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Sommario

Nella fisica degli acceleratori, un parametro importante è il tune di betatrone, definito
come la frequenza di oscillazione trasversale del fascio. La ricerca del tune è matematica-
mente equivalente al calcolo della frequenza principale (ed eventualmente delle frequenze
successive) di una sequenza di numeri complessi. Lo scopo di questo lavoro di tesi è
produrre un programma C++ che implementi alcuni algoritmi noti di ricerca della fre-
quenza principale e delle frequenze successive, e confermare che gli errori di questi metodi
concordino con l’andamento teorico. Questa procedura è stata svolta sia per sequenze di
ampiezza costante, che di ampiezza variabile nel tempo. È stato inoltre verificato che, nel
secondo caso, metodi alternativi per il calcolo dell’inviluppo non sono migliori di quello
usato al momento. Infine, è stato studiato e implementato un nuovo algoritmo per il
calcolo simultaneo delle due frequenze dominanti. È stato verificato che, se le frequenze
sono abbastanza vicine, il nuovo algoritmo è più preciso degli altri considerati.

Abstract

In accelerator physics, an important parameter is the betatron tune, defined as the trans-
verse oscillation frequency of the beam. Finding the tune is mathematically equivalent
to calculating the principal frequency (and possibly the successive frequencies) of a se-
quence of complex numbers. The aim of this thesis work is to produce a C++ program
that implements some known algorithms for finding the main frequency and subsequent
frequencies, and to confirm that the errors of these methods agree with the theoretical
trend. This procedure was carried out for sequences of both constant and time-varying
amplitude. It was also verified that, in the latter case, alternative methods for calcu-
lating the envelope are no better than the one currently used. Finally, a new algorithm
was studied and implemented implemented for the simultaneous calculation of the two
dominant frequencies. It was verified that if the frequencies are close enough, the new
algorithm is more accurate than the other ones considered.
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Chapter 1

Introduction

1.1 Aim of this thesis

A circular particle accelerator can be thought of as a torus, with the charged particle
beam travelling in the toroidal direction. However, the beam also oscillates in the trans-
verse plane in the horizontal and vertical directions. The determination of the frequencies
of the oscillations in the transverse plane carries much information about the properties
of the dynamics of charged particles. The beam position can be measured at a given
section of the accelerator, and the analysis of the turn-by-turn measurements allows the
determination of the oscillation frequencies. In more abstract terms, the problem can
be expressed as: given a sequence of (possibly complex) numbers (representing the out-
come of the beam position measurements), what are the main frequencies in the series
of numbers?

Efficient methods to do this need to be devised, and in fact, this represents an active
research area and many useful advanced algorithms were found (see, e.g. [1] and [6]).

In this thesis work, we developed a C++ program that applies the most important
algorithms described in these references. The correctness of the implementation was
confirmed by studying synthetic signals and determining the behaviour of the errors
associated with the determination of the signal frequencies, which is then compared with
the theoretical expectations.

Additionally, a new algorithm was found that simultaneously calculates two fre-
quencies, which has excellent performance in terms of error in the determination of the
frequency. Furthermore, it is robust in the determination of close-by frequencies.
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1.2 Notation and basic theory

As customary in the theory of signal processing, we use the term “signal” to indicate a
time series, i.e. an (ordered) sequence of values, usually complex. A complex signal can
be thought as a vector in CN , so it will be represented here as

z = {z(n)}n∈[N ] = (z(1), z(2), . . . , z(N)) (1.2.1)

where z(n) is the nth component z, and the definition

[N ] := {1, 2, . . . , N} (1.2.2)

will be used. From now on, the terms “signal” and “vector” will be used almost inter-
changeably, except in the rare cases in which the vector cannot be interpreted as a time
series (for example, if the said vector is a Fourier Transform).

Since we are working with complex numbers, we will always use the letter i to indicate√
−1 and never as a summation index.

We will now define the scalar product that will be used in the rest of this work. We
consider the sesquilinear form

z · w :=
1

N

N∑
n=1

z(n)w∗(n) z, w ∈ Cn (1.2.3)

where w∗(n) is the complex conjugate of w(n). It is a rescaled version of the usual scalar
product, so it is trivial to check that it verifies all the properties that make it a scalar
product. An important note is that, differently from the usual convention in physics,
this scalar product is linear in the first argument and conjugate-linear in the second.

We now consider Z, the discrete Fourier Transform of a signal z. It is a vector in
CN , whose kth component is defined as

Z(k) :=
1

N

N∑
n=1

z(n) exp

(
−2πi

k

N
n

)
. (1.2.4)

We notice that, if we define the vector uν to be the harmonic of frequency ν, sampled
over N points, we have

uν(n) := exp(2πiνn) (1.2.5)

and then
Z(k) = z · uk/N . (1.2.6)
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We then see that the discrete Fourier Transform of a signal can be thought of as a
scalar product between the signal itself and an appropriate vector of CN . Furthermore,
we note that

uk/N · um/N = δkm (1.2.7)

where δkm is the Kronecker symbol, so the vectors {uk/N}k∈[N ] are an orthonormal basis
of CN .

We have seen that, if sampled over N points, the N harmonics with frequencies
{k/N}k∈[N ] correspond to N linearly independent vectors in CN . So the components of
the discrete Fourier Transform of a signal z of lenth N can be thought of as the projection
of z onto the vectors of the harmonic basis {uk/N}k∈[N ].

In general, for a given frequency ν we define the projection of z onto uν as

ϕ(ν) := z · uν (1.2.8)

we see that

Z(k) = ϕ

(
k

N

)
, (1.2.9)

and, for a generic L ∈ Z,
ϕ(ν + L) = ϕ(ν) (1.2.10)

which is known as frequency aliasing. Therefore in this work we use (without loss of
generality) ν ∈ ]0, 1] for each frequency ν.

The task we want to address is to determine the M main frequencies in a given signal
z. That is, the M frequencies whose amplitudes (referring to Eq. (1.2.8)) are the largest
in modulus. For the sake of brevity, the frequencies will be ordered on the basis of the
corresponding amplitudes, and we will then refer to the frequencies as the first frequency,
second frequency, and so on.

A strategy for computing the first M frequencies in a signal might be to calculate
its Discrete Fourier Transform (DFT), then choose the frequencies based on the value of
|ϕ(k/N)|. Therefore, the first frequency would be the one corresponding to the largest
|ϕ(k/N)| and so on.

Given Eq. (1.2.7), we see that

z · uk/N =
[
z − ϕ

(m
N

)
um/N

]
· uk/N (1.2.11)

so, except for themth component (corresponding to the projection onto um/N), the DFTs
of z and z−ϕ(m/N)um/N are equal. This means that the previous strategy is equivalent
(in the sense that produces the same results) to the following:
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• Compute the DFT of z, or equivalently we project z onto the N vectors of the
harmonics basis. The first frequency corresponds to the largest |ϕ(k/N)|, which
we assume to be m/N .

• Replace zm−1 with zm, defined as

zm := zm−1 − ϕ
(m
N

)
um/N (1.2.12)

such that its nth component is

z1(n) := z(n)− ϕ
(m
N

)
exp

(
2πi

m

N
n
)
. (1.2.13)

The signal z1 corresponds to z but with its first frequency removed. In general, zm
is z without its first m frequencies, so z0 = z.

• Repeat the first two steps M times, so that a list of M frequencies is found.

The precision of this strategy is determined by that of the DFT. Even if we only
focus on the first frequency, we see that the error associated with the ”plain” DFT is
1/N . This means that the frequency k/N corresponding to the largest |ϕ(k/N)| differs
from the true frequency ν1 by O(1/N).

Other algorithms, treated later, give a better approximation of the true frequency
and can be applied in this case. However, a problem arises when algorithms other than
the DFT are used. Indeed, given two generic frequencies νh, νm, we have

uνh · uνm =
1

N
eπi(νh−νm) sin[Nπ(νh − νm)]

sin[π(νh − νm)]
(1.2.14)

so the vectors uνh , uνm are not orthonormal, although one can verify that, as expected,
they do are orthonormal if νh, νm ∈ {k/N}k∈[N ].

Therefore, the previous recursive strategy must be changed. In particular, the sub-
sequent vectors onto which the signal is projected must be orthonormalised before pro-
ceeding to the next step of the approach. Notice that this was done implicitly when the
vectors were {uk/N}k∈[N ]. So, the final strategy to compute the first M frequencies of a
signal z is (here it is be described its mth step):

• Estimate the current dominant frequency using an algorithm of choice. This fre-
quency, which shall be called νm, is not guaranteed to be (and is usually not) in
{k/N}k∈[N ].

