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“There is no end to education.

It is not that you read a book,

pass an examination, and

finish with education. The

whole of life, from the

moment you are born to the

moment you die, is a process

of learning.”

Jiddu Krishnamurti





Abstract

Even though the use of medical imaging to diagnose patients is ubiquitous in clinical
settings, their interpretations are still challenging for radiologists. Many factors make
this interpretation task difficult, one of which is that medical images sometimes present
subtle clues yet are crucial for diagnosis. Even worse, on the other hand, similar clues
could indicate multiple diseases, making it challenging to figure out the definitive diag-
noses. To help radiologists quickly and accurately interpret medical images, there is a
need for a tool that can augment their diagnostic procedures and increase efficiency in
their daily workflow. A general-purpose medical image retrieval system can be such a
tool as it allows them to search and retrieve similar cases that are already diagnosed to
make comparative analyses that would complement their diagnostic decisions. In this
thesis, we contribute to developing such a system by proposing approaches to be inte-
grated as modules of a single system, enabling it to handle various information needs
of radiologists and thus augment their diagnostic processes during the interpretation of
medical images.

We have mainly studied the following retrieval approaches to handle radiologists’
different information needs; i) Retrieval Based on Contents, ii) Retrieval Based on Con-
tents, Patients’ Demographics, and Disease Predictions, and iii) Retrieval Based on Con-
tents and Radiologists’ Text Descriptions. For the first study, we aimed to find an ef-
fective feature representation method to distinguish medical images considering their
semantics and modalities. To do that, we have experimented different representation
techniques based on handcrafted methods (mainly texture features) and deep learning
(deep features). Based on the experimental results, we propose an effective feature repre-
sentation approach and deep learning architectures for learning and extracting medical
image contents. For the second study, we present a multi-faceted method that com-
plements image contents with patients’ demographics and deep learning-based disease
predictions, making it able to identify similar cases accurately considering the clinical
context the radiologists seek.

For the last study, we propose a guided search method that integrates an image with
a radiologist’s text description to guide the retrieval process. This method guarantees
that the retrieved images are suitable for the comparative analysis to confirm or rule
out initial diagnoses (the differential diagnosis procedure). Furthermore, our method is
based on a deep metric learning technique and is better than traditional content-based
approaches that rely on only image features and, thus, sometimes retrieve insignificant
random images.
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1
Introduction

In December 2019, theWHOwas informed about the disease outbreak with an unknown
cause in Wuhan, China [JXY+20]. Among early patients were a 49-year-old woman (in
the following, called patient one) and a 61-year-old man (in the following, called patient
two). Both were admitted to a hospital on December 27, 2019, with fever, cough, and
chest discomfort [ZZW+20]. Patient one was diagnosed with Pneumonia, a lung inflam-
matory condition commonly affecting tiny air sacs of the lungs (alveoli) [Pne22]. This
diagnosis was through the findings observed by a CT imaging examination. Pneumonia
was also detected in patient two, and its manifestations were through a CXR imaging
examination. Both patients underwent pneumonia treatment, including an oxygen ven-
tilator to help them breathe. Patient one was recovered and discharged from the hospital
on January 16, 2020, while patient two died on January 9, 2020 [ZZW+20].

The cause of the disease in both patients was later identified as a new virus, also
known as a novel coronavirus (SARS-CoV-2) [ZZW+20; LGW+20]. On 11𝑡ℎ of Febru-
ary 2020, the disease was officially named COVID-19 and declared a global pandemic on
11𝑡ℎ ofMarch 2020 byWHO [WHO22b]. Since then, COVID-19 has become amongmore
than eighty thousand diseases/conditions present in the WHO’s International Classifi-
cation of Diseases (ICD), a global standard of diagnostic health information [WHO22a;
ICD22]. COVID-19 has brought about more than 632 million cases and 6.59 million
deaths, as of 16𝑡ℎ of November 2022 (see Figure 1.1), making it one of the deadliest in
history [TFE22a; WHO22c].

Even though COVID-19 was a new disease then, this story is an excellent example
that showcases two critical things:

– First, it shows how vital medical imaging is as a diagnostic tool to understand
what is wrong underneath the human body.

– Second, it shows how important it is for clinicians to quickly and accurately in-
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Figure 1.1 WHO COVID-19 Dashboard [WHO22c].

terpret medical images, as the outcome can make a difference in a patient’s life.

In everyday clinical environments, patients typically go through a diagnostic pro-
cedure that is not that different from those mentioned above COVID-19 patients went
through. Usually, a patient would first visit a Medical Doctor for consultation after feel-
ing unwell. Depending on the patient’s case, a medical doctor would order various tests,
including a medical imaging examination, to diagnose a patient. Medical imaging exam-
ination is the preferredmethod because it allows clinicians to investigate the happenings
inside human bodies without surgery or other invasive procedures. It is one of the best
ways to diagnose patients with no harmful side effects.

Most medical imaging examinations fall under the Diagnostic Radiology umbrella.
By definition, diagnostic radiology is a branch ofmedicine relying on non-invasive imag-
ing scans for patients’ diagnosis. Diagnostic radiology can diagnose many problems, in-
cluding heart conditions, gastrointestinal conditions, broken bones, blood clots, etc. In
contrast, Interventional Radiology, another type of radiology, uses imaging technology
to help guide medical procedures, e.g., treating cancers, blockage in arteries or veins
(Angiography), liver and kidney problems, e.t.c. [Cli22]. A clinician specializing in diag-
nosing and treating diseases usingmedical imaging as their fundamental tool [WGA+19]
is known as a Radiologist. Typically a radiologist’s workflow follows the steps shown
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Figure 1.2 The radiologist’s workflow example in a clinical environment (Adapted
from [MÜ17]).

in Figure 1.2, in which following an order for the imaging examination by a medical
doctor, a radiologist would first acquire an image using imaging technology like X-rays,
CT e.t.c and then perform a detailed quality check of the image. Afterward, they would
interpret the image and compile a report detailing their findings [MÜ17], and a medi-
cal doctor would use these reports, among other things, to determine the treatment a
patient needs.

1.1 Motivation

Unfortunately, the radiologist’s workflowwhen interpretingmedical images is not straight-
forward. Instead, it is an iterative and challenging process often prone to errors. Many
factors contribute to this situation; among them is the subjective nature of diagnostic
radiology [WGA+19] itself.

An excellent example of this subjectivity is the so-called availability bias, a ten-
dency that immediate past experiences easily influence diagnostic assessments. Itri
et.al [ITM+18] observed this phenomenon in which a radiologist diagnosed a circled
region of interest in a CT image (seen in Figure 1.3) as perigastric hematoma instead of
lymphoma simply because he encountered a case shown in Figure 1.4 that had similar
visual patterns but had perigastric hematoma earlier on the same day.
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Figure 1.3 Nonenhanced CT image shows a perigastric area of attenuation (circled
region of interest) [ITM+18].

Subjectivity is also contributed by perception, which is the most critical skill in diag-
nostic radiology. In general, the perceptual expertise of radiologists is defined by their
refined visual search patterns [KRD+16], which highly correlates with their years of ex-
perience. Expert radiologists not only perceive abnormalities that non-experts do not,
but they also better understand what to attend to and ignore [GP19]. This means not
only that an intern radiologist is likelier to make errors than a specialist, but even a
specialist is prone to make diagnostic errors when they encounter a novel case.

Studies have shown that the estimated rate of diagnostic errors in radiology ranges
between 3% to 5%, and there are forty million diagnostic errors involving imaging an-
nually worldwide [ITM+18]. In the United States alone, nearly 5% of adults who seek
outpatient care are likely to experience diagnostic errors. On the other hand, diagnostic
errors contribute to up to 17% of adverse hospital events [SMT14] and nearly 10% of all
deaths annually. These errors are costly since they result in wasteful medical spending.
An annual estimated cost typically ranges between $17 billion to $29 billion [DCK+00].
From the legal side, around 75% of malpractice lawsuits against radiologists are also due
to their errors in diagnosis [Ber96; BCG18].

To eliminate diagnostic errors, Itri et al. [ITM+18] proposed a swiss cheese model of

safety that offers many layers of defense to eliminate different factors contributing to
the likelihood of making such errors. One component in these layers includes provid-
ing clinical decision support that augments radiologists’ workflow and helps themmake
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Figure 1.4 Axial contrast-enhanced CT image showing a perigastric hematoma
(arrow) [ITM+18].

accurate clinical decisions. A medical image retrieval system can provide such support.
An excellent example of its use-case is when a novice radiologist wants to interpret a
CXR image with local white opaque patches, indicating either consolidation or pneu-
monia [RZK+19]. To confirm or rule out these initial diagnoses, he/she wants to retrieve
confirmed similar cases from the hospital archive to do a comparative analysis that can
showcase the similarity or dissimilarity of those cases with the image at hand. Hence,
he/she can get a shred of evidence needed to arrive at the definitive diagnosis.

However, accurately identifying and retrieving similar cases takes more than just
analyzing image contents alone. A medical image retrieval system needs to consider
clinical contexts, which means it needs to analyze information of different types, like
the demographic of the patients, symptoms, laboratory data, e.t.c. to accurately deter-
mine the similarities between different cases, just like how a radiologist would need to
consider information from different sources to diagnose and compare patient cases ac-
curately [HPS+20]. On the other hand, we need to consider that radiologists are trained
professionals. When they read medical images to interpret them, they form initial hy-
potheses on the likely diagnoses before eventually arriving at the definitive diagnoses.
This means that when they want to retrieve similar images, sometimes they already
know what kind of images they need to search for so that the retrieved image can add
value to the comparison analysis needed to form definitive diagnoses. From a medical
image retrieval system perspective, a system needs to take as input both images radiol-
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Figure 1.5 Thoracic diseases in CXR images as seen by a radiologist [WPL+17].

ogists want to compare and their initial hypotheses to help perform a targeted retrieval
per radiologists’ information needs.

1.2 Information Need

When radiologists interpret medical images, they do so with the background knowledge
they acquired from their medical training. This means they can infer abnormalities that
may indicate the presence of certain diseases/conditions, something a layperson cannot
do when looking at similar images. This information deduced by the radiologist’s eyes
is semantic and differs from how a computer interprets medical images. Examples in
Figures 1.5 and 1.6 illustrate this phenomenon. The former shows how radiologists spot
abnormalities (red circles) that indicate thoracic diseases in CXR images. The latter
shows how computers would see similar images one by one.

Computer sees images as a matrix of numbers (between 0 to 255), also called pixels,
the smallest units in an image. Each pixel contains a different number of channels.
When images are grayscale, they would have only one channel, but if they were colored
images, they would contain three channels: red, green, and blue [Pok19]. This difference
between how radiologists and computers interprets medical images is generally known
as a semantic gap and has enormous implications for how radiologists search for medical
images. To illustrate more on this, assume a radiologist named John is interpreting a
patient’s frontal and lateral CXR images with multiple densities (abnormal whiteness)
in both lungs, as shown by black arrows in Figure 1.7. As John keeps gazing, he finds that
the larger densities are ill-defined, and maybe there is an air-bronchogram in the right
lower lobe. These abnormalities could hypothesize that either the patient has multifocal
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Figure 1.6 Illustration of image pixels as seen by a computer [Pok19].

Figure 1.7 Frontal (left) and lateral (right) CXR images with multiple densities
(marked with black arrows) [Smi22].

consolidations or multiple ill-defined masses [Smi22].
To perform the differential diagnosis, a process of ruling out or confirming initial

hypothetical diagnoses, John wants to search for images from a hospital archive with
similar visual patterns but have either of the initial hypotheses so he can compare them
with the image he is trying to interpret. In this scenario, it would be easier for John to
get the results that satisfy his information needs if a computer could infer the semantic
concepts in medical images like disease labels instead of pixel values.

Luckily, the rise of deep learning, which is the study of models involving a composi-
tion of either learned concepts or learned functions [GBC16d] in a large amount, has the
potential to reduce this semantic gap. Through deep learning, a computer can learn the
abstract semantics of medical images by learning their representations through a nested
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Figure 1.8 A deep learning model illustration.

composite of concepts, with each concept defined in connection to basic concepts and
more abstract representations computed as a function of less abstract ones. This allows
computers to map input raw data, like a collection of pixel values, to high-level seman-
tic information, such as disease labels, as shown in Figure 1.8 [GBC16d]. Due to this
capacity of deep learning, we have heavily relied on deep learning techniques to inform
the retrieval processes in this thesis.

1.3 Contributions

In the big picture, we envision a general-purpose medical image retrieval system that
can handle various radiologists’ information needs. Such a system should be flexible
enough to accommodate radiologists’ different ways of expressing such needs and de-
liver the required results accurately. Developing such a system, however, is an ambitious
task that needs many moving pieces brought together. It needs collaboration between
stakeholders, including computer scientists and clinicians, especially in collecting and
annotating the required medical images and the other patients’ data for accurate diag-
nosis and identification of similarities between different cases.

This thesis contributes to developing such a system through three studies we con-
ducted in chronological order in which the approach of retrieving medical images in
a subsequent study is influenced by the limitations learned from the approach of the
previous study. On the other hand, these studies were also conducted depending on
the datasets available to experiment with the proposed methods. Our studies can be
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summarised as follows:

– In the first study, we looked into the basic medical image retrieval approach, re-
trieval based on contents. Here a radiologist expresses information need by sub-
mitting a sample image (query by example), and the system computes the sim-
ilarities of medical images based on their contents. To accurately retrieve the
required images, we aimed to find an effective feature representation method
to identify similarities between medical images considering their semantics and
modalities.We have experimented with different representation techniques based
on deep learning (deep features) and handcrafted techniques (mainly texture fea-
tures). The experimental results show that deep features are superior to hand-
crafted features. It also shows which deep learning architectures can effectively
learn and extract medical image visual contents. On the other hand, the study
shows the limitation of relying on content alone, as sometimes the system re-
trieves insignificant random images, which does not add value in augmenting ra-
diologists’ diagnosis workflow.

– Owing to the lesson of the first study, our second study aimed at supplementing
medical image contents with patient demographics meaning a radiologist can ex-
press information needs by submitting a query comprising a sample image and
patient’s demographic information. On the other hand, using deep learning, we
added disease predictions to further helps in the identification of similarity be-
tween different cases. By leveraging images’ content features, patient demograph-
ics, and disease predictions, our method can understand the clinical context and
thus accurately improve the identification and retrieval of similar cases. Even
though this method improves the retrieval results, it is limited in helping radiol-
ogists with specific comparison analyses like the one needed during the differen-
tial diagnosis procedure. To augment a differential diagnosis process, radiologists
would want to retrieve specific images that are significant for the particular anal-
ysis.

– In the third study, we propose a method that allows radiologists to target specific
images to retrieve. In this method, radiologists can submit queries consisting of
sample images and text descriptions expressing their information needs. Based
on a deep metric learning technique, our proposed method then learns how to
combine the image contents and text descriptions to form a query and also the
embedding function that puts the formed query closer to the targeted images and
further from other images in the embedding space. By leveraging image contents
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and text descriptions, our method guarantees that radiologists retrieve significant
images for the comparative analysis needed for differential diagnosis procedures.

As mentioned above, these three studies were limited to the availability of the re-
quired public datasets to validate and prototype the proposed methods. Nevertheless,
their methods can be extended to different medical images and patient data when avail-
able. In the following, we briefly outline the contributions of this thesis:

– We present a detailed empirical study of different feature representation tech-
niques based on handcrafted methods (mainly texture features) and deep learning
(deep features) to retrieve medical images.

– We propose an effective feature representation method and deep learning archi-
tectures for learning and extracting medical image features.

– We propose a method that accurately identifies and retrieves similar medical im-
age cases considering their clinical context by leveraging image contents, patient
demographics, and deep-learning-based disease predictions.

– We propose a guided search method that combines image contents with radiol-
ogists’ text descriptions to target retrieving specific images suitable for the com-
parative analyses needed during the differential diagnosis procedures.

1.4 List of Publications

The following papers have resulted from some of the work presented in this thesis:

– Ashery Mbilinyi and Heiko Schuldt. Cheres: a deep learning-based multi-faceted
system for similarity search of chest x-rays. In Proceedings of the 37th ACM/SIGAPP

Symposium on Applied Computing, pages 669–676, 2022.

– Ashery Mbilinyi and Heiko Schuldt. Retrieving chest x-rays for differential diag-
nosis: a deep metric learning approach. In 2021 IEEE EMBS International Confer-

ence on Biomedical and Health Informatics (BHI), pages 1–4. IEEE, 2021.

– Ashery Mbilinyi and Heiko Schuldt. Cross-modality medical image retrieval with
deep features. In 2020 IEEE International Conference on Bioinformatics and Biomedicine

(BIBM), pages 2632–2639. IEEE, 2020.
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1.5 Thesis Structure

This thesis is organized into four parts. The current part motivates and introduces the
problem while the subsequent parts are as follows:

– Part II introduces the fundamental concepts applied in this thesis, starting with
the brief introduction of Diagnostic Radiology in Chapter 2. While Chapter 3, 4
and 5 covers Deep Learning Fundamentals, Medical Image Retrieval Systems, and
Similarity in Medical Images, respectively.

– Part III presents three studies conducted in this thesis, namely i) Content-Based
Retrieval (Chapter 6) ii) Retrieval Based onContents andDisease Predictions (Chap-
ter 7) and iii) Retrieval Based on Contents and Radiologists’ Text Descriptions
(Chapter 8). Each chapter highlights the problem studied and the methodology
used, including the experiment results, and finally proposes an approach to ad-
dress such a problem and how that approach contributes to developing a general-
purpose medical image retrieval system.

– Part IV finalize the thesis with Conclusion in Chapter 9 while Chapter 10 outline
future directions of this research.
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Foundations
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2
Diagnostic Radiology

Understanding howdifferentmedical imaging technologieswork sheds light on the chal-
lenges for radiologists and computer systems in interpreting images produced by these
technologies. This chapter briefly introduces diagnostic radiology and the standardmed-
ical imaging technologies also known asMedical ImagingModalities. We further explain
the principles behind these modalities in producing images and what information they
are examining when diagnosing the human body.

