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Abstract
Biocementation, i.e., the production of biomimetic cement through the metabolic activ-
ity of microorganisms, offers exciting new prospects for various civil and environmental 
engineering applications. This paper presents a systematic literature review on a biocemen-
tation pathway, which uses the carbonic anhydrase (CA) activity of microorganisms that 
sequester  CO2 to produce biocement. The aim is the future development of this technique 
for civil and (geo-)environmental engineering applications towards  CO2-neutral or negative 
processes. After screening 248 potentially relevant peer-reviewed journal papers published 
between 2002 and 2023, 38 publications studying CA-biocementation were considered in 
the review. Some of these studies used pure CA enzyme rather than bacteria-produced CA. 
Of these studies, 7 used biocementation for self-healing concrete, 6 for  CO2 sequestration, 
10 for geotechnical applications, and 15 for (geo-)environmental applications. A total of 
34 bacterial strains were studied, and optimal conditions for their growth and enzymatic 
activity were identified. The review concluded that the topic is little researched; more stud-
ies are required both in the laboratory and field (particularly long-term field experiments, 
which are totally lacking). No studies on the numerical modelling of CA-biocementation 
and the required kinetic parameters were found. The paper thus consulted the more widely 
researched field of  CO2 sequestration using the CA-pathway, to identify other microorgan-
isms recommended for further research and reaction kinetic parameters for numerical mod-
elling. Finally, challenges to be addressed and future research needs were discussed.

Highlights

• A review of biocementation via carbonic anhydrase (CA) was conducted.
• The role of CA in the biocementation mechanism was discussed.
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• The application of CA in civil and geo-environmental engineering was reviewed and 
discussed.

• Challenges, research gaps and prospects of CA application were identified.

Keywords Bacteria · Biocementation · Carbonic anhydrase · Carbon sequestration

1 Introduction

According to recent estimates (United Nations Environment Programme 2022) 15% of 
global carbon emissions are due to construction operations and the manufacture of con-
struction materials. Historically, the most significant of these construction materials has 
been cement which has been reckoned to contribute 7% or 8% of global carbon dioxide 
emissions (Mavroulidou et al. 2015). While cement is primarily used in making concrete 
it has also been used for other purposes in civil construction, e.g., ground improvement. 
Together with the other main chemical substance used in ground improvement (lime), 
cement is an aggressive chemical which has the potential for causing environmental 
pollution.

Natural soils such as peat play a significant role in the natural carbon cycle but are 
unsuitable as foundation soils and need improvement (Safdar et  al. 2021a, 2022). With 
increasing environmental awareness and the mandate to improve sustainability in the 
industry, engineers are now striving to find ways of providing economical and environmen-
tally responsible ways of improving the properties of such soils. Thus, it is unsurprising 
that intensive research worldwide focuses on producing low-carbon cement via microbially 
induced calcium carbonate precipitation (MICP). Biocements are emerging as the most 
promising and transformative nature-based material in the construction industry. Bioce-
ments are binding agents produced through the natural biological process of biominerali-
sation, i.e., the biological production of minerals due to metabolic processes of different 
types of microorganisms/plants. Worldwide research efforts have focused on the potential 
application of biocements in the civil and environmental engineering industry, and a few 
commercial products have started entering the market. Applications include surface treat-
ment or crack repairs in concrete (De Muynck et al. 2008; Zheng and Qian 2020b, Li and 
Qu 2015; Van Tittelboom et al. 2010; Sharma et al. 2017; Wiktor and Jonkers 2011; Achal 
et al. 2013; Joshi et al. 2021), biobricks (Bu et al. 2018; Bernardi et al. 2014; Lambert and 
Randall 2019; Kumar et al. 2019), restoration of heritage buildings (Castanier et al. 2000; 
Jroundi et al. 2012; Ortega-Villamagua et al. 2020; Tiano et al. 1999), and soil stabilisa-
tion (Al Qabany and Soga 2013; Al-Thawadi 2011; DeJong et al. 2010; Jiang et al. 2020; 
Gomez et al. 2017; Keykha et al. 2019; Martinez et al. 2014; Moravej et al. 2018; Oliveira 
et al. 2017; Punnoi et al. 2021; Safdar et al. 2021a, b).

Other applications include wind and water erosion control and suppression of dust gen-
erated from natural processes or construction activities (Cheng et al. 2021; Clarà Saracho 
et al. 2021; Dubey et al. 2021; Jiang et al. 2019; Salifu et al. 2016), bioremediation (Achal 
et al. 2012; de Oliveira et al. 2021; Li et al. 2016; Mwandira et al. 2017; Song et al. 2022; 
Zhang et al. 2022), and water treatment (Duarte-Nass et al. 2020; Mitchell and Ferris 2005; 
Torres-Aravena et al. 2018). The introduction of biocement as a potentially environmen-
tally friendly and sustainable material is a nature-based solution. Microorganisms offer the 
potential of natural self-healing of biocement (Botusharova et al. 2020; da Silva et al. 2015; 
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Tziviloglou et  al. 2016). Very importantly, several microorganisms offer the potential to 
capture  CO2 to use it to produce biominerals via carbonic anhydrase enzyme (Yadav et al. 
2014). Moreover, the diversity of microorganisms can offer vital enzymes, withstanding 
the extreme operating conditions of the process. Consequently, upon further development, 
bio-based  CO2 mineralisation to produce biocement by capturing  CO2 can offer economic 
and environmental benefits over other chemicals/physical-based mineralisation processes 
(Jansson and Northen 2010).

Biobased alternatives to conventional cements have surged in the past decades, with the 
use of MICP getting particular attention. However, no comprehensive literature review has 
examined the carbonic anhydrase pathway. This pathway has been proposed to produce 
novel  CO2-absorbing biocements towards civil/(geo-)environmental engineering industry 
activities that are potentially neutral or carbon negative, and can play an important role in 
the net carbon zero strategies globally.

Therefore, the specific objectives of the current review were to: identify the evolution 
and trends in biocementation via carbonic anhydrase and discuss its merits and demerits; 
examine the different civil and geo-environmental engineering applications of the CA path-
way and factors affecting its development; and finally, provide an outlook on applications, 
potential advantages, and limitations. The results of this study will significantly improve 
the understanding of the present status of biocementation via carbonic anhydrase and iden-
tify gaps for future research leading to new perspectives and options for future studies.

1.1  Biocementation Pathways and their Merits and Demerits

Biocementation can be achieved via several pathways, including ureolysis, carbonic anhy-
drase, denitrification, methane oxidation, photosynthesis, iron reduction, and sulphate 
reduction. These pathways have been discussed in a number of recent reviews (e.g., Castro-
Alonso et al. 2019; He et al. 2020; Ivanov and Stabnikov 2020; Jain et al. 2021; Khodadadi 
et al. 2017; Lee and Park 2018). Therefore, with the exception of the carbonic anhydrase 
pathway (the focus of this review), the other pathways are only briefly presented in the sub-
sections below and summarised in Table 1. Each figure in the table illustrates the chemical 
reaction for producing biominerals via MICP.

