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o Table 1. Accuracy and compression for MNIST and CIFAR10
Probabilistic datasets. Pure CNN models are denoted as CNN-Classif. The
Decoder o x! augmented Beta-VAE models with the classifier head are
Pe(x | 7) denoted as Beta-VAE-Classif. The mean and standard
\ deviation is computed over three independent runs where
- \ available. Compression is given in terms of kilobytes for
Probabilistic LBeta—VAE + LCE MNIST and megabytes for CIFAR10.
(x,y) | Encoder L 7 MNIST

Model Beta | Acc. (%) Comp. (KB)

qo(z]|x) CNN-Classif. — [ 9819 £ 02 | 260.28 £ 0.1

CNN-Classif. w/ pruning - 97.29 == 0.4 84.25 = 0.3
/ Beta-VAE Classif. 1 96.32 £+ 0.5 260.89 = 0.0

y’ Beta-VAE Classif. w/ pruning 1 90.02 & 7.3 84.43 = 0.2
Beta-VAE Classif. 3 9534 + 1.7 260.78 £+ 0.6

Beta-VAE Classif. w/ pruning 3 92.52 £ 2.5 84.81 = 0.4
¢ Beta-VAE Classif. 5 19686 £1.0 | 261.37 0.0

Beta-VAE Classif. w/ pruning 5 96.15 == 0.2 85.29 £ 0.2

Beta-VAE Classif. 10 95.67 + 0. 260.43 £+ 0.1

Beta-VAE Classif. w/ pruning 10 95.86 = 0.8 85.67 £ 0.4
N (0;1) FC Beta-VAE Classif. 50 62.32 + 36.2 | 260.45 £+ 0.0

Beta-VAE Classif. w/ pruning 50 59.55 =345 | 83.84 = 0.1

Fig. 1. The Beta-VAE model augmented by the addition of a classifier head. The combined CIFARDD

model, Beta-VAE-Classif, is trained with all three loss terms given by the KL divergence, Model Beta | Acc. (%) Comp. (MB)

. o . _ , , , . CNN-Classif. - 78.14 = 0.0 10.9 = 0.000
reconstruction loss, and classification loss. During inference, the reconstruction head x’ is CNN-Classif. w/ pruning ) 7812 + 00 | 3.5 + 0.000
removed, leaving the shaded in blocks of the diagram. Beta- VAE-Classif. 1 4897 £ 1.4 10.83 + 0.002

Beta-VAE-Classif. w/ pruning 1 48.76 = 5.2 3.43 == 0.005
Coeavap(0. 0 2. 2.8) = — 8D o . Beta-VAE-Classif. 3 51.08 £ 45 10.82 £ 0.001
Be-vaE(9, 95 2, 2, 5) ’8 xL (9s (212) || P(2)) (1) Beta-VAE-Classif. w/ pruning | 3 | 49.30 59 | 3.44 & 0.009
+ Ky, (z|2) 108 po (z]2)] Beta-VAE-Classif, 5 | 47.17 £ 94 | 10.82 £ 0.001
Beta-VAE-Classif. w/ pruning 5 51.28 + 10.2 | 3.43 + 0.009
N , Beta-VAE-Classif. 10 | 10.00 = 0.0 | 10.80 & 0.004
Lee(y) = — ) yilogy; (2) Beta-VAE-Classif. w/ pruning | 10 | 10.00 + 0.0 | 3.35 + 0.001
i=1 Beta- VAE-Classif. 50 | 10.00 = 0.0 | 10.80 & 0.000
Beta-VAE-Classif. w/ pruning 50 10.00 = 0.0 3.35 = 0.000
LBeta-VAE-Classif (0, @; T, Y, 2, B) = LBeta-vaE + LcE (3) References
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Eqg. 1 denotes the Beta-VAE loss term composed of the KL divergence and reconstruction
loss terms. Eq. 2 describes the cross-entropy loss of the classification head.

https://cvi2.uni.lu/

* Preliminary results inconclusive - hint that for a certain value of B, latent space implicitly

becomes sufficiently disentangled to allow for pruning to more easily discard useless
information for task of classification.

* Increasing number of latent dimensions may improve results.

* More robust results expected from having ground truth disentanglement labels together
with an appropriately selected metric to directly measure degree of disentanglement for
task of classification.
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