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Abstract 
 

To guarantee navigation accuracy, the robotic applications utilize landmarks. This paper proposes a novel nonlinear switched 
system for the fundamental motion planning problem in autonomous mobile robot navigation: the generation of continuous 
collision-free paths to a goal configuration via numerous land- marks (waypoints) in a cluttered environment. The proposed 
system leverages the Lyapunov-based control scheme (LbCS) and constructs Lyapunov-like functions for the system’s 
subsystems. These functions guide a planar point-mass object, representing an autonomous robotic agent, towards its goal 
by utilizing artificial landmarks. Extracting a set of nonlinear, time-invariant, continuous, and stabilizing switched velocity 
controllers from these Lyapunov-like functions, the system invokes the controllers based on a switching rule, enabling 
hierarchical landmark navigation in complex environments. Using the well-known stability criteria by Branicky for switched 
systems based on multiple Lyapunov functions, the stability of the proposed system is provided. A new method to extract 
action landmarks from multiple landmarks is also introduced. The control laws are then used to control the motion of a 
nonholonomic car-like vehicle governed by its kinematic equations. Numerical examples with simulations illustrate the 
effectiveness of the Lyapunov-based control laws. The proposed control laws can automate various processes where the 
transportation of goods or workers between different sections is required. 
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1. Introduction 

Integrating robotic systems in aerospace, agriculture, 

construction, food and beverage, entertainment, health care, 

pharmaceutical, manufacturing, mining, hospitality, and 

transportation has benefited humans considerably. These 

benefits include improved quality of life, safety, increased 

efficiency, and productivity, and lowered risk of human lives 

in a hazardous environment. These benefits arise from the 

successful introduction of different types of robots for 

transportation, companionship, medical treatment and surgery, 

search and rescue, pursuit-evasion, packaging, harvesting, 

assembly, and explorations.[1-3] As a result, several robotic 

mechanical systems such as unmanned aerial vehicles (UAVs), 

unmanned ground vehicles (UGVs), unmanned surface 

vessels (USVs), unmanned underwater vehicles (UUVs), 

anchored and unanchored robotic arms, mobile manipulators, 

and assistive and service robots have been the center of 

research for several decade.[3-7] One of the most common areas 

of robotic research that has attracted the attention of many 

researchers is motion planning. 

Motion planning involves developing a robust algorithm 

that computes a dynamically feasible trajectory from an initial 

configuration space to a goal configuration space, ensuring 

obstacle and collision avoidance while observing system 

singularities, limitations, and restrictions. Considerable 

research has been carried out to develop algorithms that solve 

the findpath problem. Of course, a comprehensive solution to 

this problem must consider the shortest, smoothest, and safest 

paths. Over the years, many sophisticated algorithm have been 

presented by researchers for this findpath problem. These 

algorithms can be classified into two major categories: 

classical and heuristic methods. The classical method includes 

cell decomposition, roadmap, Voronoi graphs, tangent graph, 

rapidly-exploring random tree (RRT), Dublin’s path, 

probabilistic roadmap, and artificial potential field method.[8] 

While the Dijkstra algorithm, A∗ algorithm, artificial neural 
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networks, genetic algorithms, ant colony optimization, 

particle swarm optimization, artificial bee colony, differential 

evolution, Floyd algorithm, fuzzy logic, grey wolf 

optimization, and bat algorithm belong to the heuristic 

methods.[9] Artificial Intelligence (AI) algorithms (such as 

naive bayes, decision tree, random forest, logistic regression, 

support vector machines, and k nearest neighbours) is a third 

category that has recently emerged from the heuristic methods, 

and machine learning is a sub-field of AI.[9] 

Moreover, each of the classical and heuristic methods has 

strengths and weaknesses. Researchers have developed 

classical hybrid algorithms, heuristic hybrid algorithms, and 

classical-heuristic algorithms to solve their problems 

effectively. There is still much focus on developing algorithms 

that effectively solve the emerging findpath problems. One 

such problem is motion planning via the concept of landmarks. 

Landmarks for a planning problem are subgoals,[10] and goals 

are landmarks as well. Landmarks are mandatory abstract 

tasks and should be performed by any solution plan. One way 

to benefit from the landmark concept in solving motion 

planning problems is by performing hierarchically. Task A 

must be per- formed before performing task B.[11] For instance, 

task B is to lay a six-inch block on an eight-inch bock, making 

laying an eight-inch block task A. Land- marks can also be 

ordered according to the order they need to be performed. 

Moreover, if multiple landmarks are present in a workspace, 

every landmark may not be necessary along a robot’s 

trajectory. The important landmarks extracted from a 

landmark verification process are action landmarks. In the 

context of robotics, landmarks could be used for robot 

navigation,[8,12-14] and for self-localization,[15-18] 

Landmark-based motion planning is widely researched in 

robotics and aims to establish a safe motion strategy with 

optimum trajectories in cluttered environments. As a result, 

various landmark selection algorithms have been designed and 

implemented to solve landmark-based navigation problems 

using different robotic systems. For instance, the semi-definite 

programming (SDP) algorithm was used on a robotic arm,[19] 

the Triangulation Based Fusion (TBF) algorithm was applied 

on a Nomad 200 robot,[20] the Monte Carlo Localization (MCL) 

algorithm was used to navigate an underwater robot 

autonomously,[4] and a neuro-fuzzy controller,[9] and LbCS[21] 

were used for motion control of multiple mobile robots in 

bounded workspaces via selected landmarks.  

However, for the navigation of mobile robots in an 

obstacle-ridden workspace, selecting the optimal number of 

landmarks from multiple landmarks is crucial for landmark-

based motion planning. Therefore, landmarks selected and 

provided to the robot in a hierarchy offer a perfect solution for 

landmark-aided navigation problems. The hierarchal 

landmark technique was recently implemented on anchored 

manipulators in Refs. [22] and [23] to acquire precise robotic 

arm end-effector trajectories. In addition, hierarchal 

landmarks were also implemented for selecting optimal paths 

for the car-like mobile robots in Refs. [24] and [25]. Although 

the concept of hierarchal landmark navigation is recent, it can 

potentially contribute to significant practical applications such 

as transportation and loading/offloading items in a constrained 

environment like docks. This research is inspired by the lack 

of interest by researchers in incorporating hierarchal 

landmarks into landmark-based motion planning for 

autonomous mobile robot navigation. 

This paper aims to develop the velocity controllers of a 

point-mass object, which navigates via hierarchal landmarks 

to its target in unconstrained and constrained environments. 

The hierarchal landmarks serve as the waypoints for the point-

mass object. Thus, navigating to a distinctive hierarchal land- 

mark will create a separate subsystem. Combining the distinct 

subsystems will, therefore, create a switched system. A 

switched system is a hybrid dynamical system comprising a 

family of continuous-time subsystems and includes a law 

(switching rule) that coordinates the switching between these 

subsystems.[26] Therefore, the switched velocity controllers 

will successfully enable the point-mass object to maneuver 

from its initial position in a priori known environment via 

distinct hierarchal landmarks to its equilibrium state. In terms 

of detecting and selecting action landmarks amongst the 

presence of multiple landmarks and obstacles in a cluttered 

environment, the proposed hierarchal landmark-based 

navigation is a better approach than those presented in Refs. 

[24] and [25], which failed to address the vital process of 

landmark detection and selection. Branicky’s work, in 1998, 

on stable switched and hybrid systems is an interesting 

theoretical exposition on the intriguing stability properties of 

such systems that require multiple Lyapunov functions.[27] The 

stability of the switched system for the arbitrary switching 

signal in Ref. [27] was established by employing Multiple 

Lyapunov-like functions. This paper shows that Branicky’s 

criteria can be used to construct a switched system governed 

by ordinary differential equations (ODEs) for the most basic 

motion planning problem, the findpath problem, in 

autonomous mobile robot navigation. The stability of the 

switched system for the arbitrary switching signal is 

established by employing multiple Lyapunov functions. Using 

the Lyapunov-based Control Scheme (LbCS), the velocity 

based-controllers for the point-mass object are derived for 

each subsystem using the multiple Lyapunov functions. 

Secondly, a new switching rule will be designed for the 

switched velocity controllers of the point-mass object, 

enabling it to extract the action landmarks from several 

landmarks in its workspace and use those to converge to its 

goal orientation. Finally, the controllers are applied to a 

nonholonomic car-like vehicle for landmark navigation. The 

switched velocity controllers will provide greater mobility and 

increased access to the robots in a cluttered environment, 

thereby performing better than the hierarchal landmark-based 

navigation on anchored manipulators utilized in Refs. [23] and 

[22]. This novel technique can potentially have real-life 

applications in the military, health care, logistics, and 

assembly line production. For instance, in manufacturing, 
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transportation robots could drop off materials at different 

workstations. The significant contributions of this paper are: 

1. design of a new set of nonlinear, time-invariant, continuous, 

and stabilizing switched velocity controllers for hierarchical 

landmark navigation in cluttered environments. From the 

authors’ point of view, such stabilizing velocity-based 

controllers are derived in the sense of Lyapunov for 

hierarchical landmark-based navigation of mobile robots for 

the first time. Furthermore, due to LbCS, the controllers’ 

inherent robust nature responds well to system singularities 

and restrictions. Using the controllers proposed in this 

research, the mobile robot’s mechanical constraints and 

singularities can be easily captured compared to the landmark-

based navigation algorithm utilized in Ref. [20], where the 

inability to address the system singularities and limitations 

gave rise to erratic and unstable motion of the mobile robot. 

2. a new method for extracting action landmarks, as hierarchal 

landmarks, from multiple landmarks based on the robot’s 

detection region. The pro- posed approach will perform better 

in a workspace cluttered with multiple landmarks than the 

hierarchal landmark-based techniques reported in Refs. [24] 

and [25], which did not have the feature of selecting and 

extracting action landmarks. Furthermore, the method 

presented in this research can be used to automate the process 

in the industrial sector, especially where items or workers have 

to be transported or loaded/offloaded from one station to 

another in a constrained environment. 