2.1 Introduction

Diagnostic radiology, also called diagnostic imaging or medical imaging, is the branch
of medicine that relies on non-invasive imaging scans for diagnosing patients [Cli22].
Due to the diversity of human body tissues and structures of various organs and their
diseases and conditions, different diagnostic radiology technologies exist so far. On the
other hand, scientists continue inventing different technologies to find the proper mech-
anism to examine the internal structure of the human body to get the correct diagnoses.
Currently, some conventional medical imaging technologies include, Radiography also
known as X-rays, Ultrasound, and Nuclear Medicine, also known as Gamma Cameras.
Others include Magnetic Resonance Imaging, Computed Tomography, Diffusion Tensor
Imaging, Optical Coherence Tomography, and, Positron Emission Tomography [Goa20].
Both technologies generally facilitate the working human body’s internal aspects to sim-
ulate the 2-D or 3-D digital images for medical examinations [Kit22].

2.2 Medical Imaging Modalities

Medical imaging modality refers to the technique and process used to visualize a partic-
ular part of the body, organs, or tissues for diagnostic purposes [Kit22]. Each modality
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Figure 2.1 An illustration of X-ray imaging procedure [Key23].

usually exploits a physical phenomenon such as radioactivity, magnetic resonance, elec-
tromagnetic radiation, the propagation of sound waves, etc., to generate digital images
or visualizations of the human body’s internal tissues or a part of the human body in
a manner that is non-invasive [ZGD+20]. Said differently, each imaging modality maps
a specific physical parameter [Goa20]. The information produced by this mapping is
what a radiologist uses to infer abnormalities when diagnosing a patient. Therefore,
the technology and machinery used in each imaging modality vary depending on which
physical parameters a radiologist wants tomeasure. Some of these technologies measure
a particular physical parameter using radiation while others do not [Cli22].

The following sections briefly explain the mechanics behind conventional modalities
(Radiography, Computed Tomography, Positron Emission Tomography, Ultrasound and
Magnetic Resonance Imaging, and ) with respect to the physical parameters they are
measuring.

2.2.1 Radiography

Diagnostic radiography relies on X-ray radiations, also known as Röntgen rays, to exam-
ine the body. These radiationswere accidentally discovered byWilhelmConrad Röntgen
when he found a glow of crystals near a high-voltage cathode-ray tube while working
at Würzburg University, Germany. He then concluded that the cathode-ray tube gener-
ated energy that could penetrate the nearby paper, causing the crystals to glow [Kit22].
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Figure 2.2 The X-ray images for different body parts [CDC22].

Since no one understood these fascinating rays, he named them X-rays, a notion from
the mathematical designation for something unknown. In other words, X-rays are un-
known radiations. Typically, an X-ray image maps how different tissues absorb differ-
ent amounts of radiation. Human bodies comprise substances of varying densities, and
hence, by highlighting these differences using the absorption or attenuation of X-ray
photons, the X-ray film can reveal the internal structure of the body [Cat22]. To pro-
duce X-ray images, the X-ray machine’s tube is usually directed toward the patient’s
body area of interest, e.g., Chest, Knee, etc. X-ray radiations from the tube are then
passed through the body, in which a radiation detector on both sides of the body pro-
cesses the radiations to visualize the interiors. The process is entirely done without
incisions, as illustrated in Figure 2.1. The examples of X-ray images produced for dif-
ferent body parts can be seen in Figure 2.2. Typically, bones usually appear white since
the calcium within absorbs X-ray radiation the most. On the other hand, fat and other
soft tissues would look grey since they absorb less, while air absorbs the least, so the
lungs usually appear black. Any abnormalities in how these tissues absorb the radiation
give a diagnostic clue to radiologists. Diagnostic radiography, commonly referred to as
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Figure 2.3 An illustration of the CT imaging procedure [Tho23].

X-ray, comes second after laboratory tests as the most widely used medical test, [Cat22].
It remains one of the most critical examinations globally for screening, diagnosis, and
managing various diseases that are life-threatening [IRK+19].

2.2.2 Computed Tomography

The main drawback of radiography is that the information’s depth is entirely lost be-
cause the film produces images representing the X-ray beams’ total attenuation when
they pass through the patient [Cat22]. To address this drawback, Godfrey Hounsfield
initially thought by considering X-ray readings of all angles around the object enclosed
in the box, one could figure out the depth information. To illustrate this concept further,
Godfrey assembled a computer to acquire position points by focusing X-rays at different
angles to construct an image of the hidden object. Subsequently, based on this concept,
he developed the prototype for the application in medicine that saw the first clinical CT
scan performed on a patient with a frontal lobe tumor at St. George’s Hospital in London,
the UK, in 1972 [Kit22]. Just like Hounsfield’s initial idea, the process of producing a CT
image involves taking many X-ray images of the region of interest by letting a patient
lie on the bed that moves to and fro towards a rotating ring as Figure 2.3 illustrates. The
amount of X-ray radiation absorbed relates to the thickness of the slice and is propor-
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Figure 2.4 A contrast between chest X-ray (left) and CT (right) images [JCB+20].

tional to the tissue’s density. Therefore, by changing the angle of the X-ray source tube,
a computer can correlate the tissue densities into a cross-sectional image. A CT scan
is mainly used by radiologists in need of highly detailed images in order to figure out
the course of a problem, especially on soft tissues like small nodules or tumors, which
is difficult to obtain with a standard X-ray machine. Sometimes, depending on the body
organs to be examined, a patient must take a contrast agent that makes the body absorb
X-ray radiations enough to make some structures more evident in the generated images.
Figure 2.4 illustrates differences between X-ray and CT images by contrasting a chest
X-ray and CT images of the same patient. Figure 2.5 shows a high resolution, low dose
chest CT with the tracheal stent.

2.2.3 Positron Emission Tomography

A PET scanner relies on a small dose of radiation to check the activity of cells in various
parts of the body. It gives more in-depth details about cancer or abnormal parts shown
using CT scans, X-rays, or magnetic resonance images [Mac22]. In other words, it tells
more than what X-rays, CT scans, and magnetic resonance images can show about can-
cer or other abnormalities. On the surface, the PET imaging procedure looks similar
to CT imaging procedure, but the physics behind the machine is different. A patient
is first injected with a radioactive tracer called Fluorodeoxyglucose (FDG) through the
arm. The PET scanner then tracks the radiation emitted by the tracer over a specific time
frame to create images indicative of radiation levels accumulating inside the body. Said
differently, a physical parameter the PET scanner measures is the number of co-incident
gamma rays emitted due to the decay of radiotracer as shown in Figure 2.6 [Goa20]. FDG
is close to glucose, and the cancer cells will absorb this radiotracer much faster compared
to normal cells [Kit22]. Accordingly, if no FDG levels are indicated, that would mean a
normal body functioning of the particular body region. Figure 2.7 shows a contrast be-
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Figure 2.5 High resolution, low dose chest CT with tracheal stent [Goa20].

Figure 2.6 An illustration of a PET imaging procedure [Goa20].

tween a CT and PET image of a 68-year-old male with lung cancer [KKY+16].

2.2.4 Ultrasound

The medical US took inspiration from underwater sonar research on using echo to lo-
cate and identify objects. Therefore, unlike the previously mentioned medical imaging
modalities that use radiation, Ultrasound, on the other hand, relies on sound waves to
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Figure 2.7 Comparison between CT (a) and PET (b) images. Arrows within the
images illustrate the difference in lung cancer manifestations between
these two modalities [KKY+16].

Figure 2.8 Comparison of US (left), CT (middle), and MRI (right) [Cat22].

construct a visualization of the human’s interior organs.

Using a transducer capable of emitting high-frequency sound waves (greater than 1
MHz, which is above the threshold of human hearing) [Goa20], Ultrasound scanners pass
these waves into the human body. The sound waves reflect off different organs and their
surrounding tissues to make echoes, which bounce back to the transducer. When these
echoes arrive at the transducer, they construct electrical signals that are then transmitted
to the Signal Processor. Using the speed of sound and the time of each echo’s arrival, the
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Figure 2.9 Comparison between CXR (a), CT (b), and MRI images (c,d,e, and f).
Arrow within the images illustrates the difference in the manifestations
of pneumonia [BBH+12].

signal processor computes the distance between the transducer and the tissue boundary.
This distance information is then used to construct two-dimensional images of organs
and tissues [BIB22b]. In other words, the ultrasound image maps the backscattering of
sound waves as a physical parameter [Goa20]. Ultrasound can investigate various prob-
lems in the human body, including gastrointestinal lung diseases, abdominal or chest
pain, cardiology, etc. Ultrasound is also mostly used to get real-time images of unborn
children [Kit22]. Since US images tissue boundaries instead of, e.g., density informa-
tion [Cat22], the images produced are slightly different from other modalities. Figure 2.8
shows a comparison between US, CT and MRI.
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2.2.5 Magnetic Resonance Imaging

Magnetic resonance imaging modality uses magnetism to generate a detailed image of
body areas. The human body comprises 63% hydrogen atoms from its water and fat
components [Kit22]. MRI is based on a complex technology that excites and detects the
change in the orientation of the rotational axis of protons that are in these water that
form living tissues [BIB22a]. It is suitable for examining soft tissues or non-bony body
parts, like the brain, muscles, nerves, spinal cord, tendons, and ligaments.

The magnetic resonance imaging procedure involves subjecting a patient to an in-
tense magnetic field and a series of radio waves. The MRI scanners employ power-
ful magnets that produce an intense magnetic field that aligns the body’s protons with
it [BIB22a]. When a radiofrequency current is then pulsed through the patient, the pro-
tons are excited and spin out of the equilibrium, forced against the pull of the magnetic
field. When the radiofrequency field is turned off, the MRI sensors can detect the energy
that comes out as the protons, the changes in the quantity of energy released depend-
ing on the environment and the chemical nature of the molecules, and the duration it
takes for the protons to realign with the magnetic field. Radiologists can infer the differ-
ence between different types of tissues as the function of these magnetic properties. The
MRI imaging procedure is similar to the CT (see Figure 2.3); however, MRI usually takes
longer, is much nosier, and requires the patient to stay still during the whole procedure.
Figure 2.9 shows a contrast between a CXR, CT and MRI images of a 66-year-old male
with Pneumonia [BBH+12].

2.3 Summary

In this chapter, we have briefly introduced the field of diagnostic radiology and differ-
ent imaging modalities used to diagnose patients. We have also explained the physics
behind each modality and the physical parameter measured as visualized by the im-
ages produced. With a trained eyes view, radiologists usually interpret these medical
images with respect to the physical parameters measured, and therefore they can infer
high-level semantic information. As explained in Section 1.2, since the computer inter-
prets images using low-level features only, a semantic gap between what a radiologist
and a computer see is created. Deep learning can help to reduce this gap. In the next
chapter, we introduce the fundamentals of deep learning and explain how deep learning
techniques help reduce this semantic gap.
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Deep Learning Fundamentals

With the help of deep learning, a computer system can map raw data input, like the
collection of pixel values, to high-level semantic information, like disease predictions.
This reduces the semantic gap in interpreting medical images between radiologists and
computer systems, making deep learning a critical tool for informing medical image
retrieval systems. In this chapter, we review the fundamentals of deep learning, starting
with a brief introduction to deep learning in general and then diving into different types
of neural networks used in this thesis.

3.1 Introduction

Deep learning is a particular kind of machine learning that achieves greater power and
flexibility by representing information as a nested hierarchy of concepts, with each con-
cept built up from more straightforward concepts and more abstract representations
computed in terms of less abstract ones [GBC16d]. The illustration in Figure 1.8 shows
an excellent example of this. Here, a deep learning model learns to represent the con-
cepts within a CXR image by integrating simpler concepts like contours and corners
to an abstract concept like the probability of diseases diagnosed. As explained in Sec-
tion 1.2, there is a semantic gap between what a radiologist sees in a medical image (see
Figure 1.5) as compared to how a computer would see the same image (see Figure 1.6).
By learning a more abstract representation of medical images, a deep learning model can
help to reduce this semantic gap and therefore helps to identify the similarity between
medical images during the retrieval process. In the abstract, when developing a deep
learning model, one must first understand the nature of the task and how to design the
appropriate model. For the former, most deep learning problems fall into either super-
vised or unsupervised tasks. In supervised learning, usually, there is a ground truth, and
the model has to learn the underlying approximation function that maps the raw input
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data to the ground truth information.
In contrast, an unsupervised learning task does not need the ground truth. Here, a

model’s task is to recognize underlying patterns in the raw input data. For the latter,
designing a model is not a straightforward process; instead, one must consider many
hyper-parameters. Among these hyper-parameters, the neural network architecture is
one of the critical design parameters. In the subsequent section, we introduce the neural
network architectures we used in this thesis, starting with a multi-layer perceptron, the
straightforward and typical neural network architecture.

3.2 A Multilayer Perceptron

The goal of Multilayer Perceptron (MLP) is to approximate some function 𝑓 ∗. For exam-
ple, for a classifier,𝑦 = 𝑓 ∗(𝑥)maps an input 𝑥 to a category𝑦. AnMLP defines amapping
𝑦 = 𝑓 (𝑥 ;\ ) and learns the value of the parameter \ that makes the best function approx-
imation [GBC16c]. In other words, a multilayer perceptron is a mathematical function
mapping input and output values [GBC16d]. These input values are passed through a
unit known as a neuron, designed based on the inspiration of how the core building
block of the brain works.

The neurons are assembled in a chain-like structure to form a network of neurons
(hence the name neural networks) to create a function composing many simpler func-
tions. For example, we might have two functions 𝑓 (1) and 𝑓 (2) connected in a chain, to
form 𝑓 (𝑥) = 𝑓 (2) (𝑓 (1) (𝑥)). These chain structures are the most widely used neural net-
work structures. In this case, 𝑓 (1) is called the first layer of the network, 𝑓 (2) is called the
second layer, and so on. The chain’s overall length produces the model’s depth; hence
the name deep learning [GBC16c]. Said differently, deep learning refers to the use of
an artificial neural network composed of a large number of layers [Fon20]. Moreover
the deeper the neural network architecture, the more it can potentially lead to progres-
sively more abstract representations at higher layers [BCV13]. Figure 3.1 illustrates an
example of an MLP with three layers: an input layer, hidden layer and output layer.

Like any learning algorithm, an MLP learns \ by adjusting the value of weights and
biases for each input to produce the desired output through a learning process that re-
quires four components, a dataset, a model itself, a loss function, and an optimization

strategy [GBC16e]. The dataset’s quality largely determines how well the model learns
the optimal weights. On the other hand, designing the model includes choosing the cor-
rect hyperparameters like the neural network architecture, including how many layers
the network should compose, how these layers should be structured, and how many
neurons should be in each layer [GBC16c]. In the following, we briefly describe the



Deep Learning Fundamentals 29

Figure 3.1 An example of the MLP with three layers [MNZ+15].

remaining two components, a loss function, and an optimizer.

Loss function: A loss function is the most critical aspect of designing a deep learn-
ing model [GBC16c]. Given the input, the neural network flows information forward to
produce the predicted output. The loss function helps to tell the gap between the pre-
dicted and target values. In turn, the model learns the optimal weights to produce the
desired predictions byminimizing the loss functionwith the help of the backpropagation
algorithm [RDG+95]. The backpropagation algorithm does that by allowing information
from the loss to flow backward through the network to calculate the gradients which
informs the model on how to adjust the network weights in each training iteration. In
other words, any loss function must be differentiable.

Optimizer: In the abstract, an optimizer task helps the model finds the parameter \
that significantly reduces a loss function 𝐿(\ ). Since neural networks primarily use non-
linear activation functions, which makes the optimization nonconvex, this is a problem
of finding the global minimum. It is difficult, however, to find the global minimum in
the nonconvex function. Luckily for large deep neural networks, most local minima
have a minimal loss function value; therefore, a genuinely global minimum is unimpor-
tant [GBC16f]. This means most optimizers in neural networks find a parameter \ after
finding good-enough local minima. Many optimization algorithms exist; however, the
fundamental and often used algorithm is Gradient Descent [Rud16].

In theory (the universal approximation theorem [HSW89]), any large MLP can learn
to approximate the desired function. However, learning may fail for two reasons. First,
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Figure 3.2 The Convolution and Pooling Operations [AA18].

Figure 3.3 Fully Connected Layers [AA18].

the optimization algorithm used for training may not find the value of the parameters
suitable for the target function. Second, the training algorithm could select the wrong
function because of overfitting [GBC16c]. One way to overcome these shortcomings of
MLPs is to design a task-specific neural network architecture that can approximate the
desired function. In the next section, we briefly introduce Convolutional Networks, a
particular neural network designed to learn appropriate functions for computer vision
tasks.

3.3 Convolutional Neural Networks

Convolutional Neural Network (CNN), also known as Convolutional Networks, Con-
vNets, or CNNs, are specialized kinds of neural networks suitable for processing data
that are in the multiple arrays form, for example, an image composed of three 2D arrays
containing pixel intensity values [GBC16b; LBH15]. These networks learn the high-level
semantics from raw input signals by exploiting the property that many natural signals
are compositional hierarchies in nature, in which higher-level features are acquired by
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integrating lower-level features [LBH15]. In images, local combinations of edges form
motifs, motifs combine into parts, and parts create objects. This property allows CNNs
to learn high-level abstract representations of images suitable for most computer vision
tasks, including image retrieval.

CNNs combines four key ideas to learn image features effectively: shared weights,
local connections, pooling, and the use of many layers to take advantage of the prop-
erties of raw input signals [LBH15]. These layers are of three types: convolutional,
pooling, and the fully-connected. The convolution layers use filters to perform convo-
lution operations when passing through the input 𝐼 with respect to its dimensions. Its
hyper-parameters involve the size of the filter 𝐹 and stride 𝑆 . The resulting output 𝑂
is afeature map also known as activation map [AA18]. The pooling layer performs a
down-sampling operation, usually applied after a convolution layer, to deal with spatial
invariance (see Figure 3.2). Particulary, average, and max pooling are particular kinds
of pooling where the average and maximum values are considered, respectively. Fully-
Connected Layer (FC), on the other hand, deals with a flattened input whereby each
input is connected to all neurons (see Figure 3.3). If present, FC layers are typically at
the end of CNNs and are used to optimize specific tasks like class score predictions.

In other words, the general framework of convolutional neural networks involves
the feature learning part, which comprises convolutional and pooling layers, and the
task-specific part, which involves fully connected layers as Figure 3.4 shows [LZM+18]
where the task-specific part is for the classification task.