• Define wνm , which is the result of the orthonormalisation of uνm with {wνk}k∈[m−1].
If Gram-Schmidt orthonormalisation process is used, then

wνm :=
uνm −

∑m−1
k=1 (uνm · wνk)wνk

||uνm −
∑m−1

k=1 (uνm · wνk)wνk ||
(1.2.15)
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where || · || is the norm induced by Eq. (1.2.3).

• Replace zm with
zm := zm+1 − ϕ(νm)wνm (1.2.16)

which is the original signal without its first m frequencies. Then add the orthonor-
malised vector wνm to the basis.

1.3 Numerical orthornomalization

1.3.1 Gram-Schmidt algorithm

It is known that the ordinary Gram-Schmidt method is numerically unstable, as it is
often prone to significant numerical errors due to catastrophic cancellations (see [5] for
example), a problem that manifests when subtractions of close numbers are performed.
This is a very similar phenomenon to what occurs when errors in measurements are
propagated. Indeed, consider two results of measurements x ± ∆x and y ± ∆y, with
relative errors ∆x/x, ∆y/y. The relative error on their difference is∣∣∣∣∆x−∆y

x− y

∣∣∣∣ =
∣∣∣∣∣x

∆x
x

− y∆y
y

x− y

∣∣∣∣∣ (1.3.1)

and it can be much larger then the original relative errors, if x and y are sufficiently
close.

When adapting this example to floating point arithmetic, it should be considered
that x and y cannot take every value possible because a computer approximates them.
Still, the order of magnitude of the numbers (which is what matter to us here) is the
same.

In the Gram-Schmidt algorithm, the troubling subtraction occurs if two vectors are
almost parallel. Using a different notation, for reasons that will become clear later, we
want to orthonormalise the set of vectors {a1, . . . , aM} = {am}m∈[M ] in CN . Assume
||a1|| = ||a2|| = 1 and |a2 · a1| ≈ 1. The first assumption can actually be relaxed a little,
by only requiring that a1 and a2 be not too small in norm, but since the vectors that
will be orthonormalised are the harmonic vectors uν , we consider the case that matters
to us. Since

||a2 − (a2 · a1)a1|| =
√

1− |a2 · a1|2 (1.3.2)

we see that a2 − (a2 · a1) a1 is small in norm, which means its components are small too.
Therefore, since at least some of the components of a1 and a2 are not small, catastrophic
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cancellation happens in the calculations. Then, if we define q1 and q2 as orthonormalised
vectors, it is probable that

q2 · q1 = δ (1.3.3)

with |δ| ≪ 1.

We now want to compare how this error influences the calculation of the other
elements of the orthonormalised basis if two different algorithms are used, namely the
classical1 Gram-Schmidt and the modified Gram-Schmidt. In the latter algorithm, the
projections of the starting vectors {am}m∈[M ] on some element of the orthonormalised
basis qj are subtracted as soon as the said vector is calculated. It means that when we
compute the projection of am onto qk, we calculate[

am −
k−1∑
j=1

(am · qj)qj

]
· qk (1.3.4)

instead of
am · qk. (1.3.5)

It is easy to verify that, since the elements of the basis are orthogonal, the two oper-
ations are mathematically equivalent. However, the modified Gram-Schmidt algorithm
behaves better numerically. To see this, we calculate the non-normalised third vector of
the basis q̃3, equal to a3 minus its projections onto a1 and a2. Proceeding analogously
to [4], we obtain for the classical Gram-Schmidt algorithm

q̃3 · q1 = [a3 − (a3 · q1)q1 − (a3 · q2)q2] · q1
= −(a3 · q2)δ
= O(δ)

q̃3 · q2 = −(a3 · q1)δ
= O(δ)

(1.3.6)

while for the modified Gram-Schmidt algorithm

q̃3 · q1 = [a3 − (a3 · q1)q1 − ((a3 − (a3 · q1)q1) · q2)q2] · q1
= [a3 − (a3 · q1)q1 − (a3 · q2)q2 + δ(a3 · q1)q2] · q1
= −(a3 · q2)δ + (a3 · q1)δ2

= O(δ)

q̃3 · q2 = [a3 − (a3 · q1)q1 − (a3 · q2)q2 + δ(a3 · q1)q2] · q2
= 0.

(1.3.7)

1The Gram-Schmidt algorithm considered until now.
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which shows that the numerical errors are lower.

1.3.2 QR decomposition

An alternative way to orthonormalise a set of vectors is by means of QR decomposition.
Given a full-rank matrix A ∈ MN×M(C) (so it is M ≤ N), it holds

A = QR (1.3.8)

for some matrices Q ∈ MN×N(C), R ∈ MN×M(C) with

QT = Q−1

Rjk = 0 ⇐= j > k
(1.3.9)

so that Q is orthogonal and R is upper triangular. Furthermore, the latter condition
implies that

A = Q′R′ (1.3.10)

where Q′ ∈ MN×M(C) is the matrix containing the first M columns of Q and R′ ∈
MM×M(C) is the matrix containing the first M rows of R. The product Q′R′ is called
the thin QR decomposition of A, since it contains all the information but requires fewer
data.

We can use QR decomposition to orthonormalise a set ofM vectors of CN {am}m∈[M ],
if we choose A such that am is itsmth column (then A is full-rank if {am}m∈[M ] are linearly
independent). Indeed, the columns of Q′, {qm}m∈[M ], are an orthonormal system with
the same span as {am}m∈[M ].

The Gram-Schmidt algorithm proves the existence of Q′ and R′. Indeed, if we have a
set of vectors {am}m∈[M ] and orthonormalise them, obtaining the set {qm}m∈[M ], we can
choose Q′ such that qm is its mth column. Also, we can choose R′ such that the element
in the j-th row and k-th column is

R′
jk := aj · qi j < k

R′
jk := 0 j > k

R′
jk := ||aj|| j = k

(1.3.11)

then we see that the constrains onQ′ andR′ following from the fact thatQ was orthogonal
and R was upper triangular are satisfied.

However, QR decomposition is not unique. Indeed, if we define a matrix S ∈
MM×M(C) as

Sjk := exp(iφj) δjk, φj ∈ R (1.3.12)
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then
A = Q′R′ = (Q′S) (S−1R′) (1.3.13)

and it is easy to check that Q′S is orthogonal and S−1R′ is upper triangular.

If we require
R′

jj > 0 ∀j ∈ [M ] (1.3.14)

then both the regular QR decomposition and the thin one are unique, also the columns
of Q′ are the vectors that one obtains after applying the Gram-Schmidt algorithm on
{am}m∈[M ].

In the end, we can define an alternative strategy to orthonormalise a set of vectors:

• We calculate the QR decomposition, no matter the algorithm used, of the matrix
whose columns are the vectors we want to orthonormalise.

• We choose the matrix S of Eq. (1.3.13) as

Sjk := exp[i arg(Rjj)]δjk. (1.3.15)

• Then the following holds

arg[(S−1R′)jj] = arg(S−1
jj R′

jj) = 0 (1.3.16)

and the columns of Q′S are orthonormalised vectors of our interest.

This short digression in the domain of the QR decomposition was made to show that
there are many other ways to orthonormalise a set of vectors. Quoting from [5]:

Householder QR is much less sensitive to roundoff error than Gram-Schmidt,
even with modification, although Gram-Schmidt is more efficient if an explicit
representation of Q′ desired.

In the code developed in this work, orthonormalisation via the modified Gram-Schmidt
algorithm was implemented with the aim of efficiency (since the vectors are in CN with
N up to 105 or 106). If other algorithms are preferred, the orthonormalisation can be
made with the strategy shown above. For details on the implementation of additional
orthonormalisation algorithms, see Section 4.1.

1.4 Amplitude error

We consider as usual a signal that is a weighted sum of harmonics

z(n) =
∑
k

Ak exp (2πiνkn) (1.4.1)
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where the amplitudes {Ak}k∈... are the amplitudes of the various harmonics. Then, if we
determine the first frequency ν1, our best estimate for A1 is

A1 = ϕ(ν1) =
∑
k

Ak(uνk · uν1) (1.4.2)

and the scalar product of two harmonics is given by Eq. (1.2.14), from which one obtains
that

A1 − A1 = O(1/N) (1.4.3)

no matter the error made on ν1. Indeed, even if the frequency were calculated with
infinite precision, that is, ν1 = ν1, there would be other harmonics in the signal, whose
projection on uν1 would be O(1/N).

