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Abstract. We study varieties generated by semi-primal lattice-expansions

by means of category theory. We provide a new proof of the Keimel-Werner

topological duality for such varieties and, using similar methods, establish

its discrete version. We describe multiple adjunctions between the variety of

Boolean algebras and the variety generated by a semi-primal lattice-expansion,

both on the topological side and explicitly algebraic. In particular, we show

that the Boolean skeleton functor has two adjoints, both defined by taking

certain Boolean powers, and we identify properties of these adjunctions which

fully characterize semi-primality of an algebra. Lastly, we give a new charac-

terization of canonical extensions of algebras in semi-primal varieties in terms

of their Boolean skeletons.

1. Introduction

Primality and its variations are classical topics in universal algebra which were

prominently studied during the second half of the 20th century [55, 59, 10]. During

the 1950s, Foster introduced primal algebras in his generalized ‘Boolean’ theory

of universal algebras [24, 25]. Generalizing functional completeness of the two-

element Boolean algebra, an algebra P is primal if every operation f : Pn → P is

term-definable in P. The intuition that a primal algebra P is ‘close to’ the two-

element Boolean algebra 2 was confirmed by Hu’s theorem [36, 37], which states

that a variety V is categorically equivalent to the variety BA of Boolean algebras

(generated by 2) if and only if V is generated by a primal algebra P ∈ V.

In 1964, Foster and Pixley introduced the first variation of primality, which

they called semi-primality [29]. Unlike primal algebras, a semi-primal algebra may

have proper subalgebras. Accordingly, in a semi-primal algebra L, we only require

the operations f : Ln → L which preserve subalgebras to be term-definable in L.

Semi-primal varieties (that is, varieties of the form HSP(L) where L is semi-primal)

are well-understood from the viewpoint of ‘classical’ universal algebraic structure

theory [29, 30, 26, 46] as well as from the viewpoint of duality theory [42, 17]. From

the perspective of category theory, semi-primal varieties were classified up to Morita

equivalence in [7] - however, this is done using purely algebraic tools based on [45].

In this paper, we further advance the category theoretical study of semi-primality

by putting a semi-primal variety A in relationship with other varieties, in particular

with the primal variety BA. Although Hu’s theorem implies that the varieties are

usually not categorically equivalent, we demonstrate that, nevertheless, there is a

rich relationship between A and BA. In particular we explicate the intuition that

semi-primal algebras are still ‘close to’ the two-element Boolean algebra.
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More specifically, we investigate multiple adjunctions between BA and the variety

A generated by a semi-primal algebra L with an underlying bounded lattice (see

Assumption 2.9). For one, this assumption yields a useful characterization of semi-

primality via certain unary terms (see Proposition 2.8) which we prominently use.

Furthermore, since L has no one-element subalgebras, the dual category of A has a

particularly simple description (see Definition 3.1). Apart from these advantages,

the restriction to lattice-based algebras is motivated by the connection to many-

valued logic. If we consider L as an algebra of propositional truth-degrees, an

underlying bounded lattice is a reasonable assumption. For example, Maruyama

[44] generalized Jónsson-Tarski duality to modal extensions of semi-primal algebras

with bounded lattice reducts. We plan to demonstrate applications of our results

to many-valued (coalgebraic) modal logic in subsequent work. Since, in addition,

there are already plenty of examples of such algebras (see Subsection 2.3), it is

reasonable to stick to this framework.

Although we were mainly motivated by questions arising in logic, we particularly

hope that this paper will be of interest to algebraists interested in category theory as

well as to category theorists interested in universal algebra. Let us point out that,

in this paper, the category theoretical approach to universal algebra is different

from other common ones via Lawvere theories or monads (these are well-exposed

in [38]). Indeed, this paper is not about reformulating and generalizing algebraic

concepts into categorical language, but rather to apply category theory as a tool to

gain new insight into a concrete topic in universal algebra. For example, the fact

that the variety A is the completion of the full subcategory of its finite members

Aω under filtered colimits (i.e., A ≃ Ind(Aω)) can be helpful to make the step from

finite to infinite, for example to extend functors defined on Aω to the full variety A
in a canonical way. Motivated by [40], we furthermore use this fact to give a new

proof of the semi-primal duality [42, 17] by lifting the corresponding finite duality

(see Theorem 3.7 and Theorem 5.5). By replacing Ind(Aω) by Pro(Aω), the closure

under cofiltered limits, we prove the discrete version of the duality (resembling the

duality between Set and the category CABA of complete atomic Boolean algebras)

in a similar manner.

The paper is organized as follows. In Section 2 we recall well-known results about

semi-primal algebras and the varieties they generate. In particular, we discuss semi-

primal bounded-lattice expansions and provide examples thereof. In Section 3 we

describe the topological duality for semi-primal algebras and, as mentioned above,

provide an alternative proof for it. Arguably the most important results of the paper

are exposed in Section 4, where we describe a chain of four adjoint functors between

A and BA (see Figure 3). Most prominently, the adjunction S ⊣ P is described

in detail, first via duality and then explicitly algebraically (see Theorem 4.11).

The Boolean skeleton S : A → BA has, for example, been known for MVn-algebras

[16] and was generalized to arbitrary semi-primal bounded lattice expansions by

Maruyama [44]. Its right-adjoint P : BA → A relies on the construction of a Boolean

power [9], a certain Boolean product [11] which was already introduced for arbitrary

finite algebras in Foster’s original paper on primality [24]. In the case where L is

primal, we retrieve a concrete categorical equivalence witnessing Hu’s theorem (see

Corollary 4.12). We proceed to investigate the subalgebra adjunctions, which exist

for each subalgebra S ≤ L. We manage to trace them back to the adjunction

S ⊣ P after taking an appropriate inclusion/quotient (see Theorem 4.16). In
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particular, we illustrate why the subalgebra adjunction Q ⊣ I corresponding to the

smallest subalgebra of L is of special interest. Indeed, towards the end of Section

4 we also show that the existence of an adjoint situation resembling I ⊣ S ⊣ P

fully characterizes semi-primality of a lattice-based algebra (see Theorem 4.19).

Building on the results of Section 4, in Section 5 we prove the above-mentioned

discrete duality for Pro(Aω). It is well-known that the algebras in this category

correspond to the canonical extensions [33, 21] of algebras in A. Notably, we show

that these canonical extensions may be characterized almost purely in terms of

their Boolean skeletons (see Theorem 5.10). Lastly we connect Sections 4 and 5

by describing an analogue of the Stone-Čech compactification in our setting (see

Proposition 5.11).

We summarize our results schematically in Section 6 (see Figure 6). In addi-

tion to the logical ramifications already mentioned, we believe that there are more

potential ways to follow up our results. In particular, we hope to inspire further

research in universal algebra through the lens of category-theory. Some open ques-

tions directly related to the content of this paper are also collected in Section 6.

2. Semi-primal algebras and the varieties they generate

In the 1950s, Foster introduced the concept of primality in [24, 25], generalizing

functional completeness of the two-element Boolean algebra 2. A finite algebra L

is called primal if, for all n ≥ 1, every function f : Ln → L is term-definable in L.

Besides the two-element Boolean algebra 2, the (n+ 1)-element Post chain Pn and

the field of prime order Z/pZ with 0 and 1 as constants are some famous examples

of primal algebras.

Using Stone duality, Hu [36, 37] showed that a variety A is generated by a primal

algebra (in other words, A = HSP(L) for some primal algebra L) if and only if A
is categorically equivalent to the variety of Boolean algebras BA (see also [52] for a

treatment using Lawvere theories). Of course we don’t expect any more meaningful

category theoretical results about the relationship between A and BA in this case.

One purpose of this paper is to demonstrate that, in contrast, such results do arise

as soon as we assume that L is semi-primal.

2.1. Characterizations of semi-primality. Since Foster’s original work, many

variations of primality have been introduced (for overviews see, e.g., [55, 41]).

Among them, intuitively speaking, semi-primality seems to still be rather close to

primality (a central theme of this paper is to show why this intuition is justified).

In a slogan: semi-primal algebras are like primal algebras which allow subalgebras.

Note that a primal algebra L does not have any proper subalgebra S ≨ L.

Otherwise, picking any s ∈ S and ℓ ∈ L\S, no function f : L → L with f(s) = ℓ

can possibly be term-definable.

Semi-primality, introduced by Foster and Pixley in 1964 (see [29]) does not

impose this restriction. Recall that a function f : Ln → L preserves subalgebras

if f(a1, . . . , an) is in the subalgebra generated by {a1, . . . , an} for any choice of

a1, . . . , an ∈ L. Clearly, if a function is term-definable, then it preserves subalge-

bras. In semi-primal algebras, the converse also holds.

Definition 2.1. A finite algebra L is semi-primal (sometimes also called subalgebra-

primal) if for every n ≥ 1, every function f : Ln → L which preserves subalgebras

is term-definable in L.
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For example, the field of prime-order Z/pZ with only 0 as constant is semi-primal

but not primal anymore - it now has {0} as proper subalgebra. More interesting

examples are described in detail in Subsection 2.3. In the following we recall two

well-known equivalent characterizations of semi-primality. The first one is based

on the ternary discriminator term and the second one is based on the existence of

a majority term.

First we recall the characterization of semi-primal algebras as special instances of

discriminator algebras. These are the algebras in which the ternary discriminator

t(x, y, z) =

{
z if x = y

x if x ̸= y

is term-definable. Finite discriminator algebras are also called quasi-primal.

An internal isomorphism of L is an isomorphism φ : S1 → S2 between any two

(not necessarily distinct) subalgebras S1 and S2 of L. For example, if S ≤ L is a

subalgebra, then the identity idS is an internal isomorphism of L. In semi-primal

algebras, there are no other internal isomorphisms.

Proposition 2.2. [51, Theorem 3.2.] A finite algebra L is semi-primal if and only

if it is quasi-primal and the only internal isomorphisms of L are the identities on

subalgebras of L.

Secondly, we recall the characterization of semi-primality based on a majority

term, which can be useful to generate examples (see, for example, [22]). Recall that

a majority term is a ternary term m(x, y, z) satisfying

m(x, x, y) = m(x, y, x) = m(y, x, x) = x.

In particular, every lattice L = (L,∧,∨) has a majority term given by the median

m(x, y, z) = (x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z).

Proposition 2.3. [3, Theorem 7.2.] A finite algebra L is semi-primal if and only

if it has a majority term and every subalgebra of L2 is either the direct product of

two subalgebras or the diagonal of a subalgebra of L.

The structure of semi-primal varieties was already well-studied in the original

work by Foster and Pixley during the 1960s. To stay self-contained, we recall some

results about these varieties which will be of use for us later.

Proposition 2.4. [29, Theorem 4.2] The variety A generated by a semi-primal

algebra L coincides with the quasi-variety generated by L, that is A = ISP(L).

In addition to the characterizations above, there is a nice characterization of

semi-primality of L in terms of A. Recall that a variety is called arithmetical if it

is congruence distributive and congruence permutable.

Proposition 2.5. [30, Theorem 3.1] A finite algebra L is semi-primal if and only

if the variety generated by L is arithmetical, every subalgebra of L is simple, and

the only internal isomorphisms of L are the identities of subalgebras.

Remark 1. Together with Proposition 3.5 this implies that if L is semi-primal,

then the collection of subalgebras S(L) considered as a subcategory of the variety

generated by L, forms a lattice, ordered under inclusion. ■
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The finite members of A are particularly well-behaved. For notation, given a

concrete category C, we use Cω to denote the full subcategory of C generated by its

finite members. In particular, if A is a variety, we use Aω to denote the category

of finite algebras in A.