1.1.1  Ureolysis‑driven Biocementation

Ureolytic-driven biocementation utilises urease enzyme which catalyses the hydrolysis of 
urea into ammonia and carbamate, subsequently leading to the formation of bicarbonate, 
ammonium, and hydroxyl ions. The local increase in pH due to the hydroxyl ions shifts 
the bicarbonate equilibrium, leading to the formation of carbonate ions. In the presence of 
soluble calcium ions,  CaCO3 precipitation can thus occur (Safdar et al. 2022). The most 
commonly used bacteria for this pathway are Sporosarcina pasteurii because they produce 
high concentrations of urease enzyme and are non-pathogenic (Nasser et  al. 2022; Hadi 
et al. 2022). Additionally, indigenous ureolytic strains have been isolated worldwide from: 
a) mine tailings (Mwandira et  al. 2019); b) caves (Li et  al. 2019); c) beach rock (Imran 
et al. 2019); and d) indigenous soils (Burbank et al. 2012; Safdar et al. 2022).

The ureolytic pathway is the one most commonly applied and developed. The process 
is fast and easy to control (Stabnikov et al. 2022; Dilrukshi et al. 2018). However, it pro-
duces ammonium byproducts which are undesirable from an environmental point of view 
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Table 1  Summary of various biocementation pathways and respective merits and demerits
Biocementation
routes

Biochemical reactions of different pathways of MICP Merits Demerits

Ureolysis Straightforward 

and easily 

controlled (Bibi et 

al. 2018)

Fast process

(Al-Thawadi 

2011)

Large 

carbon 

footprint and 

energy-

inefficient

process 

(Deng et al. 

2021)

Toxic 

byproduct 

(NH4) (Su et 

al. 2022)

Carbonic 
anhydrase

Less carbon 

footprint via CO2

sequestration

(Zhen and Qian 

2020a)

Energy-

efficient process

(Deng et al. 2021)

No toxic 

byproducts (Pan 

et al. 2019)

Poor 

stability and 

suboptimal 

use of CA 

Denitrification Applicable 

under anoxic and 

anaerobic 

conditions

et al. 2015)

Slow reaction 

rate (DeJong et 

al. 2010; Jiang

et al. 2020)

Possibility of 

gas generation 

(DeJong et al. 

2010)

Possiblity

of high

carbon 

footprint 

(Deng et al. 

2021)

Methane 
oxidation

Less aggressive 

byproducts of 

building materials

(Ganendra et al. 

2015)

A large 

carbon 

footprint 

(Deng et al. 

2021).

Photosynthesis No toxic 

byproducts

(Ludwig et al. 

2005)

Application 

limited to 

structures 

exposed to 

CO2 and 

sunlight

(Seifan et al. 

2016)

Sulphate 
Reducing 
Bacteria

Can use anoxic 

and extreme 

environments

(Baumgartner et 

al. 2006)

Application 

limited

Iron Reducing 
Bacteria

No toxic 

byproducts (Guo 

et al. 2010).

Application 

limited 

(Castro-

Alonso et al. 

2019)
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(Parvathy et al. 2023; Insausti et al. 2020). Moreover, if ammonium is oxidised, it may cre-
ate acidic conditions dissolving the  CaCO3 precipitate over time (Khodadadi et al. 2017).

1.1.2  Denitrification Pathway

The denitrification pathway uses denitrifying microorganisms (i.e., denitrifiers), 
which transform nitrogen into different nitrogen-based oxides (Jain et  al. 2021; 
O’Donnell et  al. 2017). For geotechnical applications the process has been com-
monly proposed to desaturate soil for soil liquefaction mitigation (Azeiteiro et  al. 
2017). This is because of nitrogen gas formed in the subsurface when denitrify-
ing microorganisms are provided with a solution containing nitrate and dissolved 
organic matter. Organic matter is oxidized to inorganic carbon and nitrate is reduced 
to nitrogen gas. MICP can thus also occur using this process, as dissolved inorganic 
carbon produced during denitrification, can lead to calcium carbonate precipitation 
in the presence of soluble calcium ions. To this effect, most studies used calcium 
salts such as calcium acetate and calcium nitrate as substrates, so that the inorganic 
carbon produced by the microbial metabolism can readily precipitate with the dis-
solved calcium to form calcium carbonate minerals (van Paassen et al. 2018; Pham 
et  al. 2018). However, the required amount of substrates to biocement the soil is 
much higher than that required to desaturate the soil. Significant advantages of this 
pathway for civil and (geo-)environmental engineering applications, are that deni-
trifiers are ubiquitous in the subsurface, so that denitrification can be induced in 
most soils by stimulation of indigenous microorganisms (van Paassen et al. 2018), 
and that the process can occur under anoxic or anaerobic conditions, so that it can 
be applied at depth/low oxygen level (Martienssen and Schöps 1999). However, 
biocementation by denitrification is a slow process, considerably slower compared 
to biocementation by ureolysis. Other disadvantages are that incomplete reaction 
may lead to accumulation of nitrous oxide  (N2O), a greenhouse gas, as well as 
nitrite  (NO2

−) and nitric oxide (NO) byproducts that are potentially toxic and harm-
ful to the environment and additionally inhibit the MICP process (van Paassen et al. 
2018; Castro-Alonso et al. 2019). It is also possible that the production of nitrogen 
gas may have undesirable effects for geotechnical applications if soil matrix stabil-
ity is compromised before biocementation has been achieved. The pathway can also 
be associated with a high eutrophication potential due to the nitrogen gas produc-
tion (Porter et al. 2021).

1.1.3  Methane Oxidation Pathway

This autotrophic pathway involves microorganisms of the methane cycle that produce 
enzymes that release and consume methane (Murrell and Jetten 2009; Ganena et  al. 
2014, 2015). In this process, methane is oxidised with molecular oxygen to carbon 
dioxide, then converted to carbonates that can be used to form biominerals. The advan-
tage of this process is that it has the potential to capture methane, a well-known green-
house gas, and store it in biocements/building materials. This way methane becomes 
benign and the process can contribute to climate change mitigation. Also the process 
can occur under aerobic, anoxic and anaerobic conditions (Jain et  al. 2021). Still, it 
suffers from the emission of hydrogen sulphide as a byproduct (Murrell and Jetten 
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2009). Furthermore, studies on this metabolic pathway were carried out under labora-
tory conditions but it is yet to be studied how the poccess can be implemented in situ 
under different environmental conditions (Jain et al. 2021).

