savi and Olivadese, 2021), where the application of k-means to
cluster customers leads to performance improvements between 10% and 15%.

Overall, scenario B suggests that clustering based on Pearson correlation among the
clients in a federation can substantially improve the performance of FL-based STLF.
Specifically, utilities, energy providers, and DSOs could leverage simple socio-economic
factors (ACORNS) and historical, individual smart meter data to cluster their residential
customers into correlated groups. Each cluster can use a different FL model to reduce
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imbalance costs for inaccurate forecasts and offer tailored demand-side management
programs.

5.4 Scenario C: standard federated learning setting with a more

complex neural network architecture

In scenario C, we explore how a more complex NN architecture ((Khan et al., 2020))
impacts the performance of FL-based STLF. The motivation for scenario C is rooted
in the trend to use ever more complex machine learning architectures in the hope of
catching patterns invisible to less complex architectures. At the same time, it is unclear
whether larger architectures increase performance.

To account for the size of the model in (Khan et al., 2020) and its computational burden,
we implemented three modifications to the set-up of our simulation environment. The
first modification concerns the GPUs. For each of the Nvidia Tesla allocated on the HPC,
we created two virtual cards, resulting in four cards we could use for our simulation.
The second modification is related to the batch size, which we increased from 100 to
200. Increasing the batch size can help to prevent or limit overfitting since there are
more data entries available to compute the loss of the model. Finally, we modified
the model in (Khan et al., 2020) by transforming the initially proposed LSTM layers to
CuDNNLSTM (Appleyard et al., 2016). The transformation enabled the LSTMs to use
the Compute Unified Device Architecture (CUDA) kernel of our Tesla GPUs.

The simulation results of scenario C are presented in Table 8. The results clearly indicate
the increased computational costs of training a FL model with a complex architecture.
The computational time is almost twice as high as in scenarios A and B. On the other
hand, the performance of the model with the more complex architecture was worse that
of the smaller model’s for all federation sizes and all metrics, ranging from 50% up to
142%.

These results suggest a clear case of overfitting. Overfitting is generally defined as the
lack of generalization of a model. An overfitted model crosses the line between learning
tendencies or patterns and memorizing the data received as input.

Figure 5 provides a visualization of this overfitting. The performance on the training
subset is represented by the solid lines, while the performance on the validation subset

100



Chapter VI. Research Paper 1 – Privacy-preserving federated learning for residential short-term load forecasting

Table 8: Validation error metrics and computation time for one-hour-ahead prediction: scenario C.

Federation size MSE RMSE MAE MAPE Time per round [s]

2 0.00024 0.01550 0.00720 31.50674 6.25
5 0.00052 0.02289 0.01282 33.42653 21.10
8 0.00117 0.03433 0.01754 20.92209 20.43

11 0.00115 0.03398 0.01495 21.93438 30.34
14 0.00087 0.02955 0.01404 18.44877 34.52
17 0.00077 0.02783 0.01080 13.80498 40.59
20 0.00081 0.02858 0.01435 24.28874 50.19
23 0.00061 0.02486 0.01059 19.02717 59.76

is visualized by the dotted lines. The dotted lines begin to increase again after round
120, whereas the solid lines decrease as the model is over-fitted to the training data. .

In effect, scenario C offers a cautionary tale for utilities, energy providers, and DSOs
that want to use FL for short-term load forecasting. Not only are more complex FL
architectures more expensive and detrimental to the environment (Hao, 2019), they are
also more sensitive to handle.

5.5 Scenario D: privacy-preserving federated learning setting with

differential privacy

Scenario D focuses on adding DP to FL and how this impacts the performance of FL-
based STLF. Furthermore, we compare two flat clipping approaches: fixed and adaptive
clipping, as described in subsection 4.2.

In scenarios A and B, we used Marino et al.’s model (Marino et al., 2016) as the baseline
architecture. Encoder-decoder architectures can cope well with outliers due to their
capacity to abstract information into the latent space. This capacity is very beneficial
for FL where different clients can have substantially different data points. However, we
found that these architectures are substantially more vulnerable to noise than standard
stacked LSTM networks. One reason for this vulnerability could be that they compact
information from a higher dimensional space into a smaller one. Adding noise to the
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Figure 5: Validation and Training MAPEs for federation sizes 5,8, and 17 in Scenario C.

weights of this latent space will have a multiplicative effect on the model’s output in the
decoder phase. To avoid such encoder-decoder noise problems for our DP simulation,
we changed the architecture in Scenario D to a two-layer LSTM with 50 neurons each,
and a final dense layer as in He et al. (He et al., 2021).

DP offers two approaches to obtain a high privacy budget given a defined amount of
noise: reduce the ratio of clients that participate in each training round (Q), retrain the
model locally for several epochs on client data, find a lower �, and/or increase the noise
scale (z). For Scenario D, we employed a ratio of Q = 0.1. With Q = 0.1, a total of
100 clients and without the addition of privacy preserving techniques, our model had
a MAE of 0.00300, a MSE of 0.012, a RMSE of 0.01114, and a MAPE of 8.3846, which
matches results in Scenario A.

Moreover, we considered recommendations by Zhao et al. (Zhao et al., 2021) and Xu et
al. (Xu et al., 2021) to introduce local re-training. Specifically, they propose to conduct
several local training rounds on each client between each aggregation with DP to better
fit the local models. Yet, we found that these repeated rounds didn’t improve perfor-
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mance so we chose to use just one local training round. However, we did optimize the
� to � = 4e�3 as proposed by Zhao et al. (Zhao et al., 2021).

The first strategy we implemented was fixed clipping following the two main steps in
McMahan et al. (McMahan et al., 2018). In the first step, we determined the lowest pos-
sible clipping value (S) as being too low clipping values can negatively affect the con-
vergence rate as they clip all values bigger than S. We treated S as a hyper-parameter
and used an iterative approach to find the lowest possible clipping value. Specifically,
we followed McMahan et al. (McMahan et al., 2018) and used iterative steps of 0.1 for
S, starting with S = 0.1 until S = 0.7. We present the error metrics for the different S
values in Table 9. 4.

Based on these iterations, we selected S ⇡ 0.3 as our fixed clipping value. It is the
lowest clipping value with comparatively good error metrics and the marginal increase
in error metrics from lowering S increases disproportionately below ⇡ 0.3.

Table 9: Validation error metrics for different clipping values for one-hour-ahead prediction with the
sample client ratio Q = 0.1 and total number of clients w = 100: scenario D.

S MSE RMSE MAE MAPE

0.10 0.00043 0.02094 0.00628 10.69357
0.20 0.00035 0.01884 0.00502 8.89023
0.30 0.00038 0.01969 0.00496 8.00244
0.40 0.00038 0.01963 0.00486 7.71642
0.50 0.00039 0.01978 0.00493 7.92688
0.60 0.00034 0.01869 0.00477 7.81763
0.70 0.00036 0.01915 0.00484 7.53057

Once we had identified the lowest possible clipping value S, the second step was to
identify a tolerable level of noise. With S = 0.3, a total number of clients w = 100,
and Q = 0.1, we applied S = S/Qw to calculate the standard deviation of the noise level
� = z · S. Similarly with the approach that we took with S, we treated z as a hyper-
parameter and ranged it from 0.1 to 0.9

4Setting a fixed value for the clipping slows the training process significantly. The values in Table 9
are the validation metrics after 2000 communication rounds. Without any clipping strategy, the models
converge at an earlier rate (see figure 4)
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Table 10: Exploration of the different noise levels, in bold the hyper-parameter z that defines the amount
of noise.

Qw S SSS = S/Qw z ��� = z · SSS

10 0.3 0.03 0.1 0.003
10 0.3 0.03 0.2 0.006
10 0.3 0.03 0.3 0.009
10 0.3 0.03 0.4 0.012
10 0.3 0.03 0.5 0.015
10 0.3 0.03 0.6 0.018
10 0.3 0.03 0.7 0.021
10 0.3 0.03 0.8 0.024
10 0.3 0.03 0.9 0.027

In Table 10, we present the performance metrics for each of the z variations. Each of
the explored z values represents a different level of noise added to the federated model.
Intuitively, there is a trade-off between the amount of noise and performance, whereby
more noise (increase in z) reduces performance. This trade-off dynamic is clear from the
error metrics in Table 11. Nevertheless, the overall error metrics for DP based on fixed
clipping are generally low and indicate good forecasting performance.

Concurrently, more noise also means better privacy, as indicated by the increasing pri-
vacy guarantees in column three of Table 11. We calculated these guarantees using the
Rényi Differential Privacy Accountant (Mironov, 2017). The highest amount of noise
we examined (z=0.9) provides a privacy guarantee of (4.2, 4e�3), which is close to per-
fect privacy (✏ = 0). In effect, scenario D demonstrates that adding DP to FL maintains
comparatively good performance and offers high privacy guarantees.

The second clipping strategy that we analyzed is adaptive clipping. With adaptive clip-
ping, clipping value are calculated automatically. To evaluate this approach, we used
Andrew et al.’s adaptive clipping implementation (Andrew et al., 2021), in which the
algorithm iteratively (per communication round) adjusts the norm clip, trying to ap-
proximate it to a predefined quantile (0.5 in our case).
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Table 11: Validation error metrics with S = 0.3 and a varying noise scale z from 0.1 to 0.9 for one hour-
ahead-prediction with the sample client ratio Q = 0.1 and total number of clients w = 100 after one epoch
of local training.

Noise scale (z) Privacy Guarantee (✏, �✏, �✏, �) MSE RMSE MAE MAPE Timer per round [s]

0.1 (911,4e�3) 0.00010 0.00946 0.00272 7.5426 86.74
0.2 (190,4e�3) 0.00010 0.00957 0.00312 8.8930 85.11
0.3 (69.3,4e�3) 0.00010 0.00959 0.00309 8.4391 87.48
0.4 (32.4,4e�3) 0.00010 0.00962 0.00321 9.1156 84.66
0.5 (17.9,4e�3) 0.00011 0.00971 0.00340 9.7164 88.52
0.6 (11.2,4e�3) 0.00011 0.00972 0.00344 9.9693 84.28
0.7 (7.58,4e�3) 0.00011 0.00979 0.00354 10.0378 81.46
0.8 (5.5,4e�3) 0.00013 0.01075 0.00519 15.6755 82.08
0.9 (4.2,4e�3) 0.00011 0.00991 0.00372 10.6031 87.48

This data quantile approximation expends privacy budget as it queries the data. To
prevent this privacy leakage Andrew et al. (Andrew et al., 2021) propose to add noise
during the approximation. This noise (�b) is defined by 0.05 times the number of clients
per round, in our case �b = 0.5. This addition of noise has a slight affect on the total
privacy guarantee of the model. It results in increased effective noise as z� = (z�2 �
(2�b)�2)�1/2.

Figure 6 highlights the adaptive adjustments of the clipping value over the training
rounds. There is a sharp increase in the clipping norm at the beginning of the training
rounds due to the low initial clipping value C0 = 0.1. Such a low quantile allows only a
few data points to participate in selecting the clipping value. The smaller the quantile,
the fewer data points participate and thus, it is more difficult to estimate the optimal
clipping value.

As in our case, the adaptive clipping algorithm may overshoot as a result and increase
the clipping norm to higher values. After this overshot, the adaptive clipping algorithm
correctly approximates the optimal clipping value S ⇡ 0.2.

We present the simulation results for adaptive clipping in Table 12. On average, adap-
tive clipping outperformed fixed clipping by 9%. Moreover, the privacy guarantee is
close to perfect privacy (3.9,4e�3)

Adaptive clipping appears not only more attractive from a performance and privacy
perspective. It is also easier to use in terms of performance and privacy. Fixed clipping
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Figure 6: Evolution of the adaptive clipping norm at different noise levels z (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9) using as initial clipping value C0 = 0.1 and the step factor for the geometric updates ⌘C = 0.2.

requires an initial and computationally expensive manual step to identify an appropri-
ate clipping value, whereas, in adaptive clipping, this value is calculated automatically
in the training rounds. Thus, DP with adaptive clipping presents the more convenient
choice for residential STLF.

Table 12: Validation error metrics with adaptive clipping at different noise levels from 0.1 to 0.9 using as
initial clipping value C0 = 0.1 and the step factor for the geometric updates ⌘C = 0.2 for one hour ahead
prediction with the sample client ratio Q = 0.1 and total number of clients w = 100 after one epoch of
local training.

Noise scale (z) Effective noise (z�z�z�) Privacy Guarantee (✏, �✏, �✏, �) MSE RMSE MAE MAPE Time per round [s]

0.1 0.100 (910.0,4e�3) 0.00010 0.00936 0.00276 7.9966 84.39
0.2 0.200 (189.4,4e�3) 0.00010 0.00930 0.00260 7.3866 88.41
0.3 0.300 (68.7,4e�3) 0.00009 0.00930 0.00257 7.0985 85.30
0.4 0.402 (31.9,4e�3) 0.00010 0.00945 0.00292 8.2810 86.92
0.5 0.504 (17.5,4e�3) 0.00010 0.00948 0.00301 9.0461 88.57
0.6 0.607 (10.8,4e�3) 0.00010 0.00955 0.00302 8.8343 86.27
0.7 0.711 (7.2,4e�3) 0.00010 0.00961 0.00317 9.4312 87.68
0.8 0.817 (5.2,4e�3) 0.00010 0.00955 0.00325 9.6126 88.27
0.9 0.924 (3.9,4e�3) 0.00010 0.00955 0.00319 9.2953 87.93
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The results we present in Tables 11 and 12 are those after the local training round sug-
gested by Zhao et al. (Zhao et al., 2021). Unlike Zhao et al. (Zhao et al., 2021), who
worked with five local training round, we used only one as additional rounds did not
significantly improve performance (Figure 7). Nevertheless, clients profited from local
training with negligible computational overhead.

Figure 7: Validation Mean Absolute Percentage Error (MAPE) per local training epoch for adaptive and
fixed DP.

5.6 Scenario E: privacy-preserving federated learning setting with

secure aggregation

In this scenario, we examine SecAgg as an alternative technique to add privacy to FL.
Whereas DP adds random noise to model updates, SecAgg targets the communication
and aggregation of the clients’ model updates. Hence, there is no trade-off as in scenario
D, where it is important to find an adequate noise level.

Similar to scenarios A, B and C, we present the simulation results for the eight federation
sizes in Table 13. We express the error metrics in absolute values and the average com-
putation time in seconds [s]. Furthermore, we complement the results with Figure 8. It
depicts the MAPE, following a similar curve as in Scenario A.

Table 13 shows that the use of SecAgg affects computation time only marginally. As
SecAgg does not add any noise, it also provides less burden than DP. Consequently,
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SecAgg presents a more performant alternative for residential STLF with the cost of an
extra 30% of computation time. However, it is important to note that SecAgg does not
provide complete privacy because latent patterns could still point toward the original
data subject. More specifically, Model Inversion (MI) attacks could reconstruct the orig-
inal training data from the model parameters (Fredrikson et al., 2015).