Even though CNNs have already been very successful in many computer vision tasks
and applied in many commercial applications [GBC16b], the optimal way to design their
architectures to effectively learn image features is still an open question for researchers
to date. In the following, we briefly overview some of the most common and successful
convolutional networks’ architectures.

AlexNet: AlexNet [KSH17] won the 2012 ImageNet object recognition challenge
which, as a result of that success, the vast interest in both commercial and research of
deep learning arose [GBC16b]. As shown in Figure 3.5, thismodel’s architecture contains
eight learned layers which are five convolutional and three FC layers.

VGG-16: Simonyan and Zisserman [SZ14] developed this model for the 2014 Im-
ageNet Challenge, in which it took the first position in the localization and a second
position in the classification tasks. The idea behind this architecture was to investigate
the effect of the depth of the CNN on its accuracy in large-scale image recognition. Af-
ter thoroughly evaluating networks of increasing depth using tiny (3 × 3) filters, they
concluded that a critical improvement on the prior-art configurations could be achieved
by making the depth of the network between 16-19 layers, hence the name VGG16. Fig-
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Figure 3.6 VGG16 architecture [SZ14].

Figure 3.7 A residual learning block [HZR+16].

ure 3.6 illustrates the VGG16 architecture.

ResNets: Residual Neural Networks (ResNets) provides deep representation, which
is of core significance for various visual recognition tasks, and for that matter, it won
first place in the 2015 ImageNet localization and classification challenges. This archi-
tecture presented a residual learning framework to soothe the training of deeper net-
works [HZR+16], hence the name Residual Networks. To deal with the degradation
problem, He et al. introduced residual blocks in which intermediate block layers learn a
residual function with relation to the block input. This is like a refinement step in which
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Figure 3.9 A 5-layer dense block [HLM+17].

Figure 3.10 A DenseNet with three dense blocks [HLM+17].

the network learns to regulate the input feature map for higher-quality features, which
is not similar to a “plain” network architecture in which each layer learns new and dif-
ferent feature maps. If the refinement is unnecessary, ResNets intermediate layers can
learn to gradually change their weights toward zero so that the residual block represents
an identity function. Figure 3.7 illustrates the building block for residual learning in s
while Figure 3.8 shows a contrast of a with 34 layers compared to a plain and VGG-19
networks architectures.

DenseNets: A DenseNet architecture is a variant of ResNets, but instead of having
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a residual block, Huang et al. [HLM+17] introduced a dense block as shown in an ex-
ample of a five-layer dense block in Figure 3.9. Within a dense block, the feature maps
of all proceeding layers are used as inputs for each layer. Similarly, its feature maps
are also used as inputs into all following layers. This concatenation of feature maps
learned by various layers improves the variation in the information of subsequent layers
and, therefore, enhances efficiency. In turn, Densely Connected Convolution Networks
(DenseNets) provide robust feature propagation and promote the reuse of features.

As we previously explained, finding an optimal network architecture is still an open
research question. Nevertheless, finding its solution can shed light on a better way to
learn effective high-level feature representation, hence an optimal feature extractor for
image features, including medical images. However, even though deep convolutional
networks can learn abstract concepts for medical images, they still produce representa-
tions of higher dimensions. This introduces a higher computational cost for similarity
search needed for image retrieval tasks. The following section presents a neural network
architecture specifically for dimensionality reduction, the autoencoder.

3.4 Autoencoders

An autoencoder is the kind of neural network trained to attempt to duplicate its input
to its output [GBC16a]. This network has a hidden layer ℎ, internally that describes
a code that represents the input. Typically, the network consists of two parts: an en-
coder function (ℎ = 𝑓 (𝑥)) and a decoder that does the reconstruction (𝑟 = 𝑔(ℎ)) (see
Figure 3.11).

Given an input image 𝑥 , the encoder takes 𝑥 ∈ 𝑅𝑑 = 𝑋 and maps it to ℎ ∈ 𝑅𝑝 = 𝐹 ,
i.e., ℎ = 𝑓 (𝑥) where ℎ is the internal representation or code of 𝑥 in a feature space 𝐹
with lower dimension compared to input space 𝑋 (i.e., 𝑑 > 𝑝). Conversely, the decoder
𝑔 reconstructs the original image 𝑥 by mapping its representation to the reconstructed
image 𝑟 . Learning is done by minimizing the reconstruction loss 𝐿(𝑥, 𝑟 ) = | |𝑥 − 𝑟 | |. By
representing the input into a lower dimensional feature vector, the autoencoder prior-
itizes essential aspects of the input to be duplicated; therefore, it usually learns critical
properties of the raw input data.

In other words, an autoencoder can learn high-level semantic information from raw
input data by selecting only abstract concepts from the raw input data.

This means it is not especially useful if an autoencoder simply learns to set𝑔(𝑓 (𝑥)) =
𝑥 everywhere. Therefore, autoencoders are designed to not successfully learn to dupli-
cate input data perfectly [GBC16a] and hence only learn essential abstract concepts. Au-
toencoder is the quintessential example of a representation learning algorithm [GBC16d]
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Figure 3.11 A general structure of an autoencoder, mapping an input 𝑥 to an output
(called reconstruction) 𝑟 through an internal representation (code ℎ).
The autoencoder comprises two components: the encoder 𝑓 (mapping 𝑥
to ℎ) and the decoder 𝑔 (mapping ℎ to 𝑟 ) [GBC16a].

and has been successfully applied for information retrieval and dimensionality reduction
tasks [GBC16a].

3.5 Summary

This chapter briefly introduced deep learning and explained different neural network
architectures, including MLPs, CNNs, and autoencoders. We detailed how these neu-
ral network architectures learn the feature representations of images to encode high-
level semantic information. Since deep neural networks can reduce the semantic gap in
the interpretation of medical images between radiologists and computer systems, they
are critical tools for informing the retrieval process in medical image retrieval systems.
In the next chapter, we will discuss conventional medical image retrieval systems ap-
proaches especially their feature representation techniques.



4
Medical Image Retrieval Systems

Medical image retrieval systems as a research field fall under Information Retrieval, in
which three retrieval approaches, text-based, content-based, and multi-modal, are con-
ventional. In these three approaches, feature representation is the most critical part of
the system as it determines how the similarities between different cases of medical im-
ages are identified. In other words, feature representation is the prerequisite to achieving
excellent performance in any medical image retrieval system [LZM+18]. In this chapter,
we briefly introduce Information Retrieval and then deep dive into medical image re-
trieval systems, specifically into feature representation techniques. Finally, we conclude
with an overview of the evaluations of the retrieval systems.

4.1 Introduction

Information Retrieval (IR) is the process of finding material of an unstructured nature
through extensive collections (usually stored on computers) for the purpose of satis-
fying a particular information need [MRS10]. Typically, an IR system searches in col-
lections of unstructured or semi-structured data (e.g., documents, images, web pages,
video, etc.) [SC12] as opposed to structured information as dealt with by a database
management systems (DBMS) [Cre00].

The general conceptualization of the information retrieval process can be formalized
as follows [WTK+21]:

1) The user has an information need and forms a query;

2) The user submits the query to the IR system;

3) The IR system ranks the results based on a similarity function and returns the
top-ranked results;
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4) The user checks the results and decides to continue or stop.

This process depends on the assumption that there is a feature space where the rep-
resentations for both the user’s queries and the data available in the collection can be
compared. Therefore the general retrieval model can be expressed as a tuple as shown
in 4.1.

Definition 4.1 Generic retrieval model (based on [Gia18, p. 34]).

A retrieval model is a tuple
[D,Q, F , 𝛿 (·, ·)]

where

– D denotes a set of representations of data in a collection;

– Q denotes a set of representations of user needs through the query;

– F denotes a framework to model the data representations and the queries with
a feature transformation function 𝑓 (·) ∈ F ;

– 𝛿 (·, ·) is a comparison function, given as a similarity function or a distance func-
tion.

A medical image retrieval system is no different from a typical IR system in which
a user has to send a query (Q) to get results of top-ranked images evaluated by their
relevance (as computed by 𝛿 (·, ·)) by to the query. Traditionally, the standard way to
form a query has been to issue a text expressing information needs. The retrieval of
such a query would depend on if the texts in the query match the metadata of images
available in the archive. However, this text-based approach is tricky because it assumes
accurate annotations of medical images exist, which is not always the case in clinical
settings.

Another way of expressing the information need popular in the literature has been a
“query by example”. Here a user, a radiologist in this context, sends a sample image, and
the retrieval system searches for similar images by comparing the contents of the sam-
ple image to images available in the collection. Said differently, this is a content-based
approach. While this approach is widely preferable for medical images as it alleviates
the errors that come with unreliable annotations, it still has drawbacks. As explained
in Section 1.2, a semantic gap exists between how a computer sees medical images and
how a radiologist’s trained eyes interpret the same images. This means the notion of
similarity between images as evaluated by a computer system might vary from how a
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radiologist would judge. To address this gap, the feature representations of images need
to accommodate high-level semantic concepts similar to how a radiologist interprets
images. Said differently, computers must learn to see images as a radiologist does.

4.2 Text-Based Retrieval

Text-based medical image retrieval systems can be traced back to the 1970s, and they are
prevalent in the search on the internet web browsers [HLC12]. In these systems, users
usually express their information needs through a text query, and the retrieval results
are based onmatching the query text and themetadata associated with particular images
available in the archive. In other words, the retrieval efficiency depends on i) how the
system figures the user’s intent while processing the text query. ii) if the information
from the texts matches the annotations available in the archive.

Thematching is usually done by employing two standard techniques, namelyBoolean
retrieval and vector-space retrieval. In Boolean retrieval, the system checks if the query’s
exact or intended words are also in the metadata with the help of boolean operators
AND, OR and NOT that guide the evaluation of how relevant the respective metadata is
to the query. In other words, referring to Definition 4.1, boolean operators act as com-
parison functions to check the similarity between the text query (Q) and annotations
(D). This retrieval type is also known as exact-match retrieval and does not rank the
retrieved results.

On the other hand, in vector-space retrieval, also known as partial-match retrieval,
the query terms are further processed to form a vector representation. This vector rep-
resentation is then compared to the metadata representations to determine their simi-
larities through algebraic operations such as dot product or calculating the cosine angle
between them or their distance relationship within the vector space. The higher the
dot product, the closer the vectors in vector space, which indicates a higher degree of
similarity. On the other hand, the same applies to the smaller Euclidean distance be-
tween the vectors, which also indicates higher similarity between the associated images
in the archive to the query. Examples of text-based medical image retrieval systems
available in the literature include FigureSearch [YC08], BioText [HDG+07], Yale Image
Finder [XMK08], GoldMiner [KJT07], RADTF [DWB+10] and iMedline [GAL+11].

Usually, text-based retrieval systems are fast since the metadata can be structured,
making it optimal for the search process. In contrast, their reliability is highly affected
by the accuracy and availability of the metadata. For example, to determine the similar-
ity between medical images, the first and crucial step is categorizing them based on their
imaging modalities [GKK+02]. Unfortunately, modality is often not correct or present
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in metadata information that can be extracted from the associated captions of medi-
cal images [Ima12]. Under such circumstances, the retrieval quality would be reduced
significantly.

In other words, this dependency on annotation is the main strength of text-based
retrieval systems, as it can guarantee fast results. Ironically, it is also the main draw-
back since it is, unfortunately, costly to obtain annotated medical images in clinical set-
tings let alone their accuracy is not guaranteed. Annotating medical images is chal-
lenging for clinicians because it is time-consuming and tedious. In addition, it is also
error-prone because it is difficult to describe the content of medical images with limited
words [CLQ+19a; MSD+20; HAA+20; Mül20].

4.2.1 Feature Representation

For text-basedmedical image retrieval systems, feature representation is needed for both
the query and the associated metadata for the images in the archive. As explained in
Definition 4.1, the feature representation process acts as a framework (F ) that model the
data representations and the queries with a feature transformation function 𝑓 (·) ∈ F .
The overall transformation process can be split into two steps: first, term selection,
and second, feature vector generation [LLC+13]. Many systems employ techniques to
remove or conflate common words to standard forms in the term selection step. This
comprises the removal of stop words, which are mostly used words that usually occur
with high frequency and are generally of little value in search. The list of stopwords, also
known as a negative dictionary, varies in magnitude from the seven terms of the original
MEDLARS list (by, an, and, of, the, from, with) to the list between 250 to 500 words more
widely used. Examples of the latter are the list of 250words by van Rijsbergen, 471words
by Fox [FFY92], and the PubMed stop list [oMe07]. The conflation of terms to common
forms is executed through stemming with the goal of ensuring words with plurals and
common suffixes (e.g., -ing, -al, -ed, -er) are represented through their stem form [Fra92].
For example, the words cough, coughing, and cough are all indexed via their stem cough.
Removal of stop word and stemming help produce a compact representation that leads
to more efficient query processing [Her15].

In the feature vector generation step, a commonly used approach has been a Term

Frequency Inverse Document Frequency (tf-idf). tf-idf is a statistical measure used to de-
termine the mathematical significance of words in documents [Aiz03] and hence the
vectorization process is based on weights assigned to the words. Term Frequency (tf) is
a measure of the frequency with which a term (𝑡 ) occurs in a given document (𝑑) and is
assigned to each term in each document, with the following Equation 4.1:
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𝑡 𝑓 (𝑡, 𝑑) = 𝑓 (𝑡, 𝑑) (4.1)

where 𝑓 (𝑡, 𝑑) is frequency of term in document.
The 𝑖𝑑 𝑓 value is the logarithm of the ratio of the total number of documents to the

number of documents in which the target term occurs. It is assigned once for each term
in the collection, and it correlates inversely with the frequency of the term in the entire
collection. The equation to compute the 𝑖𝑑 𝑓 value is:

𝑖𝑑 𝑓 (𝑡) = 𝑙𝑜𝑔 𝑁

|{𝑑 ∈ 𝐷 : 𝑡 ∈ 𝑑}| (4.2)

where 𝑁 represent the total number of documents in the corpus 𝑁 = |𝐷 | and |{𝑑 ∈
𝐷 : 𝑡 ∈ 𝑑}| is the number of documents where the term 𝑡 appears (i.e., 𝑡 𝑓 (𝑡, 𝑑) ≠ 0).
If the term is absent in the corpus, it will be a division by zero. Therefore, altering the
denominator to 1 + |{𝑑 ∈ 𝐷 : 𝑡 ∈ 𝑑}| [TFE23] is common. Eventually, the weighting of
tf-idf combines the two terms(𝑤 ) [Her15]:

𝑤 (𝑡, 𝑑) = 𝑡 𝑓 (𝑡, 𝑑) ∗ 𝑖𝑑 𝑓 (𝑡) (4.3)

Considering the frequency of terms alone is not always practical in medical text due
to the fact that crucial terms may not occur frequently in medical records or reports.
Therefore, the overall term frequency may be a weak indicator of the importance of cer-
tain words in documents. Usually, the term in the medical texts determines the main
meaning [LLC+13]. To address this, some studies introduced the Boolean model within
tf-idf in which, instead of measuring the frequency of the term, a value of 1 is assigned
while the document contains the key term. Otherwise, 0 value is assigned [LLC+13].
Another drawback of tf-idf and other approaches alike, e.g., BM25, is that they cannot
capture the semantic association betweenwords, which is highly important in determin-
ing the semantic meaning of medical texts. Luckily, the advent of deep learning has cur-
rently brought advanced text representation techniques such as Word2Vec [MCC+13],
Glove [PSM14], BERT [DCL+19] e.t.c that can be applied in medical settings. In the
abstract, the main idea in these deep learning models is to learn the relationships be-
tween terms and therefore infer the semantics and contextual information in medical
texts hence they can significantly improve retrieval when deployed in text-based medi-
cal image retrieval systems.
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4.3 Content-Based Retrieval

Among many things, content-based retrieval aims to complement the weakness of the
text-based approaches by relying on the actual contents of medical images rather than
their annotations to identify and retrieve similar cases. This, however, is not a trivial
task primarily because of the semantic gap between computers’ mathematical nature
of interpreting images and radiologists’ trained interpretation of medical images (see
Section 1.2). Therefore it is of utmost importance for a content-based retrieval to utilize
feature representations techniques that can abstract high-level semantic concepts from
images to be close to how a radiologist sees medical images.

To illustrate the importance of encoding semantic concepts in the feature represen-
tation. Let us consider the following situation; for reference purposes, we call it situation
X. A radiologist has a CXR image with local white opaque patches on the left lung. This
is a sign of consolidation, pneumonia, or both [RZK+19] and would still be the same
diagnosis even if the same patches were on the right lung. In this situation, if the rep-
resentation encodes the features by linking with the position of the patches. It means,
during the retrieval, only images with similar patches on the left lungs will be retrieved
as similar images. Other images that still have pneumonia or consolidations would be
ignored. In turn, some images that would give vital information to a radiologist for a de-
tailed comparative analysis would be missing and hence, reducing a radiologist’s ability
to make an informed clinical decision.

4.3.1 Feature Representation

In images, feature representation methods usually aim to describe image features using
pixel values by constructing feature vectors that model specific information considering
low-level image signals like texture, shape and color. Said differently, low-level image
signals act as input to the feature transformation function, 𝑓 (·) ∈ F that the feature rep-
resentation methods depend on developing the framework, F for data, D and query, Q
representations (refer Definition 4.1). Generally, image feature representation methods
can be classified into two categories: handcrafted and learned features [LZM+18].

4.3.1.1 Handcrafted Features

Handcrafted features are extracted from images following algorithms designed by ex-
perts [LZM+18]. In simpler words, handcrafted features are manually designed features.
These features aim to characterize an image by focusing on specific issues like occlu-
sions and variations in scale and illumination [NGB17] e.t.c. In medical imaging, texture
has been a dominant signal to characterize an image compared to other signals like color
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and shape. This has been the case for two reasons. First, most medical imaging modal-
ities produce grayscale images; therefore, signals like color only add a little valuable
information. Second, a texture signal represents the spatial distribution of an image’s
pixel values; thus, they are helpful in medical images as they can reflect the detail within
an image structure [HLC12].