1.1.4  Photosynthetic Pathway

The photosynthetic pathway uses the photolithoautotrophic nature of (micro-)algae and 
cyanobacteria to facilitate colonisation and biomineral formation (Irfan et al. 2019). As 
stated in Jain et al. (2021), during this process, the alkalinity across the microbial cell 
increases during the exchange of  HCO3

− /OH− ions. The microorganisms use  CO2 (gas-
eous or dissolved) to form organic matter via photosynthesis, while bicarbonate is con-
verted into  CO2 and  OH−, eventually forming carbonate minerals. Photosynthesis can be 
used to realise MICP cheaply and straightforwardly. However, the main limitations are 
the need for sunlight, restricting its applicability, especially for geotechnical applica-
tions at depth. Moreover, it can potentially have a considerable carbon footprint due to 
the production of  CO2 (Vecchi et al. 2020).

1.1.5  Iron‑reduction Pathway

Under anaerobic conditions, anaerobic heterotrophic iron-reducing bacteria produce dis-
solved salts or chelates of Fe(II) that can be transformed to ferrous carbonate (Guo et al. 
2010). A significant advantage for geo-environmental and geotechnical applications is 
the attainment of biocementation at depth under anoxic conditions as well as at low pH 
conditions. However, due to the aggressive nature of the environment in which the pro-
cess occurs, its application is limited and potentially undesirable (Castro-Alonso et al. 
2019). Only a few studies have used the process and have reported that the iron based 
biocement is not as strong as calcium based biocement but that the clogging effect is 
high, hence the process would be most suitable for bioclogging (Ivanov et al. 2015).

1.1.6  Sulphate‑reduction Pathway

In the sulphur cycle, sulfate-reducing bacteria can oxidise organic carbon to bicarbonate 
(Alshalif et al. 2016; Baumgartner et al. 2006; Tambunan et al. 2019); at the same time, 
hydrogen sulphide production increases the pH, favouring the precipitation of calcium 
carbonate. The potential advantages of this pathway are the ability of sulfate-reducing 
bacteria to produce biocement under anaerobic conditions and the use of organic mat-
ter, which can be readily available from waste sources such as food waste (Chetty et al. 
2023). However, sulfate-reduction is a slow process and hydrogen sulfide gases are 
odorous and toxic, which potentially limits the use of this process for large-scale (geo-)
environmental and civil engineering  applications. Another challenge is that anaerobic 
conditions must be maintained throughout the process, which is quite difficult to ensure 
under real-field conditions (Jain et al. 2021).

1.2  Carbonic Anhydrase Pathway

The carbonic anhydrase is an enzyme with an active site that contains a Zinc ion  (Zn2+) 
(Kim et al. 2020). It has been of interest and a subject of study since its first discovery 
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in 1933 by Meldrum and Roughton in mammalian red blood cells of cattle (Meldrum 
and Roughton 1933). Since then, CA has been found in plants (Bradfield 1947), algae 
(Moroney et  al. 2001), and bacteria (Veitch and Blankenship 1963; Supuran and 
Capasso 2017). The past few decades have proposed the usage of CA for industrial 
applications such as carbon sequestration (Molina-Fernández and Luis 2021; Yadav 
et al. 2014; Zhan et al. 2021), and biofuel production (Boone et al. 2013; Thakur et al. 
2018). In the medical field, CA has found application in dental health (Abou Neel et al. 
2016), as a component of artificial blood (Bian et al. 2012), for the prevention of kidney 
stones (Ghorai et al. 2020) and eye therapy (Jansook et al. 2021).

Its numerous applications are due to its distinctive  CO2-catalyzing properties. CA has 
been proposed for biocementation, as CA can hydrolyse 600,000 molecules of  CO2 per CA 
per second (Trachtenberg et al. 1999). For applications of CA-biocementation in civil or 
(geo-)environmental engineering, bacterial-CA (Zheng and Qian 2020a, b), as well as puri-
fied enzymes (Sharma et  al. 2022) were used to induce calcium carbonate precipitation. 
The biochemical process involves gaseous  CO2 dissolving in water to form hydrated aque-
ous  CO2 (aq) (Eq. 1), which reacts with water to form  H2CO3 (Eq. 2), whose ionisation 
in water generates  H+ and  HCO3

− (Eq. 2). Under alkaline conditions, the  HCO3
− further 

ionises to form  CO3
2− and  H2O (Eq. 3):

In the presence of a calcium ion source,  CaCO3 precipitates are formed from the reac-
tion of  (Ca2+) with  CO3

2− (Eq. 5). Whilst other divalent ions can be used (e.g.,  Mg2+ or 
 Fe2+),  Ca2+ remains the most widely ions used; therefore,  CaCO3 is precipitated in most 
biocementation studies. If bacteria are used rather than the free enzyme, bacteria cells 
serve as nucleation sites (Kahani et al. 2020):

A typical setup for CA-biocement production for possible civil or (geo-)environmen-
tal engineering applications would thus involve combining CA-producing bacteria,  CO2, 
nutrient media, and a calcium (or another metal ion) source mixed with soil or soil-like 
waste (e.g., mine tailings), as illustrated in Fig. 1. Typically, bacteria cells are negatively 
charged, and thus attract and bind to the provided metal ion  (Mg2+,  Ca2+, or  Fe2+), forming 
crystals (Power et al. 2013). The potential applications take advantage of the precipitated 
carbonate (in most cases,  CaCO3) that acts as a binding agent between soil or soil-like 
waste particles (Charpe et al. 2019). The biomineral formed creates a cement that can also 
fill the void spaces. As a result, soil engineering properties such as strength and stiffness 
are enhanced (Chen et al. 2021).

(1)CO
2
(g) ↔ CO

2
(aq)

(2)CO
2
(aq) + H

2
O(aq) ↔ H

2
CO

3
(aq)

(3)H
2
CO

3
(aq) ↔ H+ + HC−

3
(aq)

(4)2HCO−
3
+ 2OH−

↔ 2CO2−
3

+ 2H
2
O

(5)Ca2+(aq) + CO2−
3
(aq) ↔ CaCO

3
(s) ↓
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2  Literature Review Methodology

This paper adopted a systematic literature review (Xiao and Watson 2019), as illustrated 
in Fig.  2. The first step was to search for literature from the Web of Science (WOS), 
Scopus database, and other databases until  20th January 2023. An appropriate keyword 
combination described as (bacteria) AND (microbial calcium carbonate precipitation 

Fig. 1  Typical presentation of CA-biocementation

Fig. 2  Flow chart of the systematic review framework used in this study



Concurrent Carbon Capture and Biocementation through the…

1 3

Page 9 of 37    56 

OR biocementation AND (carbonic anhydrase*) was employed in the search com-
mand of respective databases to identify the relevant publications (Swartz 2011). Step 
2 involved screening the literature search results, excluding all languages except Eng-
lish and removing duplicates, and excluding magazines, conference proceedings, book 
chapters, series, and newsletters to have only full and reviewed papers. The categorisa-
tion performed in steps 3 and 4 involved reading through the title and abstract of docu-
ments to check whether the study is related to civil and (geo-)environmental engineer-
ing. Both "primary articles" and "review" papers were considered. "Primary articles" 
include those papers publishing original experimental data from laboratory or field 
studies. "Review" are papers that summarise and report on the past or recent progress in 
the study area. Only papers that had adopted the carbonic anhydrase route for microbial 
calcium carbonate precipitation (MICP) or biocementation were reviewed and included 
in the narration of the review paper (Step 5).

