
SHARP Challenge 2023: Solving CAD History and pArameters Recovery from
Point clouds and 3D scans. Overview, Datasets, Metrics, and Baselines.

Dimitrios Mallis⋆

dimitrios.mallis@uni.lu

Sk Aziz Ali⋆

skaziz.ali@uni.lu

Elona Dupont⋆

elona.dupont@uni.lu

Kseniya Cherenkova⋆†

kseniya.cherenkova@uni.lu

Ahmet Serdar Karadeniz⋆

ahmet.karadeniz@uni.lu

Mohammad Sadil Khan⋆

mohammadsadil.khan@uni.lu

Anis Kacem⋆

anis.kacem@uni.lu

Gleb Gusev†

gleb@artec3d.com

Djamila Aouada⋆

djamila.aouada@uni.lu

⋆SnT, University of Luxembourg † Artec 3D

Abstract

Recent breakthroughs in geometric Deep Learning (DL)
and the availability of large Computer-Aided Design (CAD)
datasets have advanced the research on learning CAD mod-
eling processes and relating them to real objects. In this
context, 3D reverse engineering of CAD models from 3D
scans is considered to be one of the most sought-after goals
for the CAD industry. However, recent efforts assume mul-
tiple simplifications limiting the applications in real-world
settings. The SHARP Challenge 2023 aims at pushing the
research a step closer to the real-world scenario of CAD re-
verse engineering through dedicated datasets and tracks. In
this paper, we define the proposed SHARP 2023 tracks, de-
scribe the provided datasets, and propose a set of baseline
methods along with suitable evaluation metrics to assess the
performance of the track solutions. All proposed datasets1

along with useful routines and the evaluation metrics2 are
publicly available.

1. Introduction

3D reverse engineering is defined as the deduction of in-
termediate design steps, complete history, and final intent
in a reasonable fashion from a given 3D scan of its corre-
sponding Computer-Aided Design (CAD) model.

In today’s digital era, using CAD software is the stan-
dard approach for designing objects ahead of manufactur-
ing. However, CAD modeling cannot be seen as straight-
forward and simple procedural design, as it requires the

1https://cvi2.uni.lu/cc3d-data
2https://gitlab.uni.lu/cvi2/iccv2023-sharp-challenge

Figure 1: 3D scans in CC3D dataset [5] contain vari-
ous artefacts (unwanted protrusions, smoothness over sur-
faces/edges, missing regions). Tackling these artefacts is
essential for robust Scan-to-CAD algorithms.

skills of highly qualified engineers. Consequently, 3D
reverse engineering has been a long-sought-after goal in
CAD industry due to the huge resources and time that it
could save [28, 9]. Such technique, also referred to as
Scan-to-CAD, consists of scanning objects and automati-
cally concluding their corresponding CAD models. Re-
cently, solving this problem has attracted a large interest
from the Computer Vision and Graphics research communi-
ties [31, 13, 18, 23, 16, 9, 28, 30, 12, 17], thanks to the huge
advances in 3D geometric deep learning and the availability
of open repositories for CAD models. The idea is to learn
a mapping from 3D scans to CAD models using the avail-
able models submitted by the designers in open repositories
such as OnShape [24] and 3D Content Central [3]. While
the representation of 3D scans is well established and often
consists of meshes or point clouds, CAD model representa-
tions may vary depending on the use case.

https://cvi2.uni.lu/cc3d
https://gitlab.uni.lu/cvi2/iccv2023-sharp-challenge


One approach for representing CAD models is through
its final shape as a collection of geometric primitives, e.g.,
cylinders, cubes. Such representation is expressed by Con-
structive Solid Geometry (CSG) modeling, however, mod-
ern CAD workflows use Feature-based modeling as a supe-
rior alternative. Feature-based modeling is widely used as
it allows to create solids by iteratively adding features such
as holes, slots, or bosses, thus giving more expressiveness
to designers [33]. In this setting, the final object’s geometry
and topology are stored as a Boundary Representation (B-
Rep) which is a graph structure encoding parametric faces
and edges, loops, and vertices [16]. Accordingly, recent
works have tried to infer some of the attributes of B-Reps
from point clouds to enable their editability. Some of them
focused on inferring the edges [6, 35, 23], other attempts
considered the prediction of the faces [27, 19], and few of
them aimed at predicting both faces and edges [21, 10].