The remainder of the paper is organized as follows: Section 

2 discusses related work. Section 3 gives a brief description of 

the LbCS. A summary of switched systems and their stability 

via multiple Lyapunov-like functions is presented in Section 

4. Section 5 gives an insight into the find path problem via 

landmarks. In sections 6 and 7, the velocity control laws are 

derived, enabling the point-mass object to navigate via 

hierarchical landmarks in unconstrained and constrained 

environments. Section 8 presents a switching signal for the 

point-mass object to extract an action landmark from the 

landmarks that fall in its detection region. The velocity control 

laws derived in sections 6, 7, and 8 are applied to the 

nonholonomic car-like vehicle in Section 9, and simulation 

studies of the car-like vehicle are presented. Finally, a 

discussion and concluding remarks are made in sections 10 

and 11, respectively. 

 

2. Related work 

Motion planning is an essential task in the field of robotics. 

One of the significant challenges for the motion of robotic 

systems is safe, stable, and reliable autonomous navigation. 

Many successful robotic applications utilize landmarks along 

the trajectories to guarantee navigation accuracy. Although 

many landmarks exist in the natural environment, landmark-

based motion planning approaches help select the important 

landmarks to generate optimal robotic paths. 

Landmarks can be generally classified as active and passive. 

According to Miguel et al.,[28] active landmarks actively send 

location information such as radio waves or satellite signals 

using radio, ultrasound, and Global System Position (GPS) to 

the robot, which processes information using receivers to 

convert the satellite signals into position, velocity, and time 

estimates to aid in navigation. In 2002, Tedder et al.,[29] studied 

the effectiveness of GPS satellite position data consisting of 

grid coordinates on a Bearcat robot to navigate to a given 

sequence of predefined waypoints while avoiding obstacles. 

The GPS navigation algorithm was utilized as a feedback 

control loop that guided the robot around the path obstacle and 

the target point. However, poor accuracy of the GPS was a 

significant drawback in this research which the authors 

overcame by installing more ground-based receivers on the 

robot. Although active landmark systems like the GPS method 

are widely used in transmitting signals about locations for 

robot motion, this solution is impractical in indoor 

applications where satellite signals are not reliable.[28] 

On the other hand, passive landmarks do not actively 

transmit signals; rather, the robot detects location information 

through sensors. The identification and location of landmarks 

are directly linked to the number and type of sensors used, as 

demonstrated by Wang and Yang[9] in 2003, who developed a 

neuro-fuzzy controller for motion control of a nonholonomic 

differential drive mobile robot using a combination of four 

sharp infrared sensors to read the distance to obstacles and 

landmarks. The controller then processed the distance 

information to adjust the speed of two separate motors of the 

robot in passing through the landmarks and obstacle avoidance. 

In 2009, Vázquez-Martín et al.[30] presented a curvature-based 

environment description for robot navigation using laser range 

sensors. The laser scan data segmentation algorithms and the 

segmentation results were used for image processing and to 

provide position information about the passive landmarks of 

the robot environment in the form of line and curve segments, 

corners, and edges. 

Passive landmarks can be further categorized as natural 

and artificial types. Natural landmarks are the distinct features 

extracted from the entire robot workspace without any 

changes being made in the structuring of the environment, 

with most systems utilizing sensory data and motion control 

schemes for navigation and identification of the natural 

environment.[30] For example, the extraction and matching of 

natural point landmarks were studied by Wijk et al.[20] in 2000, 

who utilized the Triangulation Based Fusion (TBF) algorithm 

for filtering out stable two-dimensional points from raw sonar 

data to autonomously navigate a Nomad 200 robot from one 

room to another in a building. However, the navigation results 

revealed that the robot acquired information on many ghost 

(mismatched) landmarks while navigating through an empty 

corridor compared to environments full of natural landmarks 

like the living room and the office. The erratic and unstable 

motion could have been avoided by continuously updating the 

robot on the locations of the nearest land- marks on the 

reference map. Furthermore, the work of Wijk et al. revealed 

a disadvantage of using natural landmarks which was the 
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difficulty in making a precise position measurement of distant 

landmarks, with its usage limited to structured, office-like 

environments containing a sufficient number of naturally 

occurring detectable features.[30] 

Compared to natural landmarks, the artificial landmarks 

technique was more widely used for localization and 

navigation tasks by researchers in structured industrial 

applications. Bączyk et al. claimed in their study that the use 

of artificial landmarks as visual cues could improve 

operational characteristics of vision-based methods in contrast 

to the recognition of natural environment features.[31] Artificial 

landmarks are features that are set up and unobtrusively added 

to the environment for easier recognition and detection by the 

robot’s sensors and motion control schemes.[23] Bączyk et al.[31] 

in 2003 presented a vision-based landmark recognition 

method for mobile robot localization in partially known 

environments. Simple, unobtrusive artificial landmarks were 

used as external localization aids that enabled unambiguous 

global localization in detecting the position and orientation of 

the robot relative to the landmark. Later in 2014, Kim et al.[4] 

proposed a novel vision-based object detection technique 

based on artificial landmarks and applied it to the Monte Carlo 

Localization (MCL) algorithm, a map-based localization 

technique, with an underwater robot platform in structured 

underwater environments. A two-step approach, comprising 

the image processing and localization steps, was utilized to 

successfully apply the landmark detection results to MCL for 

navigation in harsh underwater conditions. 

Landmark recognition is considered one crucial research 

area in robot navigation systems. Besides distant landmarks 

stored redundantly, landmarks close to the robot’s trajectory 

may not necessarily be suitable or important in a robot’s 

trajectory, especially in a workspace with multiple landmarks. 

This prompted researchers to introduce a hierarchy in the 

landmark structure and use practical landmarks with accurate 

position information to navigate robotic systems precisely. In 

2020, Prasad et al.[24] used the concept of strategic creation and 

positioning of landmarks in a bounded workspace to guide the 

robot to navigate the workspace safely and park accurately 

inside a designated parking bay. The car-like robot 

maneuvered from one newly fixed landmark to another before 

finally converging on a target with a pre-defined posture. 

Landmarks were placed at regular intervals in front of the 

parking bay to guide the car-like vehicle to its target and park 

correctly. Kumar et al.[25] in 2021 used switched LbCS-based 

control laws for motion control of a Lagrangian swarm of 

UGVs via hierarchal landmarks in a cluttered environment. 

Although the switched system was successfully shown to be 

stable in the sense of Lyapunov, the system’s scalability was 

not guaranteed, which was a drawback of this approach. 

Apart from mobile robots, hierarchal landmarks were also 

recently implemented on anchored manipulators to acquire 

precise end-effector trajectories. Anchored robotic arms were 

proposed and utilized by Chand et al. in 2020[22] and 2021[23] 

to demonstrate that robotic arms in an automated assembly 

line could navigate via hierarchal landmarks and perform 

several repetitive tasks which are in hierarchal order. The 

stabilizing two-dimensional switched controllers were derived 

in both studies with multiple Lyapunov functions to enable the 

n-link robotic arms to perform multiple tasks in one sequence 

while observing the system restrictions and limitations. 

However, unexpected algorithm singularities resulting from 

local minima issues during navigation were a major drawback 

of this approach.[23] 

In robotic environments consisting of multiple landmarks, 

searching for techniques that could provide the best and most 

cost-effective route for the robot to reach its goal 

autonomously by selecting an optimal number of wayward 

points still prevails. In 2007, Lerner et al.[19] used the semi-

definite programming (SDP) algorithm as an integer-

programming problem on 6 degrees of freedom (6-DOF) 

robotic arm to select different task-oriented subsets from the 

available landmarks automatically. In addition, a linearized 

objective function was formulated into a landmark selection 

algorithm by Beinhofer et al.[32] in 2013 for selecting a set of 

landmarks suitable for robust navigation of mobile robots that 

repeatedly executed the same trajectory. Then, in 2020, 

Sharma et al.[21] used LbCS to navigate multiple car-like robots 

in a bounded workspace via selected landmarks. The 

landmarks were used as waypoints or navigation aids for 

guiding the car-like robots to their targets in a constrained 

workspace comprising fixed obstacles of numerous sizes. 

Various methods for solving landmark-based navigation 

tasks in applications of robotic systems have been presented 

in the literature. Furthermore, research on the contributions of 

different types of landmarks for robot navigation is ongoing, 

mainly focusing on satellite signals, mapping, localization, 

sensor- based, and motion control algorithms. Compared to 

the landmark navigation techniques discussed above, this 

paper presents a new method for detecting and extracting 

action landmarks from multiple landmarks using a Lyapunov-

based hybrid dynamical switched system for autonomous 

mobile robot navigation via hierarchal landmarks in 

unconstrained and constrained environments. 

 

3. Lyapunov-based Control Scheme 

This research utilizes an artificial potential field technique 

known as the Lyapunov-based control scheme. The 

development of attractive and repulsive potential field 

functions is the primary intention of LbCS. These are 

developed using the distance functions. The attractive 

potential function at an arbitrary time is the measure of the 

Euclidean distance between the target and a robot, usually 

multiplied with the target convergence parameter. The target 

conver- gence parameter represents the strength of attraction 

between the target, and the robot. A larger parameter value 

indicates that the robot converges faster to its target. Whereas, 

for instance, the repulsive potential function for stationary 

obstacle avoidance at an arbitrary time is a measure of the ratio 

of an obstacle avoidance parameter to the Euclidean distance 
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between the stationary obstacle and the robot. The obstacle 

avoidance parameter represents the strength of repulsion 

between the stationary obstacle, and the robot. A larger 

avoidance parameter value indicates that the robot will 

experience greater repulsion as it approaches the obstacle. 

Subsequently, these functions are part of a total potential 

function called the Lyapunov function from which one could 

extract the time-invariant nonlinear velocity or acceleration 

controllers.[6,3] Using LbCS, designing controllers is easy, 

while the controllers are continuous which are its strengths. It 

is also easy to include control conditions, specifications, 

inequalities, and mechanical constraints of mechanical 

systems in the controllers through mathematical functions. 

The main disadvantage of LbCS is that algorithm singularities 

(local minima) can be introduced. The reader is referred to Ref. 

[33] for a detailed account of the LbCS. 

An illustration of the LbCS is given utilizing Fig. 1(a) and 

Fig. 1(b). Fig. 1(a) shows the contour plot generated over a 

workspace −10 < 𝑍1 < 150  and −10 < 𝑍2 < 150 for a 

robot whose initial position is at (10, 10). The dashed line is 

the robot’s trajectory from its initial position to its target 

position (100, 100) which shows the robot avoids the 

obstacle positioned at (50, 50). Fig. 1(b) shows the 3D 

visualization of the attractive and repulsive potential fields. 