3  Results and Discussion

3.1  Number and Categorisation of Research Articles

The Web of Science and Scopus search results generated 91 and 157 studies, respec-
tively, excluding identical studies, not applicable, and languages other than English. 
One hundred sixty-nine (169) studies were excluded based on the article’s abstract-
level screening. The remaining studies, 38 in total, were considered in the systematic 
review. The trend in the number of research publications from 2002 to 2022 is repre-
sented in Fig. 3a and b, showing the thematic application areas. A steady increase can 
be observed in the number of publications on the topic. The literature shows that CA 
has been applied for carbon capture, self-healing concrete, bioremediation, geo-envi-
ronmental applications and other. The increased number is due to the recent interest in 
the MICP technique as a sustainable technology (Fukue et al. 2011; Bhattacharya et al. 

Fig. 3  (a)Trend in the number of research publications from 2000 to 2023; (b) Schematic areas of research 
publications
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2018). This increased interest has yielded more excellent knowledge of the mechanism 
and factors affecting MICP (Soon et al. 2014; Chek et al. 2021; Soon et al. 2014). How-
ever, despite the advances in MICP, it is estimated that less than 1% of publications on 
biocementation studied the CA pathway.

3.2  Factors Affecting CA‑biocementation

Many factors influence the process of biocementation, such as microorganism type and 
environmental factors (e.g., temperature and pH affecting microorganism viability, micro-
bial growth, and enzymatic activity), the concentration of  CO2, and metal cation source 
and concentration. These factors are described in the subsections below, explicitly referring 
to the CA pathway.

3.2.1  Bacteria Type

Bacteria are the source of enzymes and provide nucleation sites for mineral precipita-
tion (Zhao et  al. 2014). Many researchers have confirmed that the CA-producing bacte-
ria enzyme plays a vital role in promoting the conversion of  CO2 to bicarbonate and cal-
cite (Steger et al. 2022). The hydration of  CO2 triggers the proton transfer initiated by the 
CA, as it attacks the carbon atom of  CO2 by zinc-bound  OH− to produce bicarbonate, as 
described earlier (Fu et al. 2021). Thus, the CA enzyme (whether from bacteria or purified 
enzyme) affects the biocementation process (Giri and Pant 2019; Mirjafari et  al. 2007). 
Results have shown that purified CA enzymes could significantly enhance the carbonate/
bicarbonate formation and deposition in solution, compared to control samples without 
CA enzyme (Fig. 4). Therefore, selecting a CA-producing bacterial strain is critical to the 
biocementation process using the CA metabolic pathway. Additionally, the bacteria serve 
as the nucleation site for the  CaCO3 precipitation process during the CA-biocementation 
process. A small number of bacterial cells will yield a small number of nucleation sites; 
consequently, a small amount of biocement will form between soil particles. In a recent 
study by Jin et  al. (2021) using Bacillus mucilaginosus, it was confirmed that under the 
action of CA secreted by microbes, carbon dioxide was captured, enriched, and converted 
into carbonate ions, which reacted with calcium ions to form calcite. Similar results were 
reported by Zhan et al. (2021) using Paenibacillus mucilaginosus to produce CA and pro-
vide nucleation sites for the bio-mineralisation reaction. Selected CA strains screened by 
this study are shown in Table 2.

Generally, biocementation applications can harness the enzymatic activity of bacteria 
through bioaugmentation or biostimulation (Gomez et al. 2017). Bioaugmentation involves 

Fig. 4  Comparison of precipita-
tion with and without carbonic 
anhydrase enzyme (Reproduced 
based on data from Mirjafari 
et al. 2007)
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the introduction of microorganisms to soils. These can be imported non-native microorgan-
isms or native microorganisms that have been isolated from the native soil and screened for 
the intended usage; they are then cultivated and introduced back into the soil. For the bio-
augmentation process, various strains of CA-producing bacteria have been isolated from 
soils. These include but are not limited to Bacillus mucilaginous L3 (Qian et  al. 2015), 
Bacillus cereus C1 (Dhami et  al. 2017), and Bacillus altitudinis M8 strain (Nathan and 
Ammini 2019). However, many researchers argue that bioaugmentation is not sustainable 
and eco-friendly (Raveh-Amit and Tsesarsky 2020). So far, the source of reliable high CA-
producing bacteria is achieved by cultivating pure cultures which is a major cost factor 
of MICP application. Borchert and Saunders (2011) have successfully demonstrated the 
production of CA from a recombinant E. coli bacterial strain. Still, a high capital cost is 
associated with the large-scale production of enzymes from native and recombinant E. coli 
cell lines.

An alternative process is the stimulation of existing microorganisms in the soils by pro-
viding them with suitable nutrients (Pan et  al. 2019). Biocementation by biostimulation 
can be of interest for practical geotechnical and geo-environmental engineering applica-
tions as native bacteria are well-distributed spatially within the subsurface and this can 
lead to an improved biocementation treatment with spatial uniformity (Gomez et al. 2017; 
Behzadipour and Sadrekarimi 2021; Dubey et al. 2021). Moreover, native microorganisms 
are well-suited and adapted to their native subsurface environment. Although little studied, 
biocementation by biostimulation of native CA-producing bacteria is possible and would 
merit further research. Consequently, before any full-scale CA-biocementation applica-
tion in the field, an economically viable production of CA or CA-producing bacteria is 
necessary.