Table 13: Error metrics and computation time for one-hour-ahead prediction using SecAgg: scenario E
on test set.

Federation size MSE RMSE MAE MAPE Time per round [s]

2 0.00017 0.01324 0.00532 31.01177 4.54
5 0.00018 0.01348 0.00431 15.60893 13.23
8 0.00060 0.02457 0.00759 12.28532 13.34
11 0.00039 0.01996 0.00523 9.65965 18.21
14 0.00034 0.01864 0.00503 9.67057 22.25
17 0.00033 0.01820 0.00466 8.25973 26.70
20 0.00033 0.01836 0.00522 12.88359 34.64
23 0.00028 0.01683 0.00453 10.19247 38.10
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Figure 8: Validation Mean Absolute Percentage Error (MAPE) per LCLids federation size in terms of
training rounds for Scenario E.

5.7 Comparison across the scenarios

We summarize our results for scenarios 0, A, B, C, and E in Figures 9 and 10. We omitted
scenario D from these figures because in scenario D we only varied the noise scale and
not the federation size.

Overall, the two figures suggest an inherent trade-off between performance and privacy
in residential STLF. Yet, FL models can successfully mediate this trade-off and provide
high levels of performance and privacy, especially when trained on correlated data,
avoid unduly complex architectures, and employ SecAgg.
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Figure 9: Comparison of computation time across Scenarios 0, A, B, C, and E.

6 Conclusions

This paper analyses the use of FL and its combination with privacy preserving tech-
niques for short-term forecasting of individual residential loads. Such a combination
offers an innovative approach to accommodate both accuracy and privacy. In particular,
it allows those who depend on accurate forecasts of residential loads (such as utilities,
energy providers, and DSOs) to train in a collaborative fashion forecasting models with
granular smart meter data without having to share this data.

Our analysis builds on historical smart meter data and consists of six scenarios. While
the first two scenarios set the baseline scenarios, each of the subsequent four scenarios
have a particular analytical focus. Specifically, these scenarios investigate the effects
of data correlation, neural network architecture complexity, differential privacy, and
secure aggregation on performance, computation time, and privacy guarantee levels.
In each scenario, we also explore the effects of different federation sizes. From our
analysis, we can posit the following:

110



Chapter VI. Research Paper 1 – Privacy-preserving federated learning for residential short-term load forecasting

Federation size

2
5
8
11
14
17

20

23
Scenario0 A B C E

MSE

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

(a) MSE results.
Federation size

2
5
8
11
14
17

20

23
Scenario0 A B C E

RMSE

0.000

0.005

0.010

0.015

0.020

0.025

0.030

(b) RMSE results.

Federation size

2
5
8
11
14
17

20

23
Scenario0 A B C E

MAE

0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

0.016

(c) MAE results.

Federation size

2
5
8
11
14
17

20

23
Scenario0 A B C E

MAPE

0

5

10

15

20

25

30

(d) MAPE results.

Figure 10: Comparison of evaluation metrics across Scenarios 0, A, B, C, and E.

1. Collaborative training of AI models with federated learning reduces forecasting
accuracy as compared to a ’centralized’ setting. However, it makes it easier to ac-
count for data privacy concerns through the addition of privacy-preserving tech-
niques.

2. As the number of participating clients (smart meters) in a federation increases,
forecasting accuracy tends to also increase. However, while a greater number of
clients leads to greater accuracy, this also implies higher computational costs that
may no always be justified.
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3. Customer segmentation with Pearson correlation along socio-economic factors
(e.g., with the ACORN methodology) substantially improves forecasting accuracy
for FL models.

4. Complex neural network architectures imply high computational costs, difficulties
in handling the architecture, and a potential risk of overfitting. It is thus important
to balance accuracy and usability when selecting of model architectures.

5. Complementing federated learning with differential privacy or secure aggregation
does not significantly reduce forecasting accuracy but does enable very high levels
of privacy.

6. Adaptive and fixed clipping approaches to differential privacy provides similar
performance. Adaptive clipping is easier to use as it does not require manual pre-
selection of good clipping values, and it facilitates faster model convergence.

7. Combining autoencoder architectures with DP complicates the training of FL
models. The design of these architectures magnifies the noise added by DP, which
restricts the training process.

8. Secure aggregation is superior to DP in terms of usability, performance and com-
putational burden. It can be added as a simple plug-and-play component, does
not reduce performance by adding noise, and permits faster training.

Overall, our analysis suggests that a combination of federated learning with privacy-
preserving techniques can be a highly promising alternative for residential short-term
load forecasting. However, is not free from technical challenges. Differential privacy
requires careful configuration of noise size, clipping values and client ratios to balance
accuracy and privacy. Secure aggregation does not require such configuration but its
cryptographic set-up can also be challenging as well. Furthermore, computational costs
limit the number of clients that can be used for training.

More broadly, our study contributes to a better understanding of the use of FL and
privacy-preserving techniques for residential short-term load forecasting. It makes an
important contribution to the growing literature on the applications of federated learn-
ing in electric power systems by testing different NN under distributed settings, ex-
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amining the implications of privacy preserving techniques, and identifying technical
challenges in using FL.

Naturally, our analysis is not free from limitations. In particular, computational costs
have considerably limited the size of our federations. Even though larger federation
sizes may result in somewhat different results, nevertheless we believe that our overall
results are robust, as we have explored several settings in terms of: number of clients,
baseline NN architectures, and dataset characteristics.

Further research may nevertheless want to (1) assess larger federation size settings with
additional correlation indicators, such as the existence of distributed energy resources
(i.e., photovoltaics, electric vehicles, or home energy management systems), (2) investi-
gate data input disruptions produced by hostile agents or errors caused by malfunctions
of a smart metering device, and (3) examine other, innovative NN architectures with at-
tention mechanisms and multi-variate input data. After all, FL is highly collaborative
and iterative and perfect data and operation may not always be possible in real-world
applications.
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Abstract

The inclusion of intermittent and renewable energy sources has increased the impor-
tance of demand forecasting in the power systems. Smart meters play a critical role in
modern load forecasting due to the high granularity of the measurement data. federated
learning (FL) can enable accurate residential load forecasting in a distributed manner. In
this regard, to compensate for the variability of households, clustering them in groups
with similar patterns can lead to more accurate forecasts. Usually, clustering requires
a central server that has access to the entire dataset, which collides with the decen-
tralized nature of federated learning. In order to complement federated learning, this
study proposes a decentralized peer-to-peer (P2P) strategy that employs agent-based
modeling. We evaluate it in comparison to a typical centralized k-means clustering.
To create clusters, we compare Euclidian and Dynamic time warping distances. We em-
ploy these clusters to build short-term load forecasting models using federated learning.
Our results reveal the possibility of using P2P clustering along with simple Euclidean
distances and FL to obtain highly performant load forecasting models in a fully decen-
tralized setting.

1 Introduction

Load forecasting is one of the most crucial aspects of both traditional and modern power
systems (Muñoz et al., (2010)). The main purpose of load forecasting in power system
operational planning is to maintain balance between power supply (generation) and de-
mand (load). The increasing penetration of variable renewable energy sources (VRES),
electric vehicles, and prosumers (consumers with VRES) challenges the power system
balance. They introduce additional volatility and uncertainty leading to higher imbal-
ances and power system operation costs. To maintain the balance, higher accuracy of
short-term load forecasting (STLF) models, along with higher accuracy of VRES fore-
casting models, is necessary (Muñoz et al., (2010)). The STLF models provide forecasts
for a time horizon between 1 to 168 hours (Muñoz et al., (2010)).

Traditional STLF models rely on static standard load profiles and only partially capture
the variability of the load. Newer data-driven approaches can provide dynamic models
that can better capture the variability of the load (Hippert et al., 2001; Nassif et al., 2021).
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These data-driven approaches rely on techniques such as Machine learning (ML) and
Deep Learning (DL). However, they require a large amount of data and high computing
power. The roll-out of smart meters with higher measurement granularity, initiated in
many countries in the last couple of years, generates the required amount of data for ML
and DL. These ML and DL models can forecast load curves (time series) with higher
accuracy compared to traditional methods (Hippert et al., 2001; Nassif et al., 2021; Nti
et al., 2020).

Classic ML models, such as Autoregressive integrated moving average (ARIMA) or
exponential smoothing, have limiting assumptions, such as linearity. With increasing
data granularity, these limitations get accentuated. Modern forecasting techniques,
such as DL models, can correctly capture these nonlinear and latent patterns in the
data, leading to increases in the accuracy of STLF forecasts. DL models use a wide
range of techniques, such as Long short-term memory (LSTM), Convolutional Neural
Network (CNN), or even hybrid models that combine multiple neural network architec-
tures. Examples of hybrid models are attention-based methods (Sehovac and Grolinger,
2020), autoencoders (Marino et al., 2016), and deep autoencoders (Kong et al., 2017).

Data expansion and changes in the power system create higher variability among
households, and consequently, these variations appear in their load profiles. In this
regard, the academic literature has opted to cluster household profiles to increase fore-
casting accuracy (McLoughlin et al., 2015). Household clusters contain load profiles
with similar characteristics. By doing so, the reduced intrinsic variability of the clusters
eases the learning of the models (Syed et al., 2021). In turn, fitting the model to a partic-
ular dataset and then generalizing it to other clusters would result in high bias and low
variance.

In recent years, due to existing data but limited smart meter data access, FL has gained
traction as a new framework for STLF as it can overcome these limitations (Fernández et
al., 2022; Savi and Olivadese, 2021). FL is a decentralized ML multi-party computation
technique that can iteratively and collaboratively train any artificial intelligence (AI)
model (McMahan et al., 2017). It provides an alternative to centralized models, as it does
not require storing data in a central server (silo) nor exchanges of its peers’ (clients’) raw
data (i.e., smart meter).
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STLF can benefit from FL as it reduces the limitations of data availability since peers do
not need to share raw data, but rather model parameters (Fernández et al., 2022; Han et
al., 2020; He et al., 2021; Savi and Olivadese, 2021). Peer’s data present high variability
because of their decentralized nature and distinct load consumption patterns. One so-
lution to reduce this variability is to cluster the households based on their load profiles.
However, clustering of load profiles usually requires global access to the data (Saxena
et al., 2017), i.e. it has centralized structure. This global access opposes to decentralized
nature of FL. Consequently, the combination of clustering techniques and FL suffers
from incompatibility (Fernández et al., 2022; Han et al., 2020; He et al., 2021; Savi and
Olivadese, 2021).

In this study, we propose a P2P decentralized clustering model that allows individual
households to collaborate to produce STLF models using FL. We compared our decen-
tralized P2P clustering model to a centralized model commonly used for this purpose.
We also included different time series specific distance metrics employed in clustering
techniques to generate suitable clusters.

In summary, we propose and evaluate a fully decentralized clustering approach for FL
to obtain highly accurate forecasting models. These models could help different energy
actors, such as Distribution system operators (DSO) or energy suppliers.

The remainder of this paper is structured as follows. Section 2 provides an overview of
different clustering techniques, its distance metrics, and a deeper view of FL. Section 3
presents the clustering logic of the central and peer-to-peer models for later comparison
(benchmark). In addition, it provides the FL training process details. Section 4 pro-
vides an overview of the evaluation process, covering the evaluation metrics dataset,
simulation environment, and procedure. Section 5 compares the results and provides a
discussion. Finally, Section 6 provides a conclusion.

2 Background

2.1 Clustering techniques

Clustering algorithms group data into so-called clusters in which elements of the same
cluster share similar properties (Saxena et al., 2017). These clustering algorithms can be
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centralized or decentralized, depending on where data storage and computation occur,
and can use supervised or unsupervised learning techniques (Ahuja et al., 2020).

On the one hand, centralized clustering algorithms require central silos to store all the
data and a central server to run the clustering algorithm. Most of the academic literature
focuses on centralized clustering algorithms (Saxena et al., 2017).

On the other hand, the extension of decentralized clustering is limited. Most of the
examples refer to decentralized algorithms evaluated in Agent Based Modeling (ABM)
simulations (Xu and Wunsch, 2005). In that way, the clustering algorithms are ad-hoc
solutions for the particular problem they are solving (Ogston et al., 2003). In ABM,
each agent will control a single part of the data set (an agent can be understood as a
household), and thus the agents will individually decide on their own. In our case,
the agents decide to create or dissolve clusters according to a given similarity metric.
Agents can create clusters without needing a central server or silo, enabling a fully
decentralized P2P environment and thus moving towards P2P economy (Brazier et al.,
2015).

Some methods combine centralized and decentralized characteristics. These methods
focus on the decentralization of classic centralized algorithms. For example, Federated
k-means (Soliman et al., 2020) can train k-means clustering where distinct clients have
shares of the dataset. In Federated k-means the training occurs in rounds where the cen-
troids’ moves are averaged every round. In addition, to have meaningful movements,
each participant must have a large enough portion of the dataset to replicate the train-
ing on the entire data set. This limits the overall scope of the method and requires new
fully decentralized methods for FL.

2.2 Distance Techniques

Regardless of the clustering technique, all the clustering algorithms rely on a similarity
metric. This similarity can measure statistical correlation between vectors (see metrics
such as Pearson’s correlation or Spearman’s rank correlation) or measure the separation
between vectors (distance metrics). Similarity metrics allow the clustering algorithm to
estimate whether or not two entries should be in the same cluster.
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For this paper, we considered the two leading distance metric approaches to measure
the closeness between time series (i.e., household load profiles). These distance metrics
are Euclidean and Dynamic time warping (DTW).

2.2.1 Euclidean

A standard metric for comparing two vectors is the Euclidean distance. It requires
a point-to-point mapping between comparable observations between two time series.
However, in the case of slight misalignment along the time axis (generally the x axis),
the distance metric between the two time series becomes significantly affected. Such
misalignment can occur due to instrument measurement errors and time delays.

2.2.2 DTW

Under temporal constraints, standard distance measurements, such as Euclidean dis-
tances, fail to estimate the similarity of time series. For instance, multiple misalignments
and links could simultaneously appear in different phases during the progression of a
temporal series.

One solution to time alignment issues that might occur when time series are in phase or
at different paces is DTW. Given two sequences X and Y , their DTW distance D(X, Y )

is defined as follows:

dtw(i, j) =

8
>>>>>>>>>><

>>>>>>>>>>:

1 if i = 0 or j = 0

0 if i = j = 0

kXi, Yjk+min

8
>>><

>>>:

dtw(i� 1, j)

dtw(i, j � 1)

dtw(i� 1, j � 1)

8i 2 X, 8j 2 Y

dtw(i, j)

(1)

DTW has been widely used to find similarities between time series. However, as seen
in (1), DTW is a recursive function over the lengths of the two time series and hence
computationally expensive. The computational burden could be bounded to a quasi-
quadratic form of O(n ·m) where n and m are the lengths of two time series. Although
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it is a high-complexity computation compared to euclidean methods, it performs well
(Gao et al., 2021).