Proposition 2.6. [29, Theorem 7.1] Let A be the variety generated by a semi-

primal algebra L. Every finite algebra A ∈ Aω is isomorphic to a direct product of

subalgebras of L.

We add yet another characterization of semi-primality in our particular case

of interest (in which the algebra is based on a bounded lattice) in the following

subsection (see Proposition 2.8).

2.2. Semi-primal bounded lattice expansions. In this subsection we set the

scene for the remainder of this paper. We aim to describe the relationship between

the variety BA of Boolean algebras and the variety generated by a semi-primal

algebra with underlying bounded lattice.

Under the additional assumption that L is based on a bounded lattice, there

is another nice characterization of semi-primality of L which will be particularly

useful for our purposes. It relies on the following unary terms.

Definition 2.7. Let L be an algebra based on a bounded lattice L♭ = (L,∧,∨, 0, 1).

For all ℓ ∈ L we define Tℓ : L→ L and τℓ : L→ L to be the characteristic function

of {ℓ} and {ℓ′ ≥ ℓ}, respectively. That is,

Tℓ(x) =

{
1 if x = ℓ

0 if x ̸= ℓ
and τℓ(x) =

{
1 if x ≥ ℓ

0 if x ̸≥ ℓ.

Even though the following result is essentially an instance of the more general

[26, Theorem 4.1], we include an easy direct proof here.

Proposition 2.8. [26, Theorem 4.1] Let L be a finite algebra with an underlying

bounded lattice. Then the following conditions are equivalent:

(1) L is semi-primal.

(2) For every ℓ ∈ L, the function Tℓ is term-definable in L.

(3) T0 is term-definable and for every ℓ ∈ L, the function τℓ is term-definable

in L.

Proof. (1) ⇒ (2): Since every subalgebra of L contains the set {0, 1}, semi-primality

of L implies that all Tℓ are term-definable, since they preserve subalgebras.

(2) ⇒ (1): First we show that the ternary discriminator is term-definable in L.

Consider the term

c(x, y) =
∨
ℓ∈L

(
(Tℓ(x) ∧ Tℓ(y)

)
,

which satisfies

c(x, y) =

{
1 if x = y

0 if x ̸= y

and d(x, y) := T0(c(x, y)) (note that this is the discrete metric). The term

t(x, y, z) = (d(x, y) ∧ x) ∨ (c(x, y) ∧ z)
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yields the ternary discriminator on L. Now we show that the only internal iso-

morphisms of L are the identities of subalgebras. Let φ : S1 → S2 be an internal

isomorphism of L and let s ∈ S1 be arbitrary. Then

1 = Tφ(s)

(
φ(s)

)
= φ

(
Tφ(s)(s)

)
Since φ(0) = 0 we necessarily have Tφ(s)(s) = 1, which is equivalent to φ(s) = s.

Altogether, due to Proposition 2.2, we showed that L is semi-primal.

(2) ⇒ (3): If the Tℓ are term-definable we can define

τℓ(x) =
∨
ℓ′≥ℓ

Tℓ′(x).

(3) ⇒ (2): If T0 and the τℓ are term-definable we can define

Tℓ(x) = τℓ(x) ∧
∧
ℓ′>ℓ

T0
(
τℓ′(x)

)
,

which concludes the proof. □

Remark 2. In light of this result, we can turn any finite bounded lattice into a semi-

primal algebra by adding Tℓ as unary operation for every element ℓ ∈ L. One might

wonder how this differs from adding a constant symbol (i.e., a nullary operation)

for every element. The difference is that adding a constant imposes the requirement

that every subalgebra needs to contain the element corresponding to this constant.

Thus, the algebra that results after adding all constants does not have any proper

subalgebras. ■

We now state our main assumption, which from now on holds for the remainder

of this paper.

Assumption 2.9. The finite algebra L is semi-primal and has an under-

lying bounded lattice.

From now on, let A := HSP(L) denote the variety generated by L. In Subsection

2.3 we provide various examples of algebras satisfying Assumption 2.9.

As noted in [44] (where the same assumption on L is made), from the point of

view of many-valued logic, semi-primal algebras make good candidates for algebras

of truth-values. In this context the underlying bounded lattice is a natural minimal

requirement.

2.3. Examples of semi-primal algebras. In this subsection we collect some ex-

amples of semi-primal algebras. All of them are bounded lattice expansions (since

most of them stem from many-valued logic), thus they all fit the scope of this paper

(see Assumption 2.9). For other examples we refer the reader to [10, 59, 46].

First, we describe several different semi-primal algebras based on finite chains.

To get examples based on lattices which are not necessarily totally ordered, in

Subsection 2.3.2 (and Appendix A) we discuss semi-primal residuated lattices. In

particular we describe a systematic way to identify them among the FLew-algebras.

Similarly, Subsection 2.3.3 illustrates how to identify semi-primal algebras which

need not be totally ordered among the pseudo-logics. At the end of this subsection

we recall Murskĭı’s Theorem which states that, in some sense, almost all finite

lattice-based algebras are semi-primal.
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2.3.1. Chain-based algebras. We will describe several different ways of turning the

(n + 1)-element chain {0, 1
n , . . . ,

n−1
n , 1} with its usual lattice-order into a semi-

primal algebra. We present the examples ordered decreasingly by the amount of

subalgebras.

First, turning a chain into a semi-primal algebra without any further impositions

may be achieved as follows.

Example 2.10. The n-th general semi-primal chain is given by

Tn =
(
{0, 1

n , . . . ,
n−1
n , 1},∧,∨, 0, 1, (T i

n
)ni=0

)
,

where the unary operations T i
n

are the ones from Definition 2.7. For all n ≥ 1 the

algebra Tn is semi-primal (this immediately follows from Proposition 2.8). Every

subset of Tn which contains the set {0, 1} defines a subalgebra of Tn.

Next we find examples among the  Lukasiewicz-Moisil algebras, which were orig-

inally intended to give algebraic semantics for  Lukasiewicz finitely-valued logic. It

turns out, however, that they encompass a bit more than that (see [15]). The logic

corresponding to these algebras is nowadays named after Moisil.

Example 2.11. The n-th  Lukasiewicz-Moisil chain is given by

Mn =
(
{0, 1

n , . . . ,
n−1
n , 1},∧,∨,¬, 0, 1, (τ i

n
)ni=1

)
,

where ¬x = 1 − x and the unary operations τ i
n

are the ones from Definition 2.7.

For all n ≥ 1, the algebra Mn is semi-primal. This follows from characterization

(3) of Proposition 2.8 - we only have to check that T0 is term-definable. To see this

note that we can define T1(x) = τ1(x) and T0(x) = T1(¬x).

We proceed with a classical example from many-valued logic among the finite

MV-algebras introduced by Chang (see [13, 14]). They give rise to the algebraic

counterpart of  Lukasiewicz finite-valued logic.

Example 2.12. The n-th  Lukasiewicz chain is given by

 Ln =
(
{0, 1

n , . . . ,
n−1
n , 1},∧,∨,⊕,⊙,¬, 0, 1

)
,

where x ⊕ y = min(x + y, 1), x ⊙ y = max(x + y − 1, 0) and ¬x = 1 − x. For all

n ≥ 1, the algebra  Ln is semi-primal. The proof of this fact can be found in [49,

Proposition 2.1]. The subalgebras of  Ln correspond to the divisors d of n and are

of the form

 Ld = {0, kn , . . . ,
(d−1)k

n , 1} where n = kd.

Other semi-primal chains are found among the Cornish algebras, which generalize

Ockham algebras (see [18, 19]).

Example 2.13. The n-th semi-primal Cornish chain is given by

COn =
(
{0, 1

n , . . . ,
n−1
n , 1},∧,∨,¬, f, 0, 1

)
,

where ¬x = 1 − x, f(0) = 0, f(1) = 1 and f( i
n ) = i+1

n for 1 ≤ i ≤ n − 1. For all

n ≥ 1, the algebra COn is semi-primal. The proof of this fact can be found in [19,

Example 5.15]. The only proper subalgebra of COn is {0, 1}.

Finally, among the Post-algebras we find the well-known examples of chain-based

algebras which are not only semi-primal, but even primal.
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Example 2.14. The n-th Post chain is given by

Pn =
(
{0, 1

n , . . . ,
n−1
n , 1},∧,∨,′ , 0, 1

)
where 1′ = 0 and ( i

n )′ = ( i+1
n ) for 0 ≤ i < n. For all n ≥ 1, the algebra Pn is

primal (see, e.g., [24, Theorem 35])

2.3.2. Residuated Lattices. For a general survey of residuated lattices we refer the

reader to [32, 39]. We only consider bounded commutative residuated lattices here,

with a particular focus on FLew-algebras.

Definition 2.15. A (bounded commutative) residuated lattice is an algebra

R = (R,∧,∨, 0, 1,⊙, e,→)

such that (R,∧,∨, 0, 1) is a bounded lattice, (R,⊙, e) is a commutative monoid and

the binary operation → satisfies the residuation condition

x⊙ y ≤ z ⇔ x ≤ y → z.

We call R a FLew-algebra if, in addition, it satisfies e = 1.

Our main tool to identify semi-primal FLew-algebras is [43, Theorem 3.10], which

implies that a FLew-algebra R is quasi-primal if and only if there is some n ≥ 1

such that

(1) x ∨ ¬(xn) = 1 for all x ∈ R,

where, as usual, we define ¬x as x→ 0 (and xn refers to the n-th power with respect

to ⊙). For our purposes this theorem has the following practical consequence.

Corollary 2.16. Let R be a finite FLew-algebra. If R does not contain any idem-

potent elements (that is, elements with x ⊙ x = x) other than 0 and 1, then R is

quasi-primal. If R is based on a chain, the converse also holds.

Proof. Let R be a finite FLew-algebra with no other idempotent elements than 0

and 1. Recall that, for any a ∈ R, we have ¬a = a → 0 =
∨
{b ∈ R | a ⊙ b ≤ 0}.

Let a ∈ R\{0, 1}. We show that there is some na such that ana = 0. Since a is

not idempotent we have a2 < a. Either a2 = 0 and we are done or a2 is again not

idempotent. In this case we have a4 < a2 and we repeat the argument. Since R is

finite, continuing this process we eventually need to find a2
k

= 0. Now R satisfies

equation (1) for n =
∨
{na | a ∈ R\{0, 1}}, since we always have

a ∨ ¬(an) = a ∨ ¬0 = a ∨ 1 = 1.

Thus R is quasi-primal.

Now suppose that R is based on a chain. If a ∈ R\{0, 1} is idempotent, then

¬a < a since for all b ≥ a we have a ⊙ b ≥ a ⊙ a = a. Therefore, for all n ≥ 1 we

have a∨¬(an) = a∨¬a = a ̸= 1. Thus, R does not satisfy equation (1) and is not

quasi-primal. □

Remark 3. The second part of the argument really requires R to be based on a

chain. For example, consider the 4-element diamond lattice 0 ≤ a, b ≤ 1 with

a ∧ b = 0 and a ∨ b = 1. We can define a FLew-algebra based on this lattice by

stipulating a2 = a, b2 = b and a⊙ b = 0. Even though a and b are idempotent, we

have a ∨ ¬a = a ∨ b = 1 and b ∨ ¬b = b ∨ a = 1. Therefore, this algebra is quasi-

primal (it is, however, not semi-primal, since it has the non-trivial automorphism

swapping a and b). ■
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In [31] Galatos and Jipsen provide a list of all finite residuated lattices of size

up to 6. Corollary 2.16 enables us to find quasi-primal FLew-algebras among them

and thus, using Proposition 2.2, we can identify the semi-primal ones by ruling out

the existence of non-trivial internal isomorphisms. For example, there is a total of

six quasi-primal FLew-chains with 5 elements (R5,1
1,17, R

5,1
1,18 . . . R

5,1
1,22 in [31]), five of

which are semi-primal (all except R5,1
1,17). Examples of semi-primal FLew-algebras

not based on a chain are, e.g., R6,2
1,11 and R6,3

1,9 in [31]. The algebras in question are

depicted in Appendix A, where we also provide detailed proofs of these claims.