This remark was made for two reasons: the first one being that there are no ways to
improve the precision in the calculation of A1, since the error comes from the presence
of the other harmonics, about which we cannot assume anything.

The second is that the error on A1 propagates onto the determination of the following
frequencies. So, if a signal is such that A1 cannot be computed with good precision, then
we cannot caclulate accurately any of its following frequencies. A frequent example of
this is when |ν2 − ν1| ≪ 1, since in that case the scalar product of the harmonics uν1

and uν2 is significantly different from zero. For this reason, the new ”Two frequency”
algorithm was implemented to address this case. For more information, see Section 2.4.
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Chapter 2

Constant-amplitude signals

This chapter deals with the algorithms used for the analysis of a signal made of harmonics
with constant amplitude, i.e. of the form

z(n) =
L∑
l=1

Al exp(2πiνln), n ∈ [N ] (2.0.1)

with
νl ∈]0, 1], Al ∈ C, l ∈ [L] (2.0.2)

also, if no two amplitudes have approximately the same modulus, we can assume without
loss of generality

|Al| > |Al+1|, 1 ≤ l ≤ L. (2.0.3)

The other case is troublesome for the algorithms of Sections 2.1, 2.2 and 2.3 since they
all rely on having a single harmonic with much smaller perturbations. The algorithm in
Section 2.4 does not have these constraints and can be used successfully if, for example,

|A1| ≈ |A2| > |A3|. (2.0.4)

The algorithms of Sections 2.1, 2.2 and 2.3 were tested on signals of the form

z(n) = A1 exp(2πiν1n)

z(n) = A1 exp(2πiν1n) +
6∑

k=2

Bk exp(2πikν1n)
(2.0.5)

with
A1, Bk ∈ C, |Bk| = |A1|/10 = 1/10, 2 ≤ k ≤ 6

64 = 26 ≤ N ≤ 222 = 4194304,

ν1 = 0.163618

(2.0.6)
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and arg(A1), {arg(Bk)}2≤k≤6 chosen randomly. The value of ν1 was chosen with the aim
of minimising effects of resonance with other harmonics.

The frequency error |ν1 − ν1| was plotted against the number of points in the signal,
which is always a power of 2. That’s because we compute the DFTs of the signal, which
are implemented as Fast Fourier Transforms (FFTs).

The signals with just a single harmonic were considered to ensure the fact that the
error was constant and equal to the machine error, since in that case the formulae of the
algorithms are exact. The ones with a single harmonic and some disturbing additional
were considered to confirm that the error scales with the number of points as theoretically
predicted.

To test the impact of the orthonormalisation procedure on the accuracy of the al-
gorithms, and to compare the results with the single-frequency case, the algorithms of
Sections 2.1 and 2.2 were also tested on signals of the form

z(n) =
4∑

l=1

[
Al exp(2πiνln) +

6∑
k=2

Blk exp(2πikνln)

]
(2.0.7)

with
Al, Blk ∈ C, |Blk| = |Al|/10, l ∈ [4], 2 ≤ k ≤ 6

|Al| = |A1| ( 2/3 )l−1 = ( 2/3 )l−1

64 = 26 ≤ N ≤ 222 = 4194304

(ν1, ν2, ν3, ν4) = (0.163618, 0.826492, 0.365437, 0.593813)

(2.0.8)

and {arg(Al)}l∈[4], {arg(Blk)}l∈[4],2≤k≤6 chosen randomly. Like in the single harmonic
case, the value of {νk}k∈[4] was chosen with the aim of minimising effects of resonance
with other harmonics.

The error on the fourth frequency |ν4 − ν4| were plotted against the number of
points in the signal, that is always a power of 2. We chose to plot the error on the fourth
(and last) frequency, since any errors in determining other frequencies or amplitudes will
propagate and result in lower precision on ν4. Then, if the error behaves as expected,
it is a confirmation that the calculation of the previous frequencies and amplitudes also
went as expected.

Since the signals used for testing the algorithm of Section 2.4 are not used anywhere
else, they will be described in that section.

To avoid overloading the notation, in the following sections we will use νjm instead
of jm/N to represent the jmth frequency of the Fourier Transform. Usually, νj1 will be
the frequency of the first peak of the DFT, νj2 of the second and so on.
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2.1 Interpolated FFT

This algorithm is called interpolated FFT since knowing the behaviour of the peak and
its neighbours allows reducing the error in the determination of the main frequency. It
was studied in [1].

If we consider a signal that is a single harmonic

z(n) = A1 exp(2πiν1n) (2.1.1)

and we calculate its FFT, the j1th component of the FFT is given by the projection onto
uνj1

, namely

ϕ(νj1) =
A1

N
eπi(ν1−νj1 )

sin[Nπ(ν1 − νj1)]

sin[π(ν1 − νj1)]
(2.1.2)

where it was used Eq. (1.2.14). Then we calculate

−ϕ(νj1±1)e
±πi

N

ϕ(νj1)
= −sin[Nπ(ν1 − νj1 ∓ 1/N)]

sin[Nπ(ν1 − νj1)]

sin[π(ν1 − νj1)]

sin[π(ν1 − νj1 ∓ 1/N)]

=
sin[π(ν1 − νj1)]

sin[π(ν1 − νj1 ∓ 1/N)]

= {cos(π/N)∓ sin(π/N) cot[π(ν1 − νj1)]}−1

(2.1.3)

from which an expression for ν1 can be found as

ν1 =
j1
N

± 1

π
arctan

[
ϕ(νj1±1)e

±πi
N sin(π/N)

ϕ(νj1) + ϕ(νj1±1)e
±πi

N cos(π/N)

]
. (2.1.4)

We note that this expression for ν1, the frequency we want to find, contains only quan-
tities that can be found by calculating the FFT of the signal z.

Equation (2.1.4) holds for any choice of j1, but if additional (disturbing) harmonics
are present, the components of the FFT {ϕ(k/N)}k∈[N ] differ from those of the pure har-
monic. The components of the FFT that contain the most information about the original
harmonic uν1 are the ones with the smallest relative change due to the other harmonics,
so those near ν1. So, the best choice for j1 is the one such that |ϕ(νj1)| = |ϕ(j1/N)| is
maximum.

If we take the modulus of the first and last row of Eq. (2.1.3), we obtain∣∣∣∣ϕ(νj1±1)

ϕ(νj1)

∣∣∣∣ = |cos(π/N)∓ sin(π/N) cot[π(ν1 − νj1)]|
−1 (2.1.5)
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To determine the sign of the right hand side, we use the fact that it is equal to the second
row of Eq. (2.1.3) and we study its sign. In each of the cases considered, we also choose
which sign to use in the previous equation.

• If ν1 − νj1 < 0, then |ϕ(νj1−1)| > |ϕ(νj1+1)|. So, we choose to work with |ϕ(νj1)|
and |ϕ(νj1−1)|, since they are the largest two amplitudes. So we use the lower sign
in equation (− in ± and + in ∓).
Also, since the peak is in νj1th bin, it is νj1 − 1

2N
< ν1 < νj1 +

1
2N

. Thus, ν1 − νj1 +
1/N > 0.

• If ν1 − νj1 > 0, with analogous reasoning, we choose the upper sign, and we obtain
ν1 − νj1 + 1/N < 0.

The case ν1 − νj1 = 0 is irrelevant, as in theory ν1 is irrational.

We conclude that the second row of Eq. (2.1.3) is negative; then it is the opposite of
its modulus.

We also have implicitly assumed that |ϕ(νj1±1)| exists for every value of νj1 . This is
a consequence of the periodicity of the DFT.

We obtain then

ν1 =
j1
N

± 1

π
arctan

[
|ϕ(νj1±1)| sin(π/N)

|ϕ(νj1)|+ |ϕ(νj1±1)| cos(π/N)

]
(2.1.6)

which is the formula for the real Interpolated FFT (as opposed to Eq. (2.1.4), that might
be called complex Interpolated FFT).