For example, Figure 1 illustrates the visual difference between the DTW and Euclidean
distances for the same two household load profiles over 48 hours. DTW finds align-
ments across the spikes around t = 15 to t = 20, while the Euclidean cannot, as seen
in t=42 where the spike in the above profile is measured against a valley in the below
profile.

Figure 1: Comparison of DTW (left) and Euclidian (right) distance over 48h for two residential load
profiles.

2.3 Federated Learning

FL was introduced in 2016 as a way for entities to train a global model between multiple
decentralized clients. Each client uses their local data to train models, without sharing
their training data. (McMahan et al., 2017). This shift allowed models to grow by in-
gesting large amounts of data without the need to store the data in a centralized silo. In
FL, clients do not share raw data but information about models, normally with a server.
Thus, the server will process the models from the clients, reaching a consensus without
accessing the local data of the clients. More specifically, FL works as follows: initially,
the server selects an AI model to train. Later, the server shares the model with a random
set of clients; normally, the ratio Q represents the fraction of this subset w.r.t. the total
number of clients. A higher Q implies that more clients participate in each round of
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training and vice versa, where Q = 1 involves all clients. Once the clients receive the
initial model, they begin training it. Each client uses their local data to train the received
AI model.

Clients will share different information with the server depending on the FL algorithm.
On the one hand, when using the Federated Stochastic gradient descent (Fed-SGD) al-
gorithm, clients share their gradients of the loss at every batch of training. On the other
hand, in Federated Average (Fed-Avg), clients share the weights of the trained model
after every training epoch. The former requires more communication rounds between
the server and the clients (McMahan et al., 2017). Consequently, the latter is often used.
The role of the server once it receives information from the clients is straightforward.
The server averages the information (gradients or model weights) and shares the aver-
ages back to the selected clients for a new training round. By doing so in an iterative
manner, clients train and learn from other clients’ data without accessing their data. The
output is a collaborative model capturing the variability of clients’ data.

3 Models

3.1 Decentralized P2P ABM Clustering

We use an ABM approach for our fully decentralized P2P model. For the description of
the ABM, we follow the Overview, Design concepts and Details (ODD) protocol (Grimm
et al., 2020). We do not consider the ODD+D extension as we do not include human
interaction in the model (Grimm et al., 2020).

The models’ primary purpose is to demonstrate how households (i.e., agents) can create
clusters in a P2P manner. We define only a simple general pattern to assess the model’s
usefulness: the number of clusters created. It depends on how many agents there are
and their interaction.

Our model includes two kinds of entities: smart meters (agents) and federations (collec-
tives). We provide a list of their state variables and their descriptions in Table 1. Within
the federation, we refer to fID as the average distance of the smart meters within a fed-
eration, meanwhile fEID refers to the extended average distance of the smart meters
within a federation including a new smart meter.
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Table 1: Description of entities and their variables.

Entities Variable Description

Smart meter smlp Assigned unique load profile
smlist A list of calculated distances
smid Individual smart meter ID
ps Asking threshold

Federation fID Internal federation average distance metric
fEID Extended federation average distance
fsize number of smart meters in a federation
fid Individual federation ID

We do not correlate time steps to seconds, minutes, or hours; we keep it agnostic. Sim-
ilarly, the grid is not a physical attribute but an abstract plane. We acknowledge these
assumptions as limitations for directly applying our decentralised clustering approach.
It would require a to consider the time required per ABM round based on the infor-
mation communication technology (ICT) properties for smart meter data exchange, the
time horizon for a short-term forecast, and the specific area of interest for agents (smart
meters) to create clusters. For instance, a DSO seeking local flexibility in a particular
secondary substation due to scheduled maintenance may request specific smart meters
to create clusters and provide a short-term load forecast, which can aid in acquiring
dynamic flexibility.

The procedure that our ABM follows is as such. We select a total number of smart meters
from the dataset for our model. Each smart meter will have its unique load profile (see
Section 4.3).

We define two subsets. Subset Z is a defined random number of smart meters. Each
smart meter of Z has an internal subset Z’, composed by entities. To limit the computa-
tion overhead we limit kZ 0k = pskZk. Then in an iterative process, each smart meter of
Z computes and saves in smlist the distance between itself and each of the entities in Z’.

In the next step, each smart meter of subset Z will sort its distances and choose the
shortest distance. Then it can: A) create a federation if none of the smart meters is in
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a federation, B) join a federation, or C) move to another federation. The last two cases
require a deeper explanation. In the case of B), it refers to the smart meter in Z: sm not
belonging to a federation, while the smart meter in Z’ is in a federation f or viceversa.
sm will only join f if fEID is smaller than fID. In the case of C), both smart meters are
part of federations. A smart meter will only change from one federation to another if its
movement positively impacts both federation’s metrics (fID and fEID).

The iterative process is repeated for a specified number of rounds. The output of the
iterations is an undefined number of federations of different sizes and smart meters
which did not join any federation.

To initialize ABM, we only need to choose the total number of smart meters, rounds, and
metric distance. In our case, we consider 300 smart meters, 300 rounds, and two possible
distance metrics (Euclidian and DTW). Thus, the ABM only requires load profiles as
input data. The final output of ABM will be different federations (clusters) as depicted
in Figure 2.

3.2 Centralized k-means clustering

K-means is the main representative of centralized clustering. It has been the go-to solu-
tion for clustering due to its usefulness and adaptability. K-means is an unsupervised
algorithm which randomly initializes a given number of centroids. These centroids are
the center of a cluster. In every round, the centroids iteratively move towards the center
of mass of each cluster until no more moves are required. K-means has been successfully
demonstrated to cluster load profiles, as in (Baliga et al., 2010; Dong et al., 2022), where
the authors use k-means to aggregate customer load profiles with high accuracy (Bian
et al., 2020).

3.3 Federated Learning

FL requires a baseline learning model. This model could range from simple linear mod-
els to AI architectures. We follow the architectural design of (Fernández et al., 2022)
and the Artificial Neuronal Network architecture (Marino et al., 2016) to be the baseline
of our model. Their model is an encoder-decoder architecture with 12 neurons in the
latent space. We collect the hyperparameters of the FL model in Table 2. In particu-
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Figure 2: Clusters after 300 rounds using P2P and DTW.

lar, we define Q as a function of the cluster size to limit the computational burden of
large clusters. In our case, we define a maximum of 15 clients per round and produce
1-hour-ahead forecasts.
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Table 2: Hyperparameters for FL models.

Parameter Value

Number of internal rounds before
averaging 5

Artificial Neuronal Network architecture Marino et al. (Marino et al.,
2016)

Clients within a cluster (w) 38

Ratio of clients involved per round (Q) Q =

(
1.0 w < 15

w/15 w � 15

Optimizer Adam
Optimizer learning rate (Lr) 10�3

Batch size 128
Number of communication rounds 100

4 Evaluation

4.1 Evaluation metrics

Evaluation metrics offer indicators of the models performance and enable fair compar-
ison. Each of the metrics depicts different characteristics of the models and their abil-
ity to predict them. On the one hand, absolute metrics such as MAE (2) or MAPE (3)
are known to be robust with respect to outliers. On the other hand, quadratic metrics
(MSE (4) and RMSE (5)) penalize large prediction errors, as they measure the standard
deviation of residuals.

MAE =
1

n

nX

i=1

|yi � xi| (2) MAPE =
100
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4.2 Simulation environment

We performed the simulations in the IRIS Cluster of the high-performance computer
(HPC) facilities of the University of Luxembourg (Varrette et al., 2014). The simula-
tions for the clustering ran in an specific node with 1Tb of RAM while the FL model
trained on two NVIDIA Tesla V100 with 16Gb or 32Gb depending on the allocation. We
programmed FL and the ABM model in Python using Tensorflow-Federated (Authors,
2018) and MESA framework (Kazil et al., 2020) respectively. The DL models were writ-
ten in Keras (Chollet et al., 2015) and the time series k-means was built using DTAIDis-
tance (Meert et al., 2020).

4.3 Dataset

For our simulations, we used a dataset collected during the Low Carbon London project
within the UK Power Networks conducted between November 2011 and February 2014
in the London area (D., 2019). It contains the electrical consumption (kWh) of house-
holds in a half-hour resolution. We treated our dataset to be ready for the simulations
in the following manner. First, we downscaled the values from half-hour resolution to
an hour resolution. This implies a reduction in the computational needs of the models.
Second, we drop all the null and outlier values. Third, we rescaled the load profiles to a
known range (0 to 1) using Min-Max scaler to further increase the model convergence.
Forth, to limit the simulations, we restricted our dataset to 372 profiles. To ensure the
validity of our simulations, we split the dataset into training and test set. Initially, we
divided our households into two sets. In the first one, we randomly selected 300 house-
holds representing the training dataset. In the second one, the remaining 72 we used
them to evaluate the performance. Regardless of the previous split, we split each par-
ticular household again in training and testing. This split affects the training and test of
the FL models; by splitting the data we prevent the model to overfit known patterns and
thus evaluate its ability to generalize under new conditions. The training set contains
information from January 1st 2013 until December of the same year, while the test set
contains data from January 2014 to March 2014.
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4.4 Simulation Procedure

To evaluate the performance of both clustering techniques, we established a pipeline
as depicted in Figure 3. In step one, we divided the dataset into a training split (300
households) and a test split (76 households). In step two, we perform the clustering. We
cluster our data using both P2P and k-means and for each of the clustering techniques,
we run one simulation per distance metric (Euclidian and DTW). We optimized the
number of k-means clusters using the elbow method (Thorndike, 1953). The results
of step two are the clusters. These are the input for the third step. In step three, we
trained the FL models based on the clusters and the households inside. The result of
this step was as many FL models as clusters found in the previous step. In step four, we
estimated the most optimal cluster for each of the households in the test split. From this
estimation, we subsequently evaluated the forecasting performance of each FL model.

300 LCLIds

72 LCLIds

Accorn H
LCLIds

Training
Split

Test Split

K-Means
Clustering

ABM Clustering

Clusters Federated
Learning

Performance
Evaluation

Euclidean

DTW

Cluster
Evaluation

Forecasted  
clusters

2

1 3

4

Figure 3: Simulation pipeline.

5 Results

We analyze our results from two points of view. The first is the absolute performance of
the FL models based on the chosen metrics (4.1). The second is the computation time of
the cluster, calculated in minutes.
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We collect in Table 3 the performance of the P2P and k-means clustering results. On
average, k-means perform better than P2P. However, the performance difference is in-
significant since it is only 0.51 percentage points (pp), and it could be due to the stochas-
tic nature of the models. On the same page, the difference between DTW and Euclidean
distances is limited. Their disparities are 0.13 pp, towards Euclidean distances. These
results showcase two readable outcomes. First, our P2P clustering approach leads to re-
sults similar to those of a central k-means clustering algorithm, facilitating further fully
decentralized forecasting approaches. Second, Euclidian and DTW offer similar results.
Their similarity might be a consequence of the small shifts in the load profiles of each
smart meter present. These small shifts lead to similar measurements across distances
and, thus, similar performance.

Concerning the computation time (see Table 3 under T[min]), it diverges dramatically
between Euclidean and DTW. Euclidean is on the linear order of O(Max(n,m)), while
DTW is on the quadratic order of O(n ·m), being n and m the lengths of the two input
sequences. Our results suggest between 4.5 to 9 times slower to compute the clustering
when using the DTW distance metric. This is particularly prominent in our P2P case
where the distance computations occur at a much higher rate, thus slowing the conver-
gence of the algorithm by almost double. Our findings imply that applying DTW over
Euclidean is not justified for clustering consumer load profiles with similar load profiles
(small shifts) given in our case by the ACORN classification.

Table 3: FL performance results of P2P and k-means clustering using Euclidian distances or DTW.

MAE MSE RMSE MAPE T[min]

P2P
Euclidean

µ 0.0055 0.0002 0.0122 13.1284 20
� 0.0048 0.0005 0.0090 5.7536 -

DTW
µ 0.0047 0.0002 0.0116 12.3761 180
� 0.0044 0.0005 0.0084 6.3897 -

K-means
Euclidean

µ 0.0036 0.0001 0.0102 10.8050 2
� 0.0019 0.0002 0.0055 5.4495 -

DTW
µ 0.0041 0.0002 0.0105 11.8331 90
� 0.0029 0.0003 0.0063 5.6228 -
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6 Conclusions

Traditionally, the high variability of consumer loads has been tackled by clustering them
into similar groups. FL is commonly used with centralized clustering approaches, and
even though highly effective, this combination suffers from incompatibilities. This pa-
per proposes P2P decentralized clustering technique to solve these incompatibles. We
evaluated a new P2P decentralized clustering technique using ABM and compared it
to a k-means approach, a traditional centralized clustering technique. Furthermore,
we evaluated two distance metrics for clustering: Euclidian and DTW. Eventually, we
trained FL models to predict one-hour-ahead load and analyzed the performance of the
forecasts together with the total computation time.

Although we acknowledge that the computational load can be substantial, our simula-
tion ignores the technical details of the processing units and procedures on the smart
meter side.

Our decentralized P2P clustering approach produces similar clusters to centralized k-
means, even with different distance metrics. The FL models trained for each clustering
approach perform similarly. Consequently, the decentralized P2P clustering approach
enables fully decentralized FL forecasting models.

Our analysis also suggests that classic Euclidean distances perform similarly to more
complicated and slower methods like DTW. Without additional computational burden,
Euclidean distances are enough to produce adequate clusters for FL.
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Abstract

Credit risk assessment is a standard procedure for financial institutions (FIs) when esti-
mating their credit risk exposure. It involves the gathering and processing quantitative
and qualitative datasets to estimate whether an individual or entity will be able to make
future required payments. To ensure effective processing of this data, FIs increasingly
use machine learning methods. Large FIs often have more powerful models as they can
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access larger datasets. In this paper, we present a Federated Learning prototype that
allows smaller FIs to compete by training in a cooperative fashion a machine learning
model which combines key data derived from several smaller datasets. We test our pro-
totype on an historical mortgage dataset and empirically demonstrate the benefits of
Federated Learning for smaller FIs. We conclude that smaller FIs can expect a signifi-
cant performance increase in their credit risk assessment models by using collaborative
machine learning.

1 Introduction

Most financial institutions (FIs) employ comprehensive credit risk models to estimate
their exposure to credit risk. These models typically employ either traditional or ad-
vanced methods. Traditional methods rely on induction principles to make mathemati-
cal and statistical inferences from curated data. They facilitate the creation of static mod-
els that build on a range of assumptions, such as linearity, independence, and normality.
Advanced methods, in turn, are more data-driven and less reliant on these assumptions
(Chen et al., 2016; Galindo and Tamayo, 2000). Like traditional methods, they infer in-
formation from curated data but they enable the creation of flexible models that adapt
to the curated data. As a result, credit risk models that employ advanced methods typi-
cally perform better at to extracting patterns from complex real-world datasets that are
replete with noise, nonlinearity, and idiosyncrasies.