The blue line shows the Lyapunov function, which shows that 

the energy of the robot is monotonically decreasing and is zero 

at the target position. 

 

4. Continuous Switched Systems and Multiple Lyapunov 

Functions 

A switched system is a hybrid dynamical system made up of a 

family of continuous-time subsystems and a rule that 

orchestrates switching between them.[26] A switched system is 

of the form 

X′(t) = Fi(X(t)), i ∈ Q ≔ {1, . . . , N}              (1) 

where X(t) ∈ ℝn.[27] It has the following switching rules: (i) 

each Fi  is globally Lipschitz continuous and (ii) the i’s are 

chosen in such a way that there are finite switches in finite 

time. It is assumed that Fi(0) = 0, which means that the  

individual subsystems have the origin as the equilibrium point. 

A continuous switched system has the additional rule that the 

state of (1) does not jump at the switching instants. This means 

that if there is a switch from Fij−1  to Fij  at times tj , j =

1, 2, 3,… , N, then Fij−1(X(tj−1), tj) = Fij(X(tj), tj). 

For (1), Branicky[27] further defines the anchored switching 

sequence, indexed by an initial state X0 ≔ X(t0), t0 ≥ 0, as 

S = X0: (i0, t0), (i1, t1), . . . , (iM, tM), . ..,           (2) 

which may be finite or infinite.[27] It completely describes the 

trajectory of system (1), denoted by XS(t), according to the 

rule (ij, tj); that is, the rule states that the system evolves 

according to X′(t) = Fij(X(t), t), tj ≤ t ≤ tj+1. 

The switching is assumed to be minimal. This means that 

ij ≠ ij+1, j ∈ ℤ+ , the set of non-negative integers. The end-

points at which the ith system is active is denoted S|i.  
Further, let T ≔ t0, t1, . . . , tM, . ..  be a strictly increasing 

sequence of times. The even sequence of T is ε(T): t0, t2, . .. , 

and the interval completion 𝐼(𝑇) is the set ∪j∈ℤ+ [t2j, t2j+1]. 

Thus, 𝐼(𝑆|𝑖) is the set of times that the ith system is active, up 

to a set of measure zero. 

Finally, V  is a candidate Lyapunov function if V  is a 

continuous positive definite function (about the origin 0 where 

V(0) = 0) with continuous partial derivatives. 

Definition 4.1. Given a strictly increasing sequence of times 

T in ℝ, then V is Lyapunov-like for function F and trajectory 

X(∙) over T if 

• V̇(X(t)) ≤ 0 for all t ∈  I(T); and 

• V is monotonically nonincreasing on ε(T). 
 

Theorem 4.2 (Branicky[27]) Let there be candidate Lyapunov 

functions Vi , i = 1, . . . , N , and vector fields X′(t) = Fij(X) 

with Fi(0) = 0  for all i. Let S  be the set of all switching 

sequences associated with the system. If for each S ∈ 𝐒 and for 

all i, Vi  is Lyapunov-like for Fi  and XS(∙) over S|i, then the 

system is stable in the sense of Lyapunov. 

Note that Branicky used the subscript 𝑁 in (2). However, in 

general, the number of switches i may not equal the number 

of terms of the sequence 𝑆; hence 𝑀 has been used. If the  

 
Fig. 1 An illustration of the Lyapunov-based control scheme. 

(a) Contour Plot. (b) 3D Visualization
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subsystem i is active only once, then 𝑀 = 1, in which case 

𝑆 = 𝑋0: (𝑖0, 𝑡0), (𝑖1, 𝑡1) , so that 𝑆|𝑖 = {𝑡0, 𝑡1}  and 𝐼(𝑆|𝑖) =
[𝑡0, 𝑡1]; however, 𝜀(𝑆|𝑖) = 𝑡0 is not strictly a sequence. In this 

case, 𝑉𝑖 is monotonically nonincreasing on 𝐼(𝑆|𝑖) = [𝑡0, 𝑡1]. 
 

5. Solving the findpath problem via landmarks 

A fundamental problem in robotics is to identify a continuous 

path that allows a robot, or a part of it, to reach its destination 

without colliding with obstacles that may exist in the 

workspace. This is the findpath problem [34, 35]. At the most 

basic level, it involves the construction of mathematical 

controllers (velocity or acceleration controllers) that allow a 

point-mass object, representing a robotic agent governed by its 

kinematic equations, to autonomously navigate to its target in 

a priori known environment. In this paper, a point-mass object 

in two-dimensional space with position (𝑥(𝑡), 𝑦(𝑡)) at time 

𝑡 ≥ 0 is considered. With the use of a finite number of known 

landmarks for navigation (Fig. 2), each landmark conveniently 

marks the switching from one subsystem to another of a 

switched system governing the motion of the point-mass 

object via its instantaneous velocity (𝑥′(𝑡), 𝑦′(𝑡)). 
 

Definition 5.1 A point-mass object is a disk with radius ra >
0 positioned at (x(t), y(t)) ∈ ℝ2 at time t ≥ 0 

B ≔ (z1, z2) ∈ ℝ
2: (z1 − x)

2 + (z2 − y)
2 ≤ ra

2       (3) 

The instantaneous velocity of the point-mass object is 

(v(t),w(t)) ≔ (x′(t), y′(t)) . The general ODE system 

governing the motion of B is therefore of the form 

ẋ(t) = v(x(t), y(t)), ẏ(t) = w(x(t), y(t)),  

(x0, y0) = (x(0), y(0))                               (4) 

Adopt the vector notation 𝐱(t) ≔ (x(t), y(t)) , and assume 

that (v,w)  has a state feedback law of the form 

(v(t),w(t)) ≔ (−μf(𝐱(t)),−φg(𝐱(t))) , for scalars μ,φ >

0 and smooth functions f(𝐱(t)) and g(𝐱(t)) to be constructed 

appropriately later. Using the vector notation G(𝐱) ≔

(−μf(𝐱(t)),−φg(𝐱(t))) ∈ ℝ2, the state space representation 

of the point-mass object system can be written as 

𝐱̇ = 𝐆(𝐱), 𝐱0 ≔ 𝐱(t0).                           (5) 

Definition 5.2 The target for the point-mass object is a disk 

with center (a, b) and radius rτ. It is described as the set 

τ ≔ {(z1, z2) ∈ ℝ
2: (z1 − a)

2 + (z2 − b)
2  ≤ rτ

2.        (6) 

Definition 5.3. A landmark 𝐱𝐿𝑀𝑝 , p =  1, 2,⋯ , n, is a disk 

with center (xLMp
, yLMp

) and radius rLMp
. It is described as 

the set 

LMp = {(z1, z2) ∈ ℝ
2: (z1 − xLMp

)
2
+ (z2 − yLMp

)
2
≤

rLMp

2 }.                               (7) 

 

Remark 5.4 The target, τ, can be considered as an additional 

landmark, that is, LMn+1 = τ. Denote the distance between 

the initial position (x(t0), y(t0)) = (x0, y0) of the point-mass 

object and landmark LMp  by dLMp
=

√(x0 − xLMp
)
2
+ (y0 − yLMp

)
2
. As depicted in Fig. 2, the 

positions of the landmarks are assumed such that: 

dLM1
< dLM2

< dLM3
< ⋯ < dLMn+1

.                    (8) 

 

 
Fig. 2 Schematic design of the findpath problem for a point-mass 

object using known landmarks in a workspace. 

 

6. Scenario 1: Landmarks in hierarchical order in 

unconstrained environment 

In this case, an environment of the point-mass object free of 

obstacles is considered. The point-mass object has to start 

from its initial position, move to its target via landmarks 

provided in hierarchical order and converge at the target. 

 

6.1 Multiple Lyapunov-like functions 

In the multiple Lyapunov-like functions to be proposed, the 

following potential functions will be included: 

 

6.1.1 Landmark attraction function 

For the point-mass object to be attracted to the pth landmark, 

the following radically unbounded function about a landmark 

for p = {1, 2,⋯ , n + 1} is utilized: 

Vp(𝐱) ≔
1

2
[(x − xLMp

)
2
+ (y − yLMp

)
2
].         (9) 

 

6.1.2 Auxiliary function 

To ensure that the multiple Lyapunov-like functions vanish 

after the point- mass object has converged to its target τ, the 

following radically unbounded auxiliary function about the 

target is utilized: 

R(𝐱) ≔
1

2
[(x − a)2 + (y − b)2].                (10) 

 

6.2 Multiple Lyapunov-like functions 

Introduce αp > 0  and γ > 0  as the landmark convergence 

parameters and target convergence parameter, respectively. 

Then with respect to each landmark, consider tentative 
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candidate Lyapunov-like functions of the form, 

L1p(𝐱) ≔ γR(𝐱) + αpVp(𝐱)R(𝐱),                 (11)  

which are invoked according to the switching rule 

p =

{
 
 

 
 

1, 0 ≤ d ≤ dLM1

2, dLM1
≤ d < dLM2

3, dLM2
≤ d < dLM3

⋮  
n + 1, dLMn

≤ d ≤ dLMn+1
,

                (12) 

where d = √(x(t) − x(t0))
2
+ (y(t) − y(t0))

2
. 

Along a trajectory of system (5), 

L̇1p(𝐱) = γṪ(𝐱) + αp (V̇p(𝐱)T(𝐱) + Vp(𝐱)Ṫ(𝐱)) 

              = f1p(𝐱)ẋ + g1p(𝐱)ẏ 

              = f1p(𝐱)v + g1p(𝐱)w,                     (13) 

where, 

f1p(𝐱) = αpT(𝐱) (x − xLMp
) + (x − a)(αpVp(𝐱) + γ)  (14) 

and 

g1p(𝐱) = αpT(𝐱) (y − yLMp
) + (y − b)(αpVp(𝐱) + γ)  (15) 

 

6.3 Velocity controllers 

Let there be scalars 𝜇 > 0  and 𝜑 > 0 . Then the velocity 

controllers are 
𝑣 = −𝜇𝑓1𝑝(𝐱),

𝑤 = −𝜑𝑔1𝑝(𝐱)
}          (16) 

where 𝑓1𝑝(𝐱)  and 𝑔1𝑝(𝐱)  are defined in (14) and (15) 

respectively. 