CAD modeling can also be seen as the process that
allows the creation of the final model referred to as de-
sign history. Design history consists of the set of ordered
steps that were followed by the designer using a CAD soft-
ware. In feature-based modeling, these ordered steps in-
volve the drawing of CAD sketches [17, 25, 29] followed by
CAD operations such as extrusion, revolution, etc [31, 30].
Thanks to the availability of dedicated datasets [13, 30],
multiple works in literature focused on learning this de-
sign history in order to automatically generate plausible
CAD models [31, 34], complete partial designs accord-
ing to the intent of designers [32], or predict it from point
clouds [28, 31, 15, 20].

From the two aforementioned representations for CAD
models, the problem of Scan-to-CAD can be seen as either
related to recovering some attributes of the B-Rep from the
corresponding 3D scan, or inferring the design history that
allowed its creation. Despite recent findings, this problem
is far from being solved. In particular, the current efforts re-
main very limited in the context of real-world scenarios due
to the strong assumptions that are made to over-simplify
the problem. For instance, it is very common to consider
simple objects (e.g., cubes and cylinders) and restrict the
study to the basic extrusion operation [31, 34, 28]. Further-
more, most of the works in literature assimilate 3D scans to
sampled point clouds on CAD models [31, 28, 15] which
is not the case in real world scenarios. Indeed, as men-
tioned in [6, 5], 3D scans are often subject to scanning ar-
tifacts resulting in smoothed high-level geometrical details
and missing parts. Compared to uniformly sampled point
clouds on CAD models, these artifacts make the problem of
Scan-to-CAD more challenging.

The aim of the SHARP challenge 2023 is to encourage
and help the research community to get a step closer to the
real-world setting of inferring CAD history and parameters
of objects from their 3D scans. In particular, different vari-

ants of the CC3D dataset [5] are proposed along with three
different tracks. It is important to highlight that the CC3D
dataset has the advantage of bringing pairs of realistic 3D
scans with their corresponding CAD models, thus enabling
a more realistic scenario of Scan-to-CAD as compared to
using sampled point clouds on CAD models. Furthermore,
as stated in [9], the CAD models in CC3D dataset are more
complex in nature than the ones used in literature [31, 30].
The tracks proposed in SHARP challenge span over the de-
sign history and the B-Rep of the CAD models, with one of
them tackling the inference of B-Rep parametric edges from
3D scans, the second focusing on the per-point segmenta-
tion of B-Rep faces from scans, and the third aiming at seg-
menting scans into ordered CAD operation steps and types
of the corresponding design history. Simple baseline solu-
tions to the aforementioned tracks are also proposed along
with a set of dedicated metrics to assess their performance.

The rest of the paper is organised as follows. Section 2
defines the different tracks introduced in the SHARP chal-
lenge and describes the datasets. In Section 3, the baseline
methods for the proposed tracks are described. The evalua-
tion metrics used to assess the performance of the methods
are described in Section 4. Section 5 reports the results of
the baseline methods. Finally, conclusions and perspectives
of the proposed challenge are drawn in Section 6.

2. Challenge and Dataset Description
The SHARP 2023 challenge focuses on three different

tasks to bridge the gap between 3D scans and their cor-
responding CAD models. Three versions of the CC3D
dataset [5] are used in these tracks. The CC3D dataset is de-
rived from open CAD repositories such as 3D Content Cen-
tral [3]. Unlike other alternatives such as ABC dataset [13],
where the noise is usually synthetically added to the sam-
pled point cloud, the 3D scans were obtained by virtually
scanning the corresponding CAD models, using a propri-
etary 3D scanning pipeline developed by Artec3D [2]. As
shown in Figure 1, the 3D shapes in CC3D dataset may
have artifacts in the form of missing parts or protrusions
due to specifics of a scanning system. The total number
of samples of the CC3D dataset used in SHARP challenge
is 31185, split into 25612 training samples and 5573 test
samples. Note that the same sets are used for all three
tracks and the corresponding B-Rep models of the train-
ing set are also provided. The overall objective is to infer
different information for the CAD model given a 3D scan.
While Track 1 and Track 2 focus on inferring geometrical
and topological properties of the Boundary Representation
of the CAD model, Track 3 is centered around predicting
attributes of the design history of the CAD model. More
formally, let us consider a 3D scan represented by a point
cloud X = [x1, x2, . . . , xN ] ∈ RN×3, where xi denotes
the 3D coordinates of a point i and N the number of points.