Now we want to study the errors of both the real (Eq. (2.1.6)) and complex (Eq. (2.1.4))
Interpolated FFTs. In general, since ν1 is the true frequency unknown to us, the left-
hand sides of Eq. (2.1.4) should be replaced by ν1, our best guess for ν1. If there are no
disturbing harmonics, the signal is a pure harmonic and ν1 = ν1. So, theoretically, we
have infinite precision, but since we are working with floating-point arithmetic, we ex-
pect an error roughly equal to the machine precision. If there are additional harmonics,
then ϕ(νj1) and ϕ(νj1±1) differ from the values they would have for a pure harmonic by
O(1/N). Then, for the complex case, we make the following substitutions in Eq. (2.1.4)

ϕ(νj1) → ϕ(νj1) +
α

N
, α ∈ C

ϕ(νj1±1) → ϕ(νj1±1) +
α±

N
, α± ∈ C

(2.1.7)
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The error on the frequency is then

ν1 − ν1 =∓ 1

π
arctan

{
ϕ(νj1±1)e

±πi
N sin(π/N)

ϕ(νj1)− ϕ(νj1±1)e
±πi

N cos(π/N)

}

± 1

π
arctan

{
[ϕ(νj1±1) + α±/N ]e±

πi
N sin(π/N)

[ϕ(νj1) + α/N ]− [ϕ(νj1±1) + α±/N ]e±
πi
N cos(π/N)

}

=∓ ϕ(νj1±1)e
±πi

N π

ϕ(νj1)− ϕ(νj1±1)e
±πi

N

1

N
+O

(
1

N3

)
± ϕ(νj1±1)e

±πi
N π

ϕ(νj1)− ϕ(νj1±1)e
±πi

N

1

N
+O

(
1

N2

)
=O

(
1

N2

)

(2.1.8)

where Eq. (2.1.4) was used.
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Figure 2.1: Errors for
the complex Interpo-
lated FFT algorithm.
Top is single frequency
case (with and without
disturbing harmonics),
bottom is multiple fre-
quency case. The plots
are in logarithmic scale
and the function fitted
is y = C/xα, with α
shown in the legend.

We see that the error behaves as theoretically predicted.

The complex and real variants of the algorithms are expected to have the same
properties, and this is verified later. For this reason, only the real variant is studied in
[1]. They were both implemented in the program to verify that an algorithm which also
used the phases of the elements of the FFT (instead of their modulus only) does not lose
precision.

With the same exact reasoning of Eq. (2.1.8), and by using

|z +O(1/N)| = |z|+O(1/N), z ∈ C (2.1.9)

we obtain that the errors on the real Interpolated FFT are O(1/N2).
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FFT algorithm. Top is
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We see that the error behaves as theoretically predicted.

2.2 Interpolated FFT with windowing

We now consider a windowed signal. That is, the j1th component of its DFT is

ϕ(νj1) =
1

N

N∑
n=1

z(n)χ(n) exp(2πiνj1n) (2.2.1)

where χ = {χ(n)}n∈[N ] is the window or filter. If we choose the Hanning filter

χ(n) = 2 sin2
(nπ
N

)
(2.2.2)
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as it was done in [1], we get for a pure harmonic of amplitude A1 and frequency ν1

ϕ(νj1) =
A1

N

N∑
n=1

{
e2πi(ν1−νj1 )n − e2πi(ν1−νj1−1)n

2
− e2πi(ν1−νj1+1)n

2

}
=

A1

N
eπi(ν1−νj1 )

{
sin[Nπ(ν1 − νj1)]

sin[π(ν1 − νj1)]

+e−
πi
N
sin[Nπ(ν1 − νj1 + 1/N)]

2 sin[π(ν1 − νj1 + 1/N)]
+ e

πi
N
sin[Nπ(ν1 − νj1 − 1/N)]

2 sin[π(ν1 − νj1 − 1/N)]

}
= − A1 sin

2[π/N ] sin[Nπ(ν1 − νj1)] cos[π(ν1 − νj1)]e
πi(ν1−νj1 )

N sin[π(ν1 − νj1 + 1/N)] sin[π(ν1 − νj1)] sin[π(ν1 − νj1 − 1/N)]
.

(2.2.3)

We choose νj1 to be the frequency corresponding to the peak in the DFT.
Then we calculate

|ϕ(νj1±1)|
|ϕ(νj1)|

=

∣∣∣∣cos[π(ν1 − νj1 ∓ 1/N)] sin[π(ν1 − νj1 ± 1/N)]

cos[π(ν1 − νj1)] sin[π(ν1 − νj1 ∓ 2/N)]

∣∣∣∣
= − sin[2π(ν1 − νj1)]± sin[2π/N ]

sin[2π(ν1 − νj1)] cos[2π/N ]∓ 2 cos2[π(ν1 − νj1)] sin[2π/N ]

(2.2.4)

since, given |ν1 − νj1 | < 1/N , the choice of sign determines the sign of the sines.

By clearing the denominators and using

|ν1 − νj1|
N

<
1

2
=⇒ cos[2π(ν1 − νj1)] > 0 =⇒

2 cos2[π(ν1 − νj1)] = 1−
√

1− sin2[2π(ν1 − νj1)]

(2.2.5)

we get

|ϕ(νj1±1)|
√

1− x2 sin2(2π/N)

= x[|ϕ(νj1)|+ |ϕ(νj1±1)| cos(2π/N)]± (|ϕ(νj1)| − |ϕ(νj1±1)|)
(2.2.6)

where it was defined

x :=
sin[2π(ν1 − νj1)]

sin(2π/N)
. (2.2.7)

Eq. (2.2.6) can be recast as

γ2x
2 + γ1x+ γ0 = 0 (2.2.8)
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where

γ2 = |ϕ(νj1)|2 + |ϕ(νj1±1)|2 + 2|ϕ(νj1)||ϕ(νj1±1)| cos(2π/N)

γ1 = ±2[|ϕ(νj1)|+ |ϕ(νj1±1)| cos(2π/N)][|ϕ(νj1)| − |ϕ(νj1±1)|]
γ0 = |ϕ(νj1)|2 − 2|ϕ(νj1)||ϕ(νj1±1)|

(2.2.9)

and for each choice of the sign there are two solutions for x, but we see that:

• If |ϕ(νj1+1)| > |ϕ(νj1−1)|, then ν1 > νj1 so x > 0. Since in this case −γ1 < 0 (and
it is always γ2 > 0), the solution of the equation with minus sign is negative, it
must be excluded. We concluded that if we choose the plus sign in the equation,
the only acceptable solution is the one with the plus sign.

• With the same reasoning, if we choose the minus sign in the equation, the only
acceptable solution is the one with the minus sign.

So we get

ν1 = νj1 +
1

2π
arcsin

[
−γ1 ±

√
γ2
1 − 4γ0γ2

2γ2
sin

(
2π

N

)]
(2.2.10)

where the sign in ± is the same of the sign in γ1.

We now want to study the errors for this algorithm. If additional harmonics are
present, from Eq. (2.2.3) we see that we need to make the following substitutions in
γ0, γ1, γ2

ϕ(νj1) → ϕ(νj1) +
α

N3
α ∈ C

ϕ(νj1±1) → ϕ(νj1±1) +
α±

N3
α± ∈ C

(2.2.11)

and after long calculations we obtain that the error scales as O(1/N4) [1].
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We see that the error behaves as theoretically predicted.

2.3 Birkhoff Average

An alternative approach, which is not FFT-based, for the determination of the frequency
is the use of the Average Phase Advance (APA)

ν1 =
1

N − 1

N−1∑
n=1

arg

[
z(n+ 1)

z(n)

]
(2.3.1)

where arg
[
z(n+1)

]
− arg

[
z(n)

]
was not used to avoid problems caused by choosing the

arguments in different foldings of C.

21



To improve this method, we consider the average with Birkhoff weights

wn(t) := exp

[
1

tn(1− t)n

]
, t ∈]0, 1[ (2.3.2)

for n = 1. The new formula is

ν1 =

∑N−1
n=1 w

( n

N

)
arg

[
z(n+ 1)

z(n)

]
∑N−1

n=1 w
( n

N

) . (2.3.3)

It can be proven (see [6] and references therein) that the error goes to 0 more rapidly
than any power of N . However, in both [6] and in our simulations, it was found that the
typical error scales as O(1/N7), due to the finite machine precision.
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We see that the error behaves as found in [6].