 

6.4 Stability Analysis 

It can be shown that the time derivative of 

𝐿̇1𝑝(𝐱) = − [𝜇(𝑓1𝑝(𝐱))
2 + 𝜑(𝑔1𝑝(𝐱))

2] = − [
𝑣2

𝜇
+
𝑤2

𝜑
] ≤ 0.           

(17) 

Given (16), system (5) becomes therefore a switched system 

𝐱̇ = 𝐆𝑝(𝐱), 𝐱0 ≔ 𝐱(𝑡0), 𝑝 ∈ {1,2,⋯ , 𝑛 + 1}.   (18) 

Since 𝑓1𝑝(𝑎, 𝑏) = 𝑔1𝑝(𝑎, 𝑏) = 0 , it is clear that an 

equilibrium point of system (18) is 𝐱𝑒 = (𝑎, 𝑏). Since it is the 

center of the circular target 𝜏, it is an isolated equilibrium point. 

Therefore, it can be concluded that:  

(𝑖)     𝐿1𝑝(𝐱) > 0  ∀  𝐱 ∈ ℝ
2{𝐱𝑒}, (𝑖𝑖)     𝐿1𝑝(𝐱𝑒) = 

0, (𝑖𝑖𝑖)   𝐿̇1𝑝(𝐱) ≤ 0  ∀  𝐱 ∈ ℝ
2.                 (19) 

Properties (i) and (ii), together with the fact that 𝐿1𝑝(𝐱), 𝑝 =

{1,… , 𝑛 + 1} , have continuous partial derivatives at every 

point (𝑥, 𝑦) ∈ ℝ2, it can be concluded that 𝐿1𝑝(𝒙) are indeed 

Lyapunov-like functions for system (18). Now, with 𝑓1𝑝 and 

𝑔1𝑝, it is easy to see that:         

𝑮𝑝(𝐱) = (−𝜇𝑓1𝑝(𝐱),−𝜑𝑔1𝑝(𝐱)) ∈ 𝐶
1[ℝ2, ℝ2] ; indeed, 𝑮𝑝 

has infinitely many continuous partial derivatives. Thus, 𝑮𝑝 is 

locally Lipschitz continuous. This implies a solution 𝒙(𝑡) of 

system (18) exists and is unique on some time interval [𝑡0, 𝑠], 
𝑠 > 0.   

Proof: 

∥ 𝑮𝑝(𝐱) ∥= √(−𝜇𝑓1𝑝(𝐱))
2

+ (−𝜑𝑔1𝑝(𝐱)))
2
 

                   ≤ 𝜇|𝑓1𝑝(𝐱)| + 𝜑|𝑔1𝑝(𝐱))|   

                  ≤ (𝜇 + 𝜑)𝛼𝑝𝑅(𝐱) (|𝑥 − 𝑥𝐿𝑀𝑝| + |𝑦 − 𝑦𝐿𝑀𝑝|) +

(𝜇 + 𝜑)(𝛼𝑝𝑉𝑝(𝐱) + 𝛾)(|𝑥 − 𝑎| + |𝑦 − 𝑏|). 

 By (8), for all 𝑝 = 1,2,… , 𝑛, and (𝑥, 𝑦) ∈ ℝ2, there is 

√(𝑥 − 𝑥𝐿𝑀𝑝)
2 + (𝑦 − 𝑦𝐿𝑀𝑝)

2 < √(𝑥 − 𝑎)2 + (𝑦 − 𝑏)2  and 

𝑉𝑝(𝑥) < 𝑅(𝒙). Thus,  

∥ 𝑮𝑝(𝐱) ∥≤ (𝜇 + 𝜑)[𝛼𝑝𝑅(𝐱) + 𝛼𝑝𝑉𝑝(𝐱) + 𝛾](|𝑥 − 𝑎|

+ |𝑦 − 𝑏|) 
                  ≤ (𝜇 + 𝜑)[2𝛼𝑝𝑅(𝒙) + 𝛾](|𝑥 − 𝑎| + |𝑦 − 𝑏|) 

By (19), 𝐿1𝑝(𝐱) = 𝛾𝑅(𝐱) + 𝛼𝑝𝑉𝑝(𝐱)𝑅(𝐱) ≤ 𝐿1𝑝(𝐱0)  for all 

𝐱 ∈ ℝ2. Thus 𝑅(𝐱) ≤ 𝐿1𝑝(𝐱0)/𝛾, and  

∥ 𝑮𝑝(𝐱) ∥≤ (𝜇 + 𝜑)(2
𝛼𝑝

𝛾
𝐿1𝑝(𝐱0) + 𝛾) (|𝑥 − 𝑎|

+ |𝑦 − 𝑏|). 
Accordingly, for some constant 𝐾 > 0 independent of 𝑠, there 

is ∥ 𝑮𝑝(𝐱) ∥≤ 𝑀 ∥ 𝐱 − 𝐱𝑒 ∥. Let 𝒖 = 𝐱 − 𝐱𝑒. Then  
1

2

𝑑

𝑑𝑡
∥ 𝒖(𝑡) ∥2= ⟨𝒖(𝑡), 𝒖̇(𝑡)⟩ = ⟨𝒖(𝑡), 𝑮𝑝(𝐱(𝑡))⟩ ≤∥ 𝒖(𝑡) ∥∥

𝑮𝑝(𝐱(𝑡)) ∥≤ 𝐾 ∥ 𝒖(𝑡) ∥
2.                     (20) 

Let 𝑧(𝑡) ≔∥ 𝒖(𝑡) ∥2. Then, the differential inequality is  
1

2

𝑑

𝑑𝑡
𝑧(𝑡) ≤ 𝐾𝑧(𝑡), 𝑧(𝑡0) =∥ 𝒖(𝑡0) ∥

2.        (21) 

Comparing (20) and (21), it is easy to see that ∥ 𝒖(𝑡) ∥2≤∥

𝒖(𝑡0) ∥
2 𝑒2𝐾(𝑡−𝑡0), 𝑡 ∈ [𝑡0, 𝑠]. 

This implies the existence of the solution 𝐱(𝑡) of system (18) 

on [𝑡0, 𝑠 + 𝜌], 𝜌 > 0 being independent of 𝑠 > 0. Hence, it 

can be concluded that 𝑮𝑝(𝐱) is globally Lipschitz continuous.   

It is clear that the multiple candidate Lyapunov functions are 

of the same type. Thus, system (18) has the simple switching 

sequence 𝑆 = (𝑥0, 𝑦0): (𝑝0, 𝑡0), (𝑝1, 𝑡1) for 𝑝 = {1,… , 𝑛 + 1}, 
to easily obtain the trajectory (𝑝0, 𝑡0): 𝐱̇ = 𝑮𝑝0(𝐱(𝑡), 𝑡)  for 

𝑡0 ≤ 𝑡 < 𝑡1. By property (ii) in (19), one can conclude that 

𝐿1𝑝 is monotononically decreasing on 𝐼(𝑆|𝑝). Hence, 𝐿1𝑝 are 

Lyapunov-like functions satisfying Theorem 4.2. Accordingly, 

system (18) is stable in the sense of Lyapunov.  

 

Example 6.1 In this example, 𝑛 = 3  landmarks are 

considered besides the target, i.e., 𝑝 = 1,2,3,4. System (18), 

with parameters 𝜇 = 𝜑 = 1 , 𝛼𝑝 = 0.05  and 𝛾 = 0.00003 , 

was numerically integrated via the RK4 method with 𝑡 ∈
[0,5000] and step-size 0.1. The end-points of the times that 

system 𝑝 was active and the interval completions are  
𝑆|1 = {0.0, 416.5}, 𝐼(𝑆|1) = {[0.0, 416.5]},

𝑆|2 = {416.6, 1091.0}, 𝐼(𝑆|2) = {[416.6, 1091.0]},

𝑆|3 = {1091.1, 2839.4}, 𝐼(𝑆|3) = {[1091.1, 2839.4]},

𝑆|4 = {2839.5, 5000.0}, 𝐼(𝑆|4) = {[2839.5, 5000.0]}.
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Fig. 3 (a) Trajectory of the point-mass object from its initial position to its target via landmarks. (b) 𝐿1𝑝(𝐱) decreases on each interval 

where the pth subsystem is active. 

 

The trajectory, shown in Fig. 3(a), obeys the rule  
(10, 0.0): 𝐱̇ = 𝑮10(𝐱(𝑡), 𝑡), 0.0 ≤ 𝑡 < 416.5,

(20, 416.6):     𝐱̇ = 𝑮20(𝐱(𝑡), 𝑡), 416.6 ≤ 𝑡 < 1091.0,

(30, 1091.1):      𝐱̇ = 𝑮30(𝐱(𝑡), 𝑡), 1091.1 ≤ 𝑡 < 2835.4,

(40, 2839.5):      𝐱̇ = 𝑮40(𝐱(𝑡), 𝑡), 2839.5 ≤ 𝑡 < 5000.0.

 

The monotonically decreasing Lyapunov functions are shown 

in Fig. 3(b). 

 

7. Scenario 2: Landmarks in Hierarchical order in 

Constrained Environments 

Now, consider the configuration space of switched system (5) 

clustered with 𝑞 ∈ ℕ  stationary obstacles and 𝑛 ∈ ℕ 

landmarks.  

The 𝑘𝑡ℎ  solid stationary obstacle is a disk with center 
(𝑜𝑘1, 𝑜𝑘2) and radius 𝑟𝑂𝑘 > 0. It is described as the set  

𝑂𝑘 ≔ {(𝑧1, 𝑧2) ∈ ℝ
2: (𝑧1 − 𝑜𝑘1)

2 + (𝑧2 − 𝑜𝑘2)
2 ≤ 𝑟𝑂𝑘

2 }. (22) 

 

7.1 Multiple Lyapunov-like functions 

In the multiple Lyapunov-like functions to be proposed, we 

will utilize landmark attraction function (9) with the following 

potential functions.  

 

7.1.1 Target attraction function 

For target convergence the auxiliary function (10) are 

modified to  

𝐻(𝐱) ≔
1

2
[(𝑥 − 𝑎)2 + (𝑦 − 𝑏)2] + 𝜖2,    (23) 

where 𝜖 > 0 is a sufficiently small constant. The role of this 

constant is to ensure that the proposed system satisfies the first 

switching rule of a switched system.  