Figure 2: Predictions targets for the SHARP Challenge 2023. Proposed tracks relate to recovering geometrical and topologi-
cal properties of the B-rep (track 1 and track 2), as well as attributes of the design history of the CAD model (track 3).

The objective of Track 1 and Track 2 is to predict differ-
ent attributes from the B-Rep B of the corresponding CAD
model, while Track 3 aims at recovering other attributes
from the design history H of the CAD model. The datasets
and the attributes of each track are described next.

Track 1: Parametric Sharp Edge Inference. Given a
3D scan X, the goal of Track 1 (see Figure 2) is to recover:
(1) the set of parametric edges {ej}Ne

j=1 ∈ E that are present
in the the B-Rep B, where E denotes the set of 3D para-
metric curves among circles, lines, and splines; (2) and a
sharpness label sj ∈ {0, 1} indicating whether a recovered
edge ej is sharp (sj = 1) or not (sj = 0). Note that recover-
ing these parametric B-Rep edges and their sharpness from
3D scans is critical for CAD reverse engineering. Indeed,
these edges encode the topology and the geometry of the
boundary of the B-Rep and some of them can be part of the
sketches drawn by the designer.

CC3D-PSE dataset: This dataset consists of a set of
3D scans, annotated with a set of parametric edges and
corresponding sharpness values. Both the ground truth
edges and the sharpness are extracted from the B-Rep of
the corresponding CAD model. The parametric edges are
directly extracted from the B-Reps using OpenCascade
API [1], and their sharpness value is computed as the
angle between the normals of the two neighboring surface
patches to the edge. The distribution of the sharpness
values (left of Figure 3) reveal that about 30% of the edges
have a sharp value lower than a corresponding angle of 10
degrees. Also, about 50% of the edges have a sharpness
of 1.57 corresponding to an angle of 90 degrees, which
is expected in the context of CAD models. Three types
of parametric edges are considered (lines, circles and
splines). From the distribution of the different edge types
per model (right of Figure 3), we observe that the line
type is the most common type. Additionally, about 15%
of the CAD models in the CC3D-PSE have more than 500
edges, demonstrating the complexity of the dataset. The
annotations of different edges types are parametrized as
follows: (1) A line is parameterized by a start and an end
point ps = (pxs , p

y
s , p

z
s) ∈ R3 and pe = (pxe , p

y
e , p

z
e) ∈ R3.

Figure 3: (left) Histogram of sharpness values for the edges
in the CC3D-PSE dataset. (right) Boxplot of the number of
edges per CAD models for different edge types.

(2) A circle (or circular arc) is defined by
a start point ps = (pxs , p

y
s , p

z
s) ∈ R3, and an

end point pe = (pxe , p
y
e , p

z
e) ∈ R3, a center

point pc = (pxc , p
y
c , p

z
c) ∈ R3, a normal vector

n⃗ = (nx, ny, nz) ∈ R3, and a radius r ∈ R. (3) A
spline is parameterized by a degree K ∈ N and a
set of keypoints Pk = [p1

k,p2
k, . . . ,pK

k ], where each
pk = (pxk, p

y
k, p

z
k) ∈ R3. Note that the original CC3D-PSE

dataset has been used in the SHARP 2022 challenge [8] and
in [6] for parametric sharp edge inference. This updated
version includes all B-Rep edges and their sharpness.

Track 2: Boundary-Representation (B-Rep) Face
Segmentation. Given a 3D scan X = [x1, x2, . . . , xN ], the
goal of Track 2 (see Figure 2) is to simultaneously segment
it into: (1) B-Rep face memberships, which consists of pre-
dicting for each point xi a face that it should belong to in the
B-Rep B; (2) the type of that B-Rep face. In other words,
the objective is to predict a point-to-face membership ma-
trix M ∈ {0, 1}N×Nf , where Nf denotes the number of
the faces in the B-Rep B, and a per-point face type matrix
T ∈ {0, 1}N×Nft , where Nft is the number of B-Rep face
types considered. Note that each point xi can only belong
to a single face and should have a unique type, which sug-
gests that each row of M (and T) should have a single entry



Figure 4: (left): Histogram of the number of faces per CAD
model for 95% the CC3D-BRepFace dataset. (right) Box-
plot of the number of faces per CAD models for the differ-
ent types of faces per CAD model.

with 1 and 0 anywhere else. The objective of this track is to
infer the B-Rep face structure from raw 3D scans which is
extremely important for CAD reverse engineering.