Both methods depend strongly on data inputs (Altman, 2002; Heitfield, 2009). Models
trained with more and better data can estimate real word situations more accurately. In
effect, data availability is crucial for FIs and can translate into a competitive advantage
(Bansal et al., 1993; Walczak, 2001). Limited data, in turn, can lead to less reliable predic-
tions. For smaller FIs with limited data access, this effectively means that ‘data sharing’
with other FIs could have a material impact on the performance of their credit risk mod-
els (Bansal et al., 1993; Walczak, 2001). However, data sharing is often challenging due
to concerns about privacy, control and legal recourse (Borgman, 2012; Ekbia et al., 2015).

A more feasible alternative could be the use of Federated Learning (FL) to create joint
credit risk models. FL is an ML technique that allows models to train on a distributed
basis without the need to move raw data (McMahan et al., 2016). In other words, fi-
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nancial institutions would not need to reveal their data as they gain insights from its
processing, allowing every participating FI to benefit from use of each other’s informa-
tion.

In this paper, we thus ask the following two research questions:

1. How does FL based credit risk assessments perform?

2. Will FL help to reduce the disparities in risk calculations between financial insti-
tutions?

To answer these research questions, we developed an FL-based credit risk assess-
ment prototype. We tested our prototype on Freddie Mac’s Single Family Loan-Level
Dataset (Freddie Mac, 2021b) to simulate collaboration between FIs when assessing the
credit risk of mortgage portfolios. Mortgages are an important financial instrument,
but their typically long time horizons complicate the task of making accurate forecasts.
Specifically, we compared the performance of credit risk models under different sce-
narios to evaluate and quantify the impact of information sharing. These comparisons
indicate that FL can offer significant performance gains for smaller FIs with limited in-
house datasets. To the best of our knowledge, this paper is the first to examine FL in
assessing the credit risk of mortgages with real-world FI divisions.

The research paper is structured as follows. Section 2 provides an overview of relevant
literature on credit risk assessment and federated learning. Moreover, it presents previ-
ous research that studies the application of FL in financial services. Section 3 describes
the implementation of our FL prototype. Section 4 details the hypotheses, scenarios,
and evaluation metrics we used to examine the performance of our FL prototype. Sec-
tion 5 presents the results of our evaluation. Section 6 discusses the limitations of our
study as well as future research directions. Section 7 offers concluding remarks.
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2 Related Work

2.1 Credit Risk Assessment

Credit risk assessment methods have evolved over time from traditional to advanced
methods, but essentially start and end in the same fashion. At the start, data or infor-
mation about the prospective mortgage is gathered systematically. Subsequently, the
newly collected information is used to measure the likelihood of the mortgage to expe-
rience credit risk events. The likelihood of these events results in a score representing
the credit risk of the mortgage.

Performance of credit risk models is not only dependent on the method used but also
on data inputs (Altman, 2002; Heitfield, 2009). Models trained on larger datasets, for
example, when sharing data, allow for more real world data to be represented in the
trained model. As a result, changes to the quantity and quality of data inputs have
material impacts on the performance of credit risk models.

Regulators and policymakers have called for increased disclosure of credit risk related
data (Banking Supervision, 2018) and developed infrastructure to encourage voluntary
sharing (Bank, 2010; Israël et al., 2017). However, concerns about sharing data remain
and are two-fold. Firstly, data privacy laws, such as the EU’s General Data Protection,
prohibit data sharing without an appropriate legal basis. Secondly, data typically of-
fers a competitive advantage to its holder (Kearns and Lederer, 2004; Redman, 1995;
Zuiderwijk et al., 2015). Therefore, companies are often reluctant to share their data to
avoid risking the disclosure of valuable information.

2.2 Federated Learning

FL was introduced as a collaborative ML technique in (McMahan et al., 2016; McMa-
han et al., 2017) and might help to mitigate privacy and competitiveness concerns. In
FL, data remains decentralized across collaborating clients. These clients collaborate
through share information (or inferences) about the data rather than the data itself. FL
typically builds on one of two algorithms: Federated Averaging (Fed-Avg) and Feder-
ated Stochastic Gradient Descent (Fed-SGD). The first algorithm shares model while the
second model gradients.
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In FL (McMahan et al., 2016; McMahan et al., 2017), there are typically two roles: clients
and the central server. The roles are the same for both Fed-Avg and Fed-SGD. Clients
host and locally compute ML models locally using their own data. The central server
coordinates the sharing of the locally computed information from clients by aggregat-
ing, averaging and then distributing the averaged information back to the collaborating
clients.

There are four FL variants in standard practice, with these based on the data structures
and features used to train the FL models: Horizontal, Vertical, Transfer Learning, and
Assisted Learning. Horizontal FL requires that the data used to train each client have
the same data structure and features. Vertical FL requires that each client has the same
structure but different data features. Transfer learning allows each client to have differ-
ent structures and features in their data. Assisted Learning allows each client to train
using other clients’ errors.

The training of an ML model with FL follows an iterative process as depicted in Figure 1.
The training steps are as follows: initially, in (1), the central server selects a list of collab-
orating clients and an ML model to be run by each of the selected clients. Subsequently,
in (2), the central server communicates the selected ML model to each randomly se-
lected client. After receiving the selected ML model, in (3), each client simultaneously
trains the selected ML model on their data and produces a newly trained model. In (4),
each client communicates to the central server the computed results of their new ML
models. Once the central server has aggregated the information from all clients, in (5),
it will average the aggregated information. Lastly, in (6) the aggregated information is
relayed back to each newly randomly selected subset of clients. This collaborative train-
ing process continues repetitively between steps (2) and (6) until a prescribed number
of rounds are complete, or a target goal is reached.

2.3 Federated Learning for Financial Services

FL is a relatively novel ML method that allows disconnected entities to train ML mod-
els without sharing their raw data. At the same time, there is a burgeoning quantity of
literature in various fields which study the potential impact of FL on analytical capabil-
ities, such as medical imaging (Kaissis et al., 2021), the Internet of Things (Aïvodji et al.,
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Figure 1: Diagram of Federated Learning process.

2019), and energy demand optimization (Saputra et al., 2019), which study the potential
impact of FL on analytical capabilities.

FL is also gaining traction amongst financial services businesses. For instance, Yang
et al. (2019) proposes a FL framework to train fraud detection models. They use an
anonymized real-world dataset of credit card transactions from European cardhold-
ers provided by the Université Libre de Bruxelles (ULB) ML Group. Their framework
demonstrates an increase in performance of approximately 10% when implementing FL
versus conventional ML approaches. Zheng et al. (2020) propose an FL framework to
train meta-learning based models. They test their proposed framework on four publicly
available credit card transaction datasets. These tests demonstrate an increase in per-
formance compared to conventional meta-learning approaches. Shingi (2020) applies
an FL model to predict loan defaults using a modified learning algorithm for FL and a
Feed-Forward Network exhibiting a 3.88% increase in performance. However, the cur-
rent literature still lacks real portfolio divisions of small, medium, and large FI to create
credit risk models that can consume large datasets. Thus, we contribute to reducing this
gap in our paper.
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3 Prototype

To evaluate empirically the effectiveness of FL in assessing the credit risk of mortgages,
we developed an FL prototype. The developed FL prototype estimates the probability
of default of the underlying mortgages. We use historical data of mortgage transactions
and real division of entities for our federated clients.

3.1 Data Source

The datasets used to train and test our FL prototype are Freddie Mac’s Single-
Family Loan-Level (FMSFLL) (Freddie Mac, 2021b), Freddie Mac’s House Price Index
(FMHPI) (Freddie Mac, 2021a), United States Bureau of Labor Statistics’ Local Area Un-
employment Statistics (LAUS) (United States Bureau of Labor Statistics, 2021), and Fed-
eral Reserve Economic Data (FRED) (Federal Reserve, 2021). While the FMSFLL dataset
provides data directly related directly to mortgage transactions, the FMHPI, LAUS, and
FRED datasets provide complementary data related to economic and environmental
factors.

The FMSFLL dataset holds historical records of credit performance data on all mort-
gages that Freddie Mac has purchased or guaranteed since 1999 and covers approxi-
mately 45.5 million mortgages. The dataset has two tables: origination and monthly.
The origination table has 35 variables and includes data relevant to when the FI granted
the mortgage to the applicant. The monthly table concerns data relevant to the status of
the mortgage granted at monthly intervals. The "Seller Name" describes the originating
financial institution that initially funded the mortgage transaction at its inception. It al-
lowed us to isolate the mortgages that originated from each FI as true portfolio holdings
before Freddie Mac acquired them.

We complemented the FMSFLL dataset with the FMHPI, LAUS, and FRED datasets to
include relevant ’environmental’ factors for mortgage defaults. Intuitively, the factors
considered are general levels of housing price, unemployment, delinquency, charge-off,
and interest rates. The FMHPI dataset holds historical housing price levels in the US
by state. The LAUS dataset holds historical unemployment levels in the US by state.
Lastly, the FRED dataset holds delinquency, charge-off, and interest rate levels in the
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US at the national level. As a result, the FL prototype considers descriptive information
about mortgages and relevant ’environmental’ factors for mortgage defaults.

3.2 Data Pre-processing

We pre-processed our combined dataset to make it more accessible for our prototype.
Firstly, due to the large amount of variables, we reduced the number of those we used
to 31 (Table 1). Secondly, to reduce the scope of our evaluation, we worked only with
data points from 2006 until 2009. We chose this time frame because the US mortgage
markets had a high rate of defaults in those years, which provided an ideal period to
test our prototype. Thirdly, to have a consistent terminating state, we only considered
mortgage records in the FMSFLL dataset which had default and non-default "termina-
tion events" in the Zero Balance Code variable. This only includes mortgage records
that experienced credit events such as "Third Party Sale", "Short Sale or Charge Off",
"Repurchase prior to Property Disposition", and "REO disposition".

After pre-processing, the combined dataset resulted in 9.6M observations from 250k
unique mortgages previously held by 14 FIs.

3.3 Prototype Implementation

The combined dataset after pre-processing is time-stamped at monthly intervals. As
time-stamped datasets allow for the consideration of temporal patterns, we chose a
Neural Network (NN) with four layers of Long Short-Term Memory (Hochreiter and
Schmidhuber, 1997) interspersed with dropout layers and two fully connected layers.
Unlike fully connected layers, LSTM layers have feedback connections with previous
neurons. These connections allow neurons to access information about their former
states so they can make inferences about the future based on previous data.

In NNs, the frequent use of dropout layers mitigates overfitting (Srivastava et al.,
2014). During the training phase, dropout will deactivate some neurons at random,
encouraging the network to find ways around previously established patterns and pre-
venting some neurons from becoming a bottleneck in the architecture. As a result, the
selected architecture can find temporal patterns in the development of the mortgage
market (Sezer et al., 2020).
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Table 1: List of variables.

Variable Dataset Data-type
Channel FMSLL Discrete
Charge-Off Rate FRED Continuous
Combined Unemployment Rate LAUS Continuous
Credit Score FMSLL Continuous
Current Actual Unpaid principal balance FMSLL Continuous
Current Loan Delinquency Status FMSLL Discrete
Delinquency Due to Disaster FMSLL Discrete
Delinquency Rate FRED Continuous
Estimated Loan-to-Value (ELTV) FMSLL Continuous
First Time Homebuyer Flag FMSLL Discrete
Fixed Rate Mortgage Average FRED Continuous
House Price Index FMHPI Continuous
Loan Age FMSLL Continuous
Loan Purpose FMSLL Discrete
Loan Sequence Number FMSLL Discrete
Mortgage Insurance Percentage (MI %) FMSLL Continuous
Number of Borrowers FMSLL Continuous
Number of Units FMSLL Continuous
Occupancy Status FMSLL Discrete
Original Debt-to-Income (DTI) Ratio FMSLL Continuous
Original Interest Rate FMSLL Continuous
Original Loan Term FMSLL Continuous
Original Loan-to-Value (LTV) FMSLL Continuous
Property State FMSLL Discrete
Property Type FMSLL Discrete
Property Valuation Method FMSLL Discrete
Remaining Months to Legal Maturity FMSLL Continuous
Seller Name FMSLL Discrete
Super Conforming Flag FMSLL Discrete
Unemployment at origination FRED Continuous
Zero Balance Code FMSLL Discrete
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We implemented the FL prototype using the algorithm presented in (McMahan et al.,
2017). In a first step, the central server initializes the baseline model and distributes it
to the FIs. In a second step, the FIs start training the model sent by the central server
on their local data. In the training they conduct, they use Stochastic Gradient Descend
(SGD) (Robbins and Monro, 1951) as the model optimizer with the parameters defined
in Table 2. As we are implementing Fed-Avg, the communication rounds happen after
one or more complete pass through the dataset, We found 10 internal rounds before
averaging the optimal number of rounds. Once all the FIs have finished their training,
they share their models weights’ with the central server. The central server averages
the weights, creating a new model. This model is then shared again with the FIs until a
pre-determined number of rounds is reached. In our case, after 100 rounds, there was
no improvement in the performance metrics.

We simulated all the FIs and the communications on the High-Performance Computing
facilities of the University of Luxembourg’s (Varrette et al., 2014). The hardware used
was 256Gb of RAM and one 16Gb/32Gb NVIDIA Tesla V100 depending on the alloca-
tion. We implemented the FL architecture in TensorFlow Federated TensorFlow Federated
(2018) while for the Deep Learning modules we used Keras (Chollet et al., 2015)

Table 2: Hyperparameters for FL models.

Parameter Value
Rounds before averaging 10
Baseline architecture 4x (LSTM + Dropout) + 2 Dense
Total number of FIs 14
Optimizer SGD
Optimizer Learning rate (Lr) 0.01
Optimizer Momentum (vt+1) 0.9
Optimizer Decay (�) 1e-2/100
Batch size 128
Number of communication rounds 100

4 Evaluation

To analyze the performance effects of the FL prototype, we formulated a null and an
alternative hypothesis, defined metrics to measure performance, and designed a series
of scenarios to test the hypotheses.
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4.1 Hypotheses

We formulated our null and alternative hypotheses as follows: Given an FI’s dataset Fi:
{F1, F2, ..., Fn} and a global dataset D = {F1[F2[ ...[Fn} with n being each individual
FI, the null hypothesis (H0) is that the performance of models trained collaboratively
through FL on Fi is better than the performance of the same model trained on Fi. The
alternative hypothesis (H1), in turn, is that the performance of models trained collabo-
ratively through FL is worse than the same model trained on Fi.