 

7.1.2 Stationary obstacle avoidance function 

For the purpose of avoiding possible collision with the 𝑘𝑡ℎ 

stationary solid obstacle (22) where 𝑘 ∈ 1,2,3,⋯ , 𝑞 , the 

following obstacle avoidance function is utilized:  

𝑊𝑘(𝐱) =
1

2
[(𝑥 − 𝑜𝑘1)

2 + (𝑦 − 𝑜𝑘2)
2 − (𝑟𝑂𝑘 + 𝑟𝑎)

2
].  (24) 

Now, introduce 𝛽𝑘 > 0  as obstacle collision avoidance 

parameter. Then with respect to each landmark, consider a 

Lyapunov-like function of the form  

𝐿2𝑝(𝐱) ≔ 𝛾𝐻(𝐱) + 𝛼𝑝𝑉𝑝(𝐱)𝐻(𝐱) + ∑  
𝑞
𝑘=1 𝛽𝑘

𝐻(𝐱)

𝑊𝑘(𝐱)
,  (25) 

which are invoked according to the switching rule  

𝑝 =

{
 
 

 
 
1, 0 ≤ 𝑑 < 𝑑𝐿𝑀1
2, 𝑑𝐿𝑀1 ≤ 𝑑 < 𝑑𝐿𝑀2
3, 𝑑𝐿𝑀2 ≤ 𝑑 < 𝑑𝐿𝑀3
⋮
𝑛 + 1, 𝑑𝐿𝑀𝑛 ≤ 𝑑 ≤ 𝑑𝐿𝑀𝑛+1 ,

  (26) 

where 𝑑 = √(𝑥(𝑡) − 𝑥(𝑡0))2 + (𝑦(𝑡) − 𝑦(𝑡0))2. 

 

7. 2 Velocity controllers 

Let there be scalars 𝜇 > 0  and 𝜑 > 0 . Then the velocity 

controllers are  
𝑣 = −𝜇𝑓2𝑝(𝐱),

𝑤 = −𝜑𝑔2𝑝(𝐱)
}      (27) 

where  

𝑓2𝑝(𝐱) = 𝛼𝑝𝐻(𝐱) (𝑥 − 𝑥𝐿𝑀𝑝) + (𝛼𝑝𝑉𝑝(𝐱) + 𝛾 +

∑𝑞𝑘=1
𝛽𝑘

𝑊𝑘(𝐱)
) (𝑥 − 𝑎) − ∑

𝑞
𝑘=1 𝛽𝑘

𝐻(𝐱)

𝑊𝑘
2(𝐱)

(𝑥 − 𝑜𝑘1)        (28) 

 and  

𝑔2𝑝(𝐱) = 𝛼𝑝𝐻(𝐱) (𝑦 − 𝑦𝐿𝑀𝑝) + (𝛼𝑝𝑉𝑝(𝐱) + 𝛾 +

∑𝑞𝑘=1
𝛽𝑘

𝑊𝑘(𝐱)
) (𝑦 − 𝑏) − ∑

𝑞
𝑘=1 𝛽𝑘

𝐻(𝐱)

𝑊𝑘
2(𝐱)

(𝑦 − 𝑜𝑘2).        (29) 

 

7.3 Stability analysis 

𝐿2𝑝(𝐱), for 𝑝 = 1,2,⋯ , 𝑛 + 1, is positive over the domain  

𝐷 (𝐿2𝑝(𝐱)) ≔ 𝐱 ∈ ℝ2:𝑊𝑘(𝐱) > 0 ∀ 𝑘 = 1,2,… , 𝑞. 

Then  

(a) Trajectory of system (18) (b) Multiple Lyapunov functions
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𝐿̇2𝑝(𝐱) = − [𝜇(𝑓2𝑝(𝐱))
2 + 𝜑(𝑔2𝑝(𝐱))

2] = − [
𝑣2

𝜇
+
𝑤2

𝜑
] ≤ 0, 

(30) 

for all 𝐱 ∈ 𝐷 (𝐿2𝑝(𝐱)) . Given (27), system (5) becomes 

therefore a switched system  

𝐱̇ = 𝑮𝑝(𝐱), 𝐱0 ≔ 𝐱(𝑡0), 𝑝 ∈ 1,2,⋯ , 𝑛 + 1.  (31) 

Looking at the right-hand side of equations (28) and (29), the 

functions that appear in the denominator are 𝑊𝑘 , 𝑘 ∈ ℕ . 

Hence, it can be easily concluded that 𝑮𝑝(𝐱) =

(−𝜇𝑓2𝑝(𝐱),−𝜑𝑔2𝑝(𝒙)) ∈ 𝐶
1 [𝐷 (𝐿2𝑝(𝐱)) , ℝ

2]  for all 𝑝 =

1,2,⋯ , 𝑛 + 1 , which implies that at least on some time 

interval [𝑡0, 𝑠] , 𝑠 > 0 , the solution of 𝐱(𝑡)  of system (31) 

exists and is in 𝐷 (𝐿2𝑝(𝐱)). Certainly, since the functions 𝑊𝑘 

appear in the denominator in (28) and (29), they will also 

appear in the denominator of higher-order partial derivatives, 

with each derivative continuous on 𝐷 (𝐿2𝑝(𝐱)). This indicates 

that 𝑮𝑝(𝐱)  is locally Lipschitz on 𝐷 (𝐿2𝑝(𝐱)) ; that is, 

𝑮𝑝(𝐱) = (−𝜇𝑓2𝑝(𝐱),−𝜑𝑔2𝑝(𝐱)) ∈ 𝐶
∞ [𝐷 (𝐿2𝑝(𝐱)) , ℝ

2] . 

This means that the solution of 𝐱(𝑡) exists and is unique on the 

time interval [𝑡0, 𝑠].    
 

Proof: 

∥ 𝑮𝑝(𝐱) ∥= √(−𝜇𝑓2𝑝(𝐱))
2

+ (−𝜑𝑔2𝑝(𝐱)))
2

≤ 𝜇|𝑓2𝑝(𝐱)| + 𝜑|𝑔2𝑝(𝐱))| 

   ≤ (𝜇 + 𝜑)𝛼𝑝𝐻(𝐱) (|𝑥 − 𝑥𝐿𝑀𝑝| + |𝑦 − 𝑦𝐿𝑀𝑝|)

+ (𝜇 + 𝜑)(𝛼𝑝𝑉𝑝(𝐱) + 𝛾

+∑

𝑞

𝑘=1

𝛽𝑘
𝑊𝑘(𝐱)

) (|𝑥 − 𝑎| + |𝑦 − 𝑏|)

+ (𝜇 + 𝜑)∑

𝑞

𝑘=1

𝛽𝑘
𝐻(𝐱)

𝑊𝑘
2(𝐱)

(|𝑥 − 𝑜𝑘1|

+ |𝑦 − 𝑜𝑘2|). 
 

 By (8), for all 𝑝 = {1,2,… , 𝑛}, and (𝑥, 𝑦) ∈ ℝ2, there is 

 

√(𝑥 − 𝑥𝐿𝑀𝑝)
2 + (𝑦 − 𝑦𝐿𝑀𝑝)

2 < √(𝑥 − 𝑎)2 + (𝑦 − 𝑏)2  and 

𝑉𝑝(𝑥) < 𝐻(𝐱). Thus,  

∥ 𝑮𝑝(𝐱) ∥≤ (𝜇 + 𝜑)(𝛼𝑝𝐻(𝐱) + 𝛼𝑝𝑉𝑝(𝐱) + 𝛾

+∑

𝑞

𝑘=1

𝛽𝑘
𝑊𝑘(𝐱)

) (|𝑥 − 𝑎| + |𝑦 − 𝑏|) 

          +(𝜇 + 𝜑)∑

𝑞

𝑘=1

𝛽𝑘
𝐻(𝐱)

𝑊𝑘
2(𝐱)

(|𝑥 − 𝑜𝑘1|

+ |𝑦 − 𝑜𝑘2|)                 

        ≤ (𝜇 + 𝜑)(2𝛼𝑝𝐻(𝐱) + 𝛾 +∑

𝑞

𝑘=1

𝛽𝑘
𝑊𝑘(𝐱)

) (|𝑥 − 𝑎|

+ |𝑦 − 𝑏|) 

          +(𝜇 + 𝜑)∑

𝑞

𝑘=1

𝛽𝑘
𝐻(𝐱)

𝑊𝑘
2(𝐱)

(|𝑥 − 𝑜𝑘1|

+ |𝑦 − 𝑜𝑘2|)                 
 Observe that the time-derivative of 𝐿2𝑝(𝐱) along the solution 

of (31) is non-positive, which implies that  

𝐿2𝑝(𝐱(𝑡)) ≤ 𝐿2𝑝(𝐱0) ≔ 𝜂0, 𝑡 ∈ [𝑡0, 𝑠]    (32) 

for all 𝐱 ∈ 𝐷 (𝐿2𝑝(𝐱)). Thus 𝐻(𝐱) ≤ 𝜂0/𝛾, and  

∥ 𝑮𝑝(𝐱) ∥≤ (𝜇 + 𝜑)(2
𝛼𝑝𝜂0

𝛾
+ 𝛾 +∑

𝑞

𝑘=1

𝛽𝑘
𝑊𝑘(𝐱)

) (|𝑥 − 𝑎|

+ |𝑦 − 𝑏|)

+ (𝜇 + 𝜑)∑

𝑞

𝑘=1

𝛽𝑘
𝐻(𝐱)

𝑊𝑘
2(𝐱)

(|𝑥 − 𝑜𝑘1|

+ |𝑦 − 𝑜𝑘2|) 
Similarly, from the form of 𝐿2𝑝(𝐱)  in (25), equation (32) 

implies that for every 𝑘 ∈ {1,2,⋯ , 𝑞},  

𝛽𝑘
𝐻(𝐱(𝑡))

𝑊𝑘(𝐱(𝑡))
≤ 𝜂0, 𝑡 ∈ [𝑡0, 𝑠].     (33) 

Let 𝜁 ≔ min{𝛽𝑘 , {𝑘 ∈ 1,2,⋯ , 𝑞}} . Then, from (33), the 

following can be obtained:  
𝐻(𝐱(𝑡))

𝑊𝑘(𝐱(𝑡))
≤

𝜂0

𝜁
≔ 𝜉0, 𝑡 ∈ [𝑡0, 𝑠].          (34) 

Given the form of 𝐻(𝒙(𝑡)) in (23), the inequality in (34) gives  

𝜖2
1

𝑊𝑘
≤

𝐻(𝐱(𝑡))

𝑊𝑘(𝐱(𝑡))
≤ 𝜉0, 𝑡 ∈ [𝑡0, 𝑠],        (35) 

 and hence,  
1

𝑊𝑘
≤ 𝜖−2

𝐻(𝐱(𝑡))

𝑊𝑘(𝐱(𝑡))
≤ 𝜖−2𝜉0 ≔ 𝜚0, 𝑡 ∈ [𝑡0, 𝑠].  (36) 

Let 𝛽0 ≔ max{ 𝛽𝑘 , {𝑘 ∈ 1,2,⋯ , 𝑞}} . Then, the following 

function is obtained using the inequalities (33), (34), (35) and 

(36):  

∥ 𝑮𝑝(𝐱) ∥≤ 𝑐1(|𝑥 − 𝑎| + |𝑦 − 𝑏|)

+ 𝑐2(|𝑥 − 𝑜𝑘1| + |𝑦 − 𝑜𝑘2|) 
where the constants 𝑐1 > 0  and 𝑐2 > 0  independent of 𝑠 . 