While until now we discussed how to identify semi-primal FLew-algebras, we

end this subsection with two examples of semi-primal algebras based on residuated

lattices where 1 ̸= e.

Specifically, we consider the bounded De Morgan monoids C01
4 and D01

4 depicted

in Figure 1.

0

e

a

1 = a2

0

1 = a2

e a

Figure 1. The (semi-)primal bounded De Morgan monoids C01
4

and D01
4 .

They are bounded commutative residuated lattices with an additional involution

∼ which, in both examples, is defined by ∼e = a and ∼0 = 1. Our names for these

algebras are inspired by [47], where C4 and D4 are used for the corresponding De

Morgan monoids with the bounds 0 and 1 excluded from the signature (in [47] it is

shown that each of these two algebras generates a minimal subvariety of the variety

of all De Morgan monoids).

Proposition 2.17. The algebras C01
4 and D4

01 are primal. Their reducts obtained

by removing the neutral element e from the signature, are semi-primal.

Proof. Starting with C01
4 , we directly verify that it satisfies characterization (3) of

Proposition 2.8. First we define T1 and, therefore, T0(x) = T1(∼x). As in [22], we

do this by, for all ℓ ∈ {0, e, a}, defining unary terms uℓ satisfying uℓ(1) = 1 and

uℓ(ℓ) = 0. For instance, we can define such terms by

u0(x) = x ∧ 1, ue(x) = ∼
(
(∼x)2

)
and ua(x) = ∼

(
(∼x) ⊙ 1

)
.

Through these terms we can clearly define T1(x) = u0(x) ∧ ue(x) ∧ ua(x). Lastly,

we need to define τℓ for ℓ ∈ {e, a}. Again, it suffices to find terms τ∗ℓ which satisfy

τ∗ℓ (x) =

{
1 if x ≥ ℓ

̸= 1 if x ̸≥ ℓ,

since then we get τℓ = T1(τ∗ℓ ). Our desired terms are given by

τ∗e (x) =
(
(∼x)2 ⊙ x

)
∨ x2 and τ∗a (x) = x2.
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This concludes the proof for C01
4 . The proof for D01

4 is completely analogous,

except that we use τ∗e (x) =
(
(∼x)2⊙x

)
∨x instead. Thus we showed that these two

algebras are semi-primal, and since they don’t have any proper subalgebras they

are primal. Since we never relied on the constant e in the above, the last part of

the statement follows. Note that in both cases, if we exclude e from the signature

then {0, 1} becomes a proper subalgebra. □

2.3.3. Pseudo-logics. We illustrate how to generate more examples of semi-primal

algebras which are based on a bounded lattice which is not necessarily a chain. The

results and terminology are due to [17, 22]. A pseudo-logic

L = (L,∧,∨,′ , 0, 1)

is a bounded lattice with an additional unary operation ′ which satisfies 0′ = 1 and

1′ = 0. In [22] it is shown that every subalgebra of L2 which is not the graph of

an internal isomorphism is a product of subalgebras if the following two properties

are satisfied:

(1) There is no a ∈ L\{0} with a′ = 1,

(2) For all a ∈ L there exists an n ≥ 1 with a ∧ a(2n) = 0 (where a(k) denotes

the k-fold iteration of ′ on a).

Using this and the characterization of Proposition 2.3, we can find more examples

of semi-primal algebras. Here, we only need to assure that the above mentioned

conditions are satisfied and that there are no non-trivial internal isomorphisms.

For example, the three algebras depicted in Figure 2 are semi-primal (the pseudo-

negation ′ is indicated by dotted arrows).

0

1

a

b

c

0

1

a b

c d

0

1

a b c

d e

Figure 2. Some semi-primal pseudo-logics ([22, 17]).

2.3.4. Murskĭı’s Theorem. While semi-primal algebras may seem rare, quite the

opposite is suggested by the following. In 1975, Murskĭı proved his surprising

theorem about the proportion of semi-primal algebras of a fixed signature under

increasing order. The original paper [48] is in Russian, the version we recall here is

due to [6, Section 6.2].

Theorem 2.18. [48] Let σ be an algebraic type which contains at least one operation

symbol which is at least binary. Let Aσ,n be the number of algebras of type σ and

size n and let SPσ,n be the number of such algebras which are semi-primal. Then

lim
n→∞

SPσ,n

Aσ,n
= 1.
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3. Semi-primal duality

One of the nice features of the variety of Boolean algebras BA is the famous

Stone duality [57]. Categorically speaking, it asserts that there is a dual equivalence

between BA and the category Stone of Stone spaces (that is, compact, Hausdorff

and zero-dimensional topological spaces) with continuous maps:

Stone
Π

-- BA
Σ

mm

The functor Σ assigns to a Boolean algebra B its collection of ultrafilters and the

functor Π assigns to a Stone space X the Boolean algebra of its clopen subsets

with the usual set-theoretical Boolean operations. Note that these functors can be

defined on objects by

Σ(B) = BA(B,2) and Π(X) = Stone(X, 2),

where in the latter equation 2 denotes the two-element discrete space.

Stone duality has been extended to quasi-primal algebras by Keimel and Werner

in [42]. This duality fits the general framework of Natural Dualities. For us, the

Semi-primal Strong Duality Theorem [17, Theorem 3.3.14] is of high importance.

However, we present it self-contained and in a way which particularly suits our

purpose. Furthermore, we will use categorical constructions to provide a new proof

of this duality. Such a proof has, to the best of our knowledge, not appeared in the

literature yet.

First we introduce the dual category of A generated by a semi-primal algebra.

In the following, we always consider S(L) as a complete lattice in its usual ordering.

Definition 3.1. The category StoneL has objects (X,v) where X ∈ Stone and

v : X → S(L)

assigns to every point x ∈ X a subalgebra v(x) ≤ L, such that for every subalgebra

S ≤ L the preimage v−1(S↓) is closed. A morphism m : (X,v) → (Y,w) in StoneL
is a continuous map X → Y which, for all x ∈ X, satisfies

w(m(x)) ≤ v(x).

Remark 4. In the framework of natural dualities [17], the dual category of A is

defined slightly differently, using Stone spaces with unary relations (i.e., subsets).

Let X be the category with objects (X, {RS | S ≤ L}), where X ∈ Stone and

RS is a closed subset of X for each subalgebra S ≤ L, satisfying RL = X and

RS1 ∩ RS2 = RS1∩S2 for all S1,S2 ≤ L. A morphism m : (X, {RS | S ≤ L}) →
(X ′, {R′

S | S ≤ L}) in X is a continuous relation-preserving map X → X ′, i.e., it

satisfies x ∈ RS ⇒ m(x) ∈ R′
S for all x ∈ X and S ∈ S(L).

The categories X and StoneL are isomorphic, as witnessed by the following mu-

tually inverse functors ϕ and ψ. The functor ϕ : X → StoneL is given on objects

by (X, {RS | S ≤ L}) 7→ (X,v), where

v(x) =
⋂

{S | x ∈ RS}.

The functor ψ : StoneL → X is given on objects by (X,v) 7→ (X, {RS | S ≤ L})

where

RS = {x ∈ X | v(x) ≤ S}.
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Both ϕ and ψ map every morphism to itself. ■

We now describe the two contravariant functors ΣL and ΠL which give rise to

the duality between A and StoneL:

StoneL

ΠL

-- A
ΣL

mm

On objects A ∈ A, let the functor ΣL be defined by

ΣL(A) =
(
A(A,L), im

)
where im assigns to a homomorphism h : A → L its image im(h) = h(A) ∈ S(L).

A clopen subbasis for the topology on A(A,L) is given by the collection of sets of

the following form with a ∈ A and ℓ ∈ L:

[a : ℓ] = {h ∈ A(A,L) | h(a) = ℓ}.

On morphisms f ∈ A(A1,A2) the functor acts via composition

ΣLf : A(A2,L) → A(A1,L)

h 7→ h ◦ f.

Note that this is a morphism in StoneL since im(h ◦ f) ≤ im(h).

Before we define the functor ΠL, we describe the canonical way to consider L as

a member of StoneL. Simply endow L with the discrete topology and

⟨·⟩ : L→ S(L)

assigning to an element ℓ ∈ L the subalgebra ⟨ℓ⟩ ≤ L it generates. Now, as

expected, we can define the functor ΠL on objects (X,v) ∈ StoneL by

ΠL(X,v) = StoneL
(
(X,v), (L, ⟨·⟩)

)
with the algebraic operations defined pointwise. This means that the carrier-set

of ΠL(X,v) is the set of continuous maps g : X → L which respect v in the sense

that, for all x ∈ X, they satisfy

g(x) ∈ v(x).

Again, on morphisms m : (X,v) → (Y,w) the functor is defined via composition

ΠLm : StoneL
(
(Y,w), (L, ⟨·⟩)

)
→ StoneL

(
(X,v), (L, ⟨·⟩)

)
g 7→ g ◦m.

This is well-defined due to the condition on morphisms in StoneL:

(g ◦m)(x) = g(m(x)) ∈ w(m(x)) ⊆ v(x).

It is also clearly a homomorphism since the operations are defined pointwise.

Theorem 3.2. [42, 17] The functors ΠL and ΣL are fully faithful and establish a

dual equivalence between A and StoneL.

The remainder of this section is dedicated to an alternative proof of this theorem.

The idea is to directly prove the duality on the finite level, and then lift it to the

infinite level using the following categorical constructions.
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Definition 3.3. For a finitely complete and cocomplete category C, its comple-

tion under filtered colimits is denoted by Ind(C) and, dually, its completion under

cofiltered limits is denoted by Pro(C).

For example, Ind(BAω) ≃ BA and Pro(Setω) ≃ Stone. More material about these

completions can be found in Johnstone’s book [40, Chapter VI] (in particular, a

more rigorous definition of the Ind-completion is given in VI.1.2). We only recite

the following, which allows us to lift dualities between small categories (following

Johnstone, dualities arising this way are called Stone type dualities).

Lemma 3.4. [40, Lemma VI 3.1] Let C and D be small categories which are dually

equivalent. Then Ind(C) is dually equivalent to Pro(D).

Our argument to prove Theorem 3.2 now has the following outline. The role

of C will be played by Aω. Since A is locally finite (see, e.g., [17, Lemma 1.3.2]),

it is well-known that Ind(Aω) ≃ A (see, e.g., [40, Corollary VI 2.2]). The role of

D will be played by StoneωL. Since the topology doesn’t matter here (because it is

always discrete), we will denote this category by SetωL instead. To get the finite

dual equivalence, we make the following observation

Proposition 3.5. Let S1, . . . ,Sn be subalgebras of L. Then the set of homomor-

phisms A(
∏

i≤n Si,L) consists exactly of the projections followed by inclusions

pri :
∏
i≤n

Si → Si ↪→ L

in each component i ≤ n.

Proof. Our proof is similar to that of [12, Theorem 2.5]. Let h :
∏

i≤n Si → L

be a homomorphism. Since A is congruence distributive (Proposition 2.5), it has

the Fraser-Horn property, meaning that the congruence θ := ker(h) is a product of

congruences θi on Si. By the isomorphism theorem we find

(
∏
i≤n

Si)/θ ∼=
∏
i≤n

(Si/θi) ∼= im(h).