4.2 Evaluation Metrics

We used a range of standard metrics to measure the performance levels of the models:
Accuracy, Recall, Precision, and F1. The performance of any classification task could be
summarized using four main indicators: True positive (TP) representing the instances
correctly classified, similarly true Negatives (TP) where the model correctly predicts the
negative class. On the other hand false positive (FP) represents the instances incorrectly
predicted as positive class. False negative (FN) represents the instances incorrectly pre-
dicted as negative class. Eq. 1 Accuracy describes the proportion of correct predictions
as opposed to the total number of predictions. Eq. 2 Recall describes the proportion of
positive classifications that were correctly classified over the all the positive instances
Eq. 3 Precision describes the proportion of positive classifications that were correctly
classified among all instances. Eq. 4 F1 is the equal weighted harmonic average of Eq. 2
and Eq. 3.

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

Recall =
TP

TP + FN
(2)

Precision =
TP

TP + FP
(3)

F1 =
2 ⇤ TP

2 ⇤ TP + FP + FN
(4)
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4.3 Evaluation Scenarios

We designed a series of five scenarios to test the null hypothesis: 1) Local Model, 2)
Central Model , 3a) FL, 3.b) FL without the biggest FI (n-1), and 3.c) FL without the
two biggest FIs (n-2). Each scenario represents a hypothetical instance of credit risk
assessment. Each scenario uses data from the years 2006 to 2008 as training data, and
data from year 2009 as testing data. We calculated the performance metrics for the five
scenarios in relation to the observed loan termination status.

Table 3: Scenario and the data they ingest.

Scenario Name Train data Tested data
1. Local Model Own Own
2. Central All All
3a. FL FL Local

3b. FL n-1 FL Local
3c. FL n-2 FL Local

1. Local Model This scenario explores independent FIs that only use the data at their
immediate disposal and without collaboration for credit risk assessment. It de-
notes an ’imperfect information’ scenario in which FIs do not have access to each
other’s data. In this scenario, we trained one model for each FI.

2. Central This scenario represents a hypothetical data lake in which all data is
pooled together in a singular or centralized data silo for credit risk assessment.
It represents a ’perfect information’ scenario in which all the data of every FI is
available. In this scenario, we trained one model in a ’centralized’ manner.

3. a) Federated Learning This scenario represents collaboration using Horizontal
FL. Each FI stores their own data while their data structure remains identical
among clients.

b) Federated Learning without the biggest bank This scenario explores collab-
oration without Wells Fargo Bank, N.A. Wells Fargo is the FI with the largest
number of unique mortgages in our dataset. It holds 40.21% of the total num-
ber of unique mortgages.
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c) Federated Learning without the two biggest FIs This scenario is similar to
the previous one and explores the impact of removing the two biggest FIs.
Wells Fargo and Chase Home Finance are the two FIs with the largest number
of unique mortgages. The two account for 52.59% of the total number of
unique mortgages.

To ensure that the results are robust and to normalize the effects of NN’s random nature,
we utilized a Monte Carlo simulation (Kroese et al., 2014). The n in Table 4 presents the
number of simulations for every particular scenario. Additionally, we summarized the
metrics by the mean µ and their standard deviation �. In the Local Model scenario, we
compute µ and � across the different FIs for each Monte Carlo simulation.

5 Results

Based on our simulations, we fail to reject the H0 (the FL model is better than the local
model). The hypothesis holds even for scenarios where the largest and two largest FIs
do not collaborate in training a forecasting model to predict credit risk. To support our
rejection, we provide our simulation results in Table 4.

We found that the local model results offer an average performance worse than the other
models. Moreover, we found that the performance of the models was proportional to
the number of mortgages on which they were trained. To quantify this effect, we fitted
a linear regression between the number of mortgage records and the performance of the
models. We found that a 1% increase in the number of loans increased the performance
by an average of 0.06% with p = 0.02  0.05.

This relationship between data quantity and model performance explains the variability
in the evaluation metrics. For example, the model for Metlife Home Loans, a division of
Metlife Bank, N.A., that holds 45340 mortgage observations (0.33% of the total number
of observations in our dataset), had 91.12% recall, 75.97% accuracy, a F1 score of 69.44%,
and 56.56% precision. Meanwhile, the Wells Fargo Bank NA model with almost 4m
mortgage observations (40.20% of the total observations) had 98.97%, 97.95%, 97.35%,
and 97.65% accuracy, precision, recall, and F1 score, respectively. In effect, we can con-
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Table 4: Performance comparison between scenarios.

Scenario Accuracy Recall Precision F1 score
1. Local Model
n = 10

µ = 95.04%
� = 0.0667

96.97%
0.0249

89.76%
0.1359

92.65%
0.0879

2. Central
n = 10

µ = 98.59%
� = 0.0263

99.8%
0.0041

95.56%
0.0845

97.49%
0.0468

3a. FL
n = 10

µ = 99.06%
� = 0.0002

98.81%
0.0005

97.69%
0.0008

98.25%
0.0004

3b. FL n-1
n = 10

µ = 99.04%
� = 0.0002

98.74%
0.0006

97.69%
0.0011

98.21%
0.0005

3c. FL n-2
n = 10

µ = 99.04%
� = 0.0004

98.72%
0.0007

96.82%
0.0015

98.22%
0.0007

clude that the higher the number of records per financial institution, the higher their
performance levels.

On the contrary, the central model created by all FIs sharing their data in a silo outper-
forms the Local Model scenario by a relatively average performance increase of 4.27
percentage points (pp). However, the difference is not significant between the central
and FL models. The difference is 0.57 pp in favor of the FL model; this difference being
negligible mainly due to the stochasticity of the models.

Surprisingly, even when we excluded the FIs with the most mortgage records (FL n-1
and FL n-2), the performance levels still matched those of the Central and FL scenario.
Even without the 40.21% and 52.59% respectively of the total mortgage observations,
performance did not drop significantly.

The standard deviation over our Monte Carlo simulations (see Table 4 under �) indicates
that there are only minor variations across simulations, exemplifying the robustness of
the results. These findings demonstrate that small-to-medium FIs could significantly
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improve their credit risk assessments by joining forces with others to create a collabora-
tive FL model.

Overall, each FI holds different data. This variation in data induces each FI to estimate
credit risk differently, sometimes creating overexposure and other times underexposure.
First, we explored how these differences between models develop over time. Thus,
as an example, we considered two different loans, F09Q10036282 and F09Q10037931,
and explore how different models estimate their risk throughout the life cycle of the
mortgage. We illustrate the results of these two loans in Figure 2, where the former
defaulted (upper), whereas the latter did not (lower). For instance, we can observe in the
predictions for F09Q10036282 that even though all models correctly estimate its default
at the end, during the middle years, the default estimations vary across FIs. Even in
these two instances, in Figure 2, the difference between the risk estimation between
Central and FL remains negligible.

Secondly, we measured these differences in risk estimation over time. To do so, we cal-
culated the kernel density approximations (Rosenblatt, 1956) of the differences in risk
estimation. Individual FIs do not have a complete view of the market and tend to per-
form poorly in estimating risk distributions. As a complementary step, we add Figure 3,
which visualizes how the Local Model estimates risk compared to both Central and FL
models. FIs deviate from both Central and FL when calculating their risk. For exam-
ple, Metlife Home Loans, a Division of Metlife Bank, N.A., tends to underestimate risk
(-25%). Another example is Chase Home Finance LLC which overestimates by around
7%.

Furthermore, Table 5 collects the simple average of the default probability deviations
and complements Figure 3. In simple average terms, the Local Model scenario under-
estimates the probability of default compared to the Central Model and FL scenario at
both the initial (2.7% and 5.6%) and final month of mortgages (6% and 4.3%). These
results can be explained since a single institution’s data has less variability than the
rest of the datasets combined. For instance, individual FIs seem to better estimate risk
at the beginning of the mortgage but underestimate the default probability at the end.
These results are reasonable since an accurate initial default estimation may be simpler
to make than analyzing the changing environmental and macroeconomic conditions
mortgages are subject to. Hence, FIs could be failing to estimate the fat tails of the mar-
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Figure 2: Different models used to estimate default probability.
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ket’s risk distribution (Taleb, 2020). In other words, smaller FIs may not have access to
a big-picture view of the risk distribution.

Figure 3: Relative deviation by the local models compared with central and FL scenarios. On the right,
the comparison is between FL and Central.

Table 5: Simple average, standard deviation, min and max values for Figure 3. For the local models, the
average is across mortgages and then across FIs.

Deviations µsµsµs ��� min max
Central at initial month -0.027 0.119 -0.579 0.639
Central at final Month -0.060 0.153 -0.980 0.929
FL at initial month -0.056 0.104 -0.710 0.465
FL at final Month -0.043 0.156 -0.968 0.971
FL to Central at initial month 0.028 0.061 -0.117 0.283
FL to Central at final month -0.017 0.048 -0.474 0.765
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In essence, there are significant benefits to collaboration through FL for smaller FIs. FIs
whose datasets are large enough to approximate the overall variability in the market, in
turn, do not significantly benefit from collaboration. Finally, we observe different esti-
mations of default probability by each FIs. These differences vary during a mortgage.
Therefore, each FI should individually assess the benefits of applying FL to the credit
risk assessment of mortgages.

6 Limitations and Future Research

Our study is subject to two limitations: 1) in that we used only a subset of our dataset;
2) in that we only used the FMSFLL holding division; and 3) in that we worked only
with mortgages with final status.

While the full FMSFLL dataset contains approximately 45 million unique mortgages
spanning from 1999 to 2022, we used only those 250k that where active from 2006 to
2009. We focused on these years as they had a high number of defaults (Murphy,
2008). Time frames with less defaults, in turn, might lead to different results for the
five scenarios. Further research should thus extend our study also to such other time
frames.

Moreover, the FMSFLL dataset only includes mortgages that Freddie Mac has bought.
In reality, the US FIs’ mortage portfolio holdings contains more mortgages than just the
ones Freddie Mac bought. We used the FMSFLL dataset because Freddie Mac is one
of the major players in the US residential mortgage market. Furthermore, the portfo-
lio holding divisions by each US FI in the sample subset are not arbitrary or random
but based on true values and reflect mortgages that each US FI originated or had once
held. However, the study could improve by including a hypothetical yet more realistic
representation of each FI’s mortgage portfolio holdings.

In addition, due to the high volume of loans originated over these years, we limited the
number of mortgages by filtering out those with a final status so that the ML models
could accurately predict them. The study could improve by modifying the models to
handle a higher number of loans.
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7 Conclusions

In this research paper, we present an FL prototype for the credit risk assessment of
mortgages. We evaluate this prototype with an empirical dataset and a scenario analy-
sis consisting of five scenarios. We find that smaller financial institutions could benefit
significantly from collaboration with others through FL. On average, our FL prototype
improved accuracy, recall, precision, and F1 scores by 4.02, 1.84, 7.93, and 5.59 percent-
age points respectively.

The work presented in this paper contributes to the existing literature on the use of FL
in financial services. In particular, our study contributes the following:

1. We present a prototype that uses FL for credit risk assessment of mortgages;

2. We demonstrate empirically the potential benefit of using FL for the credit risk
assessment of mortgages.
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Abstract

To address global problems, intergovernmental collaboration is needed. Modern so-
lutions to these problems often include data-driven methods like artificial intelligence
(AI), which require large amounts of data to perform well. However, data sharing be-
tween governments is limited. A possible solution is federated learning (FL), a decen-
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tralised AI method created to utilise personal information on edge devices. Instead of
sharing data, governments can build their own models and just share the model pa-
rameters with a centralised server aggregating all parameters, resulting in a superior
overall model. By conducting a structured literature review, we show how major inter-
governmental data sharing challenges like disincentives, legal and ethical issues as well
as technical constraints can be solved through FL. Enhanced AI while maintaining pri-
vacy through FL thus allows governments to collaboratively address global problems,
which will positively impact governments and citizens.

1 Introduction

Even though there are approaches to allying with other countries, objectively, sovereign
nation-states exercise power over a population of citizens within their territorial bor-
ders. With the increasing impact of digital technology and the rise of the internet as
a “borderless space”, the role of traditional borders in the digital realm is questioned
more and more often. Although the very essence of the internet is to connect users and
devices beyond borders, countries attempt to preserve their sovereignty by subjecting
cyberspace to their own national rules.

An area where sovereignty is widely pursued among different countries is data sharing.
While sharing data allows enhanced analytics and value generation, the 2022 World
Economic Forum underlined the problem that data sharing is impractical as data is
stored in different legacy system silos (Antonio, 2022). Further, legitimate reasons mak-
ing data sharing complicated are disincentives due to the collective action theory (Ol-
son, 1965) and data sharing being unethical (Ward and Sipior, 2010), especially when
personal information is involved. In addition, legal uncertainties exist when data is
shared between nations created through legislation like the General Data Protection
Regulation (2018).

Still, technological advances do not stop, and governments need to keep up with the
waves of innovation for economic, social and political reasons. While industry 4.0 is
a very common term for the technological advancement in industry, eGovernment 3.0
(eGOV3.0) is the term used to describe the ever-increasing use of disruptive informa-
tion and communication technology (ICT), such as artificial intelligence (AI) in gov-
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ernments. The term eGovernment 1.0 describes the use of ICT for the realisation of
public services (Lachana et al., 2018). In addition, eGovernment 2.0, focuses on the ICT-
enabled participation of citizens, while eGOV3.0 uses more advanced and data-driven
technologies to solve societal problems through collected data (Lachana et al., 2018).

In order to fulfil the aspiration of AI to solve societal problems vast amounts of data are
needed (Duan et al., 2019), which can be acquired through intergovernmental data shar-
ing. From a global perspective, this need for data immediately creates tension between
governments’ interests and incentives, i.e., one government might want to pursue open
data sharing, and another might seek to maintain their data private. This tension is
illustrated by the statement of Germany’s former health minister regarding the World
Health Organisation’s (WHO’s) potential to place sanctions on countries that do not
share their data during disease outbreaks (Wheaton and Martuscelli, 2021). While such
a pandemic treaty exists, it is only actively supported by 25 countries (WHO, 2021),
making the creation of accurate AI models in regard to Epidemiology difficult. There-
fore, the question arises of how to access data without sharing it in order to collab-
oratively solve global problems. It can be argued that we can still build AI methods
on private data. However, to advance the newly created eGOV3.0, we need to ensure
that AI models operate as well as possible, as the performance of these systems has a
far-reaching influence on governments and directly on citizens’ lives.

One recent approach that promises to solve these problems is federated learning (FL)
(McMahan et al., 2017). The core idea of FL is that individual entities build their own AI
models and share them at a centralised point. Another AI model is built that aggregates
the individual models. At no point in time is the data of any individual entity shared. In
general, FL shows that the federated model performs better than individual models, which
are built solely on the data of a single entity. However, federated models generally
perform worse than the oracle model, a model built with all available data stored in a
single silo. Nonetheless, it is often impractical to build an oracle model due to the
limitations of data sharing (Jordan and Mitchell, 2015), leaving open the question of
which technological approach would be the most fitting.