CC3D-BRepFace dataset: Track 2 uses C3D-BRepFace,
a newly introduced version of the CC3D dataset [5] that
brings the annotations of the B-Rep face structure to 3D
scans. In particular, the 3D scans were annotated with the
face membership and type labels according to the corre-
sponding B-Rep. This is done by processing the B-Reps
with OpenCascadeAPI [1] and transferring the labels to the
points of the corresponding 3D scans through nearest neigh-
bor assignment. This results in two annotations per point
for each 3D scan: (1) an ID of the B-Rep face that it be-
longs to and; (2) the type of the face among six possible
surface types (Plane, Cylinder, Cone, Sphere, Torus, or B-
Spline). Figure 4 shows statistics of the CC3D-BRepFace
dataset. The CC3D-BRepFace dataset contains a wide
range of model complexities with 50% of the models con-
taining more that 37 faces and the maximum number of
faces per model being 4388. We see that Plane surface is the
most common face type in the dataset followed by Cylinder.
Moreover, we found out that ≈ 60% of the models contain
at least 3 different types of face types.

Track 3: Operation Type and Step Segmentation.
Given a 3D scan X = [x1, x2, . . . , xN ], the goal of Track
3 is to simultaneously segment into: (1) the ordered CAD
operation steps that allowed its creation; (2) the correspond-
ing CAD operation types that were used by the designer. In
other words, the objective is to predict a point-to-step mem-
bership matrix S ∈ {0, 1}N×Ns , where Ns denotes the
number of steps used in the CAD history H, and a per-point
CAD operation type matrix O ∈ {0, 1}N×NOt , where NOt

is the number of CAD operation types considered. Simi-
larly to Track 2, each point xi can only belong to a single
CAD operation step and should have a unique CAD type,
which suggests that each row of S (and O) should have a

Figure 5: (left): Histogram of the number of operation steps
per CAD model in the CC3D-Ops dataset. (right): violin
plot of the number of faces per CAD models for the differ-
ent operation types per CAD model. The horizontal lines
represent the median values.

single entry with 1 and 0 anywhere else. Although Track 3
and Track 2 seem to be conceptually similar, there are two
main differences. Firstly, the membership task in Track 3
aims at inferring ordered CAD steps in contrast to Track 2
where the order of face membership does not matter. Sec-
ondly and most importantly, the nature of the labels that are
targeted in the two tracks is totally different. While Track
2 focuses on the B-Rep face structure, Track 3 goes beyond
B-Reps and aims at recovering the CAD operation history
out of 3D scans. As highlighted in [9, 16, 31], recovering
these operation types and steps is crucial for CAD reverse
engineering as it not only provides information about how
the model was constructed but also at which stage of the
design the geometry was created.

CC3D-Ops dataset: The dataset used in Track 3 extends
the CC3D-Ops dataset introduced in [9]. While the original
CC3D-Ops dataset contains CAD operation type and step
annotations on B-Rep faces, the extended version offers the
same annotations on the corresponding 3D scans at the point
level. In particular, each point of a 3D scan is labelled with:
(1) a CAD operation step identifier and; (2) a CAD opera-
tion type that can be one of the following types: Extrude-
Side, ExtrudeEnd, RevolveSide, Fillet, Chamfer, CutEx-
trudeSide, CutExtrudeEnd, RevolveEnd, CutRevolveSide,
CutRevolveEnd, and Other. Figure 5 shows statistics about
these annotations. In the left part of this Figure, it can be
observed that most of the models of the CC3D-Ops dataset
were constructed in 50 operation steps or less. In particu-
lar, 90% of the models were created in 16 or less operation
steps, while the maximum number of steps per model is
261. In the right part of Figure 5, the operation type distri-
bution is shown in violin plot. It can be seen that the most
common operation type is the extrusion type but the dataset
also contains models with a large number of faces created
from less common operations such as revolution.



Figure 6: Baseline model architecture for the three tracks. The input point cloud is first encoded through a PCVNN encoder.
For Track 1, the fitting module of [7] is used to produce the set of parametric edges. For Track 2 and Track 3, the mapping
from the vertex embeddings to the target labels is learned directly through separate MLPs.

