Graph neural networks for investigating complex diseases:
ani I A case study on Parkinson's Disease

T —— Elisa Gomez de Lopel, Ramdn Viias Torné?, Pietro Lid?, Enrico Glaab! on behalf of the NCER-PD consortium
LUXEMBOURG

Background

Graph neural networks (GNNs) have emerged as a promising approach to investigate relational information. Omics data analysis is a critical component in the study of complex
diseases, and allows to represent relational information among samples as a graph structure that can be modelled with GNNs. However, it is still unclear which strategies for
designing and optimizing GNNs are most effective when working with real-world omics data from complex disorders, such as Parkinson's disease (PD).
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Here we examined various GNN models to identify and interpret discriminative patterns The pipeline was trained and evaluated in an

between PD patients and controls using omics data. We built a pipeline integrating 1) end-to-end manner in two independent PD
Lasso penalty-based feature selection; 2) similarity graph construction based on cosine omics datasets (transcriptomics from PPMI' and
distance; 3) modelling for sample (node) classification. metabolomics from the Luxembourg Parkinson’s
Study?) with models:

8 - : - Graph Convolutional Network3

- ChebyNet#

- Graph Attention Network?

DOWNLOAD

POSTER .
HERE! F-s

W @elisagdelope
X elisa.gomezdelope@uni.lu

IBiomedical Data Science Group, LCSB, University of Luxembourg
’‘Department of computer science, University of Cambridge

- Feature selection (Lasso)
81 82 83 8m-1 Em - Data scaling 81

Abundance omics matrix Concise omics matrix

In

Cosine distance \L

Hyper-parameter optimization was done
In cross validation via random search. An
explainer module® was added to gain
iInsights and interpretation on the model’s
decisions.
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An extensive random hyperparameter search was performed for the validation set; in each fold 130 runs were launched exploring values of regularization penalty, similarity (edge)
threshold, learning rate, weight decay, dropout, number of convolutional layer units, and K (for ChebyNet model). Despite some variability, certain trends are visible: the best models
(i.e., with lower average validation loss) tend to be achieved when avoiding higher learning rates in combination with low weight decay and low dropout.
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Test performance of GCN, ChebyNet, GAT in transcriptomics dataset Metabolites that most frequently appeared among the top-20 most relevant for 10-fold CV ChebyNet

model on a subset of unmedicated de novo PD patients vs controls from the metabolomics cohort

AUC

Accuracy

Recall

Specificity

ChebyNet
ChebyNet(w)
GCN

GCN (w)

GAT

GAT (w)

0.55+0.05
0.58 £ 0.05
0.55 £ 0.07
0.56 £ 0.04
0.53£0.05
0.56 £ 0.04

0.53£0.05
0.55+0.06
0.56 £ 0.07
0.53 +£0.04
0.51+£0.06
0.54 £ 0.04

0.58 £0.05
0.55+0.1
0.55 £ 0.07
0.56 £ 0.07
0.53 £0.08
0.59 £ 0.06

0.49+0.12
0.55+0.08
0.56+0.11
0.51+0.08
0.49 £0.08
0.48 £ 0.08

SVM Radial (no graph)

Test performance of GCN, ChebyNet, GAT in metabolomics dataset*®

0.64 £ 0.07

AUC

0.6 £ 0.06

Accuracy

0.58 £ 0.07

Recall

0.65+£0.09

Specificity

ChebyNet
ChebyNet (w)
GCN

GCN (w)

GAT

GAT (w)

0.83 £0.05
0.83 £0.05
0.78 £0.07
0.81+0.04
0.79£0.05
0.79 £0.04

0.75+£0.05
0.74 £0.06
0.72 £0.07
0.74 £0.04
0.74 £0.06
0.73£0.04

0.77 £0.05
0.72+0.1
0.7 +£0.07
0.72 £0.07
0.69 £0.08
0.69 £ 0.06

0.73+£0.12
0.76 £ 0.08
0.74+£0.11
0.75+£0.08
0.78 £0.08
0.76 £ 0.08

SVM Radial (no graph)

0.88 £ 0.07

(w) = weighted network was used in the model
*This is a comparison focusing on methodology; the metabolomics dataset contains treatment confounding effects requiring separate follow-up analysis

0.8 +0.06

0.8 +0.07

0.81+0.09

Metabolites by relevant features frequency in 10-fold CV

2'-O-methyluridine
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Features

N-acetylalliin

benzoylcarnitine* -

glucuronate -

inosine -

Long Chain Polyunsaturated Fatty Acid (n3 and n6)
Pyrimidine Metabolism, Uracil containing

Glycogen Metabolism

Leucine, Isoleucine and Valine Metabolism

Vitamin A Metabolism

Food Component/Plant

Aminosugar Metabolism

Chemical

Purine Metabolism, (Hypo)Xanthine/Inosine containing

1 1 I 1 1

3 4 5 6 7
Counts among top-20 most relevant features
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- In this implementation, the attention mechanism in GATs did not provide advantages when
compared to GCN and ChebyNet, while ChebyNet performed better than GCN.

- Contrary to previous research on graph classification tasks, using a GCN layer did not beat
the more established methods that only take a flatten representation into account (i.e. SVM).

- We conjecture that high levels of noise combined with limited sample size hinder graph O
convolutional operators from learning meaningful representations from single omics, hence <O PARKINSON

learning similar embeddings regardless of the diagnosis. Incorporating molecular interactions National Centre of Excellonce in Rasearcn  OQTNDATION
data or multi-omics from the same cohort hold potential to capture richer node embeddings. DELLIESECLIRG
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