In addition, medical images contain an incredible amount of texture information
that is useful for clinical practices compared to other signals. For example, some MRI
images of tissues may not provide microscopic information that can be assessed visually.
However, histological alterations in some diseases may cause changes in the texture of
the MRI image that are susceptible to quantification using texture analysis. This has
been successfully applied to classifying pathological tissues from the lungs, kidneys,
heart, liver, breasts, prostate, thyroid, and brain [CBL+04]. In general, there exists a
significant number of methods to express texture features for medical images, and some
of these methods include the followings:-

Haralick’s Textures: Haralick’s textures compute the representation of image tex-
ture features based on the Gray Level Co-occurrence Matrix . This statistical method
extracts information about pixels’ positions with similar gray levels values in a two-
dimensional array [HSD73]. Both rows and columns of the array represent a set of possi-
ble image values that can be defined by first specifying a displacement vector𝑑 = (𝑑𝑥 , 𝑑𝑦)
and counting all pairs of pixels separated by𝑑 having gray levels 𝑖 and 𝑗 . So the resulting
matrix 𝑃 is 𝑃 (𝑖, 𝑗) = 𝑛𝑖 ∗ 𝑛 𝑗 where 𝑛𝑖, 𝑗 is the number of occurrences of the pixel values
(𝑖, 𝑗) lying at distance 𝑑 in the image [Mic04].

Using four co-occurrencematrices, Haralick [HSD73] proposedmeasures of fourteen
textural features: Angular Second Moment, Maximal Correlation Coefficient, Difference
Entropy, Sum Variance, Entropy, Correlation, Inverse Difference Moment, Contrast, In-
formation Measures of Correlation, Difference Variance, Sum Entropy, Sum Average,
and Sum of Squares Variance which describes the correlation in the intensity of pixel
values spaced next to one another. It also details how the intensities in the image’s pixel
values in a particular position relate and occur together [DMM19].

Among all, entropy, Homogeneity, and correlation are the three most prominent
Haralick’s features and most responsible in expressing medical images [DMM19]. En-
tropy (4.4) measures the Homogeneity and randomness or Homogeneity in pixel distri-
bution with respect to orientation or length. It usually increases in value as the random-
ness in the distribution increases. Homogeneity (4.5) refers to the similarity between dif-
ferent parts of the image, which means a homogeneous image will have a co-occurrence
matrix with a combination of high and low 𝑃 (𝑖, 𝑗) while a composite image will have
an even spread of 𝑃 (𝑖, 𝑗). Correlation (4.6), on the other hand, measures how a pixel is
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correlated to its neighborhood, which is the measure of linear dependencies in a gray
tone of the image.

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = (−1)
∑︁
𝑖

∑︁
𝑗

𝑃 (𝑖, 𝑗) ln (𝑃 (𝑖, 𝑗)) (4.4)

𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 =
∑︁
𝑖

∑︁
𝑗

1
1 + (𝑖 − 𝑗)2𝑃 (𝑖, 𝑗) (4.5)

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =

∑
𝑖

∑
𝑗 𝑃 (𝑖, 𝑗) − `𝑖` 𝑗
𝜎𝑖𝜎 𝑗

(4.6)

In here, `𝑖 and ` 𝑗 are the mean of the 𝑖 and 𝑗 pixels, respectively while 𝜎𝑖 and 𝜎 𝑗 are
the standard deviations.

Local Binary Patterns: LBPs is another texture feature representation technique
in which the representation is constructed by comparing each pixel with its surrounding
neighborhood of pixels. Constructing the LBP textural features involves converting the
image to grayscale and then for each pixel in the image, number of neighbours 𝑝 within
a radius 𝑟 are selected to calculate the LBP value (see Equation 4.7). The result is a two
dimensional array with the same height and width like the input image. This texture
descriptor is robust in terms of grayscale variations since, by definition, it is invariant
against any monotonic transformation of the grayscale [OPM02].

𝐿𝐵𝑃 =

𝑝−1∑︁
𝑝=0

𝑓 (𝑛𝑖 − 𝑛𝑐) × 2𝑝 (4.7)

where 𝑛𝑖 is the 𝑖th neighboring pixel and 𝑛𝑐 is the central pixel. The values of the
function 𝑓 (𝑥) are always 1 if 𝑥 ≥ 0; otherwise, it is 0.

Tamura Textures: Tamura et al. [TMY78] proposed six human visual perceptual
texture features built upon the results of psychological experiments. These features were
regularity, directionality, coarseness,line-likeness, contrast, and roughness. According
to Xiaoming et.al [XNH+18], the most expressive features for medical images are coarse-
ness, contrast, and directionality. Courseness measures the size of texels, the primitive
elements composing the texture. Its computational process is as follows.

Step 1: First, the mean for the brightness of all pixels over the neighborhood of size
2𝑘 × 2𝑘 (e.g., 32 × 32 when 𝑘=5) is calculated using equation 4.8.
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𝐴𝑘 (𝑥,𝑦) =

∑𝑥+2𝑘−1−1
𝑖=𝑥−2𝑘−1

∑𝑦+2𝑘−1−1
𝑗=𝑦−2𝑘−1 𝑔(𝑖, 𝑗)

22𝑘
(4.8)

where (𝑥,𝑦) denotes the position of the region in the selected image, and 𝑔(𝑖, 𝑗)
denotes the mean of the brightness in the 𝑖𝑡ℎ, 𝑗𝑡ℎ points for the selected region and 𝑘
determines the pixel’s range.

Step 2: Then, the mean intensity difference between neighborhoods that do not over-
lap and are on opposite sides of the point in both vertical and horizontal orientations is
calculated with equation 4.9 and equation 4.10

𝐸𝑘,ℎ =

���𝐴𝑘 (𝑥 + 2𝑘−1, 𝑦) −𝐴𝑘 (𝑥 − 2𝑘−1, 𝑦)
��� (4.9)

𝐸𝑘,𝑣 =

���𝐴𝑘 (𝑥,𝑦 + 2𝑘−1) −𝐴𝑘 (𝑥,𝑦 − 2𝑘−1, 𝑦)
��� (4.10)

where 𝐸𝑘,ℎ denotes the horizontal difference of this pixel and 𝐸𝑘,𝑣 denotes the vertical
difference of this pixel.

Step 3: For each pixel, we then pick the optimal size which brings the maximum
output value 𝑆𝑏𝑒𝑠𝑡 :

𝑆𝑏𝑒𝑠𝑡 (𝑥,𝑦) = 2𝑘 (4.11)

where 𝑘 maximizes 𝐸 in either direction, i.e.,

𝐸𝑘 = 𝐸𝑚𝑎𝑥 =𝑚𝑎𝑥 (𝐸1, 𝐸2..., 𝐸ℎ) (4.12)

Step 4: Finally, we get a measure of image’s coarseness 𝐹𝑐𝑟𝑠 by taking the average
value of 𝑆𝑏𝑒𝑠𝑡 for all pixels of the image (Equation 4.13)

𝐹𝑐𝑟𝑠 =
1

𝑚 × 𝑛

𝑚∑︁
𝑖=1

𝑛∑︁
𝑖=1

𝑆𝑏𝑒𝑠𝑡 (𝑖, 𝑗) (4.13)
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where𝑚 and 𝑛 are the optimal width and height of the image, respectively. Contrast
represents the brightness level between an image’s darkest and brightest spots. Intu-
itively, this is a critical feature, as we explained in Chapter 2, that one clue radiologists
look for when interpreting medical images is the light intensity variations, as it gives
information on the tissues’ absorption of radiation. The contrast of medical images is
calculated as follows:

𝐹𝑐𝑜𝑛 =
𝜎

𝛼
1/4
4

(4.14)

where 𝜎 is the standard deviation, and 𝛼4 is the kurtosis of gray values of the medical
image, respectively.

Directionality: The directionality is of crucial importance in medical images, as it
represent the texture orientation of the human muscles or tissue [XNH+18].

The calculation procedure for directionality is as follows: i) The modulus of the gra-
dient vector and the local edge direction of each pixel are calculated using Equations 4.15
and 4.16.

|△𝐺 | = |△𝐻 | + |△𝑉 |
2

(4.15)

\ = 𝑡𝑎𝑛−1
(
△𝑉
△𝐻

)
+ 𝜋
2

(4.16)

Both Equations 4.15 and 4.16 can be obtained through convolving a 3×3 rectangular
area around an image’s pixel point with two 3 × 3 masks.

ii) Initially, divide the region 0 - 𝜋 into 16 similar parts and acquire the angle 𝜙 corre-
sponding to the highest mode of the gradient vector in each similar interval [XNH+18].
Then, compute pixel number 𝑛𝑝 when |△𝐺 | in each region corresponding to the angle
\ is larger than the threshold. Secondly, compute the value of gradient vectors of all
pixels to build the histogram 𝐻𝑑 and discretize the range values in the histogram. Af-
terward, the peak position of 𝐻𝑑 can be represented by 𝜙𝑝 . Finally, by considering the
sharpness of the peak in the histogram, the overall direction of the medical image can
be calculated( 4.17).
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𝐹𝑑𝑖𝑟 =

𝑛𝑝∑︁
𝑃

∑︁
𝜙∈𝜔𝑝

(
𝜙 − 𝜙𝑝

)2
𝐻𝑑 (𝜙) (4.17)

where 𝑝 represents the peak and 𝜔𝑝 represent the range of the peak between each
valley. Tamura texture features have been successfully applied for content-based re-
trieval by many studies including [XNH+18; ZFL+12; MS12; PK11; GMK11; XSC+10].

Scale-Invariant Feature Transform: Scale-Invariant Feature Transform (SIFT) is
the basis for most commonly used handcrafted features in image retrieval tasks [Low04;
LZM+18]. SIFT recognize scale-invariant key points through searching for local ex-
trema in the difference-of-Gaussian (DoG) space, which describes each key point by a
128-dimensional gradient orientation histogram. Subsequently, all SIFT descriptors are
quantized using a bag-of-words (BoW) [SZ03]. The feature vector of each image is cal-
culated by counting the frequency of the image’s generated visual words. SIFT, as a local
texture feature has gained significant success in the retrieval of medical images (e.g., it
was the top used feature in the 2012’s ImageCLEF’s medical image retrieval competi-
tion [MHK+12]) and also applied by [ZLD+15].

One advantage of the texture feature representation methods mentioned above is
their applicability to differentmedical imagingmodalities, making themuseful for general-
purpose medical image retrieval systems. However, since each modality presents its
unique feature, some researchers have designed specific texture features [LZM+18]. For
example, to encode texture information vital in representing cell/nuclei in histopathol-
ogy images, Basavanhally et al. [BGA+10] tailored three graph-based features, i.e., min-
imum spanning tree, Voronoi diagram, and Delaunay triangulation, and to describe the
structure of the lymphocytes. On the other hand, Filipczuk et al. [FFK+13] designed
25 features to represent cytological images while considering the nuclei size. The tex-
ture features were based on gray-level pixels and the distribution of nuclei in the image.
These features were more distinctive compared to the general-purpose handcrafted fea-
tures, and they achieved an excellent performance in detecting, retrieving, and analyzing
cells and nuclei [XY16].

Apart from histopathological images, specifically designed features are widely used
to represent 3D medical images, like neuronal morphology and 3D brain tumors. A
good example is the work by Cai et al. [CLW+10] in which they developed PCM-based
volumetric texture features to retrieve 3D neurological images. Another work is byWan
et al. [WLQ+15], who designed geometrical moments and quantitative measurements as
features to represent the 3D neuron morphological images.

Despite handcrafted features having obtained many excellent results in content-
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based medical image retrieval, they still have drawbacks, as explained in the following:

i. Handcrafted features require expert knowledge; however, expert knowledge does
not always work well, especially when the dataset is large since there is a high
chance of outliers and rare cases that are not covered by standardized rules to
exist [LZM+18];

ii. Many handcrafted approaches are explicitly designed for the particular medical
data, and therefore they are unexpendable to others;

iii. Handcrafted methods struggle to capture high-level semantic concepts of medical
images; hence, they are limited in reducing the semantic gap.

Accordingly, there is a need for more extensible, automatic, and efficient feature
representation methods for the efficient retrieval of medical images [LZM+18]. These
methods should also be able to abstract high-level concepts of medical images.

4.3.1.2 Learned Features

Unlike handcrafted features obtained through domain expert knowledge, learned fea-
tures are obtained purely through data-driven procedures [LZM+18]. As explained in
Section 1.2, it is cumbersome for a computer to infer the semantic meaning of raw input
signals, like the pixel values that represent the image. However, by using deep learn-
ing, a computer can learn the mapping of raw sensory input data to output and feature
representations itself [GBC16d]. These learned representations often encode high-level
semantic information compared to handcrafted features. Therefore, they can reduce the
semantic gap between radiologists’ and computer’s interpretation of medical images.
On the other hand, they can solve the selectivity-invariance dilemma- which means
they can be selective to the aspects of the image that are important for discriminating
a respective image [LBH15] with other images, which is a crucial function for medical
image retrieval systems.

Due to its success in computer vision tasks (refer Section 3.3), such as image re-
trieval, CNNs have been widely used to learn the representation of medical images. One
approach has been to first train a CNN in a supervised learning task like image classifi-
cation through which it learns the feature representations. Afterward, a model is used as
a feature extractor for the retrieval task. One advantage of CNNs is that they are trans-
lational invariant, meaning they work equally well across positions, and their response
shifts with the target’s position. Referring to situation X, we introduced at the start of
Section 4.3, it means a CNN would still detect pneumonia, no matter whether the local
white opaque patches would be on either side of the CXR image.
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Figure 4.1 Example of natural images (from ImageNet dataset [DDS+09]) and
medical images (from CheXpert dataset [IRK+19] ).

However, the challengewith CNNs is that they require a large amount of labeled data
to train. It is cumbersome to get large amounts of data in clinical settings due to confi-
dentiality issues, among many reasons. To deal with such a drawback, many researchers
have explored different approaches to adapt CNNs for medical images. One of those ap-
proaches has been to apply transfer learning, in which a model is first pre-trained on
natural images, usually the ImageNet dataset, and then used as a feature extractor or
fine-tuned on the targeted medical images dataset [HL15a; AAK+19; BDW+15; TSG+16;
SCN+22]. With this approach, however, one must consider that medical images are fun-
damentally different from natural ones. Usually, in medical imaging, there is a large
bodily region of interest, and local textures’ variations can identify pathologies. For ex-
ample, when considering retinal fundus images, tiny red dots indicate microaneurysms
and diabetic retinopathy; in CXR images, local white opaque patches are indications of
consolidation and pneumonia. In contrast, this is different from natural images, where
often, there is a distinctive global subject of the image like planes, dogs, bees, etc., as
Figure 4.1 illustrates. Thus, there is still an open question of if ImageNet-trained models
can reuse the learned features for use in medical images [RZK+19]. Another approach
explored has been to train a CNN entirely from scratch in the available small medical
image datasets but putting several measures in place to avoid overfitting and class imbal-
ances issues [CLQ+19a]. Also, using a pre-trained model directly to extract features and
use these features to complement handcrafted features by integrating them [LZM+18].

Even though CNNs have proved very useful in creating highly performant feature
representations, their representations are usually of higher dimensions increasing com-
putation cost for the retrieval process. To overcome this drawback, Autoencoders, which
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are dimensionality reduction neural networks, can significantly help. Autoencoders
present two main advantages. First, they can learn features completely unsupervised
and, therefore, alleviating the problems of depending on sometimes uncertain medi-
cal image labels. Second, they can learn a lower-dimensional feature representation
which can significantly reduce the computational cost required during the similarity
search process to retrieve medical images. Some works that explored autoencoders in-
cludes [WKW+15]’, who developed a deep feature representation method using stacked
autoencoder to learn features in brainMRI images. On the other hand, Daoud et al. [DSH+19]
built an autoencoder model to learn deep representations for retrieving breast cancer ul-
trasound images. Other works includes [Özt20] and [SUO+16].

4.4 Multimodal Retrieval

From the feature representation vantage point, most multimodal approaches leverage
both text-based and content-based representations to inform the retrieval process. How-
ever, the main challenge in multimodal retrieval is the fusion of information from both
text and image media since there is an intrinsic difference between them in expressing
information. In the literature, the fusion for multimodal retrieval can roughly be catego-
rized into feature fusion (early fusion) and retrieval fusion (late fusion). The feature level
fusion integrates features from both text and image to a compound representation used
for the similarity search. While in the retrieval fusion, text-based and content-based re-
trievals are performed separately, and then the retrieval results are combined to form a
final ranked list.

Early fusion approaches have yet to be widely explored compared to retrieval fusion.
This is because it is difficult to determine how textual and image information should
contribute to the compound representation. An example of research in the feature fusion
category includes awork by Cao et al. [CLM+11], who developed amethod inwhich both
features were represented as a multi-dimensional matrix. Finally, the feature vectors
were incorporated by applying an extended Probability Latent Semantic Analysis model
(pLSA). In 2021, Yu et al. [YHL+21] also developed a multimodal multitask deep learning
approach for retrieving radiological images in which amodel is trained to learn semantic
feature representations for both texts and images and maps these representations into
a common vector space. During retrieval, the representations from the common vector
space are used to measure similarities among the query and the multimodal database.

In late fusion, popular techniques studied are those that perform the text-based
method first and twomethods at the same time [HLC12]. For example, Demner-Fushman
et al. [DFAS+10] conducted three different experiments starting with text as follows:- (i)
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Text-to-Content: textual search was first conducted, and then a mean vector of 3-5 high-
est ranked retrieved images which were manually selected as a query for visual search.
(ii) Text re-rank: textual search is performed first, and then the retrieved images are
re-ranked based on the scores of the visual search. (iii) Interactive text-content: Users
manually selected relevant images from the top ten retrieved images for each query.
They then selected additional query terms from the relevant images’ document and used
this as the input to the textual search. The additional retrieved images by the expanded
query were ranked below images that were manually selected as relevant. This method
performed better compared to the other two. In general, the fusion of both texts and
images has proven to be effective as Zhang et.al [ZSC+17] performed experiments and
found that given different methods in comparison; the text-based methods outperform
the content-based retrieval. However, the fusion of text and visual content generates
the best performance overall. Other studies that combined both retrieval results at the
same time includes [DAED+15; LLC+13; GMK11; GAL+11; DAK10].