Since im(h) is a subalgebra of L and thus simple by Proposition 2.5, at most one

factor of
∏

i≤n(Si/θi) can be non-trivial. Since im(h) contains at least two elements

(that is, 0 and 1), precisely one factor, say Sj/θj , is non-trivial. Since Sj is itself

semi-primal, it is simple, so Sj/θj ∼= Sj. So h induces an internal isomorphism

Sj
∼= im(h), but by Proposition 2.2 this can only be the identity on Sj, thus h

coincides with prj . □

Corollary 3.6. The (restrictions of the) functors ΠL and ΣL establish a dual

equivalence between the small categories SetL
ω and Aω.

Proof. Let (X,v) ∈ SetωL. Then

ΣLΠL(X,v) =
(
A
( ∏
x∈X

v(x),L
)
, im

)
.

By Proposition 3.5 this is equal to ({prx | x ∈ X}, im), which is clearly isomorphic

to (X,v).

On the other hand, starting with A ∈ Aω, we know by Proposition 2.6 that it is

a product of subalgebras A =
∏

i≤n Si. Now, again due to Proposition 3.5, we get
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ΣL(A) = ({pri | i ≤ n}, im), and thus

ΠLΣL(A) ∼=
∏
i≤n

im(pri)
∼=

∏
i≤n

Si.

To see that ΠL and ΣL form a dual adjunction we note that for A =
∏

i≤n Si ∈
Aω and (X,v) ∈ SetωL we have

Aω
(
ΠL(X,v),A

) ∼= ∏
i≤n

Aω
(
ΠL(X,v),Si

)
and

SetωL
(
ΣL(A), (X,v)

) ∼= SetωL(
∐
i≤n

({pri}, im), (X,v)) ∼=
∏
i≤n

SetωL
(
({pri}, im), (X,v)

)
where the coproduct in SetωL is the obvious disjoint union. So we only need to show

that

Aω
(
ΠL(X,v),Si

) ∼= SetωL
(
({pri}, im), (X,v)

)
.

But this is obvious since the elements of the left-hand side are exactly the projec-

tions with image contained in Si, which are in bijective correspondence with the

points of X with v(x) ≤ Si, that is, with elements of the right-hand side. □

In order to successfully apply Lemma 3.4, it remains to show the following.

Theorem 3.7. Pro(SetωL) is categorically equivalent to StoneL.

Proof. First we show that the category StoneL is complete. For an index set I

(which we often omit), we claim that the product is computed as∏
i∈I

(Xi,vi) = (
∏
i∈I

Xi,
∨

vi),

where
∨

vi(p) =
∨

(vi(pi)) for all p ∈
∏
Xi. It follows from

(
∨

vi)
−1(S↓) =

∏
vi

−1(S↓)

that this defines a member of StoneL. Note that the projections are morphisms in

StoneL since

vi(πi(p)) = vi(pi) ≤
∨
j∈I

vj(pj) = (
∨

vj)(p).

If (γi : (Y,w) → (Xi,vi) | i ∈ I) is another cone, there is a unique continuous map

f : Y →
∏
Xi with πi ◦ f = γi. This map is a morphism in StoneL since

(
∨

vi)(f(y)) =
∨

vi

(
πi(f(y))

)
=

∨
vi

(
γi(f(y))

)
≤ w(y),

where the last inequality follows from vi(γi)(y) ≤ w(y) which is true since the γi
are morphisms in StoneL. The equalizer of f, g : (X,v) → (Y,w) is simply given by

(Eq,v|Eq) where Eq ⊆ X is the corresponding equalizer in Stone. It follows that

StoneL has all limits. In particular, StoneL has all cofiltered limits, so the natural

inclusion functor ι : SetωL ↪→ StoneL has a unique cofinitary (that is, cofiltered limit

preserving) extension

ι̂ : Pro(SetωL) ↪→ StoneL.

Since ι is fully faithful, to conclude that the functor ι̂ is fully faithful as well it

suffices to show that ι maps all objects to finitely copresentable objects in StoneL
(this is due to the analogue of [40, Theorem VI.1.8] for the Pro-completion). So

we need to show that any (C,w) ∈ StoneL where C is a finite discrete space is

finitely copresentable. In other words, we need to show that, whenever (X,v) ∼=
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limi∈I(Xi,vi) is a cofiltered limit of a diagram (fij : (Xj ,vj) → (Xi,vi) | i ≤ j)

in StoneL with limit morphisms pi : (X,v) → (Xi,vi), any morphism f : (X,v) →
(C,w) factors essentially uniquely through one of the pi. For this we can employ

an argument similar to the one in the proof of [56, Lemma 1.1.16(b)]. On the

underlying level of Stone, where finite discrete spaces are finitely copresentable,

the continuous map f factors essentially uniquely through some pi, say via the

continuous map gi : Xi → C. However, gi is not necessarily a morphism in StoneL.

Consider J = {j ≥ i} and for each j ∈ J define gj = fij ◦ gi. Define the continuous

maps µ : X → S(L)2 and µj : Xj → S(L)2 for all j ∈ J by

µ(x) =
(
w(f(x)),v(x)

)
and µj(x) =

(
w(gj(x)),vj(x)

)
.

Since µ(X) = limj∈J µj(Xj) =
⋂

j≥i µj(Xj) is contained in the finite set S(L)2 and

J is directed, there is some k ∈ J such that

µ(X) = µk(Xk).

But now, since f is a morphism in StoneL, we have that µ(X) ⊆ {(S,T) | S ≤ T},

and thus the same holds for µk(Xk). Thus gk is a morphism in StoneL which has

the desired properties.

To finish the proof we show that ι̂ is essentially surjective, in other words, we show

that every element (X,v) of StoneL is isomorphic to a cofiltered limit of elements of

SetωL. We do this in a manner similar to [56, Theorem 1.1.12]. Let R consist of all

finite partitions of X into clopen sets. Together with the order R ≤ R′ if and only

if R′ refines R this forms a codirected set and in [56, Theorem 1.1.12] it is shown

that X ∼= limR∈RR. We now turn every R ∈ R into a member of SetωL by endowing

it with an appropriate vR : R → S(L) and show that (X, v) = limR∈R(R, vR). For

R ∈ R, say R = {Ω1, . . . ,Ωk}, we define

v−1
R (S↓) = {Ωi | Ωi ∩ v−1(S↓) ̸= ∅}.

The map pR : X → R defined by pR(x) = Ωi ⇔ x ∈ Ωi is a morphism in

StoneL since v(x) = S and x ∈ Ωi implies vR(pR(x)) ∈ v−1
R (S↓). Is is easy to

see that this defines a cone over the diagram (R, vR)R∈R, so there is a unique

f : (X,v) → limR∈R(R, vR) in StoneL. As in Stone, the map f is a homeomor-

phism. To complete the proof it suffices to show that f−1 is a morhpism in StoneL
as well. Say limR∈R(R, vR) = (Y,w) and let πR : (Y,w) → (R, vR) denote the limit

morphisms. Assuming w(y) = S we want to show f−1(y) ∈ v−1(S↓). Let Ω ⊆ X

be an arbitrary clopen set containing f−1(y). Then R = {Ω, X\Ω} ∈ R and

Ω = pR(f−1(y)) = πR(y) ∈ v−1
R (S↓).

By definition this means that Ω ∩ v−1(S↓) ̸= ∅. Since this holds for every Ω

containing f−1(y), this implies that f−1(y) is in the closure v−1(S↓). However,

this closure coincides with v−1(S↓), since by definition of StoneL this is a closed

set already. □

As discussed before, this yields our alternative proof of Theorem 3.2. In Section

5 we investigate the other dual equivalence which can be obtained from the finite

dual equivalence of Corollary 3.6. More specifically, there we describe Ind(SetωL)

and its dual, the category of profinite algebras Pro(Aω). This is the ‘semi-primal

version’ of the duality between Ind(Setω) ≃ Set and Pro(BAω) ≃ CABA.
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Before that, in the following section we investigate the relationship between

StoneL and Stone and, more interestingly, between A and BA.

4. A chain of adjuntions

In this section we explore the relationship between Stone duality and the semi-

primal duality discussed in the previous section. We start with the connection

between StoneL and Stone, which will be expressed in terms of a chain of four adjoint

functors (similar to one in [58]). Then we look at the duals of these functors and give

them purely algebraic descriptions to gain insight into the structure of A relative to

that of BA. The entire situation is summarized in Figure 3, which we will have fully

described at the end of this section (note that left-adjoints on the topological side

correspond to right-adjoints on the algebraic side and vice-versa, since the functors

ΠL,ΣL and Σ,Π which establish the two dualities are contravariant).

StoneL

ΠL

--
??

⊣V⊤ U ⊣

��

UU

V⊥ ⊣ C

��

A
ΣL

mm >>

⊢P S ⊢

��

VV

I ⊢ Q

��
Stone

Π
-- BA

Σ

mm

Figure 3. The chain of adjunctions on the topological and the

algebraic side.

4.1. Four functors on the topological side. Let U : StoneL → Stone be the

obvious forgetful functor. This functor has a left-adjoint and a right-adjoint V⊤ ⊣
U ⊣ V⊥. The two functors V⊤,V⊥ : StoneL → Stone are given on objects by

V ⊤(X) = (X,v⊤) where ∀x ∈ X : v⊤(x) = L,

V ⊥(X) = (X,v⊥) where ∀x ∈ X : v⊥(x) = ⟨0, 1⟩

and both assign every morphism to itself. Here ⟨0, 1⟩ is the subalgebra generated

by {0, 1}, that is, the (unique) smallest subalgebra of L.

To see V ⊤ ⊣ U note that by definition we have

m ∈ StoneL
(
(X,v⊤), (Y,w)

)
⇔ m ∈ Stone(X,Y ) ∧ ∀x ∈ X : w(m(x)) ≤ v⊤(x),

and w(m(x)) ≤ v⊤(x) = L is trivially satisfied for every m ∈ Stone(X,Y ).

Similarly we see U ⊣ V⊥, since every m ∈ Stone(X,Y ) automatically satisfies

v⊥(m(x)) ≤ w(x) and, therefore, m ∈ StoneL
(
(X,w), (Y,v⊥)

)
.

The functor V⊥ also has a right-adjoint C : StoneL → Stone defined by

C(X,v) = {x ∈ X | v(x) = ⟨0, 1⟩}
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on objects. On morphisms m : (X,v) → (Y,w) it acts via restriction m 7→ m|C(X,v),

which is well-defined since m ∈ StoneL
(
(X,v), (Y,w)

)
and x ∈ C(X,v) means

w(m(x)) ≤ v(x) = ⟨0, 1⟩

which is equivalent to m(x) ∈ C(W,w). Again V⊥ ⊣ C is easy to see since

m ∈ StoneL
(
(X,v⊥), (Y,w)

)
⇔ ∀x : w(m(x)) ≤ ⟨0, 1⟩ ⇔ m ∈ Stone

(
X,C(Y,w)

)
.

The functor V⊤ preserves almost all limits, however, there is one important

exception. The terminal object (that is, the limit of the empty diagram) in StoneL is

given by ({∗},v⊥), implying that V⊤ does not preserve terminal objects. Therefore,

contrary to a claim made in [58], no further left-adjoint of V⊤ exists.

It is obvious that both the unit idStone ⇒ U ◦ V⊤ of the adjunction V⊤ ⊣ U and

the counit U ◦ V⊥ ⇒ idStone of the adjunction U ⊣ V⊥ are natural isomorphisms.

We hold on to this fact, which will also be interesting on the algebraic side.

Proposition 4.1. The category Stone is categorically equivalent to

(i) a coreflective subcategory of StoneL, witnessed by the fully faithful functor V⊤.

(ii) a reflective and coreflective subcategory of StoneL, witnessed by the fully faith-

ful functor V⊥.