Since the point-mass robot will avoid the obstacles that will 

fall on its path on its way to its target via the landmarks, 

therefore  

∥ 𝑮𝑝(𝐱) ∥≤ (𝑐1 + 𝑐2)(|𝑥 − 𝑎| + |𝑦 − 𝑏|). 

Let 𝑐1 + 𝑐2 = 𝐾 , then ∥ 𝑮𝑝(𝐱) ∥≤ 𝐾 ∥ 𝐱 − 𝐱𝑒 ∥ . By letting 

𝒖 = 𝐱 − 𝐱𝑒, the following can be obtained:  
1

2

𝑑

𝑑𝑡
∥ 𝒖(𝑡) ∥2= ⟨𝒖(𝑡), 𝒖̇(𝑡)⟩ = ⟨𝒖(𝑡), 𝑮𝑝(𝐱(𝑡))⟩ ≤∥ 𝒖(𝑡) ∥∥

𝑮𝑝(𝐱(𝑡)) ∥≤ 𝐾 ∥ 𝒖(𝑡) ∥
2.                                             (37) 

Let 𝑧(𝑡) ≔∥ 𝒖(𝑡) ∥2 . Then, the following differential 

inequality is obtained:  
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2

𝑑

𝑑𝑡
𝑧(𝑡) ≤ 𝐾𝑧(𝑡), 𝑧(𝑡0) =∥ 𝒖(𝑡0) ∥

2.  (38) 

Comparing (37) and (38), it is easy to see that  

∥ 𝒖(𝑡) ∥2≤∥ 𝒖(𝑡0) ∥
2 𝑒2𝐾(𝑡−𝑡0), 𝑡 ∈ [𝑡0, 𝑠]. 

This implies the existence of the solution 𝐱(𝑡) of system (31) 

on [𝑡0, 𝑠 + 𝜌], 𝜌 > 0 being independent of 𝑠 > 0. Hence, it 

can be concluded that 𝑮𝑝(𝐱) is globally Lipschitz continuous 

on 𝐷 (𝐿2𝑝(𝐱)).   

It is clear that the multiple candidate Lyapunov-like functions 

of the same type 𝐿2𝑝(𝐱). Thus, system (31) has the simple 

switching sequence 𝑆 = (𝑥0, 𝑦0): (𝑝0, 𝑡0), (𝑝1, 𝑡1)  for 𝑝 =
{1,… , 𝑛 + 1} , to easily get the trajectory (𝑝0, 𝑡0): 𝐱̇ =
𝑮𝑝0(𝐱(𝑡), 𝑡) for 𝑡0 ≤ 𝑡 < 𝑡1. One can conclude that 𝐿2𝑝(𝐱) is 

monotononically nonincreasing on 𝐼(𝑆|𝑝). Hence, 𝐿2𝑝(𝐱) are 

Lyapunov-like functions satisfying Theorem 4.2. Accordingly, 

system (31) is stable in the sense of Lyapunov.  

 

Example 7.2 In this example, 𝑛 = 3  landmarks are 

considered besides the target, i.e., 𝑝 = 1,2,3,4  with 6 

randomly generated obstacles. System (31), with parameters 

𝜇 = 𝜑 = 1 , 𝛼𝑝 = 0.6 , 𝛾 = 0.0008  and 𝛽𝑘 = 0.00000001 , 

was numerically integrated via the RK4 method with 𝑡 ∈
[0,350] and step-size 0.1. The end-points of the times that 

system 𝑝 was active and the interval completions are  
𝑆|1 = {0.0, 28.9}, 𝐼(𝑆|1) = {[0.0, 28.9]},

𝑆|2 = {29.0, 74.0}, 𝐼(𝑆|2) = {[29.0, 74.0]},

𝑆|3 = {74.1, 186.5}, 𝐼(𝑆|3) = {[74.1, 186.5]},

𝑆|4 = {186.6, 350.0}, 𝐼(𝑆|4) = {[186.6, 350.0]}.

 

The trajectory, shown in Fig. 4(a), obeys the rule  
(10, 0.0): 𝐱̇ = 𝑮10(𝐱(𝑡), 𝑡), 0.0 ≤ 𝑡 < 28.9,

(20, 29):  𝐱̇ = 𝑮20(𝐱(𝑡), 𝑡), 29.0 ≤ 𝑡 < 74.0,

(30, 74.1):   𝐱̇ = 𝑮30(𝐱(𝑡), 𝑡), 74.1 ≤ 𝑡 < 186.5,

(40, 186.6):    𝐱̇ = 𝑮40(𝐱(𝑡), 𝑡), 186.6 ≤ 𝑡 < 350.0.

 

The monotonically decreasing Lyapunov functions are shown 

in Fig. 4(b). 

 

 

8. Extraction of action landmarks 

In this section, the configuration space of a point-mass object to 

be clustered with q ∈ N stationary obstacles and n ∈ N 

randomly scattered landmarks are considered. The point-mass 

object has to autonomously navigate to its target by extracting 

an action landmark from the landmarks which fall in its 

detection region. 

 

8.1 Detection region 

The detection region of the point-mass object is shown in Fig. 

5. 

 

Definition 8.1. The pth landmark is in the detection region of 

the point-mass object if the following are satisfied: 

1.  |𝛹𝑝 −𝛷| ≤ 𝜓,  

2.  ‖𝐱 − 𝐱𝐿𝑀𝑝‖ ≤ 𝑟  and  

3.  ‖𝐱𝑡𝑎𝑟𝑔𝑒𝑡 − 𝐱𝐿𝑀𝑝‖ ≤ ‖𝐱 − 𝐱𝑡𝑎𝑟𝑔𝑒𝑡‖  

where   

• 𝛹𝑝 is the angle between 𝐱 (the point-mass object) and 𝐱𝐿𝑀𝑝  

(the 𝑝𝑡ℎ landmark) measured counterclockwise.  

• 𝛷 is the angle between 𝐱 and 𝐱𝑡𝑎𝑟𝑔𝑒𝑡 (target).  

• 𝜓 is the half of the sector angle for the detection region. The 

detection region is 𝜓 degrees clockwise and counterclockwise 

from the imaginary line joining the points 𝐱 and 𝐱𝑡𝑎𝑟𝑔𝑒𝑡.  

• 𝑟 is the detection range.  

• ‖𝐱 − 𝐱𝐿𝑀𝑝‖ is the distance between the point-mass object 

and the 𝑝𝑡ℎ landmark.  

• ‖𝐱𝑡𝑎𝑟𝑔𝑒𝑡 − 𝐱𝐿𝑀𝑝‖ is the distance between the target point 

and the 𝑝𝑡ℎ landmark.  

• ‖𝐱 − 𝐱𝑡𝑎𝑟𝑔𝑒𝑡‖ is the distance between the point-mass object 

and the target.  

Since the target of the point-mass object is also treated as a 

landmark, there are 𝑛 + 1  landmarks scattered in the 

configuration space of the point-mass object. Let the set 𝑀 =
⋃𝑛+1𝑝=1 𝑆𝑝 contain all the landmarks that are in the detection 

region of the point-mass object where, 

 
Fig. 4 (a) Trajectory of the point-mass object from its initial position to its target via landmarks. (b) 𝐿2𝑝(𝐱) decreases on each interval 

where the pth subsystem is active. 

(a) Trajectory of system (31) (b) Multiple Lyapunov functions
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Fig. 5 Detection region of a point-mass object. 

 

𝑆𝑝 = {
{𝑝}, 𝑖𝑓 |𝛹𝑝 −𝛷| ≤ 𝜓 𝑎𝑛𝑑 ‖𝐱 − 𝐱𝐿𝑀𝑝‖ ≤ 𝑟 𝑎𝑛𝑑 ‖𝐱𝑡𝑎𝑟𝑔𝑒𝑡 − 𝐱𝐿𝑀𝑝‖ ≤ ‖𝐱 − 𝐱𝑡𝑎𝑟𝑔𝑒𝑡‖

{}, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

Let 𝑀𝑘  be the 𝑘th element of 𝑀 and let |𝑀| ≤ 𝑛 + 1 be the 

cardinality of 𝑀. The Lyapunov-like functions 𝐿2𝑝(𝐱) in (25) 

will now be invoked according to the switching rule  

𝛼𝑝 = {
𝜆, 𝑖𝑓 𝑝 ∈ 𝑀 𝑎𝑛𝑑 𝐷𝑝 = min{𝑑1, 𝑑2, … , 𝑑|𝑀|}

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (39) 

where 𝜆 > 0 and 𝑑𝑝 = ‖℧− 𝐱𝐿𝑀𝑝‖. This switching rule with 

the control laws (27) will ensure that the point-mass object 

minimizes the cost, which is the Euclidean distance. It simply 

means that it does not allow the point-mass object to deviate 

significantly from the shortest path to the target. That is, it 

extracts the landmark which is closest to the target from the 

detection region. While the point-mass object is making its 

way to an action landmark invoked according to the above 

switching rule, and suddenly if there appears another landmark 

which now is in the detection region, and is an action landmark, 

then the point-mass object will start making its way to this new 

action landmark without reaching the earlier landmark. Thus, 

the point-mass object does not have to reach a landmark and 

then move to the other. For instance, a ship does not have to 

reach a lighthouse which is a landmark for it. The lighthouse 

is just used as a guide to reaching the target.  