4.5 Retrieval Systems Evaluations

The ways to evaluate retrieval systems’ performance can be based on either unranked
or ranked results. A large number of IR studies, however, have shown that users of
retrieval systems are more likely to pay attention more to top-ranked results [MC17],
and therefore, rank-based measures are preferable. For radiologists, an effective system
is highly accurate in the top-ranked results. Consequently, such a system requires less
effort to identify relevant images for comparative analysis that supports radiologists’
decision-making process. Said differently, an effective retrieval system should signif-
icantly reduce the time radiologists require to interpret medical images and improve
their diagnostic accuracy [Her15; RHP+22] in the process. In this section, we briefly
describe popular metrics used in the evaluation of retrieval systems:

Precision and Recall: Both precision and recall evaluate the relevance of the re-
trieved results to the information need of the user expressed through a query, 𝑞. Preci-
sion (equation 4.18) computes the fraction ofwhich results are relevant in all retrieved re-
sults while recall (equation 4.21) considers, the number of relevant documents retrieved
with respect to all relevant results available in the database:-

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

��F𝑞 ∩ R𝑞 ����F𝑞 �� (4.18)
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𝑟𝑒𝑐𝑎𝑙𝑙 =

��F𝑞 ∩ R𝑞 ����R𝑞 �� (4.19)

where, R𝑞 is a set of relevant documents for a query 𝑞 in collection A that contains
the set of all documents and F𝑞 is a set of documents retrieved by a system for query
𝑞. When precision and recall are combined through weighted harmonic mean, we get a
F-measure or F1-score which is computed as follows;

𝐹1 =
(1 + 𝛽2) · 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 · 𝑟𝑒𝑐𝑎𝑙𝑙
𝛽2 · 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 (4.20)

where:
𝛽2 =

1 − 𝛼
𝛼

(4.21)

where 𝛼 ∈ [0, 1] and thus 𝛽2 ∈ [0,∞]. The choice of evaluating a system based
on either precision, recall, or F1 score is largely determined by the types of queries the
system executes and the data composition in the dataset searched through.

Average Precision: Average Precision (AP) is a measure that integrates precision
and recall for ranked retrieval results. For one’s information need, the AP is the mean of
the precision scores following each relevant document retrieved ( 4.22). AP is computed
as follows;

𝐴𝑃 =

∑
𝑟 𝑃@𝑟
𝑅

(4.22)

where 𝑟 is the rank of each relevant document, 𝑅 is the total number of relevant
documents and 𝑃@𝑟 is the precision of the top-𝑟 retrieved documents. AP is considered
a reasonable evaluation measure for emphasizing returning more relevant documents
earlier [ZZ09].

Mean Reciprocal Rank: The Reciprocal Rank (RR) measure computes the recip-
rocal of the rank at which the first relevant document was retrieved [Cra09].The value
of RR equals 1 when a relevant document was retrieved at the top position; if not, it
is 0.5 if a relevant document was retrieved at the second position, and so on. Mean Re-
ciprocal Rank (MRR) is the result of averaging the results across several queries. MRR
models a scenario where the user only wishes to retrieve and hence see the relevant doc-
uments [Cra09]. Therefore, the assumption here is a user will look down the rankings
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until he/she finds a relevant document, so if the document is found at rank 𝑖 , then the
precision for the viewed set is 1/𝑟𝑎𝑛𝑘𝑖 , which is also the reciprocal rank measure (see
equation 4.23).

𝑀𝑅𝑅 =
1
𝑄

𝑄∑︁
𝑖=1

1
𝑟𝑎𝑛𝑘𝑖

(4.23)

where 𝑄 is the size of query and 𝑟𝑎𝑛𝑘𝑖 denotes the rank of the relevant first-ranked
item in the 𝑖-th query.

Discounted Cumulative Gain: Discounted Cumulative Gain (DCG) is based on
two assumptions: i) First, highly relevant documents aremore important thanmarginally
relevant documents. ii) Second, the lower the ranked position of the relevant document,
the less important it is to the user, as it has a lower chance to be examined [MN19].
Therefore, DCG applies a graded relevance from examining a document as a measure of
importance, or gain. Gain is accumulated at the top of the ranking and may be reduced
or discounted as the ranks decrease. So, in general, DCG is the total gain aggregated at
a specific rank position 𝑝 .

𝐷𝐶𝐺𝑝 =

𝑝∑︁
𝑖=1

2𝑟𝑒𝑙𝑖 − 1
𝑙𝑜𝑔2(𝑖 + 1) (4.24)

where 𝑟𝑒𝑙𝑖 is the graded relevance of the retrieved document at position 𝑖 .

4.6 Summary

This chapter briefly reviewed conventional approaches for medical image retrieval sys-
tems: text-based, content-based, and multimodal. We further explained the feature rep-
resentation techniques for each approach and the retrieval evaluation metrics for re-
trieval systems in general. Feature representation is the first and critical step in any
medical image retrieval system. In other words, a good feature representation is a pre-
requisite for achieving optimal performance [LZM+18]. The second step is the similarity
search. In the next chapter, we give a detailed overview of similarities in medical images.
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Similarity in Medical Images

The performance of any medical image retrieval system depends on one key idea; there
is a similarity between the information need expressed by the radiologist through the
query and relevant images available in the archive. As described in the previous chapter,
feature representation is one step toward this goal. So any feature vector inherently
defines some notion of relatedness between medical images [MC17]. The second step is
similarity search which involves determining the degree of similarity between different
cases ofmedical images. This chapter briefly reviews the notion of similarity for retrieval
systems in general and dives into similarities in medical images from mathematical and
clinical perspectives. We then highlight the importance of considering both perspectives
to retrieve medical images accurately.

5.1 The Notion of Similarity

Similarity search has become crucial in an age of large information repositories where
the objects contained do not possess any specific order, for example, an extensive col-
lection of sounds, images, and other sophisticated digital objects [TFE22f]. In general,
similarity search is a range of mechanisms that share the concept of searching (typically,
extensive) in spaces of objects where the only comparator available is the similarity be-
tween any object pairs. In other words, a similarity search is a comparative analysis
between a pair of objects, and there must be a measure of similarity between these ob-
jects.

The notion of similarity in nature is very context-dependent, meaning that what
makes a pair of objects similar primarily changes according to the information the user
needs in that particular scenario. In clinical settings, in general, understanding the con-
text is very important. It can make a difference between life and death due to the care
administered to the patient as a result of inferring the proper context. To retrievemedical
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images accurately, the need to consider the appropriate context between different cases
of patients and what makes some cases similar is of utmost importance. This requires
consideration from both mathematical and clinical perspectives.

5.1.1 The Mathematical Perspective

From the mathematical perspective, we can infer the similarity between a pair of objects
through a metric space, a concept in which a non-empty set exists together with a met-
ric on the set [TFE22c]. Referring to the Definition 4.1, in a metric space is where the
comparison function (𝛿 (·, ·)) is executed.

5.1.1.1 Metric

A metric is a function that quantifies the "distance" between any pair of elements in
the set, also known as points. A metric function 𝑑 (𝑥,𝑦) need to satisfy the following
properties for all 𝑥 , 𝑦, 𝑧 which are members of the set:-

– Symmetry: 𝑑 (𝑥,𝑦) = 𝑑 (𝑦, 𝑥), the distance from 𝑥 to 𝑦 is the same as the distance
from 𝑦 to 𝑥 .

– Non-negativity: 𝑑 (𝑥,𝑦) ≥ 0, the distance between two distinct points is positive.

– Identity of Indiscernible: 𝑑 (𝑥,𝑦) = 0 ⇐⇒ 𝑥 = 𝑦, the distance from 𝑥 to 𝑦 is zero if
and only if 𝑥 and 𝑦 are the same point.

– Triangle Inequality: 𝑑 (𝑥,𝑦) ≤ 𝑑 (𝑥, 𝑧) + 𝑑 (𝑧,𝑦), the distance from 𝑥 to 𝑦 is less than
or equal to the distance from 𝑥 to 𝑦 via any third point 𝑧.

In broad strokes, we can categorize metrics into two groups; pre-defined and learned
metrics [CL17]. Pre-defined metrics assume that the points in the metric space are
already perfect to describe the similarity/dissimilarity between data. In other words,
in the retrieval model tuple as explained in Definition 4.1, the data, D and query, Q
representations exist already; therefore, we can directly compute the distance between
these data points as the similarity measure without much knowledge of the data—the
less the distance, the high the similarity. Example of such metrics includes Minkowski
distance functions. The Minkowski distance 𝐿𝑚 of order 𝑝 between two points 𝑝1 =

(𝑥1, 𝑥2, 𝑥3..., 𝑥𝑛) and 𝑝2 = (𝑦1, 𝑦2, 𝑦3..., 𝑦𝑛) in normed vector space is defined as:

𝐿𝑚 =

(
𝑛∑︁
𝑖=1

|𝑥𝑖 − 𝑦𝑖 |𝑝
) 1

𝑝

(5.1)
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The value of 𝑝 is often based on experimentation since its effectiveness in measuring
similarity is based on the context, or use case applied. Therefore determining the optimal
value of 𝑝 is critical in obtaining the correct results. When we set 𝑝 = 1, the Minkowski
distance becomes a Manhattan distance (𝐿1) which is the distance between two points
measured along axes at right angles.

𝐿1 =

𝑛∑︁
𝑖=1

|𝑥𝑖 − 𝑦𝑖 | (5.2)

When we set 𝑝 = 2, the Minkowski distance is the same as the Euclidean distance
(𝐿2), which is the straight line distance between two points.

𝐿2 =

√√
𝑛∑︁
𝑖=1

(𝑥𝑖 − 𝑦𝑖)2 (5.3)

In summary, Minkowski distance is the generalized distance between two points,
while Manhattan and Euclidean distances are special cases of Minkowski distance when
𝑝 = 1 and 2, respectively. As explained above, setting value 𝑝 is critical in obtaining the
preferred results. The illustration of this is seen in Figure 5.1 that shows unit circles (the
level set of the distance function in which each point is at the unit distance from the
center) with different values of 𝑝 [TFE22d].

Even though the Minkowski distances, especially 𝐿1 and 𝐿2, are widely used in the
literature, there is still a shortfall in relying only on pre-defined metrics because the
retrieval performance will ultimately depend only on the effectiveness of the priors, the
feature representations. Learned metrics that jointly learn the feature representations
and a distance metric based on the knowledge of data can significantly address this
shortfall, as explained in the following section.

5.1.1.2 Metric Learning

The primary goal of a metric learning approach is to learn a new metric that reduces
the distances between objects of the same class and increases the distances between
the objects from different classes [DLF+17]. Said differently, metric learning aims to
bring similar objects closer while dissimilar objects further apart (see Figure 5.2c). In the
context of the Definition 4.1, metric learning is a technique to develop the framework,
F to model both data, D and query, Q representations end-to-end with the help of the
comparison function, 𝛿 (·, ·).
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Figure 5.1 Unit circles with various values of 𝑝 (Minkowski distances) [TFE22d].

Before deep learning became prominent, the most notable example of a learned met-
ric was the Mahalanobis distance, defined as follows; let 𝑋 = [𝑥1, 𝑥2, 𝑥3..., 𝑥𝑛] ∈ R𝑑∗𝑛 be
the training samples, where 𝑥𝑖 ∈ R𝑑 is 𝑖th training example, and 𝑛 is the total number of
training samples. The distance between 𝑥𝑖 and 𝑥 𝑗 (𝑑𝑚 (𝑥𝑖, 𝑥 𝑗 )) is calculated as:

𝑑𝑚 (𝑥𝑖, 𝑦 𝑗 ) =
√︃(
𝑥𝑖 − 𝑦 𝑗

)𝑇
𝑀

(
𝑥𝑖 − 𝑦 𝑗

)
(5.4)

As a distance metric, 𝑑𝑚 (𝑥𝑖, 𝑥 𝑗 ) must have all metric space properties, including sym-
metry, non-negativity, the identity of indiscernible, and the triangle inequality. On the
other hand,𝑀 is a matrix estimated from the data and needs to be symmetric and posi-
tive semi-definite, which means all of its determinants or eigenvalues must be positive
or zero. By spectral theorem [TFE22e],𝑀 can be decomposed to:
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𝑀 =𝑊 𝑇𝑊 (5.5)

where𝑊 is an orthogonal matrix composed of eigenvectors of𝑀 , which gives us the
equivalent definition of 𝑑𝑚 (𝑥𝑖, 𝑥 𝑗 ) to:

𝑑𝑚 (𝑥𝑖, 𝑦 𝑗 ) =
√︃(
𝑥𝑖 − 𝑥 𝑗

)𝑇
𝑊 𝑇𝑊

(
𝑥𝑖 − 𝑥 𝑗

)
= ∥𝑊𝑥𝑖 −𝑊𝑥 𝑗 ∥2 (5.6)

where | | · | | is euclidean norm and𝑊 has a linear transformation property. Due to this
property, the Euclidean distance in the transformed space is similar to the Mahalanobis
distance in the original space for two objects.

The Mahalanobis distance metric captures the data structure and their relationships
underneath, providing a newdata representation in the transformed spacewith adequate
discrimination power among classes of similar objects. However, the major limitation of
this Mahalanobis distance is its reliance on the linear transformation of data. In the real
world, the relationship among data is usually not linear; therefore, Mahalanobis needs
to capture the true nature of relationships among data. As an alternative approach to
this limitation, researchers have turned to Deep Metric Learning. Deep Metric Learning
can explore nonlinearity among data, transforming the data into a non-linear space.

5.1.1.3 Deep Metric Learning

DeepMetric Learning (DML) relies on deep neural networks to optimize the feature rep-
resentation of the input data conditioned based on the similaritymeasure applied [CL17].
Unlike Mahalanobis’ method, the neural networks in DML use activation functions that
have a nonlinear structure, which helps to learn the nonlinear relationship among data,
hence transforming the data into a nonlinear space. Consequently, DML gives a new
feature representation with a more meaningful and discrimination power capable of
distinguishing even subtle dissimilarity between samples (see the illustration in Fig-
ure 5.2) [KB19].

There are many ways in which we can leverage DML. One way is through a clas-
sification task in which one can achieve similarity learning simply by training a model
to solve the classification problem [Agr21]. This model will then be used as a feature
extractor, making the feature representations upon which the distances are computed.
The assumption here is that objects from the same classes are automatically expected to
have smaller distances than objects from different classes.

Another approach is to train a DML model to learn the similarity between objects
end-to-end. Like any other deep learning algorithm, to build such an algorithm, four
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Figure 5.2 Deep Metric Learning [KB19].

components are required, i) a dataset, ii) a model, iii) a loss function, and iv) an optimiza-
tion algorithm [GBC16e]. The choice of the loss function is mainly the most critical one.
Traditionally, the widely used loss functions for DML in the literature have been the
contrastive loss and the triplet loss [Agr21]. An excellent example of this is a work by
Chung et al. [CW17], who proposed a deep Siamese Network (see Figure 5.3) to learn
representations of Diabetic Retinopathy Fundus images for content-based retrieval.

This network had multiple symmetric subnetworks tying the same parameters and
weights that update mirrorly and conjointly at the top by an energy function. The model
used Rectified Linear Unit (ReLU) nonlinearity as the activation function for all layers.
The similarity between images was computed using Euclidean distance, and the loss
function was defined through the computation of the contrastive loss as follows:-

𝐿(𝑊, 𝐼1, 𝐼2) = 1(𝐿 = 0) 1
2
𝐷2 + 1(𝐿 = 1) 1

2
[𝑚𝑎𝑥 (0,𝑚𝑎𝑟𝑔𝑖𝑛 − 𝐷)]2 (5.7)

where 𝐼1 and 𝐼2 are a pair of retina fundus images loaded into each of two identical
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Figure 5.3 Proposed Siamese Network by [CW17].

networks. 1(·) is an indicator function showing whether two images have similar labels,
where 𝐿 = 0 denotes the images have similar labels and 𝐿 = 1 denotes otherwise. 𝑊 is
the shared parameter that a neural network learns. 𝑓 (𝐼1) and 𝑓 (𝐼2) are the latent rep-
resentation vectors of input 𝐼1 and 𝐼2, respectively. 𝐷 is the Euclidean distance between
𝑓 (𝐼1) and 𝑓 (𝐼2), which is | |𝑓 (𝐼1) − 𝑓 (𝐼2) | |2.

The limitation of contrastive and triplet losses is that they rely on the assumption
that data can belong to distinct classes. Unfortunately, this is not always the case with
medical images. Most medical images can have multiple diseases belonging to multiple
classes. Therefore, for a DMLmodel to perform well in medical images, one must design
an appropriate loss function considering their multi-similarity nature.

5.1.2 The Clinical Perspective

As explained in themotivation of this thesis (see Section 1.1), diagnostic radiology is per-
ceptual and subjective. This means radiologists’ experiences are critical to their ability
to reach a definitive diagnosis. Expert radiologists not only can perceive abnormalities
that are hard for a non-expert to spot, but also they understand better what to attend
to and what to ignore [GP19] when interpreting medical images. On the other hand,
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Figure 5.4 An example of information radiologists uses to identify clinical context
when diagnosing a patient. A medical image retrieval system must
leverage such information to identify similarities between different
medical image cases accurately.

an expert radiologist would know the right way to consider additional patient informa-
tion like demographics, symptoms, laboratory results, e.t.c., to better infer the clinical
context. The importance of this additional information can be seen in the following ex-
amples—first, the age of the patients. This demographic attribute is an essential factor
because it contributes to phenotypic changes in health and disease and, therefore, can
affect the course and progression of a disease. It is also vital in determining the correct
course of treatment [GCR13].

Another example of additional information is the results of laboratory tests. To il-
lustrate the importance of this information, let us consider the situation when interpret-
ing CXR images. In CXR images, similar features that indicate Pneumonia diagnosis
would be accurate in one person with fever and elevated white blood cell count. How-
ever, for another patient without those supporting clinical characteristics and laboratory
values, similar imaging findingsmay instead indicate other etiologies such as pulmonary
edema, atelectasis, or lung cancer [HPS+20].

Both of these examples mean that identifying the similarity between medical image
cases needs to adapt to theways of interpretingmedical images practiced by radiologists,
which is more than just a correct feature representation and a proper metric function
alone. Apart from image contents, the retrieval system must also incorporate other
information like patients’ demographics, symptoms, laboratory tests, and others when
available and figure an optimal way to leverage such information to accurately identify
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similarities between medical image cases (see Figure 5.4).

5.2 Summary

This chapter briefly overviews the second most crucial step in any medical image re-
trieval system: similarity search. We revisited the notion of similarity in retrieval sys-
tems and highlighted the importance of considering both mathematical and clinical per-
spectives to identify similarities between medical images accurately. In the next part
of this thesis, we present three studies where each one highlight a retrieval method to
accurately identify and retrieve similar cases based on the information need expressed
by the radiologist’s query.