3.2.2  pH

The pH plays a vital role in biocementation, affecting microbial growth, metabolism/enzy-
matic activity, calcite solubility and crystallization and nature of biomineral formed. More-
over, the pH changes throughout the mineral precipitation process. Generally, the enzy-
matic activity is consistent with the growth and reproduction of bacteria: the better the 
bacteria grow, the higher the observed enzymatic activity. The optimal pH for most studied 
microbial CA-producing bacteria ranges from 7.0 to 9.0 (see Table 2). A high or low pH 
value generally results in the denaturation of enzyme activity due to the structural altera-
tion of the amino acids of the CA enzymes. The optimal pH values for various CA-produc-
ing enzymes reported in recent studies were as follows: pH 6.5 for Bacillus mucilaginosus 
K02; pH 6.0 for Lactobacillus delbrueckii (Li et al. 2015); pH 7.0 for Corynebacterium fla-
vescens (Sharma and Kumar 2021), and pH 8 for Bacillus sp (Sundaram and Thakur 2018). 
A study by Zheng and Qian (2020a) showed that as pH increased due to  CO3

2− and  OH− 
from the hydration of  CO2, a pH value of 9.5 inhibited the growth of bacteria and eventu-
ally resulted in no bacterial growth at a pH value above 11.0. The study postulated that 
higher pH values lead to increased permeability of microbial cell membranes, reducing the 
absorption of nutrients by microorganisms and leading to bacterial death. Lai et al. (2023) 
performed a microscopic analysis of EICP-treated sand specimens. This showed only a few 
small crystals forming for pH ≤ 4.5. Conversely, at a higher pH, large calcium carbonate 
crystals were observed on the sand particle surface and/or at the interparticle contacts. It 
was thus postulated that lowering pH would lead to a reduction in enzyme activity affect-
ing biocementation.
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The pH value of concrete can reach 13 which is extremely unfavourable to the growth 
of most microorganisms. Thus, for such applications researchers adopted spore forming 
techniques and ways of shielding the bacteria during the hydration process. This could 
be achieved for example by using gels (Wang et al. 2012). Of all CA-producing microbes 
studied, Bacillus sphaericus alkali-resistant and spore-forming bacteria are used widely for 
self-healing concrete purposes (Zhu et al. 2021; Jonkers and Schlangen 2008). The con-
crete’s matrix capillary water is reported to have pH values between 11 and 13, and Bacil-
lus sphaericus still survives and can thrive at these pH ranges (Jonkers et al. 2010; Jonkers 
and Schlangen 2008; Zhu et al. 2021). The fundamental strategy for implementing bacteria 
in concrete is to protect these, for example, in a hydrogel, enabling them to last from sev-
eral to hundreds of years under extreme environments (Setlow 1994; Wang et  al. 2018). 
Indeed, although alkaliphilic bacteria would normally tolerate the highly alkaline con-
crete environment, their metabolic activity could still be affected by the high pH and the 
dry environment of hardened concrete. This was evidenced by Jonkers et al. (2010) who 
observed only 10% of the directly incorporated Bacillus cohnii spores in concrete after 
42 days. Therefore, encapsulation rather than direct application is recommended, using car-
riers such as capillaries, porous materials, microcapsules, and hydrogel, as well as graphite 
nanoplatelets (GNPs) and lightweight aggregates (LWAs) (He et  al. 2020; Lee and Park 
2018). Further research would be required to study the viability of CA-producing bacteria 
in extreme environments and the performance of spore-forming CA bacteria encapsulated 
using different carriers for possible application in the construction sector.

In addition to and also as a result of its effect on microbial growth, pH plays a signifi-
cant role in calcium carbonate crystallisation. Different initial pH lead to different crystal-
line morphology of precipitates, as evidenced by microstructural analysis of CA-treated 
materials shown by Zheng and Qian 2020b) for initial pH ranging from 7.0 to 10.0. 
Namely, the SEM micrographs showed that the morphologies of precipitates evolved pro-
gressively from agglomerations of tiny spheres in lower pH of 7.0 to larger compact crys-
tals when pH increased to 9.0, and bacteria acted as nucleation sites to induce more regu-
lar spherical morphology. The different morphologies can be attributed to the fact that at 
low pH value, excess  H+ produced by  CO2 dissolving in water, would further reduce the 
pH of the solution, gradually dissolving  CaCO3 products; hence, smaller particle sizes 
were observed. Conversely, at pH = 9.0, which was found to be the optimum pH for min-
eralisation for the CA bacteria used in this study, precipitation was enhanced. The bac-
teria acted as the nucleation sites to induce a more regular spherical morphology, which 
resulted in increased sizes of precipitates. Finally, an initial pH of 10.0, would restrict 
bacterial growth leading to a decrease in enzymatic activity and to the inhibition of the 
hydration reaction of  CO2. This would result in a limited precipitation, mainly caused by 
the dissolution of  CO2 in the alkaline solution. Further increases in initial pH values could 
eventually lead to the death and dissolution of CA bacteria, thus impacting on the quantity 
and stability of enzyme produced by microorganisms activity (Zheng and Qian 2020a). It 
should be noted that the large variation in the size of the biominerals has an impact on the 
contact points forming between soil grains, and consequently, on the strength of bioce-
mented geomaterial. Longer retention times of enzymatic activity, will yield larger crystal 
sizes, enhancing the bonding between the biomineral and the geomaterial particles, hence 
leading to higher strengths.
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3.2.3  Temperature

In addition to pH changes, temperature changes also have a significant impact on bioce-
mentation as they affect the enzymatic activity of the microorganisms, as well as the 
chemical stability of the biominerals. Increased or decreased temperature affects micro-
bial metabolism and growth, hence affecting enzymatic activity. Therefore temperature is 
a key factor for the success of CA-biocementation. Some literature has pointed out that 
the optimal temperature for microbially induced calcium carbonate precipitation is around 
35 °C, which correlates well with the optimal growth temperature of most CA-producing 
bacteria. A recent soil microcosm study by Jaya et al. (2019) showed that marine Bacillus 
safenis had optimal CA activity at 40  °C. Another study found that Citrobacter freundii 
was active and optimal at 37 °C (Giri et al. 2018). Unlike the other CA-producing bacte-
rial strains studied, Methanobacterium thermoautotrophicum had an optimal high tempera-
ture of 75 °C (Smith and Ferry 1999). Therefore, the temperature should be optimised in 
CA-biocementation to cement different geomaterials efficiently for different applications 
in natural environments (Justo-Reinoso et al. 2021). However, few studies have optimised 
this process for application in the field as most of the experiments were conducted at room 
temperature. Future investigations should mimic the ground conditions, as low tempera-
ture conditions significantly affect microbial activity. For example, according to Sun et al. 
(2019), microbial activity is low at temperatures of 10 °C, affecting the success of bioce-
mentation. On the other hand the study by Zhang et al. (2011) shows that the CA activ-
ity of Bacillus mucilaginosus K02 at temperatures of 10 °C is reduced by approximately 
30% of the activity achieved at optimal temperatures (Fig. 5). Therefore, studies focusing 
on how to achieve sufficient for biocementation microbial activity at low temperatures are 
of most relevance. In particular for geotechnical and geo-envirronmental applications, it 
will be impractical to control or maintain a constant temperature in the field. The soil tem-
perature in the field would vary with altitude, latitude, soil type and depth, water content, 
proximity to industrial or agricultural site (Jain 2021). Though the native CA bacteria will 
be acclimated and able to survive in a wide range of temperatures in their natural environ-
ment, the effect of different temperatures on bacteria growth and activity will need to be 
thoroughly studied before field application, as it will be a major factor affecting biocemen-
tation success.