The functors described in this subsection can be carried through the dualities,

resulting in a a corresponding chain of adjunctions between A and BA. For example,

the dual of U is given by ΠUΣL : A → BA. In the next subsection we show that this

functor can be understood algebraically as the Boolean skeleton. Throughout the

subsections that follow, we will give similar algebraic descriptions for all of these

functors between A and BA in Figure 3.

4.2. The Boolean skeleton functor. In the theory of MVn-algebras (that is, the

case where L =  Ln), the Boolean skeleton is a well-known and useful tool (see, for

example, [16]). An appropriate generalization of this concept to our setting was

made by Maruyama in [44] (where it is called the Boolean core).

Due to Proposition 2.8 and [44, Lemma 3.11], the following definition is justified.

Definition 4.2. Let A ∈ A. The Boolean skeleton of A is the Boolean algebra

S(A) = (S(A),∧,∨, T0, 0, 1) on the carrier set

S(A) = {a ∈ A | T1(a) = a},

where the lattice operations ∧ and ∨ are inherited from A and the unary operations

T0 and T1 correspond to the ones from Definition 2.7 (which by Proposition 2.8 are

term-definable in L), interpreted in A.

For example, for each A ∈ A, a ∈ A and ℓ ∈ L we have Tℓ(a) ∈ S(A). This

holds since the equation T1(Tℓ(x)) ≈ Tℓ(x) holds in L, and therefore also in A.

Remark 5. For A ∈ A, suppose that A′ ⊆ A is a subset such that (A′,∧,∨, T0, 0, 1)

forms a Boolean algebra. Then, for all a′ ∈ A′, we have T1(a′) = T1(T0(T0(a′))) =

T0(T0(a′)) = a′ and thus a′ ∈ S(A) (the second equation always holds since A |=
T1(T0(x)) ≈ T0(x), which is easily checked in L). Therefore, S(A) is the largest

such subset. ■
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To extend the construction of the Boolean skeleton to a functor S : A → BA, on

homomorphisms f ∈ A(A1,A2) we define Sf to be the restriction f |S(A1)
. This

is well-defined since

a ∈ S(A1) ⇔ T1(a) = a⇒ T1(f(a)) = f(T1(a)) = f(a) ⇔ f(a) ∈ S(A2).

The following is arguably the most important property of the Boolean skeleton.

Proposition 4.3. For all A ∈ A, there is a homeomorphism between UΣL(A) =

A(A,L) and ΣS(A) = BA(S(A),2) given by h 7→ h|S(A).

Proof. First we show that the map is a bijection. For injectivity, suppose that g

and h satisfy g|S(A) = h|S(A). Take an arbitrary element a ∈ A and let g(a) = ℓ.

Using that Tℓ(a) ∈ S(A) we get

1 = Tℓ(g(a)) = g(Tℓ(a)) = h(Tℓ(a)) = Tℓ(h(a)),

which implies h(a) = ℓ and, since a was arbitrary, that g = h. For surjectivity,

let h ∈ BA(S(A),2) be arbitrary. Due to [44, Lemma 3.12] the following yields a

well-defined homomorphism h̄ ∈ A(A,L):

h̄(a) = ℓ⇔ h(Tℓ(a)) = 1.

Since for a ∈ S(A) we have

h(T1(a)) = 1 ⇔ h(a) = 1 and

h(T0(a)) = 1 ⇔ T0(h(a)) = 1 ⇔ h(a) = 0,

we conclude that h̄|S(A) = h.

We now have a bijection between two Stone spaces, so it only remains to show

that it is continuous. But this is easy to see since the preimage of an open subbasis

element [a : i] ⊆ BA(S(A),2) is the open subbasis element [a : i] ⊆ A(A,L). □

Corollary 4.4. There is a natural isomorphism between the functor S and the

dual ΠUΣL of the forgetful functor U.

Proof. By Proposition 4.3, for every A ∈ A, setting

ϕA : UΣL(A) → ΣS(A)

h 7→ h|S(A)

defines a natural isomorphism ϕ : UΣL ⇒ ΣS (naturality is easy to check using the

definitions of Σ,ΣL and S on morphisms). Applying Π and using the fact that ΠΣ is

naturally isomorphic to idBA, we get the natural isomorphism Πϕ : S ⇒ ΠUΣL. □

In the next subsection we explain the right-adjoint of the Boolean skeleton func-

tor.

4.3. The Boolean power functor. In this subsection we give an algebraic de-

scription of a functor naturally isomorphic to the dual ΠLV
⊤Σ of the functor V⊤.

This functor, which we call P, turns out to be an instance of the the well-known

Boolean power (or Boolean extension), which was introduced for arbitrary finite

algebras in Foster’s first paper on primal algebras [24]. Boolean powers are special

instances of Boolean products (see, e.g., [11, Chapter IV]), but for our purposes it

is more convenient to work with the following equivalent definition found in [9].
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Definition 4.5. Given a Boolean algebra B ∈ BA and a finite algebra M, the

Boolean power M[B] is defined on the carrier set

M [B] ⊆ BM

consisting of all maps ξ : M → B which satisfy

(1) If ℓ and ℓ′ are distinct elements of M , then ξ(ℓ) ∧ ξ(ℓ′) = 0,

(2)
∨
{ξ(ℓ) | ℓ ∈M} = 1.

If oL : Mk → M is a k-ary operation of M, we define a corresponding operation

oM[B] : M [B] →M [B] by

oM[B](ξ1, . . . , ξk)(ℓ) =
∨

oM(ℓ1,...,ℓk)=ℓ

(ξ1(ℓ1) ∧ · · · ∧ ξk(ℓk)).

The resulting algebra M[B] = (M [B], {oM[B] | o in the signature of M}) is a mem-

ber of the variety HSP(M) generated by M (since it satisfies the same equations

as M).

There is a straightforward way to extend this construction to a functor.

Definition 4.6. Given a finite algebra M, we define the functor PM : BA →
HSP(M) as follows. On objects B ∈ BA we define

PM(B) = M[B].

For a Boolean homomorphism φ : B → B′, the homomorphism PMφ : M[B] →
M[B′] is defined via composition ξ 7→ φ ◦ ξ (this is a homomorphism because

operations in M[B] are defined by Boolean expressions, which commute with φ).

In particular, we will use the shorthand notation P for PL. In the remainder of

this subsection we aim to show that P is indeed the right-adjoint of the Boolean

skeleton functor S. For this, we need the following well-known properties of the

Boolean power.

Lemma 4.7. [9, Proposition 2.1] The functor PM has the following properties:

(i) PM(2) ∼= M,

(ii) PM preserves products.

In particular, PM(2κ) ∼= Mκ holds for all index sets κ.

In the next proposition we describe the interplay between the functors S and P.

Again, the terms Tℓ from Proposition 2.8 play an important role.

Proposition 4.8. For every A ∈ A there is an embedding T(·) : A ↪→ P(S(A))

given by a 7→ Ta where

Ta(ℓ) = Tℓ(a).

The restriction to S(A) yields an isomorphism S(A) ∼= S
(
P(S(A))

)
.

Proof. The map is well-defined, that is, Ta is in P(S(A)), since the equations

Tℓ(x) ∧ Tℓ′(x) ≈ 0 (for distinct ℓ, ℓ′) and
∨
{Tℓ(x) | ℓ ∈ L} ≈ 1 hold in L.

We now fix an embedding A ↪→ LI . It is easy to see that T(·) is injective since,

for distinct a, a′ ∈ A, there is some component i ∈ I with a(i) = ℓ ̸= a′(i), thus

Ta(ℓ) ̸= Ta′(ℓ). To conclude that T(·) is an embedding we need to show that it is a

homomorphism, that is we want to show that for any k-ary operation o : Lk → L

of L we have

ToA(a1,...,ak) = oL[S(A)](Ta1 , . . . Tak
).
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By definition the i-th component of the left-hand side is given by

ToA(a1,...,ak)(ℓ)(i) = Tℓ
(
oL(a1(i), . . . , ak(i))

)
=

{
1 if oL(a1(i), . . . , ak(i)) = ℓ

0 otherwise.

The right-hand side is given by

oL[S(A)](Ta1 , . . . Tak
)(ℓ) =

∨
oL(ℓ1,...,ℓk)=ℓ

(Ta1(ℓ1) ∧ · · · ∧ Tak
(ℓk)).

In its i-th component this again corresponds to∨
oL(ℓ1,...,ℓk)=ℓ

(
Tℓ1(a1(i)) ∧ · · · ∧ Tℓk(ak(i))

)
=

{
1 if oL(a1(i), . . . , ak(i)) = ℓ

0 otherwise.

Thus T(·) is an embedding, which concludes the proof of the first statement.

For the second statement, note that, since S preserves injectivity of homomor-

phisms, it suffices to show that the restriction of T(·) to S(A) is a surjection onto

S
(
P(S(A))

)
. So consider an element ξ ∈ S

(
P(S(A))

)
, that is ξ ∈ P(S(A)) and

T
L[S(A)]
1 (ξ) = ξ. The latter by definition means

T
L[S(A)]
1 (ξ)(1) = ξ(1),

T
L[S(A)]
1 (ξ)(0) =

∨
{ξ(ℓ) | ℓ ∈ L, ℓ ̸= 1} = ξ(0) and

T
L[S(A)]
1 (ξ)(ℓ) =

∨
∅ = 0 = ξ(ℓ) for all ℓ ∈ L\{0, 1}.

We claim that ξ = Tξ(1). Indeed, we know that ξ(1) ∈ S(A) so ξ(1) = T1(ξ(1)).

Furthermore, in the component i ∈ I, we have ξ(0)(i) = 1 if and only if ξ(1)(i) = 0,

so T0(ξ(1)) = T1(ξ(0)) = ξ(0) since ξ(0) ∈ S(A). Finally, for ℓ ̸∈ {0, 1} we have

Tℓ(ξ(1)) = 0 since for all i ∈ I we have ξ(1)(i) ∈ {0, 1}. This concludes the

proof. □

Since S is dual to the essentially surjective functor U, we know that every B ∈
BA is isomorphic to S(A) for some A ∈ A. Therefore, the following is a direct

consequence of the second part of Proposition 4.8.

Corollary 4.9. Every Boolean algebra B ∈ BA is isomorphic to S(P(B)).

Another immediate consequence of Proposition 4.8 is the following.

Corollary 4.10. For every Boolean algebra B ∈ BA, the algebra P(B) is the largest

algebra in A which has B as Boolean skeleton. That is, for every algebra A ∈ A
with S(A) ∼= B there exists an embedding A ↪→ P(B).

We now have everything at hand to prove the main theorem of this subsection.

Theorem 4.11. P is naturally isomorphic to the dual of V⊤ and, therefore,

S ⊣ P.

Proof. First we prove the statement on the finite level. In other words, we want to

show that, in StoneL,

ΣLP(B) ∼= V⊤Σ(B)

holds for every finite Boolean algebra B. More explicitly, after spelling out the

definition of the functors involved we want to show

(2)
(
A(P(B),L), im

) ∼= (
BA(B,2),v⊤)
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for every finite Boolean algebra B. First, since B is finite there is some positive

integer k such that B ∼= 2k. We combine the following isomorphisms in Stone. Due

to Proposition 4.3 we know

A
(
P(B),L

) ∼= BA
(
S(P(B)),2

)
,

And due to Corollary 4.9 we know

S(P(B)) ∼= B.

Putting these together, we get

A(P(B),L) ∼= BA(B,2).

In fact, this even yields an isomorphism in StoneL as desired in (2), because(
A(P(B),L), im

) ∼= (
A(Lk,L), im

) ∼= (
A(Lk,L),v⊤)

where the last equation holds due to Proposition 3.5.