Part III

Retrieval Approaches

67





6
Content-Based Retrieval

Since we ought to make a general-purpose medical image system, it must be able to
handle various information needs of radiologists. As we explained in Chapter 4 and
Chapter 5, to develop a medical image retrieval system, the very first step is getting the
suitable method for feature representations before similarity search, which is the sec-
ond step. In this chapter, we present this thesis’s first study that looks at the retrieval
of medical images based on their contents. Here a radiologist expresses information
need by submitting a sample image (query by example), and the system computes the
similarities of medical images based on their contents. This study mainly aims to find
an effective feature representation method that can identify similarities between med-
ical images by considering their semantics and modalities. We present the experiment
results on different representation techniques based on handcrafted methods (mainly
texture features) and deep learning (deep features). Based on these results, we propose
an effective feature representation approach and deep learning architectures for learning
and extracting medical image features.

6.1 Introduction

Radiologists need to understand how different medical imaging modalities work, what
they measure, and how to interpret images produced by such modalities. Such skills can
guarantee the accuracy of their diagnoses and influence how they identify similarities
between images of the same or different modalities. As we explained in the Section, 2.2,
medical imaging modality refers to the technique and process used to visualize a partic-
ular part of the body, organs, or tissues for diagnostic purposes. Currently the conven-
tional modalities include X-rays, CT, MRI, US, and PET (refer Chapter 2). Depending on
the modality used to diagnose a patient, the same disease can manifest different visual
patterns (see Figure 6.1). This is because each imaging modality maps specific physical
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Figure 6.1 Manifestation of Lung Fibrosis in different imaging modalities [BDE+17].

parameters. For example, X-raysmeasure how different tissues absorb different amounts
of radiation; therefore, the end visualizationmakes bones appear white since the calcium
within absorbs X-ray radiation the most. Fat and other soft tissues soak in less radiation
and thus appear grey. In contrast, the air absorbs the least, and therefore, lungs appear
black. MRI, on the other hand, maps the energy released by protons in human body
water, while US maps ultrasound backscattering.

Figure 6.1 illustrates an excellent example of how the same disease manifests differ-
ent visual patterns depending on the modality used to diagnose a patient.

Here, anatomical X-ray films of the patient with pulmonary fibrosis appear darkwith
non-dense healthy lung tissue (A) while (B) shows a decreased lung volume and retic-
ular opacification [BDE+17]. On the other hand, CT scans depict normal respiratory
bronchioles and a lack of air spaces in healthy lungs (C); in the case of fibrosis, there are
thickened and dilated respiratory bronchioles along with large cystic air spaces (D). 3D
pulmonary MR angiography of a healthy lung shows well-defined vessels (E), while a
fibrotic lung is characterized by enlarged, inflamed, and undefined vessels (F). The appli-
cation of a hyperpolarized 129𝑋𝑒 MRI contrast agent made the visualization of homoge-
neous ventilation in a healthy volunteer (G) possible while, in a patient with cystic fibro-
sis, 129𝑋𝑒-enhanced MRI shows distinctive inhomogeneities in the ventilation pattern.
Self-gated non-contrast enhanced functional lung MRI allowed the checking of ventila-
tion patterns in a healthy person(I) and cystic fibrosis patient (J) without requiring a con-
trast agent. In healthy lungs, there was no visible accumulation of the collagen-specific
PET probe 68𝐺𝑎 − 𝐶𝐵𝑃8 probe (D). In contrast, in mice that have bleomycin-induced
pulmonary fibrosis, the absorption of 68Ga-CBP8 was clear [BDE+17].

While Figure 6.1 shows the manifestation of fibrosis by different modalities on dif-
ferent patients, the same situation can still appear in the manifestation of a particular
disease to a single patient. Figure 6.2 illustrates such a phenomenon in a contrasting ex-
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Figure 6.2 A comparison in manifestation of COVID-19 (shown by arrows) between
a CXR (left) and CT(right) images [JCB+20].

ample between a CT and a CXR images of the same patient with COVID-19. Here, the
CT image (right) shows vague hazy densities in the right upper lobe (white arrow) that
corresponds to ground glass opacities (black arrow) detected in CXR (left) [JCB+20].

Both phenomenon in Figure 6.1 and 6.2 highlights one important thing. For a radiol-
ogist to do a proper comparative analysis with the image he/she wants to diagnose, it is
crucial to compare it with images from the samemodalities as theywould present similar
visual clues rather than images from different modalities. From the retrieval viewpoint,
an effective retrieval system must be able to identify and retrieve images of the same
modality and semantics as the query image that a radiologist wants to diagnose. This is
critical, especially when the collection to be searched through contains various kinds of
medical images.

A text-based medical image retrieval system is not a good solution since depending
on image metadata to identify modality is not always feasible. This is because there
are always changes in medical imaging protocols which increase the engineering cost
for retrieval systems to adapt, let alone to different annotations procedures practiced by
different healthcare institutions. To alleviate these drawbacks, content-based medical
image retrieval systems have been a defacto approach since they depend solely on vi-
sual features rather than metadata to retrieve similar images. However, the challenge
with this approach is that there is yet to be an optimal feature representation method to
effectively distinguish medical images based on their modalities, let alone their seman-
tics.
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6.2 Methodology

6.2.1 Problem Formulation

The main question this study aims to answer is; given a collection containing medical
images of various modalities and semantics, what feature representation method guar-
antees a good performance across them? In other words, what feature representation
method is good enough to distinguish medical image modalities and semantics through
their contents? To answer this question, we conducted experiments to analyze the per-
formance of two feature representations methods i) handcrafted features (texture fea-
tures) and ii) learned features (deep features) in retrieving images in a dataset containing
a mixture of various medical images.

6.2.2 Dataset

We used the 2013 ImageCLEFmedical dataset [HKD+13]. It contains different modalities
of medical images, including X-rays, MRI, CT, PET, PET-CT (hardware combination
of PET and CT modalities), and US. The dataset also contains other biomedical images
like drawings and illustrations. There are 306,538 medical images, both of which are
extracted from 75,000 articles from the biomedical open-access literature. There are 35
query topics, each containing 1-7 sample images. Each query has 1,000 ground truth
image results that are supposed to be retrieved. Since our study focuses entirely on
diagnostic radiology, we only selected queries from diagnostic images.

6.2.3 Feature Representation

6.2.3.1 Texture Features

Texture features are handcrafted features, meaning their design is based on a model de-
veloped by a domain expert. In medical imaging, texture has been a dominant signal to
characterize an image compared to other signals like color and shape. This has been the
case for two reasons; first, most medical imaging modalities produce grayscale images;
therefore, signals like color only add a little valuable information. Second, a texture sig-
nal represents the spatial distribution of the image’s pixel values; thus, they are helpful
in medical images since they can reflect the detail within an image structure. Various
models exist to express texture features, but fewer can work across different modali-
ties of medical images. In this study, we have experimented with Haralick and LBPs
texture features. We examined the former because compared to other texture features
representations, Haralick textures offer stability due to their applicability to different
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kinds of images [HSD73], which has been an appealing reason to many researchers to
apply them in medical image applications [DMM19; LLC+13; PK11; SCE+10]. On the
other hand, we examined LBPs texture features because they have been compelling
and concise texture features representations, with the capability to compete alongside
state-of-the-art complex learning algorithms and quantify important textures in medical
imaging [BKS+17; NLB10; AKG+15; RBH14; BTZ+17; SSG+19].To create Haralick texture
feature representation, we computed all 14 Haralick’s features, and for LBPs, we used
a radius of size three with 24 neighbors to express the texture features. For more details
about Haralick and LBPs texture features, refer to Section 4.3.1.

6.2.3.2 Deep Features

Aswe explained in Chapter 3, a deep neural network architecture designed for the image
classification task is trained on a set of images to learn features, like contour detectors
and edges from earlier layers. Deeper layers usually learn to create feature filters for
more complicated patterns of the inputs, like shapes, textures, or variations of features
processed at early layers. These features learned in deeper layers are called deep features.

Deep features can integrate low, mid, and high-level features and therefore provide
an abstract representation of images [ZF14; BCV13]. This combination allows them to
learn semantic concepts that are sometimes impossible to capture by handcrafted fea-
tures. Li et al. [LZM+18] pointed out that one way to extract deep features in medical
images is through pre-trained CNNs, trained in natural images. This practice is pre-
ferred since it helps mitigate the need for training CNNs from scratch, as that requires
a dataset with a vast amount of annotated medical images, which is usually tricky to
obtain. Several state-of-the-art works like [HL15b; VWL+19; SPC+20] have already suc-
cessfully applied this approach.

Nevertheless, one must be careful when adopting this approach, as medical images
fundamentally differ from natural images (refer to Section 4.3.1.2). For example, local
textures (always unclear) are essential for detecting pathologies in many medical im-
ages. In contrast, in natural images, there is often a clear global category (e.g., cat, dog,
bird) [RZK+19] (see Figure 4.1). On the other hand, things like scale might not be crucial
in natural images; a bird is still a bird no matter its size in the image. In medical imaging,
however, pixel spacing has a known physical correspondence, and the size matters for
the diagnosis, for example, the size of tumors, cell nuclei, or lesions, [GLM+21]. All these
phenomena raise the question of how deep features learned in natural images are helpful
in medical images. To consider that, in this study, we experimented with different CNN
architectures when they are pre-trained (when they have weights learned from natural
images (ImageNet weights)) and when the same architectures have random weights.
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Table 6.1 Feature Vectors

CNN Architecture Dimensions

VGG16 512

MobileNetV2 1280

InceptionResNetV2 1536

DenseNet201 1920

ResNet50 2048

Xception 2048

NASNetLarge 4032

We selected the following CNN architectures from ImageNet; VGG16 [SZ14], Incep-
tionResNetV2 [SIV+17], ResNet50 [HZR+16], DenseNet201 [HLM+17], Xception [Cho17],
MobileNetV2 [SHZ+18], and NASNetLarge [ZVS+18]. The ImageNet Large Scale Visual
Recognition Challenge, shortly known as ILSVRC or simply ImageNet, is a yearly chal-
lenge that evaluates algorithms for large-scale image classification and object detection
tasks. The challenge allows researchers to check the progress in detection within a
wider variety of objects. It also allows measuring computer vision’s progress for large-
scale image indexing for retrieval as well [DDS+09]. In each selected architecture, we
extracted deep features using a global max pooling layer that we added to the last con-
volutional layer. This creates a high-dimensional representation of images as shown by
their feature vectors in Table 6.1.

“The intuition of applyingmax pooling and not average poolingwas based on its abil-
ity to select brighter pixels from the image and thus to identify the sharp features [MS20].
Given array 𝐴 and 𝐵 with elements [1, 1, 0, 2] and [1, 1, 1, 1] respectively, a global max
pooling would choose the values 2 from𝐴 and 1 from 𝐵 while global average pool would
choose 1 from both arrays. In medical images where a single pixel can make a big dif-
ference, global max pooling seems a better choice as it can better differentiate between
arrays 𝐴 and 𝐵 while average pooling would rather blur the distinctions”.

6.3 Retrieval Performance

After creating the feature representations, we evaluated the similarity between images
by computing the 𝐿2 distance as a similarity metric and precision@k (where 𝑘 = 10, 30)
as the retrieval performance metric. Table 6.2 and Figures 6.3 and 6.4 shows the retrieval
results.

As Table 6.2 shows, for deep features extracted by CNN architectures, we found that
there is no significant difference in the retrieval performance regardless of the CNN has
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ImageNet or random weights. However, it is remarkable that deep features extracted
by these architectures performed better (even if trained in natural images) compared to
texture features (see Figure 6.3 and Figure 6.4). These results confirm our hypothesis
that deep features provide an optimal feature representation method for medical images
compared to handcrafted features, especially texture features.

Architecture-wise, deep features extracted by ResNet50 andDenseNet201 CNNsmain-
tained a good performance across different modalities compared to features by other
architectures. This result suggests that ResNets and DenseNets are effective architec-
tures for learning and extracting medical imaging features. Therefore, we can rely on
these architectures for different medical imaging tasks, whether as feature extractors
in general-purpose medical image retrieval systems or as the architecture of choice for
learning medical imaging features for other tasks. Our intuition as to why ResNets and
DenseNets performed better comes from their fundamental architectural design. Both
of them rely on using bypassing paths as the key factor to ease the training of deep
neural networks but also allow feature reuse [HLM+17]. ResNets are built by stacking
residual blocks, in which pure identity mappings are applied as bypassing paths (see
Figure 3.7) [HZR+16]. On the other hand, DenseNets naturally integrate the properties
of deep supervision, identity mappings, and diversified depth to enable layers’ access
to feature-maps from all preceding layers (see Figure 3.10) [HLM+17]. We hypothesize
that feature reuse is critical for medical images as most are grayscale images with the
same anatomical structure (e.g., chest). Therefore, they might not have as rich features
as natural images. This means the deep neural network architectures like ResNets and
designed to ensure feature reuse are suitable for learning medical imaging features.

Figures 6.6, 6.7, 6.9 and 6.8 shows a comparison of the top five retrieval results for
ResNet50 (with ImageNet weights), DenseNet201 (with random weights), Haralick and
textures for the same query, a knee arthroplasty X-ray image shown in Figure 6.5. Here,
ResNet50 deep features have consistently retrieved semantically similar images of the
same modality. In contrast, the others came with mixed results containing random im-
ages, sometimes unrelated to the query image. A good example is DenseNet201 and
’ fifth results that were both illustration objects rather than real medical images. As
explained before, both images were contained in ImageCLEF extracted images from
biomedical open-access literature.

6.4 Discussion

This idea of using visual contents to check the similarity ofmedical images based on their
semantics and modalities was partially inspired by a study by [DH15], which proposed
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Figure 6.5 SampleQuery Image.

Figure 6.6 ResNet50: Top-5 Retrieval Results.

Figure 6.7 DenseNet201: Top-5 Retrieval Results.

that medical image content features might be helpful for modality-based retrieval. On
the other hand, since query by example is themost basic form for expressing information
needs by radiologists, we thought content-based retrieval offers a better starting point
for a general-purpose medical image retrieval system as it alleviates the dependency
on annotations that a text-based system would need which are nevertheless sometimes
unreliable. Implementing content-based search in a general-purpose system also re-
duces engineering costs needed to adapt to different annotations procedures practiced
by different healthcare institutions. Moreover, the constant change of imaging proto-
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Figure 6.8 Halarick: Top-5 Retrieval Results.

Figure 6.9 LBPs: Top-5 Retrieval Results.

cols makes it impossible to rely on DICOM tags to categorize medical images [GKK+02]
automatically.

6.5 Related Work

In literature, most studies focusing on feature representations for medical images have
analyzed specific features in a dataset with a single modality of medical images. With
this setting, we can not know how valuable those features are when applied to other
medical imaging modalities; therefore, using those features in a general-purpose med-
ical image retrieval system is risky. One reason such studies are familiar is the dif-
ficulty of obtaining datasets containing various medical images due to confidentiality
issues. The followings are some research works that studied texture features on specific
modalities; X-rays [AKG+15; BTZ+17; RBH14; ZFL+12], MRI [DMM19], CT [XNH+18;
PK11], PET-CT [SSG+19]. On the other hand, works that studied deep features include
X-rays [SYS+17; AKG+16; AKG+15; LTK16; SPC+20], CT [HL15b; CLQ+19b; VWL+19]
and MRI [SCN+16]. In contrast, our study examined each feature across different med-
ical imaging modalities; hence we could evaluate the usefulness of these features for
content-based retrieval for general-purpose medical image retrieval systems.
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6.6 Discussion

In this chapter, we studied the retrieval of medical images based on their contents. We
have looked into two kinds of feature representations, handcrafted features (mainly tex-
ture features) and deep features, and evaluated their performance in identifying similar
images considering their semantics and modalities. We presented results showing the
performance of texture features, namely Haralick’s and LBPs textures and deep fea-
tures by different CNNs architectures, namely, VGG16, InceptionResNetV2, ResNet50,
DenseNet201, MobileNetV2, Xception, and NASNetLarge. Overall, the results show that
deep features perform better than texture features, making them a better feature rep-
resentation method for medical images. Furthermore, our study suggests that CNNs
architectures with skip connection like ResNets, and DenseNets are better architectures
for learningmedical image features, making them suitable feature extractors for general-
purpose medical image retrieval systems. On the other hand, our study shows the draw-
back of relying on contents alone, as sometimes the system retrieves insignificant ran-
dom images, which does not add value in augmenting radiologists’ diagnosis workflow.
In the subsequent study, we address this limitation by supplementing image contents
with patient demographics and disease predictions to inform retrieval.





7
Retrieval Based on Contents,
Patients’ Demographics, and Disease
Predictions

As we have seen in the previous study (Chapter 6), by depending solely on medical im-
age contents, the system sometimes retrieves random images that are insignificant to the
comparison analysis required by the radiologists. To improve that, we can take inspira-
tion from how radiologist works in clinical settings. Usually, when diagnosing certain
images, radiologists would consider other information available about the patients, in-
cluding demographics, symptoms, laboratory data, and other necessary information to
get the clinical context right. A medical image retrieval system also needs to leverage
such information to identify the similarity between different cases of medical images ef-
fectively. This chapter presents a study inwhichwe complementmedical image contents
with patient demographics to inform the retrieval. The radiologist can express informa-
tion needs by submitting example images and patients’ demographic information. We
have also added a deep learning-based disease prediction model to assist the radiologists
in image interpretation and help accurately identify and retrieve similar cases.