3. Baseline Methods

We provide simple baselines for all three tracks in-
troduced for the SHARP challenge. Across tracks,
the innput 3D scan is represented as a point cloud
X = [x1, x2, . . . , xN ] that is uniformly downsampled to
fixed number of points N = 10k. For all three tracks,
the input X is mapped to a learned per-point representation
W = [w1,w2, . . . ,wN ] ∈ RN×960 through a point cloud
backbone Φb. In this work, we model Φb as the Point-Voxel
CNN introduced in [22]. Then, W is processed by output
heads Φt1 , Φt2 and Φt3 , developed to address tracks one to
three as discussed next.

Track 1 Baseline. The goal of this track is to learn
the mapping Φt1 from the learned representation W to
a set of parametric edges {ej}Ne

j=1 ∈ E and their corre-
sponding sharpness labels {sj}Ne

j=1 ∈ {0, 1}. Our solution
to this problem is based on the recently proposed Sepic-
Net [7]. Φt1 comprises two modules, the decomposition
module Φt1,D followed by the fitting module Φt1,F that are
trained in an end-to-end manner (see Figure 6 (left)).

Decomposition module Φt1,D: The decomposition mod-
ule detects edge points, consolidates them along the edge
and groups them into different segments with primitive
types identified. More specifically, for each point represen-
tation wi, we have Φt1,D(wi) = {PE

i ,vi,PT
i , fi,PS

i },
where PE

i ∈ [0, 1] is the probability that the i’th point
is an edge point, vi ∈ R3 is a displacement vector to
the closest edge, PT

i ∈ [0, 1]3 denote the probabilities of
the primitive type of the closest edge among three possible
types, namely, line, circle, and spline, and fi ∈ RDemb is a
per-point embedding that is used to cluster edge points into

distinct segments. Finally, PS
i ∈ [0, 1] predicts the prob-

ability that the closest edge is sharp. To group points cor-
responding to the same segment, a differentiable version of
the mean-shift clustering algorithm is used [26]. Curve type
and sharpness for each segment are determined through ma-
jority voting. Training labels for edge points, types, sharp-
ness and displacement vectors are derived from the ground
truth whereas the per-point embeddings are trained through
a triplet loss that contrasts points from the same segment to
points from different segments.

Fitting module Φt1,F : The fitting module performs pa-
rameter estimation for each detected curve/segment. Curve
parameters are estimated through least-squares fitting us-
ing differentiable SVD [11] on the set of segmented edge
points. Different formulations for differentiable curve pa-
rameter estimation are provided for lines, arcs, and splines.
Thus, a fitting loss can be formed as a sum of distances be-
tween the points sampled on the predicted parameterized
segments and points sampled uniformly on the ground truth
segments. During training, the decomposition module is
first pretrained for 100 epochs and then jointly finetuned
with the fitting module using a combination of decomposi-
tion and fitting losses. For a more thorough description of
the fitting module, readers are referred to [7].

Track 2 Baseline. The goal of this track is to predict a
point-to-face membership matrix M ∈ {0, 1}N×Nf and a
per-point face type matrix T ∈ {0, 1}N×Nft , (Nf denotes
the number of faces and Nft is the number of B-Rep face
types). The above can be equivalently formulated as learn-
ing, for each wi, the mapping Φt2(wi) = {M̃

p

i,:, T̃
p

i,:},
where M̃

p

i,: ∈ [0, 1]Nf encodes the estimated probabil-



ities of the i’th point belonging to one of the Nf faces,
and T̃

p

i,: ∈ [0, 1]Nft denotes the face type probabilities
of the i’th point. This results in two probability matrices
M̃

p ∈ [0, 1]N×Nf and T̃
p ∈ [0, 1]N×Nft for a scan X.

To learn T̃
p
, a standard categorical cross-entropy loss

is employed w.r.t the ground truth per-point face types.
Learning M̃

p
for face membership prediction additionally

requires addressing the inherent ambiguity in face mem-
bership labelling, as face labels are arbitrary and do not
necessarily have a semantic meaning. Inspired by [19], a
Hungarian matching [14] step is adopted to match the pre-
dicted face grouping to the ground truth by computing a
Relaxed Intersection over Union (RIoU) [19] cost between
the predicted membership probabilities and the ground truth
face labels. Following class assignment recovery, the RIoU
is further employed in a loss function to learn the group-
ing as in [19]. Finally, the estimated face memberships
M̃ ∈ {0, 1}N×Nf and face types T̃ ∈ {0, 1}N×Nft are
obtained through majority voting from M̃

p
and T̃

p
, respec-

tively. Note that since X is downsampled with N = 10k
during training, an upsampling of the predictions to the
original scan resolution is used at inference.