Fig. 5  Effect of different tem-
peratures on carbonic anhydrase 
produced by Bacillus mucilagi-
nosus K02 (Reproduced using 
data from Zhang et al. 2011)
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3.2.4  Cementation Solution

The review of existing experimental studies shows that the cementation solution is 
vital in the CA-biocementation process. Previous biocementation studies showed that 
the composition and concentration of the cementation solution affect the crystal type, 
appearance, size, composition of pore fluid, and pH value. Typically, the cementation 
solutions in CA-biocementation are a mixture of metal ion salt, a  CO2 source, and trace 
nutrients (Bozbeyoglu et al. 2020; Dhami et al. 2014; Pan et al. 2019). In calcite pre-
cipitation studies, three calcium sources have been used widely, namely calcium nitrate 
(Ca(NO3)2), calcium acetate (Ca(CH3COO)), and calcium chloride  (CaCl2). Pan et  al. 
(2019) used three calcium sources that demonstrated that CA-producing bacteria could 
precipitate calcite in a sand column and showed that the three sources of calcium sys-
tems produced different crystal types (see Fig.  6). The morphologies of the crystals 
were mapped against the strengths achieved. Namely, the sand column with Ca(NO3)2 
had the highest shear strength of 62.33  kPa, followed by the  CaCl2 group, while the 
Ca(CH3COO)2 group had the worst strength of only 11.19 kPa. The authors attributed 
the higher strengths of the  CaCl2 and  CaNO3 systems to the fact that  CaCO3 crystals 
were closely packed, attached to the sand particles, and well distributed, as opposed to 
 CaCO3 crystals from the Ca(CH3COO)2 systems, where precipitates were much more 
scattered and not attached to the sand particles. Still, in the context of biocementation 
for ground improvement these strengths are too low: when using the ureolytic route for 
sand biocementation strengths as high as 30 MPa have been reported (Whiffin 2004). An 
interesting observation made by the authors is that holes were formed on the surface of 
their specimens, which could justify the low strength. The authors attributed these holes 
to the continuous production of  CO2 during the process, so that gas bubbles disrupted 
the soil matrix. It is also notable that XRD identified the  CaCO3 crystals as vaterite, i.e., 
the least stable  CaCO3 form. Vaterite formation instead of calcite impacts the mechani-
cal properties of the soil and can explain the lower strengths. This was particularly the 
case for the Ca(CH3COO)2 system, which had the lowest strengths, consistently with the 
formation of vaterite. However there was generally a limited evidence of calcite forming 
(the most stable polymorph) even in the other two systems, which overall concurs with 
the low strengths achieved.

Zheng and Qian (2020a), investigated the effect of cementing solution concentration. 
Using cementing solutions of different molarities (0 to 160  mM) of calcium ions, they 
found that molarity also affects the growth and enzyme activity of CA bacteria, hence 
biocement production. Bacteria grew best, and the enzyme activity reached its maximum, 
when the  Ca2+ concentration was 60 mM. An increased  Ca2+ concentration inhibited the 

Fig. 6  The morphology of  CaCO3 formed with the three different calcium sources in the presence of Bacil-
lus cereus ( +) or not ( −): (A)  CaCl2 system ( −); (B)  CaCl2 system ( +); (C) Ca(NO3)2 system ( −); (D) 
Ca(NO3)2 system ( +); (E) Ca(CH3COO)2 system ( −); (F) Ca(CH3COO)2 system ( +) (Figure reproduced 
from Pan et al. (2019)



Concurrent Carbon Capture and Biocementation through the…

1 3

Page 21 of 37    56 

growth of CA-producing bacteria, and the enzyme activity of CA-producing bacteria 
decreased gradually. Once the  Ca2+ concentration reached 160  mM, the bacteria hardly 
grew, and the activity of CA-producing bacteria almost disappeared. A possible explana-
tion for this is that increased  Ca2+ concentration affects the osmotic pressure around the 
membrane of bacteria cell. This triggers flow from the low  Ca2+ concentration zone to the 
high  Ca2+ concentration zone through the cell membrane, which leads to the dehydration 
of cells and the separation of plasma wall. This can cause bacteria to stop growing or even 
die (Zheng and Qian 2020a).

Finally, the source of  CO2 is essential.  CO2 used could be from the atmosphere or exter-
nally supplied; this could include captured industrial  CO2. Most  CO2 sequestration studies 
suggest using  CO2 directly from point sources such as industrial sources (Leimbrink et al. 
2017; Russo et al. 2013, 2016). However, this source of  CO2 has impurities and, as such, 
needs to be purified before usage as other pollutants exist in the flue gas (Wattanaphan 
et al. 2013; Weber et al. 2000). This is plausible for  CO2-capturing application purposes 
but could be less suitable for biocementation for soil improvement or bioremediation. For 
this purpose, the usage of  NaHCO3 has been suggested by many researchers as a source of 
 CO2 (Hanifa et al. 2023) although it is less attractive in terms of climate mitigation than the 
use of captured  CO2. Alternatively, using  CO2 directly from the atmosphere is plausible in 
the same fashion as when  CO2 from the atmosphere is used for curing cement-based mate-
rials (Liu et al. 2021) but this has been little investigated. It should, however, be noted that 
 CO2 addition can lead to a disruption of the soil matrix as observed in the experiments by 
Pan et al. (2019) and this requires further investigation especially for ground improvement 
applications.

To conclude, cementation solution composition/concentration variations can affect 
biocementation success. Investigators must carefully select the appropriate cementation 
solution type and concentration ratio before implementing CA-biocementation in vari-
ous engineering applications. The limited evidence for the use of CA enzyme for ground 
improvement shows that strengths may be considerably lower compared to those achieved 
by the ureolytic route (see, e.g., Pan et  al. 2019). To precipitate more calcium carbon-
ate between sand particles, a higher cementation solution may be required; however, the 
MICP process may be retarded or even terminated with an increased solution concentration 
(Mahawish et al. 2018; Lai et al. 2021). Alternatively, multiple applications of cementing 
solutions of lower concentations may have to be adopted as a way of increasing precipitates 
and strength. However, this would reduce the efficiency of the process in large scale appli-
cations, increasing treatment duration and costs. This would be a major limitation for the 
CA based MICP soil treatment and needs to be studied thoroughly.