2.4 Two-frequency approach

It might happen that the first two frequencies ν1, ν2 are very close. In this case, the
algorithm of choice calculates well the first frequency, but fails on the second one. This
is because a significant error is made in removing the harmonic of frequency ν1, thus
altering the deduction of all subsequent frequencies (see Section 1.4 for more details).

To address this problem, a new algorithm is proposed with the aim of calculating
the first two frequencies of the signal simultaneously.

We assume here that the signal has only two harmonics

z(n) = A1 exp(2πiν1n) + A2 exp(2πiν2n) (2.4.1)
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and without loss of generality we assume that ν1 < ν2, but we do not require |A1| > |A2|.
We also define the indices of the two peaks in the FFT to be j1, j2.

With these assumptions it can be proven (see Appendix A) that the two frequencies
are given by

ν± =
−γ1 ±

√
γ2
1 − 4γ2γ0

2γ2
(2.4.2)

and ν1 = min{ν−, ν+}, ν2 = max{ν−, ν+}. The coefficients γ2, γ1, γ0 are reported in Eq.
(A.0.17).

If there are additional (disturbing) harmonics, we have to replace the ϕ terms in Eq.
(A.0.17) with terms like those of Eq. (2.1.7) and this gives the following

γ2 → γ2 +O(1/N3)

γ1 → γ1 +O(1/N4)

γ0 → γ0 +O(1/N5)

(2.4.3)

where it was used sin(α/N) = O(1/N), for a generic α ∈ C. Then, by using[
α +O(1/Nβ)

]γ
= α +O(1/Nβ), α ∈ C, β ∈ N, γ ∈ R (2.4.4)

we find that
ν → ν +O(1/N3) . (2.4.5)

Therefore, in the presence of additional harmonics, we expect the error on the deter-
mination of the two frequencies to scale as O(1/N3), which represents an improvement
with respect to the case of the Interpolated FFT.

We test the algorithm on signals like the one in Eq. (2.4.1) and also on ones of the
form

z(n) =
2∑

l=1

[
Al exp(2πiνln) +

6∑
k=2

Blk exp(2πikνln)

]
(2.4.6)

with
Al, Blk ∈ C, l ∈ [4], 2 ≤ k ≤ 6

|B1k| = |B2k| = |A1k| /10 = |A2k| /10 = 1/10

64 = 26 ≤ N ≤ 222 = 4194304

(ν1, ν2) = (0.163618, 0.163718)

(2.4.7)

and {arg(Al)}l∈[2], {arg(Blk)}l∈[4],2≤k≤6 chosen randomly.
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We see that the error behaves as theoretically predicted.

We now study how this algorithm compares to the others. We use a signal like that
in Eq. (2.4.6) for fixed N = 216 = 65536 (a realistic case) and decreasing |ν2 − ν1|. Since
we want the points equally spaced in log scale, for the mth iteration it is

ν2 = ν1 + 2−m/2 = 0.163618 + 2−m/2, m ∈ [50] (2.4.8)

Also, since we want the first frequency to always be ν1 (remember that in our definition
the first frequency is the one with the largest amplitude), we used

|A1k| = 10 |B1k| = 1

|A2k| = 10 |B2k| = 9/10,
2 ≤ k ≤ 6 (2.4.9)
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The Birkhoff Average algorithm was not studied because it performs badly when there
are two or more harmonics with a similar amplitude. Several comments are in order.

First, we notice that the Interpolated FFT and Interpolated FFT with windowing
algorithms have approximately the same precision for |∆ν| = |ν2 − ν1| < 10−5. This is
because the resolution of the DFT, i.e. the smallest difference between two frequencies
that are recognised as belonging to different bins, is 1/N = 1.5 · 10−5. So for a smaller
|∆ν|, the two frequencies are recognised to be a single one of twice the amplitude.
Since the difference between the algorithms is how they respond to the presence of
additional harmonics, in that case they behave identically. Also, the error decreases as
|∆ν| diminishes because the smaller |∆ν| is, the less influence it also has on the bins
adjacent to the peak and the smaller the error results.

Second, we see that both the Interpolated FFT algorithms fail in determining the
second frequency if |∆ν| < 10−5. This is expected, since the projection of uν2 on uν1 is
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significantly different from zero and the signal z1 = z−ϕ(ν1)uν1 has also lost a significant
part of uν2 (see Section 1.4 for more details on this matter).

Third, the Two-frequency algorithm has erratic behaviour for |∆ν| < 10−6. This is
because it sees the two frequencies as a single one and correctly deduces only one of the
two, but sometimes it is the first one and sometimes the second one. Indeed, we see that
the peaks in the first graph correspond exactly to the dips in the second graph. But why
does this happen for |∆ν| < 10−6 and not for |∆ν| < 10−5 like the others? Our guess is
that since the algorithm searches for two frequencies, it better captures the information
contained in the bins adjacent to the peak.

Fourth, the Two-frequency algorithm is more precise than the other known algo-
rithms in the range 10−6 < |∆ν| < 10−3. That is indeed the range in which the distur-
bances caused by the second frequency significantly alter the DFT near the first peak.
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Chapter 3

Varying-amplitude signals

This chapter deals with the algorithms used for the analysis of signals made of harmonics
whose amplitudes vary with time. The signals studied are of the form

x(n) = E(n)ℜ

[
L∑
l=1

Al exp(2πiνln)

]
, n ∈ [N ] (3.0.1)

where ℜ is the real part and E is a function [N ] 7→ R that describes the modulation of the
amplitude. The constraints on the various quantities are similar to those of Eq. (2.0.1).

Our goal is to compute the envelope function E, in order to construct the normalised
signal

x̃(n) =
x(n)

E(n)
(3.0.2)

and calculate the signal frequencies with the techniques of Chapter 2. The studies carried
out are intended to replicate those reported in [6].

3.1 Theory

In this section, we will describe the theory of the Hilbert Transform and its usage in
calculating the envelope of a continuous-time signal. Then we will derive the discrete-
time equivalent of those formulae, that are the ones we are interested in. For a more
complete description, see [2, 3]. The letters H and F will be used to denote respectively
the Hilbert and Fourier Transforms.
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3.1.1 Continuous-time signals

We consider a function f = f(t) : R 7→ R, which can be thought of as a continuous-time
signal. Assuming that the integral is well behaved (both at the singular point of the
integrand and at ±∞) we define the Hilbert Transform of f as follows

(Hf)(t) :=
1

π

∫ +∞

−∞

f(τ)

t− τ
dτ (3.1.1)

so it is the convolution of f with the function h(t) = 1/πt. Then, by the convolution
theorem, we have the following

(FHf)(ν) = (Fh)(ν) (Ff)(ν) = −i sgn(ν)(Ff)(ν) (3.1.2)

where it was used the continuous Fourier Transform with frequency ν

(Fg)(ν) :=

∫ +∞

−∞
g(t)e−2πiνt dt (3.1.3)

and the sign function

sgn(ν) :=


+1 ν > 0

0 ν = 0

−1 ν < 0 .

(3.1.4)

We note that the Hilbert Transform acts on the frequency components of f by shifting
those with negative frequency by π/2 in the forward direction and those with negative
frequency by π/2 in the backward direction. The component with null frequency is
removed, which can also be thought of as a consequence of the fact that the Hilbert
Transform of a constant is zero.

If we now consider the signal g = f + iHf , we see that

(Fg)(ν) = (Ff)(ν) + i [−i sgn(ν)(Ff)(ν)] = [1 + sgn(ν)] (Ff)(ν) (3.1.5)

so Fg has no negative frequency components, and g is called an analytic signal. We have
constructed a complex signal g from the real signal f , and this allows us to calculate its
instantaneous amplitude and phase as

A(t) = |g(t)|, φ(t) = arg
[
g(t)

]
(3.1.6)

and we want to verify whether A = E as, in this the positive, we have found a way to
calculate the envelope of a generic real continuous-time signal.
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To show this, we need Bedrosian’s theorem, that states: given two signals f1, f2 such
that exists some σ ∈ ]0, 1/2[ with the property F1(ν) = (Ff1)(ν) = 0 for |ν| > σ and
F2(ν) = (Ff2)(ν) = 0 for |ν| < σ, then

H(f1f2) = f1 Hf2 . (3.1.7)

Note that the conditions assumed imply that f1 and f2 are such that the first has only the
low-frequency part of the Fourier spectrum, while the opposite holds for f2. Therefore,
there is no superposition between the Fourier spectra of the two functions.