So we know that the restriction of P to the category of finite Boolean algebras

Pω : BAω → A is dual to the restriction (V⊤)ω of V⊤ to the category SetωL. There

is a unique (up to natural iso) finitary (i.e., filtered colimit preserving) extension

of Pω to Ind(BAω) ≃ BA, and this extension is naturally isomorphic to the dual of

V⊤ (since V⊤ preserves all limits except for the terminal object, it is the unique

cofinitary extension of (V⊤)ω). To show that P coincides with this unique extension

(up to natural isomorphism), it suffices to show that P is finitary as well. Since P

preserves monomorphisms (it is easy to see by definition that if φ ∈ BA(B1,B2) is

injective, then Pφ is injective as well), we can apply [2, Theorem 3.4], which states

that P is finitary if and only if the following holds.

For every Boolean algebra B ∈ BA, for every finite subalgebra A ↪→ P(B) the

inclusion factors through the image of the inclusion of some finite subalgebra B′ ↪→
B under P.

To see this write A ∼=
∏

i≤n Si as product of finite subalgebras of L. Then, by

Corollary 4.9, we know that S(A) ∼= 2n embeds into B. Now by Lemma 4.7 we

have P(2n) ∼= Ln and the natural inclusion
∏

i≤n Si ↪→ Ln yields our factorization

A P(B)

P(2n)

This concludes the proof. □

In particular, if L is primal, we get an explicit categorical equivalence witnessing

Hu’s theorem.

Corollary 4.12. [36] If L is primal, then S ⊣ P yields a categorical equivalence

between A and BA.

We also get an algebraic analogue of Proposition 4.1(i).

Corollary 4.13. The functor P is fully faithful and identifies BA with a reflective

subcategory of A.

By now we found detailed descriptions of most of the functors appearing in

Figure 3. We are still missing an algebraic understanding of the adjunction Q ⊣ I.
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This gap is filled in the next subsection. As we will see, it is closely connected to

the adjunction S ⊣ P.

4.4. The subalgebra adjunctions. For every subalgebra S ≤ L, there is an

adjunction

(3) Stone
VS

⊥
--
StoneL

CS

mm

which we explore in this subsection.

The functor VS : Stone → StoneL is given on objects by

VS(X) = (X,vS) where ∀x ∈ X : vS(x) = S,

and assigns every morphism to itself.

The functor CS : StoneL → Stone is given on objects by

CS(X,v) = {x ∈ X | v(x) ≤ S}.

On morphisms it acts via restriction, that is, given a morphism m : (X,v) → (Y,w),

define m |CS(X) : CS(X) → CS(Y ). This is well-defined since

x ∈ CS(X,v) ⇔ v(x) ≤ S ⇔ w(m(x)) ≤ v(x) ≤ S ⇔ m(x) ∈ CS(Y,w).

Comparing this with Subsection 4.1, the reader may easily verify V S ⊣ CS.

Indeed, the adjunction V S ⊣ CS generalizes the following adjunctions in Figure 3:

• V⊤ ⊣ U in the case where S = L is the largest subalgebra of L,

• V⊥ ⊣ C in the case where S = ⟨0, 1⟩ is the smallest subalgebra of L.

What is special about these two extreme cases is the additional adjunction U ⊣ V⊤,

which ‘glues’ the two adjunctions into the chain described in Subsection 4.1.

To better understand the adjunction corresponding to a subalgebra S ≤ L, we

dissect it into two parts as follows.

Stone
V⊤

⊥
--
StoneS

U

ll
ιS

⊥
--
StoneL

(CS,−)

mm

Here, ιS is the natural inclusion and the functor (CS,−) is defined by

(X,v) 7→ (CS(X),v|CS(X))

on objects and, exactly like CS, acts via restriction on morphisms. It is easy to see

that this really is a decomposition of the adjunction (3), that is,

VS = ιS ◦ V⊤ and CS = U ◦ (CS,−).

As before, we want to carry everything over to the algebraic side, where the dissec-

tion takes place through the subvariety

AS := HSP(S).

We illustrate the entire situation in Figure 4. Note that S ≤ L is itself semi-primal,

so the semi-primal duality given by ΣS and ΠS as well as the adjunction S ⊣ PS

make sense in this context.
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StoneL

ΠL

,,
II

ιS ⊣ (CS,−)

		

A
ΣL

mm II

ιS QS⊢

		
StoneS

ΠS

,,
II

V⊤ ⊣ U

		

AS

ΣS

mm II

PS S⊢

		
Stone

Π
,, BA

Σ

mm

Figure 4. Dissecting the subalgebra adjunction of S ≤ L.

Again, ιS denotes the natural inclusion. Although it may seem obvious, it is not

immediate that ιS really is the dual of ιS. To prove it, we make use of the following

unary term, which will play an important role for the remainder of the subsection:

χS(x) =
∨
s∈S

Ts(x).

On L, this simply corresponds to the characteristic function of S ⊆ L. It is,

furthermore, characteristic for the subvariety AS in the following sense.

Lemma 4.14. An algebra in A is a member of AS if and only if it satisfies the

equation χS(x) ≈ 1.

Proof. Clearly every member of AS satisfies the equation since S satisfies it. For

the other direction, let A ∈ A satisfy χS(a) = 1 for all a ∈ A. We know that A can

be embedded into some LI and for each a ∈ A and i ∈ I, we have χS(πi(a)) = 1

which implies that πi(a) ∈ S. Therefore, A can be embedded into SI . □

Now, let A ∈ AS and let h ∈ A(ιS(A),L) be a homomorphism. Since h preserves

equations, for every a ∈ A we get

χS(a) = 1 ⇒ χS(h(a)) = 1

and, therefore, h ∈ A(A,S). So we showed A(A,L) = AS(A,S) for A ∈ AS, which

immediately implies the following.

Corollary 4.15. The inclusion functor ιS is the dual of the inclusion functor ιS.

To complete the picture, we only need to describe the functor QS from Figure 4.

Let α : idA ⇒ ιS ◦ QS be the unit of the adjunction QS ⊣ ιS. For any A ∈ A, the

algebra QS(A) is universal for AS in the following sense:

For every B ∈ AS and every homomorphism f : A → B, there is a unique

f̂ : QS(A) → B such that f̂ ◦ αA = f .

A QS(A)

B

f

αA

∃f̂
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Therefore, the functor QS may be understood as a quotient (in fact, as the largest

quotient contained in AS). There is a well-known connection between quotients and

equations introduced by Banaschewski and Herrlich in [4]. Not surprisingly, the

equation corresponding to QS is given by χS(x) ≈ 1, which is an easy consequence

of the above discussion together with Lemma 4.14. We summarize the results of

this subsection as follows.

Theorem 4.16. For every subalgebra S ≤ L, there is an adjunction

BA

IS

⊤ ,, A
KS

ll

which can be dissected as

BA

PS

⊤ ,, AS

S

ll
ιS

⊤ ,, A
QS

ll

where ιS is the natural inclusion functor of the subvariety HSP(S) ↪→ HSP(L) and

QS is the quotient functor corresponding to the equation χS(x) ≈ 1.

In particular, in the case where S is the smallest subalgebra of L, we can recover

the functors I = ιS ◦PS and Q from Figure 3 .

Corollary 4.17. The functor I : BA → A is, up to categorical equivalence, an

inclusion. The functor Q : A → BA is, up to categorical equivalence, the quotient

by the equation

χE(x) ≈ 1,

where E = ⟨0, 1⟩ is the smallest subalgebra of L.

Proof. Being the smallest subalgebra of a semi-primal algebra, E is primal. There-

fore, by Corollary 4.12, the adjunction S ⊣ PE is an equivalence of categories. The

statement follows from Theorem 4.16. □

Clearly Corollary 4.13 holds not only for P, but for all the functors IS. Among

them, I is special since it also has a right-adjoint. This yields the following algebraic

version of Proposition 4.1(ii).

Corollary 4.18. The functor I is fully faithful and identifies BA with a reflective

and coreflective subcategory of A.

We showed that, if a finite lattice-based algebra M is semi-primal, then there

is an adjunction PE ⊣ S ⊣ PM, where E is the smallest subalgebra of M. In the

next subsection we show that, conversely, the existence of an adjunction resembling

this one fully characterizes semi-primality of a finite lattice-based algebra M.

4.5. Characterizing semi-primality via adjunctions. The aim of this subsec-

tion is to find sufficient conditions for an adjoint of PM to imply semi-primality

of the algebra M. We will then show that, in particular, these conditions are

consequences of U and S from Figure 3 being (essentially) topological functors.

Recall that, in Definition 4.6, the Boolean power functor PM : BA → HSP(M)

was defined for arbitrary finite algebras M. Of course, if S is a subalgebra of M,

then PS can also be seen as a functor into HSP(M), and in the following there

is no need to distinguish between these two functors in our notation. The functor
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PM is faithful (unless M is trivial), but it is usually not full. In fact, it is easy to

see that PM can only be full if M does not have any non-trivial automorphisms.

In the main theorem of this subsection we show that, if PM is full and has a

left-adjoint resembling S, then a lattice-based algebra M is semi-primal.

Theorem 4.19. Let M be a finite lattice-based algebra. Then M is semi-primal

if and only if PM is full and there is a faithful functor s : HSP(M) → BA which

satisfies

PE ⊣ s ⊣ PM,

where E = ⟨0, 1⟩ is the smallest subalgebra of M.

Proof. If M is semi-primal, then PM is full since it is dual to the full functor V⊤, the

functor s = S is faithful since it is dual to the faithful functor U and PE ⊣ S ⊣ PM

was shown in the last two subsections.

Now for the converse, assume that PM is full and there is a faithful functor

s : HSP(M) → BA with PE ⊣ s ⊣ PM. For abbreviation we write V for HSP(M).

We will make use of the following properties of s:

(i) The unit η : idV ⇒ PM ◦ s is a monomorphism in each component,

(ii) s preserves monomorphisms and finite products.

Condition (i) follows from s being faithful and (ii) follows from s being a right-

adjoint.

Our first goal is to prove the equivalence

(4) s(A) ∼= 2 ⇔ ∃S ∈ S(M) : A ∼= S.

If s(A) ∼= 2, use that by (i) there is an embedding A ↪→ PM(s(A)). Since

PM(s(A)) ∼= M, it follows that A is isomorphic to a subalgebra of M. Con-

versely, first note that s(M) ∼= 2 since, using that PM is full and s ⊣ PM, we

have

1 = |BA(2,2)| = |V(M,M)| = |V
(
M,PM(2)

)
| = |BA

(
s(M),2)

)
|,

which is only possible for s(M) ∼= 2. Now if A ∼= S ∈ S(M) then, due to (ii),

the natural embedding S ↪→ M induces an embedding s(S) ↪→ s(M). Therefore

s(S) ∼= 2 since s(M) ∼= 2 does not have any proper subalgebras.

Next we show that M does not have any non-trivial internal isomorphisms.

For every subalgebra S ∈ S(M), there is a bijection between the set of Boolean

homomorphisms s(S) → 2 and the set of homomorphisms S → PM(2). Due to

(4) we have s(S) ∼= 2, so the former only has one element. Since PM(2) ∼= M this

means that there is only one homomorphism S → M, namely the identity on S.

Every non-trivial internal isomorphism with domain S would define another such

homomorphism, resulting in a contradiction.