Track 3 Baseline. The goal of this track is to predict
a point-to-step membership matrix S ∈ {0, 1}N×Ns and
a per-point CAD operation matrix O ∈ {0, 1}N×NOt ,
where Ns denotes the number of the steps used in the CAD
history and NOt

is the number of CAD operation types
considered. Similarly to Track 2, the above can be equiv-
alently formulated as learning, for each per-point repre-
sentation wi, the mapping Φt3(wi) = {S̃

p

i,:, Õ
p

i,:} where
S̃
p

i,: ∈ [0, 1]Ns encode the estimated probabilities of the
i’th point belonging to one of the Ns CAD operation steps,
and Õ

p

i,: ∈ [0, 1]NOt denotes the CAD operation type prob-
abilities of the i’th point. This yields two probability matri-
ces S̃

p ∈ [0, 1]N×Ns and Õ
p ∈ [0, 1]N×NOt for a scan X.

Compared to the proposed solution for Section 3, the oper-
ation steps are ordered and thus, there is no need to address
any labelling ambiguity. Hence, both S̃

p
and Õ

p
can be

learned through a standard categorical cross-entropy loss.
The final predicted operation steps S̃ ∈ {0, 1}N×Ns and
types Õ ∈ {0, 1}N×NOt are obtained by majority voting
from the learned probability matrices S̃

p
and Õ

p
, respec-

tively. Note that the upsampling of the predictions is also
performed here as described in Section 3 for Track 2.

4. Evaluation Metrics
To evaluate produced solutions, a set of dedicated met-

rics are considered to form a final score between 0 and 1.
Evaluation is conducted in th Codalab platform4,5,6.

4https://codalab.lisn.upsaclay.fr/competitions/13629
5https://codalab.lisn.upsaclay.fr/competitions/13956
6https://codalab.lisn.upsaclay.fr/competitions/13676

Evaluation Metrics for Track 1. The evaluation of
Track 1 consists of assessing the quality of the estimated
parametric edges {ẽj}Ñe

j=1 and their predicted sharpness
with respect to the ground truth {ej}Ne

j=1. Note that the num-
ber of predicted edges Ñe can be different from the ground
truth number Ne. This is achieved following three criteria
that are described in the following. For notation simplic-
ity, we will denote the predicted set of edges by ẽ and the
ground truth ones by e.

Edge Recovery Score: This score measures the similarity
between the predicted and the ground truth sets of paramet-
ric edges denoted by ẽ and e, respectively. Given the para-
metric formulation of the predicted and ground truth edges
described in Section 2, the first step is to uniformly sam-
ple a set of 3D points on these edges proportionally to their

length. This results in two 3D point sets Z̃ = {ζ̃i}
Ñζ

i=1 and
Z = {ζi}

Nζ

i=1 for the predicted and ground truth edges, re-
spectively. Then, two unidirectional Chamfer distances [4]
are separately computed between the sampled point set on
the predicted edges Z̃ and the sampled one on the ground
truth Z as follows,

dCD

(
Z̃,Z

)
=

1

ÑζDZ̃

Ñζ∑
i=1

min
ζj∈Z

∥ζ̃i − ζj∥22 , (1)

dCD

(
Z, Z̃

)
=

1

NζDZ

Nζ∑
i=1

min
ζ̃j∈Z̃

∥ζi − ζ̃j∥22 , (2)

where DZ̃ and DZ denote the length of the diagonal of
the bounding box of Z̃ and Z, respectively. The obtained
Chamfer distances further are normalized through a func-
tion Φk(dCD) = e−kdCD , that maps a distance dCD to a
score in [0, 1], where the parameter k is chosen according
to conducted baselines. The two unidirectional scores are
finally averaged to obtain a single edge recovery score

Se(ẽ, e) =
1

2
(Φk(dCD(Z̃,Z)) + Φk(dCD(Z, Z̃))) . (3)

Note that accurately predicted edges close to the ground
truth are expected to have a high edge recovery score Se.