To prove the theorem, we calculate

(FH(f1f2))(ν)

= −i sgn(ν)

∫ +∞

−∞
F1(ν − µ)F2(µ) dµ

(3.1.8)

and we note that the integrand might be non-zero only in I = [ν − σ, ν + σ]
⋂(

] −
∞,−σ]

⋃
[σ,+∞[

)
where if ν < 0 the first interval must be flipped.

By explicitly computing the two cases ν > 0 and ν < 0, we see that in both cases
I is only one interval and holds sgn(ν) = sgn(µ) ∀µ ∈ I. Then the previous equation
continues as

=

∫
I

F1(ν − µ) [−i sgn(µ)F2(µ)] dµ

= (F(f1 Hf2))(ν) ,

which becomes the desired result after applying F−1.

If f is an amplitude-modulated real signal

f(t) = E(t) ℜ
{
exp

[
iφ(t)

]}
= E(t) cos

[
φ(t)

]
, (3.1.9)

then Bedrosian’s theorem implies

g(t) = E(t) cos
[
φ(t)

]
+ iE(t)H

{
cos

[
φ(t)

]}
= E(t) exp

[
iφ(t)

]
=⇒

A(t) = |g(t)| = E(t)

(3.1.10)

if the envelope represents the low-frequency part, as it is in the cases we will consider in
this thesis work.
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3.1.2 Discrete-time signals

We now want to find the discrete-time equivalent of the formulae showed in the last
section. As we will show next, the construction of said formulae is non-trivial.

The first problem that arises is due to the fact that the convolution is now performed
on a finite domain: if we define

(x ∗ y)(n) :=
N∑

m=1

x(m)y(n−m) (3.1.11)

there are terms like y(1−m), m ∈ [N ] that are not defined. This problem can be easily
solved if instead of the usual convolution, we do the periodic convolution, in which the
signals x and y are periodically extended.

The second problem is finding the signal to convolve with. A natural choice might
be

h(n) =
1

πn
but this choice does not reproduce the property H2 = −I which can be derived from
Eq. (3.1.1) for the continuous case (for example, see the calculations carried out in [3]
for x(n) = sin(αn), α ∈ R). To find a sensible choice for the signal h, we employ the
continuous Fourier Transform

(Fx)(ν) =
N∑

n=1

x(n)e2πiνn

(F−1X)(t) =

∫ 1/2

−1/2

X(ν)e2πiνt dν

(3.1.12)

with ν ∈]− 1/2, 1/2], since Ff is periodic with period 1.

Proceeding as [3], by interpreting x as a piecewise constant function with support
]0, N ] and intervals of length 1

(Hx)(n) =
1

π

∫ +∞

−∞

dη

n− η

∫ 1/2

−1/2

X(ν)e2πiνη dν

=
1

π

∫ 1/2

−1/2

X(ν)
[
−πi sgn(ν)e2πiνn

]
dν

= −i

N∑
k=1

x(k)

∫ 1/2

−1/2

e2πiν(n−k) dν

=
1

π

N∑
k=1, k ̸=n

x(k)
1− (−1)n−k

n− k

(3.1.13)
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so the other function in the convolution is

h(n) =


1− (−1)n

πn
n ̸= 0

0 n = 0 .
(3.1.14)

We can then rewrite the Hilbert Transform of a discrete-time, finite-length signal in a
better known way

(Hx)(k) =



2

π

∑
n odd

x(n)

k − n
k even

2

π

∑
n even

x(n)

k − n
k odd .

(3.1.15)

The third and last problem is finding a discrete counterpart to Bedrosian’s theorem.
This can be done with the same calculations of Eq. (3.1.8), with a small change: the
first integral should be in µ ∈] − 1/2, 1/2[ and should be I = [ν − σ, ν + σ]

⋂(
] −

1/2,−σ]
⋃
[σ,+1/2[

)
, which still lets us conclude sgn(ν) = sgn(µ) ∀µ ∈ I.

An additional note that will be useful later on: from the last step of Eq. (3.1.13) we
see that

h(n) =
1− (−1)n

πn

=

∫ 1/2

−1/2

[−i sgn(ν)]e2πiνn dν

= F−1[−i sgn(ν)](n)

=⇒
(Fh)(ν) = −i sgn(ν).

(3.1.16)

Notice that this formula only works if we choose the domain of Fx to be ] − 1/2, 1/2]
while in principle, due to its periodicity, we could choose it to be any interval of length
1. From Eq. (3.1.16), we see that if one wants ν ∈ ]ν0, ν0 + 1], then sgn(ν − ν0 − 1/2)
must be used.

3.2 Simulations

We consider a signal of the form of Eq. (3.0.1) with |A1| = 1, and we want to find ν1.
This can be done in two ways:

• We calculate E using the Hilbert Transform, then apply the Interpolated FFT (with
or without windowing) algorithm to the normalised signal defined in Eq. (3.0.2).
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• We just use the Birkhoff Average algorithm, since it only relies on the phases of
the signal.

For the second method, we expect it to behave identically as in the constant-
amplitude case. For this reason, we will focus on the first method. In particular, we
remember that we found two different ways of calculating the Hilbert Transform of a
discrete-time, finite-length signal: the first one being Eq. (3.1.15) and the second one
being

Hx = F−1

[
−i sgn

(
1

2
− k

N

)
Fx

]
(3.2.1)

from Eq. (3.1.16), after changing the range of the frequency from ]− 1/2, 1/2] to ]0, 1].

The algorithms for the reconstruction of the envelope were tested on signals of the
form

z(n) = E(n)

[
A1 exp(2πiν1n) +

6∑
k=2

Ak exp(2πikν1n)

]
(3.2.2)

with

E(n) = exp

{[
2.5088 sin

( nπ

104

)]2}
A1, Ak ∈ C, |Ak| = |A1|/10 = 1/10, 2 ≤ k ≤ 6

64 = 26 ≤ N ≤ 220 = 1048576

ν1 = 0.163618

(3.2.3)

where E is the same as in [6].

We study now the performance of the two methods of the Hilbert Transform in
reconstructing the envelope. We consider the signal of Eq. (3.2.2) and calculate its
Hilbert Transform with the two methods mentioned previously, and the reconstructed
envelope is

E
2
(n) = x2(n) + (Hx)2(n) (3.2.4)

We notice that the signal in Eq. (3.2.2) is not in the form of the one in Eq. (3.1.10) due
to the presence of the disturbing harmonics {ukν1}2≤k≤6. Indeed we see that

E
2
(n) = E2(n)

6∑
k,h=1

AkA
∗
h exp

[
2πin(νk − νh)

]
= E2(n)

{
M∑
k=1

|Ak|2 + 2
M∑

k=1,h>k

AkA
∗
h cos

[
2πn(νk − νh)

]}
,

(3.2.5)
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and the normalised signal is

x̃(n) =

6∑
k=1

{
ℜ(Ak) cos

[
2πnνj

]
−ℑ(Ak) sin

[
2πnνj

]}
√√√√1 +

6∑
k=2

|Ak|2 + 2
M∑

k=1,h>k

AkA∗
h cos

[
2πn(νk − νh)

] . (3.2.6)

Remembering that the {Ak}2≤k≤6 are in general small (in our simulations we chose
|A1|/|Ak| = 10), we can expand the denominator as

(1 + z)−1/2 = 1− z/2 +O(|z|2), |z| ≪ 1. (3.2.7)

Then we see that the spectrum of the signal includes other frequencies other than ν1 and
{kν1}2≤k≤6, and their amplitude of has the order of magnitude of |Ak|. So the DFT still
has a peak for the frequency ν1, and the algorithms of Section 2 can still be applied.
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Figure 3.1: Errors for
the the Interpolated
FFT an Interpolated
FFT with windowing
algorithms, when the
signal is normalised
using different methods
for calculating the
Hilbert Transform.
Top is the Fourier
Transform method,
bottom is the convolu-
tion method.

We see that the two methods have essentially the same performance, for both the
Interpolated FFT and Interpolated FFT with windowing algorithms. We conclude that
the convolution method is not an improvement over the widely used Fourier Transform
method. Furthermore we note that, as observed in [6] the Hilbert Transform does not
recover the performance of the Interpolated FFT with windowing algorithm.
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Chapter 4

Description of the code

4.1 Structure of the program and programming choices

The code developed in this thesis work in divided into two parts:

• The main part, contains the algorithms used to calculate the main frequencies of
a signal.