7.1 Introduction

Usually, when diagnosing certain medical images, radiologists would consider other in-
formation available about the patients, including demographics, symptoms, laboratory
data, and other necessary information to understand the clinical context. This is impor-
tant because such information can help tell the difference between cases. For example, in
CXRs, visual patterns that indicate pneumonia would be precise in one patient with an
elevated white blood cell count and fever. However, similar visual patterns for another
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Table 7.1 Public Datasets for CXRs

Dataset Release year # findings # samples Image-level labels Local labels

JSRT [SKI+00] 2000 1 247 Available Available

MC [JCA+14] 2014 1 138 Available N/A

SH [JCA+14] 2014 1 662 Available N/A

Indiana [DFKR+16] 2016 10 8,121 Available N/A

ChestX-ray8 [WPL+17] 2017 8 108,948 Available Available

ChestX-ray14 [WPL+17] 2017 14 112,120 Available N/A

CheXpert [IRK+19] 2019 14 224,316 Available N/A

Padchest [BPS+20] 2019 193 160,868 Available N/A

MIMIC-CXR [JPB+19] 2019 14 377,110 Available N/A

VinDr-CXR [NLL+22] 2020 28 18,000 Available Available

patient who doesn’t have the same laboratory values and clinical characteristics might
indicate other etiologies such as lung cancer, pulmonary edema, or atelectasis [HPS+20].
Demographic information, particularly Age, on the other hand, is critical information
since “it is an essential factor that contributes to phenotypic changes in health and dis-
ease and, therefore, can affect the course and progression of a disease [MS22]”. It is also
vital in determining the correct course of treatment [GCR13]. A study by [BBS21] reveals
significant age and gender-related (another demographic trait) differences in cardiac size
parameters acquired from routine frontal CXRs. Furthermore, this study concluded that,
if considered, those differences may result in appropriate and early intervention of car-
diac pathology in some age groups. A medical image retrieval systemmust also consider
additional informationwhen comparing cases to identify their similarities or differences.
This is important for almost all diagnostic radiology images but even more critical to
medical imaging examinations that can screen more than one condition/disease when
examining the same anatomical structure. With these kind of images, it means that
even if the retrieval system gets the similarity based on the contents correct, there is
still uncertainty; therefore, additional clinical information about the patient can make a
difference. An excellent example of such examination is CXR. CXRs screens lung con-
ditions, heart-related lung problems, the size and outline of the heart, the condition of
blood vessels, calcium deposits, fractures, postoperative changes, e.t.c. and therefore it
reports many diseases. An excellent example of this phenomenon is illustrated in Ta-
ble 7.1 that shows some of the CXRs public datasets. Here, JSRT [SKI+00] dataset has
only a single finding, while Padchest [BPS+20] contains 193 findings.

As we explained above, not only CXR examination can report multiple diseases but
also other imaging modalities examining different parts of a human body. This means
a general-purpose medical image retrieval system must handle this situation effectively
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Figure 7.1 Disease labels in CheXpert and ChestX-ray14 datasets.

by allowing radiologists to express their information need by adding as much patient
information as deemed necessary and using them to identify and retrieve similar images.
However, with this additional information, the question remains; How can we leverage
medical image contents and other patients’ information to inform the retrieval process?

7.2 Methodology

7.2.1 Datasets

Due to the availability of the public dataset that contains medical images together with
demographic information, we used two public CXRs datasets, CheXpert [IRK+19] and
ChestX-ray14 [WPL+17] for this study. We mainly used a part of the former dataset to
train the deep learning models for feature representation and disease predictions. While
for the retrieval experiments, we used the former (20% held-out test set) and the latter.
CheXpert is a publicly available dataset from Stanford University Hospital. It contains
224,316 CXRs of 65,240 patients automatically labeled with 14 diseases extracted from
radiology reports. On the other hand, ChestX-ray14 comprises 112,120 images of 30,805
unique patients collected from 1992 to 2015 by the National Institutes of Health (NIH).
These datasets have only five labels in common (see Figure 7.1).
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7.2.2 The CheReS Approach

To complement image contents with patients’ demographics, we propose amulti-faceted
method we call CheReS. CheReS uses two deep learning models to analyze image con-
tents. First, an Autoencoder model to create lower-dimensional feature representations
of medical images. Second, a DenseNet model to predict diseases on the query images
submitted by radiologists. On the other hand, CheReS uses a deterministic algorithm
to integrate the content-based search results based on the autoencoder’s feature repre-
sentations, patient demographics, and disease predictions to retrieve the most accurate
similar images eventually. Figure 7 shows CheReS’ retrieval process from when a query
is submitted to the final results. In the following sections, we give details on each of the
CheReS’ three components; Feature Representation, Disease Predictions, and the Identifi-
cation of Similar Cases.

7.2.2.1 Feature Representation

The CheReS’ starting point for identifying similar cases relies on image contents, and
therefore, we need a feature representation technique good enough for this purpose.
We trained an autoencoder model, a deep neural network for dimensionality reduction
and representation learning, and eventually use it as a feature extractor. Autoencoder
mainly brings two advantages; First, it is an unsupervised learning approach, meaning it
can learn distinct features for medical images without depending on their labels. Second,
it can create lower-dimensional feature vectors, reducing computational costs during the
similarity search process.

To make the representations produced by the autoencoder more efficient for the
retrieval process, we took inspiration from Xie et al. [XGF16]. Xie et al. proposed an un-
supervised deep embedding for the clustering analysis in which two phases are involved
for the autoencoder to produce optimal feature representations that can cluster images
based on the similarity of their contents. The first phase is parameter initialization,
in here, we trained the model to compress each raw input image to a ten-dimensional
vector using a reconstruction loss (see Figure 3.11). The second phase is parameter opti-
mization, where the initial representation is refined for clustering using 𝐾𝐿 divergence
loss. During this step, we stacked the clustering layer on the encoder part of the model.
Therefore, given input images, the model learns the similarity between them by clus-
tering their latent representations into different clusters while fine-tuning the weights
of the clustering layer and encoder mutually. This means the model learns to create
representations of similar images to be closer to the embedding space.



Retrieval Based on Contents, Patients’ Demographics, and Disease Predictions 87

Fi
gu

re
7.
2

C
he

R
eS

’R
et
ri
ev

al
Pr

oc
es
s.



88 Retrieval Based on Contents, Patients’ Demographics, and Disease Predictions

7.2.2.2 Disease Predictions

For the disease predictions, we trained a DenseNet model to predict five diseases: At-
electasis, Cardiomegaly, Edema, Pneumonia, and Pneumothorax. We chose a DenseNet
architecture in building our model owing to the lesson learned in Chapter 6 and further
proved by [IRK+19] that this architecture is effective for learning abstract concepts in
medical images. On the other hand, we trained the model to predict those five diseases
because they are common chest diseases; therefore, their predictions can significantly
inform the retrieval and help radiologists establish a diagnosis baseline. “Cardiomegaly,
for example, and other heart diseases is the number one leading cause of diseases in the
year 2019 in the United States, while Pneumonia is the 9𝑡ℎ most often diagnosed disease
in the United States [CDC21]. Cardiomegaly can cause heart failure, and the likelihood
of this correlates with age and is more common in males [TZZ+12]. Pneumonia, on
the other hand, kills around 50, 000 people in the United States alone, and more than 1
million adults are hospitalized yearly [RIZ+17]”.

7.2.2.3 Identification of Similar Cases

To identify similar cases, CheReS first searches for 50 images based on their contents
and then refines the results to the ten most similar cases. We chose ten cases as the
final results since it is less likely to bring information overload to radiologists, and it is
feasible to compare them quickly. CheReS identifies these ten similar cases by including
disease predictions on the image to be interpreted and the patient’s demographic data
(age and gender). We have also considered the frequency of diseases that appear the
most in the first 50 images (majority voting) to refine the search results. The majority
voting of diseases is based on the disease labels that are retrieved together with these
50 images from the archive. The intuition of adding majority voting is to accommodate
new disease labels outside of five disease predictions. This makes CheReS robust to
different datasets with different disease labels, another essential capability needed in a
general-purpose system.

Algorithm 7.1 shows the step by step of the process. First, a ranked list 𝑃𝑑 based on
probabilities of diseases predictions is created, followed by a ranked list 𝑀𝑑 of the five
major diseases found in the top 50 images retrieved at first. “CheReS must then decide
how to use predicted or major disease rankings at this stage. To do that, we calculated
a Spearman Rank Correlation [TFE21] between the two ranked lists. Spearman Rank
Correlation is calculated as follows;
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𝜌 = 1 −
6
∑
𝑑2𝑖

𝑛(𝑛2 − 1) (7.1)

Where 𝜌 is Spearman’s Rank Correlation Coefficient, 𝑑𝑖 is the difference between
the two ranks of each observation, and 𝑛 is the number of observations. The value of
𝜌 is inside the interval [−1, 1] where 1 implies the agreements between two rankings is
a perfect match. At the same time, −1 indicates the mismatch between the two ranked
lists [TFE21]”.

Algorithm 7.1 Identification of Similar Cases
Input: The image to be interpreted 𝐼𝑞
Output: Top 10 similar cases

1: Initialize query image 𝐼𝑞
2: Predict 5 diseases on query image: 𝑃𝑑 = 𝐷𝑒𝑛𝑠𝑒𝑁𝑒𝑡 (𝐼𝑞)
3: Generate feature representations and retrieve 𝑡𝑜𝑝50 similar images based on 𝐿2 dis-

tance
4: Get 5 diseases based on Majority Voting𝑀𝑑 from 𝑡𝑜𝑝50
5: Calculate Spearman Correlation: 𝜌 = 𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛𝑅(𝑃𝑑 , 𝑀𝑑)
6: if 𝜌 > 0 then
7: if 𝜌 == 1 then
8: Rank images based on 𝐿2 distance and diseases in 𝑃𝑑
9: else
10: Rank images based on 𝐿2 distance and positively predicted
11: diseases in 𝑃𝑑 and 𝑡𝑜𝑝2 diseases in𝑀𝑑

12: end if
13: else
14: Rank images based on 𝐿2 distance and diseases on𝑀𝑑

15: end if
16: Re-rank images based age and gender
17: Return 𝑡𝑜𝑝10 similar images.

“Suppose there is no match (𝜌 < 0), images with diseases in 𝑀𝑑 . If 𝜌 = 1, the
algorithm ranks higher, images with lower 𝐿2 distances, and have diseases similar to
those in 𝑃𝑑 . If there is a slight correlation, 1 > 𝜌 > 0, then the ranking is based on the
top two diseases from 𝑀𝑑 and only positively predicted diseases (diseases with > 50%
risk) from 𝑃𝑑 . The final results are then re-ranked, giving higher preference to similarity
based on age and gender groups in the context of diseases as defined by [GCR13]”.
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Figure 7.3 Retrieval perfomance for different components in the CheXpert dataset
(CheReS refers to all components combined).

Figure 7.4 Retrieval performance for different components in the ChestX-ray14
dataset (CheReS refers to all components combined).

Figure 7.5 Retrieval performance for the random queries in the CheXpert dataset.

7.3 Retrieval Performance

We evaluated the retrieval performance using the 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛@10 and APmetrics. In each
dataset, the retrieval was considered accurate if any of the images retrieved contained
disease labels that overlapped with the query’s ground truth diseases but also belonged
to the same age and gender group of the patient. We conducted two kinds of evaluations.
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Figure 7.6 Retrieval performance for the random queries in the ChestX-ray14
dataset.

First, we wanted to check the contribution of each of the CheReS’ components. This was
done by adding one component after another to check the contribution to improving
the retrieval results. As Figure 7.3 shows, we found that using disease predictions had
a clear advantage (10% gain) compared to using the majority voting of diseases when
the retrieval is conducted in the CheXpert dataset, which is the same dataset the disease
prediction and feature representation models were trained on. However, in a completely
different dataset (ChestX-ray14 dataset), using majority voting performed competitively
to disease predictions. Here, disease predictions had only 2% gain(see Figure 7.4). This
shows the contribution of considering the frequency of disease labels from the archive
when applied to a different dataset and hence its importance as a component of the
CheReS approach. Overall, the CheReS approach (with all its components) performs
better than individual components in both datasets, showing its effectiveness compared
to content-based approach.

We then randomly selected and also chose images with rare diseases to further evalu-
ate CheReS. At this phase, we compared the overall CheReS method against the content-
based approach. Figure 7.5 and 7.6 show the retrieval results. We observed that in the
CheXpert dataset, CheReS outperformed the content-based approach for almost every
query because of the significant help the disease predictions component provides. While
on the ChestX-ray14 dataset, we found that the content-based approach still performed
well in two queries (𝑄4 and𝑄9) with a rare disease called Hernia. Hernia was not among
the five diseases the model trained to predict. By adding disease predictions and the
majority voting of diseases from the archive, we added noise to the retrieval process,
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Figure 7.7 CheReS’ Interface.

eventually affecting the retrieval quality. This shows that CheReS still has limitations
in dealing with rare diseases and can use a room for improvement. To illustrate how
radiologists can use the CheReS approach, Figure 7.7 shows the CheReS interface, in
which disease predictions for the query image are displayed in the upper right while the
bottom displays the retrieved images.

7.4 Summary

This chapter introduces CheReS, an approach to complement medical image contents
with patient demographics when retrieving medical images. Furthermore, CheReS adds
deep learning-based disease predictions to identify the similarity between different cases
of medical images accurately. Our experimental results show that not only does CheReS
significantly improves the retrieval results, but it is also robust enough for various datasets.
However, one limitation of this study is that we have only used CXR datasets to proto-
type the CheReS approach. Nevertheless, the CheReS approach can be extended to any
medical images; however, one has to choose which diseases should be included in the
disease predictions part and how that information can be used to inform the identifica-
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tion of similar cases process. The other limitation is that since CheReS allows radiolo-
gists to express their information need through sample image and patient demographics
only, it is, therefore, most valuable when a radiologist openly searches for similar cases
with the clinical context in mind. However, radiologists sometimes want to guide the
retrieval process (especially when the visual clues in the image to be interpreted give
them the indication of certain diseases) by targeting specific images that are significant
in the comparison analysis needed to diagnose the image at hand. The following study
presents an approach that guides the retrieval process by combining medical image con-
tents with radiologists’ text descriptions to target specific images to be retrieved.





8
Retrieval Based on Contents and
Radiologists’ Text Descriptions

Instead of openly looking for similar cases, sometimes radiologists want to retrieve spe-
cific images. In other words, they want to guide the search process. This is because only
some images are valuable to augment the comparative analysis that confirms or rules
out initial hypothetical diagnoses (The differential diagnosis procedure). The previous
approach (Section 7) is limited in accomplishing this need of radiologists because even
though it improves the retrieval results compared to a purely content-based approach,
it does not allow the radiologists to express their information needs by specifying what
image should be retrieved that are significant for the comparison analysis needed for
the differential diagnosis. In this chapter, we present a study on a guided search method
that uses a deep metric learning technique and guarantees that radiologists retrieve sig-
nificant images needed for the comparative analysis of the differential diagnosis.

8.1 Introduction

In healthcare, a differential diagnosis is a process of distinguishing a particular disease
from others that present similar clinical features [TFE22b]. Usually, during this proce-
dure, a clinician seeks to confirm or rule out a list of likely diagnoses before concluding
with a definitive diagnosis. In interpreting medical images particularly, retrieving im-
ages with seemingly similar visual patterns could help radiologists in this procedure as
it enables them to do a comparative analysis that can reveal other distinctive patterns
that help confirm or rule out the initial hypotheses. To illustrate this more, consider Fig-
ure 8.1. Here, both images present the same visual patterns for consolidation. However,
image number 6, at first glance, looks like consolidation, but if looked carefully, it is a
nodular interstitial lung disease (Sarcoidosis) that is so widespread that it looks like con-
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Figure 8.1 CXR images with consolidation. The definitive diagnoses are: 1-Lobar
Pneumonia, 2-Pulmonary Hemorrhage, 3-Organizing Pneumonia ,
4-Infarction 5-Pulmonary Cardiogenic Edema and 6-Sarcoidosis [Smi22].

solidation [Smi22]. If John, the radiologist, had to interpret this image and hypothesizes
that it has either consolidation or sarcoidosis, it would be beneficial for him to compare
it with images that have either sarcoidosis or consolidation to help clear the ambiguity
and hence concludes that the image has sarcoidosis, a definitive diagnosis in this case.

To augment the differential diagnosis procedure, it would be beneficial if a medical
image retrieval system utilized John’s initial hypotheses by letting him submit the image
to be interpreted and text descriptions to target specific images to be retrieved. However,
one crucial challenge for this approach to work is fusing visual and text information to
form the query. On the other hand, there is still a challenge in determining the similarity
between this multimodal query and the required images.

8.2 Methodology

8.2.1 Problem Formulation

“We formulated the differential diagnosis task as a guided search problem to address the
earlier-mentioned challenges. We mainly consider a scenario where a radiologist has an
ambiguous image to interpret, and the visual clues suggest two diseases. To do a further
comparative analysis, which could differentiate between these two initial hypotheses,
a radiologist wants to search for confirmed images with similar visual patterns but has
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Figure 8.2 A schematic overview of the proposed approach.

been diagnosedwith either. To achieve that, wewant the radiologist to issue a query that
comprises the image to be interpreted and the text like "Positive sarcoidosis but negative
consolidation." In other words, this query instructs the system to "retrieve images similar
to the query which have sarcoidosis but do not have consolidation" or vice versa if the
text indicates otherwise. To combine image and text to form a query and also determine
the similarity between this query and the target images to be retrieved, we propose a
DML approach (refer Section 5.1.1.3) that learns to put this query closer to the target
images and further from other images in the embedding space”.

8.2.2 Proposed Approach

“Our proposed approach is depicted in Figure 8.2 and has two phases. In the first phase,
we designed and trained a DMLmodel to learn i.) how to compose query representations
that leverage information from both image and text and ii.) the embedding function that
places the query representations closer to the targeted images to be retrieved and far
away from other images in the embedding space. In the second phase, we take images
and texts from the test set, create their feature vectors using the trained model, and
then perform a nearest neighbor search (𝑘𝑁𝑁 ) to retrieve the required images for each
query [MS21]”.

8.2.2.1 Query Composition:

Owing to the lesson learned in Section 6.3, that ResNets are good CNN architectures
to extract medical image features, “we used a pre-trained ResNet50 model as an en-
coder to create the representation of images. We also used the pre-trained Bidirectional
Encoder Representations from Transformers (BERT) model to create text representa-
tion”. BERT is a language model designed to pre-train deep bidirectional representations
from an unlabeled text by conditioning both right and left contexts in all layers concur-
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Figure 8.3 Illustration of GMU. a) The model to handle more than two modalities.
b) A simplified bimodal approach [OSM+17].

rently [DCL+19]. By having a deep bidirectional architecture and attention mechanism,
BERT learns the semantics of eachword in a sentence but with all the nuances of context.
BERT also considers the position of the words, which is essential for our method. For
example, in the query text "positive consolidation but negative sarcoidosis," the position
of the words positive and negative being prior to a particular disease is critical to the
meaning of the whole query. “ResNet50 takes a raw input image of shape (224, 224) and
output a 2048-dimensional vector (after applying a global max-pooling in the last con-
volutional layer) while BERT encodes input texts to a 768-dimensional vector. To avoid
these differences in dimensions between the two vectors influencing their positions dur-
ing query composition, we first project the image through an MLP with 2048 and 768
neurons, respectively, to get image representation with a 768-dimensional vector similar
to the text representation”.