 

Example 8.2 In this example, the position of the point-mass 

object with its detection region at different time 𝑡 during its 

motion has been shown and captured by Fig. 6. The initial and 

final positions of the point-mass object are (3,2 and (25,25), 
respectively. The positions of the 𝑛 = 40 landmarks and 𝑞 =

15 obstacles are randomly generated with 𝑟 = 5 and 𝜓 =
𝜋

4
 as 

the range of the detection region. System (31) and switching 

rule (39), with parameters 𝜇 = 𝜑 = 1, 𝜆 = 0.1, 𝛾 = 0.05 and 

𝛽𝑘 = 0.005, were numerically integrated via the RK4 method. 

 
Fig. 6 Trajectory of the point-mass object from its initial position 

to its target via extracting landmarks. 

 

9. Application to Nonholonomic Vehicle 

The nonholonomic vehicle, which is a car-like vehicle 

mentioned in Ref. [35], will be used. 

 

9.1. Car-like robot model 

Definition 9.1 The rear wheel driven vehicle with front wheel 

steering is a disk with radius 𝑟𝑣  and is positioned at center 

(𝑥, 𝑦). The vehicle is precisely described as the set  

𝐶 = {(𝑧1, 𝑧2) ∈ ℝ
2: (𝑧1 − 𝑥)

2 + (𝑧2 − 𝑦)
2 ≤ 𝑟𝑣

2}.    (40) 

The rear wheel driven vehicle with front wheel steering is 

shown in Fig. 7. The distance between the two axles is 𝜂 and 

the length of each axel is l. Thus, the kinematic model of the 

vehicle with respect to its center (𝑥, 𝑦) ∈ ℝ2 is  
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𝑥̇ = 𝑣𝑐𝑜𝑠𝜃 −
𝜂

2
𝑤𝑠𝑖𝑛𝜃,

𝑦̇ = 𝑣𝑠𝑖𝑛𝜃 +
𝜂

2
𝑤𝑐𝑜𝑠𝜃,

𝜃̇ = 𝑤,

}    (41) 

where the variable 𝜃  gives the vehicle’s orientation with 

respect to the 𝑧1-axis of the 𝑧1 − 𝑧2 cartesian plane, and 𝑣 and 

𝑤  are the translational and rotational velocities, 

respectively.[35] To ensure that the vehicle steers safely pass 

static obstacles, the vehicle is enclosed by the smallest 

possible circle that is a protective circular region centered at 

(𝑥, 𝑦), with radius 𝑟𝑣 ≔
√(2𝜖1+𝜂)

2+(2𝜖2+𝑙)
2

2
 where 𝜖1 > 0 and 

𝜖2 > 0 are the clearance parameters. Therefore, the definition 

of the vehicle is taken as equation (3) and the switched system 

consists of the vehicle 𝐶. 

 
Fig. 7 Schematic representation of the rear wheel driven car-like 

vehicle with front wheel steering and steering angle 𝜙. 

 

The same multiple Lyapunov functions (9) and (25) 

derived for the switched system (18) and (31) will be used for 

the system (41) with an extension to the definition of the 

independent variable from 𝐱 ≔ (𝑥, 𝑦) ∈ ℝ2  to 𝒒 ≔
(𝑥, 𝑦, 𝜃) ∈ ℝ3  with the initial conditions vector denoted by 

𝑞0 ≔ (𝑞(0)) ∈ ℝ3. Thus, the state space representation of the 

car like robot is  

𝑞̇ = 𝐺𝑝(𝑞), 𝑞(𝑡0) = 𝑞0, 𝑡 ≥ 0      (42) 

where 𝑮𝑝  is a 3 × 1  vector with entries consisting of the 

righthand side terms in (41). 

As stated above, the multiple Lyapunov functions for (42) is 

the same as (11) and (25) but with independent variable 𝒒 

rather than 𝐱. 

 

9.2 Scenario 1: Landmarks in hierarchical order in 

unconstrained environment 

The system of ODEs (42) is substituted into the time 

derivative of (9) as shown below: 

𝐿̇1𝑝(𝒒) = 𝑓1𝑝(𝐱)𝑥̇ + 𝑔1𝑝(𝐱)𝑦̇ 

= 𝑓1𝑝(𝐱) (𝑣𝑐𝑜𝑠𝜃 −
𝜂

2
𝑤𝑠𝑖𝑛𝜃) + 𝑔1𝑝(𝐱) (𝑣𝑠𝑖𝑛𝜃 +

𝜂

2
𝑤𝑐𝑜𝑠𝜃) 

  = (𝑓1𝑝(𝐱)𝑐𝑜𝑠𝜃 + 𝑔1𝑝(𝐱)𝑠𝑖𝑛𝜃)𝑣

−
𝜂

2
(𝑓1𝑝(𝐱)𝑠𝑖𝑛𝜃 − 𝑔1𝑝(𝐱)𝑐𝑜𝑠𝜃) 

 

9.2.1 Steering control laws 

The steering control laws could be accordingly defined as  

𝑣:= −𝜅 (𝑓1𝑝(𝐱)𝑐𝑜𝑠𝜃 + 𝑔1𝑝(𝐱)𝑠𝑖𝑛𝜃) ,

𝑤:=
2𝜅

𝜂
(𝑓1𝑝(𝐱)𝑠𝑖𝑛𝜃 − 𝑔1𝑝(𝐱)𝑐𝑜𝑠𝜃) ,

}    (43) 

where 𝜅 is some arbitrary continuous positive function of 𝑥 

and 𝑦  and 𝑓1𝑝(𝒙) and 𝑔1𝑝(𝒙) are defined in (14) and (15). 

With respect to system (41) and with the control laws 

mentioned above, the following is obtained:  

𝐿̇1𝑝(𝒒) = −
1

𝜅
(𝑣2 +

𝜂2

4
𝑤2) ≤ 0. 

Thus, system (41) can be expressed as  
𝑥̇ = −𝜅𝑓1𝑝(𝐱),

𝑦̇ = −𝜅𝑔1𝑝(𝐱),

𝜃̇ =
2𝜅

𝜂
(𝑓1𝑝(𝐱)𝑠𝑖𝑛𝜃 − 𝑔1𝑝(𝐱)𝑐𝑜𝑠𝜃𝑖) . }

 

 

  (44) 

The position of the vehicle (𝑥(𝑡), 𝑦(𝑡)) are governed by first 

two terms of (44) while the third governs its orientation. 

 

9.2.2 Maximum velocity 

Practically, there are restrictions on the velocity and steering 

angle of a vehicle. A vital role is performed by the function 

𝜅 = 𝜅(𝑥, 𝑦) > 0  in restricting the sizes of 𝑣 , 𝑤  and the 

steering angles 𝜙. 

Given any real number 𝜒 > 0, then, from (43),  

|𝑣| ≤ 𝜅 (𝜒 + |𝑓1𝑝(𝐱)| + |𝑔1𝑝(𝐱)|) ,

|𝑤| ≤
2𝜅

𝜂
(𝜒 + |𝑓1𝑝(𝐱)| + |𝑔1𝑝(𝐱)|) , }

 

 
  (45) 

If 𝑣𝑚𝑎𝑥 ≔ |𝑣| is the maximum translational speed, then from 

the first inequality of (45)  

𝜅 ≔
𝑣𝑚𝑎𝑥

𝜒+|𝑓1𝑝(𝐱)|+|𝑔1𝑝(𝐱)|
                (46) 

 

9.2.3 Maximum steering angle 

Moveover, the size of steering angle 𝜙 is restricted using (45) 

and (46). Let the maximum steering angle be 𝜙𝑚𝑎𝑥 ≔ |𝜙|, 

where 0 < 𝜙𝑚𝑎𝑥 <
𝜋

2
. Then 

|𝑣| ≤ 𝑣𝑚𝑎𝑥    𝑎𝑛𝑑    𝑣
2 ≥ 𝜌2𝑤2    𝑤ℎ𝑒𝑟𝑒    𝜌 ≔

𝜂

𝑡𝑎𝑛𝜙𝑚𝑎𝑥
  (47) 

are the constraints imposed on the translational velocity, 𝑣, 

and the rotational velocity 𝑤 as shown in Ref. [36]. 

From (47), there is  

|𝑤| ≤ |
𝑣

𝜌
| ≤

𝑣𝑚𝑎𝑥

|𝜌|
      (48) 

Moreover, from (45), (46) and (48), the following is obtained:  

|𝑤| ≤
2𝜅

𝜂
(𝜒 + |𝑓1𝑝(𝐱)| + |𝑔1𝑝(𝐱)|)     𝑎𝑛𝑑    |𝑤|

≤
𝑣𝑚𝑎𝑥
|𝜌|

(𝜒 + |𝑓1𝑝(𝐱)| + |𝑔1𝑝(𝐱)|). 
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Let |𝜌| =
𝜂

2
 and from (47), there is 𝑡𝑎𝑛𝜙𝑚𝑎𝑥 = 2 . Thus 

𝜙𝑚𝑎𝑥 = 𝑡𝑎𝑛
−12 and hence the maximum steering angle of 

every vehicle is set at 𝜙𝑚𝑎𝑥 = 𝑡𝑎𝑛
−12. 