• The optional part, contains only the FitPlot component, where are implemented
the functions used to plot the performance of the algorithms and find their power
law.

The optional part in built on top of the main part, but not vice versa. This means that,
if desired, a user can include only the main part by adjusting the CMakeLists.txt file.

The required dependencies are

• The library fftw3, for the implementation of fast and efficient FFT algorithms;
For convenience of implementation, we use fftw3l, its long double variant.

• The library sciplot, a C++ wrapper for gnuplot, used for plotting. It is only
used in the optional part.

A brief overview of the main part

The main part inclused a few component, whose interfaces are implemented in the fol-
lowing header files:

• types.hpp is the only header without a source file. It contains the definitions
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of the constants used, and of all types (often using type aliases to have better
customizability).

• signal.hpp contains the declaration of all the functions used to work with the
signals.

• tuneCalculator.hpp contains the definitions of all the algorithms used to calculate
the main frequencies. The functions defined here are the only ones that are meant
to be called by the user.

In the above list, each header includes all of the previous ones.

What to include

hats.hpp is a convenience header file that includes all the header files of the main part.
If the optional part is also desired, include also fitPlot.hpp

Floating point numbers and machine precision

The type aliases used in types.hpp allow, for example, to change the precision of the
floating point numbers used. This is done by simply changing the definition of the type
alias FPType. Testing showed that sometimes errors could reach 10−18, and for this
reason, FPType = long double is the default (and suggested) option.

Almost all the functions used are from the C++ standard library, so they support
the float, double and long double types. Then, if a floating point type smaller than
long double is used, memory usage and computation time are reduced.

An exception is the function FFT, which is a wrapper for the homonymous function
from the fftw3 library. For ease of installation, it is suggested to always install the
fftw3l library and lose some efficiency in the computation, since with this setup the
FFT function from fftw3 will always work with long double types. This means that FFT
always internally converts floating point variables to long double type, and at the end
converts the result into the FPType type.

It is left open the possibility of introducing new types, for example the 128-bit floating
point type from the boost library. However, it is expected that the functions of the C++
standard library will not work with this new type, requiring changes to the code.

Templates

Since it was often necessary to pass a function as an argument of another function (for
example, if one wants to calculate the first M frequencies using a tune calculator of
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choice), templates were largely used in the program. For this reason, .inl files were
used, since a template must be defined in the header. An .inl file allows us to separate
the definition from the declaration, resulting in better readability of the headers.

Each function is briefly described in the header by a few lines of comments. Modern
editors usually show said comments, by hovering with the mouse onto a function typed
in the user’s program.

To ensure that the template parameters (that is, the functions passed) behave as
expected, static asserts are used in every template. They confirm at compilation time
that the signature of the function is as expected.

Implementation of other orthonormalisation algorithms

See Section 1.3 for a theoretical overview of the topic.

The change in the orthonormalisation strategy can be implemented simply by chang-
ing the behaviour of the function Orthonormalise in signal.cpp. If one prefers to define
a new function OrthonormaliseQR, then also the function MultipleFrequencies should
be changed, as it is the only function of the program that calls Orthonormalise. In the
future, MultipleFrequencies might be made a template that accepts as a parameter
the function that defines the orthonormalisation strategy.

For maintenance reasons, it is advised to respect the signature1 of the function
Orthonormalise. The details on the interface are given in Section 4.3.

4.2 Developement and testing

The code was developed and run in a DevContainer provided by Docker, with AlmaLinux

9 as platform.

The functions were tested with doctest. Tests were written for each function and
are run automatically at each commit thanks to GitLab’s Continuous Integration feature.
The algorithms that calculate the main frequencies were tested on synthetic signals like
the ones used in the simulations, e.g. those of Eqs. (2.0.5) and (2.0.7). Since generating
signals involves random numbers, the first 100 numbers generated are saved in order
check if the generators are implemented in the same way in different machines.

1The parameter and return types of the function
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4.3 Interface

We give here an overview of the interface of the code and some useful additional infor-
mation.
The most important type aliases used are:

• FPType is a floating point type. As mentioned in section 4.1, it supports the C++
native floating point types, and the user is encouraged to change it if desired.
Aliases for it are Frequency, AmplitudeModulus and Phase.

• Complex is std::complex<FPType>. An alias for it is Amplitude.

• ComplexSignal is std::vector<Complex>.

• SignalSize is the largest unsigned int type available in C++, implemented as
ComplexSignal::size type.

It is left open the possibility of converting some type aliases (like Frequency or Amplitude)
into structs.
The generic tune calculator is implemented as

Frequency TuneCalculator ( ComplexSignal const&)

except for BirkhoffAverage and TwoFrequency, which are

Frequency Birkhof fAverage ( ComplexSignal const&, Exponent = 1)
std : : pair<Frequency , Frequency> TwoFrequency ( ComplexSignal const&)

where the parameter of Exponent type has a default value of 1.
The function that calculates multiple frequencies is implemented as

template <class TuneCalculator>
std : : vector<Frequency> Mult ip l eFrequenc i e s ( ComplexSignal const&,

int , TuneCalculator const&)

where the parameter of int type is the number of frequencies to calculate. It is left open
the possibility of defining different stop conditions for this function, perhaps by replacing
the int with another template parameter.
The function that orthonormalises a vector with respect to an already orthonormal set
is

void Orthonormal ise ( std : : vector<ComplexSignal> const&,
ComplexSignal &)

and, as mentioned in Sections 1.3 and 4.1, it is left open the possibility of implementing
alternative algorithms.
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Conclusions

We reviewed the algorithms used for finding the main frequency of a time series and
implemented the said algorithms correctly in a C++ program. A slight discrepancy
with the results of other simulations was found in the case of an amplitude-modulated
signal for the Interpolated FFT with windowing algorithm.

The new two-frequency algorithm was studied and implemented and it was found
that if 10−6 < |ν2 − ν1| < 10−3, where ν1 and ν2 are the two most dominant frequencies
of the signal, it represents an improvement over the currently known algorithms.
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Appendix A

Proof of the two-frequency formulas

Notation

ϕm = ϕ(νjm), m ∈ {1, 2}

ϕm± = ϕ(νjm±1)e
±πi

N , m ∈ {1, 2}
∆ = j2 − j1

∆kjm = νk − νjm , k,m ∈ {1, 2}

(A.0.1)

αk =
ϕ1+ sin

[
π(νk − νj1 − 1

N
)
]
− ϕ1 sin [π(νk − νj1)]

ϕ1− sin
[
π(νk − νj1 +

1
N
)
]
− ϕ1 sin [π(νk − νj1)]

βk =
ϕ2+ sin

[
π(νk − νj2 − 1

N
)
]
− ϕ2 sin [π(νk − νj2)]

ϕ2− sin
[
π(νk − νj2 +

1
N
)
]
− ϕ2 sin [π(νk − νj2)]

(A.0.2)

Notice that in αk and βk the only unknown is νk.

Calculations

Given a signal in the form

z(n) = A1 exp(2πiν1n) + A2 exp(2πiν2n), n ∈ [N ] (A.0.3)

and two indexes j1, j2 ∈ [N ], we consider the projection of z onto the harmonics of
frequencies νj1 = j1/N , νj2 = j2/N , νj1±1 = νj1 ± 1/N , νj2±1 = νj2 ± 1/N .
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The jmth element of the DFT is

ϕ(νjm) =
2∑

k=1

{
Ak

N

N∑
n=1

[
exp{2πi(νk − νjm)}

]n}
(A.0.4)

and similarly for ϕ(νjm±1).

The kth addend of ϕ(νjm), multiplied by N/Ak, is

N∑
n=1

[
exp{2πi∆kjm}

]n
=

e2πi∆kjm (N+1) − e2πi∆kjm

e2πi∆kjm − 1

= eπi(νk−νjm )(N+1) sin[Nπ(νk − νjm)]

sin [π(νk − νjm)]
.