3.3  Applications of CA‑biocementation in Civil and Environmental Engineering

3.3.1  Concrete Repair

As discussed earlier, biocementation can be applied for concrete crack repair and self-heal-
ing, soil/geomaterial stabilisation/ground improvement, carbon capture, and bioremedia-
tion. The CA-biocementation method has been used primarily for concrete crack repair or 
self-healing concrete (Ali et al. 2023). The conventional way of repairing concrete cracks 
involves injecting cement grout or epoxy into the concrete. However, environmental and 
health hazards such as allergies, asthma, and irritation of the eyes, nose, and throat have 
been reported when using these chemicals (Kapustka et  al. 2020). CA-biocementation 
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can be used instead for the self-healing of microcracks. In the latter method, restoration 
occurs by activating the biocementing components incorporated in the concrete when a gap 
appears. Namely, any seepage of water and air through cracks leads to the release of incor-
porated components in the concrete to initiate the CA-biocementation process which seals 
the microcracks. A recent study used Bacillus mucilaginous L3, a CA-producing strain that 
was shown to seal small cracks within seven days (Qian et al. 2015). This study predicted 
the depth of the  CaCO3 precipitated layer based on the expected experimental results. 
Cracks in the concrete below 0.4 mm were almost entirely closed using this method. Chen 
et al. (2016) also repaired cement-based material damage by immobilising Bacillus spha-
ericus CA-bacteria and nutrients.

Free CA-enzyme was also introduced in the cement paste mix during the concrete prep-
aration to develop a self-activated healing cement paste (Rosewitz et al. 2021). The results 
showed that after fracture, the hydration of samples containing CA promoted the formation 
of calcium carbonate crystals at ambient temperature. These results prove that using the 
CA enzyme to repair small cracks in concrete is practical, as reported using other pathways 
(Chuo et al. 2020).

3.3.2  Ground Improvement

To date, very few works have studied CA-biocementation for soil stabilisation. These 
include the recent study by Pan et al. (2019), who used different calcium sources to inves-
tigate sand biocementation by a CA-carbonic anhydrase-producing bacteria, as men-
tioned earlier. The study showed that CA-producing bacteria could precipitate calcite 
in a sand column of a diameter of 60 mm and a height of 50 mm using various calcium 
sources. Another study by Dhami et al. (2017) explored the CA-biocementation pathway 
by biostimulation. It showed that calcium carbonate could be precipitated by the synergy 
between ureolytic and CA-producing bacteria, as in the natural environment, no single pro-
cess exists in isolation. The outcome was an improved biocementation efficiency as calcite 
precipitation increased by 50–72%.

3.3.3  Bioremediation

CA can also be applied for the bioremediation by either fixation or leaching of contami-
nants, as suggested by a recent study of steel slag carbonation using Bacillus mucilagino-
sus (Jin et al. 2021). The resulting inert material had a compressive strength of 11.2 MPa 
and could be used for contaminant encapsulation by adhering to the waste materials and 
resisting biodegradation. Further investigations of CA-biocementation for contaminant 
encapsulation are required as there is paucity of information regarding this application.

3.3.4  Future CA‑biocementation Application

The CA-biocementation process could be used for other applications in the future, such 
as soil liquefaction mitigation, erosion protection, or heritage building restoration, in the 
same way as other pathways (e.g., denitrification or ureolytic pathways). However no stud-
ies were found using CA for these applications. This is a research gap that future studies 
can address (Fig. 7).
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3.4  Modelling of CA‑biocementation Processes

Although the biocementation technique has been extensively investigated in the recent 
past, to date, no predictive model has been formulated for the CA-biocementation pathway 
despite its various advantages. The vast majority of biocementation models are for the ure-
olytic route and are calibrated at laboratory scale (Dupraz et al. 2009; Fauriel and Laloui 
2012; Kashizadeh et  al. 2021; Martinez et  al. 2014; Nassar et  al. 2018; Matsubara and 
Yamada 2020; Sharma et al. 2021; van Wijngaarden et al. 2011; Wang and Nackenhorst 
2020). Very few models are calibrated with field scale data (Minto et al. 2019; Cunning-
ham et al. 2019). Such models are helpful for upscaled or field applications. It is costly and 
takes many years to carry out field experiments before the technology can be transferred 
from a laboratory-scale process to a practical field-scale deployable technology. Thus, it 
is necessary to have CA-biocementation models developed. Forward-looking, for CA-
biocementation predictive modelling, the  CO2 sequestration literature could be consulted 
as no modelling studies on CA-biocementation were found. This process could provide the 
required information (parameter values) for the CA enzyme kinetics. Figure 8 shows the 
step-by-step process of predictive model development.

The first step would be to understand and implement the general form of mass balance 
for chemical species transport by advection–dispersion-reaction relationship. CA-bioce-
mentation involves multi-component systems that require solving transport for many spe-
cies  (CO2,  H2O,  Ca2+,  CO3

2−). Learning from previous models in the ureolytic pathway, all 
these species in the system are generally simulated using the advection–dispersion equa-
tion (Eq. 6) (Abbas et al. 2020; Cunningham et al. 2019; Fauriel and Laloui 2012; Mar-
tinez et al. 2014). The terms on the left-hand side express the advective transport, the first 
term on the right-hand side considers dispersion, and the second term considers reaction; 
in its simplest 1-D form, it is written as:

Fig. 7  Possible future CA-biocementation applications in civil and (geo)environmental engineering
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where

C  Constituent concentration (mol/m3),
t  time (s)
u  cross-sectional average flow velocity (m/s),
x  distance along the longitudinal axis (m),
D  Dispersion coefficient  (m2/s), and
K  Reaction rate (1/s).

Secondly, during typical batch culture, the bacterial growth curve shows distinct stages 
of growth that describe the lag phase, exponential growth, and death phase, when con-
ditions become unfavourable for growth and bacteria stop replicating (Balakrishnan et al. 
2021). The microbial growth and enzyme activity can be expressed using the Monod equa-
tion. The Monod equation considers the number of microorganisms and the substrate con-
centration (Nežerka et al. 2022). This phenomenon has been modelled as chemical species, 
where the bacterium in suspension is considered irreversibly attached to solid surfaces in 
the soil profile and independent of velocity and bacteria growth; the Monod equation then 
simplifies into Eq. (7) (Minto et al. 2019). The rate of the forward reaction  (rCA) for  CO2 
hydration rate (mol/(m3 s)) catalysed by generic carbonic anhydrase (CA) may be described 
according to the Michaelis–Menten model (Eq. 7) as follows:

(6)
�C

�t
+ u

�C

�x
= D

�
2C

dx2
− KC

(7)rCA =
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KM

[CA](
[

CO
2

]

−
[
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2

]
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Fig. 8  Schematic diagram of the predictive modelling of CA-biocementation techniques
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where kcat is the turnover number (1/s), and KM is the Michaelis–Menten kinetic constant 
(mol/m3) and 