We now show that M is semi-primal, using the characterization of semi-primality

in Proposition 2.3. That is, we want to show that M has a majority term and every

subalgebra of M2 is either a product of subalgebras or the diagonal of a subalgebra

of M. Since M is based on a lattice, a majority term is given by the median

(see the paragraph before Proposition 2.3). Let A ≤ M2 be a subalgebra and

let ι : A ↪→ M2 be its natural embedding. Due to (ii), this embedding induces

an embedding s(A) ↪→ s(M2) into s(M2) ∼= 22. Therefore, either s(A) ∼= 22 or

s(A) ∼= 2. Let p1 : A → M and p2 : A → M be ι followed by the respective

projections M2 → M.
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First assume that p1 and p2 coincide. Then clearly A embeds into M, and

therefore it is isomorphic to some subalgebra S of M. Since M has no non-trivial

internal isomorphisms, A needs to coincide with the diagonal of S.

If p1 and p2 are distinct then, using that s is faithful, the morphisms sp1 : s(A) →
2 and sp2 : s(A) → 2 are distinct as well. This implies that s(A) ∼= 22. Using the

adjunction PE ⊣ s we get

4 = |BA(22, s(A))| = |V(E2,A)| and 4 = |BA(22, s(M2))| = |V(E2,M2)|.

So there are exactly four distinct homomorphisms E2 → A and, since ι is a

monomorphism, their compositions with ι are also four distinct homomorphisms

E2 → M2. Therefore every of the former homomorphisms arises in such a way.

In particular, the natural embedding E2 ↪→ M2 arises in this way, which implies

(0, 1) ∈ A and (1, 0) ∈ A. As noted in [22], this leads to A = p1(A)× p2(A), since

whenever (a, b), (c, d) ∈ A we also have

(a, d) =
(
(a, b) ∧ (1, 0)

)
∨
(
(c, d) ∧ (0, 1)

)
∈ A.

This concludes the proof. □

In the remainder of this subsection we show how this theorem relates to the

theory of topological functors (see, e.g., [1, Chapter VI.21] or [8, Chapter 7]). In-

tuitively speaking, topological functors behave similarly to the forgetful functor

Top → Set out of the category of all topological spaces. Still, the definitions in-

volved are rather technical and the reader not familiar with this topic may skip this

part.

Definition 4.20. We call a functor F : C → D
(1) topological if it is faithful and every F-structured source has an initial lift,

(2) essentially topological if it is topological up to categorical equivalence of C
and D.

The need for this distinction arises because certain properties of topological

functors, e.g., amnesticity [1, Definition 3.27], are not preserved under categorical

equivalence (this issue is addressed in [50]).

The following is our key observation for the last part of this subsection.

Proposition 4.21. The forgetful functor U : StoneL → Stone is topological and the

Boolean skeleton functor S : A → BA is essentially topological.

Proof. We only need to show that U is topological, which immediately implies that

S is essentially topological due to [1, Theorem 21.9] together with the fact that S

is naturally isomorphic to the dual of U.

Of course U is faithful since it is the identity on morphisms. Now let X ∈
Stone and let (fi : X → U(Xi,vi))i∈I be a U-structured source (i.e., a collection of

continuous maps) indexed by a class I. We define v : X → S(L) by

v(x) =
∨
i∈I

vi(fi(x)).

Note that this is well-defined, since S(L) is finite and that (X,v) is a member

of StoneL, since v−1(S↓) =
⋂

i∈I f
−1
i (v−1

i (S↓)) is closed. Every fi is now also a

morphism in StoneL, which defines a lift of the source. To show that it is initial,

assume there are StoneL-morphisms (gi : (Y,w) → (Xi,vi))i∈I and a continuous
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map g : Y → X with fi ◦ g = gi. All we need to show is that g defines a StoneL-

morphism (Y,w) → (X,v). To see this simply note that

v(g(y)) =
∨
i∈I

vi

(
fi(g(y))

)
=

∨
i∈I

vi(gi(y)) ≤ w(y),

which concludes the proof. □

We can now easily show the following.

Corollary 4.22. Let M be a finite lattice-based algebra. Then M is semi-primal

if and only if there is an essentially topological functor s : HSP(M) → BA which

satisfies

PE ⊣ s ⊣ PM,

where E = ⟨0, 1⟩ is the smallest subalgebra of M.

Proof. In the previous proposition we showed that if M is semi-primal, then S is

essentially topological.

Conversely, if such an essentially topological s exists, it is faithful by definition

and both its adjoints PM and PE are full by [1, Proposition 21.12]. Therefore, due

to Theorem 4.19, M is semi-primal. □

In this section we gained an algebraic understanding of all the functors between A
and BA appearing on the right-hand side of Figure 3. Furthermore, we now showed

how properties of the Boolean skeleton functor S characterize semi-primality. In

the next section we investigate how canonical extensions of algebras in A behave

under these functors. One of the main results is that the Boolean skeleton functor

S may be used to identify canonical extensions of algebras in A.

5. Discrete duality and canonical extensions

In this section we describe a semi-primal discrete duality similar to the well-

known discrete duality between Set and CABA, the category of complete atomic

Boolean algebras with complete homomorphisms. It can be obtained from the

finite duality in a similar way to the one of Section 3, except that now we lift it

to the level of Ind(SetωL) and Pro(Aω). The members of the latter category are

known to be precisely the canonical extensions [33] of members of A (see [21]),

and we will provide two new characterizations of this category (Corollary 5.8 and

Theorem 5.10). Lastly we show that, as in the primal case L = 2, the topological

duality from Section 3 can be connected to its discrete version via an analogue of

the Stone-Čech compactification.

Our first goal is to identify Ind(SetωL). Although it may not be surprising, it will

still take some work to prove that it can be identified with the following category.

Definition 5.1. The category SetL has objects of the form (X, v) where X ∈ Set

and v : X → S(L) is an arbitrary map. A morphism m : (X, v) → (Y,w) is a map

X → Y which always satisfies

w(m(x)) ≤ v(x).

Remark 6. In the context of fuzzy sets, Goguen [34, 35] initiated the study of such

categories. This research was continued, e.g., in [5, 58]. In this remark we stick

to the notation of [35]. Given a complete lattice V, the category Set(V) of V-fuzzy

sets has objects (X,A) where A : X → V. Morphisms (X,A) → (X ′, A′) are maps
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m : X → Y which satisfy A′(m(x)) ≥ A(x) for all x ∈ X. In the context of fuzzy

set theory, people were mainly interested in the case where V = [0, 1]. However, we

retrieve SetL in the case where V is the order-dual of S(L). ■

Since we are interested in the Ind-completion of SetωL, we will first discuss (fil-

tered) colimits in this category.

Lemma 5.2. The category SetL is cocomplete. The colimit colimi∈I(Xi, vi) of a

filtered diagram
(
fij : (Xi, vi) → (Xj , vj) | i ≤ j

)
is realized by

(
(
∐

i∈I Xi)/∼, v̄
)
.

Here, for xi ∈ Xi and xj ∈ Xj,

xi ∼ xj ⇐⇒ ∃k ≥ i, j : fik(xi) = fjk(xj)

and

v̄([xi]) =
∧

xi∼xj∈Xj

vj(xj),

where [xi] is the equivalence class of xi with respect to ∼.

Proof. The proof that SetL is cocomplete is completely analogous to the one in [58].

For filtered colimits, on the underlying level of Set we know that X :=
∐

i∈I(Xi)/∼
with the canonical inclusions ρi : Xi → X is the colimit of the diagram. To see that

all the ρi are morphisms in SetL note

v̄(ρi(xi)) =
∧

xi∼xj∈Xj

vj(xj) ≤ vi(xi).

Given another cocone γi : (Xi, vi) → (Z, u), the unique map g : X → Z is a mor-

phism in SetL since, for xi ∈ Xi and xi ∼ xj ∈ Xj we have u
(
g(ρj(xj))

)
=

u(γj(xj)) ≤ vj(xj) and thus

u
(
g([xi])

)
≤

∧
xi∼xj∈Xj

vj(xj) = v̄([xi]),

which concludes the proof. □

We will also make use of the following general result.

Lemma 5.3. Let F : C → D be a functor between categories C and D which both

admit filtered colimits. If F has a right-adjoint G which preserves filtered colimits,

then F preserves finitely presentable objects.

Proof. Let C ∈ C be finitely presentable. We want to show that F (C) is finitely

presentable in D. Let colimiDi be a filtered colimit in D. Then

D
(
F(C), colimiDi

) ∼= colimiC
(
C,G(Di)

) ∼= colimiD
(
F(C), Di

)
,

where the first isomorphism comes from the fact that G preserves filtered colimits

and C is finitely presentable. □

Corollary 5.4. If X is a finite set, then (X, v) is finitely presentable in SetL for

every v : X → S(L).

Proof. Let X = {x1, . . . , xn} and let v(xi) = Si. Then we can clearly identify

(X, v) ∼=
∐

1≤i≤n

({xi}, vSi),
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where vSi(xi) = Si. Since filtered colimits commute with finite limits in Set, it

now suffices to show that all ({xi}, vSi) are finitely presentable. Just like in Sub-

section 4.4 we can define the adjunction VS ⊣ CS between SetL and Set for every

subalgebra S ≤ L. By Lemma 5.3 it now suffices to show that CS preserves fil-

tered colimits. So let (X, v̄) be a filtered colimit as in Lemma 5.2. We know that

CS(X) = {[xi] | ∃xi ∼ xj ∈ Xj , vj(xj) ≤ S}. Therefore, for all [xi] ∈ CS we can

choose representatives with xi ∈ CS(Xi, vi). This yields a bijection between CS(X)

and colimCS(Xi, vi). □

We now have everything at hand to easily prove the following.

Theorem 5.5. Ind(SetωL) is categorically equivalent to SetL.

Proof. Since SetL is cocomplete, the inclusion ι : SetωL → SetL has a unique finitary

extension ι̂ : Ind(SetωL) → SetL. Since ι is fully faithful and, by the above corollary,

maps all objects to finitely presentable objects in SetL, this extension is also fully

faithful. To see that it is essentially surjective note that, just like in Set, every

member of SetL is the filtered colimit of its finite subsets. □

We now take a closer look at the category Pro(Aω). It is well-known that it

consists of the canonical extensions [33] of algebras in A. In [21] a description of

these canonical extensions as topological algebras can be found. But, as in the

case of complete atomic Boolean algebras CABA ≃ IP(2), this need not be the

only description. In the following we apply results of Section 4 to find two easy

alternatives. The first one is in terms of (arbitrary) products of subalgebras of L

with complete homomorphisms.

Definition 5.6. Let Â be the category with algebras from IPS(L) as objects and

complete homomorphisms as morphisms.

We can essentially repeat our proof of the finite duality from Corollary 3.6, once

we prove the following result analogous to Proposition 3.5.

Proposition 5.7. Let A =
∏

i∈I Si ∈ Â. Then the complete homomorphisms

A → L are precisely the projections (followed by inclusions) in each component.

Proof. By Proposition 4.3 there is a bijection between A(A,L) and BA(S(A),2)

given by h 7→ h|S(A). In particular, if h is complete, then so is its restriction. Since

S(A) = 2I , the only complete homomorphisms S(A) → 2 are the projections, and

they are the restrictions of the respective projections A → L. □

Corollary 5.8. Pro(Aω) is categorically equivalent to Â

Proof. By Theorem 5.5 it suffices to show that SetL is dually equivalent to Â. This

is done completely analogous to the proof of Corollary 3.6. □

The second description of Pro(Aω) is in terms of the Boolean skeleton.

Definition 5.9. The category CAA has as objects algebras A ∈ A which have a

complete lattice-reduct and which satisfy S(A) ∈ CABA. The morphisms in CAA
are the complete homomorphisms.

Theorem 5.10. Pro(Aω) is categorically equivalent to CAA.
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Proof. Using Corollary 5.8 we show that CAA is categorically equivalent to Â.