In our paper, we propose to use FL to enable better intergovernmental collaborations.
We, therefore, investigate the research gap regarding how FL can be used for inter-
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national eGOV3.0 in use cases where data cannot be shared. The following research
question (RQ) is formulated:

1. How can federated learning address the problem of data sharing in intergovernmental
collaboration?

To answer this RQ, we investigate how challenges in data sharing listed by the Organ-
isation for Economic Co-operation and Development (OECD) in OECD (2019) can be
mitigated through FL. We choose the challenges named by OECD (2019) as a scientific
framework listing intergovernmental data sharing challenges in the context of AI does
not exist to our knowledge. We analyse these challenges through a structured literature
review, aiming to propose FL as a solution to the challenges of intergovernmental data
sharing.

The paper is structured as follows. In the subsequent chapter, we present related work
and the background to the study. In Chapter 3, we explain our methodology. We present
our results in Chapter 4. In Chapter 5, we discuss the implications of our results. We
then conclude the study with an outlook in Chapter 6.

172



Chapter VI. Research Paper 4 – Federated Learning as a Solution for Problems Related to Intergovernmental
Data Sharing

2 Related Work and Background

2.1 Intergovernmental Data Sharing

Data sharing is an ever-increasing factor for intergovernmental collaboration and suc-
cess (Wiseman, 2020). Examples of successfully created AI applications trained on inter-
governmental data include health, mobility and the social sector (Wiseman, 2020). Yet,
there are legitimate national, public and private interests (OECD, 2019), making data
sharing between administrations disincentive, unethical, legally uncertain or imprac-
tical due to technology constraints. We focus specifically on these four issues as they
are well researched within the scientific literature. Thus, OECD (2019) functions as an
extension focusing on practical intergovernmental challenges.

First, for intergovernmental collaboration, it is of great importance to take into account
governments’ counterincentives to share data, as sharing data might conflict with other
policy goals (OECD, 2019). This can be due to information asymmetry that arises
between information-poor and information-rich countries and can result in negative
consequences for each type of country (Clarkson et al., 2007). Information-poor coun-
tries are often in a weaker position to negotiate data sharing agreements (Clarkson et
al., 2007) and are thus inclined to make less advantageous concessions. In contrast,
information-rich countries might have a counterincetive to share their data as they want
to maintain their strong economic position. This reluctance to share data emerges from
what is known as the “free rider” problem, where data is a non-exclusive public good
and information-rich countries have to accept the risk of information-poor countries
utilising their good free of charge (OECD, 2019). Due to “free riding” on the goods pro-
vided between organisation the allocation of public goods becomes ineffective, which
is known as the collective action theory (Olson, 1965). Collective action thus results
in difficulties for inter-organisational cooperation. While Olson (1965) focuses on in-
ter organisational cooperation the theory has been expanded to problems regarding in-
tergovernmental cooperation, e.g., Aspinwall and Greenwood (2013) for cooperation
within the European Union (EU) allowing “free riding” of public goods provided by
sovereign nation-states.

Second, some data has special privacy rights, such as personal information. Sharing
this data can create ethical concerns. Data breaches from the private sector, like Face-
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book or Meta (Isaak and Hanna, 2018), and the public sector, like the disclosure of the
records of 191 million voters in the United States (Bennett, 2016), decreases user trust,
and data subjects are less likely to share data again (Pingitore et al., 2017). Therefore,
countries need to ensure transparency, disclosure, control and notification in case of the
maltreatment of citizens’ data (Isaak and Hanna, 2018).

Third, the fear of legal consequences in a fragmented regulatory landscape limits the
ability of data sharing. This is amplified by legal uncertainties over who controls the
data and under which legislation and jurisdiction it falls (Ward and Sipior, 2010). Es-
pecially complicated is the distribution of data among multiple administrations with
conflicting bilateral agreements. An example could be the cross-border transfer of data
between EU countries, Japan and the United States, which is not currently possible.
Right now, the EU only recognises nine non-EU countries as providing adequate pro-
tection for saving data. Japan is among them, but the United States is not (General Data
Protection Regulation, 2018). Moreover, the EU can issue fines to any organisation not
complying with General Data Protection Regulation (2018), creating a further monetary
disincentive to share data based on EU law binding to nations inside and outside the
EU.

Last, while data should be distributed in according to the FAIR (findability, accessibil-
ity, interoperability, reusability) principle (Wilkinson et al., 2016) several technological
challenges and threats for governments can occur in data sharing. While in the age of
cloud computing the cost of storing, copying and analysing data has shrunk, open data
provision still involves significant costs for collecting, preparing, sharing, scaling, main-
taining and updating data (Chen and Zhang, 2014; Johnson, 2016). Another challenge is
the varying quality of data due to inconsistency and incompleteness and the resulting
need for standardisation when data is stored in multiple locations (Chen and Zhang,
2014; Mikhaylov et al., 2018). Data sharing further creates multiple entry points into a
system, decreasing data security (Chen and Zhang, 2014; Chen and Zhao, 2012).

These challenges, arising from national, public and private interests, are especially rel-
evant as they hinder the sharing of data and thus the creation of AI trained on data
recorded in multiple countries. This, in turn, impacts the advance of eGOV3.0 and the
realisation of its benefits to society as a whole.
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2.2 Federated Learning

A possible solution to the challenges of data sharing for the creation of AI models was
proposed by McMahan et al. (2017), who, while leveraging data utility, maintained a
clear separation between data owners. This solution, namely FL, relies on the distribu-
tion of models across different databases instead of the classical machine learning (ML)
example, where all the data is stored in a single silo. By distributing the models, the
authors separated the model and the data, keeping the latter isolated and at the data
owners’ selected location without revealing it. Since then, applications in health (Xu
et al., 2021), banking (Yang et al., 2019) or smart cities (Jiang et al., 2020) have been
subject to research. FL thus provides incentives in terms of privacy, security, legal and
economic benefits for users (Yang et al., 2019). To the extent of our knowledge, one
framework on how to apply FL in eGOV3.0 use cases (Guberović et al., 2022) has been
created, which includes the specification of client, server, model and application pro-
gramming interface requirements at the start of a project. Further, the accountability of
FL in government to overcome legislative constraints has been researched, pointing out
engineering requirements, i.e., architecture design and management requirements, i.e.,
trust among actors (Balta et al., 2021).

Originally, McMahan et al. (2017) proposed FL while working at Google, utilising de-
centralised data stored on multiple edge devices for tasks like image or voice recogni-
tion. Now, the original technique is also termed “horizontal FL” as the data of each
client shares the same feature space. We visualise FL incorporated into eGOV3.0 in
cross-silo (Wiseman, 2020) use cases (see Figure 1). The term cross-silo refers to differ-
ent data storages on a national or sub national level, which due to the challenges of
intergovernmental data sharing, explained in Section 2.1 cannot be exchanged between
nations.

The algorithm is initialised with a base model sent to all clients (i.e., nation-states) by
the server (i.e., an intergovernmental organisation or intergovernmental collaboration
project). This step is not part of the repeatedly performed steps and is therefore named
step 0. In step 1, each client starts the training process from the base model using their
own data. In step 2, the difference between the base model parameters and the client
model parameters is sent to the server, but each client’s data is not shared. While shar-
ing model weights is also a form of information sharing, security techniques like secure
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Figure 1: Federated Learning in eGOV3.0

aggregation and differential privacy keep data secure and private. The communication
channel between client and server is ciphered via secure aggregation (Bonawitz et al.,
2017) and thus made secure. Secure aggegration thus allows for the transfer of model
parameters between parties which do not trust each other, other clients or the server
are not capable of obtaining the model weights other clients send through the feder-
ated system. During step 3, the server utilises federated averaging to calculate a weighted
mean of all differences. The weight of each client is determined by the amount of data
used to train the model. Then, in step 4, the server adds random noise to the aggre-
gated model. By adding random noise, privacy is ensured, meaning that the prior steps
cannot be reverse-engineered. This procedure is known as differential privacy (Agarwal
et al., 2018) and is also used in standard ML algorithms. Differentially private models
are defined by the tuple (✏,�), where ✏ defines the impact of each individual piece of
information on the results of the analysis. In other words, low ✏ indicates a robust sys-
tem where the outcome is not represented by any particular client data. Additionally,
� regulates the likelihood of a data breach occurring. Step 4 is optional, but if chosen,
the model becomes a secure federated model, allowing governments to keep their data
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private. Finally, in step 5, the private aggregated model is sent to the clients. Steps 1 to 5
represent one round of federated training, which is repeated until the federated model
converges.

For the paper we focus how FL can solve problems related to external intergovernmen-
tal data sharing meaning collaboration happening between multiple sovereign nation-
states. However, partly we consider that individuals, as well as companies, give their
data to the respective nation-state they are located in, e.g., multiple states creating a
model for the prediction of the effect of climate change based on CO2 data collected
from companies or households.

While FL has been proposed by McMahan et al. (2017) to solve the problem of data
sharing on edge devices, there have been limited attempts to adapt this technique to the
public sector. It is especially unclear how the specific challenges of data sharing among
governments can be solved.

3 Method

We conducted a structured literature review to investigate how FL can solve data shar-
ing problems identified by OECD (2019). We utilised the challenges provided by the
OECD as a single scientific framework for intergovernmental data sharing does not ex-
ist to our knowledge. However, the OECD study results from workshops attended by
data professionals and policy leaders from various countries and industries, ensuring a
diverse and holistic view. The challenges of data sharing identified by OECD (2019) are
grouped into three categories and various subcategories (see table 1) and formulated
with regards to the growing importance of AI. During the literature search process, we
focused on information systems and computer science literature, and we applied for-
ward as well as backward searches (Webster and Watson, 2002). We utilised the search
string {"Federated Learning" AND "Data" AND "Challenge*"} in the dis-
ciplines of Information Systems, Computer, Decision, Manangement and Social Science,
yielding a total of 879 results. We searched through the scopus, IEEE, ACM and the AIS
library database. As pre-selection criteria, we analysed if the given article discusses the
challenges named by OECD (2019) based on the abstract, 43 articles were thus chosen
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for further analysis. We mapped 14 articles to the challenges of the OECD (2019), a
forward and backward found further 7 articles resulting in 21 articles selected.

4 Results

We identified solutions to the sub-challenges (OECD, 2019) by conducting a structured
literature review. We found solutions for eight of the 12 sub-challenges defined, while
two of the sub-challenges were partially solved and two of the sub-challenges remained
unsolved (see Table 1).

[1] Balancing the benefits of data openness with legitimate interests, policy
objectives and risks.

With FL, the security and confidentiality breaches in data sharing [1.1] can be avoided,
as FL alleviates the need to share data. FL does so through the range of security and
privacy techniques (Mothukuri et al., 2021). We like to point out two core approaches
differential privacy (Agarwal et al., 2018) and secure aggregation (Bonawitz et al., 2017).
While differential privacy secures the system from being reverse-engineered, secure aggre-
gation secures the system by ciphering the communication channel between the clients
and the server. Moreover, concerning the importance of personal information, hierarchi-
cal FL settings (Abad et al., 2020) enable FL to be applied on multiple levels. A country
could thus give citizens or companies control over their data while still profiting from
AI being trained by international projects.

The violation of privacy and property rights [1.2] is, according to OECD (2019), based on
contractual agreements. The violation of these agreements can lead to fines. Moreover,
sharing data prematurely can reduce the chance of creating intellectual property. FL
offers a technological pathway for entities to comply with these contractual agreements
(Li et al., 2020a; Li et al., 2021), thus preventing them from violating contractual clauses
and being exposed to ensuing fines or the premature revelation of intellectual property.

Regarding mitigating the difficulty of applying risk management approaches [1.3], we
currently see limited potential in FL to solve this challenge.
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Table 1: FL solutions to data sharing challenges (OECD, 2019)

Challenge Sub Challenge Solved
by FL Proposed Solution

[1] Balancing the benefits of data
openness with legitimate interests,
policy objectives and risks

[1.1] Security risks and
confidentiality breaches

solved • Security and privacy techniques (Agar-
wal et al., 2018; Bonawitz et al., 2017;
Mothukuri et al., 2021)

• Hierarchical federated learning (Abad et
al., 2020)

[1.2] Violation of privacy and
intellectual property

solved • Workaround for contractual agreements
(Li et al., 2020a; Li et al., 2021)

[1.3] Difficulty of risk
management approaches

not
solved

• N/A

[1.4] Cross-border data access and
sharing

solved • Unnecessity of cross-border data sharing
(Truong et al., 2021; Yang et al., 2021;
Yang et al., 2019)

[2] Trust and empowerment for
the effective re-use of data across
society

[2.1] Supporting and engaging
communities

not
solved

• N/A

[2.2] Fostering data-related
infrastructures and skill

partially
solved

• Communication cost (Li et al., 2020b;
McMahan et al., 2017)

• FL toolkits (Ziller et al., 2021)

[2.3] Lack of common standards
for data sharing and re-use

solved • System heterogeneity (Mitra et al., 2021)
• Vertical federated learning (Yang et al.,

2019)
• Federated transfer Learning (Chen et al.,

2020)

[2.4] Data quality solved • FL on noisy data (Passerat-Palmbach et
al., 2020; Tuor et al., 2021)

[3] Misaligned incentives, and
limitations of current business
models and markets

[3.1] Externalities of data sharing,
re-use and misaligned incentives

solved • Incentives of FL (Kang et al., 2019; Yu et
al., 2020)

[3.2] Limitations of current
business models and data markets

solved • FL as a business model (Balta et al., 2021;
Manoj et al., 2022; Yang et al., 2019)

[3.3] The risks of mandatory
access to data

partially
solved

• Evaluation of samples (Ziller et al., 2021)

[3.4] Uncertainties about data
ownership

solved • Data ownership is explicit (Liu et al.,
2020; Shae and Tsai, 2018)

• Model ownership is explicit on technical
level (Liu et al., 2021)

From a legal perspective, cross-border data sharing [1.4] can be complicated due to reg-
ulations like the General Data Protection Regulation (2018). FL allows the training of AI
without the need to share data across borders. Yang et al. (2019) proposed the training
of federated models between Chinese and American companies. Similarly, Yang et al.
(2021) presented an FL system using data from China, Japan and Italy to predict SARS-
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CoV-2 from chest computed tomography images. However, Truong et al. (2021) point
out that due to to the exchange of model weights and the resulting threat of backward
engineering, FL, without any security and privacy techniques is not conform with Gen-
eral Data Protection Regulation (2018) in Europe. Therefore, FL can only be utilised with
privacy and security preserving techniques when utilising data from multiple countries.