Edge length Score: This score quantifies the similarity
between the total edge length of the prediction ẽ and that of
the ground truth e. The length of the predicted and ground
truth edges denoted as L̃ and L, respectively, are computed
by summing over the lengths of all edges in ẽ and e. Note
that for splines, the length is estimated by densely sampling
points on the spline and then accumulating the consecutive
point distances. The normalized length score is given by

Sl(ẽ, e) = 1− |1− (L̃/L)

1 + (L̃/L)
| , (4)

Note that this score has a range of [0, 1]. Predicted edges
with accurate length estimations are expected to have high
length scores Sl.

https://codalab.lisn.upsaclay.fr/competitions/13629
https://codalab.lisn.upsaclay.fr/competitions/13956
https://codalab.lisn.upsaclay.fr/competitions/13676


Sharpness Score: The sharpness estimation task is for-
mulated as a binary classification problem where each pre-
dicted edge ẽj ∈ ẽ is classified as either sharp (s̃j = 1) or
not-sharp (s̃j = 0). Since ground truth sharpness is given
as a continuous value (ranging in [0, 2π]), we use a thresh-
old of 1.5, above which an edge is considered sharp. The
sharpness score is defined as a weighted accuracy of the pre-
dicted sharpness scores s̃ with respect to the ground truth s.
In practice, similarly to the edge recovery score, we sample

two 3D point sets Z̃ = {ζ̃i}
Ñζ

i=1 and Z = {ζi}
Nζ

i=1 for the
predicted and ground truth edges, respectively. Since the
sharpness label is defined per edge, this label is transferred
to the 3D points that form that edge. This results in a set
of ground truth sharpness labels {σi}

i=Nζ

i=1 ∈ {0, 1}, where
each σi denotes the sharpness label of the point ζi. Simi-
larly to the ground truth, another set of predicted sharpness

labels {σ̃i}
i=Ñζ

i=1 ∈ {0, 1} is produced from the predicted
edge sharpness labels s̃. The sharpness score is then given
by the following weighted accuracy,

Ss =
1

Ñζ

Ñζ∑
i=1

Φk(∥ζ̃i − ζΓ(i)∥22) · 1(σ̃i = σΓ(i)) , (5)

where Γ(i) matches an index i of a point ζ̃i in the predicted
edges to the index of the closest point in the ground truth
edges in the sense of Euclidean distance. Φk is the same
mapping function used in the edge recovery score and 1(.)
is an indicator function.

Final Score: The final score of Track 1 is a combina-
tion of the three scores mentioned above. For each sample,
it is computed as the average of the edge recovery score
Se, the length score Sl, and the sharpness Score Ss, or
Strack1 = 1

3 (Se + Sl + Ss).

Evaluation Metrics for Track 2. The goal of Tracks 2 is
to predict the B-Rep face membership and the types for each
point of the scan. Accordingly, we evaluate the predictions
following two criteria that are described below.

Face Membership Score: Given a scan X, the pre-
dicted face membership M̃ ∈ {0, 1}N×Ñf is evaluated
with respect to the ground truth face membership M ∈
{0, 1}N×Nf using Intersection Over Union (IoU). Note that
the number of predicted face memberships Ñf can be differ-
ent from the one of the ground truth Nf . Moreover, the eval-
uation of the face membership segmentation task requires
addressing the inherent ambiguity in face membership la-
belling, as predicted face labels do not necessarily have a
predefined match with ground truth class labels. To handle
this issue, we use the Hungarian matching algorithm [14]
to perform optimal matching between predicted face mem-
berships and ground truth face memberships. Hungarian
matching is able to find the best one-to-one correspondence
that maximizes the total IoU across all matched pairs. This

results in the following face membership score,

Sm =
1

Nf

Nf∑
i=1

IoU(Λ(M̃):,i,M:,i) , (6)

where Λ() is the reordering from Hungarian matching.
Face Type Score: Similarly to the face membership

score, the predicted face types T̃ ∈ {0, 1}N×Nft

is evaluated with respect to the ground truth face types
T ∈ {0, 1}N×Nft using IOU. However, in contrast to the
face membership scenario where a Hungarian matching was
necessary, the IoU is directly computed for the face types to
yield the following face type score,

St =
1

Nft

Nft∑
i=1

IoU(T̃:,i,T:,i) . (7)

Final Score: The final score for each sample is the av-
erage of the face membership score Sm and the face type
score St and is given by Strack2 = 1

2 (Sm + St).