 

9.3 Scenario 2: Landmarks in hierarchical order in 

constrained environment 

The system of ODEs (42) is substituted into the time 

derivative of (25) as shown below:  

𝐿̇2𝑝(𝒒) = 𝑓2𝑝(𝐱)𝑥̇ + 𝑔2𝑝(𝐱)𝑦̇ 

= 𝑓2𝑝(𝐱) (𝑣𝑐𝑜𝑠𝜃 −
𝜂

2
𝑤𝑠𝑖𝑛𝜃) + 𝑔2𝑝(𝐱) (𝑣𝑠𝑖𝑛𝜃 +

𝜂

2
𝑤𝑐𝑜𝑠𝜃) 

= (𝑓2𝑝(𝐱)𝑐𝑜𝑠𝜃 + 𝑔2𝑝(𝐱)𝑠𝑖𝑛𝜃) 𝑣

−
𝜂

2
(𝑓2𝑝(𝐱)𝑠𝑖𝑛𝜃 − 𝑔2𝑝(𝐱)𝑐𝑜𝑠𝜃)𝑤. 

where 𝑓2𝑝(𝐱) and 𝑔2𝑝(𝐱) are defined in (28) and (29). 

The steering control laws and the restrictions on velocity as 

given in Case 1 as (43) and (46) will be used with 𝑓2𝑝 and 𝑔2𝑝 

instead of 𝑓1𝑝 and 𝑔1𝑝. Similarly, the same maximum steering 

angle for the vehicle as set in Case 1 will be used.  

 

9.3.1 Detection region of the car-like vehicle 

The rear-wheel-drive vehicle with front wheel steering shown 

in Fig. 7 with its detection region is shown in Fig. 8. The 

system of ODEs (42) is substituted into the time derivative of 

equation (25) which is governed by equation (39). The 

steering control laws and the restrictions on velocity as given 

in Case 1 as (43) and (46) will be used with 𝑓2𝑝  and 𝑔2𝑝 

instead of 𝑓1𝑝 and 𝑔1𝑝. Similarly, the same maximum steering 

angle for the vehicle as set in Case 1 will be used. 

 

9.4. Simulation results for the car-like vehicle system 

System (42) was numerically simulated using RK4 method 

and the following values for the car-like vehicle was used in 

all the simulations:   

• Clearance parameters: 𝜖1 = 𝜖2 = 0.2;  

• Width and length of the vehicle: 𝑙 = 2, 𝜂 = 4;  

• Radius of circular protective region: 𝑟𝑣 ≈ 2.51;  

• Maximum speeds and steering angle: 𝑣𝑚𝑎𝑥 = 1 and 𝜙𝑚𝑎𝑥 =
𝑡𝑎𝑛−12;  

• 𝜒 = 1 in 𝜅 defined as in (46);  

• Initial Orientation (𝜃): randomized between −𝜋 and 𝜋.  

 

9.4.1 Landmarks in hierarchical order in an 

unconstrained environment 

Example 9.2. In this example, a car-like vehicle has to 

navigate to its target location via five landmarks. Fig. 9(a) 

shows the trajectory of the vehicle from its initial position to 

its target location via five landmarks. As illustrated in Fig. 9(a), 

the vehicle moves from its initial position via the landmarks 

provided in hierarchical order before finally converging at the 

target. The velocity graph in Fig. 9(c) shows a rapid 

deceleration as the vehicle approaches its final target. As time 

involves, the orientation angle of the vehicle changes as shown  

in Fig. 9(c). For this arrangement, 𝛾 = 0.5, and 𝛼𝑝 = 1. 

 

9.4.2 Landmarks in hierarchical order in a constrained 

environment 

Example 9.3. In this example, a vehicle has to navigate to its 

target location via three landmarks, and in the presence of the 

six static obstacles. Fig. 10(a) shows the vehicle’s trajectory 

 
Fig. 8 Car-like vehicle with a detection region. 

 
Fig. 9 (a) Trajectory of the vehicle and where it ceased motion. (b) The instantaneous velocity showing rapid deceleration of the 

vehicle as it approaches the landmarks and the target. (c) The change of the angular orientation of the vehicle over time. 

(a) Trajectory of car-like vehicle (b) Velocity of car-like vehicle (c) Orientation angle of vehicle
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Fig. 10 (a) Initial position of the vehicle and randomly generated obstacles with the position where the vehicle ceased motion. (b) 

The instantaneous velocity showing rapid deceleration of the car-like vehicle as it approaches the landmarks and the target. (c) The 

change of the angular orientation of the car-like vehicle over time as it approaches each landmark along its trajectory. 

 

and final orientation. The vehicle moves from its initial 

position via the three landmarks in hierarchical order before 

finally converging at the target in an obstacle-ridden 

environment, as illustrated in Fig 10(a). The evolution of the 

velocity along the vehicle’s trajectory is shown in Fig. 10(b). 

The angular orientation of the vehicle changes over time, 

abiding system restrictions and limitations, and is shown in 

Fig. 10(c) For this arrangement, 𝛾 = 0.5, 𝛼𝑝 = 1, and 𝛽𝑘 =

0.0001.  

 

9.4.3 Car-like vehicle with a detection region for 

landmarks in a constrained environment 

Example 9.4. In this example, the position of the car-like 

vehicle with its detection region at time different time 𝑡 during 

its motion has been captured and illustrated in Fig. 11. The 

initial and final positions of the car-like vehicle are (3,2) and 

(25,25), respectively. The positions of the 𝑛 = 30 landmarks 

and 𝑞 = 15 obstacles are randomly generated with 𝑟 = 5 and 

𝜓 =
𝜋

4
 as the range of the detection region. For this 

arrangement, 𝜇 = 𝜑 = 1 , 𝜆 = 0.05 , 𝛾 = 0.05  and 𝛽𝑘 =
0.001. 

 
Fig. 11 Trajectory of the car-like vehicle from its initial position 

to its target via extracting landmarks. 

10. Discussion 

This paper addresses motion planning in autonomous mobile 

robot navigation. The proposed nonlinear stabilizing switched 

control laws ensure continuous collision-free paths that 

connect an initial configuration to a goal configuration via 

multiple artificial hierarchal landmarks (way-points) in a 

possibly cluttered environment. Moreover, a landmark 

extracting technique has also been proposed, which enables a 

robot to identify action landmarks. The switched controls were 

successful in the motion control of a planar point-mass object 

and a nonholonomic car-like vehicle governed by its 

kinematic equations. 

The simulation results of Example 6.1, Example 7.2, 

Example 8.2, Example 9.2, Example 9.3 and Example 9.4 

show the effectiveness of the control laws. The simulation 

results indicate that the proposed control laws are feasible, 

effective, and facilitate a safe, shortest route and continuous 

path. It is observed that under the proposed switched 

controllers, the planar point-mass object and the 

nonholonomic car-like vehicle successfully reached its target 

in all the scenarios. To add on, the behavior of the multiple 

Lyapunov functions indicate that the planar point-mass object 

had no difficulty in converging to its targets. 

After implementing to a point-mass object, the landmark 

extraction methodology and controllers designed in this 

research were successfully applied to a real-life mechanical 

system modeled as a car-like robot. The proposed landmark 

extraction technique ensures that all other landmarks are 

automatically discarded apart from the selected action 

landmarks. Moreover, the continuous multiple Lyapunov 

functions and the velocity-based controllers guarantee smooth 

trajectories at all points, including the hierarchal landmarks. A 

significant advantage of the hierarchal landmark-based 

navigation presented in this research is that the technique has 

been applied to mobile robots, which have greater mobility in 

a cluttered environment. In comparison, the hierarchal 

landmark-based navigation utilized in Refs. [22] and [23] was 

(a) Trajectory of car-like vehicle       (b)  Velocity of car-like vehicle    (c)  Orientation angle of vehicle
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implemented on anchored manipulators that operated from a 

fixed position and had limited access in the workspace. 

Furthermore, the proposed landmark extraction technique 

addresses the problem of detecting and selecting action 

landmarks amongst the presence of multiple landmarks in a 

cluttered environment. Therefore, for hierarchal landmark-

based navigation, the proposed method is a better option than 

the approaches presented in Refs. [24] and [25], which failed 

to address the vital process of landmark detection and 

selection, especially in an environment cluttered with multiple 

landmarks and obstacles. 

The switched control laws presented in this research is 

applicable to the industrial sector such as aerospace and 

aviation, automotive, engineering, construction and building. 

Specifically, when the workspace is constrained, goods or 

workers have to be transported from one station to other 

stations. Then, the proposed control laws could be used to 

automate the process. The major drawback of LbCS is the 

introduction of local minima.  

 

Limitations 

The limitations of this study are:   

• The presence of algorithm singularities in the form of 

local minima as LbCS is based on the classical method of the 

artificial potential field approach. In this study, such cases 

where the point-mass object and the nonholonomic car-like 

robot could get trapped in local minima were avoided through 

the selection of specific initial conditions and assigning 

specific values to the control, convergence and avoidance 

parameters using brute force technique.  

• The authors have restricted themselves to using 

numerical proofs and computer-based simulations of 

interesting scenarios to demonstrate the effectiveness of the 

velocity-based control laws. This paper provides a theoretical 

exposition of the LbCS’s applicability only and the velocity 

control laws achieved were not integrated onto some prototype 

experimental robot for practical results.  

• The control, convergence and avoidance parameters used 

have not been optimized.  

• The control laws achieved cannot address a dynamic 

environment.  

 

11. Conclusion 

Landmark-based navigation is an essential component of 

robotic systems that enhances their navigation accuracy, 

reliability, and efficiency. As such, it is a highly active area of 

research with ongoing efforts to improve and optimize 

landmark detection, feature extraction, and path planning 

algorithms. This paper presented the navigation of a point-

mass object to its target via multiple hierarchal landmarks. The 

translational velocities of the point-mass object were 

constructed using a switched system of multiple Lyapunov-

like functions in unconstrained and constrained environments. 

A new methodology was also provided to extract action 

landmarks from multiple landmarks in the workspace of a 

point-mass object. The method was applied successfully to a 

planar nonholonomic car-like vehicle governed by its 

kinematic equations. The simulation results and the behaviour 

of the multiple Lyapunov functions demonstrate that the 

planar point-mass object and the nonholonomic car-like 

vehicle had no difficulty in converging to their assigned 

targets. Despite its limitations, the proposed approach was 

effective in generating collision-free paths through cluttered 

environments. 

Future work will include developing a hybrid methodology 

combining LbCS with a heuristic method, flushing off the 

drawbacks of LbCS, for landmark-based navigation and 

experimentally verifying the results by integrating the control 

laws on a prototype robot. The potential applications of this 

research include automating the transportation of goods or 

workers between different stations. Overall, the proposed 

approach offers a promising solution to enhance the 

navigation accuracy of robotic applications for more complex 

systems.  
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