[2] Trust and empowerment for the effective re-use of data across society

FL cannot help to create more engagement in open data communities [2.1] as it reduces
the need to share data. However, we can see that the shared model training creates a
community aspect. To our knowledge, this has not yet been researched.

We found that FL cannot solve problems related to data infrastructure or skills [2.2].
Generally, the technique requires a more complicated setup (Li et al., 2020b). FL profits
from dividing the computational cost across multiple clients. Yet, the cost of communi-
cation is high in FL, as clients need to communicate continuously. This cost is practically
non-existent in normal ML (McMahan et al., 2017). The reduction of costs associated
with FL is currently under research, and several solutions have been proposed (Li et
al., 2020b). Further, due to the increased complexity and novelty of FL, tool kits like
TensorFlow Federated based on McMahan et al. (2017) and PySyft (Ziller et al.,
2021) have not seen wide adoption compared to other ML frameworks. Nonetheless,
we see possibilities for less skilled countries to profit as they prefer to use federated
models rather than training models themselves.

The lack of data standardisation [2.3] reflects two core challenges of FL: system and
statistical heterogeneity. Solutions to this issue exist already. System heterogeneity is
described as different hardware being used among clients, leading to a slower training
process. For example, Mitra et al. (2021) propose re-using parts of the model during the
training process, such as gradients of the learned network or the specification of con-
crete learning rates for individual clients depending on the hardware. Statistical het-
erogeneity refers to different data features being stored or features having non-identical
distributions across clients. In this case, vertical FL (Yang et al., 2019) can be used, which
allows for the training of models with different feature spaces. Moreover, it is possible
to apply transfer FL, meaning that a model is retrained for a different learning task,
benefiting from the knowledge of the previously learned task. Chen et al. (2020) em-
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ploy this technique by first training a model for activity recognition for smartwatches,
which is then transferred to the task of predicting Parkinson’s disease.

The OECD notes that poor data quality [2.4] will lead to poor analytics. While FL can-
not improve the data quality of clients, entities with poor data quality can profit from
the federated model. Examples can be found within the medical field of genomics or
mental health, where large amounts of noisy data can be found (Passerat-Palmbach et
al., 2020). In this case clients with poor data can profit from the federated model and
the contribution made by other clients with better quality data. Still, the clients with
poor data quality will decrease the overall model quality. A solution to this challenge
is proposed by Tuor et al. (2021), each client evaluates their data set with a benchmark
model trained on high quality data. For bad quality data the model will be incapable of
making a prediction, generating a high loss value. These data points will not be further
utilised for training.

[3] Misaligned incentives, and limitations of current business models and markets

A central problem within data sharing is misaligned incentives [3.1] between
information-rich and information-poor countries. The problem of incentivising
information-rich clients to participate in FL has been well researched (Kang et al., 2019;
Yu et al., 2020). These methods typically offer a reward for participating within the fed-
erated system. Hence, an entity could earn depending on how much value was brought
to the federated model.

Implementing FL could significantly reduce the need for data markets [3.2], as data can
be kept by the owner. Moreover, according to the OECD, the ex-ante evaluation of the
economic potential of data is challenging. However, given the previously shown incen-
tive schemes of FL, it is possible to track participation in an FL project. Yang et al. (2019)
estimate that FL will evolve into a business model where participants in an FL project
can profit from the value they contribute to the model. FL thus allows participants to
pursue joint business activities (Balta et al., 2021). An example of such a joint business
activity is given by Manoj et al. (2022) training a model for predicting the yield of crop.
This model can be utilised by multiple stakeholders, e.g., farmers for revenue estimates,
banks and insurances for mitigating risks and governments for setting export prices.
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In a federated setting, mandatory data access [3.3] can be kept to a minimum. For exam-
ple, the PySyft package (Ziller et al., 2021) within Python allows for viewing a limited
number of samples of each client’s data to optimise the federated model. Accessing all
available data points is, in theory, not necessary and, due to the number of data points
available, not always feasible while training AI models.

Finally, the OECD notes a loss of data ownership [3.4] as an emerging challenge of shar-
ing data. With FL, the ownership of a data point remains unaffected as it is not shared
across multiple sources. For example, Shae and Tsai (2018) propose storing medical
information on a blockchain for training federated models. Thus, the ownership of
data cannot be falsified. In a similar manner, Liu et al. (2020) proposed a traffic flow
prediction model utilising data from government organisations, smart devices, private
persons as well as private companies like Uber or Didi. For each of these entities, the
data ownership is unambiguous. Moreover, it is possible to verify the ownership over a
trained federated model by implementing a watermarking technique, thus, the contri-
bution and resulting ownership of clients is recorded through the watermark (Liu et al.,
2021). However, the watermarking technique solely clarifies ownership on a technical
and not legal level. To our knowledge the legal ownership of federated models remains
unsolved.

5 Discussion

This study aimed to address the research gap regarding how FL can be used in inter-
national eGOV3.0 use cases where data sharing is complicated or unfeasible. Previous
research has shown that data sharing is limited due to being disincentive (Olson, 1965),
unethical (Isaak and Hanna, 2018; Pingitore et al., 2017), legally uncertain (Ward and
Sipior, 2010) or impractical due to technical challenges (Chen and Zhang, 2014; Chen
and Zhao, 2012; Johnson, 2016; Mikhaylov et al., 2018). Since McMahan et al. (2017)
first proposed FL, a vast number of publications have appeared in the field, includ-
ing applications in health, banking and smart cities. However, research in the area of
eGOV3.0 is limited. While Guberović et al. (2022) created a framework specifying com-
ponent requirements for government FL projects and Balta et al. (2021) analysed the
accountability of FL in government, we analysed how FL can solve the problem of in-
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tergovernmental data sharing. We did so by conducting a structured literature review,
which served the purpose of analysing how FL can solve challenges identified by OECD
(2019). In doing so, we were able to answer the given RQ: How can federated learning ad-
dress the problem of data sharing in intergovernmental collaboration?

First, FL can help to deal with legal (Ward and Sipior, 2010) and ethical (Isaak and
Hanna, 2018; Pingitore et al., 2017) issues around data sharing. We provided evidence
regarding how the sub-challenges [1.1], [1.2], [1.4] and [3.4] identified by the OECD can
be solved. FL significantly reduces the need for data sharing agreements to build AI
(Li et al., 2020a; Li et al., 2021), which also applies to cross-border data sharing (Truong
et al., 2021; Yang et al., 2021; Yang et al., 2019). A further consequence is that data own-
ership cannot be falsified, as the data is stored at the owners’ selected location. More-
over, FL, mainly through differential privacy (Agarwal et al., 2018) and secure aggregation
(Bonawitz et al., 2017), allows for secure model training and keeping data private. FL,
thus provides a trusted technology that is ideal for intergovernmental use cases.

Second, we showed how technological constraints in data sharing (Chen and Zhang,
2014; Chen and Zhao, 2012; Johnson, 2016; Mikhaylov et al., 2018) can be overcome
using FL, especially issues regarding the sub-challenges of standardisation of data [2.3]
and data quality [2.4]. Mitra et al. (2021) show methods that allow federated models
to be trained in system heterogeneous settings. This is beneficial for FL in intergovern-
mental settings as countries, companies and citizens can partake in FL projects without
the need for special hardware. Vertical FL (Yang et al., 2019) and transfer FL (Chen et
al., 2020) allow the training of AI models on non-standardised data sets, and they can
even leverage data that was not recorded for the task they have been employed to solve.
Intergovernmental collaboration can thus profit from data stored by all types of entities
and further re-use data effectively. Additionally, data from both information-poor and
information-rich countries can be utilised to contribute to FL projects. Information-poor
countries are not limited to their own data sources anymore and can contribute and
profit from the federated model. Still, while federated learning shows potential and has
been implemented on a scientific basis till now applications of FL in an intergovern-
mental context in real-world scenarios are not known to us. This could be the case due
to technological challenges solely being solved in the literature but not in real-world
scenarios.
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Last, FL can evolve into a business model (Balta et al., 2021; Yang et al., 2019), which
gives entities an incentive to take part in intergovernmental projects. This mitigates dis-
incentives in data sharing caused by “free riding” and the problem of inefficiency due
to collective action (Olson, 1965). Consequently, we demonstrated how sub-challenges
[3.1] and [3.2] could be solved through FL. With incentive mechanisms developed for FL
(Kang et al., 2019; Yu et al., 2020), both information-rich and information-poor entities
can be motivated to participate in an FL project by offering a reward. For example, an
intergovernmental climate model could be possible where different stakeholders, e.g.
countries, companies or single individuals could earn money or CO2 credits based on
the revenue or value that an intergovernmental FL project generates. Still, large contrib-
utors would earn the most, but also, less funded entities can profit fairly. We consider
the incentives to partake in FL to be superior to the incentives for partaking in data shar-
ing. When using FL, the ownership of the data [3.4] remains intact for each FL project
an entity might participate in. In contrast, for standard data sharing, as soon as data is
distributed, it becomes unclear who the real owner is. Therefore, “free riding” as de-
scribed in the collective action theory (Olson, 1965) and the resulting inefficiency can be
mitigated on a technical level in theory.

However, not all problems related to data sharing can be solved through FL. Sub-
challenges [2.2] and [3.3] are only partially solved, while sub-challenges [1.3] and [2.1]
are not solved. There are two key problems. First, implementing FL infrastructure is
more complicated, with higher communication costs. Even with a larger adoption, this
will cause challenges in eGOV3.0. Second, although ownership of FL is actively re-
searched from a technological point of view (Liu et al., 2021), we see problems on the
organisational level, in which the geolocation and the controlling entity of the server ag-
gregating the model will play a central role. The entity controlling the federated model
could cut off countries in an intergovernmental collaboration project without a demo-
cratic process. Especially from a political realism perspective, it is unlikely that nations
which do not trust each other will participate in a joint FL project. Future research
could consider governments’ willingness to participate in projects that benefit various
multinational stakeholders. Within this analysis, the difference between incentives of
information-rich and information-poor countries is likely to play a key role.

184



Chapter VI. Research Paper 4 – Federated Learning as a Solution for Problems Related to Intergovernmental
Data Sharing

6 Conclusion

This study conducts a structured literature review to show how FL can function as a
solution to various challenges related to intergovernmental data sharing. FL enables
the training of models in a decentralised manner and can thus reduce incentive, legal,
ethical and practical challenges in intergovernmental data sharing. Nevertheless, sec-
ondary problems of a technical and organisational nature arise.

The contribution of this study is threefold. First, we present a state-of-the-art AI method
to overcome the problem of intergovernmental data sharing. This serves as a basis for
FL research in international eGOV3.0, which we hope will influence both governments
and citizens. Second, we contribute to the existing literature on FL, providing a struc-
tured review on how FL should be utilised in eGOV3.0, focusing on the aspect of data
sharing. We hope this will enhance the research output of real-life use cases in and
outside the eGOV3.0 space. Third, we show a new possibility of how to mitigate ineffi-
ciency created by the collective action theory (Olson, 1965).

Moreover, our study has the limitation of solely focusing on the challenges of data shar-
ing provided by the OECD (2019). We estimate that challenges described by other au-
thorities will be similar, but adding challenges from authorities of different cultural or
economic origins would create an even more holistic and diverse picture.

Considering the opportunities and challenges highlighted in this study, we find sub-
stantial potential for the information systems and related research communities. We
suggest creating federated systems on proprietary, potentially unbalanced data from
multi-governmental stakeholders. Dedicated qualitative research could be done, draw-
ing insights from workshops or stakeholder interviews to further investigate the poten-
tial of FL in eGOV3.0. Moreover, at the organisational level, it is necessary to determine
the owner of the server that creates the aggregated model. Finally, the higher infrastruc-
ture costs and skill levels of users in FL need to be considered in further research.
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Abstract

Restrictive rules for data sharing in many industries have led to the development of Fed-
erated Learning (FL). FL is a Machine Learning (ML) technique that allows distributed
clients to train models collaboratively without the need to share their respective training
data with others. In this article, we first explore the technical basics of FL and its poten-
tial applications. Second, we present a quadrant to map organizations along the lines of
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their artificial intelligence capabilities. We then discuss why different organizations in
different industries, including industry consortia, established banks, public authorities,
and data-intensive Small and midsize enterprises might consider different approaches
to FL. To conclude, we argue that FL presents an institutional shift with ample research
opportunities for the business and information systems engineering community.

1 Introduction

Artificial intelligence (AI) capabilities have become an important enabler in various in-
dustries (Berente et al., 2021). Open-source models and AI-as-a-service offerings have
substantially reduced the costs of acquiring these capabilities, shifting the focus to cal-
ibrating these AI offerings and training the underlying models with the ’right’ data
(Guntupalli and Rudramalla, 2023; Lins et al., 2021).

The challenge of data availability becomes apparent in consideration of the require-
ments under which Machine learning (ML) techniques can produce effective results:
they are frequently attributed as “data-hungry” (Adadi, 2021). They are data-hungry
because the underlying principle of these techniques is to automate the extraction of
complex representations or abstractions manifested in data (Najafabadi et al., 2015).
Data availability is here understood in terms of quantity and quality, both pivotal to im-
prove performance (Fan, 2015). However, data of sufficient quantity and quality is not
always available. This is because data is costly, requires advanced Information Tech-
nology (IT) capabilities (Aral and Weill, 2007), and is often restricted to organizational
boundaries for competitive, regulatory, and ethical reasons (Adadi, 2021; Berente et al.,
2021; Jordan and Mitchell, 2015) and especially when data needs to be shared across
organizational boundaries (Ko et al., 2019).

Federated learning (FL) promises to mediate these data-sharing concerns. It allows or-
ganizations to cooperate in training a ML model without sharing data across organiza-
tional boundaries (Kalra et al., 2023). In particular, it allows organizations in data-driven
environments to co-create value from data without compromising sensitive information
and data privacy. Its areas of application range from financial services (Lee et al., 2023)
to healthcare (Kaissis et al., 2021) and public administration (Kalra et al., 2023; Pati et al.,
2022; Sprenkamp et al., 2023).
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In this article, we explain how FL works on a conceptual level and how it differs from
conventional/centralized approaches for the training of ML models. We then discuss
the contexts in which FL can create organizational value before discussing the chal-
lenges that come with its implementation. Based on these challenges, we present open
questions and opportunities for further technical, organizational, and legal research sur-
rounding FL.

2 Technical Foundations

Federated Learning has its origins in projects at Google and OpenAI that sought to use
data generated by mobile devices to train ML models that enhance user experiences.
These projects quickly realized that much of this data was highly personal and sensi-
tive, which complicated its upload to company servers (Abadi et al., 2016; McMahan
et al., 2016). FL was introduced in 2016 to circumvent these complications and enable
a “machine learning setting where the goal is to train a high-quality centralized model
while training data remains distributed over a large number of clients, each with unre-
liable and relatively slow network connections” (Konečný et al., 2016). In the following
years, the use of FL was extended to other areas, not least due to the ability of FL to sup-
port ML on data that is not independently and identically distributed (non-IID) (Zhao
et al., 2018). More recent advances also eliminated the need for synchronous training
and communication (Xu et al., 2021) and central servers for coordination of the decen-
tralized learning process (Chang et al., 2018; Kalra et al., 2023; Shen et al., 2020, see).