Clearly there is a fully faithful inclusion functor Â ↪→ CAA. So it suffices to show

that this functor is essentially surjective. In other words, we want to show that

every object of CAA is isomorphic to a product of subalgebras of L.

So consider A ∈ CAA. Since the adjunction S ⊣ P restricts to CABA and CAA,

we can use Corollary 4.10 to get a complete embedding ηA : A ↪→ P(S(A)). Since

S(A) is in CABA it is isomorphic to 2I for some index set I. Thus P(S(A)) ∼=
P(2I) ∼= LI . We show that A is isomorphic to the direct product of subalgebras∏

i∈I pri(ηA(A)). For this it suffices to show that the injective homomorphism ηA
maps onto it. So let α be an element of this product. For each i ∈ I choose ai ∈ A

such that pri(ηA(ai)) = α(i). Since 2I ∼= S(A) ⊆ A all atoms bi ∈ 2I (defined by

bi(j) = 1 iff j = i) can be considered as members of A. Now define

a =
∨

{ai ∧ bi | i ∈ I}.

Since A is complete, we have a ∈ A. And since ηA is a complete homomorphism

we have ηA(a) = α (because pri(ηA(a)) = ηA(ai) = α(i)). □

With the results from this section thus far, it is clear that the chains of adjunc-

tions from Section 4 (summarized in Figure 3) have their discrete counterparts,

equally defined, between SetL and Set and CAA and CABA, respectively. To make

the connection between Figure 3 and its discrete counterpart, we finish this section

by connecting the respective dualities as indicated in Figure 5.

StoneL
,,

II

βL ⊣ (−)♭

		

Amm II

ιc (−)δ⊢

		
SetL

-- CAAmm

Figure 5. Compactification and canonical extension.

Here (−)♭ : StoneL → SetL is the forgetful functor with respect to topology and

ιc : CAA → A is the obvious inclusion functor (note that both these functors are not

full). The functor (−)δ takes an algebra to its canonical extension. In the primal

case L = 2, it is well-known that β2 =: β is the Stone-Čech compactification (see,

e.g., [40, Section IV.2]). This has been generalized to the Bohr compactification in

a (much broader) framework which includes ours in [20]. However, since things are

particularly simple in our setting, we directly show how to define βL.

Given (X, v) ∈ SetL, there is a natural way to extend v to the Stone-Čech

compactification β(X) of X. Indeed, since v : X → S(L) can be thought of as

a continuous map between discrete spaces, by the universal property of β it has

a unique continuous extension ṽ : β(X) → S(L). Here, ṽ−1(S↓) is given by the

topological closure of v−1(S↓) in β(X). Thus, for every morphism f : (X, v) →
(Y,w) in SetL, the continuous map βf defines a morphism (β(X), ṽ) → (β(Y ), w̃)

in StoneL. This is due to the observation that whenever x ∈ ṽ−1(S↓) = v−1(S↓),

by continuity of βf and the morphism property of f , we have βf(x) ∈ w−1(S↓) =

w̃−1(S↓).
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Proposition 5.11. The functor βL : SetL → StoneL defined on objects by

βL(X, v) = (β(X), ṽ)

and by f 7→ βf on morphisms is the dual of the canonical extension functor

(−)δ : A → CAA.

Proof. It suffices to show that βL satisfies the following universal property. Given

(Y,w) ∈ StoneL, every SetL-morphism f : (X, v) → (Y,w) extends uniquely to a

StoneL-morphism f̃ : (β(X), ṽ) → (Y,w). On the levels of Set and Stone we get

a unique continuous extension f̃ . To show it is a StoneL-morphism, similarly to

before, note that if x ∈ v−1(S↓), then by continuity

f̃(x) ∈ f
(
v−1(S↓)

)
⊆ w−1(S↓).

Since w−1(S↓) is closed it equals its own closure. This concludes the proof. □

This nicely wraps up this paper by connecting all of its main sections. In the

last section we give a quick summary and discuss some possible directions of future

research along similar lines.

6. Concluding Remarks and Further Research

We explored semi-primality by means of category theory, showing how a variety

generated by a semi-primal lattice expansion relates to the variety of Boolean alge-

bras. Various adjunctions provide insight into the many similarities between these

varieties. A schematic summary of our results can be found in Figure 6, which also

emphasizes once more how close BA and A really are.

SetωL Aω

SetL CAA

StoneL A

Set CABA

Stone BA

Setω BAω

Pro
Ind ProInd

Ind
Pro Ind

Pro

Figure 6. Summary of our results.

We plan to follow up this research by developing a coalgebraic framework for

modal extensions of the many-valued logic corresponding to a semi-primal variety.

As mentioned before, from this point of view it is reasonable to assume that L is

based on a lattice. However, it seems plausible that our results generalize to the

slightly more general case of semi-primal algebras which possess a coupling in the

sense of [26], essentially since Proposition 2.8 and Theorem 3.2 still apply to this

case.
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We will now sketch some more potential ways to follow up this research. In

general, we hope to have set an example in exploring concepts in universal algebra

through the lens of (mostly elementary) category theory.

For example, other variants of primality (see, e.g., [55, 41]) could be investigated

in a similar manner.

Definition 6.1. A finite algebra M is called

(1) demi-semi-primal if it is quasi-primal and every internal isomorphism of M

can be extended to an automorphism of M (see [54]).

(2) demi-primal if it is quasi-primal and has no proper subalgebras (see [54]).

(3) infra-primal if it is demi-semi primal and every internal isomorphism is an

automorphism on its domain (see [27]).

(4) hemi-primal if every operation on M which preserves congruences is term-

definable in M (see [28]).

Question 1. What is the categorical relationship between BA and the variety gener-

ated by an algebra which is quasi-primal or which satisfies one of the properties of

Definition 6.1? What about the relationship between distinct variations of primality

to each other?

For quasi-primal algebras (and thus, in particular, for algebras satisfying (1),

(2) or (3)), there is the duality theorem by Keimel-Werner [42] (which is also a

natural duality [17]), possibly a good starting point to a discussion similar to the

one presented here.

Hemi-primality seems to have received less attention. To the best of the authors

knowledge, no duality for varieties generated by hemi-primal algebras is known thus

far.

Question 2. Is it possible to obtain a duality for hemi-primal varieties, for example

one which stems from a finite dual equivalence using methods similar to our proof

of semi-primal duality in Section 3?

The Boolean power functor PM : BA → HSP(M) was defined for an arbitrary

finite algebra M. In the light of our results from Section 4, the following question

arises.

Question 3. Under which circumstances does the functor PM have a left-adjoint?

Which information about M can be retrieved from properties of the functors of the

form PS with S ≤ M?

If we consider this work as not only comparing varieties but comparing dualities,

another range of questions appears.

Question 4. What is the category theoretical relationship between different dual

equivalences? For example, one could consider Priestley duality [53] or Esakia

duality [23].

Lastly, another category theoretical approach to universal algebra, which has

not been discussed in this paper, is given by Lawvere theories. For example, Hu’s

theorem has been analyzed from this angle in [52]. Of course, one could also try to

find out more about other variants of primality in this context.

Question 5. How can semi-primality and other variants of primality be expressed

in terms of Lawvere theories?
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Appendix A. Some semi-primal FLewalgebras

Here we go into more detail in some claims made in Subsection 2.3.2. We provide

examples of semi-primal FLew-algebras, both chain-based and non chain-based, in-

cluding the proof of semi-primality for each one of them. All of the examples

and their labels are taken from the list [31] by Galatos and Jipsen. For simplicity

we only discus FLew-algebras without any idempotent elements other than 0 and

1. Due to Corollary 2.16 they are all quasi-primal. To prove semi-primality, by

Proposition 2.2, it suffices to describe all subalgebras and argue why there can’t be

any non-trivial isomorphisms between then.

We begin with the quasi-primal FLew-chains of five elements R5,1
1,17 to R5,1

1,22 in

[31, p.2, row 2] depicted in Figure 7.

1

a

b

c

a2

R5,1
1,17

1

a

b

c = a2

ab

R5,1
1,18

1

a

b = a2

c

ab

R5,1
1,19

1

a

b

c = a2 = ab

b2 = ac

R5,1
1,20

1

a

b = a2

c = ab

b2 = ac

R5,1
1,21

1

a

b

c = a2 = b2

ac

R5,1
1,22

Figure 7. The quasi-primal FLew-chains of order five.

Claim 1. Except for the first one, all algebras depicted in Figure 7 are semi-primal.

Proof. R5,1
1,17 is not semi-primal because it has isomorphic subalgebras {0, 1, a, b}

and {0, 1, a, c}.

In the following we show why the other ones are semi-primal by describing the

subalgebras other than the obvious ones {0, 1} and {0, 1, a, b, c}. Since isomor-

phisms need to be order-preserving, it suffices to note that there are never two

subalgebras of the same size in the examples below.

R5,1
1,18: There are no other subalgebras since {¬a, a2} = {b, c} ⊆ ⟨a⟩ and ¬b =

¬c = a, thus a ∈ ⟨b⟩ and a ∈ ⟨c⟩.
R1,5

1,19: There is the subalgebra ⟨a⟩ = ⟨b⟩ = {0, 1, a, b} since a → b = a, ¬a = b and

¬b = a. Since a = ¬c we have a ∈ ⟨c⟩, so c generates the entire algebra.

R5,1
1,20: There are two different sized subalgebras ⟨a⟩ = ⟨c⟩ = {0, 1, a, c} (since

¬a = c,¬c = a and a→ c = a) and ⟨b⟩ = {0, 1, b} (since ¬b = b→ b = b)

R5,1
1,21: Note that this algebra corresponds to the  Lukasiewicz-chain  L4. As thus

expected, there is the subalgebra ⟨b⟩ = {0, 1, b}, while b ∈ ⟨a⟩∩⟨c⟩ since a = ¬c, c =

¬a and b = a2.

R5,1
1,22: There is the subalgebra ⟨a⟩ = ⟨c⟩ = {0, 1, a, c} (since ¬a = c, ¬c = a

and a → c = a). Since ¬b = c and ¬c = a we find that b generates the entire

algebra. □

To also provide non chain-based examples, we examine the FLew-algebras R6,2
1,11

([31, p.19, row 5]) and R6,3
1,9 ([31, p.21, row 3]) depicted in Figure 8.
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1

a

b

c = a2 d

ab

R6,2
1,11

1

a

b c

d = a2 = c2

ab = bc

R6,3
1,9

Figure 8. Two semi-primal FLew-algebras of order six.

Claim 2. The two FLew-algebras depicted in Figure 8 are semi-primal.

Proof. R6,2
1,11: The only possible candidate for an automorphism of this algebra is

the bijection f exchanging c and d (since it needs to be order-preserving). This

map, however, is not a homomorphism, as witnessed by the fact that f(a2) =

f(c) = d while f(a)2 = a2 = c. The only other subalgebra other than {0, 1} is

⟨a⟩ = {0, 1, a, b, c} since we have ¬a = b, a2 = c, ¬c = a, a → b = a, a → c = a

and b → c = a. Since this subalgebra is a chain, it does not have any non-trivial

isomorphisms. Since ¬d = a we know that d generates the entire algebra, so there

are no more subalgebras to consider.

R6,3
1,9: Again, there is only one possible candidate for an automorphism of this

algebra, namely the bijection g exchanging b and c. This is not a homomorphism

because g(b2) = g(0) = 0 while g(b)2 = c2 = d. The only other subalgebra except

{0, 1} is ⟨a⟩ = {0, 1, a, b, d} since ¬a = b, ¬b = ¬d = a and a → b = a → d = b →
d = a. This subalgebra has no non-trivial isomorphisms because it is a chain. Since

c2 = d, the element c generates the entire algebra. □
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