[

CO
2

]

 and [CO
2
]
eq the total  CO2 concentration and the  CO2 concentration in 

equilibrium respectively (mol/m3).
The reaction mechanism of CA has been extensively studied, and the reaction scheme 

is reported in the literature. Generally, the CA turnover numbers range between 104 and 
106  s−1 for free CA and immobilised enzymes (Di Fiore et al. 2015). Russo et al. (2013, 
2016) reported the kinetics of the recombinant CA from the thermophilic bacterium Sul-
furihydrogenibium yellowstonens, namely that  kcat/KM = 9.16 ×  106   M−1   s−1. In another 
study, the  kcat/KM assessed for the α-class human carbonic anhydrase HCAII was reported 
to be about  108   M−1   s−1 (Gaspar et  al. 2017). Such parameters could be helpful for the 
models. The final step for CA-biocementation would be the precipitation of biominerals 
where  CaCO3 is precipitated as an immobile mass. This can be incorporated into the CA-
pathway models in the same way as in existing ureolytic models (e.g., Abbas et al. 2020; 
Cunningham et  al. 2019; Martinez et  al. 2011; Matsubara and Yamada 2020; van Wijn-
gaarden et al. 2011).

Numerical models for the ureolytic pathway have been produced using software such as 
COMSOL-MULTIPHYSICS (Faeli et al. 2023), TOUGHREACT (Martinez et al. 2013), 
PHT3-D (Nassar et al. 2018), OpenFOAM (Minto et al. 2019) and others. These and other 
platforms could be useful for simulating the CA-biocementation with parameters obtained 
from  CO2 sequestration studies. Once a model has been produced, the next step would be to 
determine the main influential parameters and calibrate the model, considering both aque-
ous and solid phase data from the experiments (Abbas et al. 2020). The stoichiometric con-
straints of individual reactions and the interconnectivity between the responses would be 
utilised in the calibration process (Martinez et al. 2011; Minto et al. 2019). However, most 
of the current mathematical models are limited to  CO2 absorption into aqueous solutions 
along a biomimetic route. There are no models for CA-biocementation, which requires fur-
ther study by researchers.

4  Discussion: Challenges and Future Directions

The CA pathway is an attractive nature-based method of producing environmentally 
friendly cement for civil and (geo-)environmental engineering applications. Combining 
 CO2 capture with biocement production for different applications, is novel and exciting. It 
assists in climate change mitigation and adaptation. The carbonic anhydrase biocementa-
tion pathway is also free of undesirable byproducs. Due to its many advantages the path-
way has excellent potential for large scale civil and environmental engineering applica-
tions, including concrete crack repair or self-healing, restoration of heritage buildings, 
bioremediation of contaminated construction sites, as well as problematic soil improve-
ment, including preventing soil liquefaction and erosion problems. However, despite the 
proof of concept, several limitations still exist for commercialising CA-biocementation. 
Many research gaps were identified in this study and suggestions for future research to 
address these are listed below:

 i. Firstly, the different sources of CA (CA from bacteria or free/purified enzyme) need 
further investigation to improve the transition process from bench scale to field appli-
cation. For this, it is also necessary to identify robust and site-specific microorganisms 
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that can operate under a broad range of environmental parameters such as pH or tem-
perature. The ability of the CA-biocementation route to achieve design requirements 
also needs to be addressed. For example, the soil strength gains reported currently, 
are generally lower than those achieved when the ureolytic route with Sporosarcina 
pasteurii was used. Moreover, to realise CA-bocementaton at field scale it is essential 
to find ways of producing biominerals cheaply. Overall sustainability assessments of 
the proposed processes through Life Cycle Analysis will also be required and these 
are currently lacking.

 ii. Secondly, immobilising CA enzymes using nanostructured materials could be inves-
tigated. This technique was proven to be helpful in the carbon capture process. Future 
studies can thus adapt the technique to increase biocementation efficiency (Al-Maqdi 
et al. 2021; Shende et al. 2018). A critical anticipated advantage of CA enzyme immo-
bilisation is an improved stability.

 iii. Thirdly, CA-biocementation studies are currently limited to a few applications. Further 
research could broaden the use of the technique to other civil and (geo-)environmental 
engineering applications such as liquefaction and heritage building restoration.

 iv. Another aspect that has not been discussed in the literature but it is of most relevance 
for industrial scale implementation is finding practical ways of implementing  CO2 for 
large scale projects, especially for geo-environmental and geotechnical applications. 
It should be considered for example how the  CO2 can be implemented in the ground 
using currently available equipment (e.g., air sparging or electrokinetic setups), with-
out disrupting the soil matrix, especially under existing infrastructure. Moreover, the 
literature review has shown that the type of the cementing solution and its purity may 
affect the biocementation success. Whilst the effect of impurities on the success of 
biocementation should be the focus of future laboratory work, the logistics of sup-
plying  CO2, especially captured industry waste  CO2, free of potentially deleterious 
impurities would need to be considered for large scale projects. The possibility and 
practicality (in terms, for example, of rates of calcite precitation, and whether these 
would be practical in terms of timeframes required) of using atmospheric  CO2 should 
be considered, so that  CO2 biocementation becomes a carbon sink in the natural envi-
ronment, but no such studies were found.

 v. Finally, the formulation of predictive models of the CA-biocementation pathway, 
which are currently lacking, needs to be addressed in future work, to support uplscal-
ing towards field applications.

5  Conclusions

This study provided a comprehensive literature review on the use of the carbonic anhy-
drase biocementation pathway for environmental and geo-environmental engineering 
applications. The review covered the period from  1st January 2002 to  20th January 2023. 
The study of this pathway in comparison to other biocementation pathways revealed 
that the carbonic anhydrase biocementation pathway could be the net-zero biocementa-
tion solution for the construction sector. However this study also showed that although 
very promising, this pathway remains little researched. It was, therefore, concluded that 
more studies are required both in the laboratory and in the field for the different pos-
sible applications of the process. In particular long-term field experiments, which are 
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lacking, are essential to assess the feasibility of this exciting route and to overcome bar-
riers towards uptake by industry.

The study also showed that studies on the numerical modelling of the processes and 
information on the required kinetic parameters are also lacking; yet, these are important 
for industrial implementation. To complement the information and as an outlook for 
future research in this direction, it is relevant to consult the field of  CO2 sequestration 
using CA-producing bacteria, to fill the knowledge gaps.

Finally, several issues common to other biocementation pathways need to be further 
investigated to overcome barriers to industrial-scale applications. These include the 
high cost of raw materials and culture media. Sustainability analyses of the proposed 
processes are of primary importance for the application of the technique at an industrial 
scale. Practical considerations regarding capturing  CO2 for field scale applications must 
also be addressed towards industry uptake of the technique.
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