The dynamic nature of FL makes it challenging to present a complete overview of all
its approaches. In the following, we thus rather focus on the conceptual differences be-
tween FL and more conventional/centralized approaches to the training of ML models
on cross-organizational data (Figure 1).

In conventional/centralized ML approaches, ML models are trained on (anonymized)
data that is stored in a central repository. In more technical terms, the ’learning’ process
is the following:

1. Clients send their data (usually anonymized) to the central repository.
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Figure 1: Architectures for machine learning.

2. The central repository consolidates this data into a common format, homogenizing
it across clients and datasets.

3. A pre-defined model is trained on the consolidated data.

4. The trained models are sent back to the clients that submitted their data.

In the case of FL, each client maintains control over its data and individual clients are
responsible for preparing it for the training of shared ML models. Once the required
data is prepared, the clients must establish a process to coordinate and streamline the
training of the FL model. Once all clients have agreed to this process, they can start lo-
cally training a (partial) ML model while maintaining full control of their data. FL takes
advantage of the distribution of clients by eliminating the need for data aggregation but
rather aggregating (partial) ML models. Usually, this aggregation of (partial) ML mod-
els occurs on a central server. In more technical terms, the steps in the ’learning’ process
are the following:

1. A subset of clients downloads the most recent version of the ’global’ ML model
(typically from a central server).

2. Each of these clients trains an updated model using their local data.
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3. Each client uploads their updated models (typically to the central server).

4. The ’local’ ML models are aggregated to build a better ’global’ model and the
process resumes with the first step.

Multiple algorithms have been developed to select clients in each training round and ag-
gregate their updated models to overcome problems with model heterogeneity, stability,
and synchronization (see Zhang et al., 2021). The idea is always the same, however: ML
models are trained locally, shared with the other clients or a central server, aggregated,
and then re-routed to clients. These consecutive steps can be repeated until a certain
performance benchmark or a set number of training rounds have been reached.

3 Organizational Considerations for the Use of

Federated Learning

Attractive FL applications will typically be situated in a triangle between data regu-
lation, data competition, and AI capabilities (see Figure2). While data regulation and
competition place limits on data sharing, AI capabilities define the degree to which or-
ganizations can successfully train, deploy and use their own ML models.

Data 
Competition

Data 
regulation

AI 
Capabilities

Federated 
Learning

Figure 2: Conceptualization of the interplay between data regulation, data competition, and AI capabili-
ties.
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3.1 Data Regulation

In many industries, regulation places strict limits on cross- and intra-organizational data
sharing and - by extension - on the collaborative training of ML models (Berente et al.,
2021; Buxmann et al., 2021). In Europe, for example, the General Data Protection Regu-
lation (GDPR), the Data Act, and the AI Act restrict how organizations are able to share
personal and non-personal data. The result of these regulatory restrictions are often
small(er) datasets for training and ML models with low(er) performance (Brauneck et
al., 2023).

For organizations required to comply with these and similar regulations, FL can be
highly valuable. As FL enables the decentralized training and subsequent sharing of
models rather than their underlying training data, it reduces regulatory risks related to
data sharing. FL can further provide substantial benefits to public authorities, which
are often required to maintain decentralized databases and registries and not to share
data unless there is a legal basis (Sprenkamp et al., 2023).

3.2 Data Competition

A second dimension for the use of FL is the prevalence of data-based competition in
the adopting organization’s industry. Organizations in such environments are often
reluctant to share data, especially when data control comes with control over the ap-
propriation of data network effects (Abbas et al., 2021; Gregory et al., 2021; Leiponen,
2002).

FL may enable these organizations to cooperate without conflicts about data control.
It may also enable them to define fair schemes for the appropriation of data network
effects based on the ’value’ each training dataset contributes to the joint ML model. FL
may be especially attractive to small and medium-sized organizations that can use FL to
compete with larger organizations (Mazzocca et al., 2023; Zhang et al., 2023). But it may
also be attractive to large organizations as it allows them to promote de-facto standards
for the use of ML models in their industry and how value can be appropriated from
their use providing abstractions of complex systems at multiple levels or from different
viewpoints (Mohagheghi et al., 2013).
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3.3 AI capabilities

The third dimension that organizations interested in FL should consider relates to their
abilities to design, train, and run ML models. Despite the increasing prevalence of open-
source ML models and AI-as-a-service offerings (Lins et al., 2021), many organizations
struggle with the capabilities required to make use of these models and offerings (En-
holm et al., 2021; Lins et al., 2021). The challenges reach from limited technical capa-
bilities to a lack of personnel that can translate between business departments and AI
engineers.

FL can alleviate some of these challenges by not only pooling data but also the capa-
bilities required to design, train, and run ML models. Especially for organizations with
weaker technological capabilities, it can make sense to partner with and learn from
stronger organizations. Yet also those with stronger technological capabilities stand to
benefit when partner organizations can add superior business capabilities.

4 Adoption challenges

Building on the considerations in Section 3, we now turn to the adoption challenges
associated with FL. To structure our discussion of these challenges, we employ a sim-
ple framework to distinguish organizations interested in FL according to the degree of
competition in their industry and the level of their AI capabilities (see Figure 3).

4.1 Type 1 - Strong AI Capabilities & Low Competition

Type 1 organizations have notable AI capabilities and operate in environments with low
competition. They can profit from FL when there are substantial benefits from highly
accurate models but regulation complicates data sharing. A good example is medical
R&D consortia (Bi et al., 2023; Malin et al., 2013).

The central concern for Type 1 organizations will typically be security and data pro-
tection. Although FL promises high security and data protection abilities, it cannot
guarantee them (Benmalek et al., 2022). More specifically, the security of FL can be
compromised by attacks on the communication channels between the clients (Chatter-
jee et al., 2020; Wang et al., 2020). This attack vector is difficult to eliminate but it can
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Figure 3: A conceptual framework for the adoption of FL

be mediated by techniques such as secure multiparty computation (SMPC) and secure
aggregation (SecAgg) (Bonawitz et al., 2021; Kaissis et al., 2021). Data protection, in
turn, can be compromised when training data can be reverse-engineered from model
updates (see Bagdasaryan et al., 2020; Shejwalkar and Houmansadr, 2021). Solutions
to this challenge include Differential Privacy (DP), which adds noise to either the train-
ing data or the model updates before they are shared with other clients (Dwork, 2006).
While the use of SecAgg does not appear to significantly reduce the overall performance
of a model compared to the use of training a regular FL model, the use of DP has been
shown to have a stronger impact on model performance (Fernández et al., 2022; Kaissis
et al., 2021) due to the addition of noise to the model updates (McMahan et al., 2018).

4.2 Type 2 - Strong AI Capabilities & High Competition

Type 2 organizations are characterized by comparatively strong AI capabilities and a
highly competitive environment. They stand to benefit from FL by monetizing their
own capabilities and know-how while gaining insights from more agile competitors or
when regulation complicates the sharing of data between sister companies. Examples
include established financial institutions or multi-national data brokers.
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Despite their strong AI capabilities, implementing FL can be challenging for Type 2
organizations. The first challenge relates to establishing set-ups that do not violate an-
titrust laws. This challenge is especially acute when several large organizations collabo-
rate or have an outsized influence in joint FL projects. One way of addressing this chal-
lenge could be to open-source the final model or create an auditable data trust, thereby
reducing the risk of market power abuse (Mahari et al., 2021).

Second, Type 2 organizations might consider working with sister companies. In intra-
organizational data sharing and cooperation, data-sharing restrictions might also apply,
for example in cases where one unit of an organization must have a clear separation
from another part of an organization. While other regulatory requirements might still
apply, FL could allow these organizations, to share knowledge without sharing their
respective underlying data with each other. Despite their high AI capabilities, Type 2
organizations might nevertheless struggle to address challenges such as the heterogene-
ity of data, as different data structures, formats, and distributions may exist. Combined
with a wide variety of infrastructure, the use of FL poses significant technical challenges.
As a result, maintaining a well-performing and useful model across all affiliates can be
difficult to coordinate and manage.

4.3 Type 3 - Low AI Capabilities & Low Competition

Type 3 organizations are characterized by comparatively weak AI capabilities and op-
erate in environments with low competition. They stand to benefit from using FL by
’pooling’ insights from data as well as the capabilities required to successfully design,
use, and train ML models. Public authorities are one example of Type 3 organizations
and often lack the capabilities to use their limited data effectively (Sprenkamp et al.,
2023). These organizations also face challenges in internalizing external capabilities that
would enable them to adopt new technologies. Generally, their challenges are driven by
limitations in AI know-how acquisition, internal technical expertise, digital debt (Rol-
land et al., 2018),and personal data sharing (Isaak and Hanna, 2018).

FL-adoption in Type 3 organizations is often complicated by legacy information man-
agement systems and inadequate data preparation, the repeated delays that occur in the
development of internal capabilities, as well as the high costs associated with acquiring
external capabilities (Kuziemski and Misuraca, 2020). Type 3 organizations may also
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lack the expertise and resources required to fully leverage FL and its associated bene-
fits, which impedes widespread adoption. To overcome these limitations, they might
rely on IT service providers, which create external dependencies.

As Type 3 organizations regularly lack the financial and technical resources to rapidly
build up internal AI capabilities or hire external IT service providers on a long-term
basis, they might be less inclined to fully embrace new technologies, including FL. Ad-
ditionally, and especially in the case of public authorities, Type 3 organizations may also
face legal restrictions on the use and processing of data (Yang and Wu, 2020).

4.4 Type 4 - Low AI Capabilities & High Competition

Type 4 organizations are characterized by comparatively weak AI capabilities and a
highly competitive environment. They stand to benefit from FL as it allows them to
pool their limited AI capabilities with other organizations facing similar challenges (Lee
et al., 2023) but also through learning effects created in collaboration with more ad-
vanced organizations. Examples of Type 4 organizations include data-intensive small
and medium-sized enterprise (SME), such as new banks and fintechs startups.

Type 4 organizations have the potential to benefit from participation in FL implementa-
tions. However, the long-term success of such collaborations in highly competitive en-
vironments hinges on appropriate governance structures. Setting up these structures,
in turn, involves organizational, economic, and legal considerations that must enable
the effective management of the involved parties. While organizational trade-offs of-
ten revolve around losing agency and control to gain access to FL, economic incentives
and compensations must be aligned to encourage organizational participation. Regard-
ing the legal dimensions, clear agreements have to be made that adequately address
intellectual property concerns and safeguard the interests of all parties involved. Over-
coming these challenges is essential to the adoption and implementation of FL in Type
4 organizations.

5 Research Opportunities

Cross-organizational machine learning projects often face significant challenges due to
regulatory or competitive limits to data sharing. FL provides a promising solution for
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these projects because it enables organizations to collaborative train FL models without
sharing training data directly, fostering a more privacy-preserving environment and un-
locking new opportunities for innovation and problem-solving in cross-organizational
ML initiatives. As organizations seek to explore these new opportunities, some com-
monly held beliefs may be questioned and require reconsideration. We present techni-
cal, organizational, and legal research opportunities to inspire future scientific inquiries
into the opportunities and challenges surrounding FL.

The first set of research opportunities and questions pertains to the technical character-
istics and applications of FL (see Lins et al., 2021). Despite continuous improvements
in the performance of specific FL implementations, organizations still hold reservations
against the use of FL, due to a perceived technical immaturity. While solutions con-
cerning the performance and security of selected FL models are to be developed within
more technical disciplines, and how beyond the technical realm, there are barriers to
adoption. Related questions for information systems researchers at the intersection of
business and technology could be:

• What are the best practices to ensure privacy in a FL setting?

• How can FL be leveraged in real-time decision-making?

• How can FL models be protected from the risks posed by malevolent clients?

The second set of research opportunities and questions pertains to the organizational
contexts in which FL is used and how AI is managed therein (see Berente et al., 2021).
As FL enables the inclusion of numerous decentralized parties in a collaborative setting,
its governance requirements differ considerably from those of conventional/centralized
ML development and usage. While we expect that many insights into the organizational
governance of conventional/centralized ML also hold for FL, cross-organizational gov-
ernance frameworks might have to be adapted to FL operations. Along these lines,
possible research questions for information systems researchers investigating the inter-
section of organizations and technology are:

• What server-level standards need to be set to reach the level of trust required for
entities to partake in FL?
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• What governance structures are needed for server-centric and server-less FL?

• What is the value of FL within different industries?

• How can FL be used to improve business processes and public services?

• What business models enable the commercialization of FL?

• How can FL applications be standardized for collaboration and commercializa-
tion?

The third set of research opportunities pertains to the regulatory compliance of specific
FL implementations in various jurisdictions (see Truong et al., 2021). Although re-
cent developments in FL enable organizations to resolve tensions between regulatory
compliance and the benefits of ML, these developments also create new regulatory un-
certainties, and it remains to be seen how regulators and organizations will position
themselves in terms of FL-regulation. Along these lines, possible research questions for
information systems researchers investigating the intersection of law and technology
are:

• How can organizations ensure that their FL implementation is privacy-
preserving?

• What are the legal and regulatory implications of FL?

• Under which regulatory conditions could successful and unbiased FL models
flourish?

How a given FL system, particularly in cross-organizational settings, is governed di-
rectly impacts its adoption. Information systems researchers may draw on past experi-
ences based on the deployment and adoption of distributed systems (Liang et al., 2021)
and business process modeling (Recker et al., 2009) to contribute to a comprehensive un-
derstanding of this relationship. Regarding technical characteristics in specific, design
science research (Hevner et al., 2004) is also well-positioned to develop and evaluate
specific FL implementations and their sustained value creation over time.
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6 Conclusion

In this article on FL, we describe how restrictive rules on data sharing and privacy re-
sulted in the development of FL, an ML technique that enables organizations to collabo-
ratively train models in a decentralized manner. As a basis for subsequent analysis, we
summarize the technical foundations of FL and how it differs from conventional/cen-
tralized ML approaches. We then discuss the challenges of adopting FL for four differ-
ent types of organizations, taking into account organizational requirements related to
data-sharing regulations, market conditions, and technical developments. These four
types of organizations operate in environments with either high or low levels of compe-
tition and have either high or low AI capabilities. We find that organizations consider
using FL for different reasons and face varying challenges in its adoption, including
the use of the technology itself, its regulatory environment, and its governance. FL has
the potential to revolutionize the adoption and use of AI as it simultaneously addresses
data privacy and capability acquisition concerns. It also has the potential to expand the
AI capabilities of an organization beyond its boundaries.
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