Evaluation Metrics for Track 3. As in Track 2, the
predicted CAD operation steps and types are evaluated fol-
lowing two criteria.

CAD Step Score: Given a scan X, the predicted face
membership S̃ ∈ {0, 1}N×Ñs is evaluated with respect to
the ground truth face membership S ∈ {0, 1}N×Ns using
IoU. As the objective is to predict ordered steps, Hungarian
matching is not used and the CAD step score is given by

Sst =
1

Ns

Ns∑
i=1

IoU(S̃:,i,S:,i) . (8)

CAD Type Score: As done for the face types of Track 2,
the predicted CAD operation types Õ ∈ {0, 1}N×NOt

is evaluated with respect to the ground truth face types
O ∈ {0, 1}N×NOt using the following IoU based score

Sot =
1

Nt

Nt∑
i=1

IoU(Õ:,i,O:,i) . (9)

Final Score: The final score for each sample is the aver-
age of the CAD step score Sst and the CAD type score Sot

and is given by Strack3 = 1
2 (Sst + Sot).

5. Results
The proposed baseline methods for all three tracks are

evaluated on the dedicated test partition. Results are shown
in Table 1 (left) and are also given on the online challenge
leaderboard (hosted on the Codalab platform4,5,6). It is es-
sential to note that the performance of the evaluated base-
lines is not particularly robust, with a reported final score of
0.34 for Track 1, and Track 3 and 0.32 for Track 2; We high-
light that the primary motivation of this experimental analy-
sis is to establish a reference point on baseline performance



Track 1 Track 2 Track 3

Se Sl Ss Strack1 Sm St Strack2 Sst Sot Strack3

Baseline 0.38 0.18 0.46 0.34 0.28 0.35 0.32 0.29 0.39 0.34

Consistency

Face Type (Track 2) 0.79
Operation Type (Track 3) 0.90

Table 1: (left) Performance of our proposed baselines on the dedicated test partition for all three tracks of the challenge.
(right) Consistency as the percentage of vertices sharing the same face membership / operation step also having the same
type. As in [9] sub-operation types are grouped into a single type, for example, extrude.end and extrude.side, into a single
extrude.

Figure 7: Qualitative results for proposed baselines for the
three tracks of the challenge (one row per track). Model pre-
diction (left) is contrasted to the ground truth labels (right).
Colour labelling as in Figure 2.

Figure 8: Histogram of Prediction-to-Groundtruth length
ratios L̃/L across test samples.

for all tracks, rather than striving to set new track records.
Consequently, the baselines were not subject to optimiza-
tion. For instance, we did not specifically address issues
such as class imbalance, undertake extensive hyperparam-
eter tuning or utilise the adaptive sampling scheme of [7]
for enhanced edge detection. For qualitative results on Fig-
ure 7, we observe that our baseline model tends to segment
larger circles into fragmented sets of shorter edges, clus-
ter face IDs together and often conflates distinct operation
steps. These findings underscore the extent of the difficulty
of the challenge and highlight potential areas for improve-
ments in future iterations.

Figure 9: Intersection over Union IoU reported per type, for
face types (Track 2) and operation types (Track 3).

To provide additional insights on model performance,
we present a histogram of prediction-to-groundtruth length
ratios in Figure 8. We find that our baseline consistently
underestimates edge lengths thus limiting performance. In
Figure 9, we report per-type IoU for face types (Track 2) and
operation types (Track 3). Our baseline struggles to capture
less common types in both cases due to a significant imbal-
ance in class frequency (as also shown in Figure 4 and Fig-
ure 5). Finally, we follow [9] and report face and step pre-
diction consistency in Table 1 (right) as the percentage of
vertices sharing the same face membership / operation step
also having the same type. We identify that future improve-
ments in terms of consistency (we report 0.79 for Track 2
and 0.90 for Track 3) can positively affect performance.

6. Conclusion
In this paper, we introduce the SHARP challenge 2023,

aiming to address the nuances of the Scan-to-CAD problem
through three distinct tracks. For every track, a new version
of the challenging CC3D dataset is presented, along with
an exhaustive description of the evaluation metrics and pro-
posed baseline methodologies. This challenge is designed
to encourage forthcoming advancements in reverse engi-
neering from 3D scans in a real-world setting.
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