“To this point, both image and text representations are of equal dimensions and,
therefore, can be passed through an image-text fusion model. We explored two methods
of fusing images and texts to form a query representation. The first is simply concatena-
tion in which the representation is formed through a concatenation operator: 𝑀 (𝑥𝑣 , 𝑥𝑡 ),
where𝑀 is an MLP. The other method regulates how information from either image or
text contributes to the overall representation of the query. We designed a deep neural
network model with Gated Multimodal Units (GMU). A GMU is an internal unit in a
network architecture whose purpose is to find an intermediate representation based on
an integration of data from different modalities [OSM+17]”.

We used a simplified version of the model that handles two modalities (see Figure 8.3
b). Given feature vectors 𝑥𝑣 from the visual modality (image) and 𝑥𝑡 from text, each
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vector feeds a neuron with a 𝑡𝑎𝑛ℎ activation function with the goal to encode an internal
representation ℎ𝑣 and ℎ𝑡 where ℎ𝑣 = 𝑡𝑎𝑛ℎ(𝑊𝑣 · 𝑥𝑣 ) and ℎ𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑡 · 𝑥𝑡 ). For each
modality, there is a gate neuron (𝜎) which controls the contribution of features calculated
from the inputs and thus makes the overall output of the unit to beℎ = 𝑧×ℎ𝑣 +(1−𝑧)×ℎ𝑡
where 𝑧 = 𝜎 (𝑊𝑧 · [𝑥𝑣 , 𝑥𝑡 ]) and𝑊𝑣 ,𝑊𝑡 and𝑊𝑧 are parameters to be learned [OSM+17].

8.2.2.2 Embedding Function

“As explained in Section 5.1.1.3, DML learns the embedding function that puts the rep-
resentations of similar objects closer while dissimilar objects further apart in the metric
space. For our case, we need the composed image-text query to be closer to targeted im-
ages with specific diseases while further away from other images. We can apply triplet
loss [SKP15] for the learning process, and our composed query, targeted images, and
other images will be anchor, positives, and negatives, respectively. A triplet loss ( 8.1)
ensures that the similarity between the anchor and a positive pair (𝑎, 𝑝) is greater com-
pared to the anchor and a negative pair (𝑎, 𝑛) by increasing and decreasing the distance
between the pair of objects respectively. The margin value 𝛼 acts as a threshold”.

𝑇𝑙𝑜𝑠𝑠 = max (0, | |𝑎 − 𝑝 | | − | |𝑎 − 𝑛 | | + 𝛼) (8.1)

“During triplet selection, a common practice involves choosing the positives from
the same labels with the anchors while the negatives are selected from other labels.
This approach, however, is optimal where the labels are accurate, for example, in face
verification or other related applications [SKP15], even if a positive pair of a person
with different illumination or pose variances is chosen, it is still the same person. In
medical images, depending entirely on labels is risky for the following reasons: i.) the
available labels might not always be accurate because not all diseases are reported in an
image due to omissions or when deemed not crucial by the radiologist [AM18]; and ii.)
even if all labels would be present, their validity is still questionable because different
diseases can adopt similar visual patterns and are still interpreted differently by different
radiologists [CWS+19]. This means the validity of labels highly depends on how good a
concerned radiologist is. With all these uncertainties, we need a loss function that can
consider this. Thus, we decided also to explore a 𝑀𝑆𝑙𝑜𝑠𝑠”;

𝑀𝑆𝑙𝑜𝑠𝑠 =
1
𝑚

𝑚∑︁
𝑖=1

{
1
𝛼
log

[
1 +

∑︁
𝑘∈𝑃𝑖

𝑒−𝛼 (𝑆𝑖𝑘−_)
]
+ 1
𝛽
log

[
1 +

∑︁
𝑘∈𝑁𝑖

𝑒−𝛽 (𝑆𝑖𝑘−_)
]}

(8.2)
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Figure 8.4 Illustration of intra-similarity between anchor and positive samples in
𝑀𝑆𝑙𝑜𝑠𝑠 (x1=anchor, x2, x3=positives, _=margin) [G20].

where 𝑠𝑖 is the cosine similarity between pairs, _ is a similarity margin and 𝛼, 𝛽
are hyperparameters [WHH+19].𝑀𝑆𝑙𝑜𝑠𝑠 comprises positive and negative parts that deal
exclusively with positive and negative pairs. For the positive part, given an anchor with
𝑘 positives, positive pairs whose similarities are less than _ are heavily penalized (distant
positives), making their loss higher than closer positives (those with similarities higher
than _). As Figure 8.4 illustrates, there are two pairs [x1:x2] and [x1:x3], positive part
of the loss for [x1:x2] would be minimal since 𝑒−𝛼 (𝑆𝑖𝑘−_) = 𝑒−𝛼 (0.7−0.5) = 𝑒−0.2𝛼 ; since 𝛼
is hyper-parameter and usually higher than zero, value of this term will be lower when
compared with positive part of the loss for [x1:x3]. For this pair, loss will be 𝑒−𝛼 (0.4−0.5) =
𝑒0.1𝛼 . A clear distinction appears among the loss back propagated for [x1:x2] and [x1:x3].

The negative part ensures that negatives have as minimal as possible similarity with
the anchor by heavily penalizing the negative pairs closer to the anchor than those fur-
ther away as Figure 8.5 shows. In here, the loss for [x1:x2] is 𝑒𝛽 (𝑆𝑖𝑘−_) = 𝑒𝛽 (0.3−0.5) =

𝑒−0.2𝛽 , whereas loss for [x1:x3] is 𝑒𝛽 (0.1−0.5) = 𝑒−0.4𝛽 , since 𝑒−0.2𝛽 > 𝑒−0.4𝛽 for 𝛽 > 0 there-
fore the loss for negative pairs with higher similarity will be greater than negative pairs
with low similarity [G20]. By considering these intra-similarities between anchors with
positive and negative samples, 𝑀𝑆𝑙𝑜𝑠𝑠 reduces the uncertainties of depending entirely
on labels.
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Figure 8.5 Illustration of intra-similarity between anchor and negative samples in
𝑀𝑆𝑙𝑜𝑠𝑠 (x1=anchor, x2, x3=negatives, _=margin) [G20].

8.2.2.3 Dataset

We used the CheXpert dataset to evaluate our proposed approach. As explained in Sec-
tion 7.2.1, CheXpert contains 224,316 CXR images of 65,240 patients automatically la-
beled with 14 diagnoses extracted from radiology reports. Typically, such radiology re-
ports are semi-structured documents in which radiologist record their interpretation in
titled sections. The findings section contains a natural language description of the vital
aspect of the image. In the impression section, a narrative summary of the most immedi-
ately relevant findings is given. In CheXpert, the 14 diagnosis labels were extracted from
the impression section [IRK+19] using Natural Language Processing (NLP) techniques.
We selected anchors, the images diagnosed with two diseases that appeared together
not < 5𝐾 times. With this setting, we ended up with 25𝐾 images with the following
pair of diagnoses: i.) Edema and Atelectasis, ii.) Atelectasis and Lung Opacity, iii.) Lung
Opacity and Consolidation, iv.) Pleural Effusion and Lung Opacity, and v.) Edema and
Lung Opacity. For each anchor, we selected corresponding images with either of the two
diagnoses as positives while other images as negatives.
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Figure 8.6 Retrieval performance of different pipelines trained with triplet loss.

8.3 Retrieval Performance

We trained models with concatenation and GMU image-text composition pipelines and
a pipeline with only images as queries . Said differently, former pipelines combine image
and text to form a query, while the latter relies entirely on image contents. For each
pipeline, we also trained with triplet and multi-similarity losses. The models created
were then used in the retrieval experiments to create the representations of queries and
images to be searched through, both of which were from a held-out test set. The retrieval
process was done through the nearest neighbor search using the 𝐿2 distance metric and
Recall@K as the performance measure. The retrieval results can be seen in Figure 8.6
and 8.7. As shown in both figures, nomatter the loss function used, a DML approach that
combines image and text to form queries outperforms image only approach (content-
based). This shows the efficiency of our proposed approach that leverages information
from both image and text when creating a query rather than relying on image contents
only.
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Figure 8.7 Retrieval performance of different pipelines trained with multi-similarity
loss.

8.4 Discussion

Our study limited the radiologist to express their information need through images, and
the text contains disease labels available in the CheXpert dataset. In other words, our
proposed approach is as good as the accuracy of these disease labels. We understand
from the previous study that adding more information like patient demographics, clini-
cal history, symptoms, or lab tests could improve differential diagnosis outcomes. How-
ever, that would raise a new question on how to fuse all of this information in a DML
process. Nevertheless, our approach has proven superior to image content alone. This
is essential as a proof-of-concept in our approach to augment the differential diagnosis
of medical images. On the other hand, we hope these promising results can inspire the
need to explore different methods to augment differential diagnoses of medical images
and therefore support radiologists in their daily workflow rather than trying to replace
them. Only by doing so can we improve their diagnostic accuracy and increase their
throughput [RHP+22].
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8.5 Related Work

Most of the previous approaches in the literature do not directly address the differential
diagnosis problem. One reason is that they assume the results of any retrieval system
can allow a radiologist to do the comparative analysis needed for differential diagno-
sis. However, this is not the case; as we have seen in the retrieval evaluation of Chap-
ter 6, a content-based alone approach sometimes retrieves insignificant random images.
On the other hand, few available approaches in the literature include [LRL+19], and
[LJE+19]. “[LRL+19] explored differential diagnosis for pancreatic cysts in CT images
using a DenseNet model that learns high-level features from the entire abnormal pan-
creas to create the mapping between the medical imaging appearance and the various
pancreatic cysts pathologies, and generate saliency maps to visualize essential regions.
With this approach, a radiologist can only get information on potential diagnoses with
respect to regions within the same image. However, he/she cannot compare this image
with others, nor can he/she specify what diseases the other images should have when
retrieving them”.

On the other hand, Yuan et al. [LJE+19] took a bottom-up approach to the differential
diagnosis of skin diseases. To augment the ability of general practitioners who did not
have additional specialized training to diagnose skin conditions accurately, she created
a deep learning-based system that distinguishes between 26 of the most common skin
conditions and suggests potential diseases to be considered when diagnosing a patient.
Unlike those studies, our work explored CXR images. CXR is the most commonmedical
imaging examination globally [IRK+19], giving us a perfect sample to prototype our
method for a general-purpose medical image retrieval system.

8.6 Summary

In this chapter, we proposed a new approach to augment the differential diagnosis of
medical images based on DML. We have formulated the differential diagnosis task as
a guided search problem in which a radiologist can issue a query combining the to-be-
interpreted medical image and the text targeting to retrieve images with specific dis-
eases that would significantly help the comparative analysis needed for the differential
diagnosis procedure. We trained a DML model to compliment image contents with
radiologists’ text descriptions when forming a query representation. This model also
learns the embedding function that puts the query closer to images with required dis-
eases while further apart from other images in the embedding space. Compared to the
content-based only approach that sometimes retrieves insignificant random images, this
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approach guarantees that the retrieved images have similar visual patterns. However,
they are with specific diseases expressed by the radiologist’s text and, therefore, can help
themmake the comparative analysis needed for the differential diagnosis procedure. The
limitation of this study, however, is that we should have included information about a
patient, like symptoms, lab tests, etc.; however, that would require a new approach to
fuse all this information, which is still an open question to be explored. Nevertheless,
this is an exciting direction of research as the outcomes of it can make general-purpose
medical image retrieval systems handle radiologist information need differently than
traditional approaches and significantly augment their daily workflow.





Part IV
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9
Conclusion

The thesis contributes to the overall goal of building a general-purpose medical image
retrieval system that can handle various information needs of radiologists through dif-
ferent query forms and thus augments them in their daily workflow, especially during
the interpretation of medical images. The underlying motivation of this work is that
building such a system will allow radiologists to search for similar cases to make com-
parative analyses that inform their diagnostic decisions. Consequently, that would help
reduce diagnostic errors and significantly improve their throughput since they can in-
terpret more images at a time, hence improving the lives of many patients [RHP+22].

Developing such a system, however, intensely requires collaborative efforts across
multiple stakeholders, including computer scientists and clinicians. It requires build-
ing complex infrastructure and generating new security and privacy regulations across
hospitals, academic research institutes, and multi-national consortia [ZGD+20]. Cur-
rently, the challenge of obtaining the required data from healthcare institutions hinders
the progress of such endeavors. However, as more and more data becomes available,
researchers will continue exploring innovative ways to contribute to creating general-
purpose medical image retrieval systems. In this thesis, the availability of datasets partly
limited the type of studies we could conduct. Nevertheless, we proposed fundamental
retrieval approaches that we could address with the available datasets; however, their
solutions are applicable across different medical images, making them suitable for inte-
gration into a general-purpose medical image retrieval system.

First, we studied the retrieval of medical images based solely on their contents in
which a radiologist expresses information need by submitting a sample image (query by
example). Then the system computes the similarities of medical images based on their
contents. To find an optimal feature representation method that distinguishes medical
images considering their semantics and modalities, we thoroughly analyzed different
feature representation techniques based on handcrafted methods (mainly texture fea-
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tures) and deep learning (deep features) to represent the contents of medical images.
Based on the experiment results, we propose deep features as the optimal feature repre-
sentation approach. On the other hand, we propose that deep CNNs with skip connec-
tion, ResNets and DenseNets are better architectures for learning and extracting medical
image features. This result is significant because it guides what an effective feature ex-
tractor to deploy in a general-purpose retrieval system is.

Second, we studied the retrieval of medical images based on content and patients’
demographics and proposed a multi-faceted method to accurately retrieve similar cases
of medical images while considering the clinical context. Our approach allows radiol-
ogists to express information needs by submitting a query comprising a sample image
and demographic information about the patient. This approach leverages both this infor-
mation and deep learning-based disease predictions to understand the clinical context,
making it able to identify similar cases accurately. This approach significantly improves
the retrieval results and is robust enough to be used in different datasets, making it a
perfect tool to be integrated into a general-purpose retrieval system.

Lastly, we studied the retrieval of medical images based on contents and text de-
scriptions provided by radiologists. Here, we propose a method that allows radiologists
to target specific images to retrieve by submitting a query consisting of a sample im-
age and text descriptions expressing their information needs. This kind of search aligns
well with the fact that radiologists are trained professionals, so when they look at the
medical images, they form initial hypotheses before finding the definitive diagnoses.
Said differently, this method allows radiologists to guide the search process. Guided
search is one of the essential features needed in a general-purpose medical image re-
trieval system. Unlike traditional content-based approaches that rely on image features
only, which sometimes retrieve insignificant random images, this guided search method
combines an image with a radiologist’s text description to guarantee that the retrieved
images are suitable for the comparative analysis needed to confirm or rule out initial
hypotheses (differential diagnosis). Having this capability in a general-purpose medi-
cal image retrieval system would significantly help radiologists in their daily workflow
since differential diagnosis is one of the most complex tasks for radiologists, yet the most
important one.

The studies in this thesis contribute a small step toward developing a general-purpose
medical image retrieval system. However, much work is still needed to eventually make
a perfect system that augments radiologists in their daily workflow. We envision a future
where all information regarding a patient, including images, laboratory data, symptoms,
and others, are integrated. This will allow the radiologist a wide range of possibilities
for expressing their information needs when looking for similar cases to supplement
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their diagnostic processes.
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Future Work

As explained earlier, this thesis contributes a small step toward developing a general-
purpose medical image retrieval system. However, much work is needed to develop
a viable system that augments radiologists in their daily workflow. In the following
sections, we will outline our suggestions for the future work in this area.

10.1 Pixel-level Image Analysis

Due to the lack of medical image datasets that are well labeled, the studies in this thesis
are based on image-level information only, like disease labels. However, the pixel-level
analysis would give radiologists a detailed image analysis and help them interpret and
compare medical images efficiently. For example, one can train a self-supervised model
that learns the fine-grained image similarity and infers similarity between images from
one pixel to pixel, thus understanding the regions of interest better. Deep neural net-
works based on the Transformer architecture [VSP+17], provide an attention mecha-
nism that might be suitable for this task.

10.2 Data Integration

According to a study by Kroth et.al [KMDV+19], poor access to information the clini-
cians need during their practices contributes to stress and burnout. On the other hand,
other studies have shown that most radiologists prefer access to data, like clinical and
laboratory data, during medical image interpretation, as the lack of such access con-
siderably affects their interpretation accuracy [HPS+20]. One reason, however, for the
existing poor access is that clinical data collection, storage, and integration is still broken
in healthcare. Typically, many healthcare organizations implement multiple Electronics
Health Records (EHR) and other data collection systems maintained by different teams,
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departments, etc., making it difficult for a particular patient’s data to be integrated into a
single point. Even more challenging is that these departments/organizations sometimes
have different annotation practices, making data interoperability difficult. For accurate
interpretation and similarity search of medical images, there is a need to integrate an
image with all supporting information, from patient records to additional descriptors
(such as vital signs, blood tests, medications, genomics, and non-imaging data such as
ECG) [ZGD+20; HPS+20] to infer the clinical context. This means there is a need for
optimal methods that ensure effective data integration for similarity search purposes
while considering the clinical contexts.

10.3 Guided Search

Guided search can significantly reduce radiologists’ time to find the necessary infor-
mation, fasten their diagnosis process, and save lives, especially in critical situations.
On the other hand, a guided search can help radiologists search for images with more
detailed information that would vastly improve the quality of their comparative anal-
ysis. We envision the future where a medical image retrieval system can allow Johh,
the radiologist search with a query that contains a to-be-interpreted chest CT image
(as an example) that has ground-glass opacities and a text that guides the search with
more fine-grained information, e.g., Find images like this of a 60-year-old female with

high-resolution, extensive patchy exudates of both lungs, faint ground-glass opacities on

the edge, and interlobular septal thickening [DZY+20]. Data integration is one step to en-
able the system to process such a query. The other step is designing effective machine
learningmethods to learn both image and text representations, considering the semantic
contexts within and IR methods to index these representations to ensure accurate and
faster retrieval.
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