(A.0.5)

The kth addend of ϕ(νjm±1), multiplied by N/Ak, is

N∑
n=1

[
exp{2πi(∆kjm ∓ 1/N)}

]n
= e2πi(∆kjm∓ 1

N
) e

2πi(∆kjm∓ 1
N
)N − 1

e2i(π∆kjm∓ π
N
) − 1

=

= eπi(∆kjm∓ 1
N
)eiNπ∆kjm

sin(Nπ∆kjm)

sin(π∆kjm ∓ π
N
)
= eπi∆kjm (N+1)e∓

πi
N

sin(Nπ∆kjm)

sin(π∆kjm ∓ π
N
)
=

= eπi(νk−νjm )(N+1)e∓
πi
N

sin[Nπ(νk − νjm)]

sin
[
π(νk − νjm)∓ π

N

] .
(A.0.6)

Given that (h is the index in {1, 2} that is not k)

ϕm± sin [π(νk − νjm±1)]− ϕm sin [π(νk − νjm)] =

=
Ak

N
eπi(νk−νjm )(N+1) sin[Nπ(νk − νjm)]

+
Ah

N
eπi(νh−νjm )(N+1) sin[Nπ(νh − νjm)]

sin
[
π(νk − νjm)∓ π

N

]
sin

[
π(νh − νjm)∓ π

N

]
− Ak

N
eπi(νk−νjm )(N+1) sin[Nπ(νk − νjm)]

− Ah

N
eπi(νh−νjm )(N+1) sin[Nπ(νh − νjm)]

sin [π(νk − νjm)]

sin [π(νh − νjm)]
=

=
Ah

N
eπi(νh−νjm )(N+1) sin[Nπ(νh − νjm)]

[
sin

[
π(νk − νjm)∓ π

N

]
sin

[
π(νh − νjm)∓ π

N

] − sin [π(νk − νjm)]

sin [π(νh − νjm)]

]
(A.0.7)
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we obtain

αk =
ϕ1+ sin

[
π(νk − νj1)− π

N

]
− ϕ1 sin [π(νk − νj1)]

ϕ1− sin
[
π(νk − νj1) +

π
N

]
− ϕ1 sin [π(νk − νj1)]

={
sin

[
π(νk − νj1)− π

N

]
sin

[
π(νh − νj1)− π

N

] − sin [π(νk − νj1)]

sin [π(νh − νj1)]

]/[
sin

[
π(νk − νj1) +

π
N

]
sin

[
π(νh − νj1) +

π
N

] − sin [π(νk − νj1)]

sin [π(νh − νj1)]

}

=
1/ sin

[
π(νh − νj1)− π

N

]
1/ sin

[
π(νh − νj1) +

π
N

] ·
− cos[π(νk − νj1)] sin

[
π(νh − νj1)] cos

π
N
+ sin [π(νk − νj1)] cos[π(νh − νj1)

]
sin π

N

cos[π(νk − νj1)] sin [π(νh − νj1)] cos
π
N
− sin [π(νk − νj1)] cos[π(νh − νj1)] sin

π
N

=

= −
sin

[
π(νh − νj1) +

π
N

]
sin

[
π(νh − νj1)− π

N

]
(A.0.8)

and, with the same reasoning,

βk = −
sin

[
π(νk − νj1) +

π(1−∆)
N

]
sin

[
π(νk − νj1)−

π(1+∆)
N

] . (A.0.9)

From Eqs. (A.0.8) and (A.0.9) we obtain, by clearing the denominators and expand-
ing the sines,

(αk − 1) sin π
N

(αk + 1) cos π
N

= tan(π∆hj1) =
βk sin

π(1+∆)
N

− sin π(1−∆)
N

βk cos
π(1+∆)

N
+ cos π(1−∆)

N

. (A.0.10)

Then, by equating the first and third member and clearing denominators, we obtain

αkβk sin
π∆

N
+ αk sin

π(∆− 2)

N
+ βk sin

π(∆ + 2)

N
+ sin

π∆

N
= 0 . (A.0.11)

We note that both the numerators and the denominators of αk and βk are linear
functions of sin [π(νk − νj1)] and cos [π(νk − νj1)]. This means that if we clear the de-
nominators, the left hand side of Eq. (A.0.11) is a weighted sum of sin2 [π(νk − νj1)],
sin [π(νk − νj1)] cos [π(νk − νj1)] and cos2 [π(νk − νj1)] that can be rewritten as

γ2 sin
2 [π(νk − νj1)] + γ1 sin [π(νk − νj1)] cos [π(νk − νj1)]

+ γ0 cos
2 [π(νk − νj1)] = 0 ,

(A.0.12)
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and dividing by cos2 [π(νk − νj1)] we get

γ2 tan
2 π(νk − νj1) + γ1 tanπ(νk − νj1) + γ0 = 0 (A.0.13)

which can be solved for the unknown νk.

After some calculations starting from Eq. (A.0.11), the γ coefficients are found to be

γ2 = ϕ(νj1+1)ϕ(νj2+1)e
2πi
N cos

π

N
sin

π∆

N
cos

π(∆ + 1)

N

− ϕ(νj1+1)ϕ(νj2)e
πi
N 2 cos2

π

N
cos

π∆

N
sin

π(∆− 1)

N

+ ϕ(νj1+1)ϕ(νj2−1) cos
π

N
cos

π(∆− 1)

N
sin

π(∆− 2)

N

− ϕ(νj1)ϕ(νj2+1)e
πi
N cos

π

N
sin

2π(∆ + 1)

N

+ ϕ(νj1)ϕ(νj2) 2 cos
2 π

N
sin

2π∆

N

− ϕ(νj1)ϕ(νj2−1)e
−πi

N cos
π

N
sin

2π(∆− 1)

N

+ ϕ(νj1−1)ϕ(νj2+1) cos
π

N
cos

π(∆ + 1)

N
sin

π(∆ + 2)

N

− ϕ(νj1−1)ϕ(νj2)e
−πi

N 2 cos2
π

N
cos

π∆

N
sin

π(∆ + 1)

N

+ ϕ(νj1−1)ϕ(νj2−1)e
− 2πi

N cos
π

N
sin

π∆

N
cos

π(∆− 1)

N

γ1 = −ϕ(νj1+1)ϕ(νj2+1)e
2πi
N sin

π∆

N
sin

π(∆ + 2)

N

+ ϕ(νj1+1)ϕ(νj2)e
πi
N 2 cos2

π

N
2 cos

π

N
sin

π(∆ + 1)

N
sin

π(∆− 1)

N
,

− ϕ(νj1+1)ϕ(νj2−1) sin
π∆

N
sin

π(∆− 2)

N

+ ϕ(νj1)ϕ(νj2+1)e
πi
N 2 cos

π

N
sin2 π(∆ + 1)

N

− ϕ(νj1)ϕ(νj2) 4 cos
2 π

N
sin2 π∆

N

+ ϕ(νj1)ϕ(νj2−1)e
−πi

N 2 cos
π

N
sin2 π(∆− 1)

N

− ϕ(νj1−1)ϕ(νj2+1) sin
π∆

N
sin

π(∆ + 2)

N

+ ϕ(νj1−1)ϕ(νj2)e
−πi

N 2 cos
π

N
sin

π(∆ + 1)

N
sin

π(∆− 1)

N
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− ϕ(νj1−1)ϕ(νj2−1)e
− 2πi

N sin
π∆

N
sin

π(∆− 2)

N
,

γ0 = ϕ(νj1+1)ϕ(νj2+1)e
2πi
N sin

π

N
sin

π∆

N
sin

π(∆ + 1)

N

− ϕ(νj1+1)ϕ(νj2)e
πi
N sin

2π

N
sin

π∆

N
sin

π(∆− 1)

N

+ ϕ(νj1+1)ϕ(νj2−1) sin
π

N
sin

π(∆− 1)

N
sin

π(∆− 2)

N

− ϕ(νj1−1)ϕ(νj2+1) sin
π

N
sin

π(∆ + 1)

N
sin

π(∆ + 2)

N

+ ϕ(νj1−1)ϕ(νj2)e
−πi

N sin
2π

N
sin

π∆

N
sin

π(∆ + 1)

N

− ϕ(νj1−1)ϕ(νj2−1)e
− 2πi

N sin
π

N
sin

π∆

N
sin

π(∆− 1)

N
.

(A.0.15)

Now, since these coefficients can be calculated from the Fourier transform of the
signal, we have found a new way to calculate ν1 and ν2: we solve Eq. (A.0.13) with
complex unknown ν, the two solutions are the two frequencies of our interest. We expect
their imaginary part to be approximately equal to the machine error, so we can treat the
two solutions as if they were real. Then, our best guess for ν1 and ν2 are respectively
the smallest and the largest of the two, since without loss of generality ν1 < ν2.
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